xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 80f1b0f5d7bc2c2f91ce68ea6379c779a03c595e)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.3";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 
96 /*
97  * Local routines
98  */
99 static boolean_t e1000g_reset_adapter(struct e1000g *);
100 static void e1000g_tx_clean(struct e1000g *);
101 static void e1000g_rx_clean(struct e1000g *);
102 static void e1000g_link_timer(void *);
103 static void e1000g_local_timer(void *);
104 static boolean_t e1000g_link_check(struct e1000g *);
105 static boolean_t e1000g_stall_check(struct e1000g *);
106 static void e1000g_smartspeed(struct e1000g *);
107 static void e1000g_get_conf(struct e1000g *);
108 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
109 static void enable_watchdog_timer(struct e1000g *);
110 static void disable_watchdog_timer(struct e1000g *);
111 static void start_watchdog_timer(struct e1000g *);
112 static void restart_watchdog_timer(struct e1000g *);
113 static void stop_watchdog_timer(struct e1000g *);
114 static void stop_link_timer(struct e1000g *);
115 static void stop_82547_timer(e1000g_tx_ring_t *);
116 static void e1000g_force_speed_duplex(struct e1000g *);
117 static void e1000g_get_max_frame_size(struct e1000g *);
118 static boolean_t is_valid_mac_addr(uint8_t *);
119 static void e1000g_unattach(dev_info_t *, struct e1000g *);
120 #ifdef E1000G_DEBUG
121 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
122 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
123 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
124 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
125 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
126     struct iocblk *, mblk_t *);
127 #endif
128 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
129     struct iocblk *, mblk_t *);
130 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
131 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
132 static void e1000g_set_internal_loopback(struct e1000g *);
133 static void e1000g_set_external_loopback_1000(struct e1000g *);
134 static void e1000g_set_external_loopback_100(struct e1000g *);
135 static void e1000g_set_external_loopback_10(struct e1000g *);
136 static int e1000g_add_intrs(struct e1000g *);
137 static int e1000g_intr_add(struct e1000g *, int);
138 static int e1000g_rem_intrs(struct e1000g *);
139 static int e1000g_enable_intrs(struct e1000g *);
140 static int e1000g_disable_intrs(struct e1000g *);
141 static boolean_t e1000g_link_up(struct e1000g *);
142 #ifdef __sparc
143 static boolean_t e1000g_find_mac_address(struct e1000g *);
144 #endif
145 static void e1000g_get_phy_state(struct e1000g *);
146 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
147 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
148     const void *impl_data);
149 static void e1000g_fm_init(struct e1000g *Adapter);
150 static void e1000g_fm_fini(struct e1000g *Adapter);
151 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
152 static void e1000g_param_sync(struct e1000g *);
153 static void e1000g_get_driver_control(struct e1000_hw *);
154 static void e1000g_release_driver_control(struct e1000_hw *);
155 static void e1000g_restore_promisc(struct e1000g *Adapter);
156 
157 mac_priv_prop_t e1000g_priv_props[] = {
158 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
159 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
160 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
161 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
162 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
164 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
167 	{"_intr_adaptive", MAC_PROP_PERM_RW},
168 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
169 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
170 };
171 #define	E1000G_MAX_PRIV_PROPS	\
172 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
173 
174 
175 static struct cb_ops cb_ws_ops = {
176 	nulldev,		/* cb_open */
177 	nulldev,		/* cb_close */
178 	nodev,			/* cb_strategy */
179 	nodev,			/* cb_print */
180 	nodev,			/* cb_dump */
181 	nodev,			/* cb_read */
182 	nodev,			/* cb_write */
183 	nodev,			/* cb_ioctl */
184 	nodev,			/* cb_devmap */
185 	nodev,			/* cb_mmap */
186 	nodev,			/* cb_segmap */
187 	nochpoll,		/* cb_chpoll */
188 	ddi_prop_op,		/* cb_prop_op */
189 	NULL,			/* cb_stream */
190 	D_MP | D_HOTPLUG,	/* cb_flag */
191 	CB_REV,			/* cb_rev */
192 	nodev,			/* cb_aread */
193 	nodev			/* cb_awrite */
194 };
195 
196 static struct dev_ops ws_ops = {
197 	DEVO_REV,		/* devo_rev */
198 	0,			/* devo_refcnt */
199 	NULL,			/* devo_getinfo */
200 	nulldev,		/* devo_identify */
201 	nulldev,		/* devo_probe */
202 	e1000g_attach,		/* devo_attach */
203 	e1000g_detach,		/* devo_detach */
204 	nodev,			/* devo_reset */
205 	&cb_ws_ops,		/* devo_cb_ops */
206 	NULL,			/* devo_bus_ops */
207 	ddi_power,		/* devo_power */
208 	e1000g_quiesce		/* devo_quiesce */
209 };
210 
211 static struct modldrv modldrv = {
212 	&mod_driverops,		/* Type of module.  This one is a driver */
213 	ident,			/* Discription string */
214 	&ws_ops,		/* driver ops */
215 };
216 
217 static struct modlinkage modlinkage = {
218 	MODREV_1, &modldrv, NULL
219 };
220 
221 /* Access attributes for register mapping */
222 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
223 	DDI_DEVICE_ATTR_V0,
224 	DDI_STRUCTURE_LE_ACC,
225 	DDI_STRICTORDER_ACC,
226 	DDI_FLAGERR_ACC
227 };
228 
229 #define	E1000G_M_CALLBACK_FLAGS \
230 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
231 
232 static mac_callbacks_t e1000g_m_callbacks = {
233 	E1000G_M_CALLBACK_FLAGS,
234 	e1000g_m_stat,
235 	e1000g_m_start,
236 	e1000g_m_stop,
237 	e1000g_m_promisc,
238 	e1000g_m_multicst,
239 	NULL,
240 	e1000g_m_tx,
241 	e1000g_m_ioctl,
242 	e1000g_m_getcapab,
243 	NULL,
244 	NULL,
245 	e1000g_m_setprop,
246 	e1000g_m_getprop
247 };
248 
249 /*
250  * Global variables
251  */
252 uint32_t e1000g_mblks_pending = 0;
253 /*
254  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
255  * Here we maintain a private dev_info list if e1000g_force_detach is
256  * enabled. If we force the driver to detach while there are still some
257  * rx buffers retained in the upper layer, we have to keep a copy of the
258  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
259  * structure will be freed after the driver is detached. However when we
260  * finally free those rx buffers released by the upper layer, we need to
261  * refer to the dev_info to free the dma buffers. So we save a copy of
262  * the dev_info for this purpose. On x86 platform, we assume this copy
263  * of dev_info is always valid, but on SPARC platform, it could be invalid
264  * after the system board level DR operation. For this reason, the global
265  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
266  */
267 #ifdef __sparc
268 boolean_t e1000g_force_detach = B_FALSE;
269 #else
270 boolean_t e1000g_force_detach = B_TRUE;
271 #endif
272 private_devi_list_t *e1000g_private_devi_list = NULL;
273 
274 /*
275  * The rwlock is defined to protect the whole processing of rx recycling
276  * and the rx packets release in detach processing to make them mutually
277  * exclusive.
278  * The rx recycling processes different rx packets in different threads,
279  * so it will be protected with RW_READER and it won't block any other rx
280  * recycling threads.
281  * While the detach processing will be protected with RW_WRITER to make
282  * it mutually exclusive with the rx recycling.
283  */
284 krwlock_t e1000g_rx_detach_lock;
285 /*
286  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
287  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
288  * If there are many e1000g instances, the system may run out of DVMA
289  * resources during the initialization of the instances, then the flag will
290  * be changed to "USE_DMA". Because different e1000g instances are initialized
291  * in parallel, we need to use this lock to protect the flag.
292  */
293 krwlock_t e1000g_dma_type_lock;
294 
295 /*
296  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
297  * Based on the information from Intel, the 82546 chipset has some hardware
298  * problem. When one port is being reset and the other port is trying to
299  * access the eeprom, it could cause system hang or panic. To workaround this
300  * hardware problem, we use a global mutex to prevent such operations from
301  * happening simultaneously on different instances. This workaround is applied
302  * to all the devices supported by this driver.
303  */
304 kmutex_t e1000g_nvm_lock;
305 
306 /*
307  * Loadable module configuration entry points for the driver
308  */
309 
310 /*
311  * _init - module initialization
312  */
313 int
314 _init(void)
315 {
316 	int status;
317 
318 	mac_init_ops(&ws_ops, WSNAME);
319 	status = mod_install(&modlinkage);
320 	if (status != DDI_SUCCESS)
321 		mac_fini_ops(&ws_ops);
322 	else {
323 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
324 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
325 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
326 	}
327 
328 	return (status);
329 }
330 
331 /*
332  * _fini - module finalization
333  */
334 int
335 _fini(void)
336 {
337 	int status;
338 
339 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
340 	if (e1000g_mblks_pending != 0) {
341 		rw_exit(&e1000g_rx_detach_lock);
342 		return (EBUSY);
343 	}
344 	rw_exit(&e1000g_rx_detach_lock);
345 
346 	status = mod_remove(&modlinkage);
347 	if (status == DDI_SUCCESS) {
348 		mac_fini_ops(&ws_ops);
349 
350 		if (e1000g_force_detach) {
351 			private_devi_list_t *devi_node;
352 
353 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
354 			while (e1000g_private_devi_list != NULL) {
355 				devi_node = e1000g_private_devi_list;
356 				e1000g_private_devi_list =
357 				    e1000g_private_devi_list->next;
358 
359 				kmem_free(devi_node->priv_dip,
360 				    sizeof (struct dev_info));
361 				kmem_free(devi_node,
362 				    sizeof (private_devi_list_t));
363 			}
364 			rw_exit(&e1000g_rx_detach_lock);
365 		}
366 
367 		rw_destroy(&e1000g_rx_detach_lock);
368 		rw_destroy(&e1000g_dma_type_lock);
369 		mutex_destroy(&e1000g_nvm_lock);
370 	}
371 
372 	return (status);
373 }
374 
375 /*
376  * _info - module information
377  */
378 int
379 _info(struct modinfo *modinfop)
380 {
381 	return (mod_info(&modlinkage, modinfop));
382 }
383 
384 /*
385  * e1000g_attach - driver attach
386  *
387  * This function is the device-specific initialization entry
388  * point. This entry point is required and must be written.
389  * The DDI_ATTACH command must be provided in the attach entry
390  * point. When attach() is called with cmd set to DDI_ATTACH,
391  * all normal kernel services (such as kmem_alloc(9F)) are
392  * available for use by the driver.
393  *
394  * The attach() function will be called once for each instance
395  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
396  * Until attach() succeeds, the only driver entry points which
397  * may be called are open(9E) and getinfo(9E).
398  */
399 static int
400 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
401 {
402 	struct e1000g *Adapter;
403 	struct e1000_hw *hw;
404 	struct e1000g_osdep *osdep;
405 	int instance;
406 
407 	switch (cmd) {
408 	default:
409 		e1000g_log(NULL, CE_WARN,
410 		    "Unsupported command send to e1000g_attach... ");
411 		return (DDI_FAILURE);
412 
413 	case DDI_RESUME:
414 		return (e1000g_resume(devinfo));
415 
416 	case DDI_ATTACH:
417 		break;
418 	}
419 
420 	/*
421 	 * get device instance number
422 	 */
423 	instance = ddi_get_instance(devinfo);
424 
425 	/*
426 	 * Allocate soft data structure
427 	 */
428 	Adapter =
429 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
430 
431 	Adapter->dip = devinfo;
432 	Adapter->instance = instance;
433 	Adapter->tx_ring->adapter = Adapter;
434 	Adapter->rx_ring->adapter = Adapter;
435 
436 	hw = &Adapter->shared;
437 	osdep = &Adapter->osdep;
438 	hw->back = osdep;
439 	osdep->adapter = Adapter;
440 
441 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
442 
443 	/*
444 	 * Initialize for fma support
445 	 */
446 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
447 	    0, 0x0f,
448 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
449 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
450 	e1000g_fm_init(Adapter);
451 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
452 
453 	/*
454 	 * PCI Configure
455 	 */
456 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
457 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
458 		goto attach_fail;
459 	}
460 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
461 
462 	/*
463 	 * Setup hardware
464 	 */
465 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
466 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
467 		goto attach_fail;
468 	}
469 
470 	/*
471 	 * Map in the device registers.
472 	 */
473 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
474 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
475 		goto attach_fail;
476 	}
477 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
478 
479 	/*
480 	 * Initialize driver parameters
481 	 */
482 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
483 		goto attach_fail;
484 	}
485 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
486 
487 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
488 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
489 		goto attach_fail;
490 	}
491 
492 	/*
493 	 * Initialize interrupts
494 	 */
495 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
496 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
497 		goto attach_fail;
498 	}
499 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
500 
501 	/*
502 	 * Initialize mutex's for this device.
503 	 * Do this before enabling the interrupt handler and
504 	 * register the softint to avoid the condition where
505 	 * interrupt handler can try using uninitialized mutex
506 	 */
507 	e1000g_init_locks(Adapter);
508 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
509 
510 	/*
511 	 * Initialize Driver Counters
512 	 */
513 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
514 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
515 		goto attach_fail;
516 	}
517 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
518 
519 	/*
520 	 * Initialize chip hardware and software structures
521 	 */
522 	rw_enter(&Adapter->chip_lock, RW_WRITER);
523 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
524 		rw_exit(&Adapter->chip_lock);
525 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
526 		goto attach_fail;
527 	}
528 	rw_exit(&Adapter->chip_lock);
529 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
530 
531 	/*
532 	 * Register the driver to the MAC
533 	 */
534 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
535 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
536 		goto attach_fail;
537 	}
538 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
539 
540 	/*
541 	 * Now that mutex locks are initialized, and the chip is also
542 	 * initialized, enable interrupts.
543 	 */
544 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
545 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
546 		goto attach_fail;
547 	}
548 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
549 
550 	/*
551 	 * If e1000g_force_detach is enabled, in global private dip list,
552 	 * we will create a new entry, which maintains the priv_dip for DR
553 	 * supports after driver detached.
554 	 */
555 	if (e1000g_force_detach) {
556 		private_devi_list_t *devi_node;
557 
558 		Adapter->priv_dip =
559 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
560 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
561 		    sizeof (struct dev_info));
562 
563 		devi_node =
564 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
565 
566 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
567 		devi_node->priv_dip = Adapter->priv_dip;
568 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
569 		devi_node->next = e1000g_private_devi_list;
570 		e1000g_private_devi_list = devi_node;
571 		rw_exit(&e1000g_rx_detach_lock);
572 	}
573 
574 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
575 	Adapter->e1000g_state = E1000G_INITIALIZED;
576 
577 	return (DDI_SUCCESS);
578 
579 attach_fail:
580 	e1000g_unattach(devinfo, Adapter);
581 	return (DDI_FAILURE);
582 }
583 
584 static int
585 e1000g_register_mac(struct e1000g *Adapter)
586 {
587 	struct e1000_hw *hw = &Adapter->shared;
588 	mac_register_t *mac;
589 	int err;
590 
591 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
592 		return (DDI_FAILURE);
593 
594 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
595 	mac->m_driver = Adapter;
596 	mac->m_dip = Adapter->dip;
597 	mac->m_src_addr = hw->mac.addr;
598 	mac->m_callbacks = &e1000g_m_callbacks;
599 	mac->m_min_sdu = 0;
600 	mac->m_max_sdu = Adapter->default_mtu;
601 	mac->m_margin = VLAN_TAGSZ;
602 	mac->m_priv_props = e1000g_priv_props;
603 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
604 	mac->m_v12n = MAC_VIRT_LEVEL1;
605 
606 	err = mac_register(mac, &Adapter->mh);
607 	mac_free(mac);
608 
609 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
610 }
611 
612 static int
613 e1000g_identify_hardware(struct e1000g *Adapter)
614 {
615 	struct e1000_hw *hw = &Adapter->shared;
616 	struct e1000g_osdep *osdep = &Adapter->osdep;
617 
618 	/* Get the device id */
619 	hw->vendor_id =
620 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
621 	hw->device_id =
622 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
623 	hw->revision_id =
624 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
625 	hw->subsystem_device_id =
626 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
627 	hw->subsystem_vendor_id =
628 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
629 
630 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
631 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
632 		    "MAC type could not be set properly.");
633 		return (DDI_FAILURE);
634 	}
635 
636 	return (DDI_SUCCESS);
637 }
638 
639 static int
640 e1000g_regs_map(struct e1000g *Adapter)
641 {
642 	dev_info_t *devinfo = Adapter->dip;
643 	struct e1000_hw *hw = &Adapter->shared;
644 	struct e1000g_osdep *osdep = &Adapter->osdep;
645 	off_t mem_size;
646 
647 	/* Get size of adapter register memory */
648 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
649 	    DDI_SUCCESS) {
650 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
651 		    "ddi_dev_regsize for registers failed");
652 		return (DDI_FAILURE);
653 	}
654 
655 	/* Map adapter register memory */
656 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
657 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
658 	    &osdep->reg_handle)) != DDI_SUCCESS) {
659 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
660 		    "ddi_regs_map_setup for registers failed");
661 		goto regs_map_fail;
662 	}
663 
664 	/* ICH needs to map flash memory */
665 	if (hw->mac.type == e1000_ich8lan ||
666 	    hw->mac.type == e1000_ich9lan ||
667 	    hw->mac.type == e1000_ich10lan) {
668 		/* get flash size */
669 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
670 		    &mem_size) != DDI_SUCCESS) {
671 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 			    "ddi_dev_regsize for ICH flash failed");
673 			goto regs_map_fail;
674 		}
675 
676 		/* map flash in */
677 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
678 		    (caddr_t *)&hw->flash_address, 0,
679 		    mem_size, &e1000g_regs_acc_attr,
680 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
681 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 			    "ddi_regs_map_setup for ICH flash failed");
683 			goto regs_map_fail;
684 		}
685 	}
686 
687 	return (DDI_SUCCESS);
688 
689 regs_map_fail:
690 	if (osdep->reg_handle != NULL)
691 		ddi_regs_map_free(&osdep->reg_handle);
692 
693 	return (DDI_FAILURE);
694 }
695 
696 static int
697 e1000g_set_driver_params(struct e1000g *Adapter)
698 {
699 	struct e1000_hw *hw;
700 	uint32_t mem_bar, io_bar, bar64;
701 
702 	hw = &Adapter->shared;
703 
704 	/* Set MAC type and initialize hardware functions */
705 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
706 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
707 		    "Could not setup hardware functions");
708 		return (DDI_FAILURE);
709 	}
710 
711 	/* Get bus information */
712 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
713 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
714 		    "Could not get bus information");
715 		return (DDI_FAILURE);
716 	}
717 
718 	/* get mem_base addr */
719 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
720 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
721 
722 	/* get io_base addr */
723 	if (hw->mac.type >= e1000_82544) {
724 		if (bar64) {
725 			/* IO BAR is different for 64 bit BAR mode */
726 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
727 			    PCI_CONF_BASE4);
728 		} else {
729 			/* normal 32-bit BAR mode */
730 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
731 			    PCI_CONF_BASE2);
732 		}
733 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
734 	} else {
735 		/* no I/O access for adapters prior to 82544 */
736 		hw->io_base = 0x0;
737 	}
738 
739 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
740 
741 	hw->mac.autoneg_failed = B_TRUE;
742 
743 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
744 	hw->phy.autoneg_wait_to_complete = B_FALSE;
745 
746 	/* Adaptive IFS related changes */
747 	hw->mac.adaptive_ifs = B_TRUE;
748 
749 	/* Enable phy init script for IGP phy of 82541/82547 */
750 	if ((hw->mac.type == e1000_82547) ||
751 	    (hw->mac.type == e1000_82541) ||
752 	    (hw->mac.type == e1000_82547_rev_2) ||
753 	    (hw->mac.type == e1000_82541_rev_2))
754 		e1000_init_script_state_82541(hw, B_TRUE);
755 
756 	/* Enable the TTL workaround for 82541/82547 */
757 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
758 
759 #ifdef __sparc
760 	Adapter->strip_crc = B_TRUE;
761 #else
762 	Adapter->strip_crc = B_FALSE;
763 #endif
764 
765 	/* Get conf file properties */
766 	e1000g_get_conf(Adapter);
767 
768 	/* Get speed/duplex settings in conf file */
769 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
770 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
771 	e1000g_force_speed_duplex(Adapter);
772 
773 	/* Get Jumbo Frames settings in conf file */
774 	e1000g_get_max_frame_size(Adapter);
775 
776 	/* Set Rx/Tx buffer size */
777 	e1000g_set_bufsize(Adapter);
778 
779 	/* Master Latency Timer */
780 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
781 
782 	/* copper options */
783 	if (hw->phy.media_type == e1000_media_type_copper) {
784 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
785 		hw->phy.disable_polarity_correction = B_FALSE;
786 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
787 	}
788 
789 	/* The initial link state should be "unknown" */
790 	Adapter->link_state = LINK_STATE_UNKNOWN;
791 
792 	/* Initialize rx parameters */
793 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
794 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
795 
796 	/* Initialize tx parameters */
797 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
798 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
799 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
800 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
801 
802 	/* Initialize rx parameters */
803 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
804 
805 	return (DDI_SUCCESS);
806 }
807 
808 static void
809 e1000g_set_bufsize(struct e1000g *Adapter)
810 {
811 	struct e1000_mac_info *mac = &Adapter->shared.mac;
812 	uint64_t rx_size;
813 	uint64_t tx_size;
814 
815 	dev_info_t *devinfo = Adapter->dip;
816 #ifdef __sparc
817 	ulong_t iommu_pagesize;
818 #endif
819 	/* Get the system page size */
820 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
821 
822 #ifdef __sparc
823 	iommu_pagesize = dvma_pagesize(devinfo);
824 	if (iommu_pagesize != 0) {
825 		if (Adapter->sys_page_sz == iommu_pagesize) {
826 			if (iommu_pagesize > 0x4000)
827 				Adapter->sys_page_sz = 0x4000;
828 		} else {
829 			if (Adapter->sys_page_sz > iommu_pagesize)
830 				Adapter->sys_page_sz = iommu_pagesize;
831 		}
832 	}
833 	if (Adapter->lso_enable) {
834 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
835 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
836 	} else {
837 		Adapter->dvma_page_num = Adapter->max_frame_size /
838 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
839 	}
840 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
841 #endif
842 
843 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
844 
845 	if (Adapter->mem_workaround_82546 &&
846 	    ((mac->type == e1000_82545) ||
847 	    (mac->type == e1000_82546) ||
848 	    (mac->type == e1000_82546_rev_3))) {
849 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
850 	} else {
851 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
852 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
853 		    (rx_size <= FRAME_SIZE_UPTO_4K))
854 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
855 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
856 		    (rx_size <= FRAME_SIZE_UPTO_8K))
857 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
858 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
859 		    (rx_size <= FRAME_SIZE_UPTO_16K))
860 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
861 		else
862 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
863 	}
864 
865 	tx_size = Adapter->max_frame_size;
866 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
867 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
868 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
869 	    (tx_size <= FRAME_SIZE_UPTO_8K))
870 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
871 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
872 	    (tx_size <= FRAME_SIZE_UPTO_16K))
873 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
874 	else
875 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
876 
877 	/*
878 	 * For Wiseman adapters we have an requirement of having receive
879 	 * buffers aligned at 256 byte boundary. Since Livengood does not
880 	 * require this and forcing it for all hardwares will have
881 	 * performance implications, I am making it applicable only for
882 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
883 	 * it is okay to have normal frames...but it does involve a
884 	 * potential risk where we may loose data if buffer is not
885 	 * aligned...so all wiseman boards to have 256 byte aligned
886 	 * buffers
887 	 */
888 	if (mac->type < e1000_82543)
889 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
890 	else
891 		Adapter->rx_buf_align = 1;
892 }
893 
894 /*
895  * e1000g_detach - driver detach
896  *
897  * The detach() function is the complement of the attach routine.
898  * If cmd is set to DDI_DETACH, detach() is used to remove  the
899  * state  associated  with  a  given  instance of a device node
900  * prior to the removal of that instance from the system.
901  *
902  * The detach() function will be called once for each  instance
903  * of the device for which there has been a successful attach()
904  * once there are no longer  any  opens  on  the  device.
905  *
906  * Interrupts routine are disabled, All memory allocated by this
907  * driver are freed.
908  */
909 static int
910 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
911 {
912 	struct e1000g *Adapter;
913 	boolean_t rx_drain;
914 
915 	switch (cmd) {
916 	default:
917 		return (DDI_FAILURE);
918 
919 	case DDI_SUSPEND:
920 		return (e1000g_suspend(devinfo));
921 
922 	case DDI_DETACH:
923 		break;
924 	}
925 
926 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
927 	if (Adapter == NULL)
928 		return (DDI_FAILURE);
929 
930 	rx_drain = e1000g_rx_drain(Adapter);
931 	if (!rx_drain && !e1000g_force_detach)
932 		return (DDI_FAILURE);
933 
934 	if (mac_unregister(Adapter->mh) != 0) {
935 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
936 		return (DDI_FAILURE);
937 	}
938 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
939 
940 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
941 
942 	/*
943 	 * If e1000g_force_detach is enabled, driver detach is safe.
944 	 * We will let e1000g_free_priv_devi_node routine determine
945 	 * whether we need to free the priv_dip entry for current
946 	 * driver instance.
947 	 */
948 	if (e1000g_force_detach) {
949 		e1000g_free_priv_devi_node(Adapter, rx_drain);
950 	}
951 
952 	e1000g_unattach(devinfo, Adapter);
953 
954 	return (DDI_SUCCESS);
955 }
956 
957 /*
958  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
959  *
960  * If free_flag is true, that indicates the upper layer is not holding
961  * the rx buffers, we could free the priv_dip entry safely.
962  *
963  * Otherwise, we have to keep this entry even after driver detached,
964  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
965  * so that driver could free it while all of rx buffers are returned
966  * by upper layer later.
967  */
968 static void
969 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
970 {
971 	private_devi_list_t *devi_node, *devi_del;
972 
973 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
974 	ASSERT(e1000g_private_devi_list != NULL);
975 	ASSERT(Adapter->priv_dip != NULL);
976 
977 	devi_node = e1000g_private_devi_list;
978 	if (devi_node->priv_dip == Adapter->priv_dip) {
979 		if (free_flag) {
980 			e1000g_private_devi_list =
981 			    devi_node->next;
982 			kmem_free(devi_node->priv_dip,
983 			    sizeof (struct dev_info));
984 			kmem_free(devi_node,
985 			    sizeof (private_devi_list_t));
986 		} else {
987 			ASSERT(e1000g_mblks_pending != 0);
988 			devi_node->flag =
989 			    E1000G_PRIV_DEVI_DETACH;
990 		}
991 		rw_exit(&e1000g_rx_detach_lock);
992 		return;
993 	}
994 
995 	devi_node = e1000g_private_devi_list;
996 	while (devi_node->next != NULL) {
997 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
998 			if (free_flag) {
999 				devi_del = devi_node->next;
1000 				devi_node->next = devi_del->next;
1001 				kmem_free(devi_del->priv_dip,
1002 				    sizeof (struct dev_info));
1003 				kmem_free(devi_del,
1004 				    sizeof (private_devi_list_t));
1005 			} else {
1006 				ASSERT(e1000g_mblks_pending != 0);
1007 				devi_node->next->flag =
1008 				    E1000G_PRIV_DEVI_DETACH;
1009 			}
1010 			break;
1011 		}
1012 		devi_node = devi_node->next;
1013 	}
1014 	rw_exit(&e1000g_rx_detach_lock);
1015 }
1016 
1017 static void
1018 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1019 {
1020 	int result;
1021 
1022 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1023 		(void) e1000g_disable_intrs(Adapter);
1024 	}
1025 
1026 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1027 		(void) mac_unregister(Adapter->mh);
1028 	}
1029 
1030 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1031 		(void) e1000g_rem_intrs(Adapter);
1032 	}
1033 
1034 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1035 		(void) ddi_prop_remove_all(devinfo);
1036 	}
1037 
1038 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1039 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1040 	}
1041 
1042 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1043 		stop_link_timer(Adapter);
1044 
1045 		mutex_enter(&e1000g_nvm_lock);
1046 		result = e1000_reset_hw(&Adapter->shared);
1047 		mutex_exit(&e1000g_nvm_lock);
1048 
1049 		if (result != E1000_SUCCESS) {
1050 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1051 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1052 		}
1053 	}
1054 
1055 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1056 		if (Adapter->osdep.reg_handle != NULL)
1057 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1058 		if (Adapter->osdep.ich_flash_handle != NULL)
1059 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1060 	}
1061 
1062 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1063 		if (Adapter->osdep.cfg_handle != NULL)
1064 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1065 	}
1066 
1067 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1068 		e1000g_destroy_locks(Adapter);
1069 	}
1070 
1071 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1072 		e1000g_fm_fini(Adapter);
1073 	}
1074 
1075 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1076 
1077 	/*
1078 	 * Another hotplug spec requirement,
1079 	 * run ddi_set_driver_private(devinfo, null);
1080 	 */
1081 	ddi_set_driver_private(devinfo, NULL);
1082 }
1083 
1084 static void
1085 e1000g_init_locks(struct e1000g *Adapter)
1086 {
1087 	e1000g_tx_ring_t *tx_ring;
1088 	e1000g_rx_ring_t *rx_ring;
1089 
1090 	rw_init(&Adapter->chip_lock, NULL,
1091 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1092 	mutex_init(&Adapter->link_lock, NULL,
1093 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1094 	mutex_init(&Adapter->watchdog_lock, NULL,
1095 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1096 
1097 	tx_ring = Adapter->tx_ring;
1098 
1099 	mutex_init(&tx_ring->tx_lock, NULL,
1100 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1101 	mutex_init(&tx_ring->usedlist_lock, NULL,
1102 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1103 	mutex_init(&tx_ring->freelist_lock, NULL,
1104 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 
1106 	rx_ring = Adapter->rx_ring;
1107 
1108 	mutex_init(&rx_ring->rx_lock, NULL,
1109 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1110 	mutex_init(&rx_ring->freelist_lock, NULL,
1111 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1112 	mutex_init(&rx_ring->recycle_lock, NULL,
1113 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1114 }
1115 
1116 static void
1117 e1000g_destroy_locks(struct e1000g *Adapter)
1118 {
1119 	e1000g_tx_ring_t *tx_ring;
1120 	e1000g_rx_ring_t *rx_ring;
1121 
1122 	tx_ring = Adapter->tx_ring;
1123 	mutex_destroy(&tx_ring->tx_lock);
1124 	mutex_destroy(&tx_ring->usedlist_lock);
1125 	mutex_destroy(&tx_ring->freelist_lock);
1126 
1127 	rx_ring = Adapter->rx_ring;
1128 	mutex_destroy(&rx_ring->rx_lock);
1129 	mutex_destroy(&rx_ring->freelist_lock);
1130 	mutex_destroy(&rx_ring->recycle_lock);
1131 
1132 	mutex_destroy(&Adapter->link_lock);
1133 	mutex_destroy(&Adapter->watchdog_lock);
1134 	rw_destroy(&Adapter->chip_lock);
1135 }
1136 
1137 static int
1138 e1000g_resume(dev_info_t *devinfo)
1139 {
1140 	struct e1000g *Adapter;
1141 
1142 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1143 	if (Adapter == NULL)
1144 		e1000g_log(Adapter, CE_PANIC,
1145 		    "Instance pointer is null\n");
1146 
1147 	if (Adapter->dip != devinfo)
1148 		e1000g_log(Adapter, CE_PANIC,
1149 		    "Devinfo is not the same as saved devinfo\n");
1150 
1151 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1152 
1153 	if (Adapter->e1000g_state & E1000G_STARTED) {
1154 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1155 			rw_exit(&Adapter->chip_lock);
1156 			/*
1157 			 * We note the failure, but return success, as the
1158 			 * system is still usable without this controller.
1159 			 */
1160 			e1000g_log(Adapter, CE_WARN,
1161 			    "e1000g_resume: failed to restart controller\n");
1162 			return (DDI_SUCCESS);
1163 		}
1164 		/* Enable and start the watchdog timer */
1165 		enable_watchdog_timer(Adapter);
1166 	}
1167 
1168 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1169 
1170 	rw_exit(&Adapter->chip_lock);
1171 
1172 	return (DDI_SUCCESS);
1173 }
1174 
1175 static int
1176 e1000g_suspend(dev_info_t *devinfo)
1177 {
1178 	struct e1000g *Adapter;
1179 
1180 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1181 	if (Adapter == NULL)
1182 		return (DDI_FAILURE);
1183 
1184 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1185 
1186 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1187 
1188 	/* if the port isn't plumbed, we can simply return */
1189 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1190 		rw_exit(&Adapter->chip_lock);
1191 		return (DDI_SUCCESS);
1192 	}
1193 
1194 	e1000g_stop(Adapter, B_FALSE);
1195 
1196 	rw_exit(&Adapter->chip_lock);
1197 
1198 	/* Disable and stop all the timers */
1199 	disable_watchdog_timer(Adapter);
1200 	stop_link_timer(Adapter);
1201 	stop_82547_timer(Adapter->tx_ring);
1202 
1203 	return (DDI_SUCCESS);
1204 }
1205 
1206 static int
1207 e1000g_init(struct e1000g *Adapter)
1208 {
1209 	uint32_t pba;
1210 	uint32_t high_water;
1211 	struct e1000_hw *hw;
1212 	clock_t link_timeout;
1213 	int result;
1214 
1215 	hw = &Adapter->shared;
1216 
1217 	/*
1218 	 * reset to put the hardware in a known state
1219 	 * before we try to do anything with the eeprom
1220 	 */
1221 	mutex_enter(&e1000g_nvm_lock);
1222 	result = e1000_reset_hw(hw);
1223 	mutex_exit(&e1000g_nvm_lock);
1224 
1225 	if (result != E1000_SUCCESS) {
1226 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1227 		goto init_fail;
1228 	}
1229 
1230 	mutex_enter(&e1000g_nvm_lock);
1231 	result = e1000_validate_nvm_checksum(hw);
1232 	if (result < E1000_SUCCESS) {
1233 		/*
1234 		 * Some PCI-E parts fail the first check due to
1235 		 * the link being in sleep state.  Call it again,
1236 		 * if it fails a second time its a real issue.
1237 		 */
1238 		result = e1000_validate_nvm_checksum(hw);
1239 	}
1240 	mutex_exit(&e1000g_nvm_lock);
1241 
1242 	if (result < E1000_SUCCESS) {
1243 		e1000g_log(Adapter, CE_WARN,
1244 		    "Invalid NVM checksum. Please contact "
1245 		    "the vendor to update the NVM.");
1246 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1247 		goto init_fail;
1248 	}
1249 
1250 	result = 0;
1251 #ifdef __sparc
1252 	/*
1253 	 * First, we try to get the local ethernet address from OBP. If
1254 	 * failed, then we get it from the EEPROM of NIC card.
1255 	 */
1256 	result = e1000g_find_mac_address(Adapter);
1257 #endif
1258 	/* Get the local ethernet address. */
1259 	if (!result) {
1260 		mutex_enter(&e1000g_nvm_lock);
1261 		result = e1000_read_mac_addr(hw);
1262 		mutex_exit(&e1000g_nvm_lock);
1263 	}
1264 
1265 	if (result < E1000_SUCCESS) {
1266 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1267 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1268 		goto init_fail;
1269 	}
1270 
1271 	/* check for valid mac address */
1272 	if (!is_valid_mac_addr(hw->mac.addr)) {
1273 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1274 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1275 		goto init_fail;
1276 	}
1277 
1278 	/* Set LAA state for 82571 chipset */
1279 	e1000_set_laa_state_82571(hw, B_TRUE);
1280 
1281 	/* Master Latency Timer implementation */
1282 	if (Adapter->master_latency_timer) {
1283 		pci_config_put8(Adapter->osdep.cfg_handle,
1284 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1285 	}
1286 
1287 	if (hw->mac.type < e1000_82547) {
1288 		/*
1289 		 * Total FIFO is 64K
1290 		 */
1291 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1292 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1293 		else
1294 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1295 	} else if ((hw->mac.type == e1000_82571) ||
1296 	    (hw->mac.type == e1000_82572) ||
1297 	    (hw->mac.type == e1000_80003es2lan)) {
1298 		/*
1299 		 * Total FIFO is 48K
1300 		 */
1301 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1302 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1303 		else
1304 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1305 	} else if (hw->mac.type == e1000_82573) {
1306 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1307 	} else if (hw->mac.type == e1000_82574) {
1308 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1309 		pba = E1000_READ_REG(hw, E1000_PBA);
1310 	} else if (hw->mac.type == e1000_ich8lan) {
1311 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1312 	} else if (hw->mac.type == e1000_ich9lan) {
1313 		pba = E1000_PBA_10K;
1314 	} else if (hw->mac.type == e1000_ich10lan) {
1315 		pba = E1000_PBA_10K;
1316 	} else {
1317 		/*
1318 		 * Total FIFO is 40K
1319 		 */
1320 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1321 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1322 		else
1323 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1324 	}
1325 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1326 
1327 	/*
1328 	 * These parameters set thresholds for the adapter's generation(Tx)
1329 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1330 	 * settings.  Flow control is enabled or disabled in the configuration
1331 	 * file.
1332 	 * High-water mark is set down from the top of the rx fifo (not
1333 	 * sensitive to max_frame_size) and low-water is set just below
1334 	 * high-water mark.
1335 	 * The high water mark must be low enough to fit one full frame above
1336 	 * it in the rx FIFO.  Should be the lower of:
1337 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1338 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1339 	 * Rx FIFO size minus one full frame.
1340 	 */
1341 	high_water = min(((pba << 10) * 9 / 10),
1342 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1343 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1344 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1345 	    ((pba << 10) - Adapter->max_frame_size)));
1346 
1347 	hw->fc.high_water = high_water & 0xFFF8;
1348 	hw->fc.low_water = hw->fc.high_water - 8;
1349 
1350 	if (hw->mac.type == e1000_80003es2lan)
1351 		hw->fc.pause_time = 0xFFFF;
1352 	else
1353 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1354 	hw->fc.send_xon = B_TRUE;
1355 
1356 	/*
1357 	 * Reset the adapter hardware the second time.
1358 	 */
1359 	mutex_enter(&e1000g_nvm_lock);
1360 	result = e1000_reset_hw(hw);
1361 	mutex_exit(&e1000g_nvm_lock);
1362 
1363 	if (result != E1000_SUCCESS) {
1364 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1365 		goto init_fail;
1366 	}
1367 
1368 	/* disable wakeup control by default */
1369 	if (hw->mac.type >= e1000_82544)
1370 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1371 
1372 	/*
1373 	 * MWI should be disabled on 82546.
1374 	 */
1375 	if (hw->mac.type == e1000_82546)
1376 		e1000_pci_clear_mwi(hw);
1377 	else
1378 		e1000_pci_set_mwi(hw);
1379 
1380 	/*
1381 	 * Configure/Initialize hardware
1382 	 */
1383 	mutex_enter(&e1000g_nvm_lock);
1384 	result = e1000_init_hw(hw);
1385 	mutex_exit(&e1000g_nvm_lock);
1386 
1387 	if (result < E1000_SUCCESS) {
1388 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1389 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1390 		goto init_fail;
1391 	}
1392 
1393 	/*
1394 	 * Restore LED settings to the default from EEPROM
1395 	 * to meet the standard for Sun platforms.
1396 	 */
1397 	if ((hw->mac.type != e1000_82541) &&
1398 	    (hw->mac.type != e1000_82541_rev_2) &&
1399 	    (hw->mac.type != e1000_82547) &&
1400 	    (hw->mac.type != e1000_82547_rev_2))
1401 		(void) e1000_cleanup_led(hw);
1402 
1403 	/* Disable Smart Power Down */
1404 	phy_spd_state(hw, B_FALSE);
1405 
1406 	/* Make sure driver has control */
1407 	e1000g_get_driver_control(hw);
1408 
1409 	/*
1410 	 * Initialize unicast addresses.
1411 	 */
1412 	e1000g_init_unicst(Adapter);
1413 
1414 	/*
1415 	 * Setup and initialize the mctable structures.  After this routine
1416 	 * completes  Multicast table will be set
1417 	 */
1418 	e1000g_setup_multicast(Adapter);
1419 	msec_delay(5);
1420 
1421 	/*
1422 	 * Implement Adaptive IFS
1423 	 */
1424 	e1000_reset_adaptive(hw);
1425 
1426 	/* Setup Interrupt Throttling Register */
1427 	if (hw->mac.type >= e1000_82540) {
1428 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1429 	} else
1430 		Adapter->intr_adaptive = B_FALSE;
1431 
1432 	/* Start the timer for link setup */
1433 	if (hw->mac.autoneg)
1434 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1435 	else
1436 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1437 
1438 	mutex_enter(&Adapter->link_lock);
1439 	if (hw->phy.autoneg_wait_to_complete) {
1440 		Adapter->link_complete = B_TRUE;
1441 	} else {
1442 		Adapter->link_complete = B_FALSE;
1443 		Adapter->link_tid = timeout(e1000g_link_timer,
1444 		    (void *)Adapter, link_timeout);
1445 	}
1446 	mutex_exit(&Adapter->link_lock);
1447 
1448 	/* Enable PCI-Ex master */
1449 	if (hw->bus.type == e1000_bus_type_pci_express) {
1450 		e1000_enable_pciex_master(hw);
1451 	}
1452 
1453 	/* Save the state of the phy */
1454 	e1000g_get_phy_state(Adapter);
1455 
1456 	e1000g_param_sync(Adapter);
1457 
1458 	Adapter->init_count++;
1459 
1460 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1461 		goto init_fail;
1462 	}
1463 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1464 		goto init_fail;
1465 	}
1466 
1467 	Adapter->poll_mode = e1000g_poll_mode;
1468 
1469 	return (DDI_SUCCESS);
1470 
1471 init_fail:
1472 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1473 	return (DDI_FAILURE);
1474 }
1475 
1476 /*
1477  * Check if the link is up
1478  */
1479 static boolean_t
1480 e1000g_link_up(struct e1000g *Adapter)
1481 {
1482 	struct e1000_hw *hw;
1483 	boolean_t link_up;
1484 
1485 	hw = &Adapter->shared;
1486 
1487 	(void) e1000_check_for_link(hw);
1488 
1489 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1490 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1491 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1492 	    (hw->mac.serdes_has_link))) {
1493 		link_up = B_TRUE;
1494 	} else {
1495 		link_up = B_FALSE;
1496 	}
1497 
1498 	return (link_up);
1499 }
1500 
1501 static void
1502 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1503 {
1504 	struct iocblk *iocp;
1505 	struct e1000g *e1000gp;
1506 	enum ioc_reply status;
1507 
1508 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1509 	iocp->ioc_error = 0;
1510 	e1000gp = (struct e1000g *)arg;
1511 
1512 	ASSERT(e1000gp);
1513 	if (e1000gp == NULL) {
1514 		miocnak(q, mp, 0, EINVAL);
1515 		return;
1516 	}
1517 
1518 	rw_enter(&e1000gp->chip_lock, RW_READER);
1519 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1520 		rw_exit(&e1000gp->chip_lock);
1521 		miocnak(q, mp, 0, EINVAL);
1522 		return;
1523 	}
1524 	rw_exit(&e1000gp->chip_lock);
1525 
1526 	switch (iocp->ioc_cmd) {
1527 
1528 	case LB_GET_INFO_SIZE:
1529 	case LB_GET_INFO:
1530 	case LB_GET_MODE:
1531 	case LB_SET_MODE:
1532 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1533 		break;
1534 
1535 
1536 #ifdef E1000G_DEBUG
1537 	case E1000G_IOC_REG_PEEK:
1538 	case E1000G_IOC_REG_POKE:
1539 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1540 		break;
1541 	case E1000G_IOC_CHIP_RESET:
1542 		e1000gp->reset_count++;
1543 		if (e1000g_reset_adapter(e1000gp))
1544 			status = IOC_ACK;
1545 		else
1546 			status = IOC_INVAL;
1547 		break;
1548 #endif
1549 	default:
1550 		status = IOC_INVAL;
1551 		break;
1552 	}
1553 
1554 	/*
1555 	 * Decide how to reply
1556 	 */
1557 	switch (status) {
1558 	default:
1559 	case IOC_INVAL:
1560 		/*
1561 		 * Error, reply with a NAK and EINVAL or the specified error
1562 		 */
1563 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1564 		    EINVAL : iocp->ioc_error);
1565 		break;
1566 
1567 	case IOC_DONE:
1568 		/*
1569 		 * OK, reply already sent
1570 		 */
1571 		break;
1572 
1573 	case IOC_ACK:
1574 		/*
1575 		 * OK, reply with an ACK
1576 		 */
1577 		miocack(q, mp, 0, 0);
1578 		break;
1579 
1580 	case IOC_REPLY:
1581 		/*
1582 		 * OK, send prepared reply as ACK or NAK
1583 		 */
1584 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1585 		    M_IOCACK : M_IOCNAK;
1586 		qreply(q, mp);
1587 		break;
1588 	}
1589 }
1590 
1591 /*
1592  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1593  * capable of supporting only one interrupt and we shouldn't disable
1594  * the physical interrupt. In this case we let the interrupt come and
1595  * we queue the packets in the rx ring itself in case we are in polling
1596  * mode (better latency but slightly lower performance and a very
1597  * high intrrupt count in mpstat which is harmless).
1598  *
1599  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1600  * which can be disabled in poll mode. This gives better overall
1601  * throughput (compared to the mode above), shows very low interrupt
1602  * count but has slightly higher latency since we pick the packets when
1603  * the poll thread does polling.
1604  *
1605  * Currently, this flag should be enabled only while doing performance
1606  * measurement or when it can be guaranteed that entire NIC going
1607  * in poll mode will not harm any traffic like cluster heartbeat etc.
1608  */
1609 int e1000g_poll_mode = 0;
1610 
1611 /*
1612  * Called from the upper layers when driver is in polling mode to
1613  * pick up any queued packets. Care should be taken to not block
1614  * this thread.
1615  */
1616 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1617 {
1618 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1619 	mblk_t			*mp = NULL;
1620 	mblk_t			*tail;
1621 	struct e1000g 		*adapter;
1622 
1623 	adapter = rx_ring->adapter;
1624 
1625 	rw_enter(&adapter->chip_lock, RW_READER);
1626 
1627 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1628 		rw_exit(&adapter->chip_lock);
1629 		return (NULL);
1630 	}
1631 
1632 	mutex_enter(&rx_ring->rx_lock);
1633 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1634 	mutex_exit(&rx_ring->rx_lock);
1635 	rw_exit(&adapter->chip_lock);
1636 	return (mp);
1637 }
1638 
1639 static int
1640 e1000g_m_start(void *arg)
1641 {
1642 	struct e1000g *Adapter = (struct e1000g *)arg;
1643 
1644 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1645 
1646 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1647 		rw_exit(&Adapter->chip_lock);
1648 		return (ECANCELED);
1649 	}
1650 
1651 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1652 		rw_exit(&Adapter->chip_lock);
1653 		return (ENOTACTIVE);
1654 	}
1655 
1656 	Adapter->e1000g_state |= E1000G_STARTED;
1657 
1658 	rw_exit(&Adapter->chip_lock);
1659 
1660 	/* Enable and start the watchdog timer */
1661 	enable_watchdog_timer(Adapter);
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 e1000g_start(struct e1000g *Adapter, boolean_t global)
1668 {
1669 	if (global) {
1670 		/* Allocate dma resources for descriptors and buffers */
1671 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1672 			e1000g_log(Adapter, CE_WARN,
1673 			    "Alloc DMA resources failed");
1674 			return (DDI_FAILURE);
1675 		}
1676 		Adapter->rx_buffer_setup = B_FALSE;
1677 	}
1678 
1679 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1680 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1681 			e1000g_log(Adapter, CE_WARN,
1682 			    "Adapter initialization failed");
1683 			if (global)
1684 				e1000g_release_dma_resources(Adapter);
1685 			return (DDI_FAILURE);
1686 		}
1687 	}
1688 
1689 	/* Setup and initialize the transmit structures */
1690 	e1000g_tx_setup(Adapter);
1691 	msec_delay(5);
1692 
1693 	/* Setup and initialize the receive structures */
1694 	e1000g_rx_setup(Adapter);
1695 	msec_delay(5);
1696 
1697 	/* Restore the e1000g promiscuous mode */
1698 	e1000g_restore_promisc(Adapter);
1699 
1700 	e1000g_mask_interrupt(Adapter);
1701 
1702 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1703 
1704 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1705 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1706 		return (DDI_FAILURE);
1707 	}
1708 
1709 	return (DDI_SUCCESS);
1710 }
1711 
1712 static void
1713 e1000g_m_stop(void *arg)
1714 {
1715 	struct e1000g *Adapter = (struct e1000g *)arg;
1716 
1717 	/* Drain tx sessions */
1718 	(void) e1000g_tx_drain(Adapter);
1719 
1720 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1721 
1722 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1723 		rw_exit(&Adapter->chip_lock);
1724 		return;
1725 	}
1726 	Adapter->e1000g_state &= ~E1000G_STARTED;
1727 	e1000g_stop(Adapter, B_TRUE);
1728 
1729 	rw_exit(&Adapter->chip_lock);
1730 
1731 	/* Disable and stop all the timers */
1732 	disable_watchdog_timer(Adapter);
1733 	stop_link_timer(Adapter);
1734 	stop_82547_timer(Adapter->tx_ring);
1735 }
1736 
1737 static void
1738 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1739 {
1740 	int result;
1741 
1742 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1743 
1744 	/* Stop the chip and release pending resources */
1745 
1746 	/* Tell firmware driver is no longer in control */
1747 	e1000g_release_driver_control(&Adapter->shared);
1748 
1749 	e1000g_clear_all_interrupts(Adapter);
1750 
1751 	mutex_enter(&e1000g_nvm_lock);
1752 	result = e1000_reset_hw(&Adapter->shared);
1753 	mutex_exit(&e1000g_nvm_lock);
1754 
1755 	if (result != E1000_SUCCESS) {
1756 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1757 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1758 	}
1759 
1760 	/* Release resources still held by the TX descriptors */
1761 	e1000g_tx_clean(Adapter);
1762 
1763 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1764 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1765 
1766 	/* Clean the pending rx jumbo packet fragment */
1767 	e1000g_rx_clean(Adapter);
1768 
1769 	if (global)
1770 		e1000g_release_dma_resources(Adapter);
1771 }
1772 
1773 static void
1774 e1000g_rx_clean(struct e1000g *Adapter)
1775 {
1776 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1777 
1778 	if (rx_ring->rx_mblk != NULL) {
1779 		freemsg(rx_ring->rx_mblk);
1780 		rx_ring->rx_mblk = NULL;
1781 		rx_ring->rx_mblk_tail = NULL;
1782 		rx_ring->rx_mblk_len = 0;
1783 	}
1784 }
1785 
1786 static void
1787 e1000g_tx_clean(struct e1000g *Adapter)
1788 {
1789 	e1000g_tx_ring_t *tx_ring;
1790 	p_tx_sw_packet_t packet;
1791 	mblk_t *mp;
1792 	mblk_t *nmp;
1793 	uint32_t packet_count;
1794 
1795 	tx_ring = Adapter->tx_ring;
1796 
1797 	/*
1798 	 * Here we don't need to protect the lists using
1799 	 * the usedlist_lock and freelist_lock, for they
1800 	 * have been protected by the chip_lock.
1801 	 */
1802 	mp = NULL;
1803 	nmp = NULL;
1804 	packet_count = 0;
1805 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1806 	while (packet != NULL) {
1807 		if (packet->mp != NULL) {
1808 			/* Assemble the message chain */
1809 			if (mp == NULL) {
1810 				mp = packet->mp;
1811 				nmp = packet->mp;
1812 			} else {
1813 				nmp->b_next = packet->mp;
1814 				nmp = packet->mp;
1815 			}
1816 			/* Disconnect the message from the sw packet */
1817 			packet->mp = NULL;
1818 		}
1819 
1820 		e1000g_free_tx_swpkt(packet);
1821 		packet_count++;
1822 
1823 		packet = (p_tx_sw_packet_t)
1824 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1825 	}
1826 
1827 	if (mp != NULL)
1828 		freemsgchain(mp);
1829 
1830 	if (packet_count > 0) {
1831 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1832 		QUEUE_INIT_LIST(&tx_ring->used_list);
1833 
1834 		/* Setup TX descriptor pointers */
1835 		tx_ring->tbd_next = tx_ring->tbd_first;
1836 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1837 
1838 		/* Setup our HW Tx Head & Tail descriptor pointers */
1839 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1840 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1841 	}
1842 }
1843 
1844 static boolean_t
1845 e1000g_tx_drain(struct e1000g *Adapter)
1846 {
1847 	int i;
1848 	boolean_t done;
1849 	e1000g_tx_ring_t *tx_ring;
1850 
1851 	tx_ring = Adapter->tx_ring;
1852 
1853 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1854 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1855 		mutex_enter(&tx_ring->usedlist_lock);
1856 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1857 		mutex_exit(&tx_ring->usedlist_lock);
1858 
1859 		if (done)
1860 			break;
1861 
1862 		msec_delay(1);
1863 	}
1864 
1865 	return (done);
1866 }
1867 
1868 static boolean_t
1869 e1000g_rx_drain(struct e1000g *Adapter)
1870 {
1871 	e1000g_rx_ring_t *rx_ring;
1872 	p_rx_sw_packet_t packet;
1873 	boolean_t done;
1874 
1875 	rx_ring = Adapter->rx_ring;
1876 	done = B_TRUE;
1877 
1878 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1879 
1880 	while (rx_ring->pending_list != NULL) {
1881 		packet = rx_ring->pending_list;
1882 		rx_ring->pending_list =
1883 		    rx_ring->pending_list->next;
1884 
1885 		if (packet->flag == E1000G_RX_SW_STOP) {
1886 			packet->flag = E1000G_RX_SW_DETACH;
1887 			done = B_FALSE;
1888 		} else {
1889 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1890 			ASSERT(packet->mp == NULL);
1891 			e1000g_free_rx_sw_packet(packet);
1892 		}
1893 	}
1894 
1895 	rw_exit(&e1000g_rx_detach_lock);
1896 
1897 	return (done);
1898 }
1899 
1900 static boolean_t
1901 e1000g_reset_adapter(struct e1000g *Adapter)
1902 {
1903 	/* Disable and stop all the timers */
1904 	disable_watchdog_timer(Adapter);
1905 	stop_link_timer(Adapter);
1906 	stop_82547_timer(Adapter->tx_ring);
1907 
1908 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1909 
1910 	e1000g_stop(Adapter, B_FALSE);
1911 
1912 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1913 		rw_exit(&Adapter->chip_lock);
1914 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1915 			return (B_FALSE);
1916 	}
1917 
1918 	rw_exit(&Adapter->chip_lock);
1919 
1920 	/* Enable and start the watchdog timer */
1921 	enable_watchdog_timer(Adapter);
1922 
1923 	return (B_TRUE);
1924 }
1925 
1926 boolean_t
1927 e1000g_global_reset(struct e1000g *Adapter)
1928 {
1929 	/* Disable and stop all the timers */
1930 	disable_watchdog_timer(Adapter);
1931 	stop_link_timer(Adapter);
1932 	stop_82547_timer(Adapter->tx_ring);
1933 
1934 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1935 
1936 	e1000g_stop(Adapter, B_TRUE);
1937 
1938 	Adapter->init_count = 0;
1939 
1940 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1941 		rw_exit(&Adapter->chip_lock);
1942 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1943 		return (B_FALSE);
1944 	}
1945 
1946 	rw_exit(&Adapter->chip_lock);
1947 
1948 	/* Enable and start the watchdog timer */
1949 	enable_watchdog_timer(Adapter);
1950 
1951 	return (B_TRUE);
1952 }
1953 
1954 /*
1955  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1956  *
1957  * This interrupt service routine is for PCI-Express adapters.
1958  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1959  * bit is set.
1960  */
1961 static uint_t
1962 e1000g_intr_pciexpress(caddr_t arg)
1963 {
1964 	struct e1000g *Adapter;
1965 	uint32_t icr;
1966 
1967 	Adapter = (struct e1000g *)(uintptr_t)arg;
1968 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1969 
1970 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1971 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1972 
1973 	if (icr & E1000_ICR_INT_ASSERTED) {
1974 		/*
1975 		 * E1000_ICR_INT_ASSERTED bit was set:
1976 		 * Read(Clear) the ICR, claim this interrupt,
1977 		 * look for work to do.
1978 		 */
1979 		e1000g_intr_work(Adapter, icr);
1980 		return (DDI_INTR_CLAIMED);
1981 	} else {
1982 		/*
1983 		 * E1000_ICR_INT_ASSERTED bit was not set:
1984 		 * Don't claim this interrupt, return immediately.
1985 		 */
1986 		return (DDI_INTR_UNCLAIMED);
1987 	}
1988 }
1989 
1990 /*
1991  * e1000g_intr - ISR for PCI/PCI-X chipsets
1992  *
1993  * This interrupt service routine is for PCI/PCI-X adapters.
1994  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1995  * bit is set or not.
1996  */
1997 static uint_t
1998 e1000g_intr(caddr_t arg)
1999 {
2000 	struct e1000g *Adapter;
2001 	uint32_t icr;
2002 
2003 	Adapter = (struct e1000g *)(uintptr_t)arg;
2004 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2005 
2006 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2007 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2008 
2009 	if (icr) {
2010 		/*
2011 		 * Any bit was set in ICR:
2012 		 * Read(Clear) the ICR, claim this interrupt,
2013 		 * look for work to do.
2014 		 */
2015 		e1000g_intr_work(Adapter, icr);
2016 		return (DDI_INTR_CLAIMED);
2017 	} else {
2018 		/*
2019 		 * No bit was set in ICR:
2020 		 * Don't claim this interrupt, return immediately.
2021 		 */
2022 		return (DDI_INTR_UNCLAIMED);
2023 	}
2024 }
2025 
2026 /*
2027  * e1000g_intr_work - actual processing of ISR
2028  *
2029  * Read(clear) the ICR contents and call appropriate interrupt
2030  * processing routines.
2031  */
2032 static void
2033 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2034 {
2035 	struct e1000_hw *hw;
2036 	hw = &Adapter->shared;
2037 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2038 
2039 	Adapter->rx_pkt_cnt = 0;
2040 	Adapter->tx_pkt_cnt = 0;
2041 
2042 	rw_enter(&Adapter->chip_lock, RW_READER);
2043 
2044 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2045 		rw_exit(&Adapter->chip_lock);
2046 		return;
2047 	}
2048 	/*
2049 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2050 	 * ensure the receive routine will not execute when the adapter is
2051 	 * being reset.
2052 	 */
2053 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2054 		rw_exit(&Adapter->chip_lock);
2055 		return;
2056 	}
2057 
2058 	if (icr & E1000_ICR_RXT0) {
2059 		mblk_t			*mp = NULL;
2060 		mblk_t			*tail = NULL;
2061 		e1000g_rx_ring_t	*rx_ring;
2062 
2063 		rx_ring = Adapter->rx_ring;
2064 		mutex_enter(&rx_ring->rx_lock);
2065 		/*
2066 		 * Sometimes with legacy interrupts, it possible that
2067 		 * there is a single interrupt for Rx/Tx. In which
2068 		 * case, if poll flag is set, we shouldn't really
2069 		 * be doing Rx processing.
2070 		 */
2071 		if (!rx_ring->poll_flag)
2072 			mp = e1000g_receive(rx_ring, &tail,
2073 			    E1000G_CHAIN_NO_LIMIT);
2074 		mutex_exit(&rx_ring->rx_lock);
2075 		rw_exit(&Adapter->chip_lock);
2076 		if (mp != NULL)
2077 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2078 			    mp, rx_ring->ring_gen_num);
2079 	} else
2080 		rw_exit(&Adapter->chip_lock);
2081 
2082 	if (icr & E1000_ICR_TXDW) {
2083 		if (!Adapter->tx_intr_enable)
2084 			e1000g_clear_tx_interrupt(Adapter);
2085 
2086 		/* Recycle the tx descriptors */
2087 		rw_enter(&Adapter->chip_lock, RW_READER);
2088 		(void) e1000g_recycle(tx_ring);
2089 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2090 		rw_exit(&Adapter->chip_lock);
2091 
2092 		if (tx_ring->resched_needed &&
2093 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2094 			tx_ring->resched_needed = B_FALSE;
2095 			mac_tx_update(Adapter->mh);
2096 			E1000G_STAT(tx_ring->stat_reschedule);
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2102 	 * are checked to detect that the cable has been pulled out. For
2103 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2104 	 * are an indication that cable is not connected.
2105 	 */
2106 	if ((icr & E1000_ICR_RXSEQ) ||
2107 	    (icr & E1000_ICR_LSC) ||
2108 	    (icr & E1000_ICR_GPI_EN1)) {
2109 		boolean_t link_changed;
2110 		timeout_id_t tid = 0;
2111 
2112 		stop_watchdog_timer(Adapter);
2113 
2114 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2115 
2116 		/*
2117 		 * Because we got a link-status-change interrupt, force
2118 		 * e1000_check_for_link() to look at phy
2119 		 */
2120 		Adapter->shared.mac.get_link_status = B_TRUE;
2121 
2122 		/* e1000g_link_check takes care of link status change */
2123 		link_changed = e1000g_link_check(Adapter);
2124 
2125 		/* Get new phy state */
2126 		e1000g_get_phy_state(Adapter);
2127 
2128 		/*
2129 		 * If the link timer has not timed out, we'll not notify
2130 		 * the upper layer with any link state until the link is up.
2131 		 */
2132 		if (link_changed && !Adapter->link_complete) {
2133 			if (Adapter->link_state == LINK_STATE_UP) {
2134 				mutex_enter(&Adapter->link_lock);
2135 				Adapter->link_complete = B_TRUE;
2136 				tid = Adapter->link_tid;
2137 				Adapter->link_tid = 0;
2138 				mutex_exit(&Adapter->link_lock);
2139 			} else {
2140 				link_changed = B_FALSE;
2141 			}
2142 		}
2143 		rw_exit(&Adapter->chip_lock);
2144 
2145 		if (link_changed) {
2146 			if (tid != 0)
2147 				(void) untimeout(tid);
2148 
2149 			/*
2150 			 * Workaround for esb2. Data stuck in fifo on a link
2151 			 * down event. Stop receiver here and reset in watchdog.
2152 			 */
2153 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2154 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2155 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2156 				E1000_WRITE_REG(hw, E1000_RCTL,
2157 				    rctl & ~E1000_RCTL_EN);
2158 				e1000g_log(Adapter, CE_WARN,
2159 				    "ESB2 receiver disabled");
2160 				Adapter->esb2_workaround = B_TRUE;
2161 			}
2162 
2163 			mac_link_update(Adapter->mh, Adapter->link_state);
2164 		}
2165 
2166 		start_watchdog_timer(Adapter);
2167 	}
2168 }
2169 
2170 static void
2171 e1000g_init_unicst(struct e1000g *Adapter)
2172 {
2173 	struct e1000_hw *hw;
2174 	int slot;
2175 
2176 	hw = &Adapter->shared;
2177 
2178 	if (Adapter->init_count == 0) {
2179 		/* Initialize the multiple unicast addresses */
2180 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2181 
2182 		/* Workaround for an erratum of 82571 chipst */
2183 		if ((hw->mac.type == e1000_82571) &&
2184 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2185 			Adapter->unicst_total--;
2186 
2187 		Adapter->unicst_avail = Adapter->unicst_total;
2188 
2189 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2190 			/* Clear both the flag and MAC address */
2191 			Adapter->unicst_addr[slot].reg.high = 0;
2192 			Adapter->unicst_addr[slot].reg.low = 0;
2193 		}
2194 	} else {
2195 		/* Workaround for an erratum of 82571 chipst */
2196 		if ((hw->mac.type == e1000_82571) &&
2197 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2198 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2199 
2200 		/* Re-configure the RAR registers */
2201 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2202 			if (Adapter->unicst_addr[slot].mac.set == 1)
2203 				e1000_rar_set(hw,
2204 				    Adapter->unicst_addr[slot].mac.addr, slot);
2205 	}
2206 
2207 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2208 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2209 }
2210 
2211 static int
2212 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2213     int slot)
2214 {
2215 	struct e1000_hw *hw;
2216 
2217 	hw = &Adapter->shared;
2218 
2219 	/*
2220 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2221 	 * that requires the receiver to be in reset when any of the
2222 	 * receive address registers (RAR regs) are accessed.  The first
2223 	 * rev of Wiseman silicon also requires MWI to be disabled when
2224 	 * a global reset or a receive reset is issued.  So before we
2225 	 * initialize the RARs, we check the rev of the Wiseman controller
2226 	 * and work around any necessary HW errata.
2227 	 */
2228 	if ((hw->mac.type == e1000_82542) &&
2229 	    (hw->revision_id == E1000_REVISION_2)) {
2230 		e1000_pci_clear_mwi(hw);
2231 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2232 		msec_delay(5);
2233 	}
2234 	if (mac_addr == NULL) {
2235 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2236 		E1000_WRITE_FLUSH(hw);
2237 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2238 		E1000_WRITE_FLUSH(hw);
2239 		/* Clear both the flag and MAC address */
2240 		Adapter->unicst_addr[slot].reg.high = 0;
2241 		Adapter->unicst_addr[slot].reg.low = 0;
2242 	} else {
2243 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2244 		    ETHERADDRL);
2245 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2246 		Adapter->unicst_addr[slot].mac.set = 1;
2247 	}
2248 
2249 	/* Workaround for an erratum of 82571 chipst */
2250 	if (slot == 0) {
2251 		if ((hw->mac.type == e1000_82571) &&
2252 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2253 			if (mac_addr == NULL) {
2254 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2255 				    slot << 1, 0);
2256 				E1000_WRITE_FLUSH(hw);
2257 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2258 				    (slot << 1) + 1, 0);
2259 				E1000_WRITE_FLUSH(hw);
2260 			} else {
2261 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2262 				    LAST_RAR_ENTRY);
2263 			}
2264 	}
2265 
2266 	/*
2267 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2268 	 * put the receive in reset, and disabled MWI, to work around some
2269 	 * HW errata.  Now we should take the receiver out of reset, and
2270 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2271 	 */
2272 	if ((hw->mac.type == e1000_82542) &&
2273 	    (hw->revision_id == E1000_REVISION_2)) {
2274 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2275 		msec_delay(1);
2276 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2277 			e1000_pci_set_mwi(hw);
2278 		e1000g_rx_setup(Adapter);
2279 	}
2280 
2281 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2282 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2283 		return (EIO);
2284 	}
2285 
2286 	return (0);
2287 }
2288 
2289 static int
2290 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2291 {
2292 	struct e1000_hw *hw = &Adapter->shared;
2293 	int res = 0;
2294 
2295 	if ((multiaddr[0] & 01) == 0) {
2296 		res = EINVAL;
2297 		goto done;
2298 	}
2299 
2300 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2301 		res = ENOENT;
2302 		goto done;
2303 	}
2304 
2305 	bcopy(multiaddr,
2306 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2307 	Adapter->mcast_count++;
2308 
2309 	/*
2310 	 * Update the MC table in the hardware
2311 	 */
2312 	e1000g_clear_interrupt(Adapter);
2313 
2314 	e1000g_setup_multicast(Adapter);
2315 
2316 	if ((hw->mac.type == e1000_82542) &&
2317 	    (hw->revision_id == E1000_REVISION_2))
2318 		e1000g_rx_setup(Adapter);
2319 
2320 	e1000g_mask_interrupt(Adapter);
2321 
2322 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2323 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2324 		res = EIO;
2325 	}
2326 
2327 done:
2328 	return (res);
2329 }
2330 
2331 static int
2332 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2333 {
2334 	struct e1000_hw *hw = &Adapter->shared;
2335 	unsigned i;
2336 
2337 	for (i = 0; i < Adapter->mcast_count; i++) {
2338 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2339 		    ETHERADDRL) == 0) {
2340 			for (i++; i < Adapter->mcast_count; i++) {
2341 				Adapter->mcast_table[i - 1] =
2342 				    Adapter->mcast_table[i];
2343 			}
2344 			Adapter->mcast_count--;
2345 			break;
2346 		}
2347 	}
2348 
2349 	/*
2350 	 * Update the MC table in the hardware
2351 	 */
2352 	e1000g_clear_interrupt(Adapter);
2353 
2354 	e1000g_setup_multicast(Adapter);
2355 
2356 	if ((hw->mac.type == e1000_82542) &&
2357 	    (hw->revision_id == E1000_REVISION_2))
2358 		e1000g_rx_setup(Adapter);
2359 
2360 	e1000g_mask_interrupt(Adapter);
2361 
2362 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2363 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2364 		return (EIO);
2365 	}
2366 
2367 	return (0);
2368 }
2369 
2370 /*
2371  * e1000g_setup_multicast - setup multicast data structures
2372  *
2373  * This routine initializes all of the multicast related structures.
2374  */
2375 void
2376 e1000g_setup_multicast(struct e1000g *Adapter)
2377 {
2378 	uint8_t *mc_addr_list;
2379 	uint32_t mc_addr_count;
2380 	uint32_t rctl;
2381 	struct e1000_hw *hw;
2382 
2383 	hw = &Adapter->shared;
2384 
2385 	/*
2386 	 * The e1000g has the ability to do perfect filtering of 16
2387 	 * addresses. The driver uses one of the e1000g's 16 receive
2388 	 * address registers for its node/network/mac/individual address.
2389 	 * So, we have room for up to 15 multicast addresses in the CAM,
2390 	 * additional MC addresses are handled by the MTA (Multicast Table
2391 	 * Array)
2392 	 */
2393 
2394 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2395 
2396 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2397 
2398 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2399 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2400 		    "Adapter requested more than %d MC Addresses.\n",
2401 		    MAX_NUM_MULTICAST_ADDRESSES);
2402 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2403 	} else {
2404 		/*
2405 		 * Set the number of MC addresses that we are being
2406 		 * requested to use
2407 		 */
2408 		mc_addr_count = Adapter->mcast_count;
2409 	}
2410 	/*
2411 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2412 	 * hang  while writing to the receive address registers if the receiver
2413 	 * is not in reset before writing to the registers. Updating the RAR
2414 	 * is done during the setting up of the multicast table, hence the
2415 	 * receiver has to be put in reset before updating the multicast table
2416 	 * and then taken out of reset at the end
2417 	 */
2418 	/*
2419 	 * if WMI was enabled then dis able it before issueing the global
2420 	 * reset to the hardware.
2421 	 */
2422 	/*
2423 	 * Only required for WISEMAN_2_0
2424 	 */
2425 	if ((hw->mac.type == e1000_82542) &&
2426 	    (hw->revision_id == E1000_REVISION_2)) {
2427 		e1000_pci_clear_mwi(hw);
2428 		/*
2429 		 * The e1000g must be in reset before changing any RA
2430 		 * registers. Reset receive unit.  The chip will remain in
2431 		 * the reset state until software explicitly restarts it.
2432 		 */
2433 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2434 		/* Allow receiver time to go in to reset */
2435 		msec_delay(5);
2436 	}
2437 
2438 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2439 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2440 
2441 	/*
2442 	 * Only for Wiseman_2_0
2443 	 * If MWI was enabled then re-enable it after issueing (as we
2444 	 * disabled it up there) the receive reset command.
2445 	 * Wainwright does not have a receive reset command and only thing
2446 	 * close to it is global reset which will require tx setup also
2447 	 */
2448 	if ((hw->mac.type == e1000_82542) &&
2449 	    (hw->revision_id == E1000_REVISION_2)) {
2450 		/*
2451 		 * if WMI was enabled then reenable it after issueing the
2452 		 * global or receive reset to the hardware.
2453 		 */
2454 
2455 		/*
2456 		 * Take receiver out of reset
2457 		 * clear E1000_RCTL_RST bit (and all others)
2458 		 */
2459 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2460 		msec_delay(5);
2461 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2462 			e1000_pci_set_mwi(hw);
2463 	}
2464 
2465 	/*
2466 	 * Restore original value
2467 	 */
2468 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2469 }
2470 
2471 int
2472 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2473 {
2474 	struct e1000g *Adapter = (struct e1000g *)arg;
2475 	int result;
2476 
2477 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2478 
2479 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2480 		result = ECANCELED;
2481 		goto done;
2482 	}
2483 
2484 	result = (add) ? multicst_add(Adapter, addr)
2485 	    : multicst_remove(Adapter, addr);
2486 
2487 done:
2488 	rw_exit(&Adapter->chip_lock);
2489 	return (result);
2490 
2491 }
2492 
2493 int
2494 e1000g_m_promisc(void *arg, boolean_t on)
2495 {
2496 	struct e1000g *Adapter = (struct e1000g *)arg;
2497 	uint32_t rctl;
2498 
2499 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2500 
2501 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2502 		rw_exit(&Adapter->chip_lock);
2503 		return (ECANCELED);
2504 	}
2505 
2506 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2507 
2508 	if (on)
2509 		rctl |=
2510 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2511 	else
2512 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2513 
2514 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2515 
2516 	Adapter->e1000g_promisc = on;
2517 
2518 	rw_exit(&Adapter->chip_lock);
2519 
2520 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2521 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2522 		return (EIO);
2523 	}
2524 
2525 	return (0);
2526 }
2527 
2528 /*
2529  * Entry points to enable and disable interrupts at the granularity of
2530  * a group.
2531  * Turns the poll_mode for the whole adapter on and off to enable or
2532  * override the ring level polling control over the hardware interrupts.
2533  */
2534 static int
2535 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2536 {
2537 	struct e1000g		*adapter = (struct e1000g *)arg;
2538 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2539 
2540 	/*
2541 	 * Later interrupts at the granularity of the this ring will
2542 	 * invoke mac_rx() with NULL, indicating the need for another
2543 	 * software classification.
2544 	 * We have a single ring usable per adapter now, so we only need to
2545 	 * reset the rx handle for that one.
2546 	 * When more RX rings can be used, we should update each one of them.
2547 	 */
2548 	mutex_enter(&rx_ring->rx_lock);
2549 	rx_ring->mrh = NULL;
2550 	adapter->poll_mode = B_FALSE;
2551 	mutex_exit(&rx_ring->rx_lock);
2552 	return (0);
2553 }
2554 
2555 static int
2556 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2557 {
2558 	struct e1000g *adapter = (struct e1000g *)arg;
2559 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2560 
2561 	mutex_enter(&rx_ring->rx_lock);
2562 
2563 	/*
2564 	 * Later interrupts at the granularity of the this ring will
2565 	 * invoke mac_rx() with the handle for this ring;
2566 	 */
2567 	adapter->poll_mode = B_TRUE;
2568 	rx_ring->mrh = rx_ring->mrh_init;
2569 	mutex_exit(&rx_ring->rx_lock);
2570 	return (0);
2571 }
2572 
2573 /*
2574  * Entry points to enable and disable interrupts at the granularity of
2575  * a ring.
2576  * adapter poll_mode controls whether we actually proceed with hardware
2577  * interrupt toggling.
2578  */
2579 static int
2580 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2581 {
2582 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2583 	struct e1000g 		*adapter = rx_ring->adapter;
2584 	struct e1000_hw 	*hw = &adapter->shared;
2585 	uint32_t		intr_mask;
2586 
2587 	rw_enter(&adapter->chip_lock, RW_READER);
2588 
2589 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2590 		rw_exit(&adapter->chip_lock);
2591 		return (0);
2592 	}
2593 
2594 	mutex_enter(&rx_ring->rx_lock);
2595 	rx_ring->poll_flag = 0;
2596 	mutex_exit(&rx_ring->rx_lock);
2597 
2598 	/* Rx interrupt enabling for MSI and legacy */
2599 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2600 	intr_mask |= E1000_IMS_RXT0;
2601 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2602 	E1000_WRITE_FLUSH(hw);
2603 
2604 	/* Trigger a Rx interrupt to check Rx ring */
2605 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2606 	E1000_WRITE_FLUSH(hw);
2607 
2608 	rw_exit(&adapter->chip_lock);
2609 	return (0);
2610 }
2611 
2612 static int
2613 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2614 {
2615 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2616 	struct e1000g 		*adapter = rx_ring->adapter;
2617 	struct e1000_hw 	*hw = &adapter->shared;
2618 
2619 	rw_enter(&adapter->chip_lock, RW_READER);
2620 
2621 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2622 		rw_exit(&adapter->chip_lock);
2623 		return (0);
2624 	}
2625 	mutex_enter(&rx_ring->rx_lock);
2626 	rx_ring->poll_flag = 1;
2627 	mutex_exit(&rx_ring->rx_lock);
2628 
2629 	/* Rx interrupt disabling for MSI and legacy */
2630 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2631 	E1000_WRITE_FLUSH(hw);
2632 
2633 	rw_exit(&adapter->chip_lock);
2634 	return (0);
2635 }
2636 
2637 /*
2638  * e1000g_unicst_find - Find the slot for the specified unicast address
2639  */
2640 static int
2641 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2642 {
2643 	int slot;
2644 
2645 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2646 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2647 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2648 		    mac_addr, ETHERADDRL) == 0))
2649 				return (slot);
2650 	}
2651 
2652 	return (-1);
2653 }
2654 
2655 /*
2656  * Entry points to add and remove a MAC address to a ring group.
2657  * The caller takes care of adding and removing the MAC addresses
2658  * to the filter via these two routines.
2659  */
2660 
2661 static int
2662 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2663 {
2664 	struct e1000g *Adapter = (struct e1000g *)arg;
2665 	int slot, err;
2666 
2667 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2668 
2669 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2670 		rw_exit(&Adapter->chip_lock);
2671 		return (ECANCELED);
2672 	}
2673 
2674 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2675 		/* The same address is already in slot */
2676 		rw_exit(&Adapter->chip_lock);
2677 		return (0);
2678 	}
2679 
2680 	if (Adapter->unicst_avail == 0) {
2681 		/* no slots available */
2682 		rw_exit(&Adapter->chip_lock);
2683 		return (ENOSPC);
2684 	}
2685 
2686 	/* Search for a free slot */
2687 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2688 		if (Adapter->unicst_addr[slot].mac.set == 0)
2689 			break;
2690 	}
2691 	ASSERT(slot < Adapter->unicst_total);
2692 
2693 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2694 	if (err == 0)
2695 		Adapter->unicst_avail--;
2696 
2697 	rw_exit(&Adapter->chip_lock);
2698 
2699 	return (err);
2700 }
2701 
2702 static int
2703 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2704 {
2705 	struct e1000g *Adapter = (struct e1000g *)arg;
2706 	int slot, err;
2707 
2708 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2709 
2710 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2711 		rw_exit(&Adapter->chip_lock);
2712 		return (ECANCELED);
2713 	}
2714 
2715 	slot = e1000g_unicst_find(Adapter, mac_addr);
2716 	if (slot == -1) {
2717 		rw_exit(&Adapter->chip_lock);
2718 		return (EINVAL);
2719 	}
2720 
2721 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2722 
2723 	/* Clear this slot */
2724 	err = e1000g_unicst_set(Adapter, NULL, slot);
2725 	if (err == 0)
2726 		Adapter->unicst_avail++;
2727 
2728 	rw_exit(&Adapter->chip_lock);
2729 
2730 	return (err);
2731 }
2732 
2733 static int
2734 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2735 {
2736 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2737 
2738 	mutex_enter(&rx_ring->rx_lock);
2739 	rx_ring->ring_gen_num = mr_gen_num;
2740 	mutex_exit(&rx_ring->rx_lock);
2741 	return (0);
2742 }
2743 
2744 /*
2745  * Callback funtion for MAC layer to register all rings.
2746  *
2747  * The hardware supports a single group with currently only one ring
2748  * available.
2749  * Though not offering virtualization ability per se, exposing the
2750  * group/ring still enables the polling and interrupt toggling.
2751  */
2752 void
2753 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2754     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2755 {
2756 	struct e1000g *Adapter = (struct e1000g *)arg;
2757 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2758 	mac_intr_t *mintr;
2759 
2760 	/*
2761 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2762 	 * ask for any thing else.
2763 	 */
2764 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2765 
2766 	rx_ring->mrh = rx_ring->mrh_init = rh;
2767 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2768 	infop->mri_start = e1000g_ring_start;
2769 	infop->mri_stop = NULL;
2770 	infop->mri_poll = e1000g_poll_ring;
2771 
2772 	/* Ring level interrupts */
2773 	mintr = &infop->mri_intr;
2774 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2775 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2776 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2777 }
2778 
2779 static void
2780 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2781     mac_group_info_t *infop, mac_group_handle_t gh)
2782 {
2783 	struct e1000g *Adapter = (struct e1000g *)arg;
2784 	mac_intr_t *mintr;
2785 
2786 	/*
2787 	 * We advertised a single RX ring. Getting a request for anything else
2788 	 * signifies a bug in the MAC framework.
2789 	 */
2790 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2791 
2792 	Adapter->rx_group = gh;
2793 
2794 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2795 	infop->mgi_start = NULL;
2796 	infop->mgi_stop = NULL;
2797 	infop->mgi_addmac = e1000g_addmac;
2798 	infop->mgi_remmac = e1000g_remmac;
2799 	infop->mgi_count = 1;
2800 
2801 	/* Group level interrupts */
2802 	mintr = &infop->mgi_intr;
2803 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2804 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2805 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2806 }
2807 
2808 static boolean_t
2809 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2810 {
2811 	struct e1000g *Adapter = (struct e1000g *)arg;
2812 
2813 	switch (cap) {
2814 	case MAC_CAPAB_HCKSUM: {
2815 		uint32_t *txflags = cap_data;
2816 
2817 		if (Adapter->tx_hcksum_enable)
2818 			*txflags = HCKSUM_IPHDRCKSUM |
2819 			    HCKSUM_INET_PARTIAL;
2820 		else
2821 			return (B_FALSE);
2822 		break;
2823 	}
2824 
2825 	case MAC_CAPAB_LSO: {
2826 		mac_capab_lso_t *cap_lso = cap_data;
2827 
2828 		if (Adapter->lso_enable) {
2829 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2830 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2831 			    E1000_LSO_MAXLEN;
2832 		} else
2833 			return (B_FALSE);
2834 		break;
2835 	}
2836 	case MAC_CAPAB_RINGS: {
2837 		mac_capab_rings_t *cap_rings = cap_data;
2838 
2839 		/* No TX rings exposed yet */
2840 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
2841 			return (B_FALSE);
2842 
2843 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2844 		cap_rings->mr_rnum = 1;
2845 		cap_rings->mr_gnum = 1;
2846 		cap_rings->mr_rget = e1000g_fill_ring;
2847 		cap_rings->mr_gget = e1000g_fill_group;
2848 		break;
2849 	}
2850 	default:
2851 		return (B_FALSE);
2852 	}
2853 	return (B_TRUE);
2854 }
2855 
2856 static boolean_t
2857 e1000g_param_locked(mac_prop_id_t pr_num)
2858 {
2859 	/*
2860 	 * All en_* parameters are locked (read-only) while
2861 	 * the device is in any sort of loopback mode ...
2862 	 */
2863 	switch (pr_num) {
2864 		case MAC_PROP_EN_1000FDX_CAP:
2865 		case MAC_PROP_EN_1000HDX_CAP:
2866 		case MAC_PROP_EN_100FDX_CAP:
2867 		case MAC_PROP_EN_100HDX_CAP:
2868 		case MAC_PROP_EN_10FDX_CAP:
2869 		case MAC_PROP_EN_10HDX_CAP:
2870 		case MAC_PROP_AUTONEG:
2871 		case MAC_PROP_FLOWCTRL:
2872 			return (B_TRUE);
2873 	}
2874 	return (B_FALSE);
2875 }
2876 
2877 /*
2878  * callback function for set/get of properties
2879  */
2880 static int
2881 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2882     uint_t pr_valsize, const void *pr_val)
2883 {
2884 	struct e1000g *Adapter = arg;
2885 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2886 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2887 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2888 	int err = 0;
2889 	link_flowctrl_t flowctrl;
2890 	uint32_t cur_mtu, new_mtu;
2891 	uint64_t tmp = 0;
2892 
2893 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2894 
2895 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2896 		rw_exit(&Adapter->chip_lock);
2897 		return (ECANCELED);
2898 	}
2899 
2900 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2901 	    e1000g_param_locked(pr_num)) {
2902 		/*
2903 		 * All en_* parameters are locked (read-only)
2904 		 * while the device is in any sort of loopback mode.
2905 		 */
2906 		rw_exit(&Adapter->chip_lock);
2907 		return (EBUSY);
2908 	}
2909 
2910 	switch (pr_num) {
2911 		case MAC_PROP_EN_1000FDX_CAP:
2912 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2913 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2914 			goto reset;
2915 		case MAC_PROP_EN_100FDX_CAP:
2916 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2917 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2918 			goto reset;
2919 		case MAC_PROP_EN_100HDX_CAP:
2920 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2921 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2922 			goto reset;
2923 		case MAC_PROP_EN_10FDX_CAP:
2924 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2925 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2926 			goto reset;
2927 		case MAC_PROP_EN_10HDX_CAP:
2928 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2929 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2930 			goto reset;
2931 		case MAC_PROP_AUTONEG:
2932 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2933 			goto reset;
2934 		case MAC_PROP_FLOWCTRL:
2935 			fc->send_xon = B_TRUE;
2936 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2937 
2938 			switch (flowctrl) {
2939 			default:
2940 				err = EINVAL;
2941 				break;
2942 			case LINK_FLOWCTRL_NONE:
2943 				fc->requested_mode = e1000_fc_none;
2944 				break;
2945 			case LINK_FLOWCTRL_RX:
2946 				fc->requested_mode = e1000_fc_rx_pause;
2947 				break;
2948 			case LINK_FLOWCTRL_TX:
2949 				fc->requested_mode = e1000_fc_tx_pause;
2950 				break;
2951 			case LINK_FLOWCTRL_BI:
2952 				fc->requested_mode = e1000_fc_full;
2953 				break;
2954 			}
2955 reset:
2956 			if (err == 0) {
2957 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2958 					err = EINVAL;
2959 			}
2960 			break;
2961 		case MAC_PROP_ADV_1000FDX_CAP:
2962 		case MAC_PROP_ADV_1000HDX_CAP:
2963 		case MAC_PROP_ADV_100FDX_CAP:
2964 		case MAC_PROP_ADV_100HDX_CAP:
2965 		case MAC_PROP_ADV_10FDX_CAP:
2966 		case MAC_PROP_ADV_10HDX_CAP:
2967 		case MAC_PROP_EN_1000HDX_CAP:
2968 		case MAC_PROP_STATUS:
2969 		case MAC_PROP_SPEED:
2970 		case MAC_PROP_DUPLEX:
2971 			err = ENOTSUP; /* read-only prop. Can't set this. */
2972 			break;
2973 		case MAC_PROP_MTU:
2974 			cur_mtu = Adapter->default_mtu;
2975 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2976 			if (new_mtu == cur_mtu) {
2977 				err = 0;
2978 				break;
2979 			}
2980 
2981 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2982 			    ETHERFCSL;
2983 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2984 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2985 				err = EINVAL;
2986 				break;
2987 			}
2988 
2989 			/* ich8 does not support jumbo frames */
2990 			if ((mac->type == e1000_ich8lan) &&
2991 			    (tmp > DEFAULT_FRAME_SIZE)) {
2992 				err = EINVAL;
2993 				break;
2994 			}
2995 			/* ich9 does not do jumbo frames on one phy type */
2996 			if ((mac->type == e1000_ich9lan) &&
2997 			    (phy->type == e1000_phy_ife) &&
2998 			    (tmp > DEFAULT_FRAME_SIZE)) {
2999 				err = EINVAL;
3000 				break;
3001 			}
3002 			if (Adapter->e1000g_state & E1000G_STARTED) {
3003 				err = EBUSY;
3004 				break;
3005 			}
3006 
3007 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3008 			if (err == 0) {
3009 				Adapter->max_frame_size = (uint32_t)tmp;
3010 				Adapter->default_mtu = new_mtu;
3011 				e1000g_set_bufsize(Adapter);
3012 			}
3013 			break;
3014 		case MAC_PROP_PRIVATE:
3015 			err = e1000g_set_priv_prop(Adapter, pr_name,
3016 			    pr_valsize, pr_val);
3017 			break;
3018 		default:
3019 			err = ENOTSUP;
3020 			break;
3021 	}
3022 	rw_exit(&Adapter->chip_lock);
3023 	return (err);
3024 }
3025 
3026 static int
3027 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3028     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3029 {
3030 	struct e1000g *Adapter = arg;
3031 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3032 	int err = 0;
3033 	link_flowctrl_t flowctrl;
3034 	uint64_t tmp = 0;
3035 
3036 	if (pr_valsize == 0)
3037 		return (EINVAL);
3038 
3039 	*perm = MAC_PROP_PERM_RW;
3040 
3041 	bzero(pr_val, pr_valsize);
3042 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3043 		return (e1000g_get_def_val(Adapter, pr_num,
3044 		    pr_valsize, pr_val));
3045 	}
3046 
3047 	switch (pr_num) {
3048 		case MAC_PROP_DUPLEX:
3049 			*perm = MAC_PROP_PERM_READ;
3050 			if (pr_valsize >= sizeof (link_duplex_t)) {
3051 				bcopy(&Adapter->link_duplex, pr_val,
3052 				    sizeof (link_duplex_t));
3053 			} else
3054 				err = EINVAL;
3055 			break;
3056 		case MAC_PROP_SPEED:
3057 			*perm = MAC_PROP_PERM_READ;
3058 			if (pr_valsize >= sizeof (uint64_t)) {
3059 				tmp = Adapter->link_speed * 1000000ull;
3060 				bcopy(&tmp, pr_val, sizeof (tmp));
3061 			} else
3062 				err = EINVAL;
3063 			break;
3064 		case MAC_PROP_AUTONEG:
3065 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3066 			break;
3067 		case MAC_PROP_FLOWCTRL:
3068 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3069 				switch (fc->current_mode) {
3070 					case e1000_fc_none:
3071 						flowctrl = LINK_FLOWCTRL_NONE;
3072 						break;
3073 					case e1000_fc_rx_pause:
3074 						flowctrl = LINK_FLOWCTRL_RX;
3075 						break;
3076 					case e1000_fc_tx_pause:
3077 						flowctrl = LINK_FLOWCTRL_TX;
3078 						break;
3079 					case e1000_fc_full:
3080 						flowctrl = LINK_FLOWCTRL_BI;
3081 						break;
3082 				}
3083 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3084 			} else
3085 				err = EINVAL;
3086 			break;
3087 		case MAC_PROP_ADV_1000FDX_CAP:
3088 			*perm = MAC_PROP_PERM_READ;
3089 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3090 			break;
3091 		case MAC_PROP_EN_1000FDX_CAP:
3092 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3093 			break;
3094 		case MAC_PROP_ADV_1000HDX_CAP:
3095 			*perm = MAC_PROP_PERM_READ;
3096 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3097 			break;
3098 		case MAC_PROP_EN_1000HDX_CAP:
3099 			*perm = MAC_PROP_PERM_READ;
3100 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3101 			break;
3102 		case MAC_PROP_ADV_100FDX_CAP:
3103 			*perm = MAC_PROP_PERM_READ;
3104 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3105 			break;
3106 		case MAC_PROP_EN_100FDX_CAP:
3107 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3108 			break;
3109 		case MAC_PROP_ADV_100HDX_CAP:
3110 			*perm = MAC_PROP_PERM_READ;
3111 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3112 			break;
3113 		case MAC_PROP_EN_100HDX_CAP:
3114 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3115 			break;
3116 		case MAC_PROP_ADV_10FDX_CAP:
3117 			*perm = MAC_PROP_PERM_READ;
3118 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3119 			break;
3120 		case MAC_PROP_EN_10FDX_CAP:
3121 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3122 			break;
3123 		case MAC_PROP_ADV_10HDX_CAP:
3124 			*perm = MAC_PROP_PERM_READ;
3125 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3126 			break;
3127 		case MAC_PROP_EN_10HDX_CAP:
3128 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3129 			break;
3130 		case MAC_PROP_ADV_100T4_CAP:
3131 		case MAC_PROP_EN_100T4_CAP:
3132 			*perm = MAC_PROP_PERM_READ;
3133 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3134 			break;
3135 		case MAC_PROP_PRIVATE:
3136 			err = e1000g_get_priv_prop(Adapter, pr_name,
3137 			    pr_flags, pr_valsize, pr_val, perm);
3138 			break;
3139 		default:
3140 			err = ENOTSUP;
3141 			break;
3142 	}
3143 	return (err);
3144 }
3145 
3146 /* ARGSUSED2 */
3147 static int
3148 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3149     uint_t pr_valsize, const void *pr_val)
3150 {
3151 	int err = 0;
3152 	long result;
3153 	struct e1000_hw *hw = &Adapter->shared;
3154 
3155 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3156 		if (pr_val == NULL) {
3157 			err = EINVAL;
3158 			return (err);
3159 		}
3160 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3161 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3162 		    result > MAX_TX_BCOPY_THRESHOLD)
3163 			err = EINVAL;
3164 		else {
3165 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3166 		}
3167 		return (err);
3168 	}
3169 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3170 		if (pr_val == NULL) {
3171 			err = EINVAL;
3172 			return (err);
3173 		}
3174 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3175 		if (result < 0 || result > 1)
3176 			err = EINVAL;
3177 		else {
3178 			Adapter->tx_intr_enable = (result == 1) ?
3179 			    B_TRUE: B_FALSE;
3180 			if (Adapter->tx_intr_enable)
3181 				e1000g_mask_tx_interrupt(Adapter);
3182 			else
3183 				e1000g_clear_tx_interrupt(Adapter);
3184 			if (e1000g_check_acc_handle(
3185 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3186 				ddi_fm_service_impact(Adapter->dip,
3187 				    DDI_SERVICE_DEGRADED);
3188 		}
3189 		return (err);
3190 	}
3191 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3192 		if (pr_val == NULL) {
3193 			err = EINVAL;
3194 			return (err);
3195 		}
3196 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3197 		if (result < MIN_TX_INTR_DELAY ||
3198 		    result > MAX_TX_INTR_DELAY)
3199 			err = EINVAL;
3200 		else {
3201 			Adapter->tx_intr_delay = (uint32_t)result;
3202 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3203 			if (e1000g_check_acc_handle(
3204 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3205 				ddi_fm_service_impact(Adapter->dip,
3206 				    DDI_SERVICE_DEGRADED);
3207 		}
3208 		return (err);
3209 	}
3210 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3211 		if (pr_val == NULL) {
3212 			err = EINVAL;
3213 			return (err);
3214 		}
3215 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3216 		if (result < MIN_TX_INTR_ABS_DELAY ||
3217 		    result > MAX_TX_INTR_ABS_DELAY)
3218 			err = EINVAL;
3219 		else {
3220 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3221 			E1000_WRITE_REG(hw, E1000_TADV,
3222 			    Adapter->tx_intr_abs_delay);
3223 			if (e1000g_check_acc_handle(
3224 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3225 				ddi_fm_service_impact(Adapter->dip,
3226 				    DDI_SERVICE_DEGRADED);
3227 		}
3228 		return (err);
3229 	}
3230 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3231 		if (pr_val == NULL) {
3232 			err = EINVAL;
3233 			return (err);
3234 		}
3235 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3236 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3237 		    result > MAX_RX_BCOPY_THRESHOLD)
3238 			err = EINVAL;
3239 		else
3240 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3241 		return (err);
3242 	}
3243 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3244 		if (pr_val == NULL) {
3245 			err = EINVAL;
3246 			return (err);
3247 		}
3248 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3249 		if (result < MIN_RX_LIMIT_ON_INTR ||
3250 		    result > MAX_RX_LIMIT_ON_INTR)
3251 			err = EINVAL;
3252 		else
3253 			Adapter->rx_limit_onintr = (uint32_t)result;
3254 		return (err);
3255 	}
3256 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3257 		if (pr_val == NULL) {
3258 			err = EINVAL;
3259 			return (err);
3260 		}
3261 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3262 		if (result < MIN_RX_INTR_DELAY ||
3263 		    result > MAX_RX_INTR_DELAY)
3264 			err = EINVAL;
3265 		else {
3266 			Adapter->rx_intr_delay = (uint32_t)result;
3267 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3268 			if (e1000g_check_acc_handle(
3269 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3270 				ddi_fm_service_impact(Adapter->dip,
3271 				    DDI_SERVICE_DEGRADED);
3272 		}
3273 		return (err);
3274 	}
3275 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3276 		if (pr_val == NULL) {
3277 			err = EINVAL;
3278 			return (err);
3279 		}
3280 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3281 		if (result < MIN_RX_INTR_ABS_DELAY ||
3282 		    result > MAX_RX_INTR_ABS_DELAY)
3283 			err = EINVAL;
3284 		else {
3285 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3286 			E1000_WRITE_REG(hw, E1000_RADV,
3287 			    Adapter->rx_intr_abs_delay);
3288 			if (e1000g_check_acc_handle(
3289 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3290 				ddi_fm_service_impact(Adapter->dip,
3291 				    DDI_SERVICE_DEGRADED);
3292 		}
3293 		return (err);
3294 	}
3295 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3296 		if (pr_val == NULL) {
3297 			err = EINVAL;
3298 			return (err);
3299 		}
3300 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3301 		if (result < MIN_INTR_THROTTLING ||
3302 		    result > MAX_INTR_THROTTLING)
3303 			err = EINVAL;
3304 		else {
3305 			if (hw->mac.type >= e1000_82540) {
3306 				Adapter->intr_throttling_rate =
3307 				    (uint32_t)result;
3308 				E1000_WRITE_REG(hw, E1000_ITR,
3309 				    Adapter->intr_throttling_rate);
3310 				if (e1000g_check_acc_handle(
3311 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3312 					ddi_fm_service_impact(Adapter->dip,
3313 					    DDI_SERVICE_DEGRADED);
3314 			} else
3315 				err = EINVAL;
3316 		}
3317 		return (err);
3318 	}
3319 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3320 		if (pr_val == NULL) {
3321 			err = EINVAL;
3322 			return (err);
3323 		}
3324 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3325 		if (result < 0 || result > 1)
3326 			err = EINVAL;
3327 		else {
3328 			if (hw->mac.type >= e1000_82540) {
3329 				Adapter->intr_adaptive = (result == 1) ?
3330 				    B_TRUE : B_FALSE;
3331 			} else {
3332 				err = EINVAL;
3333 			}
3334 		}
3335 		return (err);
3336 	}
3337 	return (ENOTSUP);
3338 }
3339 
3340 static int
3341 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3342     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3343 {
3344 	int err = ENOTSUP;
3345 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3346 	int value;
3347 
3348 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3349 		*perm = MAC_PROP_PERM_READ;
3350 		if (is_default)
3351 			goto done;
3352 		value = Adapter->param_adv_pause;
3353 		err = 0;
3354 		goto done;
3355 	}
3356 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3357 		*perm = MAC_PROP_PERM_READ;
3358 		if (is_default)
3359 			goto done;
3360 		value = Adapter->param_adv_asym_pause;
3361 		err = 0;
3362 		goto done;
3363 	}
3364 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3365 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3366 		    Adapter->tx_bcopy_thresh);
3367 		err = 0;
3368 		goto done;
3369 	}
3370 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3371 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3372 		    Adapter->tx_intr_enable);
3373 		err = 0;
3374 		goto done;
3375 	}
3376 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3377 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3378 		    Adapter->tx_intr_delay);
3379 		err = 0;
3380 		goto done;
3381 	}
3382 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3383 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3384 		    Adapter->tx_intr_abs_delay);
3385 		err = 0;
3386 		goto done;
3387 	}
3388 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3389 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3390 		    Adapter->rx_bcopy_thresh);
3391 		err = 0;
3392 		goto done;
3393 	}
3394 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3395 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3396 		    Adapter->rx_limit_onintr);
3397 		err = 0;
3398 		goto done;
3399 	}
3400 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3401 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3402 		    Adapter->rx_intr_delay);
3403 		err = 0;
3404 		goto done;
3405 	}
3406 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3407 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3408 		    Adapter->rx_intr_abs_delay);
3409 		err = 0;
3410 		goto done;
3411 	}
3412 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3413 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3414 		    Adapter->intr_throttling_rate);
3415 		err = 0;
3416 		goto done;
3417 	}
3418 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3419 		value = (is_default ? 1 : Adapter->intr_adaptive);
3420 		err = 0;
3421 		goto done;
3422 	}
3423 done:
3424 	if (err == 0) {
3425 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3426 	}
3427 	return (err);
3428 }
3429 
3430 /*
3431  * e1000g_get_conf - get configurations set in e1000g.conf
3432  * This routine gets user-configured values out of the configuration
3433  * file e1000g.conf.
3434  *
3435  * For each configurable value, there is a minimum, a maximum, and a
3436  * default.
3437  * If user does not configure a value, use the default.
3438  * If user configures below the minimum, use the minumum.
3439  * If user configures above the maximum, use the maxumum.
3440  */
3441 static void
3442 e1000g_get_conf(struct e1000g *Adapter)
3443 {
3444 	struct e1000_hw *hw = &Adapter->shared;
3445 	boolean_t tbi_compatibility = B_FALSE;
3446 
3447 	/*
3448 	 * get each configurable property from e1000g.conf
3449 	 */
3450 
3451 	/*
3452 	 * NumTxDescriptors
3453 	 */
3454 	Adapter->tx_desc_num =
3455 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3456 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3457 	    DEFAULT_NUM_TX_DESCRIPTOR);
3458 
3459 	/*
3460 	 * NumRxDescriptors
3461 	 */
3462 	Adapter->rx_desc_num =
3463 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3464 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3465 	    DEFAULT_NUM_RX_DESCRIPTOR);
3466 
3467 	/*
3468 	 * NumRxFreeList
3469 	 */
3470 	Adapter->rx_freelist_num =
3471 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3472 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3473 	    DEFAULT_NUM_RX_FREELIST);
3474 
3475 	/*
3476 	 * NumTxPacketList
3477 	 */
3478 	Adapter->tx_freelist_num =
3479 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3480 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3481 	    DEFAULT_NUM_TX_FREELIST);
3482 
3483 	/*
3484 	 * FlowControl
3485 	 */
3486 	hw->fc.send_xon = B_TRUE;
3487 	hw->fc.requested_mode =
3488 	    e1000g_get_prop(Adapter, "FlowControl",
3489 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3490 	/* 4 is the setting that says "let the eeprom decide" */
3491 	if (hw->fc.requested_mode == 4)
3492 		hw->fc.requested_mode = e1000_fc_default;
3493 
3494 	/*
3495 	 * Max Num Receive Packets on Interrupt
3496 	 */
3497 	Adapter->rx_limit_onintr =
3498 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3499 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3500 	    DEFAULT_RX_LIMIT_ON_INTR);
3501 
3502 	/*
3503 	 * PHY master slave setting
3504 	 */
3505 	hw->phy.ms_type =
3506 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3507 	    e1000_ms_hw_default, e1000_ms_auto,
3508 	    e1000_ms_hw_default);
3509 
3510 	/*
3511 	 * Parameter which controls TBI mode workaround, which is only
3512 	 * needed on certain switches such as Cisco 6500/Foundry
3513 	 */
3514 	tbi_compatibility =
3515 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3516 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3517 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3518 
3519 	/*
3520 	 * MSI Enable
3521 	 */
3522 	Adapter->msi_enable =
3523 	    e1000g_get_prop(Adapter, "MSIEnable",
3524 	    0, 1, DEFAULT_MSI_ENABLE);
3525 
3526 	/*
3527 	 * Interrupt Throttling Rate
3528 	 */
3529 	Adapter->intr_throttling_rate =
3530 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3531 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3532 	    DEFAULT_INTR_THROTTLING);
3533 
3534 	/*
3535 	 * Adaptive Interrupt Blanking Enable/Disable
3536 	 * It is enabled by default
3537 	 */
3538 	Adapter->intr_adaptive =
3539 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3540 	    B_TRUE : B_FALSE;
3541 
3542 	/*
3543 	 * Hardware checksum enable/disable parameter
3544 	 */
3545 	Adapter->tx_hcksum_enable =
3546 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3547 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3548 	/*
3549 	 * Checksum on/off selection via global parameters.
3550 	 *
3551 	 * If the chip is flagged as not capable of (correctly)
3552 	 * handling checksumming, we don't enable it on either
3553 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3554 	 * from the patchable global defaults.
3555 	 *
3556 	 * We advertise our capabilities only if TX offload is
3557 	 * enabled.  On receive, the stack will accept checksummed
3558 	 * packets anyway, even if we haven't said we can deliver
3559 	 * them.
3560 	 */
3561 	switch (hw->mac.type) {
3562 		case e1000_82540:
3563 		case e1000_82544:
3564 		case e1000_82545:
3565 		case e1000_82545_rev_3:
3566 		case e1000_82546:
3567 		case e1000_82546_rev_3:
3568 		case e1000_82571:
3569 		case e1000_82572:
3570 		case e1000_82573:
3571 		case e1000_80003es2lan:
3572 			break;
3573 		/*
3574 		 * For the following Intel PRO/1000 chipsets, we have not
3575 		 * tested the hardware checksum offload capability, so we
3576 		 * disable the capability for them.
3577 		 *	e1000_82542,
3578 		 *	e1000_82543,
3579 		 *	e1000_82541,
3580 		 *	e1000_82541_rev_2,
3581 		 *	e1000_82547,
3582 		 *	e1000_82547_rev_2,
3583 		 */
3584 		default:
3585 			Adapter->tx_hcksum_enable = B_FALSE;
3586 	}
3587 
3588 	/*
3589 	 * Large Send Offloading(LSO) Enable/Disable
3590 	 * If the tx hardware checksum is not enabled, LSO should be
3591 	 * disabled.
3592 	 */
3593 	Adapter->lso_enable =
3594 	    e1000g_get_prop(Adapter, "lso_enable",
3595 	    0, 1, DEFAULT_LSO_ENABLE);
3596 
3597 	switch (hw->mac.type) {
3598 		case e1000_82546:
3599 		case e1000_82546_rev_3:
3600 			if (Adapter->lso_enable)
3601 				Adapter->lso_premature_issue = B_TRUE;
3602 			/* FALLTHRU */
3603 		case e1000_82571:
3604 		case e1000_82572:
3605 		case e1000_82573:
3606 		case e1000_80003es2lan:
3607 			break;
3608 		default:
3609 			Adapter->lso_enable = B_FALSE;
3610 	}
3611 
3612 	if (!Adapter->tx_hcksum_enable) {
3613 		Adapter->lso_premature_issue = B_FALSE;
3614 		Adapter->lso_enable = B_FALSE;
3615 	}
3616 
3617 	/*
3618 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3619 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3620 	 * will not cross 64k boundary.
3621 	 */
3622 	Adapter->mem_workaround_82546 =
3623 	    e1000g_get_prop(Adapter, "mem_workaround_82546",
3624 	    0, 1, DEFAULT_MEM_WORKAROUND_82546);
3625 }
3626 
3627 /*
3628  * e1000g_get_prop - routine to read properties
3629  *
3630  * Get a user-configure property value out of the configuration
3631  * file e1000g.conf.
3632  *
3633  * Caller provides name of the property, a default value, a minimum
3634  * value, and a maximum value.
3635  *
3636  * Return configured value of the property, with default, minimum and
3637  * maximum properly applied.
3638  */
3639 static int
3640 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3641     char *propname,		/* name of the property */
3642     int minval,			/* minimum acceptable value */
3643     int maxval,			/* maximim acceptable value */
3644     int defval)			/* default value */
3645 {
3646 	int propval;		/* value returned for requested property */
3647 	int *props;		/* point to array of properties returned */
3648 	uint_t nprops;		/* number of property value returned */
3649 
3650 	/*
3651 	 * get the array of properties from the config file
3652 	 */
3653 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3654 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3655 		/* got some properties, test if we got enough */
3656 		if (Adapter->instance < nprops) {
3657 			propval = props[Adapter->instance];
3658 		} else {
3659 			/* not enough properties configured */
3660 			propval = defval;
3661 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3662 			    "Not Enough %s values found in e1000g.conf"
3663 			    " - set to %d\n",
3664 			    propname, propval);
3665 		}
3666 
3667 		/* free memory allocated for properties */
3668 		ddi_prop_free(props);
3669 
3670 	} else {
3671 		propval = defval;
3672 	}
3673 
3674 	/*
3675 	 * enforce limits
3676 	 */
3677 	if (propval > maxval) {
3678 		propval = maxval;
3679 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3680 		    "Too High %s value in e1000g.conf - set to %d\n",
3681 		    propname, propval);
3682 	}
3683 
3684 	if (propval < minval) {
3685 		propval = minval;
3686 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3687 		    "Too Low %s value in e1000g.conf - set to %d\n",
3688 		    propname, propval);
3689 	}
3690 
3691 	return (propval);
3692 }
3693 
3694 static boolean_t
3695 e1000g_link_check(struct e1000g *Adapter)
3696 {
3697 	uint16_t speed, duplex, phydata;
3698 	boolean_t link_changed = B_FALSE;
3699 	struct e1000_hw *hw;
3700 	uint32_t reg_tarc;
3701 
3702 	hw = &Adapter->shared;
3703 
3704 	if (e1000g_link_up(Adapter)) {
3705 		/*
3706 		 * The Link is up, check whether it was marked as down earlier
3707 		 */
3708 		if (Adapter->link_state != LINK_STATE_UP) {
3709 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3710 			Adapter->link_speed = speed;
3711 			Adapter->link_duplex = duplex;
3712 			Adapter->link_state = LINK_STATE_UP;
3713 			link_changed = B_TRUE;
3714 
3715 			Adapter->tx_link_down_timeout = 0;
3716 
3717 			if ((hw->mac.type == e1000_82571) ||
3718 			    (hw->mac.type == e1000_82572)) {
3719 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3720 				if (speed == SPEED_1000)
3721 					reg_tarc |= (1 << 21);
3722 				else
3723 					reg_tarc &= ~(1 << 21);
3724 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3725 			}
3726 		}
3727 		Adapter->smartspeed = 0;
3728 	} else {
3729 		if (Adapter->link_state != LINK_STATE_DOWN) {
3730 			Adapter->link_speed = 0;
3731 			Adapter->link_duplex = 0;
3732 			Adapter->link_state = LINK_STATE_DOWN;
3733 			link_changed = B_TRUE;
3734 
3735 			/*
3736 			 * SmartSpeed workaround for Tabor/TanaX, When the
3737 			 * driver loses link disable auto master/slave
3738 			 * resolution.
3739 			 */
3740 			if (hw->phy.type == e1000_phy_igp) {
3741 				(void) e1000_read_phy_reg(hw,
3742 				    PHY_1000T_CTRL, &phydata);
3743 				phydata |= CR_1000T_MS_ENABLE;
3744 				(void) e1000_write_phy_reg(hw,
3745 				    PHY_1000T_CTRL, phydata);
3746 			}
3747 		} else {
3748 			e1000g_smartspeed(Adapter);
3749 		}
3750 
3751 		if (Adapter->e1000g_state & E1000G_STARTED) {
3752 			if (Adapter->tx_link_down_timeout <
3753 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3754 				Adapter->tx_link_down_timeout++;
3755 			} else if (Adapter->tx_link_down_timeout ==
3756 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3757 				e1000g_tx_clean(Adapter);
3758 				Adapter->tx_link_down_timeout++;
3759 			}
3760 		}
3761 	}
3762 
3763 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3764 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3765 
3766 	return (link_changed);
3767 }
3768 
3769 /*
3770  * e1000g_reset_link - Using the link properties to setup the link
3771  */
3772 int
3773 e1000g_reset_link(struct e1000g *Adapter)
3774 {
3775 	struct e1000_mac_info *mac;
3776 	struct e1000_phy_info *phy;
3777 	boolean_t invalid;
3778 
3779 	mac = &Adapter->shared.mac;
3780 	phy = &Adapter->shared.phy;
3781 	invalid = B_FALSE;
3782 
3783 	if (Adapter->param_adv_autoneg == 1) {
3784 		mac->autoneg = B_TRUE;
3785 		phy->autoneg_advertised = 0;
3786 
3787 		/*
3788 		 * 1000hdx is not supported for autonegotiation
3789 		 */
3790 		if (Adapter->param_adv_1000fdx == 1)
3791 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3792 
3793 		if (Adapter->param_adv_100fdx == 1)
3794 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3795 
3796 		if (Adapter->param_adv_100hdx == 1)
3797 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3798 
3799 		if (Adapter->param_adv_10fdx == 1)
3800 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3801 
3802 		if (Adapter->param_adv_10hdx == 1)
3803 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3804 
3805 		if (phy->autoneg_advertised == 0)
3806 			invalid = B_TRUE;
3807 	} else {
3808 		mac->autoneg = B_FALSE;
3809 
3810 		/*
3811 		 * 1000fdx and 1000hdx are not supported for forced link
3812 		 */
3813 		if (Adapter->param_adv_100fdx == 1)
3814 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3815 		else if (Adapter->param_adv_100hdx == 1)
3816 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3817 		else if (Adapter->param_adv_10fdx == 1)
3818 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3819 		else if (Adapter->param_adv_10hdx == 1)
3820 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3821 		else
3822 			invalid = B_TRUE;
3823 
3824 	}
3825 
3826 	if (invalid) {
3827 		e1000g_log(Adapter, CE_WARN,
3828 		    "Invalid link sets. Setup link to"
3829 		    "support autonegotiation with all link capabilities.");
3830 		mac->autoneg = B_TRUE;
3831 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3832 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3833 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3834 	}
3835 
3836 	return (e1000_setup_link(&Adapter->shared));
3837 }
3838 
3839 static void
3840 e1000g_timer_tx_resched(struct e1000g *Adapter)
3841 {
3842 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
3843 
3844 	rw_enter(&Adapter->chip_lock, RW_READER);
3845 
3846 	if (tx_ring->resched_needed &&
3847 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
3848 	    drv_usectohz(1000000)) &&
3849 	    (Adapter->e1000g_state & E1000G_STARTED) &&
3850 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
3851 		tx_ring->resched_needed = B_FALSE;
3852 		mac_tx_update(Adapter->mh);
3853 		E1000G_STAT(tx_ring->stat_reschedule);
3854 		E1000G_STAT(tx_ring->stat_timer_reschedule);
3855 	}
3856 
3857 	rw_exit(&Adapter->chip_lock);
3858 }
3859 
3860 static void
3861 e1000g_local_timer(void *ws)
3862 {
3863 	struct e1000g *Adapter = (struct e1000g *)ws;
3864 	struct e1000_hw *hw;
3865 	e1000g_ether_addr_t ether_addr;
3866 	boolean_t link_changed;
3867 
3868 	hw = &Adapter->shared;
3869 
3870 	if (Adapter->e1000g_state & E1000G_ERROR) {
3871 		rw_enter(&Adapter->chip_lock, RW_WRITER);
3872 		Adapter->e1000g_state &= ~E1000G_ERROR;
3873 		rw_exit(&Adapter->chip_lock);
3874 
3875 		Adapter->reset_count++;
3876 		if (e1000g_global_reset(Adapter)) {
3877 			ddi_fm_service_impact(Adapter->dip,
3878 			    DDI_SERVICE_RESTORED);
3879 			e1000g_timer_tx_resched(Adapter);
3880 		} else
3881 			ddi_fm_service_impact(Adapter->dip,
3882 			    DDI_SERVICE_LOST);
3883 		return;
3884 	}
3885 
3886 	if (e1000g_stall_check(Adapter)) {
3887 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3888 		    "Tx stall detected. Activate automatic recovery.\n");
3889 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3890 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
3891 		Adapter->reset_count++;
3892 		if (e1000g_reset_adapter(Adapter)) {
3893 			ddi_fm_service_impact(Adapter->dip,
3894 			    DDI_SERVICE_RESTORED);
3895 			e1000g_timer_tx_resched(Adapter);
3896 		}
3897 		return;
3898 	}
3899 
3900 	link_changed = B_FALSE;
3901 	rw_enter(&Adapter->chip_lock, RW_READER);
3902 	if (Adapter->link_complete)
3903 		link_changed = e1000g_link_check(Adapter);
3904 	rw_exit(&Adapter->chip_lock);
3905 
3906 	if (link_changed)
3907 		mac_link_update(Adapter->mh, Adapter->link_state);
3908 
3909 	/*
3910 	 * Workaround for esb2. Data stuck in fifo on a link
3911 	 * down event. Reset the adapter to recover it.
3912 	 */
3913 	if (Adapter->esb2_workaround) {
3914 		Adapter->esb2_workaround = B_FALSE;
3915 		(void) e1000g_reset_adapter(Adapter);
3916 		return;
3917 	}
3918 
3919 	/*
3920 	 * With 82571 controllers, any locally administered address will
3921 	 * be overwritten when there is a reset on the other port.
3922 	 * Detect this circumstance and correct it.
3923 	 */
3924 	if ((hw->mac.type == e1000_82571) &&
3925 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3926 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3927 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3928 
3929 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3930 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3931 
3932 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3933 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3934 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3935 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3936 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3937 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3938 			e1000_rar_set(hw, hw->mac.addr, 0);
3939 		}
3940 	}
3941 
3942 	/*
3943 	 * Long TTL workaround for 82541/82547
3944 	 */
3945 	(void) e1000_igp_ttl_workaround_82547(hw);
3946 
3947 	/*
3948 	 * Check for Adaptive IFS settings If there are lots of collisions
3949 	 * change the value in steps...
3950 	 * These properties should only be set for 10/100
3951 	 */
3952 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3953 	    ((Adapter->link_speed == SPEED_100) ||
3954 	    (Adapter->link_speed == SPEED_10))) {
3955 		e1000_update_adaptive(hw);
3956 	}
3957 	/*
3958 	 * Set Timer Interrupts
3959 	 */
3960 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3961 
3962 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3963 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3964 	else
3965 		e1000g_timer_tx_resched(Adapter);
3966 
3967 	restart_watchdog_timer(Adapter);
3968 }
3969 
3970 /*
3971  * The function e1000g_link_timer() is called when the timer for link setup
3972  * is expired, which indicates the completion of the link setup. The link
3973  * state will not be updated until the link setup is completed. And the
3974  * link state will not be sent to the upper layer through mac_link_update()
3975  * in this function. It will be updated in the local timer routine or the
3976  * interrupt service routine after the interface is started (plumbed).
3977  */
3978 static void
3979 e1000g_link_timer(void *arg)
3980 {
3981 	struct e1000g *Adapter = (struct e1000g *)arg;
3982 
3983 	mutex_enter(&Adapter->link_lock);
3984 	Adapter->link_complete = B_TRUE;
3985 	Adapter->link_tid = 0;
3986 	mutex_exit(&Adapter->link_lock);
3987 }
3988 
3989 /*
3990  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3991  *
3992  * This function read the forced speed and duplex for 10/100 Mbps speeds
3993  * and also for 1000 Mbps speeds from the e1000g.conf file
3994  */
3995 static void
3996 e1000g_force_speed_duplex(struct e1000g *Adapter)
3997 {
3998 	int forced;
3999 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4000 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4001 
4002 	/*
4003 	 * get value out of config file
4004 	 */
4005 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4006 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
4007 
4008 	switch (forced) {
4009 	case GDIAG_10_HALF:
4010 		/*
4011 		 * Disable Auto Negotiation
4012 		 */
4013 		mac->autoneg = B_FALSE;
4014 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4015 		break;
4016 	case GDIAG_10_FULL:
4017 		/*
4018 		 * Disable Auto Negotiation
4019 		 */
4020 		mac->autoneg = B_FALSE;
4021 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4022 		break;
4023 	case GDIAG_100_HALF:
4024 		/*
4025 		 * Disable Auto Negotiation
4026 		 */
4027 		mac->autoneg = B_FALSE;
4028 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4029 		break;
4030 	case GDIAG_100_FULL:
4031 		/*
4032 		 * Disable Auto Negotiation
4033 		 */
4034 		mac->autoneg = B_FALSE;
4035 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4036 		break;
4037 	case GDIAG_1000_FULL:
4038 		/*
4039 		 * The gigabit spec requires autonegotiation.  Therefore,
4040 		 * when the user wants to force the speed to 1000Mbps, we
4041 		 * enable AutoNeg, but only allow the harware to advertise
4042 		 * 1000Mbps.  This is different from 10/100 operation, where
4043 		 * we are allowed to link without any negotiation.
4044 		 */
4045 		mac->autoneg = B_TRUE;
4046 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4047 		break;
4048 	default:	/* obey the setting of AutoNegAdvertised */
4049 		mac->autoneg = B_TRUE;
4050 		phy->autoneg_advertised =
4051 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
4052 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4053 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
4054 		break;
4055 	}	/* switch */
4056 }
4057 
4058 /*
4059  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4060  *
4061  * This function reads MaxFrameSize from e1000g.conf
4062  */
4063 static void
4064 e1000g_get_max_frame_size(struct e1000g *Adapter)
4065 {
4066 	int max_frame;
4067 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4068 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4069 
4070 	/*
4071 	 * get value out of config file
4072 	 */
4073 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
4074 
4075 	switch (max_frame) {
4076 	case 0:
4077 		Adapter->default_mtu = ETHERMTU;
4078 		break;
4079 	/*
4080 	 * To avoid excessive memory allocation for rx buffers,
4081 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4082 	 */
4083 	case 1:
4084 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4085 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4086 		    E1000G_IPALIGNPRESERVEROOM;
4087 		break;
4088 	case 2:
4089 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4090 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4091 		    E1000G_IPALIGNPRESERVEROOM;
4092 		break;
4093 	case 3:
4094 		if (mac->type >= e1000_82571)
4095 			Adapter->default_mtu = MAXIMUM_MTU;
4096 		else
4097 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4098 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
4099 			    E1000G_IPALIGNPRESERVEROOM;
4100 		break;
4101 	default:
4102 		Adapter->default_mtu = ETHERMTU;
4103 		break;
4104 	}	/* switch */
4105 
4106 	Adapter->max_frame_size = Adapter->default_mtu +
4107 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
4108 
4109 	/* ich8 does not do jumbo frames */
4110 	if (mac->type == e1000_ich8lan) {
4111 		Adapter->default_mtu = ETHERMTU;
4112 		Adapter->max_frame_size = ETHERMTU +
4113 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4114 	}
4115 
4116 	/* ich9 does not do jumbo frames on one phy type */
4117 	if ((mac->type == e1000_ich9lan) &&
4118 	    (phy->type == e1000_phy_ife)) {
4119 		Adapter->default_mtu = ETHERMTU;
4120 		Adapter->max_frame_size = ETHERMTU +
4121 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
4122 	}
4123 }
4124 
4125 static void
4126 arm_watchdog_timer(struct e1000g *Adapter)
4127 {
4128 	Adapter->watchdog_tid =
4129 	    timeout(e1000g_local_timer,
4130 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4131 }
4132 #pragma inline(arm_watchdog_timer)
4133 
4134 static void
4135 enable_watchdog_timer(struct e1000g *Adapter)
4136 {
4137 	mutex_enter(&Adapter->watchdog_lock);
4138 
4139 	if (!Adapter->watchdog_timer_enabled) {
4140 		Adapter->watchdog_timer_enabled = B_TRUE;
4141 		Adapter->watchdog_timer_started = B_TRUE;
4142 		arm_watchdog_timer(Adapter);
4143 	}
4144 
4145 	mutex_exit(&Adapter->watchdog_lock);
4146 }
4147 
4148 static void
4149 disable_watchdog_timer(struct e1000g *Adapter)
4150 {
4151 	timeout_id_t tid;
4152 
4153 	mutex_enter(&Adapter->watchdog_lock);
4154 
4155 	Adapter->watchdog_timer_enabled = B_FALSE;
4156 	Adapter->watchdog_timer_started = B_FALSE;
4157 	tid = Adapter->watchdog_tid;
4158 	Adapter->watchdog_tid = 0;
4159 
4160 	mutex_exit(&Adapter->watchdog_lock);
4161 
4162 	if (tid != 0)
4163 		(void) untimeout(tid);
4164 }
4165 
4166 static void
4167 start_watchdog_timer(struct e1000g *Adapter)
4168 {
4169 	mutex_enter(&Adapter->watchdog_lock);
4170 
4171 	if (Adapter->watchdog_timer_enabled) {
4172 		if (!Adapter->watchdog_timer_started) {
4173 			Adapter->watchdog_timer_started = B_TRUE;
4174 			arm_watchdog_timer(Adapter);
4175 		}
4176 	}
4177 
4178 	mutex_exit(&Adapter->watchdog_lock);
4179 }
4180 
4181 static void
4182 restart_watchdog_timer(struct e1000g *Adapter)
4183 {
4184 	mutex_enter(&Adapter->watchdog_lock);
4185 
4186 	if (Adapter->watchdog_timer_started)
4187 		arm_watchdog_timer(Adapter);
4188 
4189 	mutex_exit(&Adapter->watchdog_lock);
4190 }
4191 
4192 static void
4193 stop_watchdog_timer(struct e1000g *Adapter)
4194 {
4195 	timeout_id_t tid;
4196 
4197 	mutex_enter(&Adapter->watchdog_lock);
4198 
4199 	Adapter->watchdog_timer_started = B_FALSE;
4200 	tid = Adapter->watchdog_tid;
4201 	Adapter->watchdog_tid = 0;
4202 
4203 	mutex_exit(&Adapter->watchdog_lock);
4204 
4205 	if (tid != 0)
4206 		(void) untimeout(tid);
4207 }
4208 
4209 static void
4210 stop_link_timer(struct e1000g *Adapter)
4211 {
4212 	timeout_id_t tid;
4213 
4214 	/* Disable the link timer */
4215 	mutex_enter(&Adapter->link_lock);
4216 
4217 	tid = Adapter->link_tid;
4218 	Adapter->link_tid = 0;
4219 
4220 	mutex_exit(&Adapter->link_lock);
4221 
4222 	if (tid != 0)
4223 		(void) untimeout(tid);
4224 }
4225 
4226 static void
4227 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4228 {
4229 	timeout_id_t tid;
4230 
4231 	/* Disable the tx timer for 82547 chipset */
4232 	mutex_enter(&tx_ring->tx_lock);
4233 
4234 	tx_ring->timer_enable_82547 = B_FALSE;
4235 	tid = tx_ring->timer_id_82547;
4236 	tx_ring->timer_id_82547 = 0;
4237 
4238 	mutex_exit(&tx_ring->tx_lock);
4239 
4240 	if (tid != 0)
4241 		(void) untimeout(tid);
4242 }
4243 
4244 void
4245 e1000g_clear_interrupt(struct e1000g *Adapter)
4246 {
4247 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4248 	    0xffffffff & ~E1000_IMS_RXSEQ);
4249 }
4250 
4251 void
4252 e1000g_mask_interrupt(struct e1000g *Adapter)
4253 {
4254 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4255 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4256 
4257 	if (Adapter->tx_intr_enable)
4258 		e1000g_mask_tx_interrupt(Adapter);
4259 }
4260 
4261 /*
4262  * This routine is called by e1000g_quiesce(), therefore must not block.
4263  */
4264 void
4265 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4266 {
4267 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4268 }
4269 
4270 void
4271 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4272 {
4273 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4274 }
4275 
4276 void
4277 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4278 {
4279 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4280 }
4281 
4282 static void
4283 e1000g_smartspeed(struct e1000g *Adapter)
4284 {
4285 	struct e1000_hw *hw = &Adapter->shared;
4286 	uint16_t phy_status;
4287 	uint16_t phy_ctrl;
4288 
4289 	/*
4290 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4291 	 * advertising 1000Full, we don't even use the workaround
4292 	 */
4293 	if ((hw->phy.type != e1000_phy_igp) ||
4294 	    !hw->mac.autoneg ||
4295 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4296 		return;
4297 
4298 	/*
4299 	 * True if this is the first call of this function or after every
4300 	 * 30 seconds of not having link
4301 	 */
4302 	if (Adapter->smartspeed == 0) {
4303 		/*
4304 		 * If Master/Slave config fault is asserted twice, we
4305 		 * assume back-to-back
4306 		 */
4307 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4308 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4309 			return;
4310 
4311 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4312 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4313 			return;
4314 		/*
4315 		 * We're assuming back-2-back because our status register
4316 		 * insists! there's a fault in the master/slave
4317 		 * relationship that was "negotiated"
4318 		 */
4319 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4320 		/*
4321 		 * Is the phy configured for manual configuration of
4322 		 * master/slave?
4323 		 */
4324 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4325 			/*
4326 			 * Yes.  Then disable manual configuration (enable
4327 			 * auto configuration) of master/slave
4328 			 */
4329 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4330 			(void) e1000_write_phy_reg(hw,
4331 			    PHY_1000T_CTRL, phy_ctrl);
4332 			/*
4333 			 * Effectively starting the clock
4334 			 */
4335 			Adapter->smartspeed++;
4336 			/*
4337 			 * Restart autonegotiation
4338 			 */
4339 			if (!e1000_phy_setup_autoneg(hw) &&
4340 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4341 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4342 				    MII_CR_RESTART_AUTO_NEG);
4343 				(void) e1000_write_phy_reg(hw,
4344 				    PHY_CONTROL, phy_ctrl);
4345 			}
4346 		}
4347 		return;
4348 		/*
4349 		 * Has 6 seconds transpired still without link? Remember,
4350 		 * you should reset the smartspeed counter once you obtain
4351 		 * link
4352 		 */
4353 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4354 		/*
4355 		 * Yes.  Remember, we did at the start determine that
4356 		 * there's a master/slave configuration fault, so we're
4357 		 * still assuming there's someone on the other end, but we
4358 		 * just haven't yet been able to talk to it. We then
4359 		 * re-enable auto configuration of master/slave to see if
4360 		 * we're running 2/3 pair cables.
4361 		 */
4362 		/*
4363 		 * If still no link, perhaps using 2/3 pair cable
4364 		 */
4365 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4366 		phy_ctrl |= CR_1000T_MS_ENABLE;
4367 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4368 		/*
4369 		 * Restart autoneg with phy enabled for manual
4370 		 * configuration of master/slave
4371 		 */
4372 		if (!e1000_phy_setup_autoneg(hw) &&
4373 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4374 			phy_ctrl |=
4375 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4376 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4377 		}
4378 		/*
4379 		 * Hopefully, there are no more faults and we've obtained
4380 		 * link as a result.
4381 		 */
4382 	}
4383 	/*
4384 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4385 	 * seconds)
4386 	 */
4387 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4388 		Adapter->smartspeed = 0;
4389 }
4390 
4391 static boolean_t
4392 is_valid_mac_addr(uint8_t *mac_addr)
4393 {
4394 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4395 	const uint8_t addr_test2[6] =
4396 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4397 
4398 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4399 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4400 		return (B_FALSE);
4401 
4402 	return (B_TRUE);
4403 }
4404 
4405 /*
4406  * e1000g_stall_check - check for tx stall
4407  *
4408  * This function checks if the adapter is stalled (in transmit).
4409  *
4410  * It is called each time the watchdog timeout is invoked.
4411  * If the transmit descriptor reclaim continuously fails,
4412  * the watchdog value will increment by 1. If the watchdog
4413  * value exceeds the threshold, the adapter is assumed to
4414  * have stalled and need to be reset.
4415  */
4416 static boolean_t
4417 e1000g_stall_check(struct e1000g *Adapter)
4418 {
4419 	e1000g_tx_ring_t *tx_ring;
4420 
4421 	tx_ring = Adapter->tx_ring;
4422 
4423 	if (Adapter->link_state != LINK_STATE_UP)
4424 		return (B_FALSE);
4425 
4426 	if (tx_ring->recycle_fail > 0)
4427 		tx_ring->stall_watchdog++;
4428 	else
4429 		tx_ring->stall_watchdog = 0;
4430 
4431 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4432 		return (B_FALSE);
4433 
4434 	tx_ring->stall_watchdog = 0;
4435 	tx_ring->recycle_fail = 0;
4436 
4437 	return (B_TRUE);
4438 }
4439 
4440 #ifdef E1000G_DEBUG
4441 static enum ioc_reply
4442 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4443 {
4444 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4445 	e1000g_peekpoke_t *ppd;
4446 	uint64_t mem_va;
4447 	uint64_t maxoff;
4448 	boolean_t peek;
4449 
4450 	switch (iocp->ioc_cmd) {
4451 
4452 	case E1000G_IOC_REG_PEEK:
4453 		peek = B_TRUE;
4454 		break;
4455 
4456 	case E1000G_IOC_REG_POKE:
4457 		peek = B_FALSE;
4458 		break;
4459 
4460 	deault:
4461 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4462 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4463 		    iocp->ioc_cmd);
4464 		return (IOC_INVAL);
4465 	}
4466 
4467 	/*
4468 	 * Validate format of ioctl
4469 	 */
4470 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4471 		return (IOC_INVAL);
4472 	if (mp->b_cont == NULL)
4473 		return (IOC_INVAL);
4474 
4475 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4476 
4477 	/*
4478 	 * Validate request parameters
4479 	 */
4480 	switch (ppd->pp_acc_space) {
4481 
4482 	default:
4483 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4484 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4485 		    ppd->pp_acc_space);
4486 		return (IOC_INVAL);
4487 
4488 	case E1000G_PP_SPACE_REG:
4489 		/*
4490 		 * Memory-mapped I/O space
4491 		 */
4492 		ASSERT(ppd->pp_acc_size == 4);
4493 		if (ppd->pp_acc_size != 4)
4494 			return (IOC_INVAL);
4495 
4496 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4497 			return (IOC_INVAL);
4498 
4499 		mem_va = 0;
4500 		maxoff = 0x10000;
4501 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4502 		break;
4503 
4504 	case E1000G_PP_SPACE_E1000G:
4505 		/*
4506 		 * E1000g data structure!
4507 		 */
4508 		mem_va = (uintptr_t)e1000gp;
4509 		maxoff = sizeof (struct e1000g);
4510 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4511 		break;
4512 
4513 	}
4514 
4515 	if (ppd->pp_acc_offset >= maxoff)
4516 		return (IOC_INVAL);
4517 
4518 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4519 		return (IOC_INVAL);
4520 
4521 	/*
4522 	 * All OK - go!
4523 	 */
4524 	ppd->pp_acc_offset += mem_va;
4525 	(*ppfn)(e1000gp, ppd);
4526 	return (peek ? IOC_REPLY : IOC_ACK);
4527 }
4528 
4529 static void
4530 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4531 {
4532 	ddi_acc_handle_t handle;
4533 	uint32_t *regaddr;
4534 
4535 	handle = e1000gp->osdep.reg_handle;
4536 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4537 	    (uintptr_t)ppd->pp_acc_offset);
4538 
4539 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4540 }
4541 
4542 static void
4543 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4544 {
4545 	ddi_acc_handle_t handle;
4546 	uint32_t *regaddr;
4547 	uint32_t value;
4548 
4549 	handle = e1000gp->osdep.reg_handle;
4550 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4551 	    (uintptr_t)ppd->pp_acc_offset);
4552 	value = (uint32_t)ppd->pp_acc_data;
4553 
4554 	ddi_put32(handle, regaddr, value);
4555 }
4556 
4557 static void
4558 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4559 {
4560 	uint64_t value;
4561 	void *vaddr;
4562 
4563 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4564 
4565 	switch (ppd->pp_acc_size) {
4566 	case 1:
4567 		value = *(uint8_t *)vaddr;
4568 		break;
4569 
4570 	case 2:
4571 		value = *(uint16_t *)vaddr;
4572 		break;
4573 
4574 	case 4:
4575 		value = *(uint32_t *)vaddr;
4576 		break;
4577 
4578 	case 8:
4579 		value = *(uint64_t *)vaddr;
4580 		break;
4581 	}
4582 
4583 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4584 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4585 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4586 
4587 	ppd->pp_acc_data = value;
4588 }
4589 
4590 static void
4591 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4592 {
4593 	uint64_t value;
4594 	void *vaddr;
4595 
4596 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4597 	value = ppd->pp_acc_data;
4598 
4599 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4600 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4601 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4602 
4603 	switch (ppd->pp_acc_size) {
4604 	case 1:
4605 		*(uint8_t *)vaddr = (uint8_t)value;
4606 		break;
4607 
4608 	case 2:
4609 		*(uint16_t *)vaddr = (uint16_t)value;
4610 		break;
4611 
4612 	case 4:
4613 		*(uint32_t *)vaddr = (uint32_t)value;
4614 		break;
4615 
4616 	case 8:
4617 		*(uint64_t *)vaddr = (uint64_t)value;
4618 		break;
4619 	}
4620 }
4621 #endif
4622 
4623 /*
4624  * Loopback Support
4625  */
4626 static lb_property_t lb_normal =
4627 	{ normal,	"normal",	E1000G_LB_NONE		};
4628 static lb_property_t lb_external1000 =
4629 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4630 static lb_property_t lb_external100 =
4631 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4632 static lb_property_t lb_external10 =
4633 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4634 static lb_property_t lb_phy =
4635 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4636 
4637 static enum ioc_reply
4638 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4639 {
4640 	lb_info_sz_t *lbsp;
4641 	lb_property_t *lbpp;
4642 	struct e1000_hw *hw;
4643 	uint32_t *lbmp;
4644 	uint32_t size;
4645 	uint32_t value;
4646 
4647 	hw = &Adapter->shared;
4648 
4649 	if (mp->b_cont == NULL)
4650 		return (IOC_INVAL);
4651 
4652 	if (!e1000g_check_loopback_support(hw)) {
4653 		e1000g_log(NULL, CE_WARN,
4654 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4655 		return (IOC_INVAL);
4656 	}
4657 
4658 	switch (iocp->ioc_cmd) {
4659 	default:
4660 		return (IOC_INVAL);
4661 
4662 	case LB_GET_INFO_SIZE:
4663 		size = sizeof (lb_info_sz_t);
4664 		if (iocp->ioc_count != size)
4665 			return (IOC_INVAL);
4666 
4667 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4668 		e1000g_get_phy_state(Adapter);
4669 
4670 		/*
4671 		 * Workaround for hardware faults. In order to get a stable
4672 		 * state of phy, we will wait for a specific interval and
4673 		 * try again. The time delay is an experiential value based
4674 		 * on our testing.
4675 		 */
4676 		msec_delay(100);
4677 		e1000g_get_phy_state(Adapter);
4678 		rw_exit(&Adapter->chip_lock);
4679 
4680 		value = sizeof (lb_normal);
4681 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4682 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4683 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4684 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4685 			value += sizeof (lb_phy);
4686 			switch (hw->mac.type) {
4687 			case e1000_82571:
4688 			case e1000_82572:
4689 			case e1000_80003es2lan:
4690 				value += sizeof (lb_external1000);
4691 				break;
4692 			}
4693 		}
4694 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4695 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4696 			value += sizeof (lb_external100);
4697 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4698 			value += sizeof (lb_external10);
4699 
4700 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4701 		*lbsp = value;
4702 		break;
4703 
4704 	case LB_GET_INFO:
4705 		value = sizeof (lb_normal);
4706 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4707 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4708 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4709 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4710 			value += sizeof (lb_phy);
4711 			switch (hw->mac.type) {
4712 			case e1000_82571:
4713 			case e1000_82572:
4714 			case e1000_80003es2lan:
4715 				value += sizeof (lb_external1000);
4716 				break;
4717 			}
4718 		}
4719 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4720 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4721 			value += sizeof (lb_external100);
4722 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4723 			value += sizeof (lb_external10);
4724 
4725 		size = value;
4726 		if (iocp->ioc_count != size)
4727 			return (IOC_INVAL);
4728 
4729 		value = 0;
4730 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4731 		lbpp[value++] = lb_normal;
4732 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4733 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4734 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4735 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4736 			lbpp[value++] = lb_phy;
4737 			switch (hw->mac.type) {
4738 			case e1000_82571:
4739 			case e1000_82572:
4740 			case e1000_80003es2lan:
4741 				lbpp[value++] = lb_external1000;
4742 				break;
4743 			}
4744 		}
4745 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4746 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4747 			lbpp[value++] = lb_external100;
4748 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4749 			lbpp[value++] = lb_external10;
4750 		break;
4751 
4752 	case LB_GET_MODE:
4753 		size = sizeof (uint32_t);
4754 		if (iocp->ioc_count != size)
4755 			return (IOC_INVAL);
4756 
4757 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4758 		*lbmp = Adapter->loopback_mode;
4759 		break;
4760 
4761 	case LB_SET_MODE:
4762 		size = 0;
4763 		if (iocp->ioc_count != sizeof (uint32_t))
4764 			return (IOC_INVAL);
4765 
4766 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4767 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4768 			return (IOC_INVAL);
4769 		break;
4770 	}
4771 
4772 	iocp->ioc_count = size;
4773 	iocp->ioc_error = 0;
4774 
4775 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4776 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4777 		return (IOC_INVAL);
4778 	}
4779 
4780 	return (IOC_REPLY);
4781 }
4782 
4783 static boolean_t
4784 e1000g_check_loopback_support(struct e1000_hw *hw)
4785 {
4786 	switch (hw->mac.type) {
4787 	case e1000_82540:
4788 	case e1000_82545:
4789 	case e1000_82545_rev_3:
4790 	case e1000_82546:
4791 	case e1000_82546_rev_3:
4792 	case e1000_82541:
4793 	case e1000_82541_rev_2:
4794 	case e1000_82547:
4795 	case e1000_82547_rev_2:
4796 	case e1000_82571:
4797 	case e1000_82572:
4798 	case e1000_82573:
4799 	case e1000_82574:
4800 	case e1000_80003es2lan:
4801 	case e1000_ich9lan:
4802 	case e1000_ich10lan:
4803 		return (B_TRUE);
4804 	}
4805 	return (B_FALSE);
4806 }
4807 
4808 static boolean_t
4809 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4810 {
4811 	struct e1000_hw *hw;
4812 	int i, times;
4813 	boolean_t link_up;
4814 
4815 	if (mode == Adapter->loopback_mode)
4816 		return (B_TRUE);
4817 
4818 	hw = &Adapter->shared;
4819 	times = 0;
4820 
4821 	Adapter->loopback_mode = mode;
4822 
4823 	if (mode == E1000G_LB_NONE) {
4824 		/* Reset the chip */
4825 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4826 		(void) e1000g_reset_adapter(Adapter);
4827 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4828 		return (B_TRUE);
4829 	}
4830 
4831 again:
4832 
4833 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4834 
4835 	switch (mode) {
4836 	default:
4837 		rw_exit(&Adapter->chip_lock);
4838 		return (B_FALSE);
4839 
4840 	case E1000G_LB_EXTERNAL_1000:
4841 		e1000g_set_external_loopback_1000(Adapter);
4842 		break;
4843 
4844 	case E1000G_LB_EXTERNAL_100:
4845 		e1000g_set_external_loopback_100(Adapter);
4846 		break;
4847 
4848 	case E1000G_LB_EXTERNAL_10:
4849 		e1000g_set_external_loopback_10(Adapter);
4850 		break;
4851 
4852 	case E1000G_LB_INTERNAL_PHY:
4853 		e1000g_set_internal_loopback(Adapter);
4854 		break;
4855 	}
4856 
4857 	times++;
4858 
4859 	rw_exit(&Adapter->chip_lock);
4860 
4861 	/* Wait for link up */
4862 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4863 		msec_delay(100);
4864 
4865 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4866 
4867 	link_up = e1000g_link_up(Adapter);
4868 
4869 	rw_exit(&Adapter->chip_lock);
4870 
4871 	if (!link_up) {
4872 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4873 		    "Failed to get the link up");
4874 		if (times < 2) {
4875 			/* Reset the link */
4876 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4877 			    "Reset the link ...");
4878 			(void) e1000g_reset_adapter(Adapter);
4879 			goto again;
4880 		}
4881 	}
4882 
4883 	return (B_TRUE);
4884 }
4885 
4886 /*
4887  * The following loopback settings are from Intel's technical
4888  * document - "How To Loopback". All the register settings and
4889  * time delay values are directly inherited from the document
4890  * without more explanations available.
4891  */
4892 static void
4893 e1000g_set_internal_loopback(struct e1000g *Adapter)
4894 {
4895 	struct e1000_hw *hw;
4896 	uint32_t ctrl;
4897 	uint32_t status;
4898 	uint16_t phy_ctrl;
4899 	uint16_t phy_reg;
4900 	uint32_t txcw;
4901 
4902 	hw = &Adapter->shared;
4903 
4904 	/* Disable Smart Power Down */
4905 	phy_spd_state(hw, B_FALSE);
4906 
4907 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4908 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4909 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4910 
4911 	switch (hw->mac.type) {
4912 	case e1000_82540:
4913 	case e1000_82545:
4914 	case e1000_82545_rev_3:
4915 	case e1000_82546:
4916 	case e1000_82546_rev_3:
4917 	case e1000_82573:
4918 		/* Auto-MDI/MDIX off */
4919 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4920 		/* Reset PHY to update Auto-MDI/MDIX */
4921 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4922 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4923 		/* Reset PHY to auto-neg off and force 1000 */
4924 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4925 		    phy_ctrl | MII_CR_RESET);
4926 		/*
4927 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4928 		 * See comments above e1000g_set_internal_loopback() for the
4929 		 * background.
4930 		 */
4931 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4932 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4933 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4934 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4935 		break;
4936 	case e1000_80003es2lan:
4937 		/* Force Link Up */
4938 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4939 		    0x1CC);
4940 		/* Sets PCS loopback at 1Gbs */
4941 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4942 		    0x1046);
4943 		break;
4944 	}
4945 
4946 	/*
4947 	 * The following registers should be set for e1000_phy_bm phy type.
4948 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
4949 	 * For others, we do not need to set these registers.
4950 	 */
4951 	if (hw->phy.type == e1000_phy_bm) {
4952 		/* Set Default MAC Interface speed to 1GB */
4953 		e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
4954 		phy_reg &= ~0x0007;
4955 		phy_reg |= 0x006;
4956 		e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
4957 		/* Assert SW reset for above settings to take effect */
4958 		e1000_phy_commit(hw);
4959 		msec_delay(1);
4960 		/* Force Full Duplex */
4961 		e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
4962 		e1000_write_phy_reg(hw, PHY_REG(769, 16), phy_reg | 0x000C);
4963 		/* Set Link Up (in force link) */
4964 		e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
4965 		e1000_write_phy_reg(hw, PHY_REG(776, 16), phy_reg | 0x0040);
4966 		/* Force Link */
4967 		e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
4968 		e1000_write_phy_reg(hw, PHY_REG(769, 16), phy_reg | 0x0040);
4969 		/* Set Early Link Enable */
4970 		e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
4971 		e1000_write_phy_reg(hw, PHY_REG(769, 20), phy_reg | 0x0400);
4972 	}
4973 
4974 	/* Set loopback */
4975 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4976 
4977 	msec_delay(250);
4978 
4979 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4980 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4981 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4982 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4983 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4984 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4985 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4986 
4987 	switch (hw->mac.type) {
4988 	case e1000_82540:
4989 	case e1000_82545:
4990 	case e1000_82545_rev_3:
4991 	case e1000_82546:
4992 	case e1000_82546_rev_3:
4993 		/*
4994 		 * For some serdes we'll need to commit the writes now
4995 		 * so that the status is updated on link
4996 		 */
4997 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4998 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4999 			msec_delay(100);
5000 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5001 		}
5002 
5003 		if (hw->phy.media_type == e1000_media_type_copper) {
5004 			/* Invert Loss of Signal */
5005 			ctrl |= E1000_CTRL_ILOS;
5006 		} else {
5007 			/* Set ILOS on fiber nic if half duplex is detected */
5008 			status = E1000_READ_REG(hw, E1000_STATUS);
5009 			if ((status & E1000_STATUS_FD) == 0)
5010 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5011 		}
5012 		break;
5013 
5014 	case e1000_82571:
5015 	case e1000_82572:
5016 		/*
5017 		 * The fiber/SerDes versions of this adapter do not contain an
5018 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5019 		 * using SerDes analog loopback.
5020 		 */
5021 		if (hw->phy.media_type != e1000_media_type_copper) {
5022 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5023 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5024 			txcw &= ~((uint32_t)1 << 31);
5025 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5026 
5027 			/*
5028 			 * Write 0x410 to Serdes Control register
5029 			 * to enable Serdes analog loopback
5030 			 */
5031 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5032 			msec_delay(10);
5033 		}
5034 
5035 		status = E1000_READ_REG(hw, E1000_STATUS);
5036 		/* Set ILOS on fiber nic if half duplex is detected */
5037 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5038 		    ((status & E1000_STATUS_FD) == 0 ||
5039 		    (status & E1000_STATUS_LU) == 0))
5040 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5041 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5042 			ctrl |= E1000_CTRL_SLU;
5043 		break;
5044 
5045 	case e1000_82573:
5046 		ctrl |= E1000_CTRL_ILOS;
5047 		break;
5048 	case e1000_ich9lan:
5049 	case e1000_ich10lan:
5050 		ctrl |= E1000_CTRL_SLU;
5051 		break;
5052 	}
5053 	if (hw->phy.type == e1000_phy_bm)
5054 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5055 
5056 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5057 }
5058 
5059 static void
5060 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5061 {
5062 	struct e1000_hw *hw;
5063 	uint32_t rctl;
5064 	uint32_t ctrl_ext;
5065 	uint32_t ctrl;
5066 	uint32_t status;
5067 	uint32_t txcw;
5068 	uint16_t phydata;
5069 
5070 	hw = &Adapter->shared;
5071 
5072 	/* Disable Smart Power Down */
5073 	phy_spd_state(hw, B_FALSE);
5074 
5075 	switch (hw->mac.type) {
5076 	case e1000_82571:
5077 	case e1000_82572:
5078 		switch (hw->phy.media_type) {
5079 		case e1000_media_type_copper:
5080 			/* Force link up (Must be done before the PHY writes) */
5081 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5082 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5083 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5084 
5085 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5086 			rctl |= (E1000_RCTL_EN |
5087 			    E1000_RCTL_SBP |
5088 			    E1000_RCTL_UPE |
5089 			    E1000_RCTL_MPE |
5090 			    E1000_RCTL_LPE |
5091 			    E1000_RCTL_BAM);		/* 0x803E */
5092 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5093 
5094 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5095 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5096 			    E1000_CTRL_EXT_SDP6_DATA |
5097 			    E1000_CTRL_EXT_SDP7_DATA |
5098 			    E1000_CTRL_EXT_SDP4_DIR |
5099 			    E1000_CTRL_EXT_SDP6_DIR |
5100 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
5101 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5102 
5103 			/*
5104 			 * This sequence tunes the PHY's SDP and no customer
5105 			 * settable values. For background, see comments above
5106 			 * e1000g_set_internal_loopback().
5107 			 */
5108 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5109 			msec_delay(10);
5110 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5111 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5112 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5113 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5114 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5115 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5116 
5117 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5118 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5119 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5120 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5121 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5122 
5123 			msec_delay(50);
5124 			break;
5125 		case e1000_media_type_fiber:
5126 		case e1000_media_type_internal_serdes:
5127 			status = E1000_READ_REG(hw, E1000_STATUS);
5128 			if (((status & E1000_STATUS_LU) == 0) ||
5129 			    (hw->phy.media_type ==
5130 			    e1000_media_type_internal_serdes)) {
5131 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5132 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5133 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5134 			}
5135 
5136 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5137 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5138 			txcw &= ~((uint32_t)1 << 31);
5139 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5140 
5141 			/*
5142 			 * Write 0x410 to Serdes Control register
5143 			 * to enable Serdes analog loopback
5144 			 */
5145 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5146 			msec_delay(10);
5147 			break;
5148 		default:
5149 			break;
5150 		}
5151 		break;
5152 	case e1000_82574:
5153 	case e1000_80003es2lan:
5154 	case e1000_ich9lan:
5155 	case e1000_ich10lan:
5156 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5157 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5158 		    phydata | (1 << 5));
5159 		Adapter->param_adv_autoneg = 1;
5160 		Adapter->param_adv_1000fdx = 1;
5161 		(void) e1000g_reset_link(Adapter);
5162 		break;
5163 	}
5164 }
5165 
5166 static void
5167 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5168 {
5169 	struct e1000_hw *hw;
5170 	uint32_t ctrl;
5171 	uint16_t phy_ctrl;
5172 
5173 	hw = &Adapter->shared;
5174 
5175 	/* Disable Smart Power Down */
5176 	phy_spd_state(hw, B_FALSE);
5177 
5178 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5179 	    MII_CR_SPEED_100);
5180 
5181 	/* Force 100/FD, reset PHY */
5182 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5183 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5184 	msec_delay(10);
5185 
5186 	/* Force 100/FD */
5187 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5188 	    phy_ctrl);			/* 0x2100 */
5189 	msec_delay(10);
5190 
5191 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5192 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5193 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5194 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5195 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5196 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5197 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5198 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5199 
5200 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5201 }
5202 
5203 static void
5204 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5205 {
5206 	struct e1000_hw *hw;
5207 	uint32_t ctrl;
5208 	uint16_t phy_ctrl;
5209 
5210 	hw = &Adapter->shared;
5211 
5212 	/* Disable Smart Power Down */
5213 	phy_spd_state(hw, B_FALSE);
5214 
5215 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5216 	    MII_CR_SPEED_10);
5217 
5218 	/* Force 10/FD, reset PHY */
5219 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5220 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5221 	msec_delay(10);
5222 
5223 	/* Force 10/FD */
5224 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5225 	    phy_ctrl);			/* 0x0100 */
5226 	msec_delay(10);
5227 
5228 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5229 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5230 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5231 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5232 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5233 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5234 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5235 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5236 
5237 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5238 }
5239 
5240 #ifdef __sparc
5241 static boolean_t
5242 e1000g_find_mac_address(struct e1000g *Adapter)
5243 {
5244 	struct e1000_hw *hw = &Adapter->shared;
5245 	uchar_t *bytes;
5246 	struct ether_addr sysaddr;
5247 	uint_t nelts;
5248 	int err;
5249 	boolean_t found = B_FALSE;
5250 
5251 	/*
5252 	 * The "vendor's factory-set address" may already have
5253 	 * been extracted from the chip, but if the property
5254 	 * "local-mac-address" is set we use that instead.
5255 	 *
5256 	 * We check whether it looks like an array of 6
5257 	 * bytes (which it should, if OBP set it).  If we can't
5258 	 * make sense of it this way, we'll ignore it.
5259 	 */
5260 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5261 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5262 	if (err == DDI_PROP_SUCCESS) {
5263 		if (nelts == ETHERADDRL) {
5264 			while (nelts--)
5265 				hw->mac.addr[nelts] = bytes[nelts];
5266 			found = B_TRUE;
5267 		}
5268 		ddi_prop_free(bytes);
5269 	}
5270 
5271 	/*
5272 	 * Look up the OBP property "local-mac-address?". If the user has set
5273 	 * 'local-mac-address? = false', use "the system address" instead.
5274 	 */
5275 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5276 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5277 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5278 			if (localetheraddr(NULL, &sysaddr) != 0) {
5279 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5280 				found = B_TRUE;
5281 			}
5282 		}
5283 		ddi_prop_free(bytes);
5284 	}
5285 
5286 	/*
5287 	 * Finally(!), if there's a valid "mac-address" property (created
5288 	 * if we netbooted from this interface), we must use this instead
5289 	 * of any of the above to ensure that the NFS/install server doesn't
5290 	 * get confused by the address changing as Solaris takes over!
5291 	 */
5292 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5293 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5294 	if (err == DDI_PROP_SUCCESS) {
5295 		if (nelts == ETHERADDRL) {
5296 			while (nelts--)
5297 				hw->mac.addr[nelts] = bytes[nelts];
5298 			found = B_TRUE;
5299 		}
5300 		ddi_prop_free(bytes);
5301 	}
5302 
5303 	if (found) {
5304 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5305 		    ETHERADDRL);
5306 	}
5307 
5308 	return (found);
5309 }
5310 #endif
5311 
5312 static int
5313 e1000g_add_intrs(struct e1000g *Adapter)
5314 {
5315 	dev_info_t *devinfo;
5316 	int intr_types;
5317 	int rc;
5318 
5319 	devinfo = Adapter->dip;
5320 
5321 	/* Get supported interrupt types */
5322 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5323 
5324 	if (rc != DDI_SUCCESS) {
5325 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5326 		    "Get supported interrupt types failed: %d\n", rc);
5327 		return (DDI_FAILURE);
5328 	}
5329 
5330 	/*
5331 	 * Based on Intel Technical Advisory document (TA-160), there are some
5332 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5333 	 * that it supports MSI, but in fact has problems.
5334 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5335 	 * PCI/PCI-X NICs.
5336 	 */
5337 	if (Adapter->shared.mac.type < e1000_82571)
5338 		Adapter->msi_enable = B_FALSE;
5339 
5340 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5341 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5342 
5343 		if (rc != DDI_SUCCESS) {
5344 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5345 			    "Add MSI failed, trying Legacy interrupts\n");
5346 		} else {
5347 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5348 		}
5349 	}
5350 
5351 	if ((Adapter->intr_type == 0) &&
5352 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5353 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5354 
5355 		if (rc != DDI_SUCCESS) {
5356 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5357 			    "Add Legacy interrupts failed\n");
5358 			return (DDI_FAILURE);
5359 		}
5360 
5361 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5362 	}
5363 
5364 	if (Adapter->intr_type == 0) {
5365 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5366 		    "No interrupts registered\n");
5367 		return (DDI_FAILURE);
5368 	}
5369 
5370 	return (DDI_SUCCESS);
5371 }
5372 
5373 /*
5374  * e1000g_intr_add() handles MSI/Legacy interrupts
5375  */
5376 static int
5377 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5378 {
5379 	dev_info_t *devinfo;
5380 	int count, avail, actual;
5381 	int x, y, rc, inum = 0;
5382 	int flag;
5383 	ddi_intr_handler_t *intr_handler;
5384 
5385 	devinfo = Adapter->dip;
5386 
5387 	/* get number of interrupts */
5388 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5389 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5390 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5391 		    "Get interrupt number failed. Return: %d, count: %d\n",
5392 		    rc, count);
5393 		return (DDI_FAILURE);
5394 	}
5395 
5396 	/* get number of available interrupts */
5397 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5398 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5399 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5400 		    "Get interrupt available number failed. "
5401 		    "Return: %d, available: %d\n", rc, avail);
5402 		return (DDI_FAILURE);
5403 	}
5404 
5405 	if (avail < count) {
5406 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5407 		    "Interrupts count: %d, available: %d\n",
5408 		    count, avail);
5409 	}
5410 
5411 	/* Allocate an array of interrupt handles */
5412 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5413 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5414 
5415 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5416 	flag = DDI_INTR_ALLOC_NORMAL;
5417 
5418 	/* call ddi_intr_alloc() */
5419 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5420 	    count, &actual, flag);
5421 
5422 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5423 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5424 		    "Allocate interrupts failed: %d\n", rc);
5425 
5426 		kmem_free(Adapter->htable, Adapter->intr_size);
5427 		return (DDI_FAILURE);
5428 	}
5429 
5430 	if (actual < count) {
5431 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5432 		    "Interrupts requested: %d, received: %d\n",
5433 		    count, actual);
5434 	}
5435 
5436 	Adapter->intr_cnt = actual;
5437 
5438 	/* Get priority for first msi, assume remaining are all the same */
5439 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5440 
5441 	if (rc != DDI_SUCCESS) {
5442 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5443 		    "Get interrupt priority failed: %d\n", rc);
5444 
5445 		/* Free already allocated intr */
5446 		for (y = 0; y < actual; y++)
5447 			(void) ddi_intr_free(Adapter->htable[y]);
5448 
5449 		kmem_free(Adapter->htable, Adapter->intr_size);
5450 		return (DDI_FAILURE);
5451 	}
5452 
5453 	/*
5454 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5455 	 * use the interrupt service routine e1000g_intr_pciexpress()
5456 	 * to avoid interrupt stealing when sharing interrupt with other
5457 	 * devices.
5458 	 */
5459 	if (Adapter->shared.mac.type < e1000_82571)
5460 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5461 	else
5462 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5463 
5464 	/* Call ddi_intr_add_handler() */
5465 	for (x = 0; x < actual; x++) {
5466 		rc = ddi_intr_add_handler(Adapter->htable[x],
5467 		    intr_handler, (caddr_t)Adapter, NULL);
5468 
5469 		if (rc != DDI_SUCCESS) {
5470 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5471 			    "Add interrupt handler failed: %d\n", rc);
5472 
5473 			/* Remove already added handler */
5474 			for (y = 0; y < x; y++)
5475 				(void) ddi_intr_remove_handler(
5476 				    Adapter->htable[y]);
5477 
5478 			/* Free already allocated intr */
5479 			for (y = 0; y < actual; y++)
5480 				(void) ddi_intr_free(Adapter->htable[y]);
5481 
5482 			kmem_free(Adapter->htable, Adapter->intr_size);
5483 			return (DDI_FAILURE);
5484 		}
5485 	}
5486 
5487 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5488 
5489 	if (rc != DDI_SUCCESS) {
5490 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5491 		    "Get interrupt cap failed: %d\n", rc);
5492 
5493 		/* Free already allocated intr */
5494 		for (y = 0; y < actual; y++) {
5495 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5496 			(void) ddi_intr_free(Adapter->htable[y]);
5497 		}
5498 
5499 		kmem_free(Adapter->htable, Adapter->intr_size);
5500 		return (DDI_FAILURE);
5501 	}
5502 
5503 	return (DDI_SUCCESS);
5504 }
5505 
5506 static int
5507 e1000g_rem_intrs(struct e1000g *Adapter)
5508 {
5509 	int x;
5510 	int rc;
5511 
5512 	for (x = 0; x < Adapter->intr_cnt; x++) {
5513 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5514 		if (rc != DDI_SUCCESS) {
5515 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5516 			    "Remove intr handler failed: %d\n", rc);
5517 			return (DDI_FAILURE);
5518 		}
5519 
5520 		rc = ddi_intr_free(Adapter->htable[x]);
5521 		if (rc != DDI_SUCCESS) {
5522 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5523 			    "Free intr failed: %d\n", rc);
5524 			return (DDI_FAILURE);
5525 		}
5526 	}
5527 
5528 	kmem_free(Adapter->htable, Adapter->intr_size);
5529 
5530 	return (DDI_SUCCESS);
5531 }
5532 
5533 static int
5534 e1000g_enable_intrs(struct e1000g *Adapter)
5535 {
5536 	int x;
5537 	int rc;
5538 
5539 	/* Enable interrupts */
5540 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5541 		/* Call ddi_intr_block_enable() for MSI */
5542 		rc = ddi_intr_block_enable(Adapter->htable,
5543 		    Adapter->intr_cnt);
5544 		if (rc != DDI_SUCCESS) {
5545 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5546 			    "Enable block intr failed: %d\n", rc);
5547 			return (DDI_FAILURE);
5548 		}
5549 	} else {
5550 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5551 		for (x = 0; x < Adapter->intr_cnt; x++) {
5552 			rc = ddi_intr_enable(Adapter->htable[x]);
5553 			if (rc != DDI_SUCCESS) {
5554 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5555 				    "Enable intr failed: %d\n", rc);
5556 				return (DDI_FAILURE);
5557 			}
5558 		}
5559 	}
5560 
5561 	return (DDI_SUCCESS);
5562 }
5563 
5564 static int
5565 e1000g_disable_intrs(struct e1000g *Adapter)
5566 {
5567 	int x;
5568 	int rc;
5569 
5570 	/* Disable all interrupts */
5571 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5572 		rc = ddi_intr_block_disable(Adapter->htable,
5573 		    Adapter->intr_cnt);
5574 		if (rc != DDI_SUCCESS) {
5575 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5576 			    "Disable block intr failed: %d\n", rc);
5577 			return (DDI_FAILURE);
5578 		}
5579 	} else {
5580 		for (x = 0; x < Adapter->intr_cnt; x++) {
5581 			rc = ddi_intr_disable(Adapter->htable[x]);
5582 			if (rc != DDI_SUCCESS) {
5583 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5584 				    "Disable intr failed: %d\n", rc);
5585 				return (DDI_FAILURE);
5586 			}
5587 		}
5588 	}
5589 
5590 	return (DDI_SUCCESS);
5591 }
5592 
5593 /*
5594  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5595  */
5596 static void
5597 e1000g_get_phy_state(struct e1000g *Adapter)
5598 {
5599 	struct e1000_hw *hw = &Adapter->shared;
5600 
5601 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5602 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5603 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5604 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5605 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5606 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5607 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5608 	    &Adapter->phy_1000t_status);
5609 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5610 
5611 	Adapter->param_autoneg_cap =
5612 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5613 	Adapter->param_pause_cap =
5614 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5615 	Adapter->param_asym_pause_cap =
5616 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5617 	Adapter->param_1000fdx_cap =
5618 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5619 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5620 	Adapter->param_1000hdx_cap =
5621 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5622 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5623 	Adapter->param_100t4_cap =
5624 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5625 	Adapter->param_100fdx_cap =
5626 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5627 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5628 	Adapter->param_100hdx_cap =
5629 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5630 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5631 	Adapter->param_10fdx_cap =
5632 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5633 	Adapter->param_10hdx_cap =
5634 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5635 
5636 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5637 	Adapter->param_adv_pause =
5638 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5639 	Adapter->param_adv_asym_pause =
5640 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5641 	Adapter->param_adv_1000hdx =
5642 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5643 	Adapter->param_adv_100t4 =
5644 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5645 	if (Adapter->param_adv_autoneg == 1) {
5646 		Adapter->param_adv_1000fdx =
5647 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5648 		Adapter->param_adv_100fdx =
5649 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5650 		Adapter->param_adv_100hdx =
5651 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5652 		Adapter->param_adv_10fdx =
5653 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5654 		Adapter->param_adv_10hdx =
5655 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5656 	}
5657 
5658 	Adapter->param_lp_autoneg =
5659 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5660 	Adapter->param_lp_pause =
5661 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5662 	Adapter->param_lp_asym_pause =
5663 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5664 	Adapter->param_lp_1000fdx =
5665 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5666 	Adapter->param_lp_1000hdx =
5667 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5668 	Adapter->param_lp_100t4 =
5669 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5670 	Adapter->param_lp_100fdx =
5671 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5672 	Adapter->param_lp_100hdx =
5673 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5674 	Adapter->param_lp_10fdx =
5675 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5676 	Adapter->param_lp_10hdx =
5677 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5678 }
5679 
5680 /*
5681  * FMA support
5682  */
5683 
5684 int
5685 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5686 {
5687 	ddi_fm_error_t de;
5688 
5689 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5690 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5691 	return (de.fme_status);
5692 }
5693 
5694 int
5695 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5696 {
5697 	ddi_fm_error_t de;
5698 
5699 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5700 	return (de.fme_status);
5701 }
5702 
5703 /*
5704  * The IO fault service error handling callback function
5705  */
5706 /* ARGSUSED2 */
5707 static int
5708 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5709 {
5710 	/*
5711 	 * as the driver can always deal with an error in any dma or
5712 	 * access handle, we can just return the fme_status value.
5713 	 */
5714 	pci_ereport_post(dip, err, NULL);
5715 	return (err->fme_status);
5716 }
5717 
5718 static void
5719 e1000g_fm_init(struct e1000g *Adapter)
5720 {
5721 	ddi_iblock_cookie_t iblk;
5722 	int fma_acc_flag, fma_dma_flag;
5723 
5724 	/* Only register with IO Fault Services if we have some capability */
5725 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5726 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5727 		fma_acc_flag = 1;
5728 	} else {
5729 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5730 		fma_acc_flag = 0;
5731 	}
5732 
5733 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5734 		fma_dma_flag = 1;
5735 	} else {
5736 		fma_dma_flag = 0;
5737 	}
5738 
5739 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5740 
5741 	if (Adapter->fm_capabilities) {
5742 
5743 		/* Register capabilities with IO Fault Services */
5744 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5745 
5746 		/*
5747 		 * Initialize pci ereport capabilities if ereport capable
5748 		 */
5749 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5750 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5751 			pci_ereport_setup(Adapter->dip);
5752 
5753 		/*
5754 		 * Register error callback if error callback capable
5755 		 */
5756 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5757 			ddi_fm_handler_register(Adapter->dip,
5758 			    e1000g_fm_error_cb, (void*) Adapter);
5759 	}
5760 }
5761 
5762 static void
5763 e1000g_fm_fini(struct e1000g *Adapter)
5764 {
5765 	/* Only unregister FMA capabilities if we registered some */
5766 	if (Adapter->fm_capabilities) {
5767 
5768 		/*
5769 		 * Release any resources allocated by pci_ereport_setup()
5770 		 */
5771 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5772 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5773 			pci_ereport_teardown(Adapter->dip);
5774 
5775 		/*
5776 		 * Un-register error callback if error callback capable
5777 		 */
5778 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5779 			ddi_fm_handler_unregister(Adapter->dip);
5780 
5781 		/* Unregister from IO Fault Services */
5782 		ddi_fm_fini(Adapter->dip);
5783 	}
5784 }
5785 
5786 void
5787 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5788 {
5789 	uint64_t ena;
5790 	char buf[FM_MAX_CLASS];
5791 
5792 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5793 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5794 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5795 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5796 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5797 	}
5798 }
5799 
5800 /*
5801  * quiesce(9E) entry point.
5802  *
5803  * This function is called when the system is single-threaded at high
5804  * PIL with preemption disabled. Therefore, this function must not be
5805  * blocked.
5806  *
5807  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5808  * DDI_FAILURE indicates an error condition and should almost never happen.
5809  */
5810 static int
5811 e1000g_quiesce(dev_info_t *devinfo)
5812 {
5813 	struct e1000g *Adapter;
5814 
5815 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5816 
5817 	if (Adapter == NULL)
5818 		return (DDI_FAILURE);
5819 
5820 	e1000g_clear_all_interrupts(Adapter);
5821 
5822 	(void) e1000_reset_hw(&Adapter->shared);
5823 
5824 	/* Setup our HW Tx Head & Tail descriptor pointers */
5825 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5826 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5827 
5828 	/* Setup our HW Rx Head & Tail descriptor pointers */
5829 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5830 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5831 
5832 	return (DDI_SUCCESS);
5833 }
5834 
5835 static int
5836 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5837     uint_t pr_valsize, void *pr_val)
5838 {
5839 	link_flowctrl_t fl;
5840 	int err = 0;
5841 
5842 	ASSERT(pr_valsize > 0);
5843 	switch (pr_num) {
5844 	case MAC_PROP_AUTONEG:
5845 		*(uint8_t *)pr_val =
5846 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5847 		break;
5848 	case MAC_PROP_FLOWCTRL:
5849 		if (pr_valsize < sizeof (link_flowctrl_t))
5850 			return (EINVAL);
5851 		fl = LINK_FLOWCTRL_BI;
5852 		bcopy(&fl, pr_val, sizeof (fl));
5853 		break;
5854 	case MAC_PROP_ADV_1000FDX_CAP:
5855 	case MAC_PROP_EN_1000FDX_CAP:
5856 		*(uint8_t *)pr_val =
5857 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5858 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5859 		break;
5860 	case MAC_PROP_ADV_1000HDX_CAP:
5861 	case MAC_PROP_EN_1000HDX_CAP:
5862 		*(uint8_t *)pr_val =
5863 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5864 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5865 		break;
5866 	case MAC_PROP_ADV_100FDX_CAP:
5867 	case MAC_PROP_EN_100FDX_CAP:
5868 		*(uint8_t *)pr_val =
5869 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5870 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5871 		break;
5872 	case MAC_PROP_ADV_100HDX_CAP:
5873 	case MAC_PROP_EN_100HDX_CAP:
5874 		*(uint8_t *)pr_val =
5875 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5876 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5877 		break;
5878 	case MAC_PROP_ADV_10FDX_CAP:
5879 	case MAC_PROP_EN_10FDX_CAP:
5880 		*(uint8_t *)pr_val =
5881 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5882 		break;
5883 	case MAC_PROP_ADV_10HDX_CAP:
5884 	case MAC_PROP_EN_10HDX_CAP:
5885 		*(uint8_t *)pr_val =
5886 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5887 		break;
5888 	default:
5889 		err = ENOTSUP;
5890 		break;
5891 	}
5892 	return (err);
5893 }
5894 
5895 /*
5896  * synchronize the adv* and en* parameters.
5897  *
5898  * See comments in <sys/dld.h> for details of the *_en_*
5899  * parameters. The usage of ndd for setting adv parameters will
5900  * synchronize all the en parameters with the e1000g parameters,
5901  * implicitly disabling any settings made via dladm.
5902  */
5903 static void
5904 e1000g_param_sync(struct e1000g *Adapter)
5905 {
5906 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5907 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5908 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5909 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5910 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5911 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5912 }
5913 
5914 /*
5915  * e1000g_get_driver_control - tell manageability firmware that the driver
5916  * has control.
5917  */
5918 static void
5919 e1000g_get_driver_control(struct e1000_hw *hw)
5920 {
5921 	uint32_t ctrl_ext;
5922 	uint32_t swsm;
5923 
5924 	/* tell manageability firmware the driver has taken over */
5925 	switch (hw->mac.type) {
5926 	case e1000_82573:
5927 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5928 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5929 		break;
5930 	case e1000_82571:
5931 	case e1000_82572:
5932 	case e1000_82574:
5933 	case e1000_80003es2lan:
5934 	case e1000_ich8lan:
5935 	case e1000_ich9lan:
5936 	case e1000_ich10lan:
5937 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5938 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5939 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
5940 		break;
5941 	default:
5942 		/* no manageability firmware: do nothing */
5943 		break;
5944 	}
5945 }
5946 
5947 /*
5948  * e1000g_release_driver_control - tell manageability firmware that the driver
5949  * has released control.
5950  */
5951 static void
5952 e1000g_release_driver_control(struct e1000_hw *hw)
5953 {
5954 	uint32_t ctrl_ext;
5955 	uint32_t swsm;
5956 
5957 	/* tell manageability firmware the driver has released control */
5958 	switch (hw->mac.type) {
5959 	case e1000_82573:
5960 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5961 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
5962 		break;
5963 	case e1000_82571:
5964 	case e1000_82572:
5965 	case e1000_82574:
5966 	case e1000_80003es2lan:
5967 	case e1000_ich8lan:
5968 	case e1000_ich9lan:
5969 	case e1000_ich10lan:
5970 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5971 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5972 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
5973 		break;
5974 	default:
5975 		/* no manageability firmware: do nothing */
5976 		break;
5977 	}
5978 }
5979 
5980 /*
5981  * Restore e1000g promiscuous mode.
5982  */
5983 static void
5984 e1000g_restore_promisc(struct e1000g *Adapter)
5985 {
5986 	if (Adapter->e1000g_promisc) {
5987 		uint32_t rctl;
5988 
5989 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
5990 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
5991 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
5992 	}
5993 }
5994