1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright 2020 RackTop Systems, Inc. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/conf.h> 31 #include <sys/id_space.h> 32 #include <sys/esunddi.h> 33 #include <sys/stat.h> 34 #include <sys/mkdev.h> 35 #include <sys/stream.h> 36 #include <sys/strsubr.h> 37 #include <sys/dlpi.h> 38 #include <sys/modhash.h> 39 #include <sys/mac.h> 40 #include <sys/mac_provider.h> 41 #include <sys/mac_impl.h> 42 #include <sys/mac_client_impl.h> 43 #include <sys/mac_client_priv.h> 44 #include <sys/mac_soft_ring.h> 45 #include <sys/mac_stat.h> 46 #include <sys/dld.h> 47 #include <sys/modctl.h> 48 #include <sys/fs/dv_node.h> 49 #include <sys/thread.h> 50 #include <sys/proc.h> 51 #include <sys/callb.h> 52 #include <sys/cpuvar.h> 53 #include <sys/atomic.h> 54 #include <sys/sdt.h> 55 #include <sys/mac_flow.h> 56 #include <sys/ddi_intr_impl.h> 57 #include <sys/disp.h> 58 #include <sys/sdt.h> 59 #include <sys/pattr.h> 60 #include <sys/strsun.h> 61 #include <sys/vlan.h> 62 #include <inet/ip.h> 63 #include <inet/tcp.h> 64 #include <netinet/udp.h> 65 #include <netinet/sctp.h> 66 67 /* 68 * MAC Provider Interface. 69 * 70 * Interface for GLDv3 compatible NIC drivers. 71 */ 72 73 static void i_mac_notify_thread(void *); 74 75 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 76 77 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 78 mac_fanout_recompute, /* MAC_NOTE_LINK */ 79 NULL, /* MAC_NOTE_UNICST */ 80 NULL, /* MAC_NOTE_TX */ 81 NULL, /* MAC_NOTE_DEVPROMISC */ 82 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 83 NULL, /* MAC_NOTE_SDU_SIZE */ 84 NULL, /* MAC_NOTE_MARGIN */ 85 NULL, /* MAC_NOTE_CAPAB_CHG */ 86 NULL /* MAC_NOTE_LOWLINK */ 87 }; 88 89 /* 90 * Driver support functions. 91 */ 92 93 /* REGISTRATION */ 94 95 mac_register_t * 96 mac_alloc(uint_t mac_version) 97 { 98 mac_register_t *mregp; 99 100 /* 101 * Make sure there isn't a version mismatch between the driver and 102 * the framework. In the future, if multiple versions are 103 * supported, this check could become more sophisticated. 104 */ 105 if (mac_version != MAC_VERSION) 106 return (NULL); 107 108 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 109 mregp->m_version = mac_version; 110 return (mregp); 111 } 112 113 void 114 mac_free(mac_register_t *mregp) 115 { 116 kmem_free(mregp, sizeof (mac_register_t)); 117 } 118 119 /* 120 * Convert a MAC's offload features into the equivalent DB_CKSUMFLAGS 121 * value. 122 */ 123 static uint16_t 124 mac_features_to_flags(mac_handle_t mh) 125 { 126 uint16_t flags = 0; 127 uint32_t cap_sum = 0; 128 mac_capab_lso_t cap_lso; 129 130 if (mac_capab_get(mh, MAC_CAPAB_HCKSUM, &cap_sum)) { 131 if (cap_sum & HCKSUM_IPHDRCKSUM) 132 flags |= HCK_IPV4_HDRCKSUM; 133 134 if (cap_sum & HCKSUM_INET_PARTIAL) 135 flags |= HCK_PARTIALCKSUM; 136 else if (cap_sum & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 137 flags |= HCK_FULLCKSUM; 138 } 139 140 /* 141 * We don't need the information stored in 'cap_lso', but we 142 * need to pass a non-NULL pointer to appease the driver. 143 */ 144 if (mac_capab_get(mh, MAC_CAPAB_LSO, &cap_lso)) 145 flags |= HW_LSO; 146 147 return (flags); 148 } 149 150 /* 151 * mac_register() is how drivers register new MACs with the GLDv3 152 * framework. The mregp argument is allocated by drivers using the 153 * mac_alloc() function, and can be freed using mac_free() immediately upon 154 * return from mac_register(). Upon success (0 return value), the mhp 155 * opaque pointer becomes the driver's handle to its MAC interface, and is 156 * the argument to all other mac module entry points. 157 */ 158 /* ARGSUSED */ 159 int 160 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 161 { 162 mac_impl_t *mip; 163 mactype_t *mtype; 164 int err = EINVAL; 165 struct devnames *dnp = NULL; 166 uint_t instance; 167 boolean_t style1_created = B_FALSE; 168 boolean_t style2_created = B_FALSE; 169 char *driver; 170 minor_t minor = 0; 171 172 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 173 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 174 return (EINVAL); 175 176 /* Find the required MAC-Type plugin. */ 177 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 178 return (EINVAL); 179 180 /* Create a mac_impl_t to represent this MAC. */ 181 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 182 183 /* 184 * The mac is not ready for open yet. 185 */ 186 mip->mi_state_flags |= MIS_DISABLED; 187 188 /* 189 * When a mac is registered, the m_instance field can be set to: 190 * 191 * 0: Get the mac's instance number from m_dip. 192 * This is usually used for physical device dips. 193 * 194 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 195 * For example, when an aggregation is created with the key option, 196 * "key" will be used as the instance number. 197 * 198 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 199 * This is often used when a MAC of a virtual link is registered 200 * (e.g., aggregation when "key" is not specified, or vnic). 201 * 202 * Note that the instance number is used to derive the mi_minor field 203 * of mac_impl_t, which will then be used to derive the name of kstats 204 * and the devfs nodes. The first 2 cases are needed to preserve 205 * backward compatibility. 206 */ 207 switch (mregp->m_instance) { 208 case 0: 209 instance = ddi_get_instance(mregp->m_dip); 210 break; 211 case ((uint_t)-1): 212 minor = mac_minor_hold(B_TRUE); 213 if (minor == 0) { 214 err = ENOSPC; 215 goto fail; 216 } 217 instance = minor - 1; 218 break; 219 default: 220 instance = mregp->m_instance; 221 if (instance >= MAC_MAX_MINOR) { 222 err = EINVAL; 223 goto fail; 224 } 225 break; 226 } 227 228 mip->mi_minor = (minor_t)(instance + 1); 229 mip->mi_dip = mregp->m_dip; 230 mip->mi_clients_list = NULL; 231 mip->mi_nclients = 0; 232 233 /* Set the default IEEE Port VLAN Identifier */ 234 mip->mi_pvid = 1; 235 236 /* Default bridge link learning protection values */ 237 mip->mi_llimit = 1000; 238 mip->mi_ldecay = 200; 239 240 driver = (char *)ddi_driver_name(mip->mi_dip); 241 242 /* Construct the MAC name as <drvname><instance> */ 243 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 244 driver, instance); 245 246 mip->mi_driver = mregp->m_driver; 247 248 mip->mi_type = mtype; 249 mip->mi_margin = mregp->m_margin; 250 mip->mi_info.mi_media = mtype->mt_type; 251 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 252 if (mregp->m_max_sdu <= mregp->m_min_sdu) 253 goto fail; 254 if (mregp->m_multicast_sdu == 0) 255 mregp->m_multicast_sdu = mregp->m_max_sdu; 256 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 257 mregp->m_multicast_sdu > mregp->m_max_sdu) 258 goto fail; 259 mip->mi_sdu_min = mregp->m_min_sdu; 260 mip->mi_sdu_max = mregp->m_max_sdu; 261 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 262 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 263 /* 264 * If the media supports a broadcast address, cache a pointer to it 265 * in the mac_info_t so that upper layers can use it. 266 */ 267 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 268 269 mip->mi_v12n_level = mregp->m_v12n; 270 271 /* 272 * Copy the unicast source address into the mac_info_t, but only if 273 * the MAC-Type defines a non-zero address length. We need to 274 * handle MAC-Types that have an address length of 0 275 * (point-to-point protocol MACs for example). 276 */ 277 if (mip->mi_type->mt_addr_length > 0) { 278 if (mregp->m_src_addr == NULL) 279 goto fail; 280 mip->mi_info.mi_unicst_addr = 281 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 282 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 283 mip->mi_type->mt_addr_length); 284 285 /* 286 * Copy the fixed 'factory' MAC address from the immutable 287 * info. This is taken to be the MAC address currently in 288 * use. 289 */ 290 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 291 mip->mi_type->mt_addr_length); 292 293 /* 294 * At this point, we should set up the classification 295 * rules etc but we delay it till mac_open() so that 296 * the resource discovery has taken place and we 297 * know someone wants to use the device. Otherwise 298 * memory gets allocated for Rx ring structures even 299 * during probe. 300 */ 301 302 /* Copy the destination address if one is provided. */ 303 if (mregp->m_dst_addr != NULL) { 304 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 305 mip->mi_type->mt_addr_length); 306 mip->mi_dstaddr_set = B_TRUE; 307 } 308 } else if (mregp->m_src_addr != NULL) { 309 goto fail; 310 } 311 312 /* 313 * The format of the m_pdata is specific to the plugin. It is 314 * passed in as an argument to all of the plugin callbacks. The 315 * driver can update this information by calling 316 * mac_pdata_update(). 317 */ 318 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 319 /* 320 * Verify if the supplied plugin data is valid. Note that 321 * even if the caller passed in a NULL pointer as plugin data, 322 * we still need to verify if that's valid as the plugin may 323 * require plugin data to function. 324 */ 325 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 326 mregp->m_pdata_size)) { 327 goto fail; 328 } 329 if (mregp->m_pdata != NULL) { 330 mip->mi_pdata = 331 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 332 bcopy(mregp->m_pdata, mip->mi_pdata, 333 mregp->m_pdata_size); 334 mip->mi_pdata_size = mregp->m_pdata_size; 335 } 336 } else if (mregp->m_pdata != NULL) { 337 /* 338 * The caller supplied non-NULL plugin data, but the plugin 339 * does not recognize plugin data. 340 */ 341 err = EINVAL; 342 goto fail; 343 } 344 345 /* 346 * Register the private properties. 347 */ 348 mac_register_priv_prop(mip, mregp->m_priv_props); 349 350 /* 351 * Stash the driver callbacks into the mac_impl_t, but first sanity 352 * check to make sure all mandatory callbacks are set. 353 */ 354 if (mregp->m_callbacks->mc_getstat == NULL || 355 mregp->m_callbacks->mc_start == NULL || 356 mregp->m_callbacks->mc_stop == NULL || 357 mregp->m_callbacks->mc_setpromisc == NULL || 358 mregp->m_callbacks->mc_multicst == NULL) { 359 goto fail; 360 } 361 mip->mi_callbacks = mregp->m_callbacks; 362 363 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 364 &mip->mi_capab_legacy)) { 365 mip->mi_state_flags |= MIS_LEGACY; 366 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 367 } else { 368 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 369 mip->mi_minor); 370 } 371 372 /* 373 * Allocate a notification thread. thread_create blocks for memory 374 * if needed, it never fails. 375 */ 376 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 377 mip, 0, &p0, TS_RUN, minclsyspri); 378 379 /* 380 * Cache the DB_CKSUMFLAGS that this MAC supports. 381 */ 382 mip->mi_tx_cksum_flags = mac_features_to_flags((mac_handle_t)mip); 383 384 /* 385 * Initialize the capabilities 386 */ 387 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 388 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 389 390 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 391 mip->mi_state_flags |= MIS_IS_VNIC; 392 393 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 394 mip->mi_state_flags |= MIS_IS_AGGR; 395 396 mac_addr_factory_init(mip); 397 398 mac_transceiver_init(mip); 399 400 mac_led_init(mip); 401 402 /* 403 * Enforce the virtrualization level registered. 404 */ 405 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 406 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 407 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 408 goto fail; 409 410 /* 411 * The driver needs to register at least rx rings for this 412 * virtualization level. 413 */ 414 if (mip->mi_rx_groups == NULL) 415 goto fail; 416 } 417 418 /* 419 * The driver must set mc_unicst entry point to NULL when it advertises 420 * CAP_RINGS for rx groups. 421 */ 422 if (mip->mi_rx_groups != NULL) { 423 if (mregp->m_callbacks->mc_unicst != NULL) 424 goto fail; 425 } else { 426 if (mregp->m_callbacks->mc_unicst == NULL) 427 goto fail; 428 } 429 430 /* 431 * Initialize MAC addresses. Must be called after mac_init_rings(). 432 */ 433 mac_init_macaddr(mip); 434 435 mip->mi_share_capab.ms_snum = 0; 436 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 437 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 438 &mip->mi_share_capab); 439 } 440 441 /* 442 * Initialize the kstats for this device. 443 */ 444 mac_driver_stat_create(mip); 445 446 /* Zero out any properties. */ 447 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 448 449 if (mip->mi_minor <= MAC_MAX_MINOR) { 450 /* Create a style-2 DLPI device */ 451 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 452 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 453 goto fail; 454 style2_created = B_TRUE; 455 456 /* Create a style-1 DLPI device */ 457 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 458 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 459 goto fail; 460 style1_created = B_TRUE; 461 } 462 463 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 464 465 rw_enter(&i_mac_impl_lock, RW_WRITER); 466 if (mod_hash_insert(i_mac_impl_hash, 467 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 468 rw_exit(&i_mac_impl_lock); 469 err = EEXIST; 470 goto fail; 471 } 472 473 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 474 (mac_impl_t *), mip); 475 476 /* 477 * Mark the MAC to be ready for open. 478 */ 479 mip->mi_state_flags &= ~MIS_DISABLED; 480 rw_exit(&i_mac_impl_lock); 481 482 atomic_inc_32(&i_mac_impl_count); 483 484 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 485 *mhp = (mac_handle_t)mip; 486 return (0); 487 488 fail: 489 if (style1_created) 490 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 491 492 if (style2_created) 493 ddi_remove_minor_node(mip->mi_dip, driver); 494 495 mac_addr_factory_fini(mip); 496 497 /* Clean up registered MAC addresses */ 498 mac_fini_macaddr(mip); 499 500 /* Clean up registered rings */ 501 mac_free_rings(mip, MAC_RING_TYPE_RX); 502 mac_free_rings(mip, MAC_RING_TYPE_TX); 503 504 /* Clean up notification thread */ 505 if (mip->mi_notify_thread != NULL) 506 i_mac_notify_exit(mip); 507 508 if (mip->mi_info.mi_unicst_addr != NULL) { 509 kmem_free(mip->mi_info.mi_unicst_addr, 510 mip->mi_type->mt_addr_length); 511 mip->mi_info.mi_unicst_addr = NULL; 512 } 513 514 mac_driver_stat_delete(mip); 515 516 if (mip->mi_type != NULL) { 517 atomic_dec_32(&mip->mi_type->mt_ref); 518 mip->mi_type = NULL; 519 } 520 521 if (mip->mi_pdata != NULL) { 522 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 523 mip->mi_pdata = NULL; 524 mip->mi_pdata_size = 0; 525 } 526 527 if (minor != 0) { 528 ASSERT(minor > MAC_MAX_MINOR); 529 mac_minor_rele(minor); 530 } 531 532 mip->mi_state_flags = 0; 533 mac_unregister_priv_prop(mip); 534 535 /* 536 * Clear the state before destroying the mac_impl_t 537 */ 538 mip->mi_state_flags = 0; 539 540 kmem_cache_free(i_mac_impl_cachep, mip); 541 return (err); 542 } 543 544 /* 545 * Unregister from the GLDv3 framework 546 */ 547 int 548 mac_unregister(mac_handle_t mh) 549 { 550 int err; 551 mac_impl_t *mip = (mac_impl_t *)mh; 552 mod_hash_val_t val; 553 mac_margin_req_t *mmr, *nextmmr; 554 555 /* Fail the unregister if there are any open references to this mac. */ 556 if ((err = mac_disable_nowait(mh)) != 0) 557 return (err); 558 559 /* 560 * Clean up notification thread and wait for it to exit. 561 */ 562 i_mac_notify_exit(mip); 563 564 /* 565 * Prior to acquiring the MAC perimeter, remove the MAC instance from 566 * the internal hash table. Such removal means table-walkers that 567 * acquire the perimeter will not do so on behalf of what we are 568 * unregistering, which prevents a deadlock. 569 */ 570 rw_enter(&i_mac_impl_lock, RW_WRITER); 571 (void) mod_hash_remove(i_mac_impl_hash, 572 (mod_hash_key_t)mip->mi_name, &val); 573 rw_exit(&i_mac_impl_lock); 574 ASSERT(mip == (mac_impl_t *)val); 575 576 i_mac_perim_enter(mip); 577 578 /* 579 * There is still resource properties configured over this mac. 580 */ 581 if (mip->mi_resource_props.mrp_mask != 0) 582 mac_fastpath_enable((mac_handle_t)mip); 583 584 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 585 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 586 ddi_remove_minor_node(mip->mi_dip, 587 (char *)ddi_driver_name(mip->mi_dip)); 588 } 589 590 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 591 MIS_EXCLUSIVE)); 592 593 mac_driver_stat_delete(mip); 594 595 ASSERT(i_mac_impl_count > 0); 596 atomic_dec_32(&i_mac_impl_count); 597 598 if (mip->mi_pdata != NULL) 599 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 600 mip->mi_pdata = NULL; 601 mip->mi_pdata_size = 0; 602 603 /* 604 * Free the list of margin request. 605 */ 606 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 607 nextmmr = mmr->mmr_nextp; 608 kmem_free(mmr, sizeof (mac_margin_req_t)); 609 } 610 mip->mi_mmrp = NULL; 611 612 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 613 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 614 mip->mi_info.mi_unicst_addr = NULL; 615 616 atomic_dec_32(&mip->mi_type->mt_ref); 617 mip->mi_type = NULL; 618 619 /* 620 * Free the primary MAC address. 621 */ 622 mac_fini_macaddr(mip); 623 624 /* 625 * free all rings 626 */ 627 mac_free_rings(mip, MAC_RING_TYPE_RX); 628 mac_free_rings(mip, MAC_RING_TYPE_TX); 629 630 mac_addr_factory_fini(mip); 631 632 bzero(mip->mi_addr, MAXMACADDRLEN); 633 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 634 mip->mi_dstaddr_set = B_FALSE; 635 636 /* and the flows */ 637 mac_flow_tab_destroy(mip->mi_flow_tab); 638 mip->mi_flow_tab = NULL; 639 640 if (mip->mi_minor > MAC_MAX_MINOR) 641 mac_minor_rele(mip->mi_minor); 642 643 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 644 645 /* 646 * Reset the perim related fields to default values before 647 * kmem_cache_free 648 */ 649 i_mac_perim_exit(mip); 650 mip->mi_state_flags = 0; 651 652 mac_unregister_priv_prop(mip); 653 654 ASSERT(mip->mi_bridge_link == NULL); 655 kmem_cache_free(i_mac_impl_cachep, mip); 656 657 return (0); 658 } 659 660 /* DATA RECEPTION */ 661 662 /* 663 * This function is invoked for packets received by the MAC driver in 664 * interrupt context. The ring generation number provided by the driver 665 * is matched with the ring generation number held in MAC. If they do not 666 * match, received packets are considered stale packets coming from an older 667 * assignment of the ring. Drop them. 668 */ 669 void 670 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 671 uint64_t mr_gen_num) 672 { 673 mac_ring_t *mr = (mac_ring_t *)mrh; 674 675 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 676 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 677 mr->mr_gen_num, uint64_t, mr_gen_num); 678 freemsgchain(mp_chain); 679 return; 680 } 681 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 682 } 683 684 /* 685 * This function is invoked for each packet received by the underlying driver. 686 */ 687 void 688 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 689 { 690 mac_impl_t *mip = (mac_impl_t *)mh; 691 692 /* 693 * Check if the link is part of a bridge. If not, then we don't need 694 * to take the lock to remain consistent. Make this common case 695 * lock-free and tail-call optimized. 696 */ 697 if (mip->mi_bridge_link == NULL) { 698 mac_rx_common(mh, mrh, mp_chain); 699 } else { 700 /* 701 * Once we take a reference on the bridge link, the bridge 702 * module itself can't unload, so the callback pointers are 703 * stable. 704 */ 705 mutex_enter(&mip->mi_bridge_lock); 706 if ((mh = mip->mi_bridge_link) != NULL) 707 mac_bridge_ref_cb(mh, B_TRUE); 708 mutex_exit(&mip->mi_bridge_lock); 709 if (mh == NULL) { 710 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 711 } else { 712 mac_bridge_rx_cb(mh, mrh, mp_chain); 713 mac_bridge_ref_cb(mh, B_FALSE); 714 } 715 } 716 } 717 718 /* 719 * Special case function: this allows snooping of packets transmitted and 720 * received by TRILL. By design, they go directly into the TRILL module. 721 */ 722 void 723 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 724 { 725 mac_impl_t *mip = (mac_impl_t *)mh; 726 727 if (mip->mi_promisc_list != NULL) 728 mac_promisc_dispatch(mip, mp, NULL, B_FALSE); 729 } 730 731 /* 732 * This is the upward reentry point for packets arriving from the bridging 733 * module and from mac_rx for links not part of a bridge. 734 */ 735 void 736 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 737 { 738 mac_impl_t *mip = (mac_impl_t *)mh; 739 mac_ring_t *mr = (mac_ring_t *)mrh; 740 mac_soft_ring_set_t *mac_srs; 741 mblk_t *bp = mp_chain; 742 743 /* 744 * If there are any promiscuous mode callbacks defined for 745 * this MAC, pass them a copy if appropriate. 746 */ 747 if (mip->mi_promisc_list != NULL) 748 mac_promisc_dispatch(mip, mp_chain, NULL, B_FALSE); 749 750 if (mr != NULL) { 751 /* 752 * If the SRS teardown has started, just return. The 'mr' 753 * continues to be valid until the driver unregisters the MAC. 754 * Hardware classified packets will not make their way up 755 * beyond this point once the teardown has started. The driver 756 * is never passed a pointer to a flow entry or SRS or any 757 * structure that can be freed much before mac_unregister. 758 */ 759 mutex_enter(&mr->mr_lock); 760 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 761 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 762 mutex_exit(&mr->mr_lock); 763 freemsgchain(mp_chain); 764 return; 765 } 766 767 /* 768 * The ring is in passthru mode; pass the chain up to 769 * the pseudo ring. 770 */ 771 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) { 772 MR_REFHOLD_LOCKED(mr); 773 mutex_exit(&mr->mr_lock); 774 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain, 775 B_FALSE); 776 MR_REFRELE(mr); 777 return; 778 } 779 780 /* 781 * The passthru callback should only be set when in 782 * MAC_PASSTHRU_CLASSIFIER mode. 783 */ 784 ASSERT3P(mr->mr_pt_fn, ==, NULL); 785 786 /* 787 * We check if an SRS is controlling this ring. 788 * If so, we can directly call the srs_lower_proc 789 * routine otherwise we need to go through mac_rx_classify 790 * to reach the right place. 791 */ 792 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 793 MR_REFHOLD_LOCKED(mr); 794 mutex_exit(&mr->mr_lock); 795 ASSERT3P(mr->mr_srs, !=, NULL); 796 mac_srs = mr->mr_srs; 797 798 /* 799 * This is the fast path. All packets received 800 * on this ring are hardware classified and 801 * share the same MAC header info. 802 */ 803 mac_srs->srs_rx.sr_lower_proc(mh, 804 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 805 MR_REFRELE(mr); 806 return; 807 } 808 809 mutex_exit(&mr->mr_lock); 810 /* We'll fall through to software classification */ 811 } else { 812 flow_entry_t *flent; 813 int err; 814 815 rw_enter(&mip->mi_rw_lock, RW_READER); 816 if (mip->mi_single_active_client != NULL) { 817 flent = mip->mi_single_active_client->mci_flent_list; 818 FLOW_TRY_REFHOLD(flent, err); 819 rw_exit(&mip->mi_rw_lock); 820 if (err == 0) { 821 (flent->fe_cb_fn)(flent->fe_cb_arg1, 822 flent->fe_cb_arg2, mp_chain, B_FALSE); 823 FLOW_REFRELE(flent); 824 return; 825 } 826 } else { 827 rw_exit(&mip->mi_rw_lock); 828 } 829 } 830 831 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 832 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 833 return; 834 } 835 836 freemsgchain(bp); 837 } 838 839 /* DATA TRANSMISSION */ 840 841 /* 842 * A driver's notification to resume transmission, in case of a provider 843 * without TX rings. 844 */ 845 void 846 mac_tx_update(mac_handle_t mh) 847 { 848 mac_tx_ring_update(mh, NULL); 849 } 850 851 /* 852 * A driver's notification to resume transmission on the specified TX ring. 853 */ 854 void 855 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 856 { 857 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 858 } 859 860 /* LINK STATE */ 861 /* 862 * Notify the MAC layer about a link state change 863 */ 864 void 865 mac_link_update(mac_handle_t mh, link_state_t link) 866 { 867 mac_impl_t *mip = (mac_impl_t *)mh; 868 869 /* 870 * Save the link state. 871 */ 872 mip->mi_lowlinkstate = link; 873 874 /* 875 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 876 * thread to deliver both lower and upper notifications. 877 */ 878 i_mac_notify(mip, MAC_NOTE_LOWLINK); 879 } 880 881 /* 882 * Notify the MAC layer about a link state change due to bridging. 883 */ 884 void 885 mac_link_redo(mac_handle_t mh, link_state_t link) 886 { 887 mac_impl_t *mip = (mac_impl_t *)mh; 888 889 /* 890 * Save the link state. 891 */ 892 mip->mi_linkstate = link; 893 894 /* 895 * Send a MAC_NOTE_LINK notification. Only upper notifications are 896 * made. 897 */ 898 i_mac_notify(mip, MAC_NOTE_LINK); 899 } 900 901 /* MINOR NODE HANDLING */ 902 903 /* 904 * Given a dev_t, return the instance number (PPA) associated with it. 905 * Drivers can use this in their getinfo(9e) implementation to lookup 906 * the instance number (i.e. PPA) of the device, to use as an index to 907 * their own array of soft state structures. 908 * 909 * Returns -1 on error. 910 */ 911 int 912 mac_devt_to_instance(dev_t devt) 913 { 914 return (dld_devt_to_instance(devt)); 915 } 916 917 /* 918 * This function returns the first minor number that is available for 919 * driver private use. All minor numbers smaller than this are 920 * reserved for GLDv3 use. 921 */ 922 minor_t 923 mac_private_minor(void) 924 { 925 return (MAC_PRIVATE_MINOR); 926 } 927 928 /* OTHER CONTROL INFORMATION */ 929 930 /* 931 * A driver notified us that its primary MAC address has changed. 932 */ 933 void 934 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 935 { 936 mac_impl_t *mip = (mac_impl_t *)mh; 937 938 if (mip->mi_type->mt_addr_length == 0) 939 return; 940 941 i_mac_perim_enter(mip); 942 943 /* 944 * If address changes, freshen the MAC address value and update 945 * all MAC clients that share this MAC address. 946 */ 947 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 948 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 949 (uint8_t *)addr); 950 } 951 952 i_mac_perim_exit(mip); 953 954 /* 955 * Send a MAC_NOTE_UNICST notification. 956 */ 957 i_mac_notify(mip, MAC_NOTE_UNICST); 958 } 959 960 void 961 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 962 { 963 mac_impl_t *mip = (mac_impl_t *)mh; 964 965 if (mip->mi_type->mt_addr_length == 0) 966 return; 967 968 i_mac_perim_enter(mip); 969 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 970 i_mac_perim_exit(mip); 971 i_mac_notify(mip, MAC_NOTE_DEST); 972 } 973 974 /* 975 * MAC plugin information changed. 976 */ 977 int 978 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 979 { 980 mac_impl_t *mip = (mac_impl_t *)mh; 981 982 /* 983 * Verify that the plugin supports MAC plugin data and that the 984 * supplied data is valid. 985 */ 986 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 987 return (EINVAL); 988 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 989 return (EINVAL); 990 991 if (mip->mi_pdata != NULL) 992 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 993 994 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 995 bcopy(mac_pdata, mip->mi_pdata, dsize); 996 mip->mi_pdata_size = dsize; 997 998 /* 999 * Since the MAC plugin data is used to construct MAC headers that 1000 * were cached in fast-path headers, we need to flush fast-path 1001 * information for links associated with this mac. 1002 */ 1003 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 1004 return (0); 1005 } 1006 1007 /* 1008 * The mac provider or mac frameowrk calls this function when it wants 1009 * to notify upstream consumers that the capabilities have changed and 1010 * that they should modify their own internal state accordingly. 1011 * 1012 * We currently have no regard for the fact that a provider could 1013 * decide to drop capabilities which would invalidate pending traffic. 1014 * For example, if one was to disable the Tx checksum offload while 1015 * TCP/IP traffic was being sent by mac clients relying on that 1016 * feature, then those packets would hit the write with missing or 1017 * partial checksums. A proper solution involves not only providing 1018 * notfication, but also performing client quiescing. That is, a capab 1019 * change should be treated as an atomic transaction that forms a 1020 * barrier between traffic relying on the current capabs and traffic 1021 * relying on the new capabs. In practice, simnet is currently the 1022 * only provider that could hit this, and it's an easily avoidable 1023 * situation (and at worst it should only lead to some dropped 1024 * packets). But if we ever want better on-the-fly capab change to 1025 * actual hardware providers, then we should give this update 1026 * mechanism a proper implementation. 1027 */ 1028 void 1029 mac_capab_update(mac_handle_t mh) 1030 { 1031 /* 1032 * Send a MAC_NOTE_CAPAB_CHG notification to alert upstream 1033 * clients to renegotiate capabilities. 1034 */ 1035 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 1036 } 1037 1038 /* 1039 * Used by normal drivers to update the max sdu size. 1040 * We need to handle the case of a smaller mi_sdu_multicast 1041 * since this is called by mac_set_mtu() even for drivers that 1042 * have differing unicast and multicast mtu and we don't want to 1043 * increase the multicast mtu by accident in that case. 1044 */ 1045 int 1046 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 1047 { 1048 mac_impl_t *mip = (mac_impl_t *)mh; 1049 1050 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 1051 return (EINVAL); 1052 mip->mi_sdu_max = sdu_max; 1053 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 1054 mip->mi_sdu_multicast = mip->mi_sdu_max; 1055 1056 /* Send a MAC_NOTE_SDU_SIZE notification. */ 1057 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 1058 return (0); 1059 } 1060 1061 /* 1062 * Version of the above function that is used by drivers that have a different 1063 * max sdu size for multicast/broadcast vs. unicast. 1064 */ 1065 int 1066 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 1067 { 1068 mac_impl_t *mip = (mac_impl_t *)mh; 1069 1070 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 1071 return (EINVAL); 1072 if (sdu_multicast == 0) 1073 sdu_multicast = sdu_max; 1074 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 1075 return (EINVAL); 1076 mip->mi_sdu_max = sdu_max; 1077 mip->mi_sdu_multicast = sdu_multicast; 1078 1079 /* Send a MAC_NOTE_SDU_SIZE notification. */ 1080 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 1081 return (0); 1082 } 1083 1084 static void 1085 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 1086 { 1087 mac_client_impl_t *mcip; 1088 flow_entry_t *flent; 1089 mac_soft_ring_set_t *mac_rx_srs; 1090 mac_cpus_t *srs_cpu; 1091 int i; 1092 1093 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1094 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1095 /* interrupt can be re-targeted */ 1096 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1097 flent = mcip->mci_flent; 1098 if (ring->mr_type == MAC_RING_TYPE_RX) { 1099 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1100 mac_rx_srs = flent->fe_rx_srs[i]; 1101 if (mac_rx_srs->srs_ring != ring) 1102 continue; 1103 srs_cpu = &mac_rx_srs->srs_cpu; 1104 mutex_enter(&cpu_lock); 1105 mac_rx_srs_retarget_intr(mac_rx_srs, 1106 srs_cpu->mc_rx_intr_cpu); 1107 mutex_exit(&cpu_lock); 1108 break; 1109 } 1110 } else { 1111 if (flent->fe_tx_srs != NULL) { 1112 mutex_enter(&cpu_lock); 1113 mac_tx_srs_retarget_intr( 1114 flent->fe_tx_srs); 1115 mutex_exit(&cpu_lock); 1116 } 1117 } 1118 } 1119 } 1120 1121 /* 1122 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1123 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1124 * ring. ddi interrupt handles are exported from the hardware ring to 1125 * the pseudo ring. Thus when the interrupt handle changes, clients of 1126 * aggr that are using the handle need to use the new handle and 1127 * re-target their interrupts. 1128 */ 1129 static void 1130 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1131 ddi_intr_handle_t ddh) 1132 { 1133 mac_ring_t *pring; 1134 mac_group_t *pgroup; 1135 mac_impl_t *pmip; 1136 char macname[MAXNAMELEN]; 1137 mac_perim_handle_t p_mph; 1138 uint64_t saved_gen_num; 1139 1140 again: 1141 pring = (mac_ring_t *)ring->mr_prh; 1142 pgroup = (mac_group_t *)pring->mr_gh; 1143 pmip = (mac_impl_t *)pgroup->mrg_mh; 1144 saved_gen_num = ring->mr_gen_num; 1145 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1146 /* 1147 * We need to enter aggr's perimeter. The locking hierarchy 1148 * dictates that aggr's perimeter should be entered first 1149 * and then the port's perimeter. So drop the port's 1150 * perimeter, enter aggr's and then re-enter port's 1151 * perimeter. 1152 */ 1153 i_mac_perim_exit(mip); 1154 /* 1155 * While we know pmip is the aggr's mip, there is a 1156 * possibility that aggr could have unregistered by 1157 * the time we exit port's perimeter (mip) and 1158 * enter aggr's perimeter (pmip). To avoid that 1159 * scenario, enter aggr's perimeter using its name. 1160 */ 1161 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1162 return; 1163 i_mac_perim_enter(mip); 1164 /* 1165 * Check if the ring got assigned to another aggregation before 1166 * be could enter aggr's and the port's perimeter. When a ring 1167 * gets deleted from an aggregation, it calls mac_stop_ring() 1168 * which increments the generation number. So checking 1169 * generation number will be enough. 1170 */ 1171 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1172 i_mac_perim_exit(mip); 1173 mac_perim_exit(p_mph); 1174 i_mac_perim_enter(mip); 1175 goto again; 1176 } 1177 1178 /* Check if pseudo ring is still present */ 1179 if (ring->mr_prh != NULL) { 1180 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1181 pring->mr_info.mri_intr.mi_ddi_shared = 1182 ring->mr_info.mri_intr.mi_ddi_shared; 1183 if (ddh != NULL) 1184 mac_ring_intr_retarget(pgroup, pring); 1185 } 1186 i_mac_perim_exit(mip); 1187 mac_perim_exit(p_mph); 1188 } 1189 /* 1190 * API called by driver to provide new interrupt handle for TX/RX rings. 1191 * This usually happens when IRM (Interrupt Resource Manangement) 1192 * framework either gives the driver more MSI-x interrupts or takes 1193 * away MSI-x interrupts from the driver. 1194 */ 1195 void 1196 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1197 { 1198 mac_ring_t *ring = (mac_ring_t *)mrh; 1199 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1200 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1201 1202 i_mac_perim_enter(mip); 1203 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1204 if (ddh == NULL) { 1205 /* Interrupts being reset */ 1206 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1207 if (ring->mr_prh != NULL) { 1208 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1209 return; 1210 } 1211 } else { 1212 /* New interrupt handle */ 1213 mac_compare_ddi_handle(mip->mi_rx_groups, 1214 mip->mi_rx_group_count, ring); 1215 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1216 mac_compare_ddi_handle(mip->mi_tx_groups, 1217 mip->mi_tx_group_count, ring); 1218 } 1219 if (ring->mr_prh != NULL) { 1220 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1221 return; 1222 } else { 1223 mac_ring_intr_retarget(group, ring); 1224 } 1225 } 1226 i_mac_perim_exit(mip); 1227 } 1228 1229 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1230 1231 /* 1232 * Updates the mac_impl structure with the current state of the link 1233 */ 1234 static void 1235 i_mac_log_link_state(mac_impl_t *mip) 1236 { 1237 /* 1238 * If no change, then it is not interesting. 1239 */ 1240 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1241 return; 1242 1243 switch (mip->mi_lowlinkstate) { 1244 case LINK_STATE_UP: 1245 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1246 char det[200]; 1247 1248 mip->mi_type->mt_ops.mtops_link_details(det, 1249 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1250 1251 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1252 } else { 1253 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1254 } 1255 break; 1256 1257 case LINK_STATE_DOWN: 1258 /* 1259 * Only transitions from UP to DOWN are interesting 1260 */ 1261 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1262 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1263 break; 1264 1265 case LINK_STATE_UNKNOWN: 1266 /* 1267 * This case is normally not interesting. 1268 */ 1269 break; 1270 } 1271 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1272 } 1273 1274 /* 1275 * Main routine for the callbacks notifications thread 1276 */ 1277 static void 1278 i_mac_notify_thread(void *arg) 1279 { 1280 mac_impl_t *mip = arg; 1281 callb_cpr_t cprinfo; 1282 mac_cb_t *mcb; 1283 mac_cb_info_t *mcbi; 1284 mac_notify_cb_t *mncb; 1285 1286 mcbi = &mip->mi_notify_cb_info; 1287 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1288 "i_mac_notify_thread"); 1289 1290 mutex_enter(mcbi->mcbi_lockp); 1291 1292 for (;;) { 1293 uint32_t bits; 1294 uint32_t type; 1295 1296 bits = mip->mi_notify_bits; 1297 if (bits == 0) { 1298 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1299 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1300 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1301 continue; 1302 } 1303 mip->mi_notify_bits = 0; 1304 if ((bits & (1 << MAC_NNOTE)) != 0) { 1305 /* request to quit */ 1306 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1307 break; 1308 } 1309 1310 mutex_exit(mcbi->mcbi_lockp); 1311 1312 /* 1313 * Log link changes on the actual link, but then do reports on 1314 * synthetic state (if part of a bridge). 1315 */ 1316 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1317 link_state_t newstate; 1318 mac_handle_t mh; 1319 1320 i_mac_log_link_state(mip); 1321 newstate = mip->mi_lowlinkstate; 1322 if (mip->mi_bridge_link != NULL) { 1323 mutex_enter(&mip->mi_bridge_lock); 1324 if ((mh = mip->mi_bridge_link) != NULL) { 1325 newstate = mac_bridge_ls_cb(mh, 1326 newstate); 1327 } 1328 mutex_exit(&mip->mi_bridge_lock); 1329 } 1330 if (newstate != mip->mi_linkstate) { 1331 mip->mi_linkstate = newstate; 1332 bits |= 1 << MAC_NOTE_LINK; 1333 } 1334 } 1335 1336 /* 1337 * Depending on which capabs have changed, the Tx 1338 * checksum flags may also need to be updated. 1339 */ 1340 if ((bits & (1 << MAC_NOTE_CAPAB_CHG)) != 0) { 1341 mac_perim_handle_t mph; 1342 mac_handle_t mh = (mac_handle_t)mip; 1343 1344 mac_perim_enter_by_mh(mh, &mph); 1345 mip->mi_tx_cksum_flags = mac_features_to_flags(mh); 1346 mac_perim_exit(mph); 1347 } 1348 1349 /* 1350 * Do notification callbacks for each notification type. 1351 */ 1352 for (type = 0; type < MAC_NNOTE; type++) { 1353 if ((bits & (1 << type)) == 0) { 1354 continue; 1355 } 1356 1357 if (mac_notify_cb_list[type] != NULL) 1358 (*mac_notify_cb_list[type])(mip); 1359 1360 /* 1361 * Walk the list of notifications. 1362 */ 1363 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1364 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1365 mcb = mcb->mcb_nextp) { 1366 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1367 mncb->mncb_fn(mncb->mncb_arg, type); 1368 } 1369 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1370 &mip->mi_notify_cb_list); 1371 } 1372 1373 mutex_enter(mcbi->mcbi_lockp); 1374 } 1375 1376 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1377 cv_broadcast(&mcbi->mcbi_cv); 1378 1379 /* CALLB_CPR_EXIT drops the lock */ 1380 CALLB_CPR_EXIT(&cprinfo); 1381 thread_exit(); 1382 } 1383 1384 /* 1385 * Signal the i_mac_notify_thread asking it to quit. 1386 * Then wait till it is done. 1387 */ 1388 void 1389 i_mac_notify_exit(mac_impl_t *mip) 1390 { 1391 mac_cb_info_t *mcbi; 1392 1393 mcbi = &mip->mi_notify_cb_info; 1394 1395 mutex_enter(mcbi->mcbi_lockp); 1396 mip->mi_notify_bits = (1 << MAC_NNOTE); 1397 cv_broadcast(&mcbi->mcbi_cv); 1398 1399 1400 while ((mip->mi_notify_thread != NULL) && 1401 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1402 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1403 } 1404 1405 /* Necessary clean up before doing kmem_cache_free */ 1406 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1407 mip->mi_notify_bits = 0; 1408 mip->mi_notify_thread = NULL; 1409 mutex_exit(mcbi->mcbi_lockp); 1410 } 1411 1412 /* 1413 * Entry point invoked by drivers to dynamically add a ring to an 1414 * existing group. 1415 */ 1416 int 1417 mac_group_add_ring(mac_group_handle_t gh, int index) 1418 { 1419 mac_group_t *group = (mac_group_t *)gh; 1420 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1421 int ret; 1422 1423 i_mac_perim_enter(mip); 1424 ret = i_mac_group_add_ring(group, NULL, index); 1425 i_mac_perim_exit(mip); 1426 return (ret); 1427 } 1428 1429 /* 1430 * Entry point invoked by drivers to dynamically remove a ring 1431 * from an existing group. The specified ring handle must no longer 1432 * be used by the driver after a call to this function. 1433 */ 1434 void 1435 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1436 { 1437 mac_group_t *group = (mac_group_t *)gh; 1438 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1439 1440 i_mac_perim_enter(mip); 1441 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1442 i_mac_perim_exit(mip); 1443 } 1444 1445 /* 1446 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1447 * entry points. 1448 */ 1449 1450 void 1451 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1452 { 1453 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1454 1455 /* nothing to do if the caller doesn't want the default value */ 1456 if (pr->pr_default == NULL) 1457 return; 1458 1459 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1460 1461 *(uint8_t *)(pr->pr_default) = val; 1462 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1463 } 1464 1465 void 1466 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1467 { 1468 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1469 1470 /* nothing to do if the caller doesn't want the default value */ 1471 if (pr->pr_default == NULL) 1472 return; 1473 1474 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1475 1476 bcopy(&val, pr->pr_default, sizeof (val)); 1477 1478 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1479 } 1480 1481 void 1482 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1483 { 1484 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1485 1486 /* nothing to do if the caller doesn't want the default value */ 1487 if (pr->pr_default == NULL) 1488 return; 1489 1490 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1491 1492 bcopy(&val, pr->pr_default, sizeof (val)); 1493 1494 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1495 } 1496 1497 void 1498 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1499 { 1500 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1501 1502 /* nothing to do if the caller doesn't want the default value */ 1503 if (pr->pr_default == NULL) 1504 return; 1505 1506 if (strlen(str) >= pr->pr_default_size) 1507 pr->pr_errno = ENOBUFS; 1508 else 1509 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1510 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1511 } 1512 1513 void 1514 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1515 link_flowctrl_t val) 1516 { 1517 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1518 1519 /* nothing to do if the caller doesn't want the default value */ 1520 if (pr->pr_default == NULL) 1521 return; 1522 1523 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1524 1525 bcopy(&val, pr->pr_default, sizeof (val)); 1526 1527 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1528 } 1529 1530 void 1531 mac_prop_info_set_default_fec(mac_prop_info_handle_t ph, link_fec_t val) 1532 { 1533 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1534 1535 /* nothing to do if the caller doesn't want the default value */ 1536 if (pr->pr_default == NULL) 1537 return; 1538 1539 ASSERT(pr->pr_default_size >= sizeof (link_fec_t)); 1540 1541 bcopy(&val, pr->pr_default, sizeof (val)); 1542 1543 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1544 } 1545 1546 void 1547 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1548 uint32_t max) 1549 { 1550 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1551 mac_propval_range_t *range = pr->pr_range; 1552 mac_propval_uint32_range_t *range32; 1553 1554 /* nothing to do if the caller doesn't want the range info */ 1555 if (range == NULL) 1556 return; 1557 1558 if (pr->pr_range_cur_count++ == 0) { 1559 /* first range */ 1560 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1561 range->mpr_type = MAC_PROPVAL_UINT32; 1562 } else { 1563 /* all ranges of a property should be of the same type */ 1564 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1565 if (pr->pr_range_cur_count > range->mpr_count) { 1566 pr->pr_errno = ENOSPC; 1567 return; 1568 } 1569 } 1570 1571 range32 = range->mpr_range_uint32; 1572 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1573 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1574 } 1575 1576 void 1577 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1578 { 1579 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1580 1581 pr->pr_perm = perm; 1582 pr->pr_flags |= MAC_PROP_INFO_PERM; 1583 } 1584 1585 void 1586 mac_hcksum_get(const mblk_t *mp, uint32_t *start, uint32_t *stuff, 1587 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1588 { 1589 uint32_t flags; 1590 1591 ASSERT(DB_TYPE(mp) == M_DATA); 1592 1593 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1594 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1595 if (value != NULL) 1596 *value = (uint32_t)DB_CKSUM16(mp); 1597 if ((flags & HCK_PARTIALCKSUM) != 0) { 1598 if (start != NULL) 1599 *start = (uint32_t)DB_CKSUMSTART(mp); 1600 if (stuff != NULL) 1601 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1602 if (end != NULL) 1603 *end = (uint32_t)DB_CKSUMEND(mp); 1604 } 1605 } 1606 1607 if (flags_ptr != NULL) 1608 *flags_ptr = flags; 1609 } 1610 1611 void 1612 mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, uint32_t end, 1613 uint32_t value, uint32_t flags) 1614 { 1615 ASSERT(DB_TYPE(mp) == M_DATA); 1616 1617 DB_CKSUMSTART(mp) = (intptr_t)start; 1618 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1619 DB_CKSUMEND(mp) = (intptr_t)end; 1620 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1621 DB_CKSUM16(mp) = (uint16_t)value; 1622 } 1623 1624 void 1625 mac_hcksum_clone(const mblk_t *src, mblk_t *dst) 1626 { 1627 ASSERT3U(DB_TYPE(src), ==, M_DATA); 1628 ASSERT3U(DB_TYPE(dst), ==, M_DATA); 1629 1630 /* 1631 * Do these assignments unconditionally, rather than only when 1632 * flags is non-zero. This protects a situation where zeroed 1633 * hcksum data does not make the jump onto an mblk_t with 1634 * stale data in those fields. It's important to copy all 1635 * possible flags (HCK_* as well as HW_*) and not just the 1636 * checksum specific flags. Dropping flags during a clone 1637 * could result in dropped packets. If the caller has good 1638 * reason to drop those flags then it should do it manually, 1639 * after the clone. 1640 */ 1641 DB_CKSUMFLAGS(dst) = DB_CKSUMFLAGS(src); 1642 DB_CKSUMSTART(dst) = DB_CKSUMSTART(src); 1643 DB_CKSUMSTUFF(dst) = DB_CKSUMSTUFF(src); 1644 DB_CKSUMEND(dst) = DB_CKSUMEND(src); 1645 DB_CKSUM16(dst) = DB_CKSUM16(src); 1646 DB_LSOMSS(dst) = DB_LSOMSS(src); 1647 } 1648 1649 void 1650 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1651 { 1652 ASSERT(DB_TYPE(mp) == M_DATA); 1653 1654 if (flags != NULL) { 1655 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1656 if ((*flags != 0) && (mss != NULL)) 1657 *mss = (uint32_t)DB_LSOMSS(mp); 1658 } 1659 } 1660 1661 void 1662 mac_transceiver_info_set_present(mac_transceiver_info_t *infop, 1663 boolean_t present) 1664 { 1665 infop->mti_present = present; 1666 } 1667 1668 void 1669 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop, 1670 boolean_t usable) 1671 { 1672 infop->mti_usable = usable; 1673 } 1674 1675 /* 1676 * We should really keep track of our offset and not walk everything every 1677 * time. I can't imagine that this will be kind to us at high packet rates; 1678 * however, for the moment, let's leave that. 1679 * 1680 * This walks a message block chain without pulling up to fill in the context 1681 * information. Note that the data we care about could be hidden across more 1682 * than one mblk_t. 1683 */ 1684 static int 1685 mac_meoi_get_uint8(mblk_t *mp, off_t off, uint8_t *out) 1686 { 1687 size_t mpsize; 1688 uint8_t *bp; 1689 1690 mpsize = msgsize(mp); 1691 /* Check for overflow */ 1692 if (off + sizeof (uint16_t) > mpsize) 1693 return (-1); 1694 1695 mpsize = MBLKL(mp); 1696 while (off >= mpsize) { 1697 mp = mp->b_cont; 1698 off -= mpsize; 1699 mpsize = MBLKL(mp); 1700 } 1701 1702 bp = mp->b_rptr + off; 1703 *out = *bp; 1704 return (0); 1705 1706 } 1707 1708 static int 1709 mac_meoi_get_uint16(mblk_t *mp, off_t off, uint16_t *out) 1710 { 1711 size_t mpsize; 1712 uint8_t *bp; 1713 1714 mpsize = msgsize(mp); 1715 /* Check for overflow */ 1716 if (off + sizeof (uint16_t) > mpsize) 1717 return (-1); 1718 1719 mpsize = MBLKL(mp); 1720 while (off >= mpsize) { 1721 mp = mp->b_cont; 1722 off -= mpsize; 1723 mpsize = MBLKL(mp); 1724 } 1725 1726 /* 1727 * Data is in network order. Note the second byte of data might be in 1728 * the next mp. 1729 */ 1730 bp = mp->b_rptr + off; 1731 *out = *bp << 8; 1732 if (off + 1 == mpsize) { 1733 mp = mp->b_cont; 1734 bp = mp->b_rptr; 1735 } else { 1736 bp++; 1737 } 1738 1739 *out |= *bp; 1740 return (0); 1741 1742 } 1743 1744 1745 int 1746 mac_ether_offload_info(mblk_t *mp, mac_ether_offload_info_t *meoi) 1747 { 1748 size_t off; 1749 uint16_t ether; 1750 uint8_t ipproto, iplen, l4len, maclen; 1751 1752 bzero(meoi, sizeof (mac_ether_offload_info_t)); 1753 1754 meoi->meoi_len = msgsize(mp); 1755 off = offsetof(struct ether_header, ether_type); 1756 if (mac_meoi_get_uint16(mp, off, ðer) != 0) 1757 return (-1); 1758 1759 if (ether == ETHERTYPE_VLAN) { 1760 off = offsetof(struct ether_vlan_header, ether_type); 1761 if (mac_meoi_get_uint16(mp, off, ðer) != 0) 1762 return (-1); 1763 meoi->meoi_flags |= MEOI_VLAN_TAGGED; 1764 maclen = sizeof (struct ether_vlan_header); 1765 } else { 1766 maclen = sizeof (struct ether_header); 1767 } 1768 meoi->meoi_flags |= MEOI_L2INFO_SET; 1769 meoi->meoi_l2hlen = maclen; 1770 meoi->meoi_l3proto = ether; 1771 1772 switch (ether) { 1773 case ETHERTYPE_IP: 1774 /* 1775 * For IPv4 we need to get the length of the header, as it can 1776 * be variable. 1777 */ 1778 off = offsetof(ipha_t, ipha_version_and_hdr_length) + maclen; 1779 if (mac_meoi_get_uint8(mp, off, &iplen) != 0) 1780 return (-1); 1781 iplen &= 0x0f; 1782 if (iplen < 5 || iplen > 0x0f) 1783 return (-1); 1784 iplen *= 4; 1785 off = offsetof(ipha_t, ipha_protocol) + maclen; 1786 if (mac_meoi_get_uint8(mp, off, &ipproto) == -1) 1787 return (-1); 1788 break; 1789 case ETHERTYPE_IPV6: 1790 iplen = 40; 1791 off = offsetof(ip6_t, ip6_nxt) + maclen; 1792 if (mac_meoi_get_uint8(mp, off, &ipproto) == -1) 1793 return (-1); 1794 break; 1795 default: 1796 return (0); 1797 } 1798 meoi->meoi_l3hlen = iplen; 1799 meoi->meoi_l4proto = ipproto; 1800 meoi->meoi_flags |= MEOI_L3INFO_SET; 1801 1802 switch (ipproto) { 1803 case IPPROTO_TCP: 1804 off = offsetof(tcph_t, th_offset_and_rsrvd) + maclen + iplen; 1805 if (mac_meoi_get_uint8(mp, off, &l4len) == -1) 1806 return (-1); 1807 l4len = (l4len & 0xf0) >> 4; 1808 if (l4len < 5 || l4len > 0xf) 1809 return (-1); 1810 l4len *= 4; 1811 break; 1812 case IPPROTO_UDP: 1813 l4len = sizeof (struct udphdr); 1814 break; 1815 case IPPROTO_SCTP: 1816 l4len = sizeof (sctp_hdr_t); 1817 break; 1818 default: 1819 return (0); 1820 } 1821 1822 meoi->meoi_l4hlen = l4len; 1823 meoi->meoi_flags |= MEOI_L4INFO_SET; 1824 return (0); 1825 } 1826