xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_timers.c (revision b0e753dd6a955fb2f10a0ce17d32bd33172e0400)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2011 Joyent, Inc.  All rights reserved.
26  * Copyright (c) 2014 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/strlog.h>
31 #include <sys/strsun.h>
32 #include <sys/squeue_impl.h>
33 #include <sys/squeue.h>
34 #include <sys/callo.h>
35 #include <sys/strsubr.h>
36 
37 #include <inet/common.h>
38 #include <inet/ip.h>
39 #include <inet/ip_ire.h>
40 #include <inet/ip_rts.h>
41 #include <inet/tcp.h>
42 #include <inet/tcp_impl.h>
43 
44 /*
45  * Implementation of TCP Timers.
46  * =============================
47  *
48  * INTERFACE:
49  *
50  * There are two basic functions dealing with tcp timers:
51  *
52  *	timeout_id_t	tcp_timeout(connp, func, time)
53  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
54  *	TCP_TIMER_RESTART(tcp, intvl)
55  *
56  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
57  * after 'time' ticks passed. The function called by timeout() must adhere to
58  * the same restrictions as a driver soft interrupt handler - it must not sleep
59  * or call other functions that might sleep. The value returned is the opaque
60  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
61  * cancel the request. The call to tcp_timeout() may fail in which case it
62  * returns zero. This is different from the timeout(9F) function which never
63  * fails.
64  *
65  * The call-back function 'func' always receives 'connp' as its single
66  * argument. It is always executed in the squeue corresponding to the tcp
67  * structure. The tcp structure is guaranteed to be present at the time the
68  * call-back is called.
69  *
70  * NOTE: The call-back function 'func' is never called if tcp is in
71  * 	the TCPS_CLOSED state.
72  *
73  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
74  * request. locks acquired by the call-back routine should not be held across
75  * the call to tcp_timeout_cancel() or a deadlock may result.
76  *
77  * tcp_timeout_cancel() returns -1 if the timeout request is invalid.
78  * Otherwise, it returns an integer value greater than or equal to 0.
79  *
80  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
81  * 	within squeue context corresponding to the tcp instance. Since the
82  *	call-back is also called via the same squeue, there are no race
83  *	conditions described in untimeout(9F) manual page since all calls are
84  *	strictly serialized.
85  *
86  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
87  *	stored in tcp_timer_tid and starts a new one using
88  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
89  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
90  *	field.
91  *
92  * IMPLEMENTATION:
93  *
94  * TCP timers are implemented using three-stage process. The call to
95  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
96  * when the timer expires. The tcp_timer_callback() arranges the call of the
97  * tcp_timer_handler() function via squeue corresponding to the tcp
98  * instance. The tcp_timer_handler() calls actual requested timeout call-back
99  * and passes tcp instance as an argument to it. Information is passed between
100  * stages using the tcp_timer_t structure which contains the connp pointer, the
101  * tcp call-back to call and the timeout id returned by the timeout(9F).
102  *
103  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
104  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
105  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
106  * returns the pointer to this mblk.
107  *
108  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
109  * looks like a normal mblk without actual dblk attached to it.
110  *
111  * To optimize performance each tcp instance holds a small cache of timer
112  * mblocks. In the current implementation it caches up to two timer mblocks per
113  * tcp instance. The cache is preserved over tcp frees and is only freed when
114  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
115  * timer processing happens on a corresponding squeue, the cache manipulation
116  * does not require any locks. Experiments show that majority of timer mblocks
117  * allocations are satisfied from the tcp cache and do not involve kmem calls.
118  *
119  * The tcp_timeout() places a refhold on the connp instance which guarantees
120  * that it will be present at the time the call-back function fires. The
121  * tcp_timer_handler() drops the reference after calling the call-back, so the
122  * call-back function does not need to manipulate the references explicitly.
123  */
124 
125 kmem_cache_t *tcp_timercache;
126 
127 static void	tcp_ip_notify(tcp_t *);
128 static void	tcp_timer_callback(void *);
129 static void	tcp_timer_free(tcp_t *, mblk_t *);
130 static void	tcp_timer_handler(void *, mblk_t *, void *, ip_recv_attr_t *);
131 
132 /*
133  * tim is in millisec.
134  */
135 timeout_id_t
136 tcp_timeout(conn_t *connp, void (*f)(void *), hrtime_t tim)
137 {
138 	mblk_t *mp;
139 	tcp_timer_t *tcpt;
140 	tcp_t *tcp = connp->conn_tcp;
141 
142 	ASSERT(connp->conn_sqp != NULL);
143 
144 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
145 
146 	if (tcp->tcp_timercache == NULL) {
147 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
148 	} else {
149 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
150 		mp = tcp->tcp_timercache;
151 		tcp->tcp_timercache = mp->b_next;
152 		mp->b_next = NULL;
153 		ASSERT(mp->b_wptr == NULL);
154 	}
155 
156 	CONN_INC_REF(connp);
157 	tcpt = (tcp_timer_t *)mp->b_rptr;
158 	tcpt->connp = connp;
159 	tcpt->tcpt_proc = f;
160 	/*
161 	 * TCP timers are normal timeouts. Plus, they do not require more than
162 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
163 	 * rounding up the expiration to the next resolution boundary, we can
164 	 * batch timers in the callout subsystem to make TCP timers more
165 	 * efficient. The roundup also protects short timers from expiring too
166 	 * early before they have a chance to be cancelled.
167 	 */
168 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
169 	    tim * MICROSEC, CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
170 	VERIFY(!(tcpt->tcpt_tid & CALLOUT_ID_FREE));
171 
172 	return ((timeout_id_t)mp);
173 }
174 
175 static void
176 tcp_timer_callback(void *arg)
177 {
178 	mblk_t *mp = (mblk_t *)arg;
179 	tcp_timer_t *tcpt;
180 	conn_t	*connp;
181 
182 	tcpt = (tcp_timer_t *)mp->b_rptr;
183 	connp = tcpt->connp;
184 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
185 	    NULL, SQ_FILL, SQTAG_TCP_TIMER);
186 }
187 
188 /* ARGSUSED */
189 static void
190 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
191 {
192 	tcp_timer_t *tcpt;
193 	conn_t *connp = (conn_t *)arg;
194 	tcp_t *tcp = connp->conn_tcp;
195 
196 	tcpt = (tcp_timer_t *)mp->b_rptr;
197 	ASSERT(connp == tcpt->connp);
198 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
199 
200 	if (tcpt->tcpt_tid & CALLOUT_ID_FREE) {
201 		/*
202 		 * This timeout was cancelled after it was enqueued to the
203 		 * squeue; free the timer and return.
204 		 */
205 		tcp_timer_free(connp->conn_tcp, mp);
206 		return;
207 	}
208 
209 	/*
210 	 * If the TCP has reached the closed state, don't proceed any
211 	 * further. This TCP logically does not exist on the system.
212 	 * tcpt_proc could for example access queues, that have already
213 	 * been qprocoff'ed off.
214 	 */
215 	if (tcp->tcp_state != TCPS_CLOSED) {
216 		(*tcpt->tcpt_proc)(connp);
217 	} else {
218 		tcp->tcp_timer_tid = 0;
219 	}
220 
221 	tcp_timer_free(connp->conn_tcp, mp);
222 }
223 
224 /*
225  * There is potential race with untimeout and the handler firing at the same
226  * time. The mblock may be freed by the handler while we are trying to use
227  * it. But since both should execute on the same squeue, this race should not
228  * occur.
229  */
230 clock_t
231 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
232 {
233 	mblk_t	*mp = (mblk_t *)id;
234 	tcp_timer_t *tcpt;
235 	clock_t delta;
236 
237 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
238 
239 	if (mp == NULL)
240 		return (-1);
241 
242 	tcpt = (tcp_timer_t *)mp->b_rptr;
243 	ASSERT(tcpt->connp == connp);
244 
245 	delta = untimeout_default(tcpt->tcpt_tid, 0);
246 
247 	if (delta >= 0) {
248 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
249 		tcp_timer_free(connp->conn_tcp, mp);
250 		CONN_DEC_REF(connp);
251 	} else {
252 		/*
253 		 * If we were unable to untimeout successfully, it has already
254 		 * been enqueued on the squeue; mark the ID with the free
255 		 * bit.	 This bit can never be set in a valid identifier, and
256 		 * we'll use it to prevent the timeout from being executed.
257 		 * And note that we're within the squeue perimeter here, so
258 		 * we don't need to worry about racing with timer handling
259 		 * (which also executes within the perimeter).
260 		 */
261 		tcpt->tcpt_tid |= CALLOUT_ID_FREE;
262 		delta = 0;
263 	}
264 
265 	return (TICK_TO_MSEC(delta));
266 }
267 
268 /*
269  * Allocate space for the timer event. The allocation looks like mblk, but it is
270  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
271  *
272  * Dealing with failures: If we can't allocate from the timer cache we try
273  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
274  * points to b_rptr.
275  * If we can't allocate anything using allocb_tryhard(), we perform a last
276  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
277  * save the actual allocation size in b_datap.
278  */
279 mblk_t *
280 tcp_timermp_alloc(int kmflags)
281 {
282 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
283 	    kmflags & ~KM_PANIC);
284 
285 	if (mp != NULL) {
286 		mp->b_next = mp->b_prev = NULL;
287 		mp->b_rptr = (uchar_t *)(&mp[1]);
288 		mp->b_wptr = NULL;
289 		mp->b_datap = NULL;
290 		mp->b_queue = NULL;
291 		mp->b_cont = NULL;
292 	} else if (kmflags & KM_PANIC) {
293 		/*
294 		 * Failed to allocate memory for the timer. Try allocating from
295 		 * dblock caches.
296 		 */
297 		/* ipclassifier calls this from a constructor - hence no tcps */
298 		TCP_G_STAT(tcp_timermp_allocfail);
299 		mp = allocb_tryhard(sizeof (tcp_timer_t));
300 		if (mp == NULL) {
301 			size_t size = 0;
302 			/*
303 			 * Memory is really low. Try tryhard allocation.
304 			 *
305 			 * ipclassifier calls this from a constructor -
306 			 * hence no tcps
307 			 */
308 			TCP_G_STAT(tcp_timermp_allocdblfail);
309 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
310 			    sizeof (tcp_timer_t), &size, kmflags);
311 			mp->b_rptr = (uchar_t *)(&mp[1]);
312 			mp->b_next = mp->b_prev = NULL;
313 			mp->b_wptr = (uchar_t *)-1;
314 			mp->b_datap = (dblk_t *)size;
315 			mp->b_queue = NULL;
316 			mp->b_cont = NULL;
317 		}
318 		ASSERT(mp->b_wptr != NULL);
319 	}
320 	/* ipclassifier calls this from a constructor - hence no tcps */
321 	TCP_G_DBGSTAT(tcp_timermp_alloced);
322 
323 	return (mp);
324 }
325 
326 /*
327  * Free per-tcp timer cache.
328  * It can only contain entries from tcp_timercache.
329  */
330 void
331 tcp_timermp_free(tcp_t *tcp)
332 {
333 	mblk_t *mp;
334 
335 	while ((mp = tcp->tcp_timercache) != NULL) {
336 		ASSERT(mp->b_wptr == NULL);
337 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
338 		kmem_cache_free(tcp_timercache, mp);
339 	}
340 }
341 
342 /*
343  * Free timer event. Put it on the per-tcp timer cache if there is not too many
344  * events there already (currently at most two events are cached).
345  * If the event is not allocated from the timer cache, free it right away.
346  */
347 static void
348 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
349 {
350 	mblk_t *mp1 = tcp->tcp_timercache;
351 
352 	if (mp->b_wptr != NULL) {
353 		/*
354 		 * This allocation is not from a timer cache, free it right
355 		 * away.
356 		 */
357 		if (mp->b_wptr != (uchar_t *)-1)
358 			freeb(mp);
359 		else
360 			kmem_free(mp, (size_t)mp->b_datap);
361 	} else if (mp1 == NULL || mp1->b_next == NULL) {
362 		/* Cache this timer block for future allocations */
363 		mp->b_rptr = (uchar_t *)(&mp[1]);
364 		mp->b_next = mp1;
365 		tcp->tcp_timercache = mp;
366 	} else {
367 		kmem_cache_free(tcp_timercache, mp);
368 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
369 	}
370 }
371 
372 /*
373  * Stop all TCP timers.
374  */
375 void
376 tcp_timers_stop(tcp_t *tcp)
377 {
378 	if (tcp->tcp_timer_tid != 0) {
379 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
380 		tcp->tcp_timer_tid = 0;
381 	}
382 	if (tcp->tcp_ka_tid != 0) {
383 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
384 		tcp->tcp_ka_tid = 0;
385 	}
386 	if (tcp->tcp_ack_tid != 0) {
387 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
388 		tcp->tcp_ack_tid = 0;
389 	}
390 	if (tcp->tcp_push_tid != 0) {
391 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
392 		tcp->tcp_push_tid = 0;
393 	}
394 	if (tcp->tcp_reass_tid != 0) {
395 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid);
396 		tcp->tcp_reass_tid = 0;
397 	}
398 }
399 
400 /*
401  * Timer callback routine for keepalive probe.  We do a fake resend of
402  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
403  * check to see if we have heard anything from the other end for the last
404  * RTO period.  If we have, set the timer to expire for another
405  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
406  * RTO << 1 and check again when it expires.  Keep exponentially increasing
407  * the timeout if we have not heard from the other side.  If for more than
408  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
409  * kill the connection unless the keepalive abort threshold is 0.  In
410  * that case, we will probe "forever."
411  * If tcp_ka_cnt and tcp_ka_rinterval are non-zero, then we do not follow
412  * the exponential backoff, but send probes tcp_ka_cnt times in regular
413  * intervals of tcp_ka_rinterval milliseconds until we hear back from peer.
414  * Kill the connection if we don't hear back from peer after tcp_ka_cnt
415  * probes are sent.
416  */
417 void
418 tcp_keepalive_timer(void *arg)
419 {
420 	mblk_t	*mp;
421 	conn_t	*connp = (conn_t *)arg;
422 	tcp_t  	*tcp = connp->conn_tcp;
423 	int32_t	firetime;
424 	int32_t	idletime;
425 	int32_t	ka_intrvl;
426 	tcp_stack_t	*tcps = tcp->tcp_tcps;
427 
428 	tcp->tcp_ka_tid = 0;
429 
430 	if (tcp->tcp_fused)
431 		return;
432 
433 	TCPS_BUMP_MIB(tcps, tcpTimKeepalive);
434 	ka_intrvl = tcp->tcp_ka_interval;
435 
436 	/*
437 	 * Keepalive probe should only be sent if the application has not
438 	 * done a close on the connection.
439 	 */
440 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
441 		return;
442 	}
443 	/* Timer fired too early, restart it. */
444 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
445 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer,
446 		    ka_intrvl);
447 		return;
448 	}
449 
450 	idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time);
451 	/*
452 	 * If we have not heard from the other side for a long
453 	 * time, kill the connection unless the keepalive abort
454 	 * threshold is 0.  In that case, we will probe "forever."
455 	 */
456 	if (tcp->tcp_ka_abort_thres != 0 &&
457 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
458 		TCPS_BUMP_MIB(tcps, tcpTimKeepaliveDrop);
459 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
460 		    tcp->tcp_client_errno : ETIMEDOUT);
461 		return;
462 	}
463 
464 	if (tcp->tcp_snxt == tcp->tcp_suna &&
465 	    idletime >= ka_intrvl) {
466 		/* Fake resend of last ACKed byte. */
467 		mblk_t	*mp1 = allocb(1, BPRI_LO);
468 
469 		if (mp1 != NULL) {
470 			*mp1->b_wptr++ = '\0';
471 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
472 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
473 			freeb(mp1);
474 			/*
475 			 * if allocation failed, fall through to start the
476 			 * timer back.
477 			 */
478 			if (mp != NULL) {
479 				tcp_send_data(tcp, mp);
480 				TCPS_BUMP_MIB(tcps, tcpTimKeepaliveProbe);
481 				if (tcp->tcp_ka_rinterval) {
482 					firetime = tcp->tcp_ka_rinterval;
483 				} else if (tcp->tcp_ka_last_intrvl != 0) {
484 					int max;
485 					/*
486 					 * We should probe again at least
487 					 * in ka_intrvl, but not more than
488 					 * tcp_rto_max.
489 					 */
490 					max = tcp->tcp_rto_max;
491 					firetime = MIN(ka_intrvl - 1,
492 					    tcp->tcp_ka_last_intrvl << 1);
493 					if (firetime > max)
494 						firetime = max;
495 				} else {
496 					firetime = tcp->tcp_rto;
497 				}
498 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
499 				    tcp_keepalive_timer, firetime);
500 				tcp->tcp_ka_last_intrvl = firetime;
501 				return;
502 			}
503 		}
504 	} else {
505 		tcp->tcp_ka_last_intrvl = 0;
506 	}
507 
508 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
509 	if ((firetime = ka_intrvl - idletime) < 0) {
510 		firetime = ka_intrvl;
511 	}
512 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, firetime);
513 }
514 
515 void
516 tcp_reass_timer(void *arg)
517 {
518 	conn_t *connp = (conn_t *)arg;
519 	tcp_t *tcp = connp->conn_tcp;
520 
521 	tcp->tcp_reass_tid = 0;
522 	if (tcp->tcp_reass_head == NULL)
523 		return;
524 	ASSERT(tcp->tcp_reass_tail != NULL);
525 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
526 		tcp_sack_remove(tcp->tcp_sack_list,
527 		    TCP_REASS_END(tcp->tcp_reass_tail), &tcp->tcp_num_sack_blk);
528 	}
529 	tcp_close_mpp(&tcp->tcp_reass_head);
530 	tcp->tcp_reass_tail = NULL;
531 	TCP_STAT(tcp->tcp_tcps, tcp_reass_timeout);
532 }
533 
534 /* This function handles the push timeout. */
535 void
536 tcp_push_timer(void *arg)
537 {
538 	conn_t	*connp = (conn_t *)arg;
539 	tcp_t *tcp = connp->conn_tcp;
540 
541 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
542 
543 	ASSERT(tcp->tcp_listener == NULL);
544 
545 	ASSERT(!IPCL_IS_NONSTR(connp));
546 
547 	tcp->tcp_push_tid = 0;
548 
549 	if (tcp->tcp_rcv_list != NULL &&
550 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
551 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
552 }
553 
554 /*
555  * This function handles delayed ACK timeout.
556  */
557 void
558 tcp_ack_timer(void *arg)
559 {
560 	conn_t	*connp = (conn_t *)arg;
561 	tcp_t *tcp = connp->conn_tcp;
562 	mblk_t *mp;
563 	tcp_stack_t	*tcps = tcp->tcp_tcps;
564 
565 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
566 
567 	tcp->tcp_ack_tid = 0;
568 
569 	if (tcp->tcp_fused)
570 		return;
571 
572 	/*
573 	 * Do not send ACK if there is no outstanding unack'ed data.
574 	 */
575 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
576 		return;
577 	}
578 
579 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
580 		/*
581 		 * Make sure we don't allow deferred ACKs to result in
582 		 * timer-based ACKing.  If we have held off an ACK
583 		 * when there was more than an mss here, and the timer
584 		 * goes off, we have to worry about the possibility
585 		 * that the sender isn't doing slow-start, or is out
586 		 * of step with us for some other reason.  We fall
587 		 * permanently back in the direction of
588 		 * ACK-every-other-packet as suggested in RFC 1122.
589 		 */
590 		if (tcp->tcp_rack_abs_max > 2)
591 			tcp->tcp_rack_abs_max--;
592 		tcp->tcp_rack_cur_max = 2;
593 	}
594 	mp = tcp_ack_mp(tcp);
595 
596 	if (mp != NULL) {
597 		BUMP_LOCAL(tcp->tcp_obsegs);
598 		TCPS_BUMP_MIB(tcps, tcpOutAck);
599 		TCPS_BUMP_MIB(tcps, tcpOutAckDelayed);
600 		tcp_send_data(tcp, mp);
601 	}
602 }
603 
604 /*
605  * Notify IP that we are having trouble with this connection.  IP should
606  * make note so it can potentially use a different IRE.
607  */
608 static void
609 tcp_ip_notify(tcp_t *tcp)
610 {
611 	conn_t		*connp = tcp->tcp_connp;
612 	ire_t		*ire;
613 
614 	/*
615 	 * Note: in the case of source routing we want to blow away the
616 	 * route to the first source route hop.
617 	 */
618 	ire = connp->conn_ixa->ixa_ire;
619 	if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
620 		if (ire->ire_ipversion == IPV4_VERSION) {
621 			/*
622 			 * As per RFC 1122, we send an RTM_LOSING to inform
623 			 * routing protocols.
624 			 */
625 			ip_rts_change(RTM_LOSING, ire->ire_addr,
626 			    ire->ire_gateway_addr, ire->ire_mask,
627 			    connp->conn_laddr_v4,  0, 0, 0,
628 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
629 			    ire->ire_ipst);
630 		}
631 		(void) ire_no_good(ire);
632 	}
633 }
634 
635 /*
636  * tcp_timer is the timer service routine.  It handles the retransmission,
637  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
638  * from the state of the tcp instance what kind of action needs to be done
639  * at the time it is called.
640  */
641 void
642 tcp_timer(void *arg)
643 {
644 	mblk_t		*mp;
645 	clock_t		first_threshold;
646 	clock_t		second_threshold;
647 	clock_t		ms;
648 	uint32_t	mss;
649 	conn_t		*connp = (conn_t *)arg;
650 	tcp_t		*tcp = connp->conn_tcp;
651 	tcp_stack_t	*tcps = tcp->tcp_tcps;
652 	boolean_t	dont_timeout = B_FALSE;
653 
654 	tcp->tcp_timer_tid = 0;
655 
656 	if (tcp->tcp_fused)
657 		return;
658 
659 	first_threshold =  tcp->tcp_first_timer_threshold;
660 	second_threshold = tcp->tcp_second_timer_threshold;
661 	switch (tcp->tcp_state) {
662 	case TCPS_IDLE:
663 	case TCPS_BOUND:
664 	case TCPS_LISTEN:
665 		return;
666 	case TCPS_SYN_RCVD: {
667 		tcp_t	*listener = tcp->tcp_listener;
668 
669 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
670 			/* it's our first timeout */
671 			tcp->tcp_syn_rcvd_timeout = 1;
672 			mutex_enter(&listener->tcp_eager_lock);
673 			listener->tcp_syn_rcvd_timeout++;
674 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
675 				/*
676 				 * Make this eager available for drop if we
677 				 * need to drop one to accomodate a new
678 				 * incoming SYN request.
679 				 */
680 				MAKE_DROPPABLE(listener, tcp);
681 			}
682 			if (!listener->tcp_syn_defense &&
683 			    (listener->tcp_syn_rcvd_timeout >
684 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
685 			    (tcps->tcps_conn_req_max_q0 > 200)) {
686 				/* We may be under attack. Put on a defense. */
687 				listener->tcp_syn_defense = B_TRUE;
688 				cmn_err(CE_WARN, "High TCP connect timeout "
689 				    "rate! System (port %d) may be under a "
690 				    "SYN flood attack!",
691 				    ntohs(listener->tcp_connp->conn_lport));
692 
693 				listener->tcp_ip_addr_cache = kmem_zalloc(
694 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
695 				    KM_NOSLEEP);
696 			}
697 			mutex_exit(&listener->tcp_eager_lock);
698 		} else if (listener != NULL) {
699 			mutex_enter(&listener->tcp_eager_lock);
700 			tcp->tcp_syn_rcvd_timeout++;
701 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
702 			    !tcp->tcp_closemp_used) {
703 				/*
704 				 * This is our second timeout. Put the tcp in
705 				 * the list of droppable eagers to allow it to
706 				 * be dropped, if needed. We don't check
707 				 * whether tcp_dontdrop is set or not to
708 				 * protect ourselve from a SYN attack where a
709 				 * remote host can spoof itself as one of the
710 				 * good IP source and continue to hold
711 				 * resources too long.
712 				 */
713 				MAKE_DROPPABLE(listener, tcp);
714 			}
715 			mutex_exit(&listener->tcp_eager_lock);
716 		}
717 	}
718 		/* FALLTHRU */
719 	case TCPS_SYN_SENT:
720 		first_threshold =  tcp->tcp_first_ctimer_threshold;
721 		second_threshold = tcp->tcp_second_ctimer_threshold;
722 
723 		/*
724 		 * If an app has set the second_threshold to 0, it means that
725 		 * we need to retransmit forever, unless this is a passive
726 		 * open.  We need to set second_threshold back to a normal
727 		 * value such that later comparison with it still makes
728 		 * sense.  But we set dont_timeout to B_TRUE so that we will
729 		 * never time out.
730 		 */
731 		if (second_threshold == 0) {
732 			second_threshold = tcps->tcps_ip_abort_linterval;
733 			if (tcp->tcp_active_open)
734 				dont_timeout = B_TRUE;
735 		}
736 		break;
737 	case TCPS_ESTABLISHED:
738 	case TCPS_CLOSE_WAIT:
739 		/*
740 		 * If the end point has not been closed, TCP can retransmit
741 		 * forever.  But if the end point is closed, the normal
742 		 * timeout applies.
743 		 */
744 		if (second_threshold == 0) {
745 			second_threshold = tcps->tcps_ip_abort_linterval;
746 			dont_timeout = B_TRUE;
747 		}
748 		/* FALLTHRU */
749 	case TCPS_FIN_WAIT_1:
750 	case TCPS_CLOSING:
751 	case TCPS_LAST_ACK:
752 		/* If we have data to rexmit */
753 		if (tcp->tcp_suna != tcp->tcp_snxt) {
754 			clock_t	time_to_wait;
755 
756 			TCPS_BUMP_MIB(tcps, tcpTimRetrans);
757 			if (!tcp->tcp_xmit_head)
758 				break;
759 			time_to_wait = ddi_get_lbolt() -
760 			    (clock_t)tcp->tcp_xmit_head->b_prev;
761 			time_to_wait = tcp->tcp_rto -
762 			    TICK_TO_MSEC(time_to_wait);
763 			/*
764 			 * If the timer fires too early, 1 clock tick earlier,
765 			 * restart the timer.
766 			 */
767 			if (time_to_wait > msec_per_tick) {
768 				TCP_STAT(tcps, tcp_timer_fire_early);
769 				TCP_TIMER_RESTART(tcp, time_to_wait);
770 				return;
771 			}
772 			/*
773 			 * When we probe zero windows, we force the swnd open.
774 			 * If our peer acks with a closed window swnd will be
775 			 * set to zero by tcp_rput(). As long as we are
776 			 * receiving acks tcp_rput will
777 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
778 			 * first and second interval actions.  NOTE: the timer
779 			 * interval is allowed to continue its exponential
780 			 * backoff.
781 			 */
782 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
783 				if (connp->conn_debug) {
784 					(void) strlog(TCP_MOD_ID, 0, 1,
785 					    SL_TRACE, "tcp_timer: zero win");
786 				}
787 			} else {
788 				/*
789 				 * After retransmission, we need to do
790 				 * slow start.  Set the ssthresh to one
791 				 * half of current effective window and
792 				 * cwnd to one MSS.  Also reset
793 				 * tcp_cwnd_cnt.
794 				 *
795 				 * Note that if tcp_ssthresh is reduced because
796 				 * of ECN, do not reduce it again unless it is
797 				 * already one window of data away (tcp_cwr
798 				 * should then be cleared) or this is a
799 				 * timeout for a retransmitted segment.
800 				 */
801 				uint32_t npkt;
802 
803 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
804 					npkt = ((tcp->tcp_timer_backoff ?
805 					    tcp->tcp_cwnd_ssthresh :
806 					    tcp->tcp_snxt -
807 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
808 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
809 					    tcp->tcp_mss;
810 				}
811 				tcp->tcp_cwnd = tcp->tcp_mss;
812 				tcp->tcp_cwnd_cnt = 0;
813 				if (tcp->tcp_ecn_ok) {
814 					tcp->tcp_cwr = B_TRUE;
815 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
816 					tcp->tcp_ecn_cwr_sent = B_FALSE;
817 				}
818 			}
819 			break;
820 		}
821 		/*
822 		 * We have something to send yet we cannot send.  The
823 		 * reason can be:
824 		 *
825 		 * 1. Zero send window: we need to do zero window probe.
826 		 * 2. Zero cwnd: because of ECN, we need to "clock out
827 		 * segments.
828 		 * 3. SWS avoidance: receiver may have shrunk window,
829 		 * reset our knowledge.
830 		 *
831 		 * Note that condition 2 can happen with either 1 or
832 		 * 3.  But 1 and 3 are exclusive.
833 		 */
834 		if (tcp->tcp_unsent != 0) {
835 			/*
836 			 * Should not hold the zero-copy messages for too long.
837 			 */
838 			if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
839 				tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
840 				    tcp->tcp_xmit_head, B_TRUE);
841 
842 			if (tcp->tcp_cwnd == 0) {
843 				/*
844 				 * Set tcp_cwnd to 1 MSS so that a
845 				 * new segment can be sent out.  We
846 				 * are "clocking out" new data when
847 				 * the network is really congested.
848 				 */
849 				ASSERT(tcp->tcp_ecn_ok);
850 				tcp->tcp_cwnd = tcp->tcp_mss;
851 			}
852 			if (tcp->tcp_swnd == 0) {
853 				/* Extend window for zero window probe */
854 				tcp->tcp_swnd++;
855 				tcp->tcp_zero_win_probe = B_TRUE;
856 				TCPS_BUMP_MIB(tcps, tcpOutWinProbe);
857 			} else {
858 				/*
859 				 * Handle timeout from sender SWS avoidance.
860 				 * Reset our knowledge of the max send window
861 				 * since the receiver might have reduced its
862 				 * receive buffer.  Avoid setting tcp_max_swnd
863 				 * to one since that will essentially disable
864 				 * the SWS checks.
865 				 *
866 				 * Note that since we don't have a SWS
867 				 * state variable, if the timeout is set
868 				 * for ECN but not for SWS, this
869 				 * code will also be executed.  This is
870 				 * fine as tcp_max_swnd is updated
871 				 * constantly and it will not affect
872 				 * anything.
873 				 */
874 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
875 			}
876 			tcp_wput_data(tcp, NULL, B_FALSE);
877 			return;
878 		}
879 		/* Is there a FIN that needs to be to re retransmitted? */
880 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
881 		    !tcp->tcp_fin_acked)
882 			break;
883 		/* Nothing to do, return without restarting timer. */
884 		TCP_STAT(tcps, tcp_timer_fire_miss);
885 		return;
886 	case TCPS_FIN_WAIT_2:
887 		/*
888 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
889 		 * We waited some time for for peer's FIN, but it hasn't
890 		 * arrived.  We flush the connection now to avoid
891 		 * case where the peer has rebooted.
892 		 */
893 		if (TCP_IS_DETACHED(tcp)) {
894 			(void) tcp_clean_death(tcp, 0);
895 		} else {
896 			TCP_TIMER_RESTART(tcp,
897 			    tcp->tcp_fin_wait_2_flush_interval);
898 		}
899 		return;
900 	case TCPS_TIME_WAIT:
901 		(void) tcp_clean_death(tcp, 0);
902 		return;
903 	default:
904 		if (connp->conn_debug) {
905 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
906 			    "tcp_timer: strange state (%d) %s",
907 			    tcp->tcp_state, tcp_display(tcp, NULL,
908 			    DISP_PORT_ONLY));
909 		}
910 		return;
911 	}
912 
913 	/*
914 	 * If the system is under memory pressure or the max number of
915 	 * connections have been established for the listener, be more
916 	 * aggressive in aborting connections.
917 	 */
918 	if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL &&
919 	    tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) {
920 		second_threshold = tcp_early_abort * SECONDS;
921 
922 		/* We will ignore the never timeout promise in this case... */
923 		dont_timeout = B_FALSE;
924 	}
925 
926 	ASSERT(second_threshold != 0);
927 
928 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
929 		/*
930 		 * Should not hold the zero-copy messages for too long.
931 		 */
932 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
933 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
934 			    tcp->tcp_xmit_head, B_TRUE);
935 
936 		if (dont_timeout) {
937 			/*
938 			 * Reset tcp_ms_we_have_waited to avoid overflow since
939 			 * we are going to retransmit forever.
940 			 */
941 			tcp->tcp_ms_we_have_waited = second_threshold;
942 			goto timer_rexmit;
943 		}
944 
945 		/*
946 		 * For zero window probe, we need to send indefinitely,
947 		 * unless we have not heard from the other side for some
948 		 * time...
949 		 */
950 		if ((tcp->tcp_zero_win_probe == 0) ||
951 		    (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >
952 		    second_threshold)) {
953 			TCPS_BUMP_MIB(tcps, tcpTimRetransDrop);
954 			/*
955 			 * If TCP is in SYN_RCVD state, send back a
956 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
957 			 * should be zero in TCPS_SYN_RCVD state.
958 			 */
959 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
960 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
961 				    "in SYN_RCVD",
962 				    tcp, tcp->tcp_snxt,
963 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
964 			}
965 			(void) tcp_clean_death(tcp,
966 			    tcp->tcp_client_errno ?
967 			    tcp->tcp_client_errno : ETIMEDOUT);
968 			return;
969 		} else {
970 			/*
971 			 * If the system is under memory pressure, we also
972 			 * abort connection in zero window probing.
973 			 */
974 			if (tcps->tcps_reclaim) {
975 				(void) tcp_clean_death(tcp,
976 				    tcp->tcp_client_errno ?
977 				    tcp->tcp_client_errno : ETIMEDOUT);
978 				TCP_STAT(tcps, tcp_zwin_mem_drop);
979 				return;
980 			}
981 			/*
982 			 * Set tcp_ms_we_have_waited to second_threshold
983 			 * so that in next timeout, we will do the above
984 			 * check (ddi_get_lbolt() - tcp_last_recv_time).
985 			 * This is also to avoid overflow.
986 			 *
987 			 * We don't need to decrement tcp_timer_backoff
988 			 * to avoid overflow because it will be decremented
989 			 * later if new timeout value is greater than
990 			 * tcp_rto_max.  In the case when tcp_rto_max is
991 			 * greater than second_threshold, it means that we
992 			 * will wait longer than second_threshold to send
993 			 * the next
994 			 * window probe.
995 			 */
996 			tcp->tcp_ms_we_have_waited = second_threshold;
997 		}
998 	} else if (ms > first_threshold) {
999 		/*
1000 		 * Should not hold the zero-copy messages for too long.
1001 		 */
1002 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
1003 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
1004 			    tcp->tcp_xmit_head, B_TRUE);
1005 
1006 		/*
1007 		 * We have been retransmitting for too long...  The RTT
1008 		 * we calculated is probably incorrect.  Reinitialize it.
1009 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
1010 		 * tcp_rtt_update so that we won't accidentally cache a
1011 		 * bad value.  But only do this if this is not a zero
1012 		 * window probe.
1013 		 */
1014 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
1015 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
1016 			    (tcp->tcp_rtt_sa >> 5);
1017 			tcp->tcp_rtt_sa = 0;
1018 			tcp_ip_notify(tcp);
1019 			tcp->tcp_rtt_update = 0;
1020 		}
1021 	}
1022 
1023 timer_rexmit:
1024 	tcp->tcp_timer_backoff++;
1025 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
1026 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
1027 	    tcp->tcp_rto_min) {
1028 		/*
1029 		 * This means the original RTO is tcp_rexmit_interval_min.
1030 		 * So we will use tcp_rexmit_interval_min as the RTO value
1031 		 * and do the backoff.
1032 		 */
1033 		ms = tcp->tcp_rto_min << tcp->tcp_timer_backoff;
1034 	} else {
1035 		ms <<= tcp->tcp_timer_backoff;
1036 	}
1037 	if (ms > tcp->tcp_rto_max) {
1038 		ms = tcp->tcp_rto_max;
1039 		/*
1040 		 * ms is at max, decrement tcp_timer_backoff to avoid
1041 		 * overflow.
1042 		 */
1043 		tcp->tcp_timer_backoff--;
1044 	}
1045 	tcp->tcp_ms_we_have_waited += ms;
1046 	if (tcp->tcp_zero_win_probe == 0) {
1047 		tcp->tcp_rto = ms;
1048 	}
1049 	TCP_TIMER_RESTART(tcp, ms);
1050 	/*
1051 	 * This is after a timeout and tcp_rto is backed off.  Set
1052 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
1053 	 * restart the timer with a correct value.
1054 	 */
1055 	tcp->tcp_set_timer = 1;
1056 	mss = tcp->tcp_snxt - tcp->tcp_suna;
1057 	if (mss > tcp->tcp_mss)
1058 		mss = tcp->tcp_mss;
1059 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
1060 		mss = tcp->tcp_swnd;
1061 
1062 	if ((mp = tcp->tcp_xmit_head) != NULL)
1063 		mp->b_prev = (mblk_t *)ddi_get_lbolt();
1064 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
1065 	    B_TRUE);
1066 
1067 	/*
1068 	 * When slow start after retransmission begins, start with
1069 	 * this seq no.  tcp_rexmit_max marks the end of special slow
1070 	 * start phase.
1071 	 */
1072 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
1073 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
1074 	    (tcp->tcp_unsent == 0)) {
1075 		tcp->tcp_rexmit_max = tcp->tcp_fss;
1076 	} else {
1077 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
1078 	}
1079 	tcp->tcp_rexmit = B_TRUE;
1080 	tcp->tcp_dupack_cnt = 0;
1081 
1082 	/*
1083 	 * Remove all rexmit SACK blk to start from fresh.
1084 	 */
1085 	if (tcp->tcp_snd_sack_ok)
1086 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1087 	if (mp == NULL) {
1088 		return;
1089 	}
1090 
1091 	tcp->tcp_csuna = tcp->tcp_snxt;
1092 	TCPS_BUMP_MIB(tcps, tcpRetransSegs);
1093 	TCPS_UPDATE_MIB(tcps, tcpRetransBytes, mss);
1094 	tcp_send_data(tcp, mp);
1095 
1096 }
1097 
1098 /*
1099  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
1100  * expires.
1101  */
1102 void
1103 tcp_close_linger_timeout(void *arg)
1104 {
1105 	conn_t	*connp = (conn_t *)arg;
1106 	tcp_t 	*tcp = connp->conn_tcp;
1107 
1108 	tcp->tcp_client_errno = ETIMEDOUT;
1109 	tcp_stop_lingering(tcp);
1110 }
1111