1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2020 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 * Copyright 2020 RackTop Systems, Inc. 27 */ 28 29 /* 30 * MAC Services Module 31 * 32 * The GLDv3 framework locking - The MAC layer 33 * -------------------------------------------- 34 * 35 * The MAC layer is central to the GLD framework and can provide the locking 36 * framework needed for itself and for the use of MAC clients. MAC end points 37 * are fairly disjoint and don't share a lot of state. So a coarse grained 38 * multi-threading scheme is to single thread all create/modify/delete or set 39 * type of control operations on a per mac end point while allowing data threads 40 * concurrently. 41 * 42 * Control operations (set) that modify a mac end point are always serialized on 43 * a per mac end point basis, We have at most 1 such thread per mac end point 44 * at a time. 45 * 46 * All other operations that are not serialized are essentially multi-threaded. 47 * For example a control operation (get) like getting statistics which may not 48 * care about reading values atomically or data threads sending or receiving 49 * data. Mostly these type of operations don't modify the control state. Any 50 * state these operations care about are protected using traditional locks. 51 * 52 * The perimeter only serializes serial operations. It does not imply there 53 * aren't any other concurrent operations. However a serialized operation may 54 * sometimes need to make sure it is the only thread. In this case it needs 55 * to use reference counting mechanisms to cv_wait until any current data 56 * threads are done. 57 * 58 * The mac layer itself does not hold any locks across a call to another layer. 59 * The perimeter is however held across a down call to the driver to make the 60 * whole control operation atomic with respect to other control operations. 61 * Also the data path and get type control operations may proceed concurrently. 62 * These operations synchronize with the single serial operation on a given mac 63 * end point using regular locks. The perimeter ensures that conflicting 64 * operations like say a mac_multicast_add and a mac_multicast_remove on the 65 * same mac end point don't interfere with each other and also ensures that the 66 * changes in the mac layer and the call to the underlying driver to say add a 67 * multicast address are done atomically without interference from a thread 68 * trying to delete the same address. 69 * 70 * For example, consider 71 * mac_multicst_add() 72 * { 73 * mac_perimeter_enter(); serialize all control operations 74 * 75 * grab list lock protect against access by data threads 76 * add to list 77 * drop list lock 78 * 79 * call driver's mi_multicst 80 * 81 * mac_perimeter_exit(); 82 * } 83 * 84 * To lessen the number of serialization locks and simplify the lock hierarchy, 85 * we serialize all the control operations on a per mac end point by using a 86 * single serialization lock called the perimeter. We allow recursive entry into 87 * the perimeter to facilitate use of this mechanism by both the mac client and 88 * the MAC layer itself. 89 * 90 * MAC client means an entity that does an operation on a mac handle 91 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 92 * an entity that does an operation on a mac handle obtained from a 93 * mac_register. An entity could be both client and driver but on different 94 * handles eg. aggr. and should only make the corresponding mac interface calls 95 * i.e. mac driver interface or mac client interface as appropriate for that 96 * mac handle. 97 * 98 * General rules. 99 * ------------- 100 * 101 * R1. The lock order of upcall threads is natually opposite to downcall 102 * threads. Hence upcalls must not hold any locks across layers for fear of 103 * recursive lock enter and lock order violation. This applies to all layers. 104 * 105 * R2. The perimeter is just another lock. Since it is held in the down 106 * direction, acquiring the perimeter in an upcall is prohibited as it would 107 * cause a deadlock. This applies to all layers. 108 * 109 * Note that upcalls that need to grab the mac perimeter (for example 110 * mac_notify upcalls) can still achieve that by posting the request to a 111 * thread, which can then grab all the required perimeters and locks in the 112 * right global order. Note that in the above example the mac layer iself 113 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 114 * to the client must do that. Please see the aggr code for an example. 115 * 116 * MAC client rules 117 * ---------------- 118 * 119 * R3. A MAC client may use the MAC provided perimeter facility to serialize 120 * control operations on a per mac end point. It does this by by acquring 121 * and holding the perimeter across a sequence of calls to the mac layer. 122 * This ensures atomicity across the entire block of mac calls. In this 123 * model the MAC client must not hold any client locks across the calls to 124 * the mac layer. This model is the preferred solution. 125 * 126 * R4. However if a MAC client has a lot of global state across all mac end 127 * points the per mac end point serialization may not be sufficient. In this 128 * case the client may choose to use global locks or use its own serialization. 129 * To avoid deadlocks, these client layer locks held across the mac calls 130 * in the control path must never be acquired by the data path for the reason 131 * mentioned below. 132 * 133 * (Assume that a control operation that holds a client lock blocks in the 134 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 135 * data thread that holds this reference count, tries to acquire the same 136 * client lock subsequently it will deadlock). 137 * 138 * A MAC client may follow either the R3 model or the R4 model, but can't 139 * mix both. In the former, the hierarchy is Perim -> client locks, but in 140 * the latter it is client locks -> Perim. 141 * 142 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 143 * context since they may block while trying to acquire the perimeter. 144 * In addition some calls may block waiting for upcall refcnts to come down to 145 * zero. 146 * 147 * R6. MAC clients must make sure that they are single threaded and all threads 148 * from the top (in particular data threads) have finished before calling 149 * mac_client_close. The MAC framework does not track the number of client 150 * threads using the mac client handle. Also mac clients must make sure 151 * they have undone all the control operations before calling mac_client_close. 152 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 153 * mac_unicast_add/mac_multicast_add. 154 * 155 * MAC framework rules 156 * ------------------- 157 * 158 * R7. The mac layer itself must not hold any mac layer locks (except the mac 159 * perimeter) across a call to any other layer from the mac layer. The call to 160 * any other layer could be via mi_* entry points, classifier entry points into 161 * the driver or via upcall pointers into layers above. The mac perimeter may 162 * be acquired or held only in the down direction, for e.g. when calling into 163 * a mi_* driver enty point to provide atomicity of the operation. 164 * 165 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 166 * mac driver interfaces, the MAC layer must provide a cut out for control 167 * interfaces like upcall notifications and start them in a separate thread. 168 * 169 * R9. Note that locking order also implies a plumbing order. For example 170 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 171 * to plumb in any other order must be failed at mac_open time, otherwise it 172 * could lead to deadlocks due to inverse locking order. 173 * 174 * R10. MAC driver interfaces must not block since the driver could call them 175 * in interrupt context. 176 * 177 * R11. Walkers must preferably not hold any locks while calling walker 178 * callbacks. Instead these can operate on reference counts. In simple 179 * callbacks it may be ok to hold a lock and call the callbacks, but this is 180 * harder to maintain in the general case of arbitrary callbacks. 181 * 182 * R12. The MAC layer must protect upcall notification callbacks using reference 183 * counts rather than holding locks across the callbacks. 184 * 185 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 186 * sure that any pointers (such as mac ring pointers) it passes to the driver 187 * remain valid until mac unregister time. Currently the mac layer achieves 188 * this by using generation numbers for rings and freeing the mac rings only 189 * at unregister time. The MAC layer must provide a layer of indirection and 190 * must not expose underlying driver rings or driver data structures/pointers 191 * directly to MAC clients. 192 * 193 * MAC driver rules 194 * ---------------- 195 * 196 * R14. It would be preferable if MAC drivers don't hold any locks across any 197 * mac call. However at a minimum they must not hold any locks across data 198 * upcalls. They must also make sure that all references to mac data structures 199 * are cleaned up and that it is single threaded at mac_unregister time. 200 * 201 * R15. MAC driver interfaces don't block and so the action may be done 202 * asynchronously in a separate thread as for example handling notifications. 203 * The driver must not assume that the action is complete when the call 204 * returns. 205 * 206 * R16. Drivers must maintain a generation number per Rx ring, and pass it 207 * back to mac_rx_ring(); They are expected to increment the generation 208 * number whenever the ring's stop routine is invoked. 209 * See comments in mac_rx_ring(); 210 * 211 * R17 Similarly mi_stop is another synchronization point and the driver must 212 * ensure that all upcalls are done and there won't be any future upcall 213 * before returning from mi_stop. 214 * 215 * R18. The driver may assume that all set/modify control operations via 216 * the mi_* entry points are single threaded on a per mac end point. 217 * 218 * Lock and Perimeter hierarchy scenarios 219 * --------------------------------------- 220 * 221 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 222 * 223 * ft_lock -> fe_lock [mac_flow_lookup] 224 * 225 * mi_rw_lock -> fe_lock [mac_bcast_send] 226 * 227 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 228 * 229 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 230 * 231 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 232 * 233 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 234 * client to driver. In the case of clients that explictly use the mac provided 235 * perimeter mechanism for its serialization, the hierarchy is 236 * Perimeter -> mac layer locks, since the client never holds any locks across 237 * the mac calls. In the case of clients that use its own locks the hierarchy 238 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 239 * calls mac_perim_enter/exit in this case. 240 * 241 * Subflow creation rules 242 * --------------------------- 243 * o In case of a user specified cpulist present on underlying link and flows, 244 * the flows cpulist must be a subset of the underlying link. 245 * o In case of a user specified fanout mode present on link and flow, the 246 * subflow fanout count has to be less than or equal to that of the 247 * underlying link. The cpu-bindings for the subflows will be a subset of 248 * the underlying link. 249 * o In case if no cpulist specified on both underlying link and flow, the 250 * underlying link relies on a MAC tunable to provide out of box fanout. 251 * The subflow will have no cpulist (the subflow will be unbound) 252 * o In case if no cpulist is specified on the underlying link, a subflow can 253 * carry either a user-specified cpulist or fanout count. The cpu-bindings 254 * for the subflow will not adhere to restriction that they need to be subset 255 * of the underlying link. 256 * o In case where the underlying link is carrying either a user specified 257 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 258 * created unbound. 259 * o While creating unbound subflows, bandwidth mode changes attempt to 260 * figure a right fanout count. In such cases the fanout count will override 261 * the unbound cpu-binding behavior. 262 * o In addition to this, while cycling between flow and link properties, we 263 * impose a restriction that if a link property has a subflow with 264 * user-specified attributes, we will not allow changing the link property. 265 * The administrator needs to reset all the user specified properties for the 266 * subflows before attempting a link property change. 267 * Some of the above rules can be overridden by specifying additional command 268 * line options while creating or modifying link or subflow properties. 269 * 270 * Datapath 271 * -------- 272 * 273 * For information on the datapath, the world of soft rings, hardware rings, how 274 * it is structured, and the path of an mblk_t between a driver and a mac 275 * client, see mac_sched.c. 276 */ 277 278 #include <sys/types.h> 279 #include <sys/conf.h> 280 #include <sys/id_space.h> 281 #include <sys/esunddi.h> 282 #include <sys/stat.h> 283 #include <sys/mkdev.h> 284 #include <sys/stream.h> 285 #include <sys/strsun.h> 286 #include <sys/strsubr.h> 287 #include <sys/dlpi.h> 288 #include <sys/list.h> 289 #include <sys/modhash.h> 290 #include <sys/mac_provider.h> 291 #include <sys/mac_client_impl.h> 292 #include <sys/mac_soft_ring.h> 293 #include <sys/mac_stat.h> 294 #include <sys/mac_impl.h> 295 #include <sys/mac.h> 296 #include <sys/dls.h> 297 #include <sys/dld.h> 298 #include <sys/modctl.h> 299 #include <sys/fs/dv_node.h> 300 #include <sys/thread.h> 301 #include <sys/proc.h> 302 #include <sys/callb.h> 303 #include <sys/cpuvar.h> 304 #include <sys/atomic.h> 305 #include <sys/bitmap.h> 306 #include <sys/sdt.h> 307 #include <sys/mac_flow.h> 308 #include <sys/ddi_intr_impl.h> 309 #include <sys/disp.h> 310 #include <sys/sdt.h> 311 #include <sys/vnic.h> 312 #include <sys/vnic_impl.h> 313 #include <sys/vlan.h> 314 #include <inet/ip.h> 315 #include <inet/ip6.h> 316 #include <sys/exacct.h> 317 #include <sys/exacct_impl.h> 318 #include <inet/nd.h> 319 #include <sys/ethernet.h> 320 #include <sys/pool.h> 321 #include <sys/pool_pset.h> 322 #include <sys/cpupart.h> 323 #include <inet/wifi_ioctl.h> 324 #include <net/wpa.h> 325 /* XXX this almost suggests moving the enum to sys/mac.h. */ 326 #include <sys/mac_ether.h> 327 328 #define IMPL_HASHSZ 67 /* prime */ 329 330 kmem_cache_t *i_mac_impl_cachep; 331 mod_hash_t *i_mac_impl_hash; 332 krwlock_t i_mac_impl_lock; 333 uint_t i_mac_impl_count; 334 static kmem_cache_t *mac_ring_cache; 335 static id_space_t *minor_ids; 336 static uint32_t minor_count; 337 static pool_event_cb_t mac_pool_event_reg; 338 339 /* 340 * Logging stuff. Perhaps mac_logging_interval could be broken into 341 * mac_flow_log_interval and mac_link_log_interval if we want to be 342 * able to schedule them differently. 343 */ 344 uint_t mac_logging_interval; 345 boolean_t mac_flow_log_enable; 346 boolean_t mac_link_log_enable; 347 timeout_id_t mac_logging_timer; 348 349 #define MACTYPE_KMODDIR "mac" 350 #define MACTYPE_HASHSZ 67 351 static mod_hash_t *i_mactype_hash; 352 /* 353 * i_mactype_lock synchronizes threads that obtain references to mactype_t 354 * structures through i_mactype_getplugin(). 355 */ 356 static kmutex_t i_mactype_lock; 357 358 /* 359 * mac_tx_percpu_cnt 360 * 361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 365 */ 366 int mac_tx_percpu_cnt; 367 int mac_tx_percpu_cnt_max = 128; 368 369 /* 370 * Call back functions for the bridge module. These are guaranteed to be valid 371 * when holding a reference on a link or when holding mip->mi_bridge_lock and 372 * mi_bridge_link is non-NULL. 373 */ 374 mac_bridge_tx_t mac_bridge_tx_cb; 375 mac_bridge_rx_t mac_bridge_rx_cb; 376 mac_bridge_ref_t mac_bridge_ref_cb; 377 mac_bridge_ls_t mac_bridge_ls_cb; 378 379 static int i_mac_constructor(void *, void *, int); 380 static void i_mac_destructor(void *, void *); 381 static int i_mac_ring_ctor(void *, void *, int); 382 static void i_mac_ring_dtor(void *, void *); 383 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 384 void mac_tx_client_flush(mac_client_impl_t *); 385 void mac_tx_client_block(mac_client_impl_t *); 386 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 387 static int mac_start_group_and_rings(mac_group_t *); 388 static void mac_stop_group_and_rings(mac_group_t *); 389 static void mac_pool_event_cb(pool_event_t, int, void *); 390 391 typedef struct netinfo_s { 392 list_node_t ni_link; 393 void *ni_record; 394 int ni_size; 395 int ni_type; 396 } netinfo_t; 397 398 /* 399 * Module initialization functions. 400 */ 401 402 void 403 mac_init(void) 404 { 405 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 406 boot_max_ncpus); 407 408 /* Upper bound is mac_tx_percpu_cnt_max */ 409 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 410 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 411 412 if (mac_tx_percpu_cnt < 1) { 413 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 414 mac_tx_percpu_cnt = 1; 415 } 416 417 ASSERT(mac_tx_percpu_cnt >= 1); 418 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 419 /* 420 * Make it of the form 2**N - 1 in the range 421 * [0 .. mac_tx_percpu_cnt_max - 1] 422 */ 423 mac_tx_percpu_cnt--; 424 425 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 426 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 427 NULL, NULL, NULL, 0); 428 ASSERT(i_mac_impl_cachep != NULL); 429 430 mac_ring_cache = kmem_cache_create("mac_ring_cache", 431 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 432 NULL, NULL, 0); 433 ASSERT(mac_ring_cache != NULL); 434 435 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 436 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 437 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 438 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 439 440 mac_flow_init(); 441 mac_soft_ring_init(); 442 mac_bcast_init(); 443 mac_client_init(); 444 445 i_mac_impl_count = 0; 446 447 i_mactype_hash = mod_hash_create_extended("mactype_hash", 448 MACTYPE_HASHSZ, 449 mod_hash_null_keydtor, mod_hash_null_valdtor, 450 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 451 452 /* 453 * Allocate an id space to manage minor numbers. The range of the 454 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 455 * leaves half of the 32-bit minors available for driver private use. 456 */ 457 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 458 MAC_PRIVATE_MINOR-1); 459 ASSERT(minor_ids != NULL); 460 minor_count = 0; 461 462 /* Let's default to 20 seconds */ 463 mac_logging_interval = 20; 464 mac_flow_log_enable = B_FALSE; 465 mac_link_log_enable = B_FALSE; 466 mac_logging_timer = NULL; 467 468 /* Register to be notified of noteworthy pools events */ 469 mac_pool_event_reg.pec_func = mac_pool_event_cb; 470 mac_pool_event_reg.pec_arg = NULL; 471 pool_event_cb_register(&mac_pool_event_reg); 472 } 473 474 int 475 mac_fini(void) 476 { 477 478 if (i_mac_impl_count > 0 || minor_count > 0) 479 return (EBUSY); 480 481 pool_event_cb_unregister(&mac_pool_event_reg); 482 483 id_space_destroy(minor_ids); 484 mac_flow_fini(); 485 486 mod_hash_destroy_hash(i_mac_impl_hash); 487 rw_destroy(&i_mac_impl_lock); 488 489 mac_client_fini(); 490 kmem_cache_destroy(mac_ring_cache); 491 492 mod_hash_destroy_hash(i_mactype_hash); 493 mac_soft_ring_finish(); 494 495 496 return (0); 497 } 498 499 /* 500 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 501 * (e.g. softmac) may pass in a NULL ops argument. 502 */ 503 void 504 mac_init_ops(struct dev_ops *ops, const char *name) 505 { 506 major_t major = ddi_name_to_major((char *)name); 507 508 /* 509 * By returning on error below, we are not letting the driver continue 510 * in an undefined context. The mac_register() function will faill if 511 * DN_GLDV3_DRIVER isn't set. 512 */ 513 if (major == DDI_MAJOR_T_NONE) 514 return; 515 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 516 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 517 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 518 if (ops != NULL) 519 dld_init_ops(ops, name); 520 } 521 522 void 523 mac_fini_ops(struct dev_ops *ops) 524 { 525 dld_fini_ops(ops); 526 } 527 528 /*ARGSUSED*/ 529 static int 530 i_mac_constructor(void *buf, void *arg, int kmflag) 531 { 532 mac_impl_t *mip = buf; 533 534 bzero(buf, sizeof (mac_impl_t)); 535 536 mip->mi_linkstate = LINK_STATE_UNKNOWN; 537 538 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 539 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 540 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 541 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 542 543 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 544 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 545 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 546 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 547 548 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 549 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static void 555 i_mac_destructor(void *buf, void *arg) 556 { 557 mac_impl_t *mip = buf; 558 mac_cb_info_t *mcbi; 559 560 ASSERT(mip->mi_ref == 0); 561 ASSERT(mip->mi_active == 0); 562 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 563 ASSERT(mip->mi_devpromisc == 0); 564 ASSERT(mip->mi_ksp == NULL); 565 ASSERT(mip->mi_kstat_count == 0); 566 ASSERT(mip->mi_nclients == 0); 567 ASSERT(mip->mi_nactiveclients == 0); 568 ASSERT(mip->mi_single_active_client == NULL); 569 ASSERT(mip->mi_state_flags == 0); 570 ASSERT(mip->mi_factory_addr == NULL); 571 ASSERT(mip->mi_factory_addr_num == 0); 572 ASSERT(mip->mi_default_tx_ring == NULL); 573 574 mcbi = &mip->mi_notify_cb_info; 575 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 576 ASSERT(mip->mi_notify_bits == 0); 577 ASSERT(mip->mi_notify_thread == NULL); 578 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 579 mcbi->mcbi_lockp = NULL; 580 581 mcbi = &mip->mi_promisc_cb_info; 582 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 583 ASSERT(mip->mi_promisc_list == NULL); 584 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 585 mcbi->mcbi_lockp = NULL; 586 587 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 588 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 589 590 rw_destroy(&mip->mi_rw_lock); 591 592 mutex_destroy(&mip->mi_promisc_lock); 593 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 594 mutex_destroy(&mip->mi_notify_lock); 595 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 596 mutex_destroy(&mip->mi_ring_lock); 597 598 ASSERT(mip->mi_bridge_link == NULL); 599 } 600 601 /* ARGSUSED */ 602 static int 603 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 604 { 605 mac_ring_t *ring = (mac_ring_t *)buf; 606 607 bzero(ring, sizeof (mac_ring_t)); 608 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 609 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 610 ring->mr_state = MR_FREE; 611 return (0); 612 } 613 614 /* ARGSUSED */ 615 static void 616 i_mac_ring_dtor(void *buf, void *arg) 617 { 618 mac_ring_t *ring = (mac_ring_t *)buf; 619 620 cv_destroy(&ring->mr_cv); 621 mutex_destroy(&ring->mr_lock); 622 } 623 624 /* 625 * Common functions to do mac callback addition and deletion. Currently this is 626 * used by promisc callbacks and notify callbacks. List addition and deletion 627 * need to take care of list walkers. List walkers in general, can't hold list 628 * locks and make upcall callbacks due to potential lock order and recursive 629 * reentry issues. Instead list walkers increment the list walker count to mark 630 * the presence of a walker thread. Addition can be carefully done to ensure 631 * that the list walker always sees either the old list or the new list. 632 * However the deletion can't be done while the walker is active, instead the 633 * deleting thread simply marks the entry as logically deleted. The last walker 634 * physically deletes and frees up the logically deleted entries when the walk 635 * is complete. 636 */ 637 void 638 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 639 mac_cb_t *mcb_elem) 640 { 641 mac_cb_t *p; 642 mac_cb_t **pp; 643 644 /* Verify it is not already in the list */ 645 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 646 if (p == mcb_elem) 647 break; 648 } 649 VERIFY(p == NULL); 650 651 /* 652 * Add it to the head of the callback list. The membar ensures that 653 * the following list pointer manipulations reach global visibility 654 * in exactly the program order below. 655 */ 656 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 657 658 mcb_elem->mcb_nextp = *mcb_head; 659 membar_producer(); 660 *mcb_head = mcb_elem; 661 } 662 663 /* 664 * Mark the entry as logically deleted. If there aren't any walkers unlink 665 * from the list. In either case return the corresponding status. 666 */ 667 boolean_t 668 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 669 mac_cb_t *mcb_elem) 670 { 671 mac_cb_t *p; 672 mac_cb_t **pp; 673 674 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 675 /* 676 * Search the callback list for the entry to be removed 677 */ 678 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 679 if (p == mcb_elem) 680 break; 681 } 682 VERIFY(p != NULL); 683 684 /* 685 * If there are walkers just mark it as deleted and the last walker 686 * will remove from the list and free it. 687 */ 688 if (mcbi->mcbi_walker_cnt != 0) { 689 p->mcb_flags |= MCB_CONDEMNED; 690 mcbi->mcbi_del_cnt++; 691 return (B_FALSE); 692 } 693 694 ASSERT(mcbi->mcbi_del_cnt == 0); 695 *pp = p->mcb_nextp; 696 p->mcb_nextp = NULL; 697 return (B_TRUE); 698 } 699 700 /* 701 * Wait for all pending callback removals to be completed 702 */ 703 void 704 mac_callback_remove_wait(mac_cb_info_t *mcbi) 705 { 706 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 707 while (mcbi->mcbi_del_cnt != 0) { 708 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 709 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 710 } 711 } 712 713 void 714 mac_callback_barrier(mac_cb_info_t *mcbi) 715 { 716 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 717 ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX); 718 719 if (mcbi->mcbi_walker_cnt == 0) { 720 return; 721 } 722 723 mcbi->mcbi_barrier_cnt++; 724 do { 725 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 726 } while (mcbi->mcbi_walker_cnt > 0); 727 mcbi->mcbi_barrier_cnt--; 728 cv_broadcast(&mcbi->mcbi_cv); 729 } 730 731 void 732 mac_callback_walker_enter(mac_cb_info_t *mcbi) 733 { 734 mutex_enter(mcbi->mcbi_lockp); 735 /* 736 * Incoming walkers should give precedence to timely clean-up of 737 * deleted callback entries and requested barriers. 738 */ 739 while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) { 740 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 741 } 742 mcbi->mcbi_walker_cnt++; 743 mutex_exit(mcbi->mcbi_lockp); 744 } 745 746 /* 747 * The last mac callback walker does the cleanup. Walk the list and unlik 748 * all the logically deleted entries and construct a temporary list of 749 * removed entries. Return the list of removed entries to the caller. 750 */ 751 static mac_cb_t * 752 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 753 { 754 mac_cb_t *p; 755 mac_cb_t **pp; 756 mac_cb_t *rmlist = NULL; /* List of removed elements */ 757 int cnt = 0; 758 759 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 760 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 761 762 pp = mcb_head; 763 while (*pp != NULL) { 764 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 765 p = *pp; 766 *pp = p->mcb_nextp; 767 p->mcb_nextp = rmlist; 768 rmlist = p; 769 cnt++; 770 continue; 771 } 772 pp = &(*pp)->mcb_nextp; 773 } 774 775 ASSERT(mcbi->mcbi_del_cnt == cnt); 776 mcbi->mcbi_del_cnt = 0; 777 return (rmlist); 778 } 779 780 void 781 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp, 782 boolean_t is_promisc) 783 { 784 boolean_t do_wake = B_FALSE; 785 786 mutex_enter(mcbi->mcbi_lockp); 787 788 /* If walkers remain, nothing more can be done for now */ 789 if (--mcbi->mcbi_walker_cnt != 0) { 790 mutex_exit(mcbi->mcbi_lockp); 791 return; 792 } 793 794 if (mcbi->mcbi_del_cnt != 0) { 795 mac_cb_t *rmlist; 796 797 rmlist = mac_callback_walker_cleanup(mcbi, headp); 798 799 if (!is_promisc) { 800 /* The "normal" non-promisc callback clean-up */ 801 mac_callback_free(rmlist); 802 } else { 803 mac_cb_t *mcb, *mcb_next; 804 805 /* 806 * The promisc callbacks are in 2 lists, one off the 807 * 'mip' and another off the 'mcip' threaded by 808 * mpi_mi_link and mpi_mci_link respectively. There 809 * is, however, only a single shared total walker 810 * count, and an entry cannot be physically unlinked if 811 * a walker is active on either list. The last walker 812 * does this cleanup of logically deleted entries. 813 * 814 * With a list of callbacks deleted from above from 815 * mi_promisc_list (headp), remove the corresponding 816 * entry from mci_promisc_list (headp_pair) and free 817 * the structure. 818 */ 819 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 820 mac_promisc_impl_t *mpip; 821 mac_client_impl_t *mcip; 822 823 mcb_next = mcb->mcb_nextp; 824 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 825 mcip = mpip->mpi_mcip; 826 827 ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info, 828 ==, mcbi); 829 ASSERT3P(&mcip->mci_mip->mi_promisc_list, 830 ==, headp); 831 832 VERIFY(mac_callback_remove(mcbi, 833 &mcip->mci_promisc_list, 834 &mpip->mpi_mci_link)); 835 mcb->mcb_flags = 0; 836 mcb->mcb_nextp = NULL; 837 kmem_cache_free(mac_promisc_impl_cache, mpip); 838 } 839 } 840 841 /* 842 * Wake any walker threads that could be waiting in 843 * mac_callback_walker_enter() until deleted items have been 844 * cleaned from the list. 845 */ 846 do_wake = B_TRUE; 847 } 848 849 if (mcbi->mcbi_barrier_cnt != 0) { 850 /* 851 * One or more threads are waiting for all walkers to exit the 852 * callback list. Notify them, now that the list is clear. 853 */ 854 do_wake = B_TRUE; 855 } 856 857 if (do_wake) { 858 cv_broadcast(&mcbi->mcbi_cv); 859 } 860 mutex_exit(mcbi->mcbi_lockp); 861 } 862 863 static boolean_t 864 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 865 { 866 mac_cb_t *mcb; 867 868 /* Verify it is not already in the list */ 869 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 870 if (mcb == mcb_elem) 871 return (B_TRUE); 872 } 873 874 return (B_FALSE); 875 } 876 877 static boolean_t 878 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 879 { 880 boolean_t found; 881 882 mutex_enter(mcbi->mcbi_lockp); 883 found = mac_callback_lookup(mcb_headp, mcb_elem); 884 mutex_exit(mcbi->mcbi_lockp); 885 886 return (found); 887 } 888 889 /* Free the list of removed callbacks */ 890 void 891 mac_callback_free(mac_cb_t *rmlist) 892 { 893 mac_cb_t *mcb; 894 mac_cb_t *mcb_next; 895 896 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 897 mcb_next = mcb->mcb_nextp; 898 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 899 } 900 } 901 902 void 903 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 904 { 905 mac_cb_info_t *mcbi; 906 907 /* 908 * Signal the notify thread even after mi_ref has become zero and 909 * mi_disabled is set. The synchronization with the notify thread 910 * happens in mac_unregister and that implies the driver must make 911 * sure it is single-threaded (with respect to mac calls) and that 912 * all pending mac calls have returned before it calls mac_unregister 913 */ 914 rw_enter(&i_mac_impl_lock, RW_READER); 915 if (mip->mi_state_flags & MIS_DISABLED) 916 goto exit; 917 918 /* 919 * Guard against incorrect notifications. (Running a newer 920 * mac client against an older implementation?) 921 */ 922 if (type >= MAC_NNOTE) 923 goto exit; 924 925 mcbi = &mip->mi_notify_cb_info; 926 mutex_enter(mcbi->mcbi_lockp); 927 mip->mi_notify_bits |= (1 << type); 928 cv_broadcast(&mcbi->mcbi_cv); 929 mutex_exit(mcbi->mcbi_lockp); 930 931 exit: 932 rw_exit(&i_mac_impl_lock); 933 } 934 935 /* 936 * Mac serialization primitives. Please see the block comment at the 937 * top of the file. 938 */ 939 void 940 i_mac_perim_enter(mac_impl_t *mip) 941 { 942 mac_client_impl_t *mcip; 943 944 if (mip->mi_state_flags & MIS_IS_VNIC) { 945 /* 946 * This is a VNIC. Return the lower mac since that is what 947 * we want to serialize on. 948 */ 949 mcip = mac_vnic_lower(mip); 950 mip = mcip->mci_mip; 951 } 952 953 mutex_enter(&mip->mi_perim_lock); 954 if (mip->mi_perim_owner == curthread) { 955 mip->mi_perim_ocnt++; 956 mutex_exit(&mip->mi_perim_lock); 957 return; 958 } 959 960 while (mip->mi_perim_owner != NULL) 961 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 962 963 mip->mi_perim_owner = curthread; 964 ASSERT(mip->mi_perim_ocnt == 0); 965 mip->mi_perim_ocnt++; 966 #ifdef DEBUG 967 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 968 MAC_PERIM_STACK_DEPTH); 969 #endif 970 mutex_exit(&mip->mi_perim_lock); 971 } 972 973 int 974 i_mac_perim_enter_nowait(mac_impl_t *mip) 975 { 976 /* 977 * The vnic is a special case, since the serialization is done based 978 * on the lower mac. If the lower mac is busy, it does not imply the 979 * vnic can't be unregistered. But in the case of other drivers, 980 * a busy perimeter or open mac handles implies that the mac is busy 981 * and can't be unregistered. 982 */ 983 if (mip->mi_state_flags & MIS_IS_VNIC) { 984 i_mac_perim_enter(mip); 985 return (0); 986 } 987 988 mutex_enter(&mip->mi_perim_lock); 989 if (mip->mi_perim_owner != NULL) { 990 mutex_exit(&mip->mi_perim_lock); 991 return (EBUSY); 992 } 993 ASSERT(mip->mi_perim_ocnt == 0); 994 mip->mi_perim_owner = curthread; 995 mip->mi_perim_ocnt++; 996 mutex_exit(&mip->mi_perim_lock); 997 998 return (0); 999 } 1000 1001 void 1002 i_mac_perim_exit(mac_impl_t *mip) 1003 { 1004 mac_client_impl_t *mcip; 1005 1006 if (mip->mi_state_flags & MIS_IS_VNIC) { 1007 /* 1008 * This is a VNIC. Return the lower mac since that is what 1009 * we want to serialize on. 1010 */ 1011 mcip = mac_vnic_lower(mip); 1012 mip = mcip->mci_mip; 1013 } 1014 1015 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 1016 1017 mutex_enter(&mip->mi_perim_lock); 1018 if (--mip->mi_perim_ocnt == 0) { 1019 mip->mi_perim_owner = NULL; 1020 cv_signal(&mip->mi_perim_cv); 1021 } 1022 mutex_exit(&mip->mi_perim_lock); 1023 } 1024 1025 /* 1026 * Returns whether the current thread holds the mac perimeter. Used in making 1027 * assertions. 1028 */ 1029 boolean_t 1030 mac_perim_held(mac_handle_t mh) 1031 { 1032 mac_impl_t *mip = (mac_impl_t *)mh; 1033 mac_client_impl_t *mcip; 1034 1035 if (mip->mi_state_flags & MIS_IS_VNIC) { 1036 /* 1037 * This is a VNIC. Return the lower mac since that is what 1038 * we want to serialize on. 1039 */ 1040 mcip = mac_vnic_lower(mip); 1041 mip = mcip->mci_mip; 1042 } 1043 return (mip->mi_perim_owner == curthread); 1044 } 1045 1046 /* 1047 * mac client interfaces to enter the mac perimeter of a mac end point, given 1048 * its mac handle, or macname or linkid. 1049 */ 1050 void 1051 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 1052 { 1053 mac_impl_t *mip = (mac_impl_t *)mh; 1054 1055 i_mac_perim_enter(mip); 1056 /* 1057 * The mac_perim_handle_t returned encodes the 'mip' and whether a 1058 * mac_open has been done internally while entering the perimeter. 1059 * This information is used in mac_perim_exit 1060 */ 1061 MAC_ENCODE_MPH(*mphp, mip, 0); 1062 } 1063 1064 int 1065 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 1066 { 1067 int err; 1068 mac_handle_t mh; 1069 1070 if ((err = mac_open(name, &mh)) != 0) 1071 return (err); 1072 1073 mac_perim_enter_by_mh(mh, mphp); 1074 MAC_ENCODE_MPH(*mphp, mh, 1); 1075 return (0); 1076 } 1077 1078 int 1079 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 1080 { 1081 int err; 1082 mac_handle_t mh; 1083 1084 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1085 return (err); 1086 1087 mac_perim_enter_by_mh(mh, mphp); 1088 MAC_ENCODE_MPH(*mphp, mh, 1); 1089 return (0); 1090 } 1091 1092 void 1093 mac_perim_exit(mac_perim_handle_t mph) 1094 { 1095 mac_impl_t *mip; 1096 boolean_t need_close; 1097 1098 MAC_DECODE_MPH(mph, mip, need_close); 1099 i_mac_perim_exit(mip); 1100 if (need_close) 1101 mac_close((mac_handle_t)mip); 1102 } 1103 1104 int 1105 mac_hold(const char *macname, mac_impl_t **pmip) 1106 { 1107 mac_impl_t *mip; 1108 int err; 1109 1110 /* 1111 * Check the device name length to make sure it won't overflow our 1112 * buffer. 1113 */ 1114 if (strlen(macname) >= MAXNAMELEN) 1115 return (EINVAL); 1116 1117 /* 1118 * Look up its entry in the global hash table. 1119 */ 1120 rw_enter(&i_mac_impl_lock, RW_WRITER); 1121 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1122 (mod_hash_val_t *)&mip); 1123 1124 if (err != 0) { 1125 rw_exit(&i_mac_impl_lock); 1126 return (ENOENT); 1127 } 1128 1129 if (mip->mi_state_flags & MIS_DISABLED) { 1130 rw_exit(&i_mac_impl_lock); 1131 return (ENOENT); 1132 } 1133 1134 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1135 rw_exit(&i_mac_impl_lock); 1136 return (EBUSY); 1137 } 1138 1139 mip->mi_ref++; 1140 rw_exit(&i_mac_impl_lock); 1141 1142 *pmip = mip; 1143 return (0); 1144 } 1145 1146 void 1147 mac_rele(mac_impl_t *mip) 1148 { 1149 rw_enter(&i_mac_impl_lock, RW_WRITER); 1150 ASSERT(mip->mi_ref != 0); 1151 if (--mip->mi_ref == 0) { 1152 ASSERT(mip->mi_nactiveclients == 0 && 1153 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1154 } 1155 rw_exit(&i_mac_impl_lock); 1156 } 1157 1158 /* 1159 * Private GLDv3 function to start a MAC instance. 1160 */ 1161 int 1162 mac_start(mac_handle_t mh) 1163 { 1164 mac_impl_t *mip = (mac_impl_t *)mh; 1165 int err = 0; 1166 mac_group_t *defgrp; 1167 1168 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1169 ASSERT(mip->mi_start != NULL); 1170 1171 /* 1172 * Check whether the device is already started. 1173 */ 1174 if (mip->mi_active++ == 0) { 1175 mac_ring_t *ring = NULL; 1176 1177 /* 1178 * Start the device. 1179 */ 1180 err = mip->mi_start(mip->mi_driver); 1181 if (err != 0) { 1182 mip->mi_active--; 1183 return (err); 1184 } 1185 1186 /* 1187 * Start the default tx ring. 1188 */ 1189 if (mip->mi_default_tx_ring != NULL) { 1190 1191 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1192 if (ring->mr_state != MR_INUSE) { 1193 err = mac_start_ring(ring); 1194 if (err != 0) { 1195 mip->mi_active--; 1196 return (err); 1197 } 1198 } 1199 } 1200 1201 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1202 /* 1203 * Start the default group which is responsible 1204 * for receiving broadcast and multicast 1205 * traffic for both primary and non-primary 1206 * MAC clients. 1207 */ 1208 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1209 err = mac_start_group_and_rings(defgrp); 1210 if (err != 0) { 1211 mip->mi_active--; 1212 if ((ring != NULL) && 1213 (ring->mr_state == MR_INUSE)) 1214 mac_stop_ring(ring); 1215 return (err); 1216 } 1217 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1218 } 1219 } 1220 1221 return (err); 1222 } 1223 1224 /* 1225 * Private GLDv3 function to stop a MAC instance. 1226 */ 1227 void 1228 mac_stop(mac_handle_t mh) 1229 { 1230 mac_impl_t *mip = (mac_impl_t *)mh; 1231 mac_group_t *grp; 1232 1233 ASSERT(mip->mi_stop != NULL); 1234 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1235 1236 /* 1237 * Check whether the device is still needed. 1238 */ 1239 ASSERT(mip->mi_active != 0); 1240 if (--mip->mi_active == 0) { 1241 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1242 /* 1243 * There should be no more active clients since the 1244 * MAC is being stopped. Stop the default RX group 1245 * and transition it back to registered state. 1246 * 1247 * When clients are torn down, the groups 1248 * are release via mac_release_rx_group which 1249 * knows the the default group is always in 1250 * started mode since broadcast uses it. So 1251 * we can assert that their are no clients 1252 * (since mac_bcast_add doesn't register itself 1253 * as a client) and group is in SHARED state. 1254 */ 1255 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1256 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1257 mip->mi_nactiveclients == 0); 1258 mac_stop_group_and_rings(grp); 1259 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1260 } 1261 1262 if (mip->mi_default_tx_ring != NULL) { 1263 mac_ring_t *ring; 1264 1265 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1266 if (ring->mr_state == MR_INUSE) { 1267 mac_stop_ring(ring); 1268 ring->mr_flag = 0; 1269 } 1270 } 1271 1272 /* 1273 * Stop the device. 1274 */ 1275 mip->mi_stop(mip->mi_driver); 1276 } 1277 } 1278 1279 int 1280 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1281 { 1282 int err = 0; 1283 1284 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1285 ASSERT(mip->mi_setpromisc != NULL); 1286 1287 if (on) { 1288 /* 1289 * Enable promiscuous mode on the device if not yet enabled. 1290 */ 1291 if (mip->mi_devpromisc++ == 0) { 1292 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1293 if (err != 0) { 1294 mip->mi_devpromisc--; 1295 return (err); 1296 } 1297 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1298 } 1299 } else { 1300 if (mip->mi_devpromisc == 0) 1301 return (EPROTO); 1302 1303 /* 1304 * Disable promiscuous mode on the device if this is the last 1305 * enabling. 1306 */ 1307 if (--mip->mi_devpromisc == 0) { 1308 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1309 if (err != 0) { 1310 mip->mi_devpromisc++; 1311 return (err); 1312 } 1313 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1314 } 1315 } 1316 1317 return (0); 1318 } 1319 1320 /* 1321 * The promiscuity state can change any time. If the caller needs to take 1322 * actions that are atomic with the promiscuity state, then the caller needs 1323 * to bracket the entire sequence with mac_perim_enter/exit 1324 */ 1325 boolean_t 1326 mac_promisc_get(mac_handle_t mh) 1327 { 1328 mac_impl_t *mip = (mac_impl_t *)mh; 1329 1330 /* 1331 * Return the current promiscuity. 1332 */ 1333 return (mip->mi_devpromisc != 0); 1334 } 1335 1336 /* 1337 * Invoked at MAC instance attach time to initialize the list 1338 * of factory MAC addresses supported by a MAC instance. This function 1339 * builds a local cache in the mac_impl_t for the MAC addresses 1340 * supported by the underlying hardware. The MAC clients themselves 1341 * use the mac_addr_factory*() functions to query and reserve 1342 * factory MAC addresses. 1343 */ 1344 void 1345 mac_addr_factory_init(mac_impl_t *mip) 1346 { 1347 mac_capab_multifactaddr_t capab; 1348 uint8_t *addr; 1349 int i; 1350 1351 /* 1352 * First round to see how many factory MAC addresses are available. 1353 */ 1354 bzero(&capab, sizeof (capab)); 1355 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1356 &capab) || (capab.mcm_naddr == 0)) { 1357 /* 1358 * The MAC instance doesn't support multiple factory 1359 * MAC addresses, we're done here. 1360 */ 1361 return; 1362 } 1363 1364 /* 1365 * Allocate the space and get all the factory addresses. 1366 */ 1367 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1368 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1369 1370 mip->mi_factory_addr_num = capab.mcm_naddr; 1371 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1372 sizeof (mac_factory_addr_t), KM_SLEEP); 1373 1374 for (i = 0; i < capab.mcm_naddr; i++) { 1375 bcopy(addr + i * MAXMACADDRLEN, 1376 mip->mi_factory_addr[i].mfa_addr, 1377 mip->mi_type->mt_addr_length); 1378 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1379 } 1380 1381 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1382 } 1383 1384 void 1385 mac_addr_factory_fini(mac_impl_t *mip) 1386 { 1387 if (mip->mi_factory_addr == NULL) { 1388 ASSERT(mip->mi_factory_addr_num == 0); 1389 return; 1390 } 1391 1392 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1393 sizeof (mac_factory_addr_t)); 1394 1395 mip->mi_factory_addr = NULL; 1396 mip->mi_factory_addr_num = 0; 1397 } 1398 1399 /* 1400 * Reserve a factory MAC address. If *slot is set to -1, the function 1401 * attempts to reserve any of the available factory MAC addresses and 1402 * returns the reserved slot id. If no slots are available, the function 1403 * returns ENOSPC. If *slot is not set to -1, the function reserves 1404 * the specified slot if it is available, or returns EBUSY is the slot 1405 * is already used. Returns ENOTSUP if the underlying MAC does not 1406 * support multiple factory addresses. If the slot number is not -1 but 1407 * is invalid, returns EINVAL. 1408 */ 1409 int 1410 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1411 { 1412 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1413 mac_impl_t *mip = mcip->mci_mip; 1414 int i, ret = 0; 1415 1416 i_mac_perim_enter(mip); 1417 /* 1418 * Protect against concurrent readers that may need a self-consistent 1419 * view of the factory addresses 1420 */ 1421 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1422 1423 if (mip->mi_factory_addr_num == 0) { 1424 ret = ENOTSUP; 1425 goto bail; 1426 } 1427 1428 if (*slot != -1) { 1429 /* check the specified slot */ 1430 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1431 ret = EINVAL; 1432 goto bail; 1433 } 1434 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1435 ret = EBUSY; 1436 goto bail; 1437 } 1438 } else { 1439 /* pick the next available slot */ 1440 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1441 if (!mip->mi_factory_addr[i].mfa_in_use) 1442 break; 1443 } 1444 1445 if (i == mip->mi_factory_addr_num) { 1446 ret = ENOSPC; 1447 goto bail; 1448 } 1449 *slot = i+1; 1450 } 1451 1452 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1453 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1454 1455 bail: 1456 rw_exit(&mip->mi_rw_lock); 1457 i_mac_perim_exit(mip); 1458 return (ret); 1459 } 1460 1461 /* 1462 * Release the specified factory MAC address slot. 1463 */ 1464 void 1465 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1466 { 1467 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1468 mac_impl_t *mip = mcip->mci_mip; 1469 1470 i_mac_perim_enter(mip); 1471 /* 1472 * Protect against concurrent readers that may need a self-consistent 1473 * view of the factory addresses 1474 */ 1475 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1476 1477 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1478 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1479 1480 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1481 1482 rw_exit(&mip->mi_rw_lock); 1483 i_mac_perim_exit(mip); 1484 } 1485 1486 /* 1487 * Stores in mac_addr the value of the specified MAC address. Returns 1488 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1489 * The caller must provide a string of at least MAXNAMELEN bytes. 1490 */ 1491 void 1492 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1493 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1494 { 1495 mac_impl_t *mip = (mac_impl_t *)mh; 1496 boolean_t in_use; 1497 1498 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1499 1500 /* 1501 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1502 * and mi_rw_lock 1503 */ 1504 rw_enter(&mip->mi_rw_lock, RW_READER); 1505 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1506 *addr_len = mip->mi_type->mt_addr_length; 1507 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1508 if (in_use && client_name != NULL) { 1509 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1510 client_name, MAXNAMELEN); 1511 } 1512 if (in_use_arg != NULL) 1513 *in_use_arg = in_use; 1514 rw_exit(&mip->mi_rw_lock); 1515 } 1516 1517 /* 1518 * Returns the number of factory MAC addresses (in addition to the 1519 * primary MAC address), 0 if the underlying MAC doesn't support 1520 * that feature. 1521 */ 1522 uint_t 1523 mac_addr_factory_num(mac_handle_t mh) 1524 { 1525 mac_impl_t *mip = (mac_impl_t *)mh; 1526 1527 return (mip->mi_factory_addr_num); 1528 } 1529 1530 1531 void 1532 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1533 { 1534 mac_ring_t *ring; 1535 1536 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1537 ring->mr_flag &= ~flag; 1538 } 1539 1540 /* 1541 * The following mac_hwrings_xxx() functions are private mac client functions 1542 * used by the aggr driver to access and control the underlying HW Rx group 1543 * and rings. In this case, the aggr driver has exclusive control of the 1544 * underlying HW Rx group/rings, it calls the following functions to 1545 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC 1546 * addresses, or set up the Rx callback. 1547 */ 1548 /* ARGSUSED */ 1549 static void 1550 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1551 mblk_t *mp_chain, boolean_t loopback) 1552 { 1553 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1554 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1555 mac_direct_rx_t proc; 1556 void *arg1; 1557 mac_resource_handle_t arg2; 1558 1559 proc = srs_rx->sr_func; 1560 arg1 = srs_rx->sr_arg1; 1561 arg2 = mac_srs->srs_mrh; 1562 1563 proc(arg1, arg2, mp_chain, NULL); 1564 } 1565 1566 /* 1567 * This function is called to get the list of HW rings that are reserved by 1568 * an exclusive mac client. 1569 * 1570 * Return value: the number of HW rings. 1571 */ 1572 int 1573 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1574 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1575 { 1576 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1577 flow_entry_t *flent = mcip->mci_flent; 1578 mac_group_t *grp; 1579 mac_ring_t *ring; 1580 int cnt = 0; 1581 1582 if (rtype == MAC_RING_TYPE_RX) { 1583 grp = flent->fe_rx_ring_group; 1584 } else if (rtype == MAC_RING_TYPE_TX) { 1585 grp = flent->fe_tx_ring_group; 1586 } else { 1587 ASSERT(B_FALSE); 1588 return (-1); 1589 } 1590 1591 /* 1592 * The MAC client did not reserve an Rx group, return directly. 1593 * This is probably because the underlying MAC does not support 1594 * any groups. 1595 */ 1596 if (hwgh != NULL) 1597 *hwgh = NULL; 1598 if (grp == NULL) 1599 return (0); 1600 /* 1601 * This group must be reserved by this MAC client. 1602 */ 1603 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1604 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1605 1606 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1607 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1608 hwrh[cnt] = (mac_ring_handle_t)ring; 1609 } 1610 if (hwgh != NULL) 1611 *hwgh = (mac_group_handle_t)grp; 1612 1613 return (cnt); 1614 } 1615 1616 /* 1617 * Get the HW ring handles of the given group index. If the MAC 1618 * doesn't have a group at this index, or any groups at all, then 0 is 1619 * returned and hwgh is set to NULL. This is a private client API. The 1620 * MAC perimeter must be held when calling this function. 1621 * 1622 * mh: A handle to the MAC that owns the group. 1623 * 1624 * idx: The index of the HW group to be read. 1625 * 1626 * hwgh: If non-NULL, contains a handle to the HW group on return. 1627 * 1628 * hwrh: An array of ring handles pointing to the HW rings in the 1629 * group. The array must be large enough to hold a handle to each ring 1630 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP. 1631 * 1632 * rtype: Used to determine if we are fetching Rx or Tx rings. 1633 * 1634 * Returns the number of rings in the group. 1635 */ 1636 uint_t 1637 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh, 1638 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1639 { 1640 mac_impl_t *mip = (mac_impl_t *)mh; 1641 mac_group_t *grp; 1642 mac_ring_t *ring; 1643 uint_t cnt = 0; 1644 1645 /* 1646 * The MAC perimeter must be held when accessing the 1647 * mi_{rx,tx}_groups fields. 1648 */ 1649 ASSERT(MAC_PERIM_HELD(mh)); 1650 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX); 1651 1652 if (rtype == MAC_RING_TYPE_RX) { 1653 grp = mip->mi_rx_groups; 1654 } else { 1655 ASSERT(rtype == MAC_RING_TYPE_TX); 1656 grp = mip->mi_tx_groups; 1657 } 1658 1659 while (grp != NULL && grp->mrg_index != idx) 1660 grp = grp->mrg_next; 1661 1662 /* 1663 * If the MAC doesn't have a group at this index or doesn't 1664 * impelement RINGS capab, then set hwgh to NULL and return 0. 1665 */ 1666 if (hwgh != NULL) 1667 *hwgh = NULL; 1668 1669 if (grp == NULL) 1670 return (0); 1671 1672 ASSERT3U(idx, ==, grp->mrg_index); 1673 1674 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1675 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP); 1676 hwrh[cnt] = (mac_ring_handle_t)ring; 1677 } 1678 1679 /* A group should always have at least one ring. */ 1680 ASSERT3U(cnt, >, 0); 1681 1682 if (hwgh != NULL) 1683 *hwgh = (mac_group_handle_t)grp; 1684 1685 return (cnt); 1686 } 1687 1688 /* 1689 * This function is called to get info about Tx/Rx rings. 1690 * 1691 * Return value: returns uint_t which will have various bits set 1692 * that indicates different properties of the ring. 1693 */ 1694 uint_t 1695 mac_hwring_getinfo(mac_ring_handle_t rh) 1696 { 1697 mac_ring_t *ring = (mac_ring_t *)rh; 1698 mac_ring_info_t *info = &ring->mr_info; 1699 1700 return (info->mri_flags); 1701 } 1702 1703 /* 1704 * Set the passthru callback on the hardware ring. 1705 */ 1706 void 1707 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1, 1708 mac_resource_handle_t arg2) 1709 { 1710 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1711 1712 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1713 1714 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER; 1715 1716 hwring->mr_pt_fn = fn; 1717 hwring->mr_pt_arg1 = arg1; 1718 hwring->mr_pt_arg2 = arg2; 1719 } 1720 1721 /* 1722 * Clear the passthru callback on the hardware ring. 1723 */ 1724 void 1725 mac_hwring_clear_passthru(mac_ring_handle_t hwrh) 1726 { 1727 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1728 1729 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1730 1731 hwring->mr_classify_type = MAC_NO_CLASSIFIER; 1732 1733 hwring->mr_pt_fn = NULL; 1734 hwring->mr_pt_arg1 = NULL; 1735 hwring->mr_pt_arg2 = NULL; 1736 } 1737 1738 void 1739 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1) 1740 { 1741 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1742 flow_entry_t *flent = mcip->mci_flent; 1743 1744 mutex_enter(&flent->fe_lock); 1745 flent->fe_cb_fn = (flow_fn_t)func; 1746 flent->fe_cb_arg1 = arg1; 1747 flent->fe_cb_arg2 = NULL; 1748 flent->fe_flags &= ~FE_MC_NO_DATAPATH; 1749 mutex_exit(&flent->fe_lock); 1750 } 1751 1752 void 1753 mac_client_clear_flow_cb(mac_client_handle_t mch) 1754 { 1755 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1756 flow_entry_t *flent = mcip->mci_flent; 1757 1758 mutex_enter(&flent->fe_lock); 1759 flent->fe_cb_fn = (flow_fn_t)mac_rx_def; 1760 flent->fe_cb_arg1 = NULL; 1761 flent->fe_cb_arg2 = NULL; 1762 flent->fe_flags |= FE_MC_NO_DATAPATH; 1763 mutex_exit(&flent->fe_lock); 1764 } 1765 1766 /* 1767 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1768 * setup the RX callback of the mac client which exclusively controls 1769 * HW ring. 1770 */ 1771 void 1772 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1773 mac_ring_handle_t pseudo_rh) 1774 { 1775 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1776 mac_ring_t *pseudo_ring; 1777 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1778 1779 if (pseudo_rh != NULL) { 1780 pseudo_ring = (mac_ring_t *)pseudo_rh; 1781 /* Export the ddi handles to pseudo ring */ 1782 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1783 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1784 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1785 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1786 /* 1787 * Save a pointer to pseudo ring in the hw ring. If 1788 * interrupt handle changes, the hw ring will be 1789 * notified of the change (see mac_ring_intr_set()) 1790 * and the appropriate change has to be made to 1791 * the pseudo ring that has exported the ddi handle. 1792 */ 1793 hw_ring->mr_prh = pseudo_rh; 1794 } 1795 1796 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1797 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1798 mac_srs->srs_mrh = prh; 1799 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1800 } 1801 } 1802 1803 void 1804 mac_hwring_teardown(mac_ring_handle_t hwrh) 1805 { 1806 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1807 mac_soft_ring_set_t *mac_srs; 1808 1809 if (hw_ring == NULL) 1810 return; 1811 hw_ring->mr_prh = NULL; 1812 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1813 mac_srs = hw_ring->mr_srs; 1814 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1815 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1816 mac_srs->srs_mrh = NULL; 1817 } 1818 } 1819 1820 int 1821 mac_hwring_disable_intr(mac_ring_handle_t rh) 1822 { 1823 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1824 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1825 1826 return (intr->mi_disable(intr->mi_handle)); 1827 } 1828 1829 int 1830 mac_hwring_enable_intr(mac_ring_handle_t rh) 1831 { 1832 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1833 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1834 1835 return (intr->mi_enable(intr->mi_handle)); 1836 } 1837 1838 /* 1839 * Start the HW ring pointed to by rh. 1840 * 1841 * This is used by special MAC clients that are MAC themselves and 1842 * need to exert control over the underlying HW rings of the NIC. 1843 */ 1844 int 1845 mac_hwring_start(mac_ring_handle_t rh) 1846 { 1847 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1848 int rv = 0; 1849 1850 if (rr_ring->mr_state != MR_INUSE) 1851 rv = mac_start_ring(rr_ring); 1852 1853 return (rv); 1854 } 1855 1856 /* 1857 * Stop the HW ring pointed to by rh. Also see mac_hwring_start(). 1858 */ 1859 void 1860 mac_hwring_stop(mac_ring_handle_t rh) 1861 { 1862 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1863 1864 if (rr_ring->mr_state != MR_FREE) 1865 mac_stop_ring(rr_ring); 1866 } 1867 1868 /* 1869 * Remove the quiesced flag from the HW ring pointed to by rh. 1870 * 1871 * This is used by special MAC clients that are MAC themselves and 1872 * need to exert control over the underlying HW rings of the NIC. 1873 */ 1874 int 1875 mac_hwring_activate(mac_ring_handle_t rh) 1876 { 1877 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1878 1879 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1880 return (0); 1881 } 1882 1883 /* 1884 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate(). 1885 */ 1886 void 1887 mac_hwring_quiesce(mac_ring_handle_t rh) 1888 { 1889 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1890 1891 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1892 } 1893 1894 mblk_t * 1895 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1896 { 1897 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1898 mac_ring_info_t *info = &rr_ring->mr_info; 1899 1900 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1901 } 1902 1903 /* 1904 * Send packets through a selected tx ring. 1905 */ 1906 mblk_t * 1907 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1908 { 1909 mac_ring_t *ring = (mac_ring_t *)rh; 1910 mac_ring_info_t *info = &ring->mr_info; 1911 1912 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1913 ring->mr_state >= MR_INUSE); 1914 return (info->mri_tx(info->mri_driver, mp)); 1915 } 1916 1917 /* 1918 * Query stats for a particular rx/tx ring 1919 */ 1920 int 1921 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1922 { 1923 mac_ring_t *ring = (mac_ring_t *)rh; 1924 mac_ring_info_t *info = &ring->mr_info; 1925 1926 return (info->mri_stat(info->mri_driver, stat, val)); 1927 } 1928 1929 /* 1930 * Private function that is only used by aggr to send packets through 1931 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1932 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1933 * access to mac_impl_t to send packets through m_tx() entry point. 1934 * It accomplishes this by calling mac_hwring_send_priv() function. 1935 */ 1936 mblk_t * 1937 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1938 { 1939 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1940 mac_impl_t *mip = mcip->mci_mip; 1941 1942 return (mac_provider_tx(mip, rh, mp, mcip)); 1943 } 1944 1945 /* 1946 * Private function that is only used by aggr to update the default transmission 1947 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1948 * temporarily be down, it may need to update the default ring that is used by 1949 * MAC such that it refers to a link that can actively be used to send traffic. 1950 * Note that this is different from the case where the port has been removed 1951 * from the group. In those cases, all of the rings will be torn down because 1952 * the ring will no longer exist. It's important to give aggr a case where the 1953 * rings can still exist such that it may be able to continue to send LACP PDUs 1954 * to potentially restore the link. 1955 */ 1956 void 1957 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1958 { 1959 mac_impl_t *mip = (mac_impl_t *)mh; 1960 mac_ring_t *ring = (mac_ring_t *)rh; 1961 1962 ASSERT(MAC_PERIM_HELD(mh)); 1963 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1964 1965 /* 1966 * We used to condition this assignment on the ring's 1967 * 'mr_state' being one of 'MR_INUSE'. However, there are 1968 * cases where this is called before the ring has any active 1969 * clients, and therefore is not marked as in use. Since the 1970 * sole purpose of this function is for aggr to make sure 1971 * 'mi_default_tx_ring' matches 'lg_tx_ports[0]', its 1972 * imperative that we update its value regardless of ring 1973 * state. Otherwise, we can end up in a state where 1974 * 'mi_default_tx_ring' points to a pseudo ring of a downed 1975 * port, even when 'lg_tx_ports[0]' points to a port that is 1976 * up. 1977 */ 1978 mip->mi_default_tx_ring = rh; 1979 } 1980 1981 int 1982 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1983 { 1984 mac_group_t *group = (mac_group_t *)gh; 1985 1986 return (mac_group_addmac(group, addr)); 1987 } 1988 1989 int 1990 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1991 { 1992 mac_group_t *group = (mac_group_t *)gh; 1993 1994 return (mac_group_remmac(group, addr)); 1995 } 1996 1997 /* 1998 * Program the group's HW VLAN filter if it has such support. 1999 * Otherwise, the group will implicitly accept tagged traffic and 2000 * there is nothing to do. 2001 */ 2002 int 2003 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 2004 { 2005 mac_group_t *group = (mac_group_t *)gh; 2006 2007 if (!MAC_GROUP_HW_VLAN(group)) 2008 return (0); 2009 2010 return (mac_group_addvlan(group, vid)); 2011 } 2012 2013 int 2014 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 2015 { 2016 mac_group_t *group = (mac_group_t *)gh; 2017 2018 if (!MAC_GROUP_HW_VLAN(group)) 2019 return (0); 2020 2021 return (mac_group_remvlan(group, vid)); 2022 } 2023 2024 /* 2025 * Determine if a MAC has HW VLAN support. This is a private API 2026 * consumed by aggr. In the future it might be nice to have a bitfield 2027 * in mac_capab_rings_t to track which forms of HW filtering are 2028 * supported by the MAC. 2029 */ 2030 boolean_t 2031 mac_has_hw_vlan(mac_handle_t mh) 2032 { 2033 mac_impl_t *mip = (mac_impl_t *)mh; 2034 2035 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 2036 } 2037 2038 /* 2039 * Get the number of Rx HW groups on this MAC. 2040 */ 2041 uint_t 2042 mac_get_num_rx_groups(mac_handle_t mh) 2043 { 2044 mac_impl_t *mip = (mac_impl_t *)mh; 2045 2046 ASSERT(MAC_PERIM_HELD(mh)); 2047 return (mip->mi_rx_group_count); 2048 } 2049 2050 int 2051 mac_set_promisc(mac_handle_t mh, boolean_t value) 2052 { 2053 mac_impl_t *mip = (mac_impl_t *)mh; 2054 2055 ASSERT(MAC_PERIM_HELD(mh)); 2056 return (i_mac_promisc_set(mip, value)); 2057 } 2058 2059 /* 2060 * Set the RX group to be shared/reserved. Note that the group must be 2061 * started/stopped outside of this function. 2062 */ 2063 void 2064 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 2065 { 2066 /* 2067 * If there is no change in the group state, just return. 2068 */ 2069 if (grp->mrg_state == state) 2070 return; 2071 2072 switch (state) { 2073 case MAC_GROUP_STATE_RESERVED: 2074 /* 2075 * Successfully reserved the group. 2076 * 2077 * Given that there is an exclusive client controlling this 2078 * group, we enable the group level polling when available, 2079 * so that SRSs get to turn on/off individual rings they's 2080 * assigned to. 2081 */ 2082 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2083 2084 if (grp->mrg_type == MAC_RING_TYPE_RX && 2085 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 2086 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2087 } 2088 break; 2089 2090 case MAC_GROUP_STATE_SHARED: 2091 /* 2092 * Set all rings of this group to software classified. 2093 * If the group has an overriding interrupt, then re-enable it. 2094 */ 2095 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2096 2097 if (grp->mrg_type == MAC_RING_TYPE_RX && 2098 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 2099 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2100 } 2101 /* The ring is not available for reservations any more */ 2102 break; 2103 2104 case MAC_GROUP_STATE_REGISTERED: 2105 /* Also callable from mac_register, perim is not held */ 2106 break; 2107 2108 default: 2109 ASSERT(B_FALSE); 2110 break; 2111 } 2112 2113 grp->mrg_state = state; 2114 } 2115 2116 /* 2117 * Quiesce future hardware classified packets for the specified Rx ring 2118 */ 2119 static void 2120 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 2121 { 2122 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 2123 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 2124 2125 mutex_enter(&rx_ring->mr_lock); 2126 rx_ring->mr_flag |= ring_flag; 2127 while (rx_ring->mr_refcnt != 0) 2128 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 2129 mutex_exit(&rx_ring->mr_lock); 2130 } 2131 2132 /* 2133 * Please see mac_tx for details about the per cpu locking scheme 2134 */ 2135 static void 2136 mac_tx_lock_all(mac_client_impl_t *mcip) 2137 { 2138 int i; 2139 2140 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2141 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2142 } 2143 2144 static void 2145 mac_tx_unlock_all(mac_client_impl_t *mcip) 2146 { 2147 int i; 2148 2149 for (i = mac_tx_percpu_cnt; i >= 0; i--) 2150 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2151 } 2152 2153 static void 2154 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 2155 { 2156 int i; 2157 2158 for (i = mac_tx_percpu_cnt; i > 0; i--) 2159 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2160 } 2161 2162 static int 2163 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 2164 { 2165 int i; 2166 int refcnt = 0; 2167 2168 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2169 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 2170 2171 return (refcnt); 2172 } 2173 2174 /* 2175 * Stop future Tx packets coming down from the client in preparation for 2176 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 2177 * of rings between clients 2178 */ 2179 void 2180 mac_tx_client_block(mac_client_impl_t *mcip) 2181 { 2182 mac_tx_lock_all(mcip); 2183 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 2184 while (mac_tx_sum_refcnt(mcip) != 0) { 2185 mac_tx_unlock_allbutzero(mcip); 2186 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2187 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2188 mac_tx_lock_all(mcip); 2189 } 2190 mac_tx_unlock_all(mcip); 2191 } 2192 2193 void 2194 mac_tx_client_unblock(mac_client_impl_t *mcip) 2195 { 2196 mac_tx_lock_all(mcip); 2197 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 2198 mac_tx_unlock_all(mcip); 2199 /* 2200 * We may fail to disable flow control for the last MAC_NOTE_TX 2201 * notification because the MAC client is quiesced. Send the 2202 * notification again. 2203 */ 2204 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 2205 } 2206 2207 /* 2208 * Wait for an SRS to quiesce. The SRS worker will signal us when the 2209 * quiesce is done. 2210 */ 2211 static void 2212 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 2213 { 2214 mutex_enter(&srs->srs_lock); 2215 while (!(srs->srs_state & srs_flag)) 2216 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 2217 mutex_exit(&srs->srs_lock); 2218 } 2219 2220 /* 2221 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 2222 * works bottom up by cutting off packet flow from the bottommost point in the 2223 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 2224 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 2225 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 2226 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 2227 * for the SRS and MR flags. In the former case the threads pause waiting for 2228 * a restart, while in the latter case the threads exit. The Tx SRS teardown 2229 * is also mostly similar to the above. 2230 * 2231 * 1. Stop future hardware classified packets at the lowest level in the mac. 2232 * Remove any hardware classification rule (CONDEMNED case) and mark the 2233 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 2234 * from increasing. Upcalls from the driver that come through hardware 2235 * classification will be dropped in mac_rx from now on. Then we wait for 2236 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 2237 * sure there aren't any upcall threads from the driver through hardware 2238 * classification. In the case of SRS teardown we also remove the 2239 * classification rule in the driver. 2240 * 2241 * 2. Stop future software classified packets by marking the flow entry with 2242 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 2243 * increasing. We also remove the flow entry from the table in the latter 2244 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 2245 * that indicates there aren't any active threads using that flow entry. 2246 * 2247 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 2248 * SRS worker thread, and the soft ring threads are quiesced in sequence 2249 * with the SRS worker thread serving as a master controller. This 2250 * mechansim is explained in mac_srs_worker_quiesce(). 2251 * 2252 * The restart mechanism to reactivate the SRS and softrings is explained 2253 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 2254 * restart sequence. 2255 */ 2256 void 2257 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2258 { 2259 flow_entry_t *flent = srs->srs_flent; 2260 uint_t mr_flag, srs_done_flag; 2261 2262 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2263 ASSERT(!(srs->srs_type & SRST_TX)); 2264 2265 if (srs_quiesce_flag == SRS_CONDEMNED) { 2266 mr_flag = MR_CONDEMNED; 2267 srs_done_flag = SRS_CONDEMNED_DONE; 2268 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2269 mac_srs_client_poll_disable(srs->srs_mcip, srs); 2270 } else { 2271 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 2272 mr_flag = MR_QUIESCE; 2273 srs_done_flag = SRS_QUIESCE_DONE; 2274 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2275 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 2276 } 2277 2278 if (srs->srs_ring != NULL) { 2279 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 2280 } else { 2281 /* 2282 * SRS is driven by software classification. In case 2283 * of CONDEMNED, the top level teardown functions will 2284 * deal with flow removal. 2285 */ 2286 if (srs_quiesce_flag != SRS_CONDEMNED) { 2287 FLOW_MARK(flent, FE_QUIESCE); 2288 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2289 } 2290 } 2291 2292 /* 2293 * Signal the SRS to quiesce itself, and then cv_wait for the 2294 * SRS quiesce to complete. The SRS worker thread will wake us 2295 * up when the quiesce is complete 2296 */ 2297 mac_srs_signal(srs, srs_quiesce_flag); 2298 mac_srs_quiesce_wait(srs, srs_done_flag); 2299 } 2300 2301 /* 2302 * Remove an SRS. 2303 */ 2304 void 2305 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2306 { 2307 flow_entry_t *flent = srs->srs_flent; 2308 int i; 2309 2310 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2311 /* 2312 * Locate and remove our entry in the fe_rx_srs[] array, and 2313 * adjust the fe_rx_srs array entries and array count by 2314 * moving the last entry into the vacated spot. 2315 */ 2316 mutex_enter(&flent->fe_lock); 2317 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2318 if (flent->fe_rx_srs[i] == srs) 2319 break; 2320 } 2321 2322 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2323 if (i != flent->fe_rx_srs_cnt - 1) { 2324 flent->fe_rx_srs[i] = 2325 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2326 i = flent->fe_rx_srs_cnt - 1; 2327 } 2328 2329 flent->fe_rx_srs[i] = NULL; 2330 flent->fe_rx_srs_cnt--; 2331 mutex_exit(&flent->fe_lock); 2332 2333 mac_srs_free(srs); 2334 } 2335 2336 static void 2337 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2338 { 2339 mutex_enter(&srs->srs_lock); 2340 srs->srs_state &= ~flag; 2341 mutex_exit(&srs->srs_lock); 2342 } 2343 2344 void 2345 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2346 { 2347 flow_entry_t *flent = srs->srs_flent; 2348 mac_ring_t *mr; 2349 2350 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2351 ASSERT((srs->srs_type & SRST_TX) == 0); 2352 2353 /* 2354 * This handles a change in the number of SRSs between the quiesce and 2355 * and restart operation of a flow. 2356 */ 2357 if (!SRS_QUIESCED(srs)) 2358 return; 2359 2360 /* 2361 * Signal the SRS to restart itself. Wait for the restart to complete 2362 * Note that we only restart the SRS if it is not marked as 2363 * permanently quiesced. 2364 */ 2365 if (!SRS_QUIESCED_PERMANENT(srs)) { 2366 mac_srs_signal(srs, SRS_RESTART); 2367 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2368 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2369 2370 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2371 } 2372 2373 /* Finally clear the flags to let the packets in */ 2374 mr = srs->srs_ring; 2375 if (mr != NULL) { 2376 MAC_RING_UNMARK(mr, MR_QUIESCE); 2377 /* In case the ring was stopped, safely restart it */ 2378 if (mr->mr_state != MR_INUSE) 2379 (void) mac_start_ring(mr); 2380 } else { 2381 FLOW_UNMARK(flent, FE_QUIESCE); 2382 } 2383 } 2384 2385 /* 2386 * Temporary quiesce of a flow and associated Rx SRS. 2387 * Please see block comment above mac_rx_classify_flow_rem. 2388 */ 2389 /* ARGSUSED */ 2390 int 2391 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2392 { 2393 int i; 2394 2395 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2396 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2397 SRS_QUIESCE); 2398 } 2399 return (0); 2400 } 2401 2402 /* 2403 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2404 * Please see block comment above mac_rx_classify_flow_rem 2405 */ 2406 /* ARGSUSED */ 2407 int 2408 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2409 { 2410 int i; 2411 2412 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2413 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2414 2415 return (0); 2416 } 2417 2418 void 2419 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2420 { 2421 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2422 flow_entry_t *flent = mcip->mci_flent; 2423 mac_impl_t *mip = mcip->mci_mip; 2424 mac_soft_ring_set_t *mac_srs; 2425 int i; 2426 2427 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2428 2429 if (flent == NULL) 2430 return; 2431 2432 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2433 mac_srs = flent->fe_rx_srs[i]; 2434 mutex_enter(&mac_srs->srs_lock); 2435 if (on) 2436 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2437 else 2438 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2439 mutex_exit(&mac_srs->srs_lock); 2440 } 2441 } 2442 2443 void 2444 mac_rx_client_quiesce(mac_client_handle_t mch) 2445 { 2446 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2447 mac_impl_t *mip = mcip->mci_mip; 2448 2449 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2450 2451 if (MCIP_DATAPATH_SETUP(mcip)) { 2452 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2453 NULL); 2454 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2455 mac_rx_classify_flow_quiesce, NULL); 2456 } 2457 } 2458 2459 void 2460 mac_rx_client_restart(mac_client_handle_t mch) 2461 { 2462 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2463 mac_impl_t *mip = mcip->mci_mip; 2464 2465 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2466 2467 if (MCIP_DATAPATH_SETUP(mcip)) { 2468 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2469 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2470 mac_rx_classify_flow_restart, NULL); 2471 } 2472 } 2473 2474 /* 2475 * This function only quiesces the Tx SRS and softring worker threads. Callers 2476 * need to make sure that there aren't any mac client threads doing current or 2477 * future transmits in the mac before calling this function. 2478 */ 2479 void 2480 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2481 { 2482 mac_client_impl_t *mcip = srs->srs_mcip; 2483 2484 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2485 2486 ASSERT(srs->srs_type & SRST_TX); 2487 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2488 srs_quiesce_flag == SRS_QUIESCE); 2489 2490 /* 2491 * Signal the SRS to quiesce itself, and then cv_wait for the 2492 * SRS quiesce to complete. The SRS worker thread will wake us 2493 * up when the quiesce is complete 2494 */ 2495 mac_srs_signal(srs, srs_quiesce_flag); 2496 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2497 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2498 } 2499 2500 void 2501 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2502 { 2503 /* 2504 * Resizing the fanout could result in creation of new SRSs. 2505 * They may not necessarily be in the quiesced state in which 2506 * case it need be restarted 2507 */ 2508 if (!SRS_QUIESCED(srs)) 2509 return; 2510 2511 mac_srs_signal(srs, SRS_RESTART); 2512 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2513 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2514 } 2515 2516 /* 2517 * Temporary quiesce of a flow and associated Rx SRS. 2518 * Please see block comment above mac_rx_srs_quiesce 2519 */ 2520 /* ARGSUSED */ 2521 int 2522 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2523 { 2524 /* 2525 * The fe_tx_srs is null for a subflow on an interface that is 2526 * not plumbed 2527 */ 2528 if (flent->fe_tx_srs != NULL) 2529 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2530 return (0); 2531 } 2532 2533 /* ARGSUSED */ 2534 int 2535 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2536 { 2537 /* 2538 * The fe_tx_srs is null for a subflow on an interface that is 2539 * not plumbed 2540 */ 2541 if (flent->fe_tx_srs != NULL) 2542 mac_tx_srs_restart(flent->fe_tx_srs); 2543 return (0); 2544 } 2545 2546 static void 2547 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2548 { 2549 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2550 2551 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2552 2553 mac_tx_client_block(mcip); 2554 if (MCIP_TX_SRS(mcip) != NULL) { 2555 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2556 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2557 mac_tx_flow_quiesce, NULL); 2558 } 2559 } 2560 2561 void 2562 mac_tx_client_quiesce(mac_client_handle_t mch) 2563 { 2564 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2565 } 2566 2567 void 2568 mac_tx_client_condemn(mac_client_handle_t mch) 2569 { 2570 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2571 } 2572 2573 void 2574 mac_tx_client_restart(mac_client_handle_t mch) 2575 { 2576 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2577 2578 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2579 2580 mac_tx_client_unblock(mcip); 2581 if (MCIP_TX_SRS(mcip) != NULL) { 2582 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2583 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2584 mac_tx_flow_restart, NULL); 2585 } 2586 } 2587 2588 void 2589 mac_tx_client_flush(mac_client_impl_t *mcip) 2590 { 2591 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2592 2593 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2594 mac_tx_client_restart((mac_client_handle_t)mcip); 2595 } 2596 2597 void 2598 mac_client_quiesce(mac_client_impl_t *mcip) 2599 { 2600 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2601 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2602 } 2603 2604 void 2605 mac_client_restart(mac_client_impl_t *mcip) 2606 { 2607 mac_rx_client_restart((mac_client_handle_t)mcip); 2608 mac_tx_client_restart((mac_client_handle_t)mcip); 2609 } 2610 2611 /* 2612 * Allocate a minor number. 2613 */ 2614 minor_t 2615 mac_minor_hold(boolean_t sleep) 2616 { 2617 id_t id; 2618 2619 /* 2620 * Grab a value from the arena. 2621 */ 2622 atomic_inc_32(&minor_count); 2623 2624 if (sleep) 2625 return ((uint_t)id_alloc(minor_ids)); 2626 2627 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2628 atomic_dec_32(&minor_count); 2629 return (0); 2630 } 2631 2632 return ((uint_t)id); 2633 } 2634 2635 /* 2636 * Release a previously allocated minor number. 2637 */ 2638 void 2639 mac_minor_rele(minor_t minor) 2640 { 2641 /* 2642 * Return the value to the arena. 2643 */ 2644 id_free(minor_ids, minor); 2645 atomic_dec_32(&minor_count); 2646 } 2647 2648 uint32_t 2649 mac_no_notification(mac_handle_t mh) 2650 { 2651 mac_impl_t *mip = (mac_impl_t *)mh; 2652 2653 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2654 mip->mi_capab_legacy.ml_unsup_note : 0); 2655 } 2656 2657 /* 2658 * Prevent any new opens of this mac in preparation for unregister 2659 */ 2660 int 2661 i_mac_disable(mac_impl_t *mip) 2662 { 2663 mac_client_impl_t *mcip; 2664 2665 rw_enter(&i_mac_impl_lock, RW_WRITER); 2666 if (mip->mi_state_flags & MIS_DISABLED) { 2667 /* Already disabled, return success */ 2668 rw_exit(&i_mac_impl_lock); 2669 return (0); 2670 } 2671 /* 2672 * See if there are any other references to this mac_t (e.g., VLAN's). 2673 * If so return failure. If all the other checks below pass, then 2674 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2675 * any new VLAN's from being created or new mac client opens of this 2676 * mac end point. 2677 */ 2678 if (mip->mi_ref > 0) { 2679 rw_exit(&i_mac_impl_lock); 2680 return (EBUSY); 2681 } 2682 2683 /* 2684 * mac clients must delete all multicast groups they join before 2685 * closing. bcast groups are reference counted, the last client 2686 * to delete the group will wait till the group is physically 2687 * deleted. Since all clients have closed this mac end point 2688 * mi_bcast_ngrps must be zero at this point 2689 */ 2690 ASSERT(mip->mi_bcast_ngrps == 0); 2691 2692 /* 2693 * Don't let go of this if it has some flows. 2694 * All other code guarantees no flows are added to a disabled 2695 * mac, therefore it is sufficient to check for the flow table 2696 * only here. 2697 */ 2698 mcip = mac_primary_client_handle(mip); 2699 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2700 rw_exit(&i_mac_impl_lock); 2701 return (ENOTEMPTY); 2702 } 2703 2704 mip->mi_state_flags |= MIS_DISABLED; 2705 rw_exit(&i_mac_impl_lock); 2706 return (0); 2707 } 2708 2709 int 2710 mac_disable_nowait(mac_handle_t mh) 2711 { 2712 mac_impl_t *mip = (mac_impl_t *)mh; 2713 int err; 2714 2715 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2716 return (err); 2717 err = i_mac_disable(mip); 2718 i_mac_perim_exit(mip); 2719 return (err); 2720 } 2721 2722 int 2723 mac_disable(mac_handle_t mh) 2724 { 2725 mac_impl_t *mip = (mac_impl_t *)mh; 2726 int err; 2727 2728 i_mac_perim_enter(mip); 2729 err = i_mac_disable(mip); 2730 i_mac_perim_exit(mip); 2731 2732 /* 2733 * Clean up notification thread and wait for it to exit. 2734 */ 2735 if (err == 0) 2736 i_mac_notify_exit(mip); 2737 2738 return (err); 2739 } 2740 2741 /* 2742 * Called when the MAC instance has a non empty flow table, to de-multiplex 2743 * incoming packets to the right flow. 2744 */ 2745 /* ARGSUSED */ 2746 static mblk_t * 2747 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2748 { 2749 flow_entry_t *flent = NULL; 2750 uint_t flags = FLOW_INBOUND; 2751 int err; 2752 2753 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2754 if (err != 0) { 2755 /* no registered receive function */ 2756 return (mp); 2757 } else { 2758 mac_client_impl_t *mcip; 2759 2760 /* 2761 * This flent might just be an additional one on the MAC client, 2762 * i.e. for classification purposes (different fdesc), however 2763 * the resources, SRS et. al., are in the mci_flent, so if 2764 * this isn't the mci_flent, we need to get it. 2765 */ 2766 if ((mcip = flent->fe_mcip) != NULL && 2767 mcip->mci_flent != flent) { 2768 FLOW_REFRELE(flent); 2769 flent = mcip->mci_flent; 2770 FLOW_TRY_REFHOLD(flent, err); 2771 if (err != 0) 2772 return (mp); 2773 } 2774 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2775 B_FALSE); 2776 FLOW_REFRELE(flent); 2777 } 2778 return (NULL); 2779 } 2780 2781 mblk_t * 2782 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2783 { 2784 mac_impl_t *mip = (mac_impl_t *)mh; 2785 mblk_t *bp, *bp1, **bpp, *list = NULL; 2786 2787 /* 2788 * We walk the chain and attempt to classify each packet. 2789 * The packets that couldn't be classified will be returned 2790 * back to the caller. 2791 */ 2792 bp = mp_chain; 2793 bpp = &list; 2794 while (bp != NULL) { 2795 bp1 = bp; 2796 bp = bp->b_next; 2797 bp1->b_next = NULL; 2798 2799 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2800 *bpp = bp1; 2801 bpp = &bp1->b_next; 2802 } 2803 } 2804 return (list); 2805 } 2806 2807 static int 2808 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2809 { 2810 mac_ring_handle_t ring = arg; 2811 2812 if (flent->fe_tx_srs) 2813 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2814 return (0); 2815 } 2816 2817 void 2818 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2819 { 2820 mac_client_impl_t *cclient; 2821 mac_soft_ring_set_t *mac_srs; 2822 2823 /* 2824 * After grabbing the mi_rw_lock, the list of clients can't change. 2825 * If there are any clients mi_disabled must be B_FALSE and can't 2826 * get set since there are clients. If there aren't any clients we 2827 * don't do anything. In any case the mip has to be valid. The driver 2828 * must make sure that it goes single threaded (with respect to mac 2829 * calls) and wait for all pending mac calls to finish before calling 2830 * mac_unregister. 2831 */ 2832 rw_enter(&i_mac_impl_lock, RW_READER); 2833 if (mip->mi_state_flags & MIS_DISABLED) { 2834 rw_exit(&i_mac_impl_lock); 2835 return; 2836 } 2837 2838 /* 2839 * Get MAC tx srs from walking mac_client_handle list. 2840 */ 2841 rw_enter(&mip->mi_rw_lock, RW_READER); 2842 for (cclient = mip->mi_clients_list; cclient != NULL; 2843 cclient = cclient->mci_client_next) { 2844 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2845 mac_tx_srs_wakeup(mac_srs, ring); 2846 } else { 2847 /* 2848 * Aggr opens underlying ports in exclusive mode 2849 * and registers flow control callbacks using 2850 * mac_tx_client_notify(). When opened in 2851 * exclusive mode, Tx SRS won't be created 2852 * during mac_unicast_add(). 2853 */ 2854 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2855 mac_tx_invoke_callbacks(cclient, 2856 (mac_tx_cookie_t)ring); 2857 } 2858 } 2859 (void) mac_flow_walk(cclient->mci_subflow_tab, 2860 mac_tx_flow_srs_wakeup, ring); 2861 } 2862 rw_exit(&mip->mi_rw_lock); 2863 rw_exit(&i_mac_impl_lock); 2864 } 2865 2866 /* ARGSUSED */ 2867 void 2868 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2869 boolean_t add) 2870 { 2871 mac_impl_t *mip = (mac_impl_t *)mh; 2872 2873 i_mac_perim_enter((mac_impl_t *)mh); 2874 /* 2875 * If no specific refresh function was given then default to the 2876 * driver's m_multicst entry point. 2877 */ 2878 if (refresh == NULL) { 2879 refresh = mip->mi_multicst; 2880 arg = mip->mi_driver; 2881 } 2882 2883 mac_bcast_refresh(mip, refresh, arg, add); 2884 i_mac_perim_exit((mac_impl_t *)mh); 2885 } 2886 2887 void 2888 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2889 { 2890 mac_impl_t *mip = (mac_impl_t *)mh; 2891 2892 /* 2893 * If no specific refresh function was given then default to the 2894 * driver's m_promisc entry point. 2895 */ 2896 if (refresh == NULL) { 2897 refresh = mip->mi_setpromisc; 2898 arg = mip->mi_driver; 2899 } 2900 ASSERT(refresh != NULL); 2901 2902 /* 2903 * Call the refresh function with the current promiscuity. 2904 */ 2905 refresh(arg, (mip->mi_devpromisc != 0)); 2906 } 2907 2908 /* 2909 * The mac client requests that the mac not to change its margin size to 2910 * be less than the specified value. If "current" is B_TRUE, then the client 2911 * requests the mac not to change its margin size to be smaller than the 2912 * current size. Further, return the current margin size value in this case. 2913 * 2914 * We keep every requested size in an ordered list from largest to smallest. 2915 */ 2916 int 2917 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2918 { 2919 mac_impl_t *mip = (mac_impl_t *)mh; 2920 mac_margin_req_t **pp, *p; 2921 int err = 0; 2922 2923 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2924 if (current) 2925 *marginp = mip->mi_margin; 2926 2927 /* 2928 * If the current margin value cannot satisfy the margin requested, 2929 * return ENOTSUP directly. 2930 */ 2931 if (*marginp > mip->mi_margin) { 2932 err = ENOTSUP; 2933 goto done; 2934 } 2935 2936 /* 2937 * Check whether the given margin is already in the list. If so, 2938 * bump the reference count. 2939 */ 2940 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2941 if (p->mmr_margin == *marginp) { 2942 /* 2943 * The margin requested is already in the list, 2944 * so just bump the reference count. 2945 */ 2946 p->mmr_ref++; 2947 goto done; 2948 } 2949 if (p->mmr_margin < *marginp) 2950 break; 2951 } 2952 2953 2954 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2955 p->mmr_margin = *marginp; 2956 p->mmr_ref++; 2957 p->mmr_nextp = *pp; 2958 *pp = p; 2959 2960 done: 2961 rw_exit(&(mip->mi_rw_lock)); 2962 return (err); 2963 } 2964 2965 /* 2966 * The mac client requests to cancel its previous mac_margin_add() request. 2967 * We remove the requested margin size from the list. 2968 */ 2969 int 2970 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2971 { 2972 mac_impl_t *mip = (mac_impl_t *)mh; 2973 mac_margin_req_t **pp, *p; 2974 int err = 0; 2975 2976 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2977 /* 2978 * Find the entry in the list for the given margin. 2979 */ 2980 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2981 if (p->mmr_margin == margin) { 2982 if (--p->mmr_ref == 0) 2983 break; 2984 2985 /* 2986 * There is still a reference to this address so 2987 * there's nothing more to do. 2988 */ 2989 goto done; 2990 } 2991 } 2992 2993 /* 2994 * We did not find an entry for the given margin. 2995 */ 2996 if (p == NULL) { 2997 err = ENOENT; 2998 goto done; 2999 } 3000 3001 ASSERT(p->mmr_ref == 0); 3002 3003 /* 3004 * Remove it from the list. 3005 */ 3006 *pp = p->mmr_nextp; 3007 kmem_free(p, sizeof (mac_margin_req_t)); 3008 done: 3009 rw_exit(&(mip->mi_rw_lock)); 3010 return (err); 3011 } 3012 3013 boolean_t 3014 mac_margin_update(mac_handle_t mh, uint32_t margin) 3015 { 3016 mac_impl_t *mip = (mac_impl_t *)mh; 3017 uint32_t margin_needed = 0; 3018 3019 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 3020 3021 if (mip->mi_mmrp != NULL) 3022 margin_needed = mip->mi_mmrp->mmr_margin; 3023 3024 if (margin_needed <= margin) 3025 mip->mi_margin = margin; 3026 3027 rw_exit(&(mip->mi_rw_lock)); 3028 3029 if (margin_needed <= margin) 3030 i_mac_notify(mip, MAC_NOTE_MARGIN); 3031 3032 return (margin_needed <= margin); 3033 } 3034 3035 /* 3036 * MAC clients use this interface to request that a MAC device not change its 3037 * MTU below the specified amount. At this time, that amount must be within the 3038 * range of the device's current minimum and the device's current maximum. eg. a 3039 * client cannot request a 3000 byte MTU when the device's MTU is currently 3040 * 2000. 3041 * 3042 * If "current" is set to B_TRUE, then the request is to simply to reserve the 3043 * current underlying mac's maximum for this mac client and return it in mtup. 3044 */ 3045 int 3046 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 3047 { 3048 mac_impl_t *mip = (mac_impl_t *)mh; 3049 mac_mtu_req_t *prev, *cur; 3050 mac_propval_range_t mpr; 3051 int err; 3052 3053 i_mac_perim_enter(mip); 3054 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3055 3056 if (current == B_TRUE) 3057 *mtup = mip->mi_sdu_max; 3058 mpr.mpr_count = 1; 3059 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 3060 if (err != 0) { 3061 rw_exit(&mip->mi_rw_lock); 3062 i_mac_perim_exit(mip); 3063 return (err); 3064 } 3065 3066 if (*mtup > mip->mi_sdu_max || 3067 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 3068 rw_exit(&mip->mi_rw_lock); 3069 i_mac_perim_exit(mip); 3070 return (ENOTSUP); 3071 } 3072 3073 prev = NULL; 3074 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3075 if (*mtup == cur->mtr_mtu) { 3076 cur->mtr_ref++; 3077 rw_exit(&mip->mi_rw_lock); 3078 i_mac_perim_exit(mip); 3079 return (0); 3080 } 3081 3082 if (*mtup > cur->mtr_mtu) 3083 break; 3084 3085 prev = cur; 3086 } 3087 3088 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 3089 cur->mtr_mtu = *mtup; 3090 cur->mtr_ref = 1; 3091 if (prev != NULL) { 3092 cur->mtr_nextp = prev->mtr_nextp; 3093 prev->mtr_nextp = cur; 3094 } else { 3095 cur->mtr_nextp = mip->mi_mtrp; 3096 mip->mi_mtrp = cur; 3097 } 3098 3099 rw_exit(&mip->mi_rw_lock); 3100 i_mac_perim_exit(mip); 3101 return (0); 3102 } 3103 3104 int 3105 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 3106 { 3107 mac_impl_t *mip = (mac_impl_t *)mh; 3108 mac_mtu_req_t *cur, *prev; 3109 3110 i_mac_perim_enter(mip); 3111 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3112 3113 prev = NULL; 3114 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3115 if (cur->mtr_mtu == mtu) { 3116 ASSERT(cur->mtr_ref > 0); 3117 cur->mtr_ref--; 3118 if (cur->mtr_ref == 0) { 3119 if (prev == NULL) { 3120 mip->mi_mtrp = cur->mtr_nextp; 3121 } else { 3122 prev->mtr_nextp = cur->mtr_nextp; 3123 } 3124 kmem_free(cur, sizeof (mac_mtu_req_t)); 3125 } 3126 rw_exit(&mip->mi_rw_lock); 3127 i_mac_perim_exit(mip); 3128 return (0); 3129 } 3130 3131 prev = cur; 3132 } 3133 3134 rw_exit(&mip->mi_rw_lock); 3135 i_mac_perim_exit(mip); 3136 return (ENOENT); 3137 } 3138 3139 /* 3140 * MAC Type Plugin functions. 3141 */ 3142 3143 mactype_t * 3144 mactype_getplugin(const char *pname) 3145 { 3146 mactype_t *mtype = NULL; 3147 boolean_t tried_modload = B_FALSE; 3148 3149 mutex_enter(&i_mactype_lock); 3150 3151 find_registered_mactype: 3152 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 3153 (mod_hash_val_t *)&mtype) != 0) { 3154 if (!tried_modload) { 3155 /* 3156 * If the plugin has not yet been loaded, then 3157 * attempt to load it now. If modload() succeeds, 3158 * the plugin should have registered using 3159 * mactype_register(), in which case we can go back 3160 * and attempt to find it again. 3161 */ 3162 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 3163 tried_modload = B_TRUE; 3164 goto find_registered_mactype; 3165 } 3166 } 3167 } else { 3168 /* 3169 * Note that there's no danger that the plugin we've loaded 3170 * could be unloaded between the modload() step and the 3171 * reference count bump here, as we're holding 3172 * i_mactype_lock, which mactype_unregister() also holds. 3173 */ 3174 atomic_inc_32(&mtype->mt_ref); 3175 } 3176 3177 mutex_exit(&i_mactype_lock); 3178 return (mtype); 3179 } 3180 3181 mactype_register_t * 3182 mactype_alloc(uint_t mactype_version) 3183 { 3184 mactype_register_t *mtrp; 3185 3186 /* 3187 * Make sure there isn't a version mismatch between the plugin and 3188 * the framework. In the future, if multiple versions are 3189 * supported, this check could become more sophisticated. 3190 */ 3191 if (mactype_version != MACTYPE_VERSION) 3192 return (NULL); 3193 3194 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 3195 mtrp->mtr_version = mactype_version; 3196 return (mtrp); 3197 } 3198 3199 void 3200 mactype_free(mactype_register_t *mtrp) 3201 { 3202 kmem_free(mtrp, sizeof (mactype_register_t)); 3203 } 3204 3205 int 3206 mactype_register(mactype_register_t *mtrp) 3207 { 3208 mactype_t *mtp; 3209 mactype_ops_t *ops = mtrp->mtr_ops; 3210 3211 /* Do some sanity checking before we register this MAC type. */ 3212 if (mtrp->mtr_ident == NULL || ops == NULL) 3213 return (EINVAL); 3214 3215 /* 3216 * Verify that all mandatory callbacks are set in the ops 3217 * vector. 3218 */ 3219 if (ops->mtops_unicst_verify == NULL || 3220 ops->mtops_multicst_verify == NULL || 3221 ops->mtops_sap_verify == NULL || 3222 ops->mtops_header == NULL || 3223 ops->mtops_header_info == NULL) { 3224 return (EINVAL); 3225 } 3226 3227 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 3228 mtp->mt_ident = mtrp->mtr_ident; 3229 mtp->mt_ops = *ops; 3230 mtp->mt_type = mtrp->mtr_mactype; 3231 mtp->mt_nativetype = mtrp->mtr_nativetype; 3232 mtp->mt_addr_length = mtrp->mtr_addrlen; 3233 if (mtrp->mtr_brdcst_addr != NULL) { 3234 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 3235 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 3236 mtrp->mtr_addrlen); 3237 } 3238 3239 mtp->mt_stats = mtrp->mtr_stats; 3240 mtp->mt_statcount = mtrp->mtr_statcount; 3241 3242 mtp->mt_mapping = mtrp->mtr_mapping; 3243 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 3244 3245 if (mod_hash_insert(i_mactype_hash, 3246 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 3247 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3248 kmem_free(mtp, sizeof (*mtp)); 3249 return (EEXIST); 3250 } 3251 return (0); 3252 } 3253 3254 int 3255 mactype_unregister(const char *ident) 3256 { 3257 mactype_t *mtp; 3258 mod_hash_val_t val; 3259 int err; 3260 3261 /* 3262 * Let's not allow MAC drivers to use this plugin while we're 3263 * trying to unregister it. Holding i_mactype_lock also prevents a 3264 * plugin from unregistering while a MAC driver is attempting to 3265 * hold a reference to it in i_mactype_getplugin(). 3266 */ 3267 mutex_enter(&i_mactype_lock); 3268 3269 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 3270 (mod_hash_val_t *)&mtp)) != 0) { 3271 /* A plugin is trying to unregister, but it never registered. */ 3272 err = ENXIO; 3273 goto done; 3274 } 3275 3276 if (mtp->mt_ref != 0) { 3277 err = EBUSY; 3278 goto done; 3279 } 3280 3281 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3282 ASSERT(err == 0); 3283 if (err != 0) { 3284 /* This should never happen, thus the ASSERT() above. */ 3285 err = EINVAL; 3286 goto done; 3287 } 3288 ASSERT(mtp == (mactype_t *)val); 3289 3290 if (mtp->mt_brdcst_addr != NULL) 3291 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3292 kmem_free(mtp, sizeof (mactype_t)); 3293 done: 3294 mutex_exit(&i_mactype_lock); 3295 return (err); 3296 } 3297 3298 /* 3299 * Checks the size of the value size specified for a property as 3300 * part of a property operation. Returns B_TRUE if the size is 3301 * correct, B_FALSE otherwise. 3302 */ 3303 boolean_t 3304 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3305 { 3306 uint_t minsize = 0; 3307 3308 if (is_range) 3309 return (valsize >= sizeof (mac_propval_range_t)); 3310 3311 switch (id) { 3312 case MAC_PROP_ZONE: 3313 minsize = sizeof (dld_ioc_zid_t); 3314 break; 3315 case MAC_PROP_AUTOPUSH: 3316 if (valsize != 0) 3317 minsize = sizeof (struct dlautopush); 3318 break; 3319 case MAC_PROP_TAGMODE: 3320 minsize = sizeof (link_tagmode_t); 3321 break; 3322 case MAC_PROP_RESOURCE: 3323 case MAC_PROP_RESOURCE_EFF: 3324 minsize = sizeof (mac_resource_props_t); 3325 break; 3326 case MAC_PROP_DUPLEX: 3327 minsize = sizeof (link_duplex_t); 3328 break; 3329 case MAC_PROP_SPEED: 3330 minsize = sizeof (uint64_t); 3331 break; 3332 case MAC_PROP_STATUS: 3333 minsize = sizeof (link_state_t); 3334 break; 3335 case MAC_PROP_AUTONEG: 3336 case MAC_PROP_EN_AUTONEG: 3337 minsize = sizeof (uint8_t); 3338 break; 3339 case MAC_PROP_MTU: 3340 case MAC_PROP_LLIMIT: 3341 case MAC_PROP_LDECAY: 3342 minsize = sizeof (uint32_t); 3343 break; 3344 case MAC_PROP_FLOWCTRL: 3345 minsize = sizeof (link_flowctrl_t); 3346 break; 3347 case MAC_PROP_ADV_FEC_CAP: 3348 case MAC_PROP_EN_FEC_CAP: 3349 minsize = sizeof (link_fec_t); 3350 break; 3351 case MAC_PROP_ADV_5000FDX_CAP: 3352 case MAC_PROP_EN_5000FDX_CAP: 3353 case MAC_PROP_ADV_2500FDX_CAP: 3354 case MAC_PROP_EN_2500FDX_CAP: 3355 case MAC_PROP_ADV_100GFDX_CAP: 3356 case MAC_PROP_EN_100GFDX_CAP: 3357 case MAC_PROP_ADV_50GFDX_CAP: 3358 case MAC_PROP_EN_50GFDX_CAP: 3359 case MAC_PROP_ADV_40GFDX_CAP: 3360 case MAC_PROP_EN_40GFDX_CAP: 3361 case MAC_PROP_ADV_25GFDX_CAP: 3362 case MAC_PROP_EN_25GFDX_CAP: 3363 case MAC_PROP_ADV_10GFDX_CAP: 3364 case MAC_PROP_EN_10GFDX_CAP: 3365 case MAC_PROP_ADV_1000HDX_CAP: 3366 case MAC_PROP_EN_1000HDX_CAP: 3367 case MAC_PROP_ADV_100FDX_CAP: 3368 case MAC_PROP_EN_100FDX_CAP: 3369 case MAC_PROP_ADV_100HDX_CAP: 3370 case MAC_PROP_EN_100HDX_CAP: 3371 case MAC_PROP_ADV_10FDX_CAP: 3372 case MAC_PROP_EN_10FDX_CAP: 3373 case MAC_PROP_ADV_10HDX_CAP: 3374 case MAC_PROP_EN_10HDX_CAP: 3375 case MAC_PROP_ADV_100T4_CAP: 3376 case MAC_PROP_EN_100T4_CAP: 3377 minsize = sizeof (uint8_t); 3378 break; 3379 case MAC_PROP_PVID: 3380 minsize = sizeof (uint16_t); 3381 break; 3382 case MAC_PROP_IPTUN_HOPLIMIT: 3383 minsize = sizeof (uint32_t); 3384 break; 3385 case MAC_PROP_IPTUN_ENCAPLIMIT: 3386 minsize = sizeof (uint32_t); 3387 break; 3388 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3389 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3390 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3391 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3392 minsize = sizeof (uint_t); 3393 break; 3394 case MAC_PROP_WL_ESSID: 3395 minsize = sizeof (wl_linkstatus_t); 3396 break; 3397 case MAC_PROP_WL_BSSID: 3398 minsize = sizeof (wl_bssid_t); 3399 break; 3400 case MAC_PROP_WL_BSSTYPE: 3401 minsize = sizeof (wl_bss_type_t); 3402 break; 3403 case MAC_PROP_WL_LINKSTATUS: 3404 minsize = sizeof (wl_linkstatus_t); 3405 break; 3406 case MAC_PROP_WL_DESIRED_RATES: 3407 minsize = sizeof (wl_rates_t); 3408 break; 3409 case MAC_PROP_WL_SUPPORTED_RATES: 3410 minsize = sizeof (wl_rates_t); 3411 break; 3412 case MAC_PROP_WL_AUTH_MODE: 3413 minsize = sizeof (wl_authmode_t); 3414 break; 3415 case MAC_PROP_WL_ENCRYPTION: 3416 minsize = sizeof (wl_encryption_t); 3417 break; 3418 case MAC_PROP_WL_RSSI: 3419 minsize = sizeof (wl_rssi_t); 3420 break; 3421 case MAC_PROP_WL_PHY_CONFIG: 3422 minsize = sizeof (wl_phy_conf_t); 3423 break; 3424 case MAC_PROP_WL_CAPABILITY: 3425 minsize = sizeof (wl_capability_t); 3426 break; 3427 case MAC_PROP_WL_WPA: 3428 minsize = sizeof (wl_wpa_t); 3429 break; 3430 case MAC_PROP_WL_SCANRESULTS: 3431 minsize = sizeof (wl_wpa_ess_t); 3432 break; 3433 case MAC_PROP_WL_POWER_MODE: 3434 minsize = sizeof (wl_ps_mode_t); 3435 break; 3436 case MAC_PROP_WL_RADIO: 3437 minsize = sizeof (wl_radio_t); 3438 break; 3439 case MAC_PROP_WL_ESS_LIST: 3440 minsize = sizeof (wl_ess_list_t); 3441 break; 3442 case MAC_PROP_WL_KEY_TAB: 3443 minsize = sizeof (wl_wep_key_tab_t); 3444 break; 3445 case MAC_PROP_WL_CREATE_IBSS: 3446 minsize = sizeof (wl_create_ibss_t); 3447 break; 3448 case MAC_PROP_WL_SETOPTIE: 3449 minsize = sizeof (wl_wpa_ie_t); 3450 break; 3451 case MAC_PROP_WL_DELKEY: 3452 minsize = sizeof (wl_del_key_t); 3453 break; 3454 case MAC_PROP_WL_KEY: 3455 minsize = sizeof (wl_key_t); 3456 break; 3457 case MAC_PROP_WL_MLME: 3458 minsize = sizeof (wl_mlme_t); 3459 break; 3460 case MAC_PROP_VN_PROMISC_FILTERED: 3461 minsize = sizeof (boolean_t); 3462 break; 3463 case MAC_PROP_MEDIA: 3464 /* 3465 * Our assumption is that each class of device uses an enum and 3466 * that all enums will be the same size so it is OK to use a 3467 * single one. 3468 */ 3469 minsize = sizeof (mac_ether_media_t); 3470 break; 3471 } 3472 3473 return (valsize >= minsize); 3474 } 3475 3476 /* 3477 * mac_set_prop() sets MAC or hardware driver properties: 3478 * 3479 * - MAC-managed properties such as resource properties include maxbw, 3480 * priority, and cpu binding list, as well as the default port VID 3481 * used by bridging. These properties are consumed by the MAC layer 3482 * itself and not passed down to the driver. For resource control 3483 * properties, this function invokes mac_set_resources() which will 3484 * cache the property value in mac_impl_t and may call 3485 * mac_client_set_resource() to update property value of the primary 3486 * mac client, if it exists. 3487 * 3488 * - Properties which act on the hardware and must be passed to the 3489 * driver, such as MTU, through the driver's mc_setprop() entry point. 3490 */ 3491 int 3492 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3493 uint_t valsize) 3494 { 3495 int err = ENOTSUP; 3496 mac_impl_t *mip = (mac_impl_t *)mh; 3497 3498 ASSERT(MAC_PERIM_HELD(mh)); 3499 3500 switch (id) { 3501 case MAC_PROP_RESOURCE: { 3502 mac_resource_props_t *mrp; 3503 3504 /* call mac_set_resources() for MAC properties */ 3505 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3506 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3507 bcopy(val, mrp, sizeof (*mrp)); 3508 err = mac_set_resources(mh, mrp); 3509 kmem_free(mrp, sizeof (*mrp)); 3510 break; 3511 } 3512 3513 case MAC_PROP_PVID: 3514 ASSERT(valsize >= sizeof (uint16_t)); 3515 if (mip->mi_state_flags & MIS_IS_VNIC) 3516 return (EINVAL); 3517 err = mac_set_pvid(mh, *(uint16_t *)val); 3518 break; 3519 3520 case MAC_PROP_MTU: { 3521 uint32_t mtu; 3522 3523 ASSERT(valsize >= sizeof (uint32_t)); 3524 bcopy(val, &mtu, sizeof (mtu)); 3525 err = mac_set_mtu(mh, mtu, NULL); 3526 break; 3527 } 3528 3529 case MAC_PROP_LLIMIT: 3530 case MAC_PROP_LDECAY: { 3531 uint32_t learnval; 3532 3533 if (valsize < sizeof (learnval) || 3534 (mip->mi_state_flags & MIS_IS_VNIC)) 3535 return (EINVAL); 3536 bcopy(val, &learnval, sizeof (learnval)); 3537 if (learnval == 0 && id == MAC_PROP_LDECAY) 3538 return (EINVAL); 3539 if (id == MAC_PROP_LLIMIT) 3540 mip->mi_llimit = learnval; 3541 else 3542 mip->mi_ldecay = learnval; 3543 err = 0; 3544 break; 3545 } 3546 3547 case MAC_PROP_ADV_FEC_CAP: 3548 case MAC_PROP_EN_FEC_CAP: { 3549 link_fec_t fec; 3550 3551 ASSERT(valsize >= sizeof (link_fec_t)); 3552 3553 /* 3554 * fec cannot be zero, and auto must be set exclusively. 3555 */ 3556 bcopy(val, &fec, sizeof (link_fec_t)); 3557 if (fec == 0) 3558 return (EINVAL); 3559 if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0) 3560 return (EINVAL); 3561 3562 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3563 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3564 name, id, valsize, val); 3565 } 3566 break; 3567 } 3568 3569 default: 3570 /* For other driver properties, call driver's callback */ 3571 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3572 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3573 name, id, valsize, val); 3574 } 3575 } 3576 return (err); 3577 } 3578 3579 /* 3580 * mac_get_prop() gets MAC or device driver properties. 3581 * 3582 * If the property is a driver property, mac_get_prop() calls driver's callback 3583 * entry point to get it. 3584 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3585 * which returns the cached value in mac_impl_t. 3586 */ 3587 int 3588 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3589 uint_t valsize) 3590 { 3591 int err = ENOTSUP; 3592 mac_impl_t *mip = (mac_impl_t *)mh; 3593 uint_t rings; 3594 uint_t vlinks; 3595 3596 bzero(val, valsize); 3597 3598 switch (id) { 3599 case MAC_PROP_RESOURCE: { 3600 mac_resource_props_t *mrp; 3601 3602 /* If mac property, read from cache */ 3603 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3604 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3605 mac_get_resources(mh, mrp); 3606 bcopy(mrp, val, sizeof (*mrp)); 3607 kmem_free(mrp, sizeof (*mrp)); 3608 return (0); 3609 } 3610 case MAC_PROP_RESOURCE_EFF: { 3611 mac_resource_props_t *mrp; 3612 3613 /* If mac effective property, read from client */ 3614 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3615 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3616 mac_get_effective_resources(mh, mrp); 3617 bcopy(mrp, val, sizeof (*mrp)); 3618 kmem_free(mrp, sizeof (*mrp)); 3619 return (0); 3620 } 3621 3622 case MAC_PROP_PVID: 3623 ASSERT(valsize >= sizeof (uint16_t)); 3624 if (mip->mi_state_flags & MIS_IS_VNIC) 3625 return (EINVAL); 3626 *(uint16_t *)val = mac_get_pvid(mh); 3627 return (0); 3628 3629 case MAC_PROP_LLIMIT: 3630 case MAC_PROP_LDECAY: 3631 ASSERT(valsize >= sizeof (uint32_t)); 3632 if (mip->mi_state_flags & MIS_IS_VNIC) 3633 return (EINVAL); 3634 if (id == MAC_PROP_LLIMIT) 3635 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3636 else 3637 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3638 return (0); 3639 3640 case MAC_PROP_MTU: { 3641 uint32_t sdu; 3642 3643 ASSERT(valsize >= sizeof (uint32_t)); 3644 mac_sdu_get2(mh, NULL, &sdu, NULL); 3645 bcopy(&sdu, val, sizeof (sdu)); 3646 3647 return (0); 3648 } 3649 case MAC_PROP_STATUS: { 3650 link_state_t link_state; 3651 3652 if (valsize < sizeof (link_state)) 3653 return (EINVAL); 3654 link_state = mac_link_get(mh); 3655 bcopy(&link_state, val, sizeof (link_state)); 3656 3657 return (0); 3658 } 3659 3660 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3661 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3662 ASSERT(valsize >= sizeof (uint_t)); 3663 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3664 mac_rxavail_get(mh) : mac_txavail_get(mh); 3665 bcopy(&rings, val, sizeof (uint_t)); 3666 return (0); 3667 3668 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3669 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3670 ASSERT(valsize >= sizeof (uint_t)); 3671 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3672 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3673 bcopy(&vlinks, val, sizeof (uint_t)); 3674 return (0); 3675 3676 case MAC_PROP_RXRINGSRANGE: 3677 case MAC_PROP_TXRINGSRANGE: 3678 /* 3679 * The value for these properties are returned through 3680 * the MAC_PROP_RESOURCE property. 3681 */ 3682 return (0); 3683 3684 default: 3685 break; 3686 3687 } 3688 3689 /* If driver property, request from driver */ 3690 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3691 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3692 valsize, val); 3693 } 3694 3695 return (err); 3696 } 3697 3698 /* 3699 * Helper function to initialize the range structure for use in 3700 * mac_get_prop. If the type can be other than uint32, we can 3701 * pass that as an arg. 3702 */ 3703 static void 3704 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3705 { 3706 range->mpr_count = 1; 3707 range->mpr_type = MAC_PROPVAL_UINT32; 3708 range->mpr_range_uint32[0].mpur_min = min; 3709 range->mpr_range_uint32[0].mpur_max = max; 3710 } 3711 3712 /* 3713 * Returns information about the specified property, such as default 3714 * values or permissions. 3715 */ 3716 int 3717 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3718 void *default_val, uint_t default_size, mac_propval_range_t *range, 3719 uint_t *perm) 3720 { 3721 mac_prop_info_state_t state; 3722 mac_impl_t *mip = (mac_impl_t *)mh; 3723 uint_t max; 3724 3725 /* 3726 * A property is read/write by default unless the driver says 3727 * otherwise. 3728 */ 3729 if (perm != NULL) 3730 *perm = MAC_PROP_PERM_RW; 3731 3732 if (default_val != NULL) 3733 bzero(default_val, default_size); 3734 3735 /* 3736 * First, handle framework properties for which we don't need to 3737 * involve the driver. 3738 */ 3739 switch (id) { 3740 case MAC_PROP_RESOURCE: 3741 case MAC_PROP_PVID: 3742 case MAC_PROP_LLIMIT: 3743 case MAC_PROP_LDECAY: 3744 return (0); 3745 3746 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3747 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3748 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3749 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3750 if (perm != NULL) 3751 *perm = MAC_PROP_PERM_READ; 3752 return (0); 3753 3754 case MAC_PROP_RXRINGSRANGE: 3755 case MAC_PROP_TXRINGSRANGE: 3756 /* 3757 * Currently, we support range for RX and TX rings properties. 3758 * When we extend this support to maxbw, cpus and priority, 3759 * we should move this to mac_get_resources. 3760 * There is no default value for RX or TX rings. 3761 */ 3762 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3763 mac_is_vnic_primary(mh)) { 3764 /* 3765 * We don't support setting rings for a VLAN 3766 * data link because it shares its ring with the 3767 * primary MAC client. 3768 */ 3769 if (perm != NULL) 3770 *perm = MAC_PROP_PERM_READ; 3771 if (range != NULL) 3772 range->mpr_count = 0; 3773 } else if (range != NULL) { 3774 if (mip->mi_state_flags & MIS_IS_VNIC) 3775 mh = mac_get_lower_mac_handle(mh); 3776 mip = (mac_impl_t *)mh; 3777 if ((id == MAC_PROP_RXRINGSRANGE && 3778 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3779 (id == MAC_PROP_TXRINGSRANGE && 3780 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3781 if (id == MAC_PROP_RXRINGSRANGE) { 3782 if ((mac_rxhwlnksavail_get(mh) + 3783 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3784 /* 3785 * doesn't support groups or 3786 * rings 3787 */ 3788 range->mpr_count = 0; 3789 } else { 3790 /* 3791 * supports specifying groups, 3792 * but not rings 3793 */ 3794 _mac_set_range(range, 0, 0); 3795 } 3796 } else { 3797 if ((mac_txhwlnksavail_get(mh) + 3798 mac_txhwlnksrsvd_get(mh)) <= 1) { 3799 /* 3800 * doesn't support groups or 3801 * rings 3802 */ 3803 range->mpr_count = 0; 3804 } else { 3805 /* 3806 * supports specifying groups, 3807 * but not rings 3808 */ 3809 _mac_set_range(range, 0, 0); 3810 } 3811 } 3812 } else { 3813 max = id == MAC_PROP_RXRINGSRANGE ? 3814 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3815 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3816 if (max <= 1) { 3817 /* 3818 * doesn't support groups or 3819 * rings 3820 */ 3821 range->mpr_count = 0; 3822 } else { 3823 /* 3824 * -1 because we have to leave out the 3825 * default ring. 3826 */ 3827 _mac_set_range(range, 1, max - 1); 3828 } 3829 } 3830 } 3831 return (0); 3832 3833 case MAC_PROP_STATUS: 3834 case MAC_PROP_MEDIA: 3835 if (perm != NULL) 3836 *perm = MAC_PROP_PERM_READ; 3837 return (0); 3838 } 3839 3840 /* 3841 * Get the property info from the driver if it implements the 3842 * property info entry point. 3843 */ 3844 bzero(&state, sizeof (state)); 3845 3846 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3847 state.pr_default = default_val; 3848 state.pr_default_size = default_size; 3849 3850 /* 3851 * The caller specifies the maximum number of ranges 3852 * it can accomodate using mpr_count. We don't touch 3853 * this value until the driver returns from its 3854 * mc_propinfo() callback, and ensure we don't exceed 3855 * this number of range as the driver defines 3856 * supported range from its mc_propinfo(). 3857 * 3858 * pr_range_cur_count keeps track of how many ranges 3859 * were defined by the driver from its mc_propinfo() 3860 * entry point. 3861 * 3862 * On exit, the user-specified range mpr_count returns 3863 * the number of ranges specified by the driver on 3864 * success, or the number of ranges it wanted to 3865 * define if that number of ranges could not be 3866 * accomodated by the specified range structure. In 3867 * the latter case, the caller will be able to 3868 * allocate a larger range structure, and query the 3869 * property again. 3870 */ 3871 state.pr_range_cur_count = 0; 3872 state.pr_range = range; 3873 3874 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3875 (mac_prop_info_handle_t)&state); 3876 3877 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3878 range->mpr_count = state.pr_range_cur_count; 3879 3880 /* 3881 * The operation could fail if the buffer supplied by 3882 * the user was too small for the range or default 3883 * value of the property. 3884 */ 3885 if (state.pr_errno != 0) 3886 return (state.pr_errno); 3887 3888 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3889 *perm = state.pr_perm; 3890 } 3891 3892 /* 3893 * The MAC layer may want to provide default values or allowed 3894 * ranges for properties if the driver does not provide a 3895 * property info entry point, or that entry point exists, but 3896 * it did not provide a default value or allowed ranges for 3897 * that property. 3898 */ 3899 switch (id) { 3900 case MAC_PROP_MTU: { 3901 uint32_t sdu; 3902 3903 mac_sdu_get2(mh, NULL, &sdu, NULL); 3904 3905 if (range != NULL && !(state.pr_flags & 3906 MAC_PROP_INFO_RANGE)) { 3907 /* MTU range */ 3908 _mac_set_range(range, sdu, sdu); 3909 } 3910 3911 if (default_val != NULL && !(state.pr_flags & 3912 MAC_PROP_INFO_DEFAULT)) { 3913 if (mip->mi_info.mi_media == DL_ETHER) 3914 sdu = ETHERMTU; 3915 /* default MTU value */ 3916 bcopy(&sdu, default_val, sizeof (sdu)); 3917 } 3918 } 3919 } 3920 3921 return (0); 3922 } 3923 3924 int 3925 mac_fastpath_disable(mac_handle_t mh) 3926 { 3927 mac_impl_t *mip = (mac_impl_t *)mh; 3928 3929 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3930 return (0); 3931 3932 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3933 } 3934 3935 void 3936 mac_fastpath_enable(mac_handle_t mh) 3937 { 3938 mac_impl_t *mip = (mac_impl_t *)mh; 3939 3940 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3941 return; 3942 3943 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3944 } 3945 3946 void 3947 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3948 { 3949 uint_t nprops, i; 3950 3951 if (priv_props == NULL) 3952 return; 3953 3954 nprops = 0; 3955 while (priv_props[nprops] != NULL) 3956 nprops++; 3957 if (nprops == 0) 3958 return; 3959 3960 3961 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3962 3963 for (i = 0; i < nprops; i++) { 3964 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3965 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3966 MAXLINKPROPNAME); 3967 } 3968 3969 mip->mi_priv_prop_count = nprops; 3970 } 3971 3972 void 3973 mac_unregister_priv_prop(mac_impl_t *mip) 3974 { 3975 uint_t i; 3976 3977 if (mip->mi_priv_prop_count == 0) { 3978 ASSERT(mip->mi_priv_prop == NULL); 3979 return; 3980 } 3981 3982 for (i = 0; i < mip->mi_priv_prop_count; i++) 3983 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3984 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3985 sizeof (char *)); 3986 3987 mip->mi_priv_prop = NULL; 3988 mip->mi_priv_prop_count = 0; 3989 } 3990 3991 /* 3992 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3993 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3994 * cases if MAC free's the ring structure after mac_stop_ring(), any 3995 * illegal access to the ring structure coming from the driver will panic 3996 * the system. In order to protect the system from such inadverent access, 3997 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3998 * When packets are received on free'd up rings, MAC (through the generation 3999 * count mechanism) will drop such packets. 4000 */ 4001 static mac_ring_t * 4002 mac_ring_alloc(mac_impl_t *mip) 4003 { 4004 mac_ring_t *ring; 4005 4006 mutex_enter(&mip->mi_ring_lock); 4007 if (mip->mi_ring_freelist != NULL) { 4008 ring = mip->mi_ring_freelist; 4009 mip->mi_ring_freelist = ring->mr_next; 4010 bzero(ring, sizeof (mac_ring_t)); 4011 mutex_exit(&mip->mi_ring_lock); 4012 } else { 4013 mutex_exit(&mip->mi_ring_lock); 4014 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 4015 } 4016 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 4017 return (ring); 4018 } 4019 4020 static void 4021 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 4022 { 4023 ASSERT(ring->mr_state == MR_FREE); 4024 4025 mutex_enter(&mip->mi_ring_lock); 4026 ring->mr_state = MR_FREE; 4027 ring->mr_flag = 0; 4028 ring->mr_next = mip->mi_ring_freelist; 4029 ring->mr_mip = NULL; 4030 mip->mi_ring_freelist = ring; 4031 mac_ring_stat_delete(ring); 4032 mutex_exit(&mip->mi_ring_lock); 4033 } 4034 4035 static void 4036 mac_ring_freeall(mac_impl_t *mip) 4037 { 4038 mac_ring_t *ring_next; 4039 mutex_enter(&mip->mi_ring_lock); 4040 mac_ring_t *ring = mip->mi_ring_freelist; 4041 while (ring != NULL) { 4042 ring_next = ring->mr_next; 4043 kmem_cache_free(mac_ring_cache, ring); 4044 ring = ring_next; 4045 } 4046 mip->mi_ring_freelist = NULL; 4047 mutex_exit(&mip->mi_ring_lock); 4048 } 4049 4050 int 4051 mac_start_ring(mac_ring_t *ring) 4052 { 4053 int rv = 0; 4054 4055 ASSERT(ring->mr_state == MR_FREE); 4056 4057 if (ring->mr_start != NULL) { 4058 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 4059 if (rv != 0) 4060 return (rv); 4061 } 4062 4063 ring->mr_state = MR_INUSE; 4064 return (rv); 4065 } 4066 4067 void 4068 mac_stop_ring(mac_ring_t *ring) 4069 { 4070 ASSERT(ring->mr_state == MR_INUSE); 4071 4072 if (ring->mr_stop != NULL) 4073 ring->mr_stop(ring->mr_driver); 4074 4075 ring->mr_state = MR_FREE; 4076 4077 /* 4078 * Increment the ring generation number for this ring. 4079 */ 4080 ring->mr_gen_num++; 4081 } 4082 4083 int 4084 mac_start_group(mac_group_t *group) 4085 { 4086 int rv = 0; 4087 4088 if (group->mrg_start != NULL) 4089 rv = group->mrg_start(group->mrg_driver); 4090 4091 return (rv); 4092 } 4093 4094 void 4095 mac_stop_group(mac_group_t *group) 4096 { 4097 if (group->mrg_stop != NULL) 4098 group->mrg_stop(group->mrg_driver); 4099 } 4100 4101 /* 4102 * Called from mac_start() on the default Rx group. Broadcast and multicast 4103 * packets are received only on the default group. Hence the default group 4104 * needs to be up even if the primary client is not up, for the other groups 4105 * to be functional. We do this by calling this function at mac_start time 4106 * itself. However the broadcast packets that are received can't make their 4107 * way beyond mac_rx until a mac client creates a broadcast flow. 4108 */ 4109 static int 4110 mac_start_group_and_rings(mac_group_t *group) 4111 { 4112 mac_ring_t *ring; 4113 int rv = 0; 4114 4115 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 4116 if ((rv = mac_start_group(group)) != 0) 4117 return (rv); 4118 4119 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4120 ASSERT(ring->mr_state == MR_FREE); 4121 4122 if ((rv = mac_start_ring(ring)) != 0) 4123 goto error; 4124 4125 /* 4126 * When aggr_set_port_sdu() is called, it will remove 4127 * the port client's unicast address. This will cause 4128 * MAC to stop the default group's rings on the port 4129 * MAC. After it modifies the SDU, it will then re-add 4130 * the unicast address. At which time, this function is 4131 * called to start the default group's rings. Normally 4132 * this function would set the classify type to 4133 * MAC_SW_CLASSIFIER; but that will break aggr which 4134 * relies on the passthru classify mode being set for 4135 * correct delivery (see mac_rx_common()). To avoid 4136 * that, we check for a passthru callback and set the 4137 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was 4138 * before the rings were stopped. 4139 */ 4140 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ? 4141 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER; 4142 } 4143 return (0); 4144 4145 error: 4146 mac_stop_group_and_rings(group); 4147 return (rv); 4148 } 4149 4150 /* Called from mac_stop on the default Rx group */ 4151 static void 4152 mac_stop_group_and_rings(mac_group_t *group) 4153 { 4154 mac_ring_t *ring; 4155 4156 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4157 if (ring->mr_state != MR_FREE) { 4158 mac_stop_ring(ring); 4159 ring->mr_flag = 0; 4160 ring->mr_classify_type = MAC_NO_CLASSIFIER; 4161 } 4162 } 4163 mac_stop_group(group); 4164 } 4165 4166 4167 static mac_ring_t * 4168 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 4169 mac_capab_rings_t *cap_rings) 4170 { 4171 mac_ring_t *ring, *rnext; 4172 mac_ring_info_t ring_info; 4173 ddi_intr_handle_t ddi_handle; 4174 4175 ring = mac_ring_alloc(mip); 4176 4177 /* Prepare basic information of ring */ 4178 4179 /* 4180 * Ring index is numbered to be unique across a particular device. 4181 * Ring index computation makes following assumptions: 4182 * - For drivers with static grouping (e.g. ixgbe, bge), 4183 * ring index exchanged with the driver (e.g. during mr_rget) 4184 * is unique only across the group the ring belongs to. 4185 * - Drivers with dynamic grouping (e.g. nxge), start 4186 * with single group (mrg_index = 0). 4187 */ 4188 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 4189 ring->mr_type = group->mrg_type; 4190 ring->mr_gh = (mac_group_handle_t)group; 4191 4192 /* Insert the new ring to the list. */ 4193 ring->mr_next = group->mrg_rings; 4194 group->mrg_rings = ring; 4195 4196 /* Zero to reuse the info data structure */ 4197 bzero(&ring_info, sizeof (ring_info)); 4198 4199 /* Query ring information from driver */ 4200 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 4201 index, &ring_info, (mac_ring_handle_t)ring); 4202 4203 ring->mr_info = ring_info; 4204 4205 /* 4206 * The interrupt handle could be shared among multiple rings. 4207 * Thus if there is a bunch of rings that are sharing an 4208 * interrupt, then only one ring among the bunch will be made 4209 * available for interrupt re-targeting; the rest will have 4210 * ddi_shared flag set to TRUE and would not be available for 4211 * be interrupt re-targeting. 4212 */ 4213 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 4214 rnext = ring->mr_next; 4215 while (rnext != NULL) { 4216 if (rnext->mr_info.mri_intr.mi_ddi_handle == 4217 ddi_handle) { 4218 /* 4219 * If default ring (mr_index == 0) is part 4220 * of a group of rings sharing an 4221 * interrupt, then set ddi_shared flag for 4222 * the default ring and give another ring 4223 * the chance to be re-targeted. 4224 */ 4225 if (rnext->mr_index == 0 && 4226 !rnext->mr_info.mri_intr.mi_ddi_shared) { 4227 rnext->mr_info.mri_intr.mi_ddi_shared = 4228 B_TRUE; 4229 } else { 4230 ring->mr_info.mri_intr.mi_ddi_shared = 4231 B_TRUE; 4232 } 4233 break; 4234 } 4235 rnext = rnext->mr_next; 4236 } 4237 /* 4238 * If rnext is NULL, then no matching ddi_handle was found. 4239 * Rx rings get registered first. So if this is a Tx ring, 4240 * then go through all the Rx rings and see if there is a 4241 * matching ddi handle. 4242 */ 4243 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 4244 mac_compare_ddi_handle(mip->mi_rx_groups, 4245 mip->mi_rx_group_count, ring); 4246 } 4247 } 4248 4249 /* Update ring's status */ 4250 ring->mr_state = MR_FREE; 4251 ring->mr_flag = 0; 4252 4253 /* Update the ring count of the group */ 4254 group->mrg_cur_count++; 4255 4256 /* Create per ring kstats */ 4257 if (ring->mr_stat != NULL) { 4258 ring->mr_mip = mip; 4259 mac_ring_stat_create(ring); 4260 } 4261 4262 return (ring); 4263 } 4264 4265 /* 4266 * Rings are chained together for easy regrouping. 4267 */ 4268 static void 4269 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 4270 mac_capab_rings_t *cap_rings) 4271 { 4272 int index; 4273 4274 /* 4275 * Initialize all ring members of this group. Size of zero will not 4276 * enter the loop, so it's safe for initializing an empty group. 4277 */ 4278 for (index = size - 1; index >= 0; index--) 4279 (void) mac_init_ring(mip, group, index, cap_rings); 4280 } 4281 4282 int 4283 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4284 { 4285 mac_capab_rings_t *cap_rings; 4286 mac_group_t *group; 4287 mac_group_t *groups; 4288 mac_group_info_t group_info; 4289 uint_t group_free = 0; 4290 uint_t ring_left; 4291 mac_ring_t *ring; 4292 int g; 4293 int err = 0; 4294 uint_t grpcnt; 4295 boolean_t pseudo_txgrp = B_FALSE; 4296 4297 switch (rtype) { 4298 case MAC_RING_TYPE_RX: 4299 ASSERT(mip->mi_rx_groups == NULL); 4300 4301 cap_rings = &mip->mi_rx_rings_cap; 4302 cap_rings->mr_type = MAC_RING_TYPE_RX; 4303 break; 4304 case MAC_RING_TYPE_TX: 4305 ASSERT(mip->mi_tx_groups == NULL); 4306 4307 cap_rings = &mip->mi_tx_rings_cap; 4308 cap_rings->mr_type = MAC_RING_TYPE_TX; 4309 break; 4310 default: 4311 ASSERT(B_FALSE); 4312 } 4313 4314 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 4315 return (0); 4316 grpcnt = cap_rings->mr_gnum; 4317 4318 /* 4319 * If we have multiple TX rings, but only one TX group, we can 4320 * create pseudo TX groups (one per TX ring) in the MAC layer, 4321 * except for an aggr. For an aggr currently we maintain only 4322 * one group with all the rings (for all its ports), going 4323 * forwards we might change this. 4324 */ 4325 if (rtype == MAC_RING_TYPE_TX && 4326 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4327 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4328 /* 4329 * The -1 here is because we create a default TX group 4330 * with all the rings in it. 4331 */ 4332 grpcnt = cap_rings->mr_rnum - 1; 4333 pseudo_txgrp = B_TRUE; 4334 } 4335 4336 /* 4337 * Allocate a contiguous buffer for all groups. 4338 */ 4339 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4340 4341 ring_left = cap_rings->mr_rnum; 4342 4343 /* 4344 * Get all ring groups if any, and get their ring members 4345 * if any. 4346 */ 4347 for (g = 0; g < grpcnt; g++) { 4348 group = groups + g; 4349 4350 /* Prepare basic information of the group */ 4351 group->mrg_index = g; 4352 group->mrg_type = rtype; 4353 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4354 group->mrg_mh = (mac_handle_t)mip; 4355 group->mrg_next = group + 1; 4356 4357 /* Zero to reuse the info data structure */ 4358 bzero(&group_info, sizeof (group_info)); 4359 4360 if (pseudo_txgrp) { 4361 /* 4362 * This is a pseudo group that we created, apart 4363 * from setting the state there is nothing to be 4364 * done. 4365 */ 4366 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4367 group_free++; 4368 continue; 4369 } 4370 /* Query group information from driver */ 4371 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4372 (mac_group_handle_t)group); 4373 4374 switch (cap_rings->mr_group_type) { 4375 case MAC_GROUP_TYPE_DYNAMIC: 4376 if (cap_rings->mr_gaddring == NULL || 4377 cap_rings->mr_gremring == NULL) { 4378 DTRACE_PROBE3( 4379 mac__init__rings_no_addremring, 4380 char *, mip->mi_name, 4381 mac_group_add_ring_t, 4382 cap_rings->mr_gaddring, 4383 mac_group_add_ring_t, 4384 cap_rings->mr_gremring); 4385 err = EINVAL; 4386 goto bail; 4387 } 4388 4389 switch (rtype) { 4390 case MAC_RING_TYPE_RX: 4391 /* 4392 * The first RX group must have non-zero 4393 * rings, and the following groups must 4394 * have zero rings. 4395 */ 4396 if (g == 0 && group_info.mgi_count == 0) { 4397 DTRACE_PROBE1( 4398 mac__init__rings__rx__def__zero, 4399 char *, mip->mi_name); 4400 err = EINVAL; 4401 goto bail; 4402 } 4403 if (g > 0 && group_info.mgi_count != 0) { 4404 DTRACE_PROBE3( 4405 mac__init__rings__rx__nonzero, 4406 char *, mip->mi_name, 4407 int, g, int, group_info.mgi_count); 4408 err = EINVAL; 4409 goto bail; 4410 } 4411 break; 4412 case MAC_RING_TYPE_TX: 4413 /* 4414 * All TX ring groups must have zero rings. 4415 */ 4416 if (group_info.mgi_count != 0) { 4417 DTRACE_PROBE3( 4418 mac__init__rings__tx__nonzero, 4419 char *, mip->mi_name, 4420 int, g, int, group_info.mgi_count); 4421 err = EINVAL; 4422 goto bail; 4423 } 4424 break; 4425 } 4426 break; 4427 case MAC_GROUP_TYPE_STATIC: 4428 /* 4429 * Note that an empty group is allowed, e.g., an aggr 4430 * would start with an empty group. 4431 */ 4432 break; 4433 default: 4434 /* unknown group type */ 4435 DTRACE_PROBE2(mac__init__rings__unknown__type, 4436 char *, mip->mi_name, 4437 int, cap_rings->mr_group_type); 4438 err = EINVAL; 4439 goto bail; 4440 } 4441 4442 4443 /* 4444 * The driver must register some form of hardware MAC 4445 * filter in order for Rx groups to support multiple 4446 * MAC addresses. 4447 */ 4448 if (rtype == MAC_RING_TYPE_RX && 4449 (group_info.mgi_addmac == NULL || 4450 group_info.mgi_remmac == NULL)) { 4451 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4452 char *, mip->mi_name); 4453 err = EINVAL; 4454 goto bail; 4455 } 4456 4457 /* Cache driver-supplied information */ 4458 group->mrg_info = group_info; 4459 4460 /* Update the group's status and group count. */ 4461 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4462 group_free++; 4463 4464 group->mrg_rings = NULL; 4465 group->mrg_cur_count = 0; 4466 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4467 ring_left -= group_info.mgi_count; 4468 4469 /* The current group size should be equal to default value */ 4470 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4471 } 4472 4473 /* Build up a dummy group for free resources as a pool */ 4474 group = groups + grpcnt; 4475 4476 /* Prepare basic information of the group */ 4477 group->mrg_index = -1; 4478 group->mrg_type = rtype; 4479 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4480 group->mrg_mh = (mac_handle_t)mip; 4481 group->mrg_next = NULL; 4482 4483 /* 4484 * If there are ungrouped rings, allocate a continuous buffer for 4485 * remaining resources. 4486 */ 4487 if (ring_left != 0) { 4488 group->mrg_rings = NULL; 4489 group->mrg_cur_count = 0; 4490 mac_init_group(mip, group, ring_left, cap_rings); 4491 4492 /* The current group size should be equal to ring_left */ 4493 ASSERT(group->mrg_cur_count == ring_left); 4494 4495 ring_left = 0; 4496 4497 /* Update this group's status */ 4498 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4499 } else { 4500 group->mrg_rings = NULL; 4501 } 4502 4503 ASSERT(ring_left == 0); 4504 4505 bail: 4506 4507 /* Cache other important information to finalize the initialization */ 4508 switch (rtype) { 4509 case MAC_RING_TYPE_RX: 4510 mip->mi_rx_group_type = cap_rings->mr_group_type; 4511 mip->mi_rx_group_count = cap_rings->mr_gnum; 4512 mip->mi_rx_groups = groups; 4513 mip->mi_rx_donor_grp = groups; 4514 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4515 /* 4516 * The default ring is reserved since it is 4517 * used for sending the broadcast etc. packets. 4518 */ 4519 mip->mi_rxrings_avail = 4520 mip->mi_rx_groups->mrg_cur_count - 1; 4521 mip->mi_rxrings_rsvd = 1; 4522 } 4523 /* 4524 * The default group cannot be reserved. It is used by 4525 * all the clients that do not have an exclusive group. 4526 */ 4527 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4528 mip->mi_rxhwclnt_used = 1; 4529 break; 4530 case MAC_RING_TYPE_TX: 4531 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4532 cap_rings->mr_group_type; 4533 mip->mi_tx_group_count = grpcnt; 4534 mip->mi_tx_group_free = group_free; 4535 mip->mi_tx_groups = groups; 4536 4537 group = groups + grpcnt; 4538 ring = group->mrg_rings; 4539 /* 4540 * The ring can be NULL in the case of aggr. Aggr will 4541 * have an empty Tx group which will get populated 4542 * later when pseudo Tx rings are added after 4543 * mac_register() is done. 4544 */ 4545 if (ring == NULL) { 4546 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4547 /* 4548 * pass the group to aggr so it can add Tx 4549 * rings to the group later. 4550 */ 4551 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4552 (mac_group_handle_t)group); 4553 /* 4554 * Even though there are no rings at this time 4555 * (rings will come later), set the group 4556 * state to registered. 4557 */ 4558 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4559 } else { 4560 /* 4561 * Ring 0 is used as the default one and it could be 4562 * assigned to a client as well. 4563 */ 4564 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4565 ring = ring->mr_next; 4566 ASSERT(ring->mr_index == 0); 4567 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4568 } 4569 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4570 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4571 /* 4572 * The default ring cannot be reserved. 4573 */ 4574 mip->mi_txrings_rsvd = 1; 4575 } 4576 /* 4577 * The default group cannot be reserved. It will be shared 4578 * by clients that do not have an exclusive group. 4579 */ 4580 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4581 mip->mi_txhwclnt_used = 1; 4582 break; 4583 default: 4584 ASSERT(B_FALSE); 4585 } 4586 4587 if (err != 0) 4588 mac_free_rings(mip, rtype); 4589 4590 return (err); 4591 } 4592 4593 /* 4594 * The ddi interrupt handle could be shared amoung rings. If so, compare 4595 * the new ring's ddi handle with the existing ones and set ddi_shared 4596 * flag. 4597 */ 4598 void 4599 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4600 { 4601 mac_group_t *group; 4602 mac_ring_t *ring; 4603 ddi_intr_handle_t ddi_handle; 4604 int g; 4605 4606 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4607 for (g = 0; g < grpcnt; g++) { 4608 group = groups + g; 4609 for (ring = group->mrg_rings; ring != NULL; 4610 ring = ring->mr_next) { 4611 if (ring == cring) 4612 continue; 4613 if (ring->mr_info.mri_intr.mi_ddi_handle == 4614 ddi_handle) { 4615 if (cring->mr_type == MAC_RING_TYPE_RX && 4616 ring->mr_index == 0 && 4617 !ring->mr_info.mri_intr.mi_ddi_shared) { 4618 ring->mr_info.mri_intr.mi_ddi_shared = 4619 B_TRUE; 4620 } else { 4621 cring->mr_info.mri_intr.mi_ddi_shared = 4622 B_TRUE; 4623 } 4624 return; 4625 } 4626 } 4627 } 4628 } 4629 4630 /* 4631 * Called to free all groups of particular type (RX or TX). It's assumed that 4632 * no clients are using these groups. 4633 */ 4634 void 4635 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4636 { 4637 mac_group_t *group, *groups; 4638 uint_t group_count; 4639 4640 switch (rtype) { 4641 case MAC_RING_TYPE_RX: 4642 if (mip->mi_rx_groups == NULL) 4643 return; 4644 4645 groups = mip->mi_rx_groups; 4646 group_count = mip->mi_rx_group_count; 4647 4648 mip->mi_rx_groups = NULL; 4649 mip->mi_rx_donor_grp = NULL; 4650 mip->mi_rx_group_count = 0; 4651 break; 4652 case MAC_RING_TYPE_TX: 4653 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4654 4655 if (mip->mi_tx_groups == NULL) 4656 return; 4657 4658 groups = mip->mi_tx_groups; 4659 group_count = mip->mi_tx_group_count; 4660 4661 mip->mi_tx_groups = NULL; 4662 mip->mi_tx_group_count = 0; 4663 mip->mi_tx_group_free = 0; 4664 mip->mi_default_tx_ring = NULL; 4665 break; 4666 default: 4667 ASSERT(B_FALSE); 4668 } 4669 4670 for (group = groups; group != NULL; group = group->mrg_next) { 4671 mac_ring_t *ring; 4672 4673 if (group->mrg_cur_count == 0) 4674 continue; 4675 4676 ASSERT(group->mrg_rings != NULL); 4677 4678 while ((ring = group->mrg_rings) != NULL) { 4679 group->mrg_rings = ring->mr_next; 4680 mac_ring_free(mip, ring); 4681 } 4682 } 4683 4684 /* Free all the cached rings */ 4685 mac_ring_freeall(mip); 4686 /* Free the block of group data strutures */ 4687 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4688 } 4689 4690 /* 4691 * Associate the VLAN filter to the receive group. 4692 */ 4693 int 4694 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4695 { 4696 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4697 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4698 4699 if (vlan > VLAN_ID_MAX) 4700 return (EINVAL); 4701 4702 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4703 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4704 } 4705 4706 /* 4707 * Dissociate the VLAN from the receive group. 4708 */ 4709 int 4710 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4711 { 4712 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4713 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4714 4715 if (vlan > VLAN_ID_MAX) 4716 return (EINVAL); 4717 4718 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4719 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4720 } 4721 4722 /* 4723 * Associate a MAC address with a receive group. 4724 * 4725 * The return value of this function should always be checked properly, because 4726 * any type of failure could cause unexpected results. A group can be added 4727 * or removed with a MAC address only after it has been reserved. Ideally, 4728 * a successful reservation always leads to calling mac_group_addmac() to 4729 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4730 * always imply that the group is functioning abnormally. 4731 * 4732 * Currently this function is called everywhere, and it reflects assumptions 4733 * about MAC addresses in the implementation. CR 6735196. 4734 */ 4735 int 4736 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4737 { 4738 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4739 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4740 4741 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4742 } 4743 4744 /* 4745 * Remove the association between MAC address and receive group. 4746 */ 4747 int 4748 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4749 { 4750 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4751 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4752 4753 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4754 } 4755 4756 /* 4757 * This is the entry point for packets transmitted through the bridge 4758 * code. If no bridge is in place, mac_ring_tx() transmits via the tx 4759 * ring. The 'rh' pointer may be NULL to select the default ring. 4760 */ 4761 mblk_t * 4762 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4763 { 4764 mac_handle_t mh; 4765 4766 /* 4767 * Once we take a reference on the bridge link, the bridge 4768 * module itself can't unload, so the callback pointers are 4769 * stable. 4770 */ 4771 mutex_enter(&mip->mi_bridge_lock); 4772 if ((mh = mip->mi_bridge_link) != NULL) 4773 mac_bridge_ref_cb(mh, B_TRUE); 4774 mutex_exit(&mip->mi_bridge_lock); 4775 if (mh == NULL) { 4776 mp = mac_ring_tx((mac_handle_t)mip, rh, mp); 4777 } else { 4778 /* 4779 * The bridge may place this mblk on a provider's Tx 4780 * path, a mac's Rx path, or both. Since we don't have 4781 * enough information at this point, we can't be sure 4782 * that the destination(s) are capable of handling the 4783 * hardware offloads requested by the mblk. We emulate 4784 * them here as it is the safest choice. In the 4785 * future, if bridge performance becomes a priority, 4786 * we can elide the emulation here and leave the 4787 * choice up to bridge. 4788 * 4789 * We don't clear the DB_CKSUMFLAGS here because 4790 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK 4791 * (Rx) still have the same value. If the bridge 4792 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then 4793 * the mac(s) it is forwarded on may calculate the 4794 * checksum again, but incorrectly (because the 4795 * checksum field is not zero). Until the 4796 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is 4797 * resovled, we leave the flag clearing in bridge 4798 * itself. 4799 */ 4800 if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) { 4801 mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS); 4802 } 4803 4804 mp = mac_bridge_tx_cb(mh, rh, mp); 4805 mac_bridge_ref_cb(mh, B_FALSE); 4806 } 4807 4808 return (mp); 4809 } 4810 4811 /* 4812 * Find a ring from its index. 4813 */ 4814 mac_ring_handle_t 4815 mac_find_ring(mac_group_handle_t gh, int index) 4816 { 4817 mac_group_t *group = (mac_group_t *)gh; 4818 mac_ring_t *ring = group->mrg_rings; 4819 4820 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4821 if (ring->mr_index == index) 4822 break; 4823 4824 return ((mac_ring_handle_t)ring); 4825 } 4826 /* 4827 * Add a ring to an existing group. 4828 * 4829 * The ring must be either passed directly (for example if the ring 4830 * movement is initiated by the framework), or specified through a driver 4831 * index (for example when the ring is added by the driver. 4832 * 4833 * The caller needs to call mac_perim_enter() before calling this function. 4834 */ 4835 int 4836 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4837 { 4838 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4839 mac_capab_rings_t *cap_rings; 4840 boolean_t driver_call = (ring == NULL); 4841 mac_group_type_t group_type; 4842 int ret = 0; 4843 flow_entry_t *flent; 4844 4845 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4846 4847 switch (group->mrg_type) { 4848 case MAC_RING_TYPE_RX: 4849 cap_rings = &mip->mi_rx_rings_cap; 4850 group_type = mip->mi_rx_group_type; 4851 break; 4852 case MAC_RING_TYPE_TX: 4853 cap_rings = &mip->mi_tx_rings_cap; 4854 group_type = mip->mi_tx_group_type; 4855 break; 4856 default: 4857 ASSERT(B_FALSE); 4858 } 4859 4860 /* 4861 * There should be no ring with the same ring index in the target 4862 * group. 4863 */ 4864 ASSERT(mac_find_ring((mac_group_handle_t)group, 4865 driver_call ? index : ring->mr_index) == NULL); 4866 4867 if (driver_call) { 4868 /* 4869 * The function is called as a result of a request from 4870 * a driver to add a ring to an existing group, for example 4871 * from the aggregation driver. Allocate a new mac_ring_t 4872 * for that ring. 4873 */ 4874 ring = mac_init_ring(mip, group, index, cap_rings); 4875 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4876 } else { 4877 /* 4878 * The function is called as a result of a MAC layer request 4879 * to add a ring to an existing group. In this case the 4880 * ring is being moved between groups, which requires 4881 * the underlying driver to support dynamic grouping, 4882 * and the mac_ring_t already exists. 4883 */ 4884 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4885 ASSERT(group->mrg_driver == NULL || 4886 cap_rings->mr_gaddring != NULL); 4887 ASSERT(ring->mr_gh == NULL); 4888 } 4889 4890 /* 4891 * At this point the ring should not be in use, and it should be 4892 * of the right for the target group. 4893 */ 4894 ASSERT(ring->mr_state < MR_INUSE); 4895 ASSERT(ring->mr_srs == NULL); 4896 ASSERT(ring->mr_type == group->mrg_type); 4897 4898 if (!driver_call) { 4899 /* 4900 * Add the driver level hardware ring if the process was not 4901 * initiated by the driver, and the target group is not the 4902 * group. 4903 */ 4904 if (group->mrg_driver != NULL) { 4905 cap_rings->mr_gaddring(group->mrg_driver, 4906 ring->mr_driver, ring->mr_type); 4907 } 4908 4909 /* 4910 * Insert the ring ahead existing rings. 4911 */ 4912 ring->mr_next = group->mrg_rings; 4913 group->mrg_rings = ring; 4914 ring->mr_gh = (mac_group_handle_t)group; 4915 group->mrg_cur_count++; 4916 } 4917 4918 /* 4919 * If the group has not been actively used, we're done. 4920 */ 4921 if (group->mrg_index != -1 && 4922 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4923 return (0); 4924 4925 /* 4926 * Start the ring if needed. Failure causes to undo the grouping action. 4927 */ 4928 if (ring->mr_state != MR_INUSE) { 4929 if ((ret = mac_start_ring(ring)) != 0) { 4930 if (!driver_call) { 4931 cap_rings->mr_gremring(group->mrg_driver, 4932 ring->mr_driver, ring->mr_type); 4933 } 4934 group->mrg_cur_count--; 4935 group->mrg_rings = ring->mr_next; 4936 4937 ring->mr_gh = NULL; 4938 4939 if (driver_call) 4940 mac_ring_free(mip, ring); 4941 4942 return (ret); 4943 } 4944 } 4945 4946 /* 4947 * Set up SRS/SR according to the ring type. 4948 */ 4949 switch (ring->mr_type) { 4950 case MAC_RING_TYPE_RX: 4951 /* 4952 * Setup an SRS on top of the new ring if the group is 4953 * reserved for someone's exclusive use. 4954 */ 4955 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4956 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 4957 4958 VERIFY3P(mcip, !=, NULL); 4959 flent = mcip->mci_flent; 4960 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 4961 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4962 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4963 mac_rx_deliver, mcip, NULL, NULL); 4964 } else { 4965 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4966 } 4967 break; 4968 case MAC_RING_TYPE_TX: 4969 { 4970 mac_grp_client_t *mgcp = group->mrg_clients; 4971 mac_client_impl_t *mcip; 4972 mac_soft_ring_set_t *mac_srs; 4973 mac_srs_tx_t *tx; 4974 4975 if (MAC_GROUP_NO_CLIENT(group)) { 4976 if (ring->mr_state == MR_INUSE) 4977 mac_stop_ring(ring); 4978 ring->mr_flag = 0; 4979 break; 4980 } 4981 /* 4982 * If the rings are being moved to a group that has 4983 * clients using it, then add the new rings to the 4984 * clients SRS. 4985 */ 4986 while (mgcp != NULL) { 4987 boolean_t is_aggr; 4988 4989 mcip = mgcp->mgc_client; 4990 flent = mcip->mci_flent; 4991 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4992 mac_srs = MCIP_TX_SRS(mcip); 4993 tx = &mac_srs->srs_tx; 4994 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4995 /* 4996 * If we are growing from 1 to multiple rings. 4997 */ 4998 if (tx->st_mode == SRS_TX_BW || 4999 tx->st_mode == SRS_TX_SERIALIZE || 5000 tx->st_mode == SRS_TX_DEFAULT) { 5001 mac_ring_t *tx_ring = tx->st_arg2; 5002 5003 tx->st_arg2 = NULL; 5004 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 5005 mac_tx_srs_add_ring(mac_srs, tx_ring); 5006 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5007 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 5008 SRS_TX_BW_FANOUT; 5009 } else { 5010 tx->st_mode = is_aggr ? SRS_TX_AGGR : 5011 SRS_TX_FANOUT; 5012 } 5013 tx->st_func = mac_tx_get_func(tx->st_mode); 5014 } 5015 mac_tx_srs_add_ring(mac_srs, ring); 5016 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 5017 mac_rx_deliver, mcip, NULL, NULL); 5018 mac_tx_client_restart((mac_client_handle_t)mcip); 5019 mgcp = mgcp->mgc_next; 5020 } 5021 break; 5022 } 5023 default: 5024 ASSERT(B_FALSE); 5025 } 5026 /* 5027 * For aggr, the default ring will be NULL to begin with. If it 5028 * is NULL, then pick the first ring that gets added as the 5029 * default ring. Any ring in an aggregation can be removed at 5030 * any time (by the user action of removing a link) and if the 5031 * current default ring gets removed, then a new one gets 5032 * picked (see i_mac_group_rem_ring()). 5033 */ 5034 if (mip->mi_state_flags & MIS_IS_AGGR && 5035 mip->mi_default_tx_ring == NULL && 5036 ring->mr_type == MAC_RING_TYPE_TX) { 5037 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 5038 } 5039 5040 MAC_RING_UNMARK(ring, MR_INCIPIENT); 5041 return (0); 5042 } 5043 5044 /* 5045 * Remove a ring from it's current group. MAC internal function for dynamic 5046 * grouping. 5047 * 5048 * The caller needs to call mac_perim_enter() before calling this function. 5049 */ 5050 void 5051 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 5052 boolean_t driver_call) 5053 { 5054 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 5055 mac_capab_rings_t *cap_rings = NULL; 5056 mac_group_type_t group_type; 5057 5058 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5059 5060 ASSERT(mac_find_ring((mac_group_handle_t)group, 5061 ring->mr_index) == (mac_ring_handle_t)ring); 5062 ASSERT((mac_group_t *)ring->mr_gh == group); 5063 ASSERT(ring->mr_type == group->mrg_type); 5064 5065 if (ring->mr_state == MR_INUSE) 5066 mac_stop_ring(ring); 5067 switch (ring->mr_type) { 5068 case MAC_RING_TYPE_RX: 5069 group_type = mip->mi_rx_group_type; 5070 cap_rings = &mip->mi_rx_rings_cap; 5071 5072 /* 5073 * Only hardware classified packets hold a reference to the 5074 * ring all the way up the Rx path. mac_rx_srs_remove() 5075 * will take care of quiescing the Rx path and removing the 5076 * SRS. The software classified path neither holds a reference 5077 * nor any association with the ring in mac_rx. 5078 */ 5079 if (ring->mr_srs != NULL) { 5080 mac_rx_srs_remove(ring->mr_srs); 5081 ring->mr_srs = NULL; 5082 } 5083 5084 break; 5085 case MAC_RING_TYPE_TX: 5086 { 5087 mac_grp_client_t *mgcp; 5088 mac_client_impl_t *mcip; 5089 mac_soft_ring_set_t *mac_srs; 5090 mac_srs_tx_t *tx; 5091 mac_ring_t *rem_ring; 5092 mac_group_t *defgrp; 5093 uint_t ring_info = 0; 5094 5095 /* 5096 * For TX this function is invoked in three 5097 * cases: 5098 * 5099 * 1) In the case of a failure during the 5100 * initial creation of a group when a share is 5101 * associated with a MAC client. So the SRS is not 5102 * yet setup, and will be setup later after the 5103 * group has been reserved and populated. 5104 * 5105 * 2) From mac_release_tx_group() when freeing 5106 * a TX SRS. 5107 * 5108 * 3) In the case of aggr, when a port gets removed, 5109 * the pseudo Tx rings that it exposed gets removed. 5110 * 5111 * In the first two cases the SRS and its soft 5112 * rings are already quiesced. 5113 */ 5114 if (driver_call) { 5115 mac_client_impl_t *mcip; 5116 mac_soft_ring_set_t *mac_srs; 5117 mac_soft_ring_t *sringp; 5118 mac_srs_tx_t *srs_tx; 5119 5120 if (mip->mi_state_flags & MIS_IS_AGGR && 5121 mip->mi_default_tx_ring == 5122 (mac_ring_handle_t)ring) { 5123 /* pick a new default Tx ring */ 5124 mip->mi_default_tx_ring = 5125 (group->mrg_rings != ring) ? 5126 (mac_ring_handle_t)group->mrg_rings : 5127 (mac_ring_handle_t)(ring->mr_next); 5128 } 5129 /* Presently only aggr case comes here */ 5130 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 5131 break; 5132 5133 mcip = MAC_GROUP_ONLY_CLIENT(group); 5134 ASSERT(mcip != NULL); 5135 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 5136 mac_srs = MCIP_TX_SRS(mcip); 5137 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 5138 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 5139 srs_tx = &mac_srs->srs_tx; 5140 /* 5141 * Wakeup any callers blocked on this 5142 * Tx ring due to flow control. 5143 */ 5144 sringp = srs_tx->st_soft_rings[ring->mr_index]; 5145 ASSERT(sringp != NULL); 5146 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 5147 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5148 mac_tx_srs_del_ring(mac_srs, ring); 5149 mac_tx_client_restart((mac_client_handle_t)mcip); 5150 break; 5151 } 5152 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 5153 group_type = mip->mi_tx_group_type; 5154 cap_rings = &mip->mi_tx_rings_cap; 5155 /* 5156 * See if we need to take it out of the MAC clients using 5157 * this group 5158 */ 5159 if (MAC_GROUP_NO_CLIENT(group)) 5160 break; 5161 mgcp = group->mrg_clients; 5162 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5163 while (mgcp != NULL) { 5164 mcip = mgcp->mgc_client; 5165 mac_srs = MCIP_TX_SRS(mcip); 5166 tx = &mac_srs->srs_tx; 5167 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5168 /* 5169 * If we are here when removing rings from the 5170 * defgroup, mac_reserve_tx_ring would have 5171 * already deleted the ring from the MAC 5172 * clients in the group. 5173 */ 5174 if (group != defgrp) { 5175 mac_tx_invoke_callbacks(mcip, 5176 (mac_tx_cookie_t) 5177 mac_tx_srs_get_soft_ring(mac_srs, ring)); 5178 mac_tx_srs_del_ring(mac_srs, ring); 5179 } 5180 /* 5181 * Additionally, if we are left with only 5182 * one ring in the group after this, we need 5183 * to modify the mode etc. to. (We haven't 5184 * yet taken the ring out, so we check with 2). 5185 */ 5186 if (group->mrg_cur_count == 2) { 5187 if (ring->mr_next == NULL) 5188 rem_ring = group->mrg_rings; 5189 else 5190 rem_ring = ring->mr_next; 5191 mac_tx_invoke_callbacks(mcip, 5192 (mac_tx_cookie_t) 5193 mac_tx_srs_get_soft_ring(mac_srs, 5194 rem_ring)); 5195 mac_tx_srs_del_ring(mac_srs, rem_ring); 5196 if (rem_ring->mr_state != MR_INUSE) { 5197 (void) mac_start_ring(rem_ring); 5198 } 5199 tx->st_arg2 = (void *)rem_ring; 5200 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 5201 ring_info = mac_hwring_getinfo( 5202 (mac_ring_handle_t)rem_ring); 5203 /* 5204 * We are shrinking from multiple 5205 * to 1 ring. 5206 */ 5207 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5208 tx->st_mode = SRS_TX_BW; 5209 } else if (mac_tx_serialize || 5210 (ring_info & MAC_RING_TX_SERIALIZE)) { 5211 tx->st_mode = SRS_TX_SERIALIZE; 5212 } else { 5213 tx->st_mode = SRS_TX_DEFAULT; 5214 } 5215 tx->st_func = mac_tx_get_func(tx->st_mode); 5216 } 5217 mac_tx_client_restart((mac_client_handle_t)mcip); 5218 mgcp = mgcp->mgc_next; 5219 } 5220 break; 5221 } 5222 default: 5223 ASSERT(B_FALSE); 5224 } 5225 5226 /* 5227 * Remove the ring from the group. 5228 */ 5229 if (ring == group->mrg_rings) 5230 group->mrg_rings = ring->mr_next; 5231 else { 5232 mac_ring_t *pre; 5233 5234 pre = group->mrg_rings; 5235 while (pre->mr_next != ring) 5236 pre = pre->mr_next; 5237 pre->mr_next = ring->mr_next; 5238 } 5239 group->mrg_cur_count--; 5240 5241 if (!driver_call) { 5242 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 5243 ASSERT(group->mrg_driver == NULL || 5244 cap_rings->mr_gremring != NULL); 5245 5246 /* 5247 * Remove the driver level hardware ring. 5248 */ 5249 if (group->mrg_driver != NULL) { 5250 cap_rings->mr_gremring(group->mrg_driver, 5251 ring->mr_driver, ring->mr_type); 5252 } 5253 } 5254 5255 ring->mr_gh = NULL; 5256 if (driver_call) 5257 mac_ring_free(mip, ring); 5258 else 5259 ring->mr_flag = 0; 5260 } 5261 5262 /* 5263 * Move a ring to the target group. If needed, remove the ring from the group 5264 * that it currently belongs to. 5265 * 5266 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 5267 */ 5268 static int 5269 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 5270 { 5271 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 5272 int rv; 5273 5274 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5275 ASSERT(d_group != NULL); 5276 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 5277 5278 if (s_group == d_group) 5279 return (0); 5280 5281 /* 5282 * Remove it from current group first. 5283 */ 5284 if (s_group != NULL) 5285 i_mac_group_rem_ring(s_group, ring, B_FALSE); 5286 5287 /* 5288 * Add it to the new group. 5289 */ 5290 rv = i_mac_group_add_ring(d_group, ring, 0); 5291 if (rv != 0) { 5292 /* 5293 * Failed to add ring back to source group. If 5294 * that fails, the ring is stuck in limbo, log message. 5295 */ 5296 if (i_mac_group_add_ring(s_group, ring, 0)) { 5297 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 5298 mip->mi_name, (void *)ring); 5299 } 5300 } 5301 5302 return (rv); 5303 } 5304 5305 /* 5306 * Find a MAC address according to its value. 5307 */ 5308 mac_address_t * 5309 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 5310 { 5311 mac_address_t *map; 5312 5313 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5314 5315 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 5316 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 5317 break; 5318 } 5319 5320 return (map); 5321 } 5322 5323 /* 5324 * Check whether the MAC address is shared by multiple clients. 5325 */ 5326 boolean_t 5327 mac_check_macaddr_shared(mac_address_t *map) 5328 { 5329 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 5330 5331 return (map->ma_nusers > 1); 5332 } 5333 5334 /* 5335 * Remove the specified MAC address from the MAC address list and free it. 5336 */ 5337 static void 5338 mac_free_macaddr(mac_address_t *map) 5339 { 5340 mac_impl_t *mip = map->ma_mip; 5341 5342 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5343 VERIFY3P(mip->mi_addresses, !=, NULL); 5344 5345 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5346 VERIFY3P(map, !=, NULL); 5347 VERIFY3S(map->ma_nusers, ==, 0); 5348 VERIFY3P(map->ma_vlans, ==, NULL); 5349 5350 if (map == mip->mi_addresses) { 5351 mip->mi_addresses = map->ma_next; 5352 } else { 5353 mac_address_t *pre; 5354 5355 pre = mip->mi_addresses; 5356 while (pre->ma_next != map) 5357 pre = pre->ma_next; 5358 pre->ma_next = map->ma_next; 5359 } 5360 5361 kmem_free(map, sizeof (mac_address_t)); 5362 } 5363 5364 static mac_vlan_t * 5365 mac_find_vlan(mac_address_t *map, uint16_t vid) 5366 { 5367 mac_vlan_t *mvp; 5368 5369 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5370 if (mvp->mv_vid == vid) 5371 return (mvp); 5372 } 5373 5374 return (NULL); 5375 } 5376 5377 static mac_vlan_t * 5378 mac_add_vlan(mac_address_t *map, uint16_t vid) 5379 { 5380 mac_vlan_t *mvp; 5381 5382 /* 5383 * We should never add the same {addr, VID} tuple more 5384 * than once, but let's be sure. 5385 */ 5386 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5387 VERIFY3U(mvp->mv_vid, !=, vid); 5388 5389 /* Add the VLAN to the head of the VLAN list. */ 5390 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5391 mvp->mv_vid = vid; 5392 mvp->mv_next = map->ma_vlans; 5393 map->ma_vlans = mvp; 5394 5395 return (mvp); 5396 } 5397 5398 static void 5399 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5400 { 5401 mac_vlan_t *pre; 5402 5403 if (map->ma_vlans == mvp) { 5404 map->ma_vlans = mvp->mv_next; 5405 } else { 5406 pre = map->ma_vlans; 5407 while (pre->mv_next != mvp) { 5408 pre = pre->mv_next; 5409 5410 /* 5411 * We've reached the end of the list without 5412 * finding mvp. 5413 */ 5414 VERIFY3P(pre, !=, NULL); 5415 } 5416 pre->mv_next = mvp->mv_next; 5417 } 5418 5419 kmem_free(mvp, sizeof (mac_vlan_t)); 5420 } 5421 5422 /* 5423 * Create a new mac_address_t if this is the first use of the address 5424 * or add a VID to an existing address. In either case, the 5425 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5426 * shares the same addr. If group is non-NULL then attempt to program 5427 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5428 * then the MAC has no rings and there is nothing to program. 5429 */ 5430 int 5431 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5432 uint16_t vid, boolean_t use_hw) 5433 { 5434 mac_address_t *map; 5435 mac_vlan_t *mvp; 5436 int err = 0; 5437 boolean_t allocated_map = B_FALSE; 5438 boolean_t hw_mac = B_FALSE; 5439 boolean_t hw_vlan = B_FALSE; 5440 5441 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5442 5443 map = mac_find_macaddr(mip, addr); 5444 5445 /* 5446 * If this is the first use of this MAC address then allocate 5447 * and initialize a new structure. 5448 */ 5449 if (map == NULL) { 5450 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5451 map->ma_len = mip->mi_type->mt_addr_length; 5452 bcopy(addr, map->ma_addr, map->ma_len); 5453 map->ma_nusers = 0; 5454 map->ma_group = group; 5455 map->ma_mip = mip; 5456 map->ma_untagged = B_FALSE; 5457 5458 /* Add the new MAC address to the head of the address list. */ 5459 map->ma_next = mip->mi_addresses; 5460 mip->mi_addresses = map; 5461 5462 allocated_map = B_TRUE; 5463 } 5464 5465 VERIFY(map->ma_group == NULL || map->ma_group == group); 5466 if (map->ma_group == NULL) 5467 map->ma_group = group; 5468 5469 if (vid == VLAN_ID_NONE) { 5470 map->ma_untagged = B_TRUE; 5471 mvp = NULL; 5472 } else { 5473 mvp = mac_add_vlan(map, vid); 5474 } 5475 5476 /* 5477 * Set the VLAN HW filter if: 5478 * 5479 * o the MAC's VLAN HW filtering is enabled, and 5480 * o the address does not currently rely on promisc mode. 5481 * 5482 * This is called even when the client specifies an untagged 5483 * address (VLAN_ID_NONE) because some MAC providers require 5484 * setting additional bits to accept untagged traffic when 5485 * VLAN HW filtering is enabled. 5486 */ 5487 if (MAC_GROUP_HW_VLAN(group) && 5488 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5489 if ((err = mac_group_addvlan(group, vid)) != 0) 5490 goto bail; 5491 5492 hw_vlan = B_TRUE; 5493 } 5494 5495 VERIFY3S(map->ma_nusers, >=, 0); 5496 map->ma_nusers++; 5497 5498 /* 5499 * If this MAC address already has a HW filter then simply 5500 * increment the counter. 5501 */ 5502 if (map->ma_nusers > 1) 5503 return (0); 5504 5505 /* 5506 * All logic from here on out is executed during initial 5507 * creation only. 5508 */ 5509 VERIFY3S(map->ma_nusers, ==, 1); 5510 5511 /* 5512 * Activate this MAC address by adding it to the reserved group. 5513 */ 5514 if (group != NULL) { 5515 err = mac_group_addmac(group, (const uint8_t *)addr); 5516 5517 /* 5518 * If the driver is out of filters then we can 5519 * continue and use promisc mode. For any other error, 5520 * assume the driver is in a state where we can't 5521 * program the filters or use promisc mode; so we must 5522 * bail. 5523 */ 5524 if (err != 0 && err != ENOSPC) { 5525 map->ma_nusers--; 5526 goto bail; 5527 } 5528 5529 hw_mac = (err == 0); 5530 } 5531 5532 if (hw_mac) { 5533 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5534 return (0); 5535 } 5536 5537 /* 5538 * The MAC address addition failed. If the client requires a 5539 * hardware classified MAC address, fail the operation. This 5540 * feature is only used by sun4v vsw. 5541 */ 5542 if (use_hw && !hw_mac) { 5543 err = ENOSPC; 5544 map->ma_nusers--; 5545 goto bail; 5546 } 5547 5548 /* 5549 * If we reach this point then either the MAC doesn't have 5550 * RINGS capability or we are out of MAC address HW filters. 5551 * In any case we must put the MAC into promiscuous mode. 5552 */ 5553 VERIFY(group == NULL || !hw_mac); 5554 5555 /* 5556 * The one exception is the primary address. A non-RINGS 5557 * driver filters the primary address by default; promisc mode 5558 * is not needed. 5559 */ 5560 if ((group == NULL) && 5561 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5562 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5563 return (0); 5564 } 5565 5566 /* 5567 * Enable promiscuous mode in order to receive traffic to the 5568 * new MAC address. All existing HW filters still send their 5569 * traffic to their respective group/SRSes. But with promisc 5570 * enabled all unknown traffic is delivered to the default 5571 * group where it is SW classified via mac_rx_classify(). 5572 */ 5573 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5574 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5575 return (0); 5576 } 5577 5578 /* 5579 * We failed to set promisc mode and we are about to free 'map'. 5580 */ 5581 map->ma_nusers = 0; 5582 5583 bail: 5584 if (hw_vlan) { 5585 int err2 = mac_group_remvlan(group, vid); 5586 5587 if (err2 != 0) { 5588 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5589 " %d on MAC %s: %d.", vid, group->mrg_index, 5590 mip->mi_name, err2); 5591 } 5592 } 5593 5594 if (mvp != NULL) 5595 mac_rem_vlan(map, mvp); 5596 5597 if (allocated_map) 5598 mac_free_macaddr(map); 5599 5600 return (err); 5601 } 5602 5603 int 5604 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5605 { 5606 mac_vlan_t *mvp; 5607 mac_impl_t *mip = map->ma_mip; 5608 mac_group_t *group = map->ma_group; 5609 int err = 0; 5610 5611 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5612 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5613 5614 if (vid == VLAN_ID_NONE) { 5615 map->ma_untagged = B_FALSE; 5616 mvp = NULL; 5617 } else { 5618 mvp = mac_find_vlan(map, vid); 5619 VERIFY3P(mvp, !=, NULL); 5620 } 5621 5622 if (MAC_GROUP_HW_VLAN(group) && 5623 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5624 ((err = mac_group_remvlan(group, vid)) != 0)) 5625 return (err); 5626 5627 if (mvp != NULL) 5628 mac_rem_vlan(map, mvp); 5629 5630 /* 5631 * If it's not the last client using this MAC address, only update 5632 * the MAC clients count. 5633 */ 5634 map->ma_nusers--; 5635 if (map->ma_nusers > 0) 5636 return (0); 5637 5638 VERIFY3S(map->ma_nusers, ==, 0); 5639 5640 /* 5641 * The MAC address is no longer used by any MAC client, so 5642 * remove it from its associated group. Turn off promiscuous 5643 * mode if this is the last address relying on it. 5644 */ 5645 switch (map->ma_type) { 5646 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5647 /* 5648 * Don't free the preset primary address for drivers that 5649 * don't advertise RINGS capability. 5650 */ 5651 if (group == NULL) 5652 return (0); 5653 5654 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5655 if (vid == VLAN_ID_NONE) 5656 map->ma_untagged = B_TRUE; 5657 else 5658 (void) mac_add_vlan(map, vid); 5659 5660 /* 5661 * If we fail to remove the MAC address HW 5662 * filter but then also fail to re-add the 5663 * VLAN HW filter then we are in a busted 5664 * state. We do our best by logging a warning 5665 * and returning the original 'err' that got 5666 * us here. At this point, traffic for this 5667 * address + VLAN combination will be dropped 5668 * until the user reboots the system. In the 5669 * future, it would be nice to have a system 5670 * that can compare the state of expected 5671 * classification according to mac to the 5672 * actual state of the provider, and report 5673 * and fix any inconsistencies. 5674 */ 5675 if (MAC_GROUP_HW_VLAN(group)) { 5676 int err2; 5677 5678 err2 = mac_group_addvlan(group, vid); 5679 if (err2 != 0) { 5680 cmn_err(CE_WARN, "Failed to readd VLAN" 5681 " %u to group %d on MAC %s: %d.", 5682 vid, group->mrg_index, mip->mi_name, 5683 err2); 5684 } 5685 } 5686 5687 map->ma_nusers = 1; 5688 return (err); 5689 } 5690 5691 map->ma_group = NULL; 5692 break; 5693 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5694 err = i_mac_promisc_set(mip, B_FALSE); 5695 break; 5696 default: 5697 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5698 map->ma_type, __FILE__, __LINE__); 5699 } 5700 5701 if (err != 0) { 5702 map->ma_nusers = 1; 5703 return (err); 5704 } 5705 5706 /* 5707 * We created MAC address for the primary one at registration, so we 5708 * won't free it here. mac_fini_macaddr() will take care of it. 5709 */ 5710 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5711 mac_free_macaddr(map); 5712 5713 return (0); 5714 } 5715 5716 /* 5717 * Update an existing MAC address. The caller need to make sure that the new 5718 * value has not been used. 5719 */ 5720 int 5721 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5722 { 5723 mac_impl_t *mip = map->ma_mip; 5724 int err = 0; 5725 5726 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5727 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5728 5729 switch (map->ma_type) { 5730 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5731 /* 5732 * Update the primary address for drivers that are not 5733 * RINGS capable. 5734 */ 5735 if (mip->mi_rx_groups == NULL) { 5736 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5737 mac_addr); 5738 if (err != 0) 5739 return (err); 5740 break; 5741 } 5742 5743 /* 5744 * If this MAC address is not currently in use, 5745 * simply break out and update the value. 5746 */ 5747 if (map->ma_nusers == 0) 5748 break; 5749 5750 /* 5751 * Need to replace the MAC address associated with a group. 5752 */ 5753 err = mac_group_remmac(map->ma_group, map->ma_addr); 5754 if (err != 0) 5755 return (err); 5756 5757 err = mac_group_addmac(map->ma_group, mac_addr); 5758 5759 /* 5760 * Failure hints hardware error. The MAC layer needs to 5761 * have error notification facility to handle this. 5762 * Now, simply try to restore the value. 5763 */ 5764 if (err != 0) 5765 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5766 5767 break; 5768 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5769 /* 5770 * Need to do nothing more if in promiscuous mode. 5771 */ 5772 break; 5773 default: 5774 ASSERT(B_FALSE); 5775 } 5776 5777 /* 5778 * Successfully replaced the MAC address. 5779 */ 5780 if (err == 0) 5781 bcopy(mac_addr, map->ma_addr, map->ma_len); 5782 5783 return (err); 5784 } 5785 5786 /* 5787 * Freshen the MAC address with new value. Its caller must have updated the 5788 * hardware MAC address before calling this function. 5789 * This funcitons is supposed to be used to handle the MAC address change 5790 * notification from underlying drivers. 5791 */ 5792 void 5793 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5794 { 5795 mac_impl_t *mip = map->ma_mip; 5796 5797 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5798 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5799 5800 /* 5801 * Freshen the MAC address with new value. 5802 */ 5803 bcopy(mac_addr, map->ma_addr, map->ma_len); 5804 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5805 5806 /* 5807 * Update all MAC clients that share this MAC address. 5808 */ 5809 mac_unicast_update_clients(mip, map); 5810 } 5811 5812 /* 5813 * Set up the primary MAC address. 5814 */ 5815 void 5816 mac_init_macaddr(mac_impl_t *mip) 5817 { 5818 mac_address_t *map; 5819 5820 /* 5821 * The reference count is initialized to zero, until it's really 5822 * activated. 5823 */ 5824 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5825 map->ma_len = mip->mi_type->mt_addr_length; 5826 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5827 5828 /* 5829 * If driver advertises RINGS capability, it shouldn't have initialized 5830 * its primary MAC address. For other drivers, including VNIC, the 5831 * primary address must work after registration. 5832 */ 5833 if (mip->mi_rx_groups == NULL) 5834 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5835 5836 map->ma_mip = mip; 5837 5838 mip->mi_addresses = map; 5839 } 5840 5841 /* 5842 * Clean up the primary MAC address. Note, only one primary MAC address 5843 * is allowed. All other MAC addresses must have been freed appropriately. 5844 */ 5845 void 5846 mac_fini_macaddr(mac_impl_t *mip) 5847 { 5848 mac_address_t *map = mip->mi_addresses; 5849 5850 if (map == NULL) 5851 return; 5852 5853 /* 5854 * If mi_addresses is initialized, there should be exactly one 5855 * entry left on the list with no users. 5856 */ 5857 VERIFY3S(map->ma_nusers, ==, 0); 5858 VERIFY3P(map->ma_next, ==, NULL); 5859 VERIFY3P(map->ma_vlans, ==, NULL); 5860 5861 kmem_free(map, sizeof (mac_address_t)); 5862 mip->mi_addresses = NULL; 5863 } 5864 5865 /* 5866 * Logging related functions. 5867 * 5868 * Note that Kernel statistics have been extended to maintain fine 5869 * granularity of statistics viz. hardware lane, software lane, fanout 5870 * stats etc. However, extended accounting continues to support only 5871 * aggregate statistics like before. 5872 */ 5873 5874 /* Write the flow description to a netinfo_t record */ 5875 static netinfo_t * 5876 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5877 { 5878 netinfo_t *ninfo; 5879 net_desc_t *ndesc; 5880 flow_desc_t *fdesc; 5881 mac_resource_props_t *mrp; 5882 5883 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5884 if (ninfo == NULL) 5885 return (NULL); 5886 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5887 if (ndesc == NULL) { 5888 kmem_free(ninfo, sizeof (netinfo_t)); 5889 return (NULL); 5890 } 5891 5892 /* 5893 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5894 * Updates to the fe_flow_desc are done under the fe_lock 5895 */ 5896 mutex_enter(&flent->fe_lock); 5897 fdesc = &flent->fe_flow_desc; 5898 mrp = &flent->fe_resource_props; 5899 5900 ndesc->nd_name = flent->fe_flow_name; 5901 ndesc->nd_devname = mcip->mci_name; 5902 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5903 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5904 ndesc->nd_sap = htonl(fdesc->fd_sap); 5905 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5906 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5907 if (ndesc->nd_isv4) { 5908 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5909 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5910 } else { 5911 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5912 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5913 } 5914 ndesc->nd_sport = htons(fdesc->fd_local_port); 5915 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5916 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5917 mutex_exit(&flent->fe_lock); 5918 5919 ninfo->ni_record = ndesc; 5920 ninfo->ni_size = sizeof (net_desc_t); 5921 ninfo->ni_type = EX_NET_FLDESC_REC; 5922 5923 return (ninfo); 5924 } 5925 5926 /* Write the flow statistics to a netinfo_t record */ 5927 static netinfo_t * 5928 mac_write_flow_stats(flow_entry_t *flent) 5929 { 5930 netinfo_t *ninfo; 5931 net_stat_t *nstat; 5932 mac_soft_ring_set_t *mac_srs; 5933 mac_rx_stats_t *mac_rx_stat; 5934 mac_tx_stats_t *mac_tx_stat; 5935 int i; 5936 5937 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5938 if (ninfo == NULL) 5939 return (NULL); 5940 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5941 if (nstat == NULL) { 5942 kmem_free(ninfo, sizeof (netinfo_t)); 5943 return (NULL); 5944 } 5945 5946 nstat->ns_name = flent->fe_flow_name; 5947 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5948 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5949 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5950 5951 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5952 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5953 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5954 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5955 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5956 } 5957 5958 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5959 if (mac_srs != NULL) { 5960 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5961 5962 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5963 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5964 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5965 } 5966 5967 ninfo->ni_record = nstat; 5968 ninfo->ni_size = sizeof (net_stat_t); 5969 ninfo->ni_type = EX_NET_FLSTAT_REC; 5970 5971 return (ninfo); 5972 } 5973 5974 /* Write the link description to a netinfo_t record */ 5975 static netinfo_t * 5976 mac_write_link_desc(mac_client_impl_t *mcip) 5977 { 5978 netinfo_t *ninfo; 5979 net_desc_t *ndesc; 5980 flow_entry_t *flent = mcip->mci_flent; 5981 5982 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5983 if (ninfo == NULL) 5984 return (NULL); 5985 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5986 if (ndesc == NULL) { 5987 kmem_free(ninfo, sizeof (netinfo_t)); 5988 return (NULL); 5989 } 5990 5991 ndesc->nd_name = mcip->mci_name; 5992 ndesc->nd_devname = mcip->mci_name; 5993 ndesc->nd_isv4 = B_TRUE; 5994 /* 5995 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5996 * Updates to the fe_flow_desc are done under the fe_lock 5997 * after removing the flent from the flow table. 5998 */ 5999 mutex_enter(&flent->fe_lock); 6000 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 6001 mutex_exit(&flent->fe_lock); 6002 6003 ninfo->ni_record = ndesc; 6004 ninfo->ni_size = sizeof (net_desc_t); 6005 ninfo->ni_type = EX_NET_LNDESC_REC; 6006 6007 return (ninfo); 6008 } 6009 6010 /* Write the link statistics to a netinfo_t record */ 6011 static netinfo_t * 6012 mac_write_link_stats(mac_client_impl_t *mcip) 6013 { 6014 netinfo_t *ninfo; 6015 net_stat_t *nstat; 6016 flow_entry_t *flent; 6017 mac_soft_ring_set_t *mac_srs; 6018 mac_rx_stats_t *mac_rx_stat; 6019 mac_tx_stats_t *mac_tx_stat; 6020 int i; 6021 6022 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 6023 if (ninfo == NULL) 6024 return (NULL); 6025 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 6026 if (nstat == NULL) { 6027 kmem_free(ninfo, sizeof (netinfo_t)); 6028 return (NULL); 6029 } 6030 6031 nstat->ns_name = mcip->mci_name; 6032 flent = mcip->mci_flent; 6033 if (flent != NULL) { 6034 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 6035 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 6036 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 6037 6038 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 6039 mac_rx_stat->mrs_pollbytes + 6040 mac_rx_stat->mrs_lclbytes; 6041 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 6042 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 6043 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 6044 } 6045 } 6046 6047 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 6048 if (mac_srs != NULL) { 6049 mac_tx_stat = &mac_srs->srs_tx.st_stat; 6050 6051 nstat->ns_obytes = mac_tx_stat->mts_obytes; 6052 nstat->ns_opackets = mac_tx_stat->mts_opackets; 6053 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 6054 } 6055 6056 ninfo->ni_record = nstat; 6057 ninfo->ni_size = sizeof (net_stat_t); 6058 ninfo->ni_type = EX_NET_LNSTAT_REC; 6059 6060 return (ninfo); 6061 } 6062 6063 typedef struct i_mac_log_state_s { 6064 boolean_t mi_last; 6065 int mi_fenable; 6066 int mi_lenable; 6067 list_t *mi_list; 6068 } i_mac_log_state_t; 6069 6070 /* 6071 * For a given flow, if the description has not been logged before, do it now. 6072 * If it is a VNIC, then we have collected information about it from the MAC 6073 * table, so skip it. 6074 * 6075 * Called through mac_flow_walk_nolock() 6076 * 6077 * Return 0 if successful. 6078 */ 6079 static int 6080 mac_log_flowinfo(flow_entry_t *flent, void *arg) 6081 { 6082 mac_client_impl_t *mcip = flent->fe_mcip; 6083 i_mac_log_state_t *lstate = arg; 6084 netinfo_t *ninfo; 6085 6086 if (mcip == NULL) 6087 return (0); 6088 6089 /* 6090 * If the name starts with "vnic", and fe_user_generated is true (to 6091 * exclude the mcast and active flow entries created implicitly for 6092 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 6093 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 6094 */ 6095 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 6096 (flent->fe_type & FLOW_USER) != 0) { 6097 return (0); 6098 } 6099 6100 if (!flent->fe_desc_logged) { 6101 /* 6102 * We don't return error because we want to continue the 6103 * walk in case this is the last walk which means we 6104 * need to reset fe_desc_logged in all the flows. 6105 */ 6106 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 6107 return (0); 6108 list_insert_tail(lstate->mi_list, ninfo); 6109 flent->fe_desc_logged = B_TRUE; 6110 } 6111 6112 /* 6113 * Regardless of the error, we want to proceed in case we have to 6114 * reset fe_desc_logged. 6115 */ 6116 ninfo = mac_write_flow_stats(flent); 6117 if (ninfo == NULL) 6118 return (-1); 6119 6120 list_insert_tail(lstate->mi_list, ninfo); 6121 6122 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 6123 flent->fe_desc_logged = B_FALSE; 6124 6125 return (0); 6126 } 6127 6128 /* 6129 * Log the description for each mac client of this mac_impl_t, if it 6130 * hasn't already been done. Additionally, log statistics for the link as 6131 * well. Walk the flow table and log information for each flow as well. 6132 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 6133 * also fe_desc_logged, if flow logging is on) since we want to log the 6134 * description if and when logging is restarted. 6135 * 6136 * Return 0 upon success or -1 upon failure 6137 */ 6138 static int 6139 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 6140 { 6141 mac_client_impl_t *mcip; 6142 netinfo_t *ninfo; 6143 6144 i_mac_perim_enter(mip); 6145 /* 6146 * Only walk the client list for NIC and etherstub 6147 */ 6148 if ((mip->mi_state_flags & MIS_DISABLED) || 6149 ((mip->mi_state_flags & MIS_IS_VNIC) && 6150 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 6151 i_mac_perim_exit(mip); 6152 return (0); 6153 } 6154 6155 for (mcip = mip->mi_clients_list; mcip != NULL; 6156 mcip = mcip->mci_client_next) { 6157 if (!MCIP_DATAPATH_SETUP(mcip)) 6158 continue; 6159 if (lstate->mi_lenable) { 6160 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 6161 ninfo = mac_write_link_desc(mcip); 6162 if (ninfo == NULL) { 6163 /* 6164 * We can't terminate it if this is the last 6165 * walk, else there might be some links with 6166 * mi_desc_logged set to true, which means 6167 * their description won't be logged the next 6168 * time logging is started (similarly for the 6169 * flows within such links). We can continue 6170 * without walking the flow table (i.e. to 6171 * set fe_desc_logged to false) because we 6172 * won't have written any flow stuff for this 6173 * link as we haven't logged the link itself. 6174 */ 6175 i_mac_perim_exit(mip); 6176 if (lstate->mi_last) 6177 return (0); 6178 else 6179 return (-1); 6180 } 6181 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 6182 list_insert_tail(lstate->mi_list, ninfo); 6183 } 6184 } 6185 6186 ninfo = mac_write_link_stats(mcip); 6187 if (ninfo == NULL && !lstate->mi_last) { 6188 i_mac_perim_exit(mip); 6189 return (-1); 6190 } 6191 list_insert_tail(lstate->mi_list, ninfo); 6192 6193 if (lstate->mi_last) 6194 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 6195 6196 if (lstate->mi_fenable) { 6197 if (mcip->mci_subflow_tab != NULL) { 6198 (void) mac_flow_walk_nolock( 6199 mcip->mci_subflow_tab, mac_log_flowinfo, 6200 lstate); 6201 } 6202 } 6203 } 6204 i_mac_perim_exit(mip); 6205 return (0); 6206 } 6207 6208 /* 6209 * modhash walker function to add a mac_impl_t to a list 6210 */ 6211 /*ARGSUSED*/ 6212 static uint_t 6213 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 6214 { 6215 list_t *list = (list_t *)arg; 6216 mac_impl_t *mip = (mac_impl_t *)val; 6217 6218 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 6219 list_insert_tail(list, mip); 6220 mip->mi_ref++; 6221 } 6222 6223 return (MH_WALK_CONTINUE); 6224 } 6225 6226 void 6227 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 6228 { 6229 list_t mac_impl_list; 6230 mac_impl_t *mip; 6231 netinfo_t *ninfo; 6232 6233 /* Create list of mac_impls */ 6234 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 6235 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 6236 mi_node)); 6237 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 6238 rw_exit(&i_mac_impl_lock); 6239 6240 /* Create log entries for each mac_impl */ 6241 for (mip = list_head(&mac_impl_list); mip != NULL; 6242 mip = list_next(&mac_impl_list, mip)) { 6243 if (i_mac_impl_log(mip, lstate) != 0) 6244 continue; 6245 } 6246 6247 /* Remove elements and destroy list of mac_impls */ 6248 rw_enter(&i_mac_impl_lock, RW_WRITER); 6249 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 6250 mip->mi_ref--; 6251 } 6252 rw_exit(&i_mac_impl_lock); 6253 list_destroy(&mac_impl_list); 6254 6255 /* 6256 * Write log entries to files outside of locks, free associated 6257 * structures, and remove entries from the list. 6258 */ 6259 while ((ninfo = list_head(net_log_list)) != NULL) { 6260 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 6261 list_remove(net_log_list, ninfo); 6262 kmem_free(ninfo->ni_record, ninfo->ni_size); 6263 kmem_free(ninfo, sizeof (*ninfo)); 6264 } 6265 list_destroy(net_log_list); 6266 } 6267 6268 /* 6269 * The timer thread that runs every mac_logging_interval seconds and logs 6270 * link and/or flow information. 6271 */ 6272 /* ARGSUSED */ 6273 void 6274 mac_log_linkinfo(void *arg) 6275 { 6276 i_mac_log_state_t lstate; 6277 list_t net_log_list; 6278 6279 list_create(&net_log_list, sizeof (netinfo_t), 6280 offsetof(netinfo_t, ni_link)); 6281 6282 rw_enter(&i_mac_impl_lock, RW_READER); 6283 if (!mac_flow_log_enable && !mac_link_log_enable) { 6284 rw_exit(&i_mac_impl_lock); 6285 return; 6286 } 6287 lstate.mi_fenable = mac_flow_log_enable; 6288 lstate.mi_lenable = mac_link_log_enable; 6289 lstate.mi_last = B_FALSE; 6290 lstate.mi_list = &net_log_list; 6291 6292 /* Write log entries for each mac_impl in the list */ 6293 i_mac_log_info(&net_log_list, &lstate); 6294 6295 if (mac_flow_log_enable || mac_link_log_enable) { 6296 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 6297 SEC_TO_TICK(mac_logging_interval)); 6298 } 6299 } 6300 6301 typedef struct i_mac_fastpath_state_s { 6302 boolean_t mf_disable; 6303 int mf_err; 6304 } i_mac_fastpath_state_t; 6305 6306 /* modhash walker function to enable or disable fastpath */ 6307 /*ARGSUSED*/ 6308 static uint_t 6309 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 6310 void *arg) 6311 { 6312 i_mac_fastpath_state_t *state = arg; 6313 mac_handle_t mh = (mac_handle_t)val; 6314 6315 if (state->mf_disable) 6316 state->mf_err = mac_fastpath_disable(mh); 6317 else 6318 mac_fastpath_enable(mh); 6319 6320 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 6321 } 6322 6323 /* 6324 * Start the logging timer. 6325 */ 6326 int 6327 mac_start_logusage(mac_logtype_t type, uint_t interval) 6328 { 6329 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 6330 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6331 int err; 6332 6333 rw_enter(&i_mac_impl_lock, RW_WRITER); 6334 switch (type) { 6335 case MAC_LOGTYPE_FLOW: 6336 if (mac_flow_log_enable) { 6337 rw_exit(&i_mac_impl_lock); 6338 return (0); 6339 } 6340 /* FALLTHRU */ 6341 case MAC_LOGTYPE_LINK: 6342 if (mac_link_log_enable) { 6343 rw_exit(&i_mac_impl_lock); 6344 return (0); 6345 } 6346 break; 6347 default: 6348 ASSERT(0); 6349 } 6350 6351 /* Disable fastpath */ 6352 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 6353 if ((err = dstate.mf_err) != 0) { 6354 /* Reenable fastpath */ 6355 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6356 rw_exit(&i_mac_impl_lock); 6357 return (err); 6358 } 6359 6360 switch (type) { 6361 case MAC_LOGTYPE_FLOW: 6362 mac_flow_log_enable = B_TRUE; 6363 /* FALLTHRU */ 6364 case MAC_LOGTYPE_LINK: 6365 mac_link_log_enable = B_TRUE; 6366 break; 6367 } 6368 6369 mac_logging_interval = interval; 6370 rw_exit(&i_mac_impl_lock); 6371 mac_log_linkinfo(NULL); 6372 return (0); 6373 } 6374 6375 /* 6376 * Stop the logging timer if both link and flow logging are turned off. 6377 */ 6378 void 6379 mac_stop_logusage(mac_logtype_t type) 6380 { 6381 i_mac_log_state_t lstate; 6382 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6383 list_t net_log_list; 6384 6385 list_create(&net_log_list, sizeof (netinfo_t), 6386 offsetof(netinfo_t, ni_link)); 6387 6388 rw_enter(&i_mac_impl_lock, RW_WRITER); 6389 6390 lstate.mi_fenable = mac_flow_log_enable; 6391 lstate.mi_lenable = mac_link_log_enable; 6392 lstate.mi_list = &net_log_list; 6393 6394 /* Last walk */ 6395 lstate.mi_last = B_TRUE; 6396 6397 switch (type) { 6398 case MAC_LOGTYPE_FLOW: 6399 if (lstate.mi_fenable) { 6400 ASSERT(mac_link_log_enable); 6401 mac_flow_log_enable = B_FALSE; 6402 mac_link_log_enable = B_FALSE; 6403 break; 6404 } 6405 /* FALLTHRU */ 6406 case MAC_LOGTYPE_LINK: 6407 if (!lstate.mi_lenable || mac_flow_log_enable) { 6408 rw_exit(&i_mac_impl_lock); 6409 return; 6410 } 6411 mac_link_log_enable = B_FALSE; 6412 break; 6413 default: 6414 ASSERT(0); 6415 } 6416 6417 /* Reenable fastpath */ 6418 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6419 6420 (void) untimeout(mac_logging_timer); 6421 mac_logging_timer = NULL; 6422 6423 /* Write log entries for each mac_impl in the list */ 6424 i_mac_log_info(&net_log_list, &lstate); 6425 } 6426 6427 /* 6428 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6429 */ 6430 void 6431 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6432 { 6433 pri_t pri; 6434 int count; 6435 mac_soft_ring_set_t *mac_srs; 6436 6437 if (flent->fe_rx_srs_cnt <= 0) 6438 return; 6439 6440 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6441 SRST_FLOW) { 6442 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6443 mcip->mci_max_pri, 6444 flent->fe_resource_props.mrp_priority); 6445 } else { 6446 pri = mcip->mci_max_pri; 6447 } 6448 6449 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6450 mac_srs = flent->fe_rx_srs[count]; 6451 mac_update_srs_priority(mac_srs, pri); 6452 } 6453 /* 6454 * If we have a Tx SRS, we need to modify all the threads associated 6455 * with it. 6456 */ 6457 if (flent->fe_tx_srs != NULL) 6458 mac_update_srs_priority(flent->fe_tx_srs, pri); 6459 } 6460 6461 /* 6462 * RX and TX rings are reserved according to different semantics depending 6463 * on the requests from the MAC clients and type of rings: 6464 * 6465 * On the Tx side, by default we reserve individual rings, independently from 6466 * the groups. 6467 * 6468 * On the Rx side, the reservation is at the granularity of the group 6469 * of rings, and used for v12n level 1 only. It has a special case for the 6470 * primary client. 6471 * 6472 * If a share is allocated to a MAC client, we allocate a TX group and an 6473 * RX group to the client, and assign TX rings and RX rings to these 6474 * groups according to information gathered from the driver through 6475 * the share capability. 6476 * 6477 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6478 * to allocate individual rings out of a group and program the hw classifier 6479 * based on IP address or higher level criteria. 6480 */ 6481 6482 /* 6483 * mac_reserve_tx_ring() 6484 * Reserve a unused ring by marking it with MR_INUSE state. 6485 * As reserved, the ring is ready to function. 6486 * 6487 * Notes for Hybrid I/O: 6488 * 6489 * If a specific ring is needed, it is specified through the desired_ring 6490 * argument. Otherwise that argument is set to NULL. 6491 * If the desired ring was previous allocated to another client, this 6492 * function swaps it with a new ring from the group of unassigned rings. 6493 */ 6494 mac_ring_t * 6495 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6496 { 6497 mac_group_t *group; 6498 mac_grp_client_t *mgcp; 6499 mac_client_impl_t *mcip; 6500 mac_soft_ring_set_t *srs; 6501 6502 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6503 6504 /* 6505 * Find an available ring and start it before changing its status. 6506 * The unassigned rings are at the end of the mi_tx_groups 6507 * array. 6508 */ 6509 group = MAC_DEFAULT_TX_GROUP(mip); 6510 6511 /* Can't take the default ring out of the default group */ 6512 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6513 6514 if (desired_ring->mr_state == MR_FREE) { 6515 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6516 if (mac_start_ring(desired_ring) != 0) 6517 return (NULL); 6518 return (desired_ring); 6519 } 6520 /* 6521 * There are clients using this ring, so let's move the clients 6522 * away from using this ring. 6523 */ 6524 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6525 mcip = mgcp->mgc_client; 6526 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6527 srs = MCIP_TX_SRS(mcip); 6528 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6529 mac_tx_invoke_callbacks(mcip, 6530 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6531 desired_ring)); 6532 mac_tx_srs_del_ring(srs, desired_ring); 6533 mac_tx_client_restart((mac_client_handle_t)mcip); 6534 } 6535 return (desired_ring); 6536 } 6537 6538 /* 6539 * For a non-default group with multiple clients, return the primary client. 6540 */ 6541 static mac_client_impl_t * 6542 mac_get_grp_primary(mac_group_t *grp) 6543 { 6544 mac_grp_client_t *mgcp = grp->mrg_clients; 6545 mac_client_impl_t *mcip; 6546 6547 while (mgcp != NULL) { 6548 mcip = mgcp->mgc_client; 6549 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6550 return (mcip); 6551 mgcp = mgcp->mgc_next; 6552 } 6553 return (NULL); 6554 } 6555 6556 /* 6557 * Hybrid I/O specifies the ring that should be given to a share. 6558 * If the ring is already used by clients, then we need to release 6559 * the ring back to the default group so that we can give it to 6560 * the share. This means the clients using this ring now get a 6561 * replacement ring. If there aren't any replacement rings, this 6562 * function returns a failure. 6563 */ 6564 static int 6565 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6566 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6567 { 6568 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6569 mac_resource_props_t *mrp; 6570 mac_client_impl_t *mcip; 6571 mac_group_t *defgrp; 6572 mac_ring_t *tring; 6573 mac_group_t *tgrp; 6574 int i; 6575 int j; 6576 6577 mcip = MAC_GROUP_ONLY_CLIENT(group); 6578 if (mcip == NULL) 6579 mcip = mac_get_grp_primary(group); 6580 ASSERT(mcip != NULL); 6581 ASSERT(mcip->mci_share == 0); 6582 6583 mrp = MCIP_RESOURCE_PROPS(mcip); 6584 if (ring_type == MAC_RING_TYPE_RX) { 6585 defgrp = mip->mi_rx_donor_grp; 6586 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6587 /* Need to put this mac client in the default group */ 6588 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6589 return (ENOSPC); 6590 } else { 6591 /* 6592 * Switch this ring with some other ring from 6593 * the default group. 6594 */ 6595 for (tring = defgrp->mrg_rings; tring != NULL; 6596 tring = tring->mr_next) { 6597 if (tring->mr_index == 0) 6598 continue; 6599 for (j = 0; j < nrings; j++) { 6600 if (rings[j] == tring) 6601 break; 6602 } 6603 if (j >= nrings) 6604 break; 6605 } 6606 if (tring == NULL) 6607 return (ENOSPC); 6608 if (mac_group_mov_ring(mip, group, tring) != 0) 6609 return (ENOSPC); 6610 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6611 (void) mac_group_mov_ring(mip, defgrp, tring); 6612 return (ENOSPC); 6613 } 6614 } 6615 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6616 return (0); 6617 } 6618 6619 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6620 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6621 /* 6622 * See if we can get a spare ring to replace the default 6623 * ring. 6624 */ 6625 if (defgrp->mrg_cur_count == 1) { 6626 /* 6627 * Need to get a ring from another client, see if 6628 * there are any clients that can be moved to 6629 * the default group, thereby freeing some rings. 6630 */ 6631 for (i = 0; i < mip->mi_tx_group_count; i++) { 6632 tgrp = &mip->mi_tx_groups[i]; 6633 if (tgrp->mrg_state == 6634 MAC_GROUP_STATE_REGISTERED) { 6635 continue; 6636 } 6637 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6638 if (mcip == NULL) 6639 mcip = mac_get_grp_primary(tgrp); 6640 ASSERT(mcip != NULL); 6641 mrp = MCIP_RESOURCE_PROPS(mcip); 6642 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6643 ASSERT(tgrp->mrg_cur_count == 1); 6644 /* 6645 * If this ring is part of the 6646 * rings asked by the share we cannot 6647 * use it as the default ring. 6648 */ 6649 for (j = 0; j < nrings; j++) { 6650 if (rings[j] == tgrp->mrg_rings) 6651 break; 6652 } 6653 if (j < nrings) 6654 continue; 6655 mac_tx_client_quiesce( 6656 (mac_client_handle_t)mcip); 6657 mac_tx_switch_group(mcip, tgrp, 6658 defgrp); 6659 mac_tx_client_restart( 6660 (mac_client_handle_t)mcip); 6661 break; 6662 } 6663 } 6664 /* 6665 * All the rings are reserved, can't give up the 6666 * default ring. 6667 */ 6668 if (defgrp->mrg_cur_count <= 1) 6669 return (ENOSPC); 6670 } 6671 /* 6672 * Swap the default ring with another. 6673 */ 6674 for (tring = defgrp->mrg_rings; tring != NULL; 6675 tring = tring->mr_next) { 6676 /* 6677 * If this ring is part of the rings asked by the 6678 * share we cannot use it as the default ring. 6679 */ 6680 for (j = 0; j < nrings; j++) { 6681 if (rings[j] == tring) 6682 break; 6683 } 6684 if (j >= nrings) 6685 break; 6686 } 6687 ASSERT(tring != NULL); 6688 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6689 return (0); 6690 } 6691 /* 6692 * The Tx ring is with a group reserved by a MAC client. See if 6693 * we can swap it. 6694 */ 6695 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6696 mcip = MAC_GROUP_ONLY_CLIENT(group); 6697 if (mcip == NULL) 6698 mcip = mac_get_grp_primary(group); 6699 ASSERT(mcip != NULL); 6700 mrp = MCIP_RESOURCE_PROPS(mcip); 6701 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6702 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6703 ASSERT(group->mrg_cur_count == 1); 6704 /* Put this mac client in the default group */ 6705 mac_tx_switch_group(mcip, group, defgrp); 6706 } else { 6707 /* 6708 * Switch this ring with some other ring from 6709 * the default group. 6710 */ 6711 for (tring = defgrp->mrg_rings; tring != NULL; 6712 tring = tring->mr_next) { 6713 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6714 continue; 6715 /* 6716 * If this ring is part of the rings asked by the 6717 * share we cannot use it for swapping. 6718 */ 6719 for (j = 0; j < nrings; j++) { 6720 if (rings[j] == tring) 6721 break; 6722 } 6723 if (j >= nrings) 6724 break; 6725 } 6726 if (tring == NULL) { 6727 mac_tx_client_restart((mac_client_handle_t)mcip); 6728 return (ENOSPC); 6729 } 6730 if (mac_group_mov_ring(mip, group, tring) != 0) { 6731 mac_tx_client_restart((mac_client_handle_t)mcip); 6732 return (ENOSPC); 6733 } 6734 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6735 (void) mac_group_mov_ring(mip, defgrp, tring); 6736 mac_tx_client_restart((mac_client_handle_t)mcip); 6737 return (ENOSPC); 6738 } 6739 } 6740 mac_tx_client_restart((mac_client_handle_t)mcip); 6741 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6742 return (0); 6743 } 6744 6745 /* 6746 * Populate a zero-ring group with rings. If the share is non-NULL, 6747 * the rings are chosen according to that share. 6748 * Invoked after allocating a new RX or TX group through 6749 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6750 * Returns zero on success, an errno otherwise. 6751 */ 6752 int 6753 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6754 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6755 uint32_t ringcnt) 6756 { 6757 mac_ring_t **rings, *ring; 6758 uint_t nrings; 6759 int rv = 0, i = 0, j; 6760 6761 ASSERT((ring_type == MAC_RING_TYPE_RX && 6762 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6763 (ring_type == MAC_RING_TYPE_TX && 6764 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6765 6766 /* 6767 * First find the rings to allocate to the group. 6768 */ 6769 if (share != 0) { 6770 /* get rings through ms_squery() */ 6771 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6772 ASSERT(nrings != 0); 6773 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6774 KM_SLEEP); 6775 mip->mi_share_capab.ms_squery(share, ring_type, 6776 (mac_ring_handle_t *)rings, &nrings); 6777 for (i = 0; i < nrings; i++) { 6778 /* 6779 * If we have given this ring to a non-default 6780 * group, we need to check if we can get this 6781 * ring. 6782 */ 6783 ring = rings[i]; 6784 if (ring->mr_gh != (mac_group_handle_t)src_group || 6785 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6786 if (mac_reclaim_ring_from_grp(mip, ring_type, 6787 ring, rings, nrings) != 0) { 6788 rv = ENOSPC; 6789 goto bail; 6790 } 6791 } 6792 } 6793 } else { 6794 /* 6795 * Pick one ring from default group. 6796 * 6797 * for now pick the second ring which requires the first ring 6798 * at index 0 to stay in the default group, since it is the 6799 * ring which carries the multicast traffic. 6800 * We need a better way for a driver to indicate this, 6801 * for example a per-ring flag. 6802 */ 6803 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6804 KM_SLEEP); 6805 for (ring = src_group->mrg_rings; ring != NULL; 6806 ring = ring->mr_next) { 6807 if (ring_type == MAC_RING_TYPE_RX && 6808 ring->mr_index == 0) { 6809 continue; 6810 } 6811 if (ring_type == MAC_RING_TYPE_TX && 6812 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6813 continue; 6814 } 6815 rings[i++] = ring; 6816 if (i == ringcnt) 6817 break; 6818 } 6819 ASSERT(ring != NULL); 6820 nrings = i; 6821 /* Not enough rings as required */ 6822 if (nrings != ringcnt) { 6823 rv = ENOSPC; 6824 goto bail; 6825 } 6826 } 6827 6828 switch (ring_type) { 6829 case MAC_RING_TYPE_RX: 6830 if (src_group->mrg_cur_count - nrings < 1) { 6831 /* we ran out of rings */ 6832 rv = ENOSPC; 6833 goto bail; 6834 } 6835 6836 /* move receive rings to new group */ 6837 for (i = 0; i < nrings; i++) { 6838 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6839 if (rv != 0) { 6840 /* move rings back on failure */ 6841 for (j = 0; j < i; j++) { 6842 (void) mac_group_mov_ring(mip, 6843 src_group, rings[j]); 6844 } 6845 goto bail; 6846 } 6847 } 6848 break; 6849 6850 case MAC_RING_TYPE_TX: { 6851 mac_ring_t *tmp_ring; 6852 6853 /* move the TX rings to the new group */ 6854 for (i = 0; i < nrings; i++) { 6855 /* get the desired ring */ 6856 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6857 if (tmp_ring == NULL) { 6858 rv = ENOSPC; 6859 goto bail; 6860 } 6861 ASSERT(tmp_ring == rings[i]); 6862 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6863 if (rv != 0) { 6864 /* cleanup on failure */ 6865 for (j = 0; j < i; j++) { 6866 (void) mac_group_mov_ring(mip, 6867 MAC_DEFAULT_TX_GROUP(mip), 6868 rings[j]); 6869 } 6870 goto bail; 6871 } 6872 } 6873 break; 6874 } 6875 } 6876 6877 /* add group to share */ 6878 if (share != 0) 6879 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6880 6881 bail: 6882 /* free temporary array of rings */ 6883 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6884 6885 return (rv); 6886 } 6887 6888 void 6889 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6890 { 6891 mac_grp_client_t *mgcp; 6892 6893 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6894 if (mgcp->mgc_client == mcip) 6895 break; 6896 } 6897 6898 ASSERT(mgcp == NULL); 6899 6900 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6901 mgcp->mgc_client = mcip; 6902 mgcp->mgc_next = grp->mrg_clients; 6903 grp->mrg_clients = mgcp; 6904 } 6905 6906 void 6907 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6908 { 6909 mac_grp_client_t *mgcp, **pprev; 6910 6911 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6912 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6913 if (mgcp->mgc_client == mcip) 6914 break; 6915 } 6916 6917 ASSERT(mgcp != NULL); 6918 6919 *pprev = mgcp->mgc_next; 6920 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6921 } 6922 6923 /* 6924 * Return true if any client on this group explicitly asked for HW 6925 * rings (of type mask) or have a bound share. 6926 */ 6927 static boolean_t 6928 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6929 { 6930 mac_grp_client_t *mgcip; 6931 mac_client_impl_t *mcip; 6932 mac_resource_props_t *mrp; 6933 6934 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6935 mcip = mgcip->mgc_client; 6936 mrp = MCIP_RESOURCE_PROPS(mcip); 6937 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6938 return (B_TRUE); 6939 } 6940 6941 return (B_FALSE); 6942 } 6943 6944 /* 6945 * Finds an available group and exclusively reserves it for a client. 6946 * The group is chosen to suit the flow's resource controls (bandwidth and 6947 * fanout requirements) and the address type. 6948 * If the requestor is the pimary MAC then return the group with the 6949 * largest number of rings, otherwise the default ring when available. 6950 */ 6951 mac_group_t * 6952 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6953 { 6954 mac_share_handle_t share = mcip->mci_share; 6955 mac_impl_t *mip = mcip->mci_mip; 6956 mac_group_t *grp = NULL; 6957 int i; 6958 int err = 0; 6959 mac_address_t *map; 6960 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6961 int nrings; 6962 int donor_grp_rcnt; 6963 boolean_t need_exclgrp = B_FALSE; 6964 int need_rings = 0; 6965 mac_group_t *candidate_grp = NULL; 6966 mac_client_impl_t *gclient; 6967 mac_group_t *donorgrp = NULL; 6968 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6969 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6970 boolean_t isprimary; 6971 6972 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6973 6974 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6975 6976 /* 6977 * Check if a group already has this MAC address (case of VLANs) 6978 * unless we are moving this MAC client from one group to another. 6979 */ 6980 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6981 if (map->ma_group != NULL) 6982 return (map->ma_group); 6983 } 6984 6985 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6986 return (NULL); 6987 6988 /* 6989 * If this client is requesting exclusive MAC access then 6990 * return NULL to ensure the client uses the default group. 6991 */ 6992 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6993 return (NULL); 6994 6995 /* For dynamic groups default unspecified to 1 */ 6996 if (rxhw && unspec && 6997 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6998 mrp->mrp_nrxrings = 1; 6999 } 7000 7001 /* 7002 * For static grouping we allow only specifying rings=0 and 7003 * unspecified 7004 */ 7005 if (rxhw && mrp->mrp_nrxrings > 0 && 7006 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 7007 return (NULL); 7008 } 7009 7010 if (rxhw) { 7011 /* 7012 * We have explicitly asked for a group (with nrxrings, 7013 * if unspec). 7014 */ 7015 if (unspec || mrp->mrp_nrxrings > 0) { 7016 need_exclgrp = B_TRUE; 7017 need_rings = mrp->mrp_nrxrings; 7018 } else if (mrp->mrp_nrxrings == 0) { 7019 /* 7020 * We have asked for a software group. 7021 */ 7022 return (NULL); 7023 } 7024 } else if (isprimary && mip->mi_nactiveclients == 1 && 7025 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7026 /* 7027 * If the primary is the only active client on this 7028 * mip and we have not asked for any rings, we give 7029 * it the default group so that the primary gets to 7030 * use all the rings. 7031 */ 7032 return (NULL); 7033 } 7034 7035 /* The group that can donate rings */ 7036 donorgrp = mip->mi_rx_donor_grp; 7037 7038 /* 7039 * The number of rings that the default group can donate. 7040 * We need to leave at least one ring. 7041 */ 7042 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7043 7044 /* 7045 * Try to exclusively reserve a RX group. 7046 * 7047 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 7048 * client), try to reserve the a non-default RX group and give 7049 * it all the rings from the donor group, except the default ring 7050 * 7051 * For flows requiring HW_RING (unicast flow of other clients), try 7052 * to reserve non-default RX group with the specified number of 7053 * rings, if available. 7054 * 7055 * For flows that have not asked for software or hardware ring, 7056 * try to reserve a non-default group with 1 ring, if available. 7057 */ 7058 for (i = 1; i < mip->mi_rx_group_count; i++) { 7059 grp = &mip->mi_rx_groups[i]; 7060 7061 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 7062 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 7063 7064 /* 7065 * Check if this group could be a candidate group for 7066 * eviction if we need a group for this MAC client, 7067 * but there aren't any. A candidate group is one 7068 * that didn't ask for an exclusive group, but got 7069 * one and it has enough rings (combined with what 7070 * the donor group can donate) for the new MAC 7071 * client. 7072 */ 7073 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 7074 /* 7075 * If the donor group is not the default 7076 * group, don't bother looking for a candidate 7077 * group. If we don't have enough rings we 7078 * will check if the primary group can be 7079 * vacated. 7080 */ 7081 if (candidate_grp == NULL && 7082 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 7083 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 7084 (unspec || 7085 (grp->mrg_cur_count + donor_grp_rcnt >= 7086 need_rings))) { 7087 candidate_grp = grp; 7088 } 7089 } 7090 continue; 7091 } 7092 /* 7093 * This group could already be SHARED by other multicast 7094 * flows on this client. In that case, the group would 7095 * be shared and has already been started. 7096 */ 7097 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 7098 7099 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 7100 (mac_start_group(grp) != 0)) { 7101 continue; 7102 } 7103 7104 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7105 break; 7106 ASSERT(grp->mrg_cur_count == 0); 7107 7108 /* 7109 * Populate the group. Rings should be taken 7110 * from the donor group. 7111 */ 7112 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 7113 7114 /* 7115 * If the donor group can't donate, let's just walk and 7116 * see if someone can vacate a group, so that we have 7117 * enough rings for this, unless we already have 7118 * identified a candiate group.. 7119 */ 7120 if (nrings <= donor_grp_rcnt) { 7121 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7122 donorgrp, grp, share, nrings); 7123 if (err == 0) { 7124 /* 7125 * For a share i_mac_group_allocate_rings gets 7126 * the rings from the driver, let's populate 7127 * the property for the client now. 7128 */ 7129 if (share != 0) { 7130 mac_client_set_rings( 7131 (mac_client_handle_t)mcip, 7132 grp->mrg_cur_count, -1); 7133 } 7134 if (mac_is_primary_client(mcip) && !rxhw) 7135 mip->mi_rx_donor_grp = grp; 7136 break; 7137 } 7138 } 7139 7140 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7141 mip->mi_name, int, grp->mrg_index, int, err); 7142 7143 /* 7144 * It's a dynamic group but the grouping operation 7145 * failed. 7146 */ 7147 mac_stop_group(grp); 7148 } 7149 7150 /* We didn't find an exclusive group for this MAC client */ 7151 if (i >= mip->mi_rx_group_count) { 7152 7153 if (!need_exclgrp) 7154 return (NULL); 7155 7156 /* 7157 * If we found a candidate group then move the 7158 * existing MAC client from the candidate_group to the 7159 * default group and give the candidate_group to the 7160 * new MAC client. If we didn't find a candidate 7161 * group, then check if the primary is in its own 7162 * group and if it can make way for this MAC client. 7163 */ 7164 if (candidate_grp == NULL && 7165 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 7166 donorgrp->mrg_cur_count >= need_rings) { 7167 candidate_grp = donorgrp; 7168 } 7169 if (candidate_grp != NULL) { 7170 boolean_t prim_grp = B_FALSE; 7171 7172 /* 7173 * Switch the existing MAC client from the 7174 * candidate group to the default group. If 7175 * the candidate group is the donor group, 7176 * then after the switch we need to update the 7177 * donor group too. 7178 */ 7179 grp = candidate_grp; 7180 gclient = grp->mrg_clients->mgc_client; 7181 VERIFY3P(gclient, !=, NULL); 7182 if (grp == mip->mi_rx_donor_grp) 7183 prim_grp = B_TRUE; 7184 if (mac_rx_switch_group(gclient, grp, 7185 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 7186 return (NULL); 7187 } 7188 if (prim_grp) { 7189 mip->mi_rx_donor_grp = 7190 MAC_DEFAULT_RX_GROUP(mip); 7191 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 7192 } 7193 7194 /* 7195 * Now give this group with the required rings 7196 * to this MAC client. 7197 */ 7198 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7199 if (mac_start_group(grp) != 0) 7200 return (NULL); 7201 7202 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7203 return (grp); 7204 7205 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7206 ASSERT(grp->mrg_cur_count == 0); 7207 ASSERT(donor_grp_rcnt >= need_rings); 7208 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7209 donorgrp, grp, share, need_rings); 7210 if (err == 0) { 7211 /* 7212 * For a share i_mac_group_allocate_rings gets 7213 * the rings from the driver, let's populate 7214 * the property for the client now. 7215 */ 7216 if (share != 0) { 7217 mac_client_set_rings( 7218 (mac_client_handle_t)mcip, 7219 grp->mrg_cur_count, -1); 7220 } 7221 DTRACE_PROBE2(rx__group__reserved, 7222 char *, mip->mi_name, int, grp->mrg_index); 7223 return (grp); 7224 } 7225 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7226 mip->mi_name, int, grp->mrg_index, int, err); 7227 mac_stop_group(grp); 7228 } 7229 return (NULL); 7230 } 7231 ASSERT(grp != NULL); 7232 7233 DTRACE_PROBE2(rx__group__reserved, 7234 char *, mip->mi_name, int, grp->mrg_index); 7235 return (grp); 7236 } 7237 7238 /* 7239 * mac_rx_release_group() 7240 * 7241 * Release the group when it has no remaining clients. The group is 7242 * stopped and its shares are removed and all rings are assigned back 7243 * to default group. This should never be called against the default 7244 * group. 7245 */ 7246 void 7247 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 7248 { 7249 mac_impl_t *mip = mcip->mci_mip; 7250 mac_ring_t *ring; 7251 7252 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 7253 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 7254 7255 if (mip->mi_rx_donor_grp == group) 7256 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 7257 7258 /* 7259 * This is the case where there are no clients left. Any 7260 * SRS etc on this group have also be quiesced. 7261 */ 7262 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 7263 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 7264 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 7265 /* 7266 * Remove the SRS associated with the HW ring. 7267 * As a result, polling will be disabled. 7268 */ 7269 ring->mr_srs = NULL; 7270 } 7271 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 7272 ring->mr_state == MR_INUSE); 7273 if (ring->mr_state == MR_INUSE) { 7274 mac_stop_ring(ring); 7275 ring->mr_flag = 0; 7276 } 7277 } 7278 7279 /* remove group from share */ 7280 if (mcip->mci_share != 0) { 7281 mip->mi_share_capab.ms_sremove(mcip->mci_share, 7282 group->mrg_driver); 7283 } 7284 7285 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7286 mac_ring_t *ring; 7287 7288 /* 7289 * Rings were dynamically allocated to group. 7290 * Move rings back to default group. 7291 */ 7292 while ((ring = group->mrg_rings) != NULL) { 7293 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 7294 ring); 7295 } 7296 } 7297 mac_stop_group(group); 7298 /* 7299 * Possible improvement: See if we can assign the group just released 7300 * to a another client of the mip 7301 */ 7302 } 7303 7304 /* 7305 * Move the MAC address from fgrp to tgrp. 7306 */ 7307 static int 7308 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 7309 mac_group_t *tgrp) 7310 { 7311 mac_impl_t *mip = mcip->mci_mip; 7312 uint8_t maddr[MAXMACADDRLEN]; 7313 int err = 0; 7314 uint16_t vid; 7315 mac_unicast_impl_t *muip; 7316 boolean_t use_hw; 7317 7318 mac_rx_client_quiesce((mac_client_handle_t)mcip); 7319 VERIFY3P(mcip->mci_unicast, !=, NULL); 7320 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 7321 7322 /* 7323 * Does the client require MAC address hardware classifiction? 7324 */ 7325 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 7326 vid = i_mac_flow_vid(mcip->mci_flent); 7327 7328 /* 7329 * You can never move an address that is shared by multiple 7330 * clients. mac_datapath_setup() ensures that clients sharing 7331 * an address are placed on the default group. This guarantees 7332 * that a non-default group will only ever have one client and 7333 * thus make full use of HW filters. 7334 */ 7335 if (mac_check_macaddr_shared(mcip->mci_unicast)) 7336 return (EINVAL); 7337 7338 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 7339 7340 if (err != 0) { 7341 mac_rx_client_restart((mac_client_handle_t)mcip); 7342 return (err); 7343 } 7344 7345 /* 7346 * If this isn't the primary MAC address then the 7347 * mac_address_t has been freed by the last call to 7348 * mac_remove_macaddr_vlan(). In any case, NULL the reference 7349 * to avoid a dangling pointer. 7350 */ 7351 mcip->mci_unicast = NULL; 7352 7353 /* 7354 * We also have to NULL all the mui_map references -- sun4v 7355 * strikes again! 7356 */ 7357 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7358 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7359 muip->mui_map = NULL; 7360 rw_exit(&mcip->mci_rw_lock); 7361 7362 /* 7363 * Program the H/W Classifier first, if this fails we need not 7364 * proceed with the other stuff. 7365 */ 7366 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 7367 int err2; 7368 7369 /* Revert back the H/W Classifier */ 7370 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7371 7372 if (err2 != 0) { 7373 cmn_err(CE_WARN, "Failed to revert HW classification" 7374 " on MAC %s, for client %s: %d.", mip->mi_name, 7375 mcip->mci_name, err2); 7376 } 7377 7378 mac_rx_client_restart((mac_client_handle_t)mcip); 7379 return (err); 7380 } 7381 7382 /* 7383 * Get a reference to the new mac_address_t and update the 7384 * client's reference. Then restart the client and add the 7385 * other clients of this MAC addr (if they exsit). 7386 */ 7387 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7388 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7389 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7390 muip->mui_map = mcip->mci_unicast; 7391 rw_exit(&mcip->mci_rw_lock); 7392 mac_rx_client_restart((mac_client_handle_t)mcip); 7393 return (0); 7394 } 7395 7396 /* 7397 * Switch the MAC client from one group to another. This means we need 7398 * to remove the MAC address from the group, remove the MAC client, 7399 * teardown the SRSs and revert the group state. Then, we add the client 7400 * to the destination group, set the SRSs, and add the MAC address to the 7401 * group. 7402 */ 7403 int 7404 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7405 mac_group_t *tgrp) 7406 { 7407 int err; 7408 mac_group_state_t next_state; 7409 mac_client_impl_t *group_only_mcip; 7410 mac_client_impl_t *gmcip; 7411 mac_impl_t *mip = mcip->mci_mip; 7412 mac_grp_client_t *mgcp; 7413 7414 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7415 7416 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7417 return (err); 7418 7419 /* 7420 * If the group is marked as reserved and in use by a single 7421 * client, then there is an SRS to teardown. 7422 */ 7423 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7424 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7425 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7426 } 7427 7428 /* 7429 * If we are moving the client from a non-default group, then 7430 * we know that any additional clients on this group share the 7431 * same MAC address. Since we moved the MAC address filter, we 7432 * need to move these clients too. 7433 * 7434 * If we are moving the client from the default group and its 7435 * MAC address has VLAN clients, then we must move those 7436 * clients as well. 7437 * 7438 * In both cases the idea is the same: we moved the MAC 7439 * address filter to the tgrp, so we must move all clients 7440 * using that MAC address to tgrp as well. 7441 */ 7442 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7443 mgcp = fgrp->mrg_clients; 7444 while (mgcp != NULL) { 7445 gmcip = mgcp->mgc_client; 7446 mgcp = mgcp->mgc_next; 7447 mac_group_remove_client(fgrp, gmcip); 7448 mac_group_add_client(tgrp, gmcip); 7449 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7450 } 7451 mac_release_rx_group(mcip, fgrp); 7452 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7453 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7454 } else { 7455 mac_group_remove_client(fgrp, mcip); 7456 mac_group_add_client(tgrp, mcip); 7457 mcip->mci_flent->fe_rx_ring_group = tgrp; 7458 7459 /* 7460 * If there are other clients (VLANs) sharing this address 7461 * then move them too. 7462 */ 7463 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7464 /* 7465 * We need to move all the clients that are using 7466 * this MAC address. 7467 */ 7468 mgcp = fgrp->mrg_clients; 7469 while (mgcp != NULL) { 7470 gmcip = mgcp->mgc_client; 7471 mgcp = mgcp->mgc_next; 7472 if (mcip->mci_unicast == gmcip->mci_unicast) { 7473 mac_group_remove_client(fgrp, gmcip); 7474 mac_group_add_client(tgrp, gmcip); 7475 gmcip->mci_flent->fe_rx_ring_group = 7476 tgrp; 7477 } 7478 } 7479 } 7480 7481 /* 7482 * The default group still handles multicast and 7483 * broadcast traffic; it won't transition to 7484 * MAC_GROUP_STATE_REGISTERED. 7485 */ 7486 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7487 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7488 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7489 } 7490 7491 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7492 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7493 mac_set_group_state(tgrp, next_state); 7494 7495 /* 7496 * If the destination group is reserved, then setup the SRSes. 7497 * Otherwise make sure to use SW classification. 7498 */ 7499 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7500 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7501 mac_fanout_setup(mcip, mcip->mci_flent, 7502 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7503 NULL); 7504 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7505 } else { 7506 mac_rx_switch_grp_to_sw(tgrp); 7507 } 7508 7509 return (0); 7510 } 7511 7512 /* 7513 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7514 * when a share was allocated to the client. 7515 */ 7516 mac_group_t * 7517 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7518 { 7519 mac_impl_t *mip = mcip->mci_mip; 7520 mac_group_t *grp = NULL; 7521 int rv; 7522 int i; 7523 int err; 7524 mac_group_t *defgrp; 7525 mac_share_handle_t share = mcip->mci_share; 7526 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7527 int nrings; 7528 int defnrings; 7529 boolean_t need_exclgrp = B_FALSE; 7530 int need_rings = 0; 7531 mac_group_t *candidate_grp = NULL; 7532 mac_client_impl_t *gclient; 7533 mac_resource_props_t *gmrp; 7534 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7535 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7536 boolean_t isprimary; 7537 7538 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7539 7540 /* 7541 * When we come here for a VLAN on the primary (dladm create-vlan), 7542 * we need to pair it along with the primary (to keep it consistent 7543 * with the RX side). So, we check if the primary is already assigned 7544 * to a group and return the group if so. The other way is also 7545 * true, i.e. the VLAN is already created and now we are plumbing 7546 * the primary. 7547 */ 7548 if (!move && isprimary) { 7549 for (gclient = mip->mi_clients_list; gclient != NULL; 7550 gclient = gclient->mci_client_next) { 7551 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7552 gclient->mci_flent->fe_tx_ring_group != NULL) { 7553 return (gclient->mci_flent->fe_tx_ring_group); 7554 } 7555 } 7556 } 7557 7558 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7559 return (NULL); 7560 7561 /* For dynamic groups, default unspec to 1 */ 7562 if (txhw && unspec && 7563 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7564 mrp->mrp_ntxrings = 1; 7565 } 7566 /* 7567 * For static grouping we allow only specifying rings=0 and 7568 * unspecified 7569 */ 7570 if (txhw && mrp->mrp_ntxrings > 0 && 7571 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7572 return (NULL); 7573 } 7574 7575 if (txhw) { 7576 /* 7577 * We have explicitly asked for a group (with ntxrings, 7578 * if unspec). 7579 */ 7580 if (unspec || mrp->mrp_ntxrings > 0) { 7581 need_exclgrp = B_TRUE; 7582 need_rings = mrp->mrp_ntxrings; 7583 } else if (mrp->mrp_ntxrings == 0) { 7584 /* 7585 * We have asked for a software group. 7586 */ 7587 return (NULL); 7588 } 7589 } 7590 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7591 /* 7592 * The number of rings that the default group can donate. 7593 * We need to leave at least one ring - the default ring - in 7594 * this group. 7595 */ 7596 defnrings = defgrp->mrg_cur_count - 1; 7597 7598 /* 7599 * Primary gets default group unless explicitly told not 7600 * to (i.e. rings > 0). 7601 */ 7602 if (isprimary && !need_exclgrp) 7603 return (NULL); 7604 7605 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7606 for (i = 0; i < mip->mi_tx_group_count; i++) { 7607 grp = &mip->mi_tx_groups[i]; 7608 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7609 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7610 /* 7611 * Select a candidate for replacement if we don't 7612 * get an exclusive group. A candidate group is one 7613 * that didn't ask for an exclusive group, but got 7614 * one and it has enough rings (combined with what 7615 * the default group can donate) for the new MAC 7616 * client. 7617 */ 7618 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7619 candidate_grp == NULL) { 7620 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7621 VERIFY3P(gclient, !=, NULL); 7622 gmrp = MCIP_RESOURCE_PROPS(gclient); 7623 if (gclient->mci_share == 0 && 7624 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7625 (unspec || 7626 (grp->mrg_cur_count + defnrings) >= 7627 need_rings)) { 7628 candidate_grp = grp; 7629 } 7630 } 7631 continue; 7632 } 7633 /* 7634 * If the default can't donate let's just walk and 7635 * see if someone can vacate a group, so that we have 7636 * enough rings for this. 7637 */ 7638 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7639 nrings <= defnrings) { 7640 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7641 rv = mac_start_group(grp); 7642 ASSERT(rv == 0); 7643 } 7644 break; 7645 } 7646 } 7647 7648 /* The default group */ 7649 if (i >= mip->mi_tx_group_count) { 7650 /* 7651 * If we need an exclusive group and have identified a 7652 * candidate group we switch the MAC client from the 7653 * candidate group to the default group and give the 7654 * candidate group to this client. 7655 */ 7656 if (need_exclgrp && candidate_grp != NULL) { 7657 /* 7658 * Switch the MAC client from the candidate 7659 * group to the default group. We know the 7660 * candidate_grp came from a reserved group 7661 * and thus only has one client. 7662 */ 7663 grp = candidate_grp; 7664 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7665 VERIFY3P(gclient, !=, NULL); 7666 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7667 mac_tx_switch_group(gclient, grp, defgrp); 7668 mac_tx_client_restart((mac_client_handle_t)gclient); 7669 7670 /* 7671 * Give the candidate group with the specified number 7672 * of rings to this MAC client. 7673 */ 7674 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7675 rv = mac_start_group(grp); 7676 ASSERT(rv == 0); 7677 7678 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7679 return (grp); 7680 7681 ASSERT(grp->mrg_cur_count == 0); 7682 ASSERT(defgrp->mrg_cur_count > need_rings); 7683 7684 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7685 defgrp, grp, share, need_rings); 7686 if (err == 0) { 7687 /* 7688 * For a share i_mac_group_allocate_rings gets 7689 * the rings from the driver, let's populate 7690 * the property for the client now. 7691 */ 7692 if (share != 0) { 7693 mac_client_set_rings( 7694 (mac_client_handle_t)mcip, -1, 7695 grp->mrg_cur_count); 7696 } 7697 mip->mi_tx_group_free--; 7698 return (grp); 7699 } 7700 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7701 mip->mi_name, int, grp->mrg_index, int, err); 7702 mac_stop_group(grp); 7703 } 7704 return (NULL); 7705 } 7706 /* 7707 * We got an exclusive group, but it is not dynamic. 7708 */ 7709 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7710 mip->mi_tx_group_free--; 7711 return (grp); 7712 } 7713 7714 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7715 share, nrings); 7716 if (rv != 0) { 7717 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7718 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7719 mac_stop_group(grp); 7720 return (NULL); 7721 } 7722 /* 7723 * For a share i_mac_group_allocate_rings gets the rings from the 7724 * driver, let's populate the property for the client now. 7725 */ 7726 if (share != 0) { 7727 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7728 grp->mrg_cur_count); 7729 } 7730 mip->mi_tx_group_free--; 7731 return (grp); 7732 } 7733 7734 void 7735 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7736 { 7737 mac_impl_t *mip = mcip->mci_mip; 7738 mac_share_handle_t share = mcip->mci_share; 7739 mac_ring_t *ring; 7740 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7741 mac_group_t *defgrp; 7742 7743 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7744 if (srs != NULL) { 7745 if (srs->srs_soft_ring_count > 0) { 7746 for (ring = grp->mrg_rings; ring != NULL; 7747 ring = ring->mr_next) { 7748 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7749 mac_tx_invoke_callbacks(mcip, 7750 (mac_tx_cookie_t) 7751 mac_tx_srs_get_soft_ring(srs, ring)); 7752 mac_tx_srs_del_ring(srs, ring); 7753 } 7754 } else { 7755 ASSERT(srs->srs_tx.st_arg2 != NULL); 7756 srs->srs_tx.st_arg2 = NULL; 7757 mac_srs_stat_delete(srs); 7758 } 7759 } 7760 if (share != 0) 7761 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7762 7763 /* move the ring back to the pool */ 7764 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7765 while ((ring = grp->mrg_rings) != NULL) 7766 (void) mac_group_mov_ring(mip, defgrp, ring); 7767 } 7768 mac_stop_group(grp); 7769 mip->mi_tx_group_free++; 7770 } 7771 7772 /* 7773 * Disassociate a MAC client from a group, i.e go through the rings in the 7774 * group and delete all the soft rings tied to them. 7775 */ 7776 static void 7777 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7778 { 7779 mac_client_impl_t *mcip = flent->fe_mcip; 7780 mac_soft_ring_set_t *tx_srs; 7781 mac_srs_tx_t *tx; 7782 mac_ring_t *ring; 7783 7784 tx_srs = flent->fe_tx_srs; 7785 tx = &tx_srs->srs_tx; 7786 7787 /* Single ring case we haven't created any soft rings */ 7788 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7789 tx->st_mode == SRS_TX_DEFAULT) { 7790 tx->st_arg2 = NULL; 7791 mac_srs_stat_delete(tx_srs); 7792 /* Fanout case, where we have to dismantle the soft rings */ 7793 } else { 7794 for (ring = fgrp->mrg_rings; ring != NULL; 7795 ring = ring->mr_next) { 7796 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7797 mac_tx_invoke_callbacks(mcip, 7798 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7799 ring)); 7800 mac_tx_srs_del_ring(tx_srs, ring); 7801 } 7802 ASSERT(tx->st_arg2 == NULL); 7803 } 7804 } 7805 7806 /* 7807 * Switch the MAC client from one group to another. This means we need 7808 * to remove the MAC client, teardown the SRSs and revert the group state. 7809 * Then, we add the client to the destination roup, set the SRSs etc. 7810 */ 7811 void 7812 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7813 mac_group_t *tgrp) 7814 { 7815 mac_client_impl_t *group_only_mcip; 7816 mac_impl_t *mip = mcip->mci_mip; 7817 flow_entry_t *flent = mcip->mci_flent; 7818 mac_group_t *defgrp; 7819 mac_grp_client_t *mgcp; 7820 mac_client_impl_t *gmcip; 7821 flow_entry_t *gflent; 7822 7823 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7824 ASSERT(fgrp == flent->fe_tx_ring_group); 7825 7826 if (fgrp == defgrp) { 7827 /* 7828 * If this is the primary we need to find any VLANs on 7829 * the primary and move them too. 7830 */ 7831 mac_group_remove_client(fgrp, mcip); 7832 mac_tx_dismantle_soft_rings(fgrp, flent); 7833 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7834 mgcp = fgrp->mrg_clients; 7835 while (mgcp != NULL) { 7836 gmcip = mgcp->mgc_client; 7837 mgcp = mgcp->mgc_next; 7838 if (mcip->mci_unicast != gmcip->mci_unicast) 7839 continue; 7840 mac_tx_client_quiesce( 7841 (mac_client_handle_t)gmcip); 7842 7843 gflent = gmcip->mci_flent; 7844 mac_group_remove_client(fgrp, gmcip); 7845 mac_tx_dismantle_soft_rings(fgrp, gflent); 7846 7847 mac_group_add_client(tgrp, gmcip); 7848 gflent->fe_tx_ring_group = tgrp; 7849 /* We could directly set this to SHARED */ 7850 tgrp->mrg_state = mac_group_next_state(tgrp, 7851 &group_only_mcip, defgrp, B_FALSE); 7852 7853 mac_tx_srs_group_setup(gmcip, gflent, 7854 SRST_LINK); 7855 mac_fanout_setup(gmcip, gflent, 7856 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7857 gmcip, NULL, NULL); 7858 7859 mac_tx_client_restart( 7860 (mac_client_handle_t)gmcip); 7861 } 7862 } 7863 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7864 mac_ring_t *ring; 7865 int cnt; 7866 int ringcnt; 7867 7868 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7869 /* 7870 * Additionally, we also need to stop all 7871 * the rings in the default group, except 7872 * the default ring. The reason being 7873 * this group won't be released since it is 7874 * the default group, so the rings won't 7875 * be stopped otherwise. 7876 */ 7877 ringcnt = fgrp->mrg_cur_count; 7878 ring = fgrp->mrg_rings; 7879 for (cnt = 0; cnt < ringcnt; cnt++) { 7880 if (ring->mr_state == MR_INUSE && 7881 ring != 7882 (mac_ring_t *)mip->mi_default_tx_ring) { 7883 mac_stop_ring(ring); 7884 ring->mr_flag = 0; 7885 } 7886 ring = ring->mr_next; 7887 } 7888 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7889 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7890 } else { 7891 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7892 } 7893 } else { 7894 /* 7895 * We could have VLANs sharing the non-default group with 7896 * the primary. 7897 */ 7898 mgcp = fgrp->mrg_clients; 7899 while (mgcp != NULL) { 7900 gmcip = mgcp->mgc_client; 7901 mgcp = mgcp->mgc_next; 7902 if (gmcip == mcip) 7903 continue; 7904 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7905 gflent = gmcip->mci_flent; 7906 7907 mac_group_remove_client(fgrp, gmcip); 7908 mac_tx_dismantle_soft_rings(fgrp, gflent); 7909 7910 mac_group_add_client(tgrp, gmcip); 7911 gflent->fe_tx_ring_group = tgrp; 7912 /* We could directly set this to SHARED */ 7913 tgrp->mrg_state = mac_group_next_state(tgrp, 7914 &group_only_mcip, defgrp, B_FALSE); 7915 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7916 mac_fanout_setup(gmcip, gflent, 7917 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7918 gmcip, NULL, NULL); 7919 7920 mac_tx_client_restart((mac_client_handle_t)gmcip); 7921 } 7922 mac_group_remove_client(fgrp, mcip); 7923 mac_release_tx_group(mcip, fgrp); 7924 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7925 } 7926 7927 /* Add it to the tgroup */ 7928 mac_group_add_client(tgrp, mcip); 7929 flent->fe_tx_ring_group = tgrp; 7930 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7931 defgrp, B_FALSE); 7932 7933 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7934 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7935 mac_rx_deliver, mcip, NULL, NULL); 7936 } 7937 7938 /* 7939 * This is a 1-time control path activity initiated by the client (IP). 7940 * The mac perimeter protects against other simultaneous control activities, 7941 * for example an ioctl that attempts to change the degree of fanout and 7942 * increase or decrease the number of softrings associated with this Tx SRS. 7943 */ 7944 static mac_tx_notify_cb_t * 7945 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7946 mac_tx_notify_t notify, void *arg) 7947 { 7948 mac_cb_info_t *mcbi; 7949 mac_tx_notify_cb_t *mtnfp; 7950 7951 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7952 7953 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7954 mtnfp->mtnf_fn = notify; 7955 mtnfp->mtnf_arg = arg; 7956 mtnfp->mtnf_link.mcb_objp = mtnfp; 7957 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7958 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7959 7960 mcbi = &mcip->mci_tx_notify_cb_info; 7961 mutex_enter(mcbi->mcbi_lockp); 7962 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7963 mutex_exit(mcbi->mcbi_lockp); 7964 return (mtnfp); 7965 } 7966 7967 static void 7968 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7969 { 7970 mac_cb_info_t *mcbi; 7971 mac_cb_t **cblist; 7972 7973 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7974 7975 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7976 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7977 cmn_err(CE_WARN, 7978 "mac_client_tx_notify_remove: callback not " 7979 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7980 return; 7981 } 7982 7983 mcbi = &mcip->mci_tx_notify_cb_info; 7984 cblist = &mcip->mci_tx_notify_cb_list; 7985 mutex_enter(mcbi->mcbi_lockp); 7986 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7987 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7988 else 7989 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7990 mutex_exit(mcbi->mcbi_lockp); 7991 } 7992 7993 /* 7994 * mac_client_tx_notify(): 7995 * call to add and remove flow control callback routine. 7996 */ 7997 mac_tx_notify_handle_t 7998 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7999 void *ptr) 8000 { 8001 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 8002 mac_tx_notify_cb_t *mtnfp = NULL; 8003 8004 i_mac_perim_enter(mcip->mci_mip); 8005 8006 if (callb_func != NULL) { 8007 /* Add a notify callback */ 8008 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 8009 } else { 8010 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 8011 } 8012 i_mac_perim_exit(mcip->mci_mip); 8013 8014 return ((mac_tx_notify_handle_t)mtnfp); 8015 } 8016 8017 void 8018 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 8019 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 8020 { 8021 mac_bridge_tx_cb = txf; 8022 mac_bridge_rx_cb = rxf; 8023 mac_bridge_ref_cb = reff; 8024 mac_bridge_ls_cb = lsf; 8025 } 8026 8027 int 8028 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 8029 { 8030 mac_impl_t *mip = (mac_impl_t *)mh; 8031 int retv; 8032 8033 mutex_enter(&mip->mi_bridge_lock); 8034 if (mip->mi_bridge_link == NULL) { 8035 mip->mi_bridge_link = link; 8036 retv = 0; 8037 } else { 8038 retv = EBUSY; 8039 } 8040 mutex_exit(&mip->mi_bridge_lock); 8041 if (retv == 0) { 8042 mac_poll_state_change(mh, B_FALSE); 8043 mac_capab_update(mh); 8044 } 8045 return (retv); 8046 } 8047 8048 /* 8049 * Disable bridging on the indicated link. 8050 */ 8051 void 8052 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 8053 { 8054 mac_impl_t *mip = (mac_impl_t *)mh; 8055 8056 mutex_enter(&mip->mi_bridge_lock); 8057 ASSERT(mip->mi_bridge_link == link); 8058 mip->mi_bridge_link = NULL; 8059 mutex_exit(&mip->mi_bridge_lock); 8060 mac_poll_state_change(mh, B_TRUE); 8061 mac_capab_update(mh); 8062 } 8063 8064 void 8065 mac_no_active(mac_handle_t mh) 8066 { 8067 mac_impl_t *mip = (mac_impl_t *)mh; 8068 8069 i_mac_perim_enter(mip); 8070 mip->mi_state_flags |= MIS_NO_ACTIVE; 8071 i_mac_perim_exit(mip); 8072 } 8073 8074 /* 8075 * Walk the primary VLAN clients whenever the primary's rings property 8076 * changes and update the mac_resource_props_t for the VLAN's client. 8077 * We need to do this since we don't support setting these properties 8078 * on the primary's VLAN clients, but the VLAN clients have to 8079 * follow the primary w.r.t the rings property. 8080 */ 8081 void 8082 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 8083 { 8084 mac_client_impl_t *vmcip; 8085 mac_resource_props_t *vmrp; 8086 8087 for (vmcip = mip->mi_clients_list; vmcip != NULL; 8088 vmcip = vmcip->mci_client_next) { 8089 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 8090 mac_client_vid((mac_client_handle_t)vmcip) == 8091 VLAN_ID_NONE) { 8092 continue; 8093 } 8094 vmrp = MCIP_RESOURCE_PROPS(vmcip); 8095 8096 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 8097 if (mrp->mrp_mask & MRP_RX_RINGS) 8098 vmrp->mrp_mask |= MRP_RX_RINGS; 8099 else if (vmrp->mrp_mask & MRP_RX_RINGS) 8100 vmrp->mrp_mask &= ~MRP_RX_RINGS; 8101 8102 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 8103 if (mrp->mrp_mask & MRP_TX_RINGS) 8104 vmrp->mrp_mask |= MRP_TX_RINGS; 8105 else if (vmrp->mrp_mask & MRP_TX_RINGS) 8106 vmrp->mrp_mask &= ~MRP_TX_RINGS; 8107 8108 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 8109 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 8110 else 8111 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 8112 8113 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 8114 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 8115 else 8116 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 8117 } 8118 } 8119 8120 /* 8121 * We are adding or removing ring(s) from a group. The source for taking 8122 * rings is the default group. The destination for giving rings back is 8123 * the default group. 8124 */ 8125 int 8126 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 8127 mac_group_t *defgrp) 8128 { 8129 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8130 uint_t modify; 8131 int count; 8132 mac_ring_t *ring; 8133 mac_ring_t *next; 8134 mac_impl_t *mip = mcip->mci_mip; 8135 mac_ring_t **rings; 8136 uint_t ringcnt; 8137 int i = 0; 8138 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 8139 int start; 8140 int end; 8141 mac_group_t *tgrp; 8142 int j; 8143 int rv = 0; 8144 8145 /* 8146 * If we are asked for just a group, we give 1 ring, else 8147 * the specified number of rings. 8148 */ 8149 if (rx_group) { 8150 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 8151 mrp->mrp_nrxrings; 8152 } else { 8153 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 8154 mrp->mrp_ntxrings; 8155 } 8156 8157 /* don't allow modifying rings for a share for now. */ 8158 ASSERT(mcip->mci_share == 0); 8159 8160 if (ringcnt == group->mrg_cur_count) 8161 return (0); 8162 8163 if (group->mrg_cur_count > ringcnt) { 8164 modify = group->mrg_cur_count - ringcnt; 8165 if (rx_group) { 8166 if (mip->mi_rx_donor_grp == group) { 8167 ASSERT(mac_is_primary_client(mcip)); 8168 mip->mi_rx_donor_grp = defgrp; 8169 } else { 8170 defgrp = mip->mi_rx_donor_grp; 8171 } 8172 } 8173 ring = group->mrg_rings; 8174 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 8175 KM_SLEEP); 8176 j = 0; 8177 for (count = 0; count < modify; count++) { 8178 next = ring->mr_next; 8179 rv = mac_group_mov_ring(mip, defgrp, ring); 8180 if (rv != 0) { 8181 /* cleanup on failure */ 8182 for (j = 0; j < count; j++) { 8183 (void) mac_group_mov_ring(mip, group, 8184 rings[j]); 8185 } 8186 break; 8187 } 8188 rings[j++] = ring; 8189 ring = next; 8190 } 8191 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 8192 return (rv); 8193 } 8194 if (ringcnt >= MAX_RINGS_PER_GROUP) 8195 return (EINVAL); 8196 8197 modify = ringcnt - group->mrg_cur_count; 8198 8199 if (rx_group) { 8200 if (group != mip->mi_rx_donor_grp) 8201 defgrp = mip->mi_rx_donor_grp; 8202 else 8203 /* 8204 * This is the donor group with all the remaining 8205 * rings. Default group now gets to be the donor 8206 */ 8207 mip->mi_rx_donor_grp = defgrp; 8208 start = 1; 8209 end = mip->mi_rx_group_count; 8210 } else { 8211 start = 0; 8212 end = mip->mi_tx_group_count - 1; 8213 } 8214 /* 8215 * If the default doesn't have any rings, lets see if we can 8216 * take rings given to an h/w client that doesn't need it. 8217 * For now, we just see if there is any one client that can donate 8218 * all the required rings. 8219 */ 8220 if (defgrp->mrg_cur_count < (modify + 1)) { 8221 for (i = start; i < end; i++) { 8222 if (rx_group) { 8223 tgrp = &mip->mi_rx_groups[i]; 8224 if (tgrp == group || tgrp->mrg_state < 8225 MAC_GROUP_STATE_RESERVED) { 8226 continue; 8227 } 8228 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 8229 continue; 8230 mcip = tgrp->mrg_clients->mgc_client; 8231 VERIFY3P(mcip, !=, NULL); 8232 if ((tgrp->mrg_cur_count + 8233 defgrp->mrg_cur_count) < (modify + 1)) { 8234 continue; 8235 } 8236 if (mac_rx_switch_group(mcip, tgrp, 8237 defgrp) != 0) { 8238 return (ENOSPC); 8239 } 8240 } else { 8241 tgrp = &mip->mi_tx_groups[i]; 8242 if (tgrp == group || tgrp->mrg_state < 8243 MAC_GROUP_STATE_RESERVED) { 8244 continue; 8245 } 8246 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 8247 continue; 8248 mcip = tgrp->mrg_clients->mgc_client; 8249 VERIFY3P(mcip, !=, NULL); 8250 if ((tgrp->mrg_cur_count + 8251 defgrp->mrg_cur_count) < (modify + 1)) { 8252 continue; 8253 } 8254 /* OK, we can switch this to s/w */ 8255 mac_tx_client_quiesce( 8256 (mac_client_handle_t)mcip); 8257 mac_tx_switch_group(mcip, tgrp, defgrp); 8258 mac_tx_client_restart( 8259 (mac_client_handle_t)mcip); 8260 } 8261 } 8262 if (defgrp->mrg_cur_count < (modify + 1)) 8263 return (ENOSPC); 8264 } 8265 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 8266 group, mcip->mci_share, modify)) != 0) { 8267 return (rv); 8268 } 8269 return (0); 8270 } 8271 8272 /* 8273 * Given the poolname in mac_resource_props, find the cpupart 8274 * that is associated with this pool. The cpupart will be used 8275 * later for finding the cpus to be bound to the networking threads. 8276 * 8277 * use_default is set B_TRUE if pools are enabled and pool_default 8278 * is returned. This avoids a 2nd lookup to set the poolname 8279 * for pool-effective. 8280 * 8281 * returns: 8282 * 8283 * NULL - pools are disabled or if the 'cpus' property is set. 8284 * cpupart of pool_default - pools are enabled and the pool 8285 * is not available or poolname is blank 8286 * cpupart of named pool - pools are enabled and the pool 8287 * is available. 8288 */ 8289 cpupart_t * 8290 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 8291 { 8292 pool_t *pool; 8293 cpupart_t *cpupart; 8294 8295 *use_default = B_FALSE; 8296 8297 /* CPUs property is set */ 8298 if (mrp->mrp_mask & MRP_CPUS) 8299 return (NULL); 8300 8301 ASSERT(pool_lock_held()); 8302 8303 /* Pools are disabled, no pset */ 8304 if (pool_state == POOL_DISABLED) 8305 return (NULL); 8306 8307 /* Pools property is set */ 8308 if (mrp->mrp_mask & MRP_POOL) { 8309 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 8310 /* Pool not found */ 8311 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 8312 mrp->mrp_pool); 8313 *use_default = B_TRUE; 8314 pool = pool_default; 8315 } 8316 /* Pools property is not set */ 8317 } else { 8318 *use_default = B_TRUE; 8319 pool = pool_default; 8320 } 8321 8322 /* Find the CPU pset that corresponds to the pool */ 8323 mutex_enter(&cpu_lock); 8324 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 8325 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 8326 pool->pool_pset->pset_id); 8327 } 8328 mutex_exit(&cpu_lock); 8329 8330 return (cpupart); 8331 } 8332 8333 void 8334 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 8335 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 8336 { 8337 ASSERT(pool_lock_held()); 8338 8339 if (cpupart != NULL) { 8340 emrp->mrp_mask |= MRP_POOL; 8341 if (use_default) { 8342 (void) strcpy(emrp->mrp_pool, 8343 "pool_default"); 8344 } else { 8345 ASSERT(strlen(mrp->mrp_pool) != 0); 8346 (void) strcpy(emrp->mrp_pool, 8347 mrp->mrp_pool); 8348 } 8349 } else { 8350 emrp->mrp_mask &= ~MRP_POOL; 8351 bzero(emrp->mrp_pool, MAXPATHLEN); 8352 } 8353 } 8354 8355 struct mac_pool_arg { 8356 char mpa_poolname[MAXPATHLEN]; 8357 pool_event_t mpa_what; 8358 }; 8359 8360 /*ARGSUSED*/ 8361 static uint_t 8362 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 8363 { 8364 struct mac_pool_arg *mpa = arg; 8365 mac_impl_t *mip = (mac_impl_t *)val; 8366 mac_client_impl_t *mcip; 8367 mac_resource_props_t *mrp, *emrp; 8368 boolean_t pool_update = B_FALSE; 8369 boolean_t pool_clear = B_FALSE; 8370 boolean_t use_default = B_FALSE; 8371 cpupart_t *cpupart = NULL; 8372 8373 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8374 i_mac_perim_enter(mip); 8375 for (mcip = mip->mi_clients_list; mcip != NULL; 8376 mcip = mcip->mci_client_next) { 8377 pool_update = B_FALSE; 8378 pool_clear = B_FALSE; 8379 use_default = B_FALSE; 8380 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8381 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8382 8383 /* 8384 * When pools are enabled 8385 */ 8386 if ((mpa->mpa_what == POOL_E_ENABLE) && 8387 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8388 mrp->mrp_mask |= MRP_POOL; 8389 pool_update = B_TRUE; 8390 } 8391 8392 /* 8393 * When pools are disabled 8394 */ 8395 if ((mpa->mpa_what == POOL_E_DISABLE) && 8396 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8397 mrp->mrp_mask |= MRP_POOL; 8398 pool_clear = B_TRUE; 8399 } 8400 8401 /* 8402 * Look for links with the pool property set and the poolname 8403 * matching the one which is changing. 8404 */ 8405 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8406 /* 8407 * The pool associated with the link has changed. 8408 */ 8409 if (mpa->mpa_what == POOL_E_CHANGE) { 8410 mrp->mrp_mask |= MRP_POOL; 8411 pool_update = B_TRUE; 8412 } 8413 } 8414 8415 /* 8416 * This link is associated with pool_default and 8417 * pool_default has changed. 8418 */ 8419 if ((mpa->mpa_what == POOL_E_CHANGE) && 8420 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8421 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8422 mrp->mrp_mask |= MRP_POOL; 8423 pool_update = B_TRUE; 8424 } 8425 8426 /* 8427 * Get new list of cpus for the pool, bind network 8428 * threads to new list of cpus and update resources. 8429 */ 8430 if (pool_update) { 8431 if (MCIP_DATAPATH_SETUP(mcip)) { 8432 pool_lock(); 8433 cpupart = mac_pset_find(mrp, &use_default); 8434 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8435 mac_rx_deliver, mcip, NULL, cpupart); 8436 mac_set_pool_effective(use_default, cpupart, 8437 mrp, emrp); 8438 pool_unlock(); 8439 } 8440 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8441 B_FALSE); 8442 } 8443 8444 /* 8445 * Clear the effective pool and bind network threads 8446 * to any available CPU. 8447 */ 8448 if (pool_clear) { 8449 if (MCIP_DATAPATH_SETUP(mcip)) { 8450 emrp->mrp_mask &= ~MRP_POOL; 8451 bzero(emrp->mrp_pool, MAXPATHLEN); 8452 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8453 mac_rx_deliver, mcip, NULL, NULL); 8454 } 8455 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8456 B_FALSE); 8457 } 8458 } 8459 i_mac_perim_exit(mip); 8460 kmem_free(mrp, sizeof (*mrp)); 8461 return (MH_WALK_CONTINUE); 8462 } 8463 8464 static void 8465 mac_pool_update(void *arg) 8466 { 8467 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8468 kmem_free(arg, sizeof (struct mac_pool_arg)); 8469 } 8470 8471 /* 8472 * Callback function to be executed when a noteworthy pool event 8473 * takes place. 8474 */ 8475 /* ARGSUSED */ 8476 static void 8477 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8478 { 8479 pool_t *pool; 8480 char *poolname = NULL; 8481 struct mac_pool_arg *mpa; 8482 8483 pool_lock(); 8484 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8485 8486 switch (what) { 8487 case POOL_E_ENABLE: 8488 case POOL_E_DISABLE: 8489 break; 8490 8491 case POOL_E_CHANGE: 8492 pool = pool_lookup_pool_by_id(id); 8493 if (pool == NULL) { 8494 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8495 pool_unlock(); 8496 return; 8497 } 8498 pool_get_name(pool, &poolname); 8499 (void) strlcpy(mpa->mpa_poolname, poolname, 8500 sizeof (mpa->mpa_poolname)); 8501 break; 8502 8503 default: 8504 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8505 pool_unlock(); 8506 return; 8507 } 8508 pool_unlock(); 8509 8510 mpa->mpa_what = what; 8511 8512 mac_pool_update(mpa); 8513 } 8514 8515 /* 8516 * Set effective rings property. This could be called from datapath_setup/ 8517 * datapath_teardown or set-linkprop. 8518 * If the group is reserved we just go ahead and set the effective rings. 8519 * Additionally, for TX this could mean the default group has lost/gained 8520 * some rings, so if the default group is reserved, we need to adjust the 8521 * effective rings for the default group clients. For RX, if we are working 8522 * with the non-default group, we just need to reset the effective props 8523 * for the default group clients. 8524 */ 8525 void 8526 mac_set_rings_effective(mac_client_impl_t *mcip) 8527 { 8528 mac_impl_t *mip = mcip->mci_mip; 8529 mac_group_t *grp; 8530 mac_group_t *defgrp; 8531 flow_entry_t *flent = mcip->mci_flent; 8532 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8533 mac_grp_client_t *mgcp; 8534 mac_client_impl_t *gmcip; 8535 8536 grp = flent->fe_rx_ring_group; 8537 if (grp != NULL) { 8538 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8539 /* 8540 * If we have reserved a group, set the effective rings 8541 * to the ring count in the group. 8542 */ 8543 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8544 emrp->mrp_mask |= MRP_RX_RINGS; 8545 emrp->mrp_nrxrings = grp->mrg_cur_count; 8546 } 8547 8548 /* 8549 * We go through the clients in the shared group and 8550 * reset the effective properties. It is possible this 8551 * might have already been done for some client (i.e. 8552 * if some client is being moved to a group that is 8553 * already shared). The case where the default group is 8554 * RESERVED is taken care of above (note in the RX side if 8555 * there is a non-default group, the default group is always 8556 * SHARED). 8557 */ 8558 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8559 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8560 mgcp = grp->mrg_clients; 8561 else 8562 mgcp = defgrp->mrg_clients; 8563 while (mgcp != NULL) { 8564 gmcip = mgcp->mgc_client; 8565 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8566 if (emrp->mrp_mask & MRP_RX_RINGS) { 8567 emrp->mrp_mask &= ~MRP_RX_RINGS; 8568 emrp->mrp_nrxrings = 0; 8569 } 8570 mgcp = mgcp->mgc_next; 8571 } 8572 } 8573 } 8574 8575 /* Now the TX side */ 8576 grp = flent->fe_tx_ring_group; 8577 if (grp != NULL) { 8578 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8579 8580 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8581 emrp->mrp_mask |= MRP_TX_RINGS; 8582 emrp->mrp_ntxrings = grp->mrg_cur_count; 8583 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8584 mgcp = grp->mrg_clients; 8585 while (mgcp != NULL) { 8586 gmcip = mgcp->mgc_client; 8587 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8588 if (emrp->mrp_mask & MRP_TX_RINGS) { 8589 emrp->mrp_mask &= ~MRP_TX_RINGS; 8590 emrp->mrp_ntxrings = 0; 8591 } 8592 mgcp = mgcp->mgc_next; 8593 } 8594 } 8595 8596 /* 8597 * If the group is not the default group and the default 8598 * group is reserved, the ring count in the default group 8599 * might have changed, update it. 8600 */ 8601 if (grp != defgrp && 8602 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8603 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8604 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8605 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8606 } 8607 } 8608 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8609 } 8610 8611 /* 8612 * Check if the primary is in the default group. If so, see if we 8613 * can give it a an exclusive group now that another client is 8614 * being configured. We take the primary out of the default group 8615 * because the multicast/broadcast packets for the all the clients 8616 * will land in the default ring in the default group which means 8617 * any client in the default group, even if it is the only on in 8618 * the group, will lose exclusive access to the rings, hence 8619 * polling. 8620 */ 8621 mac_client_impl_t * 8622 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8623 { 8624 mac_impl_t *mip = mcip->mci_mip; 8625 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8626 flow_entry_t *flent = mcip->mci_flent; 8627 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8628 uint8_t *mac_addr; 8629 mac_group_t *ngrp; 8630 8631 /* 8632 * Check if the primary is in the default group, if not 8633 * or if it is explicitly configured to be in the default 8634 * group OR set the RX rings property, return. 8635 */ 8636 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8637 return (NULL); 8638 8639 /* 8640 * If the new client needs an exclusive group and we 8641 * don't have another for the primary, return. 8642 */ 8643 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8644 return (NULL); 8645 8646 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8647 /* 8648 * We call this when we are setting up the datapath for 8649 * the first non-primary. 8650 */ 8651 ASSERT(mip->mi_nactiveclients == 2); 8652 8653 /* 8654 * OK, now we have the primary that needs to be relocated. 8655 */ 8656 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8657 if (ngrp == NULL) 8658 return (NULL); 8659 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8660 mac_stop_group(ngrp); 8661 return (NULL); 8662 } 8663 return (mcip); 8664 } 8665 8666 void 8667 mac_transceiver_init(mac_impl_t *mip) 8668 { 8669 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8670 &mip->mi_transceiver)) { 8671 /* 8672 * The driver set a flag that we don't know about. In this case, 8673 * we need to warn about that case and ignore this capability. 8674 */ 8675 if (mip->mi_transceiver.mct_flags != 0) { 8676 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8677 "flags to invalid value: 0x%x, ignoring " 8678 "capability", mip->mi_transceiver.mct_flags); 8679 bzero(&mip->mi_transceiver, 8680 sizeof (mac_capab_transceiver_t)); 8681 } 8682 } else { 8683 bzero(&mip->mi_transceiver, 8684 sizeof (mac_capab_transceiver_t)); 8685 } 8686 } 8687 8688 int 8689 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8690 { 8691 mac_impl_t *mip = (mac_impl_t *)mh; 8692 8693 ASSERT(MAC_PERIM_HELD(mh)); 8694 8695 if (mip->mi_transceiver.mct_ntransceivers == 0) 8696 return (ENOTSUP); 8697 8698 *countp = mip->mi_transceiver.mct_ntransceivers; 8699 return (0); 8700 } 8701 8702 int 8703 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8704 boolean_t *usable) 8705 { 8706 int ret; 8707 mac_transceiver_info_t info; 8708 8709 mac_impl_t *mip = (mac_impl_t *)mh; 8710 8711 ASSERT(MAC_PERIM_HELD(mh)); 8712 8713 if (mip->mi_transceiver.mct_info == NULL || 8714 mip->mi_transceiver.mct_ntransceivers == 0) 8715 return (ENOTSUP); 8716 8717 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8718 return (EINVAL); 8719 8720 bzero(&info, sizeof (mac_transceiver_info_t)); 8721 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8722 &info)) != 0) { 8723 return (ret); 8724 } 8725 8726 *present = info.mti_present; 8727 *usable = info.mti_usable; 8728 return (0); 8729 } 8730 8731 int 8732 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8733 size_t nbytes, off_t offset, size_t *nread) 8734 { 8735 int ret; 8736 size_t nr; 8737 mac_impl_t *mip = (mac_impl_t *)mh; 8738 8739 ASSERT(MAC_PERIM_HELD(mh)); 8740 8741 if (mip->mi_transceiver.mct_read == NULL) 8742 return (ENOTSUP); 8743 8744 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8745 return (EINVAL); 8746 8747 /* 8748 * All supported pages today are 256 bytes wide. Make sure offset + 8749 * nbytes never exceeds that. 8750 */ 8751 if (offset < 0 || offset >= 256 || nbytes > 256 || 8752 offset + nbytes > 256) 8753 return (EINVAL); 8754 8755 if (nread == NULL) 8756 nread = &nr; 8757 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8758 nbytes, offset, nread); 8759 if (ret == 0 && *nread > nbytes) { 8760 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8761 "%lu byte sized buffer, possible memory corruption", 8762 *nread, nbytes); 8763 } 8764 8765 return (ret); 8766 } 8767 8768 void 8769 mac_led_init(mac_impl_t *mip) 8770 { 8771 mip->mi_led_modes = MAC_LED_DEFAULT; 8772 8773 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8774 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8775 return; 8776 } 8777 8778 if (mip->mi_led.mcl_flags != 0) { 8779 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8780 "flags to invalid value: 0x%x, ignoring " 8781 "capability", mip->mi_transceiver.mct_flags); 8782 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8783 return; 8784 } 8785 8786 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8787 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8788 "supported modes to invalid value: 0x%x, ignoring " 8789 "capability", mip->mi_transceiver.mct_flags); 8790 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8791 return; 8792 } 8793 } 8794 8795 int 8796 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8797 { 8798 mac_impl_t *mip = (mac_impl_t *)mh; 8799 8800 ASSERT(MAC_PERIM_HELD(mh)); 8801 8802 if (mip->mi_led.mcl_set == NULL) 8803 return (ENOTSUP); 8804 8805 *supported = mip->mi_led.mcl_modes; 8806 *active = mip->mi_led_modes; 8807 8808 return (0); 8809 } 8810 8811 /* 8812 * Update and multiplex the various LED requests. We only ever send one LED to 8813 * the underlying driver at a time. As such, we end up multiplexing all 8814 * requested states and picking one to send down to the driver. 8815 */ 8816 int 8817 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8818 { 8819 int ret; 8820 mac_led_mode_t driver; 8821 8822 mac_impl_t *mip = (mac_impl_t *)mh; 8823 8824 ASSERT(MAC_PERIM_HELD(mh)); 8825 8826 /* 8827 * If we've been passed a desired value of zero, that indicates that 8828 * we're basically resetting to the value of zero, which is our default 8829 * value. 8830 */ 8831 if (desired == 0) 8832 desired = MAC_LED_DEFAULT; 8833 8834 if (mip->mi_led.mcl_set == NULL) 8835 return (ENOTSUP); 8836 8837 /* 8838 * Catch both values that we don't know about and those that the driver 8839 * doesn't support. 8840 */ 8841 if ((desired & ~MAC_LED_ALL) != 0) 8842 return (EINVAL); 8843 8844 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8845 return (ENOTSUP); 8846 8847 /* 8848 * If we have the same value, then there is nothing to do. 8849 */ 8850 if (desired == mip->mi_led_modes) 8851 return (0); 8852 8853 /* 8854 * Based on the desired value, determine what to send to the driver. We 8855 * only will send a single bit to the driver at any given time. IDENT 8856 * takes priority over OFF or ON. We also let OFF take priority over the 8857 * rest. 8858 */ 8859 if (desired & MAC_LED_IDENT) { 8860 driver = MAC_LED_IDENT; 8861 } else if (desired & MAC_LED_OFF) { 8862 driver = MAC_LED_OFF; 8863 } else if (desired & MAC_LED_ON) { 8864 driver = MAC_LED_ON; 8865 } else { 8866 driver = MAC_LED_DEFAULT; 8867 } 8868 8869 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8870 mip->mi_led_modes = desired; 8871 } 8872 8873 return (ret); 8874 } 8875 8876 /* 8877 * Send packets through the Tx ring ('mrh') or through the default 8878 * handler if no ring is specified. Before passing the packet down to 8879 * the MAC provider, emulate any hardware offloads which have been 8880 * requested but are not supported by the provider. 8881 */ 8882 mblk_t * 8883 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp) 8884 { 8885 mac_impl_t *mip = (mac_impl_t *)mh; 8886 8887 if (mrh == NULL) 8888 mrh = mip->mi_default_tx_ring; 8889 8890 if (mrh == NULL) 8891 return (mip->mi_tx(mip->mi_driver, mp)); 8892 else 8893 return (mac_hwring_tx(mrh, mp)); 8894 } 8895 8896 /* 8897 * This is the final stop before reaching the underlying MAC provider. 8898 * This is also where the bridging hook is inserted. Packets that are 8899 * bridged will return through mac_bridge_tx(), with rh nulled out if 8900 * the bridge chooses to send output on a different link due to 8901 * forwarding. 8902 */ 8903 mblk_t * 8904 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp, 8905 mac_client_impl_t *mcip) 8906 { 8907 /* 8908 * If there is a bound Hybrid I/O share, send packets through 8909 * the default tx ring. When there's a bound Hybrid I/O share, 8910 * the tx rings of this client are mapped in the guest domain 8911 * and not accessible from here. 8912 */ 8913 if (mcip->mci_state_flags & MCIS_SHARE_BOUND) 8914 rh = mip->mi_default_tx_ring; 8915 8916 if (mip->mi_promisc_list != NULL) 8917 mac_promisc_dispatch(mip, mp, mcip, B_FALSE); 8918 8919 if (mip->mi_bridge_link == NULL) 8920 return (mac_ring_tx((mac_handle_t)mip, rh, mp)); 8921 else 8922 return (mac_bridge_tx(mip, rh, mp)); 8923 } 8924