1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* This file contains all TCP input processing functions. */ 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/strsun.h> 32 #include <sys/strsubr.h> 33 #include <sys/stropts.h> 34 #include <sys/strlog.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/suntpi.h> 38 #include <sys/xti_inet.h> 39 #include <sys/squeue_impl.h> 40 #include <sys/squeue.h> 41 #include <sys/tsol/tnet.h> 42 43 #include <inet/common.h> 44 #include <inet/ip.h> 45 #include <inet/tcp.h> 46 #include <inet/tcp_impl.h> 47 #include <inet/tcp_cluster.h> 48 #include <inet/proto_set.h> 49 #include <inet/ipsec_impl.h> 50 51 /* 52 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 53 */ 54 55 #ifdef _BIG_ENDIAN 56 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 57 (TCPOPT_TSTAMP << 8) | 10) 58 #else 59 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 60 (TCPOPT_NOP << 8) | TCPOPT_NOP) 61 #endif 62 63 /* 64 * Flags returned from tcp_parse_options. 65 */ 66 #define TCP_OPT_MSS_PRESENT 1 67 #define TCP_OPT_WSCALE_PRESENT 2 68 #define TCP_OPT_TSTAMP_PRESENT 4 69 #define TCP_OPT_SACK_OK_PRESENT 8 70 #define TCP_OPT_SACK_PRESENT 16 71 72 /* 73 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 74 */ 75 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 76 77 /* 78 * Since tcp_listener is not cleared atomically with tcp_detached 79 * being cleared we need this extra bit to tell a detached connection 80 * apart from one that is in the process of being accepted. 81 */ 82 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 83 (TCP_IS_DETACHED(tcp) && \ 84 (!(tcp)->tcp_hard_binding)) 85 86 /* 87 * Steps to do when a tcp_t moves to TIME-WAIT state. 88 * 89 * This connection is done, we don't need to account for it. Decrement 90 * the listener connection counter if needed. 91 * 92 * Decrement the connection counter of the stack. Note that this counter 93 * is per CPU. So the total number of connections in a stack is the sum of all 94 * of them. Since there is no lock for handling all of them exclusively, the 95 * resulting sum is only an approximation. 96 * 97 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 98 * connection won't interfere with new ones. 99 * 100 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 101 * the timer is handled within the context of this tcp_t. When the timer 102 * fires, tcp_clean_death() is called. If upper layer closes the connection 103 * during this period, tcp_time_wait_append() will be called to add this 104 * tcp_t to the global TIME-WAIT list. Note that this means that the 105 * actual wait time in TIME-WAIT state will be longer than the 106 * tcps_time_wait_interval since the period before upper layer closes the 107 * connection is not accounted for when tcp_time_wait_append() is called. 108 * 109 * If uppser layer has closed the connection, call tcp_time_wait_append() 110 * directly. 111 * 112 */ 113 #define SET_TIME_WAIT(tcps, tcp, connp) \ 114 { \ 115 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 116 if ((tcp)->tcp_listen_cnt != NULL) \ 117 TCP_DECR_LISTEN_CNT(tcp); \ 118 atomic_dec_64( \ 119 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 120 (connp)->conn_exclbind = 0; \ 121 if (!TCP_IS_DETACHED(tcp)) { \ 122 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 123 } else { \ 124 tcp_time_wait_append(tcp); \ 125 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 126 } \ 127 } 128 129 /* 130 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 131 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 132 * data, TCP will not respond with an ACK. RFC 793 requires that 133 * TCP responds with an ACK for such a bogus ACK. By not following 134 * the RFC, we prevent TCP from getting into an ACK storm if somehow 135 * an attacker successfully spoofs an acceptable segment to our 136 * peer; or when our peer is "confused." 137 */ 138 static uint32_t tcp_drop_ack_unsent_cnt = 10; 139 140 /* 141 * The shift factor applied to tcp_mss to decide if the peer sends us a 142 * valid initial receive window. By default, if the peer receive window 143 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 144 */ 145 static uint32_t tcp_init_wnd_shft = 0; 146 147 /* Process ICMP source quench message or not. */ 148 static boolean_t tcp_icmp_source_quench = B_FALSE; 149 150 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 151 152 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 153 ip_recv_attr_t *); 154 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 155 ip_recv_attr_t *); 156 static boolean_t tcp_drop_q0(tcp_t *); 157 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 158 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 159 ip_recv_attr_t *); 160 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 161 static int tcp_parse_options(tcpha_t *, tcp_opt_t *); 162 static void tcp_process_options(tcp_t *, tcpha_t *); 163 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 164 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 165 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 166 static void tcp_set_rto(tcp_t *, time_t); 167 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 168 169 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 170 171 /* 172 * Set the MSS associated with a particular tcp based on its current value, 173 * and a new one passed in. Observe minimums and maximums, and reset other 174 * state variables that we want to view as multiples of MSS. 175 * 176 * The value of MSS could be either increased or descreased. 177 */ 178 void 179 tcp_mss_set(tcp_t *tcp, uint32_t mss) 180 { 181 uint32_t mss_max; 182 tcp_stack_t *tcps = tcp->tcp_tcps; 183 conn_t *connp = tcp->tcp_connp; 184 185 if (connp->conn_ipversion == IPV4_VERSION) 186 mss_max = tcps->tcps_mss_max_ipv4; 187 else 188 mss_max = tcps->tcps_mss_max_ipv6; 189 190 if (mss < tcps->tcps_mss_min) 191 mss = tcps->tcps_mss_min; 192 if (mss > mss_max) 193 mss = mss_max; 194 /* 195 * Unless naglim has been set by our client to 196 * a non-mss value, force naglim to track mss. 197 * This can help to aggregate small writes. 198 */ 199 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 200 tcp->tcp_naglim = mss; 201 /* 202 * TCP should be able to buffer at least 4 MSS data for obvious 203 * performance reason. 204 */ 205 if ((mss << 2) > connp->conn_sndbuf) 206 connp->conn_sndbuf = mss << 2; 207 208 /* 209 * Set the send lowater to at least twice of MSS. 210 */ 211 if ((mss << 1) > connp->conn_sndlowat) 212 connp->conn_sndlowat = mss << 1; 213 214 /* 215 * Update tcp_cwnd according to the new value of MSS. Keep the 216 * previous ratio to preserve the transmit rate. 217 */ 218 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 219 tcp->tcp_cwnd_cnt = 0; 220 221 tcp->tcp_mss = mss; 222 (void) tcp_maxpsz_set(tcp, B_TRUE); 223 } 224 225 /* 226 * Extract option values from a tcp header. We put any found values into the 227 * tcpopt struct and return a bitmask saying which options were found. 228 */ 229 static int 230 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 231 { 232 uchar_t *endp; 233 int len; 234 uint32_t mss; 235 uchar_t *up = (uchar_t *)tcpha; 236 int found = 0; 237 int32_t sack_len; 238 tcp_seq sack_begin, sack_end; 239 tcp_t *tcp; 240 241 endp = up + TCP_HDR_LENGTH(tcpha); 242 up += TCP_MIN_HEADER_LENGTH; 243 while (up < endp) { 244 len = endp - up; 245 switch (*up) { 246 case TCPOPT_EOL: 247 break; 248 249 case TCPOPT_NOP: 250 up++; 251 continue; 252 253 case TCPOPT_MAXSEG: 254 if (len < TCPOPT_MAXSEG_LEN || 255 up[1] != TCPOPT_MAXSEG_LEN) 256 break; 257 258 mss = BE16_TO_U16(up+2); 259 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 260 tcpopt->tcp_opt_mss = mss; 261 found |= TCP_OPT_MSS_PRESENT; 262 263 up += TCPOPT_MAXSEG_LEN; 264 continue; 265 266 case TCPOPT_WSCALE: 267 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 268 break; 269 270 if (up[2] > TCP_MAX_WINSHIFT) 271 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 272 else 273 tcpopt->tcp_opt_wscale = up[2]; 274 found |= TCP_OPT_WSCALE_PRESENT; 275 276 up += TCPOPT_WS_LEN; 277 continue; 278 279 case TCPOPT_SACK_PERMITTED: 280 if (len < TCPOPT_SACK_OK_LEN || 281 up[1] != TCPOPT_SACK_OK_LEN) 282 break; 283 found |= TCP_OPT_SACK_OK_PRESENT; 284 up += TCPOPT_SACK_OK_LEN; 285 continue; 286 287 case TCPOPT_SACK: 288 if (len <= 2 || up[1] <= 2 || len < up[1]) 289 break; 290 291 /* If TCP is not interested in SACK blks... */ 292 if ((tcp = tcpopt->tcp) == NULL) { 293 up += up[1]; 294 continue; 295 } 296 sack_len = up[1] - TCPOPT_HEADER_LEN; 297 up += TCPOPT_HEADER_LEN; 298 299 /* 300 * If the list is empty, allocate one and assume 301 * nothing is sack'ed. 302 */ 303 ASSERT(tcp->tcp_sack_info != NULL); 304 if (tcp->tcp_notsack_list == NULL) { 305 tcp_notsack_update(&(tcp->tcp_notsack_list), 306 tcp->tcp_suna, tcp->tcp_snxt, 307 &(tcp->tcp_num_notsack_blk), 308 &(tcp->tcp_cnt_notsack_list)); 309 310 /* 311 * Make sure tcp_notsack_list is not NULL. 312 * This happens when kmem_alloc(KM_NOSLEEP) 313 * returns NULL. 314 */ 315 if (tcp->tcp_notsack_list == NULL) { 316 up += sack_len; 317 continue; 318 } 319 tcp->tcp_fack = tcp->tcp_suna; 320 } 321 322 while (sack_len > 0) { 323 if (up + 8 > endp) { 324 up = endp; 325 break; 326 } 327 sack_begin = BE32_TO_U32(up); 328 up += 4; 329 sack_end = BE32_TO_U32(up); 330 up += 4; 331 sack_len -= 8; 332 /* 333 * Bounds checking. Make sure the SACK 334 * info is within tcp_suna and tcp_snxt. 335 * If this SACK blk is out of bound, ignore 336 * it but continue to parse the following 337 * blks. 338 */ 339 if (SEQ_LEQ(sack_end, sack_begin) || 340 SEQ_LT(sack_begin, tcp->tcp_suna) || 341 SEQ_GT(sack_end, tcp->tcp_snxt)) { 342 continue; 343 } 344 tcp_notsack_insert(&(tcp->tcp_notsack_list), 345 sack_begin, sack_end, 346 &(tcp->tcp_num_notsack_blk), 347 &(tcp->tcp_cnt_notsack_list)); 348 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 349 tcp->tcp_fack = sack_end; 350 } 351 } 352 found |= TCP_OPT_SACK_PRESENT; 353 continue; 354 355 case TCPOPT_TSTAMP: 356 if (len < TCPOPT_TSTAMP_LEN || 357 up[1] != TCPOPT_TSTAMP_LEN) 358 break; 359 360 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 361 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 362 363 found |= TCP_OPT_TSTAMP_PRESENT; 364 365 up += TCPOPT_TSTAMP_LEN; 366 continue; 367 368 default: 369 if (len <= 1 || len < (int)up[1] || up[1] == 0) 370 break; 371 up += up[1]; 372 continue; 373 } 374 break; 375 } 376 return (found); 377 } 378 379 /* 380 * Process all TCP option in SYN segment. Note that this function should 381 * be called after tcp_set_destination() is called so that the necessary info 382 * from IRE is already set in the tcp structure. 383 * 384 * This function sets up the correct tcp_mss value according to the 385 * MSS option value and our header size. It also sets up the window scale 386 * and timestamp values, and initialize SACK info blocks. But it does not 387 * change receive window size after setting the tcp_mss value. The caller 388 * should do the appropriate change. 389 */ 390 static void 391 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 392 { 393 int options; 394 tcp_opt_t tcpopt; 395 uint32_t mss_max; 396 char *tmp_tcph; 397 tcp_stack_t *tcps = tcp->tcp_tcps; 398 conn_t *connp = tcp->tcp_connp; 399 400 tcpopt.tcp = NULL; 401 options = tcp_parse_options(tcpha, &tcpopt); 402 403 /* 404 * Process MSS option. Note that MSS option value does not account 405 * for IP or TCP options. This means that it is equal to MTU - minimum 406 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 407 * IPv6. 408 */ 409 if (!(options & TCP_OPT_MSS_PRESENT)) { 410 if (connp->conn_ipversion == IPV4_VERSION) 411 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 412 else 413 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 414 } else { 415 if (connp->conn_ipversion == IPV4_VERSION) 416 mss_max = tcps->tcps_mss_max_ipv4; 417 else 418 mss_max = tcps->tcps_mss_max_ipv6; 419 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 420 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 421 else if (tcpopt.tcp_opt_mss > mss_max) 422 tcpopt.tcp_opt_mss = mss_max; 423 } 424 425 /* Process Window Scale option. */ 426 if (options & TCP_OPT_WSCALE_PRESENT) { 427 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 428 tcp->tcp_snd_ws_ok = B_TRUE; 429 } else { 430 tcp->tcp_snd_ws = B_FALSE; 431 tcp->tcp_snd_ws_ok = B_FALSE; 432 tcp->tcp_rcv_ws = B_FALSE; 433 } 434 435 /* Process Timestamp option. */ 436 if ((options & TCP_OPT_TSTAMP_PRESENT) && 437 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 438 tmp_tcph = (char *)tcp->tcp_tcpha; 439 440 tcp->tcp_snd_ts_ok = B_TRUE; 441 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 442 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 443 ASSERT(OK_32PTR(tmp_tcph)); 444 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 445 446 /* Fill in our template header with basic timestamp option. */ 447 tmp_tcph += connp->conn_ht_ulp_len; 448 tmp_tcph[0] = TCPOPT_NOP; 449 tmp_tcph[1] = TCPOPT_NOP; 450 tmp_tcph[2] = TCPOPT_TSTAMP; 451 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 452 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 453 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 454 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 455 } else { 456 tcp->tcp_snd_ts_ok = B_FALSE; 457 } 458 459 /* 460 * Process SACK options. If SACK is enabled for this connection, 461 * then allocate the SACK info structure. Note the following ways 462 * when tcp_snd_sack_ok is set to true. 463 * 464 * For active connection: in tcp_set_destination() called in 465 * tcp_connect(). 466 * 467 * For passive connection: in tcp_set_destination() called in 468 * tcp_input_listener(). 469 * 470 * That's the reason why the extra TCP_IS_DETACHED() check is there. 471 * That check makes sure that if we did not send a SACK OK option, 472 * we will not enable SACK for this connection even though the other 473 * side sends us SACK OK option. For active connection, the SACK 474 * info structure has already been allocated. So we need to free 475 * it if SACK is disabled. 476 */ 477 if ((options & TCP_OPT_SACK_OK_PRESENT) && 478 (tcp->tcp_snd_sack_ok || 479 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 480 /* This should be true only in the passive case. */ 481 if (tcp->tcp_sack_info == NULL) { 482 ASSERT(TCP_IS_DETACHED(tcp)); 483 tcp->tcp_sack_info = 484 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 485 } 486 if (tcp->tcp_sack_info == NULL) { 487 tcp->tcp_snd_sack_ok = B_FALSE; 488 } else { 489 tcp->tcp_snd_sack_ok = B_TRUE; 490 if (tcp->tcp_snd_ts_ok) { 491 tcp->tcp_max_sack_blk = 3; 492 } else { 493 tcp->tcp_max_sack_blk = 4; 494 } 495 } 496 } else { 497 /* 498 * Resetting tcp_snd_sack_ok to B_FALSE so that 499 * no SACK info will be used for this 500 * connection. This assumes that SACK usage 501 * permission is negotiated. This may need 502 * to be changed once this is clarified. 503 */ 504 if (tcp->tcp_sack_info != NULL) { 505 ASSERT(tcp->tcp_notsack_list == NULL); 506 kmem_cache_free(tcp_sack_info_cache, 507 tcp->tcp_sack_info); 508 tcp->tcp_sack_info = NULL; 509 } 510 tcp->tcp_snd_sack_ok = B_FALSE; 511 } 512 513 /* 514 * Now we know the exact TCP/IP header length, subtract 515 * that from tcp_mss to get our side's MSS. 516 */ 517 tcp->tcp_mss -= connp->conn_ht_iphc_len; 518 519 /* 520 * Here we assume that the other side's header size will be equal to 521 * our header size. We calculate the real MSS accordingly. Need to 522 * take into additional stuffs IPsec puts in. 523 * 524 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 525 */ 526 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 527 tcp->tcp_ipsec_overhead - 528 ((connp->conn_ipversion == IPV4_VERSION ? 529 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 530 531 /* 532 * Set MSS to the smaller one of both ends of the connection. 533 * We should not have called tcp_mss_set() before, but our 534 * side of the MSS should have been set to a proper value 535 * by tcp_set_destination(). tcp_mss_set() will also set up the 536 * STREAM head parameters properly. 537 * 538 * If we have a larger-than-16-bit window but the other side 539 * didn't want to do window scale, tcp_rwnd_set() will take 540 * care of that. 541 */ 542 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 543 544 /* 545 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 546 * updated properly. 547 */ 548 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 549 } 550 551 /* 552 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 553 * is filled, return as much as we can. The message passed in may be 554 * multi-part, chained using b_cont. "start" is the starting sequence 555 * number for this piece. 556 */ 557 static mblk_t * 558 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 559 { 560 uint32_t end; 561 mblk_t *mp1; 562 mblk_t *mp2; 563 mblk_t *next_mp; 564 uint32_t u1; 565 tcp_stack_t *tcps = tcp->tcp_tcps; 566 567 568 /* Walk through all the new pieces. */ 569 do { 570 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 571 (uintptr_t)INT_MAX); 572 end = start + (int)(mp->b_wptr - mp->b_rptr); 573 next_mp = mp->b_cont; 574 if (start == end) { 575 /* Empty. Blast it. */ 576 freeb(mp); 577 continue; 578 } 579 mp->b_cont = NULL; 580 TCP_REASS_SET_SEQ(mp, start); 581 TCP_REASS_SET_END(mp, end); 582 mp1 = tcp->tcp_reass_tail; 583 if (!mp1) { 584 tcp->tcp_reass_tail = mp; 585 tcp->tcp_reass_head = mp; 586 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 587 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 588 end - start); 589 continue; 590 } 591 /* New stuff completely beyond tail? */ 592 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 593 /* Link it on end. */ 594 mp1->b_cont = mp; 595 tcp->tcp_reass_tail = mp; 596 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 597 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 598 end - start); 599 continue; 600 } 601 mp1 = tcp->tcp_reass_head; 602 u1 = TCP_REASS_SEQ(mp1); 603 /* New stuff at the front? */ 604 if (SEQ_LT(start, u1)) { 605 /* Yes... Check for overlap. */ 606 mp->b_cont = mp1; 607 tcp->tcp_reass_head = mp; 608 tcp_reass_elim_overlap(tcp, mp); 609 continue; 610 } 611 /* 612 * The new piece fits somewhere between the head and tail. 613 * We find our slot, where mp1 precedes us and mp2 trails. 614 */ 615 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 616 u1 = TCP_REASS_SEQ(mp2); 617 if (SEQ_LEQ(start, u1)) 618 break; 619 } 620 /* Link ourselves in */ 621 mp->b_cont = mp2; 622 mp1->b_cont = mp; 623 624 /* Trim overlap with following mblk(s) first */ 625 tcp_reass_elim_overlap(tcp, mp); 626 627 /* Trim overlap with preceding mblk */ 628 tcp_reass_elim_overlap(tcp, mp1); 629 630 } while (start = end, mp = next_mp); 631 mp1 = tcp->tcp_reass_head; 632 /* Anything ready to go? */ 633 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 634 return (NULL); 635 /* Eat what we can off the queue */ 636 for (;;) { 637 mp = mp1->b_cont; 638 end = TCP_REASS_END(mp1); 639 TCP_REASS_SET_SEQ(mp1, 0); 640 TCP_REASS_SET_END(mp1, 0); 641 if (!mp) { 642 tcp->tcp_reass_tail = NULL; 643 break; 644 } 645 if (end != TCP_REASS_SEQ(mp)) { 646 mp1->b_cont = NULL; 647 break; 648 } 649 mp1 = mp; 650 } 651 mp1 = tcp->tcp_reass_head; 652 tcp->tcp_reass_head = mp; 653 return (mp1); 654 } 655 656 /* Eliminate any overlap that mp may have over later mblks */ 657 static void 658 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 659 { 660 uint32_t end; 661 mblk_t *mp1; 662 uint32_t u1; 663 tcp_stack_t *tcps = tcp->tcp_tcps; 664 665 end = TCP_REASS_END(mp); 666 while ((mp1 = mp->b_cont) != NULL) { 667 u1 = TCP_REASS_SEQ(mp1); 668 if (!SEQ_GT(end, u1)) 669 break; 670 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 671 mp->b_wptr -= end - u1; 672 TCP_REASS_SET_END(mp, u1); 673 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 674 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 675 end - u1); 676 break; 677 } 678 mp->b_cont = mp1->b_cont; 679 TCP_REASS_SET_SEQ(mp1, 0); 680 TCP_REASS_SET_END(mp1, 0); 681 freeb(mp1); 682 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 683 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 684 } 685 if (!mp1) 686 tcp->tcp_reass_tail = mp; 687 } 688 689 /* 690 * This function does PAWS protection check. Returns B_TRUE if the 691 * segment passes the PAWS test, else returns B_FALSE. 692 */ 693 boolean_t 694 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 695 { 696 uint8_t flags; 697 int options; 698 uint8_t *up; 699 conn_t *connp = tcp->tcp_connp; 700 701 flags = (unsigned int)tcpha->tha_flags & 0xFF; 702 /* 703 * If timestamp option is aligned nicely, get values inline, 704 * otherwise call general routine to parse. Only do that 705 * if timestamp is the only option. 706 */ 707 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 708 TCPOPT_REAL_TS_LEN && 709 OK_32PTR((up = ((uint8_t *)tcpha) + 710 TCP_MIN_HEADER_LENGTH)) && 711 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 712 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 713 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 714 715 options = TCP_OPT_TSTAMP_PRESENT; 716 } else { 717 if (tcp->tcp_snd_sack_ok) { 718 tcpoptp->tcp = tcp; 719 } else { 720 tcpoptp->tcp = NULL; 721 } 722 options = tcp_parse_options(tcpha, tcpoptp); 723 } 724 725 if (options & TCP_OPT_TSTAMP_PRESENT) { 726 /* 727 * Do PAWS per RFC 1323 section 4.2. Accept RST 728 * regardless of the timestamp, page 18 RFC 1323.bis. 729 */ 730 if ((flags & TH_RST) == 0 && 731 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 732 tcp->tcp_ts_recent)) { 733 if (TSTMP_LT(LBOLT_FASTPATH64, 734 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 735 /* This segment is not acceptable. */ 736 return (B_FALSE); 737 } else { 738 /* 739 * Connection has been idle for 740 * too long. Reset the timestamp 741 * and assume the segment is valid. 742 */ 743 tcp->tcp_ts_recent = 744 tcpoptp->tcp_opt_ts_val; 745 } 746 } 747 } else { 748 /* 749 * If we don't get a timestamp on every packet, we 750 * figure we can't really trust 'em, so we stop sending 751 * and parsing them. 752 */ 753 tcp->tcp_snd_ts_ok = B_FALSE; 754 755 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 756 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 757 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 758 /* 759 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 760 * doing a slow start here so as to not to lose on the 761 * transfer rate built up so far. 762 */ 763 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 764 if (tcp->tcp_snd_sack_ok) { 765 ASSERT(tcp->tcp_sack_info != NULL); 766 tcp->tcp_max_sack_blk = 4; 767 } 768 } 769 return (B_TRUE); 770 } 771 772 /* 773 * Defense for the SYN attack - 774 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 775 * one from the list of droppable eagers. This list is a subset of q0. 776 * see comments before the definition of MAKE_DROPPABLE(). 777 * 2. Don't drop a SYN request before its first timeout. This gives every 778 * request at least til the first timeout to complete its 3-way handshake. 779 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 780 * requests currently on the queue that has timed out. This will be used 781 * as an indicator of whether an attack is under way, so that appropriate 782 * actions can be taken. (It's incremented in tcp_timer() and decremented 783 * either when eager goes into ESTABLISHED, or gets freed up.) 784 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 785 * # of timeout drops back to <= q0len/32 => SYN alert off 786 */ 787 static boolean_t 788 tcp_drop_q0(tcp_t *tcp) 789 { 790 tcp_t *eager; 791 mblk_t *mp; 792 tcp_stack_t *tcps = tcp->tcp_tcps; 793 794 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 795 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 796 797 /* Pick oldest eager from the list of droppable eagers */ 798 eager = tcp->tcp_eager_prev_drop_q0; 799 800 /* If list is empty. return B_FALSE */ 801 if (eager == tcp) { 802 return (B_FALSE); 803 } 804 805 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 806 if ((mp = allocb(0, BPRI_HI)) == NULL) 807 return (B_FALSE); 808 809 /* 810 * Take this eager out from the list of droppable eagers since we are 811 * going to drop it. 812 */ 813 MAKE_UNDROPPABLE(eager); 814 815 if (tcp->tcp_connp->conn_debug) { 816 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 817 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 818 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 819 tcp->tcp_conn_req_cnt_q0, 820 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 821 } 822 823 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 824 825 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 826 CONN_INC_REF(eager->tcp_connp); 827 828 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 829 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 830 SQ_FILL, SQTAG_TCP_DROP_Q0); 831 832 return (B_TRUE); 833 } 834 835 /* 836 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 837 */ 838 static mblk_t * 839 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 840 ip_recv_attr_t *ira) 841 { 842 tcp_t *ltcp = lconnp->conn_tcp; 843 tcp_t *tcp = connp->conn_tcp; 844 mblk_t *tpi_mp; 845 ipha_t *ipha; 846 ip6_t *ip6h; 847 sin6_t sin6; 848 uint_t ifindex = ira->ira_ruifindex; 849 tcp_stack_t *tcps = tcp->tcp_tcps; 850 851 if (ira->ira_flags & IRAF_IS_IPV4) { 852 ipha = (ipha_t *)mp->b_rptr; 853 854 connp->conn_ipversion = IPV4_VERSION; 855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 857 connp->conn_saddr_v6 = connp->conn_laddr_v6; 858 859 sin6 = sin6_null; 860 sin6.sin6_addr = connp->conn_faddr_v6; 861 sin6.sin6_port = connp->conn_fport; 862 sin6.sin6_family = AF_INET6; 863 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 864 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 865 866 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 867 sin6_t sin6d; 868 869 sin6d = sin6_null; 870 sin6d.sin6_addr = connp->conn_laddr_v6; 871 sin6d.sin6_port = connp->conn_lport; 872 sin6d.sin6_family = AF_INET; 873 tpi_mp = mi_tpi_extconn_ind(NULL, 874 (char *)&sin6d, sizeof (sin6_t), 875 (char *)&tcp, 876 (t_scalar_t)sizeof (intptr_t), 877 (char *)&sin6d, sizeof (sin6_t), 878 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 879 } else { 880 tpi_mp = mi_tpi_conn_ind(NULL, 881 (char *)&sin6, sizeof (sin6_t), 882 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 883 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 884 } 885 } else { 886 ip6h = (ip6_t *)mp->b_rptr; 887 888 connp->conn_ipversion = IPV6_VERSION; 889 connp->conn_laddr_v6 = ip6h->ip6_dst; 890 connp->conn_faddr_v6 = ip6h->ip6_src; 891 connp->conn_saddr_v6 = connp->conn_laddr_v6; 892 893 sin6 = sin6_null; 894 sin6.sin6_addr = connp->conn_faddr_v6; 895 sin6.sin6_port = connp->conn_fport; 896 sin6.sin6_family = AF_INET6; 897 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 898 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 899 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 900 901 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 902 /* Pass up the scope_id of remote addr */ 903 sin6.sin6_scope_id = ifindex; 904 } else { 905 sin6.sin6_scope_id = 0; 906 } 907 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 908 sin6_t sin6d; 909 910 sin6d = sin6_null; 911 sin6.sin6_addr = connp->conn_laddr_v6; 912 sin6d.sin6_port = connp->conn_lport; 913 sin6d.sin6_family = AF_INET6; 914 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 915 sin6d.sin6_scope_id = ifindex; 916 917 tpi_mp = mi_tpi_extconn_ind(NULL, 918 (char *)&sin6d, sizeof (sin6_t), 919 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 920 (char *)&sin6d, sizeof (sin6_t), 921 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 922 } else { 923 tpi_mp = mi_tpi_conn_ind(NULL, 924 (char *)&sin6, sizeof (sin6_t), 925 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 926 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 927 } 928 } 929 930 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 931 return (tpi_mp); 932 } 933 934 /* Handle a SYN on an AF_INET socket */ 935 static mblk_t * 936 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 937 ip_recv_attr_t *ira) 938 { 939 tcp_t *ltcp = lconnp->conn_tcp; 940 tcp_t *tcp = connp->conn_tcp; 941 sin_t sin; 942 mblk_t *tpi_mp = NULL; 943 tcp_stack_t *tcps = tcp->tcp_tcps; 944 ipha_t *ipha; 945 946 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 947 ipha = (ipha_t *)mp->b_rptr; 948 949 connp->conn_ipversion = IPV4_VERSION; 950 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 951 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 952 connp->conn_saddr_v6 = connp->conn_laddr_v6; 953 954 sin = sin_null; 955 sin.sin_addr.s_addr = connp->conn_faddr_v4; 956 sin.sin_port = connp->conn_fport; 957 sin.sin_family = AF_INET; 958 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 959 sin_t sind; 960 961 sind = sin_null; 962 sind.sin_addr.s_addr = connp->conn_laddr_v4; 963 sind.sin_port = connp->conn_lport; 964 sind.sin_family = AF_INET; 965 tpi_mp = mi_tpi_extconn_ind(NULL, 966 (char *)&sind, sizeof (sin_t), (char *)&tcp, 967 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 968 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 969 } else { 970 tpi_mp = mi_tpi_conn_ind(NULL, 971 (char *)&sin, sizeof (sin_t), 972 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 973 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 974 } 975 976 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 977 return (tpi_mp); 978 } 979 980 /* 981 * Called via squeue to get on to eager's perimeter. It sends a 982 * TH_RST if eager is in the fanout table. The listener wants the 983 * eager to disappear either by means of tcp_eager_blowoff() or 984 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 985 * called (via squeue) if the eager cannot be inserted in the 986 * fanout table in tcp_input_listener(). 987 */ 988 /* ARGSUSED */ 989 void 990 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 991 { 992 conn_t *econnp = (conn_t *)arg; 993 tcp_t *eager = econnp->conn_tcp; 994 tcp_t *listener = eager->tcp_listener; 995 996 /* 997 * We could be called because listener is closing. Since 998 * the eager was using listener's queue's, we avoid 999 * using the listeners queues from now on. 1000 */ 1001 ASSERT(eager->tcp_detached); 1002 econnp->conn_rq = NULL; 1003 econnp->conn_wq = NULL; 1004 1005 /* 1006 * An eager's conn_fanout will be NULL if it's a duplicate 1007 * for an existing 4-tuples in the conn fanout table. 1008 * We don't want to send an RST out in such case. 1009 */ 1010 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1011 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1012 eager, eager->tcp_snxt, 0, TH_RST); 1013 } 1014 1015 /* We are here because listener wants this eager gone */ 1016 if (listener != NULL) { 1017 mutex_enter(&listener->tcp_eager_lock); 1018 tcp_eager_unlink(eager); 1019 if (eager->tcp_tconnind_started) { 1020 /* 1021 * The eager has sent a conn_ind up to the 1022 * listener but listener decides to close 1023 * instead. We need to drop the extra ref 1024 * placed on eager in tcp_input_data() before 1025 * sending the conn_ind to listener. 1026 */ 1027 CONN_DEC_REF(econnp); 1028 } 1029 mutex_exit(&listener->tcp_eager_lock); 1030 CONN_DEC_REF(listener->tcp_connp); 1031 } 1032 1033 if (eager->tcp_state != TCPS_CLOSED) 1034 tcp_close_detached(eager); 1035 } 1036 1037 /* 1038 * Reset any eager connection hanging off this listener marked 1039 * with 'seqnum' and then reclaim it's resources. 1040 */ 1041 boolean_t 1042 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1043 { 1044 tcp_t *eager; 1045 mblk_t *mp; 1046 1047 eager = listener; 1048 mutex_enter(&listener->tcp_eager_lock); 1049 do { 1050 eager = eager->tcp_eager_next_q; 1051 if (eager == NULL) { 1052 mutex_exit(&listener->tcp_eager_lock); 1053 return (B_FALSE); 1054 } 1055 } while (eager->tcp_conn_req_seqnum != seqnum); 1056 1057 if (eager->tcp_closemp_used) { 1058 mutex_exit(&listener->tcp_eager_lock); 1059 return (B_TRUE); 1060 } 1061 eager->tcp_closemp_used = B_TRUE; 1062 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1063 CONN_INC_REF(eager->tcp_connp); 1064 mutex_exit(&listener->tcp_eager_lock); 1065 mp = &eager->tcp_closemp; 1066 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1067 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1068 return (B_TRUE); 1069 } 1070 1071 /* 1072 * Reset any eager connection hanging off this listener 1073 * and then reclaim it's resources. 1074 */ 1075 void 1076 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1077 { 1078 tcp_t *eager; 1079 mblk_t *mp; 1080 tcp_stack_t *tcps = listener->tcp_tcps; 1081 1082 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1083 1084 if (!q0_only) { 1085 /* First cleanup q */ 1086 TCP_STAT(tcps, tcp_eager_blowoff_q); 1087 eager = listener->tcp_eager_next_q; 1088 while (eager != NULL) { 1089 if (!eager->tcp_closemp_used) { 1090 eager->tcp_closemp_used = B_TRUE; 1091 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1092 CONN_INC_REF(eager->tcp_connp); 1093 mp = &eager->tcp_closemp; 1094 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1095 tcp_eager_kill, eager->tcp_connp, NULL, 1096 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1097 } 1098 eager = eager->tcp_eager_next_q; 1099 } 1100 } 1101 /* Then cleanup q0 */ 1102 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1103 eager = listener->tcp_eager_next_q0; 1104 while (eager != listener) { 1105 if (!eager->tcp_closemp_used) { 1106 eager->tcp_closemp_used = B_TRUE; 1107 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1108 CONN_INC_REF(eager->tcp_connp); 1109 mp = &eager->tcp_closemp; 1110 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1111 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1112 SQTAG_TCP_EAGER_CLEANUP_Q0); 1113 } 1114 eager = eager->tcp_eager_next_q0; 1115 } 1116 } 1117 1118 /* 1119 * If we are an eager connection hanging off a listener that hasn't 1120 * formally accepted the connection yet, get off his list and blow off 1121 * any data that we have accumulated. 1122 */ 1123 void 1124 tcp_eager_unlink(tcp_t *tcp) 1125 { 1126 tcp_t *listener = tcp->tcp_listener; 1127 1128 ASSERT(listener != NULL); 1129 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1130 if (tcp->tcp_eager_next_q0 != NULL) { 1131 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1132 1133 /* Remove the eager tcp from q0 */ 1134 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1135 tcp->tcp_eager_prev_q0; 1136 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1137 tcp->tcp_eager_next_q0; 1138 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1139 listener->tcp_conn_req_cnt_q0--; 1140 1141 tcp->tcp_eager_next_q0 = NULL; 1142 tcp->tcp_eager_prev_q0 = NULL; 1143 1144 /* 1145 * Take the eager out, if it is in the list of droppable 1146 * eagers. 1147 */ 1148 MAKE_UNDROPPABLE(tcp); 1149 1150 if (tcp->tcp_syn_rcvd_timeout != 0) { 1151 /* we have timed out before */ 1152 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1153 listener->tcp_syn_rcvd_timeout--; 1154 } 1155 } else { 1156 tcp_t **tcpp = &listener->tcp_eager_next_q; 1157 tcp_t *prev = NULL; 1158 1159 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1160 if (tcpp[0] == tcp) { 1161 if (listener->tcp_eager_last_q == tcp) { 1162 /* 1163 * If we are unlinking the last 1164 * element on the list, adjust 1165 * tail pointer. Set tail pointer 1166 * to nil when list is empty. 1167 */ 1168 ASSERT(tcp->tcp_eager_next_q == NULL); 1169 if (listener->tcp_eager_last_q == 1170 listener->tcp_eager_next_q) { 1171 listener->tcp_eager_last_q = 1172 NULL; 1173 } else { 1174 /* 1175 * We won't get here if there 1176 * is only one eager in the 1177 * list. 1178 */ 1179 ASSERT(prev != NULL); 1180 listener->tcp_eager_last_q = 1181 prev; 1182 } 1183 } 1184 tcpp[0] = tcp->tcp_eager_next_q; 1185 tcp->tcp_eager_next_q = NULL; 1186 tcp->tcp_eager_last_q = NULL; 1187 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1188 listener->tcp_conn_req_cnt_q--; 1189 break; 1190 } 1191 prev = tcpp[0]; 1192 } 1193 } 1194 tcp->tcp_listener = NULL; 1195 } 1196 1197 /* BEGIN CSTYLED */ 1198 /* 1199 * 1200 * The sockfs ACCEPT path: 1201 * ======================= 1202 * 1203 * The eager is now established in its own perimeter as soon as SYN is 1204 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1205 * completes the accept processing on the acceptor STREAM. The sending 1206 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1207 * listener but a TLI/XTI listener completes the accept processing 1208 * on the listener perimeter. 1209 * 1210 * Common control flow for 3 way handshake: 1211 * ---------------------------------------- 1212 * 1213 * incoming SYN (listener perimeter) -> tcp_input_listener() 1214 * 1215 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1216 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1217 * 1218 * Sockfs ACCEPT Path: 1219 * ------------------- 1220 * 1221 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1222 * as STREAM entry point) 1223 * 1224 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1225 * 1226 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1227 * association (we are not behind eager's squeue but sockfs is protecting us 1228 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1229 * is changed to point at tcp_wput(). 1230 * 1231 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1232 * listener (done on listener's perimeter). 1233 * 1234 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1235 * accept. 1236 * 1237 * TLI/XTI client ACCEPT path: 1238 * --------------------------- 1239 * 1240 * soaccept() sends T_CONN_RES on the listener STREAM. 1241 * 1242 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1243 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1244 * 1245 * Locks: 1246 * ====== 1247 * 1248 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1249 * and listeners->tcp_eager_next_q. 1250 * 1251 * Referencing: 1252 * ============ 1253 * 1254 * 1) We start out in tcp_input_listener by eager placing a ref on 1255 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1256 * 1257 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1258 * doing so we place a ref on the eager. This ref is finally dropped at the 1259 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1260 * reference is dropped by the squeue framework. 1261 * 1262 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1263 * 1264 * The reference must be released by the same entity that added the reference 1265 * In the above scheme, the eager is the entity that adds and releases the 1266 * references. Note that tcp_accept_finish executes in the squeue of the eager 1267 * (albeit after it is attached to the acceptor stream). Though 1. executes 1268 * in the listener's squeue, the eager is nascent at this point and the 1269 * reference can be considered to have been added on behalf of the eager. 1270 * 1271 * Eager getting a Reset or listener closing: 1272 * ========================================== 1273 * 1274 * Once the listener and eager are linked, the listener never does the unlink. 1275 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1276 * a message on all eager perimeter. The eager then does the unlink, clears 1277 * any pointers to the listener's queue and drops the reference to the 1278 * listener. The listener waits in tcp_close outside the squeue until its 1279 * refcount has dropped to 1. This ensures that the listener has waited for 1280 * all eagers to clear their association with the listener. 1281 * 1282 * Similarly, if eager decides to go away, it can unlink itself and close. 1283 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1284 * the reference to eager is still valid because of the extra ref we put 1285 * in tcp_send_conn_ind. 1286 * 1287 * Listener can always locate the eager under the protection 1288 * of the listener->tcp_eager_lock, and then do a refhold 1289 * on the eager during the accept processing. 1290 * 1291 * The acceptor stream accesses the eager in the accept processing 1292 * based on the ref placed on eager before sending T_conn_ind. 1293 * The only entity that can negate this refhold is a listener close 1294 * which is mutually exclusive with an active acceptor stream. 1295 * 1296 * Eager's reference on the listener 1297 * =================================== 1298 * 1299 * If the accept happens (even on a closed eager) the eager drops its 1300 * reference on the listener at the start of tcp_accept_finish. If the 1301 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1302 * the reference is dropped in tcp_closei_local. If the listener closes, 1303 * the reference is dropped in tcp_eager_kill. In all cases the reference 1304 * is dropped while executing in the eager's context (squeue). 1305 */ 1306 /* END CSTYLED */ 1307 1308 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1309 1310 /* 1311 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1312 * tcp_input_data will not see any packets for listeners since the listener 1313 * has conn_recv set to tcp_input_listener. 1314 */ 1315 /* ARGSUSED */ 1316 static void 1317 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1318 { 1319 tcpha_t *tcpha; 1320 uint32_t seg_seq; 1321 tcp_t *eager; 1322 int err; 1323 conn_t *econnp = NULL; 1324 squeue_t *new_sqp; 1325 mblk_t *mp1; 1326 uint_t ip_hdr_len; 1327 conn_t *lconnp = (conn_t *)arg; 1328 tcp_t *listener = lconnp->conn_tcp; 1329 tcp_stack_t *tcps = listener->tcp_tcps; 1330 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1331 uint_t flags; 1332 mblk_t *tpi_mp; 1333 uint_t ifindex = ira->ira_ruifindex; 1334 boolean_t tlc_set = B_FALSE; 1335 1336 ip_hdr_len = ira->ira_ip_hdr_length; 1337 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1338 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1339 1340 if (!(flags & TH_SYN)) { 1341 if ((flags & TH_RST) || (flags & TH_URG)) { 1342 freemsg(mp); 1343 return; 1344 } 1345 if (flags & TH_ACK) { 1346 /* Note this executes in listener's squeue */ 1347 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1348 return; 1349 } 1350 1351 freemsg(mp); 1352 return; 1353 } 1354 1355 if (listener->tcp_state != TCPS_LISTEN) 1356 goto error2; 1357 1358 ASSERT(IPCL_IS_BOUND(lconnp)); 1359 1360 mutex_enter(&listener->tcp_eager_lock); 1361 1362 /* 1363 * The system is under memory pressure, so we need to do our part 1364 * to relieve the pressure. So we only accept new request if there 1365 * is nothing waiting to be accepted or waiting to complete the 3-way 1366 * handshake. This means that busy listener will not get too many 1367 * new requests which they cannot handle in time while non-busy 1368 * listener is still functioning properly. 1369 */ 1370 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1371 listener->tcp_conn_req_cnt_q0 > 0)) { 1372 mutex_exit(&listener->tcp_eager_lock); 1373 TCP_STAT(tcps, tcp_listen_mem_drop); 1374 goto error2; 1375 } 1376 1377 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1378 mutex_exit(&listener->tcp_eager_lock); 1379 TCP_STAT(tcps, tcp_listendrop); 1380 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1381 if (lconnp->conn_debug) { 1382 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1383 "tcp_input_listener: listen backlog (max=%d) " 1384 "overflow (%d pending) on %s", 1385 listener->tcp_conn_req_max, 1386 listener->tcp_conn_req_cnt_q, 1387 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1388 } 1389 goto error2; 1390 } 1391 1392 if (listener->tcp_conn_req_cnt_q0 >= 1393 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1394 /* 1395 * Q0 is full. Drop a pending half-open req from the queue 1396 * to make room for the new SYN req. Also mark the time we 1397 * drop a SYN. 1398 * 1399 * A more aggressive defense against SYN attack will 1400 * be to set the "tcp_syn_defense" flag now. 1401 */ 1402 TCP_STAT(tcps, tcp_listendropq0); 1403 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1404 if (!tcp_drop_q0(listener)) { 1405 mutex_exit(&listener->tcp_eager_lock); 1406 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1407 if (lconnp->conn_debug) { 1408 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1409 "tcp_input_listener: listen half-open " 1410 "queue (max=%d) full (%d pending) on %s", 1411 tcps->tcps_conn_req_max_q0, 1412 listener->tcp_conn_req_cnt_q0, 1413 tcp_display(listener, NULL, 1414 DISP_PORT_ONLY)); 1415 } 1416 goto error2; 1417 } 1418 } 1419 1420 /* 1421 * Enforce the limit set on the number of connections per listener. 1422 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1423 * for comparison. 1424 */ 1425 if (listener->tcp_listen_cnt != NULL) { 1426 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1427 int64_t now; 1428 1429 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 1430 mutex_exit(&listener->tcp_eager_lock); 1431 now = ddi_get_lbolt64(); 1432 atomic_add_32(&tlc->tlc_cnt, -1); 1433 TCP_STAT(tcps, tcp_listen_cnt_drop); 1434 tlc->tlc_drop++; 1435 if (now - tlc->tlc_report_time > 1436 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1437 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1438 "Listener (port %d) connection max (%u) " 1439 "reached: %u attempts dropped total\n", 1440 ntohs(listener->tcp_connp->conn_lport), 1441 tlc->tlc_max, tlc->tlc_drop); 1442 tlc->tlc_report_time = now; 1443 } 1444 goto error2; 1445 } 1446 tlc_set = B_TRUE; 1447 } 1448 1449 mutex_exit(&listener->tcp_eager_lock); 1450 1451 /* 1452 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1453 * or based on the ring (for packets from GLD). Otherwise it is 1454 * set based on lbolt i.e., a somewhat random number. 1455 */ 1456 ASSERT(ira->ira_sqp != NULL); 1457 new_sqp = ira->ira_sqp; 1458 1459 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 1460 if (econnp == NULL) 1461 goto error2; 1462 1463 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1464 econnp->conn_sqp = new_sqp; 1465 econnp->conn_initial_sqp = new_sqp; 1466 econnp->conn_ixa->ixa_sqp = new_sqp; 1467 1468 econnp->conn_fport = tcpha->tha_lport; 1469 econnp->conn_lport = tcpha->tha_fport; 1470 1471 err = conn_inherit_parent(lconnp, econnp); 1472 if (err != 0) 1473 goto error3; 1474 1475 /* We already know the laddr of the new connection is ours */ 1476 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1477 1478 ASSERT(OK_32PTR(mp->b_rptr)); 1479 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1480 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1481 1482 if (lconnp->conn_family == AF_INET) { 1483 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1484 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1485 } else { 1486 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1487 } 1488 1489 if (tpi_mp == NULL) 1490 goto error3; 1491 1492 eager = econnp->conn_tcp; 1493 eager->tcp_detached = B_TRUE; 1494 SOCK_CONNID_INIT(eager->tcp_connid); 1495 1496 tcp_init_values(eager); 1497 1498 ASSERT((econnp->conn_ixa->ixa_flags & 1499 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1500 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1501 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1502 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1503 1504 if (!tcps->tcps_dev_flow_ctl) 1505 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1506 1507 /* Prepare for diffing against previous packets */ 1508 eager->tcp_recvifindex = 0; 1509 eager->tcp_recvhops = 0xffffffffU; 1510 1511 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1512 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1513 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1514 econnp->conn_incoming_ifindex = ifindex; 1515 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1516 econnp->conn_ixa->ixa_scopeid = ifindex; 1517 } 1518 } 1519 1520 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1521 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1522 tcps->tcps_rev_src_routes) { 1523 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1524 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1525 1526 /* Source routing option copyover (reverse it) */ 1527 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1528 if (err != 0) { 1529 freemsg(tpi_mp); 1530 goto error3; 1531 } 1532 ip_pkt_source_route_reverse_v4(ipp); 1533 } 1534 1535 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1536 ASSERT(!eager->tcp_tconnind_started); 1537 /* 1538 * If the SYN came with a credential, it's a loopback packet or a 1539 * labeled packet; attach the credential to the TPI message. 1540 */ 1541 if (ira->ira_cred != NULL) 1542 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1543 1544 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1545 1546 /* Inherit the listener's SSL protection state */ 1547 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 1548 kssl_hold_ent(eager->tcp_kssl_ent); 1549 eager->tcp_kssl_pending = B_TRUE; 1550 } 1551 1552 /* Inherit the listener's non-STREAMS flag */ 1553 if (IPCL_IS_NONSTR(lconnp)) { 1554 econnp->conn_flags |= IPCL_NONSTR; 1555 } 1556 1557 ASSERT(eager->tcp_ordrel_mp == NULL); 1558 1559 if (!IPCL_IS_NONSTR(econnp)) { 1560 /* 1561 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1562 * at close time, we will always have that to send up. 1563 * Otherwise, we need to do special handling in case the 1564 * allocation fails at that time. 1565 */ 1566 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1567 goto error3; 1568 } 1569 /* 1570 * Now that the IP addresses and ports are setup in econnp we 1571 * can do the IPsec policy work. 1572 */ 1573 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1574 if (lconnp->conn_policy != NULL) { 1575 /* 1576 * Inherit the policy from the listener; use 1577 * actions from ira 1578 */ 1579 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1580 CONN_DEC_REF(econnp); 1581 freemsg(mp); 1582 goto error3; 1583 } 1584 } 1585 } 1586 1587 /* Inherit various TCP parameters from the listener */ 1588 eager->tcp_naglim = listener->tcp_naglim; 1589 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 1590 eager->tcp_second_timer_threshold = 1591 listener->tcp_second_timer_threshold; 1592 eager->tcp_first_ctimer_threshold = 1593 listener->tcp_first_ctimer_threshold; 1594 eager->tcp_second_ctimer_threshold = 1595 listener->tcp_second_ctimer_threshold; 1596 1597 /* 1598 * tcp_set_destination() may set tcp_rwnd according to the route 1599 * metrics. If it does not, the eager's receive window will be set 1600 * to the listener's receive window later in this function. 1601 */ 1602 eager->tcp_rwnd = 0; 1603 1604 /* 1605 * Inherit listener's tcp_init_cwnd. Need to do this before 1606 * calling tcp_process_options() which set the initial cwnd. 1607 */ 1608 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 1609 1610 if (is_system_labeled()) { 1611 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1612 1613 ASSERT(ira->ira_tsl != NULL); 1614 /* Discard any old label */ 1615 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1616 ASSERT(ixa->ixa_tsl != NULL); 1617 label_rele(ixa->ixa_tsl); 1618 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1619 ixa->ixa_tsl = NULL; 1620 } 1621 if ((lconnp->conn_mlp_type != mlptSingle || 1622 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1623 ira->ira_tsl != NULL) { 1624 /* 1625 * If this is an MLP connection or a MAC-Exempt 1626 * connection with an unlabeled node, packets are to be 1627 * exchanged using the security label of the received 1628 * SYN packet instead of the server application's label. 1629 * tsol_check_dest called from ip_set_destination 1630 * might later update TSF_UNLABELED by replacing 1631 * ixa_tsl with a new label. 1632 */ 1633 label_hold(ira->ira_tsl); 1634 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1635 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1636 econnp, ts_label_t *, ixa->ixa_tsl) 1637 } else { 1638 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1639 DTRACE_PROBE2(syn_accept, conn_t *, 1640 econnp, ts_label_t *, ixa->ixa_tsl) 1641 } 1642 /* 1643 * conn_connect() called from tcp_set_destination will verify 1644 * the destination is allowed to receive packets at the 1645 * security label of the SYN-ACK we are generating. As part of 1646 * that, tsol_check_dest() may create a new effective label for 1647 * this connection. 1648 * Finally conn_connect() will call conn_update_label. 1649 * All that remains for TCP to do is to call 1650 * conn_build_hdr_template which is done as part of 1651 * tcp_set_destination. 1652 */ 1653 } 1654 1655 /* 1656 * Since we will clear tcp_listener before we clear tcp_detached 1657 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1658 * so we can tell a TCP_DETACHED_NONEAGER apart. 1659 */ 1660 eager->tcp_hard_binding = B_TRUE; 1661 1662 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1663 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1664 1665 CL_INET_CONNECT(econnp, B_FALSE, err); 1666 if (err != 0) { 1667 tcp_bind_hash_remove(eager); 1668 goto error3; 1669 } 1670 1671 /* 1672 * No need to check for multicast destination since ip will only pass 1673 * up multicasts to those that have expressed interest 1674 * TODO: what about rejecting broadcasts? 1675 * Also check that source is not a multicast or broadcast address. 1676 */ 1677 eager->tcp_state = TCPS_SYN_RCVD; 1678 SOCK_CONNID_BUMP(eager->tcp_connid); 1679 1680 /* 1681 * Adapt our mss, ttl, ... based on the remote address. 1682 */ 1683 1684 if (tcp_set_destination(eager) != 0) { 1685 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1686 /* Undo the bind_hash_insert */ 1687 tcp_bind_hash_remove(eager); 1688 goto error3; 1689 } 1690 1691 /* Process all TCP options. */ 1692 tcp_process_options(eager, tcpha); 1693 1694 /* Is the other end ECN capable? */ 1695 if (tcps->tcps_ecn_permitted >= 1 && 1696 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1697 eager->tcp_ecn_ok = B_TRUE; 1698 } 1699 1700 /* 1701 * The listener's conn_rcvbuf should be the default window size or a 1702 * window size changed via SO_RCVBUF option. First round up the 1703 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1704 * scale option value if needed. Call tcp_rwnd_set() to finish the 1705 * setting. 1706 * 1707 * Note if there is a rpipe metric associated with the remote host, 1708 * we should not inherit receive window size from listener. 1709 */ 1710 eager->tcp_rwnd = MSS_ROUNDUP( 1711 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1712 eager->tcp_rwnd), eager->tcp_mss); 1713 if (eager->tcp_snd_ws_ok) 1714 tcp_set_ws_value(eager); 1715 /* 1716 * Note that this is the only place tcp_rwnd_set() is called for 1717 * accepting a connection. We need to call it here instead of 1718 * after the 3-way handshake because we need to tell the other 1719 * side our rwnd in the SYN-ACK segment. 1720 */ 1721 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1722 1723 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1724 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1725 1726 ASSERT(econnp->conn_rcvbuf != 0 && 1727 econnp->conn_rcvbuf == eager->tcp_rwnd); 1728 1729 /* Put a ref on the listener for the eager. */ 1730 CONN_INC_REF(lconnp); 1731 mutex_enter(&listener->tcp_eager_lock); 1732 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1733 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1734 listener->tcp_eager_next_q0 = eager; 1735 eager->tcp_eager_prev_q0 = listener; 1736 1737 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1738 eager->tcp_listener = listener; 1739 eager->tcp_saved_listener = listener; 1740 1741 /* 1742 * Set tcp_listen_cnt so that when the connection is done, the counter 1743 * is decremented. 1744 */ 1745 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1746 1747 /* 1748 * Tag this detached tcp vector for later retrieval 1749 * by our listener client in tcp_accept(). 1750 */ 1751 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1752 listener->tcp_conn_req_cnt_q0++; 1753 if (++listener->tcp_conn_req_seqnum == -1) { 1754 /* 1755 * -1 is "special" and defined in TPI as something 1756 * that should never be used in T_CONN_IND 1757 */ 1758 ++listener->tcp_conn_req_seqnum; 1759 } 1760 mutex_exit(&listener->tcp_eager_lock); 1761 1762 if (listener->tcp_syn_defense) { 1763 /* Don't drop the SYN that comes from a good IP source */ 1764 ipaddr_t *addr_cache; 1765 1766 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1767 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1768 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1769 eager->tcp_dontdrop = B_TRUE; 1770 } 1771 } 1772 1773 /* 1774 * We need to insert the eager in its own perimeter but as soon 1775 * as we do that, we expose the eager to the classifier and 1776 * should not touch any field outside the eager's perimeter. 1777 * So do all the work necessary before inserting the eager 1778 * in its own perimeter. Be optimistic that conn_connect() 1779 * will succeed but undo everything if it fails. 1780 */ 1781 seg_seq = ntohl(tcpha->tha_seq); 1782 eager->tcp_irs = seg_seq; 1783 eager->tcp_rack = seg_seq; 1784 eager->tcp_rnxt = seg_seq + 1; 1785 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1786 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1787 eager->tcp_state = TCPS_SYN_RCVD; 1788 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1789 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1790 if (mp1 == NULL) { 1791 /* 1792 * Increment the ref count as we are going to 1793 * enqueueing an mp in squeue 1794 */ 1795 CONN_INC_REF(econnp); 1796 goto error; 1797 } 1798 1799 /* 1800 * We need to start the rto timer. In normal case, we start 1801 * the timer after sending the packet on the wire (or at 1802 * least believing that packet was sent by waiting for 1803 * conn_ip_output() to return). Since this is the first packet 1804 * being sent on the wire for the eager, our initial tcp_rto 1805 * is at least tcp_rexmit_interval_min which is a fairly 1806 * large value to allow the algorithm to adjust slowly to large 1807 * fluctuations of RTT during first few transmissions. 1808 * 1809 * Starting the timer first and then sending the packet in this 1810 * case shouldn't make much difference since tcp_rexmit_interval_min 1811 * is of the order of several 100ms and starting the timer 1812 * first and then sending the packet will result in difference 1813 * of few micro seconds. 1814 * 1815 * Without this optimization, we are forced to hold the fanout 1816 * lock across the ipcl_bind_insert() and sending the packet 1817 * so that we don't race against an incoming packet (maybe RST) 1818 * for this eager. 1819 * 1820 * It is necessary to acquire an extra reference on the eager 1821 * at this point and hold it until after tcp_send_data() to 1822 * ensure against an eager close race. 1823 */ 1824 1825 CONN_INC_REF(econnp); 1826 1827 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1828 1829 /* 1830 * Insert the eager in its own perimeter now. We are ready to deal 1831 * with any packets on eager. 1832 */ 1833 if (ipcl_conn_insert(econnp) != 0) 1834 goto error; 1835 1836 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1837 freemsg(mp); 1838 /* 1839 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1840 * only used by one thread at a time. 1841 */ 1842 if (econnp->conn_sqp == lconnp->conn_sqp) { 1843 (void) conn_ip_output(mp1, econnp->conn_ixa); 1844 CONN_DEC_REF(econnp); 1845 } else { 1846 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1847 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1848 } 1849 return; 1850 error: 1851 freemsg(mp1); 1852 eager->tcp_closemp_used = B_TRUE; 1853 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1854 mp1 = &eager->tcp_closemp; 1855 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1856 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1857 1858 /* 1859 * If a connection already exists, send the mp to that connections so 1860 * that it can be appropriately dealt with. 1861 */ 1862 ipst = tcps->tcps_netstack->netstack_ip; 1863 1864 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1865 if (!IPCL_IS_CONNECTED(econnp)) { 1866 /* 1867 * Something bad happened. ipcl_conn_insert() 1868 * failed because a connection already existed 1869 * in connected hash but we can't find it 1870 * anymore (someone blew it away). Just 1871 * free this message and hopefully remote 1872 * will retransmit at which time the SYN can be 1873 * treated as a new connection or dealth with 1874 * a TH_RST if a connection already exists. 1875 */ 1876 CONN_DEC_REF(econnp); 1877 freemsg(mp); 1878 } else { 1879 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1880 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1881 } 1882 } else { 1883 /* Nobody wants this packet */ 1884 freemsg(mp); 1885 } 1886 return; 1887 error3: 1888 CONN_DEC_REF(econnp); 1889 error2: 1890 freemsg(mp); 1891 if (tlc_set) 1892 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 1893 } 1894 1895 /* 1896 * In an ideal case of vertical partition in NUMA architecture, its 1897 * beneficial to have the listener and all the incoming connections 1898 * tied to the same squeue. The other constraint is that incoming 1899 * connections should be tied to the squeue attached to interrupted 1900 * CPU for obvious locality reason so this leaves the listener to 1901 * be tied to the same squeue. Our only problem is that when listener 1902 * is binding, the CPU that will get interrupted by the NIC whose 1903 * IP address the listener is binding to is not even known. So 1904 * the code below allows us to change that binding at the time the 1905 * CPU is interrupted by virtue of incoming connection's squeue. 1906 * 1907 * This is usefull only in case of a listener bound to a specific IP 1908 * address. For other kind of listeners, they get bound the 1909 * very first time and there is no attempt to rebind them. 1910 */ 1911 void 1912 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1913 ip_recv_attr_t *ira) 1914 { 1915 conn_t *connp = (conn_t *)arg; 1916 squeue_t *sqp = (squeue_t *)arg2; 1917 squeue_t *new_sqp; 1918 uint32_t conn_flags; 1919 1920 /* 1921 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1922 * or based on the ring (for packets from GLD). Otherwise it is 1923 * set based on lbolt i.e., a somewhat random number. 1924 */ 1925 ASSERT(ira->ira_sqp != NULL); 1926 new_sqp = ira->ira_sqp; 1927 1928 if (connp->conn_fanout == NULL) 1929 goto done; 1930 1931 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1932 mutex_enter(&connp->conn_fanout->connf_lock); 1933 mutex_enter(&connp->conn_lock); 1934 /* 1935 * No one from read or write side can access us now 1936 * except for already queued packets on this squeue. 1937 * But since we haven't changed the squeue yet, they 1938 * can't execute. If they are processed after we have 1939 * changed the squeue, they are sent back to the 1940 * correct squeue down below. 1941 * But a listner close can race with processing of 1942 * incoming SYN. If incoming SYN processing changes 1943 * the squeue then the listener close which is waiting 1944 * to enter the squeue would operate on the wrong 1945 * squeue. Hence we don't change the squeue here unless 1946 * the refcount is exactly the minimum refcount. The 1947 * minimum refcount of 4 is counted as - 1 each for 1948 * TCP and IP, 1 for being in the classifier hash, and 1949 * 1 for the mblk being processed. 1950 */ 1951 1952 if (connp->conn_ref != 4 || 1953 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 1954 mutex_exit(&connp->conn_lock); 1955 mutex_exit(&connp->conn_fanout->connf_lock); 1956 goto done; 1957 } 1958 if (connp->conn_sqp != new_sqp) { 1959 while (connp->conn_sqp != new_sqp) 1960 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 1961 /* No special MT issues for outbound ixa_sqp hint */ 1962 connp->conn_ixa->ixa_sqp = new_sqp; 1963 } 1964 1965 do { 1966 conn_flags = connp->conn_flags; 1967 conn_flags |= IPCL_FULLY_BOUND; 1968 (void) cas32(&connp->conn_flags, connp->conn_flags, 1969 conn_flags); 1970 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 1971 1972 mutex_exit(&connp->conn_fanout->connf_lock); 1973 mutex_exit(&connp->conn_lock); 1974 1975 /* 1976 * Assume we have picked a good squeue for the listener. Make 1977 * subsequent SYNs not try to change the squeue. 1978 */ 1979 connp->conn_recv = tcp_input_listener; 1980 } 1981 1982 done: 1983 if (connp->conn_sqp != sqp) { 1984 CONN_INC_REF(connp); 1985 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 1986 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 1987 } else { 1988 tcp_input_listener(connp, mp, sqp, ira); 1989 } 1990 } 1991 1992 /* 1993 * Send up all messages queued on tcp_rcv_list. 1994 */ 1995 uint_t 1996 tcp_rcv_drain(tcp_t *tcp) 1997 { 1998 mblk_t *mp; 1999 uint_t ret = 0; 2000 #ifdef DEBUG 2001 uint_t cnt = 0; 2002 #endif 2003 queue_t *q = tcp->tcp_connp->conn_rq; 2004 2005 /* Can't drain on an eager connection */ 2006 if (tcp->tcp_listener != NULL) 2007 return (ret); 2008 2009 /* Can't be a non-STREAMS connection */ 2010 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 2011 2012 /* No need for the push timer now. */ 2013 if (tcp->tcp_push_tid != 0) { 2014 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2015 tcp->tcp_push_tid = 0; 2016 } 2017 2018 /* 2019 * Handle two cases here: we are currently fused or we were 2020 * previously fused and have some urgent data to be delivered 2021 * upstream. The latter happens because we either ran out of 2022 * memory or were detached and therefore sending the SIGURG was 2023 * deferred until this point. In either case we pass control 2024 * over to tcp_fuse_rcv_drain() since it may need to complete 2025 * some work. 2026 */ 2027 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2028 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 2029 tcp->tcp_fused_sigurg_mp != NULL); 2030 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2031 &tcp->tcp_fused_sigurg_mp)) 2032 return (ret); 2033 } 2034 2035 while ((mp = tcp->tcp_rcv_list) != NULL) { 2036 tcp->tcp_rcv_list = mp->b_next; 2037 mp->b_next = NULL; 2038 #ifdef DEBUG 2039 cnt += msgdsize(mp); 2040 #endif 2041 /* Does this need SSL processing first? */ 2042 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 2043 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 2044 mblk_t *, mp); 2045 tcp_kssl_input(tcp, mp, NULL); 2046 continue; 2047 } 2048 putnext(q, mp); 2049 } 2050 #ifdef DEBUG 2051 ASSERT(cnt == tcp->tcp_rcv_cnt); 2052 #endif 2053 tcp->tcp_rcv_last_head = NULL; 2054 tcp->tcp_rcv_last_tail = NULL; 2055 tcp->tcp_rcv_cnt = 0; 2056 2057 if (canputnext(q)) 2058 return (tcp_rwnd_reopen(tcp)); 2059 2060 return (ret); 2061 } 2062 2063 /* 2064 * Queue data on tcp_rcv_list which is a b_next chain. 2065 * tcp_rcv_last_head/tail is the last element of this chain. 2066 * Each element of the chain is a b_cont chain. 2067 * 2068 * M_DATA messages are added to the current element. 2069 * Other messages are added as new (b_next) elements. 2070 */ 2071 void 2072 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2073 { 2074 ASSERT(seg_len == msgdsize(mp)); 2075 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2076 2077 if (is_system_labeled()) { 2078 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2079 /* 2080 * Provide for protocols above TCP such as RPC. NOPID leaves 2081 * db_cpid unchanged. 2082 * The cred could have already been set. 2083 */ 2084 if (cr != NULL) 2085 mblk_setcred(mp, cr, NOPID); 2086 } 2087 2088 if (tcp->tcp_rcv_list == NULL) { 2089 ASSERT(tcp->tcp_rcv_last_head == NULL); 2090 tcp->tcp_rcv_list = mp; 2091 tcp->tcp_rcv_last_head = mp; 2092 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2093 tcp->tcp_rcv_last_tail->b_cont = mp; 2094 } else { 2095 tcp->tcp_rcv_last_head->b_next = mp; 2096 tcp->tcp_rcv_last_head = mp; 2097 } 2098 2099 while (mp->b_cont) 2100 mp = mp->b_cont; 2101 2102 tcp->tcp_rcv_last_tail = mp; 2103 tcp->tcp_rcv_cnt += seg_len; 2104 tcp->tcp_rwnd -= seg_len; 2105 } 2106 2107 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2108 mblk_t * 2109 tcp_ack_mp(tcp_t *tcp) 2110 { 2111 uint32_t seq_no; 2112 tcp_stack_t *tcps = tcp->tcp_tcps; 2113 conn_t *connp = tcp->tcp_connp; 2114 2115 /* 2116 * There are a few cases to be considered while setting the sequence no. 2117 * Essentially, we can come here while processing an unacceptable pkt 2118 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2119 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2120 * If we are here for a zero window probe, stick with suna. In all 2121 * other cases, we check if suna + swnd encompasses snxt and set 2122 * the sequence number to snxt, if so. If snxt falls outside the 2123 * window (the receiver probably shrunk its window), we will go with 2124 * suna + swnd, otherwise the sequence no will be unacceptable to the 2125 * receiver. 2126 */ 2127 if (tcp->tcp_zero_win_probe) { 2128 seq_no = tcp->tcp_suna; 2129 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2130 ASSERT(tcp->tcp_swnd == 0); 2131 seq_no = tcp->tcp_snxt; 2132 } else { 2133 seq_no = SEQ_GT(tcp->tcp_snxt, 2134 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2135 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2136 } 2137 2138 if (tcp->tcp_valid_bits) { 2139 /* 2140 * For the complex case where we have to send some 2141 * controls (FIN or SYN), let tcp_xmit_mp do it. 2142 */ 2143 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2144 NULL, B_FALSE)); 2145 } else { 2146 /* Generate a simple ACK */ 2147 int data_length; 2148 uchar_t *rptr; 2149 tcpha_t *tcpha; 2150 mblk_t *mp1; 2151 int32_t total_hdr_len; 2152 int32_t tcp_hdr_len; 2153 int32_t num_sack_blk = 0; 2154 int32_t sack_opt_len; 2155 ip_xmit_attr_t *ixa = connp->conn_ixa; 2156 2157 /* 2158 * Allocate space for TCP + IP headers 2159 * and link-level header 2160 */ 2161 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2162 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2163 tcp->tcp_num_sack_blk); 2164 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2165 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2166 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2167 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2168 } else { 2169 total_hdr_len = connp->conn_ht_iphc_len; 2170 tcp_hdr_len = connp->conn_ht_ulp_len; 2171 } 2172 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2173 if (!mp1) 2174 return (NULL); 2175 2176 /* Update the latest receive window size in TCP header. */ 2177 tcp->tcp_tcpha->tha_win = 2178 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2179 /* copy in prototype TCP + IP header */ 2180 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2181 mp1->b_rptr = rptr; 2182 mp1->b_wptr = rptr + total_hdr_len; 2183 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2184 2185 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2186 2187 /* Set the TCP sequence number. */ 2188 tcpha->tha_seq = htonl(seq_no); 2189 2190 /* Set up the TCP flag field. */ 2191 tcpha->tha_flags = (uchar_t)TH_ACK; 2192 if (tcp->tcp_ecn_echo_on) 2193 tcpha->tha_flags |= TH_ECE; 2194 2195 tcp->tcp_rack = tcp->tcp_rnxt; 2196 tcp->tcp_rack_cnt = 0; 2197 2198 /* fill in timestamp option if in use */ 2199 if (tcp->tcp_snd_ts_ok) { 2200 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2201 2202 U32_TO_BE32(llbolt, 2203 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2204 U32_TO_BE32(tcp->tcp_ts_recent, 2205 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2206 } 2207 2208 /* Fill in SACK options */ 2209 if (num_sack_blk > 0) { 2210 uchar_t *wptr = (uchar_t *)tcpha + 2211 connp->conn_ht_ulp_len; 2212 sack_blk_t *tmp; 2213 int32_t i; 2214 2215 wptr[0] = TCPOPT_NOP; 2216 wptr[1] = TCPOPT_NOP; 2217 wptr[2] = TCPOPT_SACK; 2218 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2219 sizeof (sack_blk_t); 2220 wptr += TCPOPT_REAL_SACK_LEN; 2221 2222 tmp = tcp->tcp_sack_list; 2223 for (i = 0; i < num_sack_blk; i++) { 2224 U32_TO_BE32(tmp[i].begin, wptr); 2225 wptr += sizeof (tcp_seq); 2226 U32_TO_BE32(tmp[i].end, wptr); 2227 wptr += sizeof (tcp_seq); 2228 } 2229 tcpha->tha_offset_and_reserved += 2230 ((num_sack_blk * 2 + 1) << 4); 2231 } 2232 2233 ixa->ixa_pktlen = total_hdr_len; 2234 2235 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2236 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2237 } else { 2238 ip6_t *ip6 = (ip6_t *)rptr; 2239 2240 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2241 } 2242 2243 /* 2244 * Prime pump for checksum calculation in IP. Include the 2245 * adjustment for a source route if any. 2246 */ 2247 data_length = tcp_hdr_len + connp->conn_sum; 2248 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2249 tcpha->tha_sum = htons(data_length); 2250 2251 if (tcp->tcp_ip_forward_progress) { 2252 tcp->tcp_ip_forward_progress = B_FALSE; 2253 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2254 } else { 2255 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2256 } 2257 return (mp1); 2258 } 2259 } 2260 2261 /* 2262 * Handle M_DATA messages from IP. Its called directly from IP via 2263 * squeue for received IP packets. 2264 * 2265 * The first argument is always the connp/tcp to which the mp belongs. 2266 * There are no exceptions to this rule. The caller has already put 2267 * a reference on this connp/tcp and once tcp_input_data() returns, 2268 * the squeue will do the refrele. 2269 * 2270 * The TH_SYN for the listener directly go to tcp_input_listener via 2271 * squeue. ICMP errors go directly to tcp_icmp_input(). 2272 * 2273 * sqp: NULL = recursive, sqp != NULL means called from squeue 2274 */ 2275 void 2276 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2277 { 2278 int32_t bytes_acked; 2279 int32_t gap; 2280 mblk_t *mp1; 2281 uint_t flags; 2282 uint32_t new_swnd = 0; 2283 uchar_t *iphdr; 2284 uchar_t *rptr; 2285 int32_t rgap; 2286 uint32_t seg_ack; 2287 int seg_len; 2288 uint_t ip_hdr_len; 2289 uint32_t seg_seq; 2290 tcpha_t *tcpha; 2291 int urp; 2292 tcp_opt_t tcpopt; 2293 ip_pkt_t ipp; 2294 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2295 uint32_t cwnd; 2296 uint32_t add; 2297 int npkt; 2298 int mss; 2299 conn_t *connp = (conn_t *)arg; 2300 squeue_t *sqp = (squeue_t *)arg2; 2301 tcp_t *tcp = connp->conn_tcp; 2302 tcp_stack_t *tcps = tcp->tcp_tcps; 2303 2304 /* 2305 * RST from fused tcp loopback peer should trigger an unfuse. 2306 */ 2307 if (tcp->tcp_fused) { 2308 TCP_STAT(tcps, tcp_fusion_aborted); 2309 tcp_unfuse(tcp); 2310 } 2311 2312 iphdr = mp->b_rptr; 2313 rptr = mp->b_rptr; 2314 ASSERT(OK_32PTR(rptr)); 2315 2316 ip_hdr_len = ira->ira_ip_hdr_length; 2317 if (connp->conn_recv_ancillary.crb_all != 0) { 2318 /* 2319 * Record packet information in the ip_pkt_t 2320 */ 2321 ipp.ipp_fields = 0; 2322 if (ira->ira_flags & IRAF_IS_IPV4) { 2323 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2324 B_FALSE); 2325 } else { 2326 uint8_t nexthdrp; 2327 2328 /* 2329 * IPv6 packets can only be received by applications 2330 * that are prepared to receive IPv6 addresses. 2331 * The IP fanout must ensure this. 2332 */ 2333 ASSERT(connp->conn_family == AF_INET6); 2334 2335 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2336 &nexthdrp); 2337 ASSERT(nexthdrp == IPPROTO_TCP); 2338 2339 /* Could have caused a pullup? */ 2340 iphdr = mp->b_rptr; 2341 rptr = mp->b_rptr; 2342 } 2343 } 2344 ASSERT(DB_TYPE(mp) == M_DATA); 2345 ASSERT(mp->b_next == NULL); 2346 2347 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2348 seg_seq = ntohl(tcpha->tha_seq); 2349 seg_ack = ntohl(tcpha->tha_ack); 2350 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2351 seg_len = (int)(mp->b_wptr - rptr) - 2352 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2353 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2354 do { 2355 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2356 (uintptr_t)INT_MAX); 2357 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2358 } while ((mp1 = mp1->b_cont) != NULL && 2359 mp1->b_datap->db_type == M_DATA); 2360 } 2361 2362 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2363 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2364 seg_len, tcpha, ira); 2365 return; 2366 } 2367 2368 if (sqp != NULL) { 2369 /* 2370 * This is the correct place to update tcp_last_recv_time. Note 2371 * that it is also updated for tcp structure that belongs to 2372 * global and listener queues which do not really need updating. 2373 * But that should not cause any harm. And it is updated for 2374 * all kinds of incoming segments, not only for data segments. 2375 */ 2376 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2377 } 2378 2379 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2380 2381 BUMP_LOCAL(tcp->tcp_ibsegs); 2382 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2383 2384 if ((flags & TH_URG) && sqp != NULL) { 2385 /* 2386 * TCP can't handle urgent pointers that arrive before 2387 * the connection has been accept()ed since it can't 2388 * buffer OOB data. Discard segment if this happens. 2389 * 2390 * We can't just rely on a non-null tcp_listener to indicate 2391 * that the accept() has completed since unlinking of the 2392 * eager and completion of the accept are not atomic. 2393 * tcp_detached, when it is not set (B_FALSE) indicates 2394 * that the accept() has completed. 2395 * 2396 * Nor can it reassemble urgent pointers, so discard 2397 * if it's not the next segment expected. 2398 * 2399 * Otherwise, collapse chain into one mblk (discard if 2400 * that fails). This makes sure the headers, retransmitted 2401 * data, and new data all are in the same mblk. 2402 */ 2403 ASSERT(mp != NULL); 2404 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2405 freemsg(mp); 2406 return; 2407 } 2408 /* Update pointers into message */ 2409 iphdr = rptr = mp->b_rptr; 2410 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2411 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2412 /* 2413 * Since we can't handle any data with this urgent 2414 * pointer that is out of sequence, we expunge 2415 * the data. This allows us to still register 2416 * the urgent mark and generate the M_PCSIG, 2417 * which we can do. 2418 */ 2419 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2420 seg_len = 0; 2421 } 2422 } 2423 2424 switch (tcp->tcp_state) { 2425 case TCPS_SYN_SENT: 2426 if (connp->conn_final_sqp == NULL && 2427 tcp_outbound_squeue_switch && sqp != NULL) { 2428 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2429 connp->conn_final_sqp = sqp; 2430 if (connp->conn_final_sqp != connp->conn_sqp) { 2431 DTRACE_PROBE1(conn__final__sqp__switch, 2432 conn_t *, connp); 2433 CONN_INC_REF(connp); 2434 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2435 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2436 tcp_input_data, connp, ira, ip_squeue_flag, 2437 SQTAG_CONNECT_FINISH); 2438 return; 2439 } 2440 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2441 } 2442 if (flags & TH_ACK) { 2443 /* 2444 * Note that our stack cannot send data before a 2445 * connection is established, therefore the 2446 * following check is valid. Otherwise, it has 2447 * to be changed. 2448 */ 2449 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2450 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2451 freemsg(mp); 2452 if (flags & TH_RST) 2453 return; 2454 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2455 tcp, seg_ack, 0, TH_RST); 2456 return; 2457 } 2458 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2459 } 2460 if (flags & TH_RST) { 2461 freemsg(mp); 2462 if (flags & TH_ACK) 2463 (void) tcp_clean_death(tcp, ECONNREFUSED); 2464 return; 2465 } 2466 if (!(flags & TH_SYN)) { 2467 freemsg(mp); 2468 return; 2469 } 2470 2471 /* Process all TCP options. */ 2472 tcp_process_options(tcp, tcpha); 2473 /* 2474 * The following changes our rwnd to be a multiple of the 2475 * MIN(peer MSS, our MSS) for performance reason. 2476 */ 2477 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2478 tcp->tcp_mss)); 2479 2480 /* Is the other end ECN capable? */ 2481 if (tcp->tcp_ecn_ok) { 2482 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2483 tcp->tcp_ecn_ok = B_FALSE; 2484 } 2485 } 2486 /* 2487 * Clear ECN flags because it may interfere with later 2488 * processing. 2489 */ 2490 flags &= ~(TH_ECE|TH_CWR); 2491 2492 tcp->tcp_irs = seg_seq; 2493 tcp->tcp_rack = seg_seq; 2494 tcp->tcp_rnxt = seg_seq + 1; 2495 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2496 if (!TCP_IS_DETACHED(tcp)) { 2497 /* Allocate room for SACK options if needed. */ 2498 connp->conn_wroff = connp->conn_ht_iphc_len; 2499 if (tcp->tcp_snd_sack_ok) 2500 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2501 if (!tcp->tcp_loopback) 2502 connp->conn_wroff += tcps->tcps_wroff_xtra; 2503 2504 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2505 connp->conn_wroff); 2506 } 2507 if (flags & TH_ACK) { 2508 /* 2509 * If we can't get the confirmation upstream, pretend 2510 * we didn't even see this one. 2511 * 2512 * XXX: how can we pretend we didn't see it if we 2513 * have updated rnxt et. al. 2514 * 2515 * For loopback we defer sending up the T_CONN_CON 2516 * until after some checks below. 2517 */ 2518 mp1 = NULL; 2519 /* 2520 * tcp_sendmsg() checks tcp_state without entering 2521 * the squeue so tcp_state should be updated before 2522 * sending up connection confirmation 2523 */ 2524 tcp->tcp_state = TCPS_ESTABLISHED; 2525 if (!tcp_conn_con(tcp, iphdr, mp, 2526 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2527 tcp->tcp_state = TCPS_SYN_SENT; 2528 freemsg(mp); 2529 return; 2530 } 2531 TCPS_CONN_INC(tcps); 2532 /* SYN was acked - making progress */ 2533 tcp->tcp_ip_forward_progress = B_TRUE; 2534 2535 /* One for the SYN */ 2536 tcp->tcp_suna = tcp->tcp_iss + 1; 2537 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2538 2539 /* 2540 * If SYN was retransmitted, need to reset all 2541 * retransmission info. This is because this 2542 * segment will be treated as a dup ACK. 2543 */ 2544 if (tcp->tcp_rexmit) { 2545 tcp->tcp_rexmit = B_FALSE; 2546 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2547 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2548 tcp->tcp_snd_burst = tcp->tcp_localnet ? 2549 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 2550 tcp->tcp_ms_we_have_waited = 0; 2551 2552 /* 2553 * Set tcp_cwnd back to 1 MSS, per 2554 * recommendation from 2555 * draft-floyd-incr-init-win-01.txt, 2556 * Increasing TCP's Initial Window. 2557 */ 2558 tcp->tcp_cwnd = tcp->tcp_mss; 2559 } 2560 2561 tcp->tcp_swl1 = seg_seq; 2562 tcp->tcp_swl2 = seg_ack; 2563 2564 new_swnd = ntohs(tcpha->tha_win); 2565 tcp->tcp_swnd = new_swnd; 2566 if (new_swnd > tcp->tcp_max_swnd) 2567 tcp->tcp_max_swnd = new_swnd; 2568 2569 /* 2570 * Always send the three-way handshake ack immediately 2571 * in order to make the connection complete as soon as 2572 * possible on the accepting host. 2573 */ 2574 flags |= TH_ACK_NEEDED; 2575 2576 /* 2577 * Special case for loopback. At this point we have 2578 * received SYN-ACK from the remote endpoint. In 2579 * order to ensure that both endpoints reach the 2580 * fused state prior to any data exchange, the final 2581 * ACK needs to be sent before we indicate T_CONN_CON 2582 * to the module upstream. 2583 */ 2584 if (tcp->tcp_loopback) { 2585 mblk_t *ack_mp; 2586 2587 ASSERT(!tcp->tcp_unfusable); 2588 ASSERT(mp1 != NULL); 2589 /* 2590 * For loopback, we always get a pure SYN-ACK 2591 * and only need to send back the final ACK 2592 * with no data (this is because the other 2593 * tcp is ours and we don't do T/TCP). This 2594 * final ACK triggers the passive side to 2595 * perform fusion in ESTABLISHED state. 2596 */ 2597 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2598 if (tcp->tcp_ack_tid != 0) { 2599 (void) TCP_TIMER_CANCEL(tcp, 2600 tcp->tcp_ack_tid); 2601 tcp->tcp_ack_tid = 0; 2602 } 2603 tcp_send_data(tcp, ack_mp); 2604 BUMP_LOCAL(tcp->tcp_obsegs); 2605 TCPS_BUMP_MIB(tcps, tcpOutAck); 2606 2607 if (!IPCL_IS_NONSTR(connp)) { 2608 /* Send up T_CONN_CON */ 2609 if (ira->ira_cred != NULL) { 2610 mblk_setcred(mp1, 2611 ira->ira_cred, 2612 ira->ira_cpid); 2613 } 2614 putnext(connp->conn_rq, mp1); 2615 } else { 2616 (*connp->conn_upcalls-> 2617 su_connected) 2618 (connp->conn_upper_handle, 2619 tcp->tcp_connid, 2620 ira->ira_cred, 2621 ira->ira_cpid); 2622 freemsg(mp1); 2623 } 2624 2625 freemsg(mp); 2626 return; 2627 } 2628 /* 2629 * Forget fusion; we need to handle more 2630 * complex cases below. Send the deferred 2631 * T_CONN_CON message upstream and proceed 2632 * as usual. Mark this tcp as not capable 2633 * of fusion. 2634 */ 2635 TCP_STAT(tcps, tcp_fusion_unfusable); 2636 tcp->tcp_unfusable = B_TRUE; 2637 if (!IPCL_IS_NONSTR(connp)) { 2638 if (ira->ira_cred != NULL) { 2639 mblk_setcred(mp1, ira->ira_cred, 2640 ira->ira_cpid); 2641 } 2642 putnext(connp->conn_rq, mp1); 2643 } else { 2644 (*connp->conn_upcalls->su_connected) 2645 (connp->conn_upper_handle, 2646 tcp->tcp_connid, ira->ira_cred, 2647 ira->ira_cpid); 2648 freemsg(mp1); 2649 } 2650 } 2651 2652 /* 2653 * Check to see if there is data to be sent. If 2654 * yes, set the transmit flag. Then check to see 2655 * if received data processing needs to be done. 2656 * If not, go straight to xmit_check. This short 2657 * cut is OK as we don't support T/TCP. 2658 */ 2659 if (tcp->tcp_unsent) 2660 flags |= TH_XMIT_NEEDED; 2661 2662 if (seg_len == 0 && !(flags & TH_URG)) { 2663 freemsg(mp); 2664 goto xmit_check; 2665 } 2666 2667 flags &= ~TH_SYN; 2668 seg_seq++; 2669 break; 2670 } 2671 tcp->tcp_state = TCPS_SYN_RCVD; 2672 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2673 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2674 if (mp1 != NULL) { 2675 tcp_send_data(tcp, mp1); 2676 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2677 } 2678 freemsg(mp); 2679 return; 2680 case TCPS_SYN_RCVD: 2681 if (flags & TH_ACK) { 2682 /* 2683 * In this state, a SYN|ACK packet is either bogus 2684 * because the other side must be ACKing our SYN which 2685 * indicates it has seen the ACK for their SYN and 2686 * shouldn't retransmit it or we're crossing SYNs 2687 * on active open. 2688 */ 2689 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2690 freemsg(mp); 2691 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2692 tcp, seg_ack, 0, TH_RST); 2693 return; 2694 } 2695 /* 2696 * NOTE: RFC 793 pg. 72 says this should be 2697 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2698 * but that would mean we have an ack that ignored 2699 * our SYN. 2700 */ 2701 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2702 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2703 freemsg(mp); 2704 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2705 tcp, seg_ack, 0, TH_RST); 2706 return; 2707 } 2708 /* 2709 * No sane TCP stack will send such a small window 2710 * without receiving any data. Just drop this invalid 2711 * ACK. We also shorten the abort timeout in case 2712 * this is an attack. 2713 */ 2714 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 2715 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 2716 freemsg(mp); 2717 TCP_STAT(tcps, tcp_zwin_ack_syn); 2718 tcp->tcp_second_ctimer_threshold = 2719 tcp_early_abort * SECONDS; 2720 return; 2721 } 2722 } 2723 break; 2724 case TCPS_LISTEN: 2725 /* 2726 * Only a TLI listener can come through this path when a 2727 * acceptor is going back to be a listener and a packet 2728 * for the acceptor hits the classifier. For a socket 2729 * listener, this can never happen because a listener 2730 * can never accept connection on itself and hence a 2731 * socket acceptor can not go back to being a listener. 2732 */ 2733 ASSERT(!TCP_IS_SOCKET(tcp)); 2734 /*FALLTHRU*/ 2735 case TCPS_CLOSED: 2736 case TCPS_BOUND: { 2737 conn_t *new_connp; 2738 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2739 2740 /* 2741 * Don't accept any input on a closed tcp as this TCP logically 2742 * does not exist on the system. Don't proceed further with 2743 * this TCP. For instance, this packet could trigger another 2744 * close of this tcp which would be disastrous for tcp_refcnt. 2745 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2746 * be called at most once on a TCP. In this case we need to 2747 * refeed the packet into the classifier and figure out where 2748 * the packet should go. 2749 */ 2750 new_connp = ipcl_classify(mp, ira, ipst); 2751 if (new_connp != NULL) { 2752 /* Drops ref on new_connp */ 2753 tcp_reinput(new_connp, mp, ira, ipst); 2754 return; 2755 } 2756 /* We failed to classify. For now just drop the packet */ 2757 freemsg(mp); 2758 return; 2759 } 2760 case TCPS_IDLE: 2761 /* 2762 * Handle the case where the tcp_clean_death() has happened 2763 * on a connection (application hasn't closed yet) but a packet 2764 * was already queued on squeue before tcp_clean_death() 2765 * was processed. Calling tcp_clean_death() twice on same 2766 * connection can result in weird behaviour. 2767 */ 2768 freemsg(mp); 2769 return; 2770 default: 2771 break; 2772 } 2773 2774 /* 2775 * Already on the correct queue/perimeter. 2776 * If this is a detached connection and not an eager 2777 * connection hanging off a listener then new data 2778 * (past the FIN) will cause a reset. 2779 * We do a special check here where it 2780 * is out of the main line, rather than check 2781 * if we are detached every time we see new 2782 * data down below. 2783 */ 2784 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2785 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2786 TCPS_BUMP_MIB(tcps, tcpInClosed); 2787 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2788 2789 freemsg(mp); 2790 /* 2791 * This could be an SSL closure alert. We're detached so just 2792 * acknowledge it this last time. 2793 */ 2794 if (tcp->tcp_kssl_ctx != NULL) { 2795 kssl_release_ctx(tcp->tcp_kssl_ctx); 2796 tcp->tcp_kssl_ctx = NULL; 2797 2798 tcp->tcp_rnxt += seg_len; 2799 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2800 flags |= TH_ACK_NEEDED; 2801 goto ack_check; 2802 } 2803 2804 tcp_xmit_ctl("new data when detached", tcp, 2805 tcp->tcp_snxt, 0, TH_RST); 2806 (void) tcp_clean_death(tcp, EPROTO); 2807 return; 2808 } 2809 2810 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2811 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2812 new_swnd = ntohs(tcpha->tha_win) << 2813 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2814 2815 if (tcp->tcp_snd_ts_ok) { 2816 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 2817 /* 2818 * This segment is not acceptable. 2819 * Drop it and send back an ACK. 2820 */ 2821 freemsg(mp); 2822 flags |= TH_ACK_NEEDED; 2823 goto ack_check; 2824 } 2825 } else if (tcp->tcp_snd_sack_ok) { 2826 ASSERT(tcp->tcp_sack_info != NULL); 2827 tcpopt.tcp = tcp; 2828 /* 2829 * SACK info in already updated in tcp_parse_options. Ignore 2830 * all other TCP options... 2831 */ 2832 (void) tcp_parse_options(tcpha, &tcpopt); 2833 } 2834 try_again:; 2835 mss = tcp->tcp_mss; 2836 gap = seg_seq - tcp->tcp_rnxt; 2837 rgap = tcp->tcp_rwnd - (gap + seg_len); 2838 /* 2839 * gap is the amount of sequence space between what we expect to see 2840 * and what we got for seg_seq. A positive value for gap means 2841 * something got lost. A negative value means we got some old stuff. 2842 */ 2843 if (gap < 0) { 2844 /* Old stuff present. Is the SYN in there? */ 2845 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 2846 (seg_len != 0)) { 2847 flags &= ~TH_SYN; 2848 seg_seq++; 2849 urp--; 2850 /* Recompute the gaps after noting the SYN. */ 2851 goto try_again; 2852 } 2853 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 2854 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 2855 (seg_len > -gap ? -gap : seg_len)); 2856 /* Remove the old stuff from seg_len. */ 2857 seg_len += gap; 2858 /* 2859 * Anything left? 2860 * Make sure to check for unack'd FIN when rest of data 2861 * has been previously ack'd. 2862 */ 2863 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 2864 /* 2865 * Resets are only valid if they lie within our offered 2866 * window. If the RST bit is set, we just ignore this 2867 * segment. 2868 */ 2869 if (flags & TH_RST) { 2870 freemsg(mp); 2871 return; 2872 } 2873 2874 /* 2875 * The arriving of dup data packets indicate that we 2876 * may have postponed an ack for too long, or the other 2877 * side's RTT estimate is out of shape. Start acking 2878 * more often. 2879 */ 2880 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 2881 tcp->tcp_rack_cnt >= 1 && 2882 tcp->tcp_rack_abs_max > 2) { 2883 tcp->tcp_rack_abs_max--; 2884 } 2885 tcp->tcp_rack_cur_max = 1; 2886 2887 /* 2888 * This segment is "unacceptable". None of its 2889 * sequence space lies within our advertized window. 2890 * 2891 * Adjust seg_len to the original value for tracing. 2892 */ 2893 seg_len -= gap; 2894 if (connp->conn_debug) { 2895 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 2896 "tcp_rput: unacceptable, gap %d, rgap %d, " 2897 "flags 0x%x, seg_seq %u, seg_ack %u, " 2898 "seg_len %d, rnxt %u, snxt %u, %s", 2899 gap, rgap, flags, seg_seq, seg_ack, 2900 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 2901 tcp_display(tcp, NULL, 2902 DISP_ADDR_AND_PORT)); 2903 } 2904 2905 /* 2906 * Arrange to send an ACK in response to the 2907 * unacceptable segment per RFC 793 page 69. There 2908 * is only one small difference between ours and the 2909 * acceptability test in the RFC - we accept ACK-only 2910 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 2911 * will be generated. 2912 * 2913 * Note that we have to ACK an ACK-only packet at least 2914 * for stacks that send 0-length keep-alives with 2915 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 2916 * section 4.2.3.6. As long as we don't ever generate 2917 * an unacceptable packet in response to an incoming 2918 * packet that is unacceptable, it should not cause 2919 * "ACK wars". 2920 */ 2921 flags |= TH_ACK_NEEDED; 2922 2923 /* 2924 * Continue processing this segment in order to use the 2925 * ACK information it contains, but skip all other 2926 * sequence-number processing. Processing the ACK 2927 * information is necessary in order to 2928 * re-synchronize connections that may have lost 2929 * synchronization. 2930 * 2931 * We clear seg_len and flag fields related to 2932 * sequence number processing as they are not 2933 * to be trusted for an unacceptable segment. 2934 */ 2935 seg_len = 0; 2936 flags &= ~(TH_SYN | TH_FIN | TH_URG); 2937 goto process_ack; 2938 } 2939 2940 /* Fix seg_seq, and chew the gap off the front. */ 2941 seg_seq = tcp->tcp_rnxt; 2942 urp += gap; 2943 do { 2944 mblk_t *mp2; 2945 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 2946 (uintptr_t)UINT_MAX); 2947 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 2948 if (gap > 0) { 2949 mp->b_rptr = mp->b_wptr - gap; 2950 break; 2951 } 2952 mp2 = mp; 2953 mp = mp->b_cont; 2954 freeb(mp2); 2955 } while (gap < 0); 2956 /* 2957 * If the urgent data has already been acknowledged, we 2958 * should ignore TH_URG below 2959 */ 2960 if (urp < 0) 2961 flags &= ~TH_URG; 2962 } 2963 /* 2964 * rgap is the amount of stuff received out of window. A negative 2965 * value is the amount out of window. 2966 */ 2967 if (rgap < 0) { 2968 mblk_t *mp2; 2969 2970 if (tcp->tcp_rwnd == 0) { 2971 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 2972 } else { 2973 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 2974 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 2975 } 2976 2977 /* 2978 * seg_len does not include the FIN, so if more than 2979 * just the FIN is out of window, we act like we don't 2980 * see it. (If just the FIN is out of window, rgap 2981 * will be zero and we will go ahead and acknowledge 2982 * the FIN.) 2983 */ 2984 flags &= ~TH_FIN; 2985 2986 /* Fix seg_len and make sure there is something left. */ 2987 seg_len += rgap; 2988 if (seg_len <= 0) { 2989 /* 2990 * Resets are only valid if they lie within our offered 2991 * window. If the RST bit is set, we just ignore this 2992 * segment. 2993 */ 2994 if (flags & TH_RST) { 2995 freemsg(mp); 2996 return; 2997 } 2998 2999 /* Per RFC 793, we need to send back an ACK. */ 3000 flags |= TH_ACK_NEEDED; 3001 3002 /* 3003 * Send SIGURG as soon as possible i.e. even 3004 * if the TH_URG was delivered in a window probe 3005 * packet (which will be unacceptable). 3006 * 3007 * We generate a signal if none has been generated 3008 * for this connection or if this is a new urgent 3009 * byte. Also send a zero-length "unmarked" message 3010 * to inform SIOCATMARK that this is not the mark. 3011 * 3012 * tcp_urp_last_valid is cleared when the T_exdata_ind 3013 * is sent up. This plus the check for old data 3014 * (gap >= 0) handles the wraparound of the sequence 3015 * number space without having to always track the 3016 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3017 * this max in its rcv_up variable). 3018 * 3019 * This prevents duplicate SIGURGS due to a "late" 3020 * zero-window probe when the T_EXDATA_IND has already 3021 * been sent up. 3022 */ 3023 if ((flags & TH_URG) && 3024 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3025 tcp->tcp_urp_last))) { 3026 if (IPCL_IS_NONSTR(connp)) { 3027 if (!TCP_IS_DETACHED(tcp)) { 3028 (*connp->conn_upcalls-> 3029 su_signal_oob) 3030 (connp->conn_upper_handle, 3031 urp); 3032 } 3033 } else { 3034 mp1 = allocb(0, BPRI_MED); 3035 if (mp1 == NULL) { 3036 freemsg(mp); 3037 return; 3038 } 3039 if (!TCP_IS_DETACHED(tcp) && 3040 !putnextctl1(connp->conn_rq, 3041 M_PCSIG, SIGURG)) { 3042 /* Try again on the rexmit. */ 3043 freemsg(mp1); 3044 freemsg(mp); 3045 return; 3046 } 3047 /* 3048 * If the next byte would be the mark 3049 * then mark with MARKNEXT else mark 3050 * with NOTMARKNEXT. 3051 */ 3052 if (gap == 0 && urp == 0) 3053 mp1->b_flag |= MSGMARKNEXT; 3054 else 3055 mp1->b_flag |= MSGNOTMARKNEXT; 3056 freemsg(tcp->tcp_urp_mark_mp); 3057 tcp->tcp_urp_mark_mp = mp1; 3058 flags |= TH_SEND_URP_MARK; 3059 } 3060 tcp->tcp_urp_last_valid = B_TRUE; 3061 tcp->tcp_urp_last = urp + seg_seq; 3062 } 3063 /* 3064 * If this is a zero window probe, continue to 3065 * process the ACK part. But we need to set seg_len 3066 * to 0 to avoid data processing. Otherwise just 3067 * drop the segment and send back an ACK. 3068 */ 3069 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3070 flags &= ~(TH_SYN | TH_URG); 3071 seg_len = 0; 3072 goto process_ack; 3073 } else { 3074 freemsg(mp); 3075 goto ack_check; 3076 } 3077 } 3078 /* Pitch out of window stuff off the end. */ 3079 rgap = seg_len; 3080 mp2 = mp; 3081 do { 3082 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3083 (uintptr_t)INT_MAX); 3084 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3085 if (rgap < 0) { 3086 mp2->b_wptr += rgap; 3087 if ((mp1 = mp2->b_cont) != NULL) { 3088 mp2->b_cont = NULL; 3089 freemsg(mp1); 3090 } 3091 break; 3092 } 3093 } while ((mp2 = mp2->b_cont) != NULL); 3094 } 3095 ok:; 3096 /* 3097 * TCP should check ECN info for segments inside the window only. 3098 * Therefore the check should be done here. 3099 */ 3100 if (tcp->tcp_ecn_ok) { 3101 if (flags & TH_CWR) { 3102 tcp->tcp_ecn_echo_on = B_FALSE; 3103 } 3104 /* 3105 * Note that both ECN_CE and CWR can be set in the 3106 * same segment. In this case, we once again turn 3107 * on ECN_ECHO. 3108 */ 3109 if (connp->conn_ipversion == IPV4_VERSION) { 3110 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3111 3112 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3113 tcp->tcp_ecn_echo_on = B_TRUE; 3114 } 3115 } else { 3116 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3117 3118 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3119 htonl(IPH_ECN_CE << 20)) { 3120 tcp->tcp_ecn_echo_on = B_TRUE; 3121 } 3122 } 3123 } 3124 3125 /* 3126 * Check whether we can update tcp_ts_recent. This test is 3127 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 3128 * Extensions for High Performance: An Update", Internet Draft. 3129 */ 3130 if (tcp->tcp_snd_ts_ok && 3131 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3132 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3133 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3134 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3135 } 3136 3137 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3138 /* 3139 * FIN in an out of order segment. We record this in 3140 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3141 * Clear the FIN so that any check on FIN flag will fail. 3142 * Remember that FIN also counts in the sequence number 3143 * space. So we need to ack out of order FIN only segments. 3144 */ 3145 if (flags & TH_FIN) { 3146 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3147 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3148 flags &= ~TH_FIN; 3149 flags |= TH_ACK_NEEDED; 3150 } 3151 if (seg_len > 0) { 3152 /* Fill in the SACK blk list. */ 3153 if (tcp->tcp_snd_sack_ok) { 3154 ASSERT(tcp->tcp_sack_info != NULL); 3155 tcp_sack_insert(tcp->tcp_sack_list, 3156 seg_seq, seg_seq + seg_len, 3157 &(tcp->tcp_num_sack_blk)); 3158 } 3159 3160 /* 3161 * Attempt reassembly and see if we have something 3162 * ready to go. 3163 */ 3164 mp = tcp_reass(tcp, mp, seg_seq); 3165 /* Always ack out of order packets */ 3166 flags |= TH_ACK_NEEDED | TH_PUSH; 3167 if (mp) { 3168 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3169 (uintptr_t)INT_MAX); 3170 seg_len = mp->b_cont ? msgdsize(mp) : 3171 (int)(mp->b_wptr - mp->b_rptr); 3172 seg_seq = tcp->tcp_rnxt; 3173 /* 3174 * A gap is filled and the seq num and len 3175 * of the gap match that of a previously 3176 * received FIN, put the FIN flag back in. 3177 */ 3178 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3179 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3180 flags |= TH_FIN; 3181 tcp->tcp_valid_bits &= 3182 ~TCP_OFO_FIN_VALID; 3183 } 3184 if (tcp->tcp_reass_tid != 0) { 3185 (void) TCP_TIMER_CANCEL(tcp, 3186 tcp->tcp_reass_tid); 3187 /* 3188 * Restart the timer if there is still 3189 * data in the reassembly queue. 3190 */ 3191 if (tcp->tcp_reass_head != NULL) { 3192 tcp->tcp_reass_tid = TCP_TIMER( 3193 tcp, tcp_reass_timer, 3194 MSEC_TO_TICK( 3195 tcps->tcps_reass_timeout)); 3196 } else { 3197 tcp->tcp_reass_tid = 0; 3198 } 3199 } 3200 } else { 3201 /* 3202 * Keep going even with NULL mp. 3203 * There may be a useful ACK or something else 3204 * we don't want to miss. 3205 * 3206 * But TCP should not perform fast retransmit 3207 * because of the ack number. TCP uses 3208 * seg_len == 0 to determine if it is a pure 3209 * ACK. And this is not a pure ACK. 3210 */ 3211 seg_len = 0; 3212 ofo_seg = B_TRUE; 3213 3214 if (tcps->tcps_reass_timeout != 0 && 3215 tcp->tcp_reass_tid == 0) { 3216 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3217 tcp_reass_timer, MSEC_TO_TICK( 3218 tcps->tcps_reass_timeout)); 3219 } 3220 } 3221 } 3222 } else if (seg_len > 0) { 3223 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3224 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3225 /* 3226 * If an out of order FIN was received before, and the seq 3227 * num and len of the new segment match that of the FIN, 3228 * put the FIN flag back in. 3229 */ 3230 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3231 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3232 flags |= TH_FIN; 3233 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3234 } 3235 } 3236 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3237 if (flags & TH_RST) { 3238 freemsg(mp); 3239 switch (tcp->tcp_state) { 3240 case TCPS_SYN_RCVD: 3241 (void) tcp_clean_death(tcp, ECONNREFUSED); 3242 break; 3243 case TCPS_ESTABLISHED: 3244 case TCPS_FIN_WAIT_1: 3245 case TCPS_FIN_WAIT_2: 3246 case TCPS_CLOSE_WAIT: 3247 (void) tcp_clean_death(tcp, ECONNRESET); 3248 break; 3249 case TCPS_CLOSING: 3250 case TCPS_LAST_ACK: 3251 (void) tcp_clean_death(tcp, 0); 3252 break; 3253 default: 3254 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3255 (void) tcp_clean_death(tcp, ENXIO); 3256 break; 3257 } 3258 return; 3259 } 3260 if (flags & TH_SYN) { 3261 /* 3262 * See RFC 793, Page 71 3263 * 3264 * The seq number must be in the window as it should 3265 * be "fixed" above. If it is outside window, it should 3266 * be already rejected. Note that we allow seg_seq to be 3267 * rnxt + rwnd because we want to accept 0 window probe. 3268 */ 3269 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3270 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3271 freemsg(mp); 3272 /* 3273 * If the ACK flag is not set, just use our snxt as the 3274 * seq number of the RST segment. 3275 */ 3276 if (!(flags & TH_ACK)) { 3277 seg_ack = tcp->tcp_snxt; 3278 } 3279 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3280 TH_RST|TH_ACK); 3281 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3282 (void) tcp_clean_death(tcp, ECONNRESET); 3283 return; 3284 } 3285 /* 3286 * urp could be -1 when the urp field in the packet is 0 3287 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3288 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3289 */ 3290 if (flags & TH_URG && urp >= 0) { 3291 if (!tcp->tcp_urp_last_valid || 3292 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3293 /* 3294 * Non-STREAMS sockets handle the urgent data a litte 3295 * differently from STREAMS based sockets. There is no 3296 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3297 * flags to keep SIOCATMARK happy. Instead a 3298 * su_signal_oob upcall is made to update the mark. 3299 * Neither is a T_EXDATA_IND mblk needed to be 3300 * prepended to the urgent data. The urgent data is 3301 * delivered using the su_recv upcall, where we set 3302 * the MSG_OOB flag to indicate that it is urg data. 3303 * 3304 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3305 * are used by non-STREAMS sockets. 3306 */ 3307 if (IPCL_IS_NONSTR(connp)) { 3308 if (!TCP_IS_DETACHED(tcp)) { 3309 (*connp->conn_upcalls->su_signal_oob) 3310 (connp->conn_upper_handle, urp); 3311 } 3312 } else { 3313 /* 3314 * If we haven't generated the signal yet for 3315 * this urgent pointer value, do it now. Also, 3316 * send up a zero-length M_DATA indicating 3317 * whether or not this is the mark. The latter 3318 * is not needed when a T_EXDATA_IND is sent up. 3319 * However, if there are allocation failures 3320 * this code relies on the sender retransmitting 3321 * and the socket code for determining the mark 3322 * should not block waiting for the peer to 3323 * transmit. Thus, for simplicity we always 3324 * send up the mark indication. 3325 */ 3326 mp1 = allocb(0, BPRI_MED); 3327 if (mp1 == NULL) { 3328 freemsg(mp); 3329 return; 3330 } 3331 if (!TCP_IS_DETACHED(tcp) && 3332 !putnextctl1(connp->conn_rq, M_PCSIG, 3333 SIGURG)) { 3334 /* Try again on the rexmit. */ 3335 freemsg(mp1); 3336 freemsg(mp); 3337 return; 3338 } 3339 /* 3340 * Mark with NOTMARKNEXT for now. 3341 * The code below will change this to MARKNEXT 3342 * if we are at the mark. 3343 * 3344 * If there are allocation failures (e.g. in 3345 * dupmsg below) the next time tcp_input_data 3346 * sees the urgent segment it will send up the 3347 * MSGMARKNEXT message. 3348 */ 3349 mp1->b_flag |= MSGNOTMARKNEXT; 3350 freemsg(tcp->tcp_urp_mark_mp); 3351 tcp->tcp_urp_mark_mp = mp1; 3352 flags |= TH_SEND_URP_MARK; 3353 #ifdef DEBUG 3354 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3355 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3356 "last %x, %s", 3357 seg_seq, urp, tcp->tcp_urp_last, 3358 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3359 #endif /* DEBUG */ 3360 } 3361 tcp->tcp_urp_last_valid = B_TRUE; 3362 tcp->tcp_urp_last = urp + seg_seq; 3363 } else if (tcp->tcp_urp_mark_mp != NULL) { 3364 /* 3365 * An allocation failure prevented the previous 3366 * tcp_input_data from sending up the allocated 3367 * MSG*MARKNEXT message - send it up this time 3368 * around. 3369 */ 3370 flags |= TH_SEND_URP_MARK; 3371 } 3372 3373 /* 3374 * If the urgent byte is in this segment, make sure that it is 3375 * all by itself. This makes it much easier to deal with the 3376 * possibility of an allocation failure on the T_exdata_ind. 3377 * Note that seg_len is the number of bytes in the segment, and 3378 * urp is the offset into the segment of the urgent byte. 3379 * urp < seg_len means that the urgent byte is in this segment. 3380 */ 3381 if (urp < seg_len) { 3382 if (seg_len != 1) { 3383 uint32_t tmp_rnxt; 3384 /* 3385 * Break it up and feed it back in. 3386 * Re-attach the IP header. 3387 */ 3388 mp->b_rptr = iphdr; 3389 if (urp > 0) { 3390 /* 3391 * There is stuff before the urgent 3392 * byte. 3393 */ 3394 mp1 = dupmsg(mp); 3395 if (!mp1) { 3396 /* 3397 * Trim from urgent byte on. 3398 * The rest will come back. 3399 */ 3400 (void) adjmsg(mp, 3401 urp - seg_len); 3402 tcp_input_data(connp, 3403 mp, NULL, ira); 3404 return; 3405 } 3406 (void) adjmsg(mp1, urp - seg_len); 3407 /* Feed this piece back in. */ 3408 tmp_rnxt = tcp->tcp_rnxt; 3409 tcp_input_data(connp, mp1, NULL, ira); 3410 /* 3411 * If the data passed back in was not 3412 * processed (ie: bad ACK) sending 3413 * the remainder back in will cause a 3414 * loop. In this case, drop the 3415 * packet and let the sender try 3416 * sending a good packet. 3417 */ 3418 if (tmp_rnxt == tcp->tcp_rnxt) { 3419 freemsg(mp); 3420 return; 3421 } 3422 } 3423 if (urp != seg_len - 1) { 3424 uint32_t tmp_rnxt; 3425 /* 3426 * There is stuff after the urgent 3427 * byte. 3428 */ 3429 mp1 = dupmsg(mp); 3430 if (!mp1) { 3431 /* 3432 * Trim everything beyond the 3433 * urgent byte. The rest will 3434 * come back. 3435 */ 3436 (void) adjmsg(mp, 3437 urp + 1 - seg_len); 3438 tcp_input_data(connp, 3439 mp, NULL, ira); 3440 return; 3441 } 3442 (void) adjmsg(mp1, urp + 1 - seg_len); 3443 tmp_rnxt = tcp->tcp_rnxt; 3444 tcp_input_data(connp, mp1, NULL, ira); 3445 /* 3446 * If the data passed back in was not 3447 * processed (ie: bad ACK) sending 3448 * the remainder back in will cause a 3449 * loop. In this case, drop the 3450 * packet and let the sender try 3451 * sending a good packet. 3452 */ 3453 if (tmp_rnxt == tcp->tcp_rnxt) { 3454 freemsg(mp); 3455 return; 3456 } 3457 } 3458 tcp_input_data(connp, mp, NULL, ira); 3459 return; 3460 } 3461 /* 3462 * This segment contains only the urgent byte. We 3463 * have to allocate the T_exdata_ind, if we can. 3464 */ 3465 if (IPCL_IS_NONSTR(connp)) { 3466 int error; 3467 3468 (*connp->conn_upcalls->su_recv) 3469 (connp->conn_upper_handle, mp, seg_len, 3470 MSG_OOB, &error, NULL); 3471 /* 3472 * We should never be in middle of a 3473 * fallback, the squeue guarantees that. 3474 */ 3475 ASSERT(error != EOPNOTSUPP); 3476 mp = NULL; 3477 goto update_ack; 3478 } else if (!tcp->tcp_urp_mp) { 3479 struct T_exdata_ind *tei; 3480 mp1 = allocb(sizeof (struct T_exdata_ind), 3481 BPRI_MED); 3482 if (!mp1) { 3483 /* 3484 * Sigh... It'll be back. 3485 * Generate any MSG*MARK message now. 3486 */ 3487 freemsg(mp); 3488 seg_len = 0; 3489 if (flags & TH_SEND_URP_MARK) { 3490 3491 3492 ASSERT(tcp->tcp_urp_mark_mp); 3493 tcp->tcp_urp_mark_mp->b_flag &= 3494 ~MSGNOTMARKNEXT; 3495 tcp->tcp_urp_mark_mp->b_flag |= 3496 MSGMARKNEXT; 3497 } 3498 goto ack_check; 3499 } 3500 mp1->b_datap->db_type = M_PROTO; 3501 tei = (struct T_exdata_ind *)mp1->b_rptr; 3502 tei->PRIM_type = T_EXDATA_IND; 3503 tei->MORE_flag = 0; 3504 mp1->b_wptr = (uchar_t *)&tei[1]; 3505 tcp->tcp_urp_mp = mp1; 3506 #ifdef DEBUG 3507 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3508 "tcp_rput: allocated exdata_ind %s", 3509 tcp_display(tcp, NULL, 3510 DISP_PORT_ONLY)); 3511 #endif /* DEBUG */ 3512 /* 3513 * There is no need to send a separate MSG*MARK 3514 * message since the T_EXDATA_IND will be sent 3515 * now. 3516 */ 3517 flags &= ~TH_SEND_URP_MARK; 3518 freemsg(tcp->tcp_urp_mark_mp); 3519 tcp->tcp_urp_mark_mp = NULL; 3520 } 3521 /* 3522 * Now we are all set. On the next putnext upstream, 3523 * tcp_urp_mp will be non-NULL and will get prepended 3524 * to what has to be this piece containing the urgent 3525 * byte. If for any reason we abort this segment below, 3526 * if it comes back, we will have this ready, or it 3527 * will get blown off in close. 3528 */ 3529 } else if (urp == seg_len) { 3530 /* 3531 * The urgent byte is the next byte after this sequence 3532 * number. If this endpoint is non-STREAMS, then there 3533 * is nothing to do here since the socket has already 3534 * been notified about the urg pointer by the 3535 * su_signal_oob call above. 3536 * 3537 * In case of STREAMS, some more work might be needed. 3538 * If there is data it is marked with MSGMARKNEXT and 3539 * and any tcp_urp_mark_mp is discarded since it is not 3540 * needed. Otherwise, if the code above just allocated 3541 * a zero-length tcp_urp_mark_mp message, that message 3542 * is tagged with MSGMARKNEXT. Sending up these 3543 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3544 * even though the T_EXDATA_IND will not be sent up 3545 * until the urgent byte arrives. 3546 */ 3547 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3548 if (seg_len != 0) { 3549 flags |= TH_MARKNEXT_NEEDED; 3550 freemsg(tcp->tcp_urp_mark_mp); 3551 tcp->tcp_urp_mark_mp = NULL; 3552 flags &= ~TH_SEND_URP_MARK; 3553 } else if (tcp->tcp_urp_mark_mp != NULL) { 3554 flags |= TH_SEND_URP_MARK; 3555 tcp->tcp_urp_mark_mp->b_flag &= 3556 ~MSGNOTMARKNEXT; 3557 tcp->tcp_urp_mark_mp->b_flag |= 3558 MSGMARKNEXT; 3559 } 3560 } 3561 #ifdef DEBUG 3562 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3563 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3564 seg_len, flags, 3565 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3566 #endif /* DEBUG */ 3567 } 3568 #ifdef DEBUG 3569 else { 3570 /* Data left until we hit mark */ 3571 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3572 "tcp_rput: URP %d bytes left, %s", 3573 urp - seg_len, tcp_display(tcp, NULL, 3574 DISP_PORT_ONLY)); 3575 } 3576 #endif /* DEBUG */ 3577 } 3578 3579 process_ack: 3580 if (!(flags & TH_ACK)) { 3581 freemsg(mp); 3582 goto xmit_check; 3583 } 3584 } 3585 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3586 3587 if (bytes_acked > 0) 3588 tcp->tcp_ip_forward_progress = B_TRUE; 3589 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3590 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 3591 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 3592 /* 3-way handshake complete - pass up the T_CONN_IND */ 3593 tcp_t *listener = tcp->tcp_listener; 3594 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3595 3596 tcp->tcp_tconnind_started = B_TRUE; 3597 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3598 /* 3599 * We are here means eager is fine but it can 3600 * get a TH_RST at any point between now and till 3601 * accept completes and disappear. We need to 3602 * ensure that reference to eager is valid after 3603 * we get out of eager's perimeter. So we do 3604 * an extra refhold. 3605 */ 3606 CONN_INC_REF(connp); 3607 3608 /* 3609 * The listener also exists because of the refhold 3610 * done in tcp_input_listener. Its possible that it 3611 * might have closed. We will check that once we 3612 * get inside listeners context. 3613 */ 3614 CONN_INC_REF(listener->tcp_connp); 3615 if (listener->tcp_connp->conn_sqp == 3616 connp->conn_sqp) { 3617 /* 3618 * We optimize by not calling an SQUEUE_ENTER 3619 * on the listener since we know that the 3620 * listener and eager squeues are the same. 3621 * We are able to make this check safely only 3622 * because neither the eager nor the listener 3623 * can change its squeue. Only an active connect 3624 * can change its squeue 3625 */ 3626 tcp_send_conn_ind(listener->tcp_connp, mp, 3627 listener->tcp_connp->conn_sqp); 3628 CONN_DEC_REF(listener->tcp_connp); 3629 } else if (!tcp->tcp_loopback) { 3630 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3631 mp, tcp_send_conn_ind, 3632 listener->tcp_connp, NULL, SQ_FILL, 3633 SQTAG_TCP_CONN_IND); 3634 } else { 3635 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3636 mp, tcp_send_conn_ind, 3637 listener->tcp_connp, NULL, SQ_PROCESS, 3638 SQTAG_TCP_CONN_IND); 3639 } 3640 } 3641 3642 /* 3643 * We are seeing the final ack in the three way 3644 * hand shake of a active open'ed connection 3645 * so we must send up a T_CONN_CON 3646 * 3647 * tcp_sendmsg() checks tcp_state without entering 3648 * the squeue so tcp_state should be updated before 3649 * sending up connection confirmation. 3650 */ 3651 tcp->tcp_state = TCPS_ESTABLISHED; 3652 3653 if (tcp->tcp_active_open) { 3654 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3655 freemsg(mp); 3656 tcp->tcp_state = TCPS_SYN_RCVD; 3657 return; 3658 } 3659 /* 3660 * Don't fuse the loopback endpoints for 3661 * simultaneous active opens. 3662 */ 3663 if (tcp->tcp_loopback) { 3664 TCP_STAT(tcps, tcp_fusion_unfusable); 3665 tcp->tcp_unfusable = B_TRUE; 3666 } 3667 } 3668 TCPS_CONN_INC(tcps); 3669 3670 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3671 bytes_acked--; 3672 /* SYN was acked - making progress */ 3673 tcp->tcp_ip_forward_progress = B_TRUE; 3674 3675 /* 3676 * If SYN was retransmitted, need to reset all 3677 * retransmission info as this segment will be 3678 * treated as a dup ACK. 3679 */ 3680 if (tcp->tcp_rexmit) { 3681 tcp->tcp_rexmit = B_FALSE; 3682 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3683 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3684 tcp->tcp_snd_burst = tcp->tcp_localnet ? 3685 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 3686 tcp->tcp_ms_we_have_waited = 0; 3687 tcp->tcp_cwnd = mss; 3688 } 3689 3690 /* 3691 * We set the send window to zero here. 3692 * This is needed if there is data to be 3693 * processed already on the queue. 3694 * Later (at swnd_update label), the 3695 * "new_swnd > tcp_swnd" condition is satisfied 3696 * the XMIT_NEEDED flag is set in the current 3697 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3698 * called if there is already data on queue in 3699 * this state. 3700 */ 3701 tcp->tcp_swnd = 0; 3702 3703 if (new_swnd > tcp->tcp_max_swnd) 3704 tcp->tcp_max_swnd = new_swnd; 3705 tcp->tcp_swl1 = seg_seq; 3706 tcp->tcp_swl2 = seg_ack; 3707 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3708 3709 /* Fuse when both sides are in ESTABLISHED state */ 3710 if (tcp->tcp_loopback && do_tcp_fusion) 3711 tcp_fuse(tcp, iphdr, tcpha); 3712 3713 } 3714 /* This code follows 4.4BSD-Lite2 mostly. */ 3715 if (bytes_acked < 0) 3716 goto est; 3717 3718 /* 3719 * If TCP is ECN capable and the congestion experience bit is 3720 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3721 * done once per window (or more loosely, per RTT). 3722 */ 3723 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 3724 tcp->tcp_cwr = B_FALSE; 3725 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 3726 if (!tcp->tcp_cwr) { 3727 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 3728 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 3729 tcp->tcp_cwnd = npkt * mss; 3730 /* 3731 * If the cwnd is 0, use the timer to clock out 3732 * new segments. This is required by the ECN spec. 3733 */ 3734 if (npkt == 0) { 3735 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 3736 /* 3737 * This makes sure that when the ACK comes 3738 * back, we will increase tcp_cwnd by 1 MSS. 3739 */ 3740 tcp->tcp_cwnd_cnt = 0; 3741 } 3742 tcp->tcp_cwr = B_TRUE; 3743 /* 3744 * This marks the end of the current window of in 3745 * flight data. That is why we don't use 3746 * tcp_suna + tcp_swnd. Only data in flight can 3747 * provide ECN info. 3748 */ 3749 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3750 tcp->tcp_ecn_cwr_sent = B_FALSE; 3751 } 3752 } 3753 3754 mp1 = tcp->tcp_xmit_head; 3755 if (bytes_acked == 0) { 3756 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 3757 int dupack_cnt; 3758 3759 TCPS_BUMP_MIB(tcps, tcpInDupAck); 3760 /* 3761 * Fast retransmit. When we have seen exactly three 3762 * identical ACKs while we have unacked data 3763 * outstanding we take it as a hint that our peer 3764 * dropped something. 3765 * 3766 * If TCP is retransmitting, don't do fast retransmit. 3767 */ 3768 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 3769 ! tcp->tcp_rexmit) { 3770 /* Do Limited Transmit */ 3771 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 3772 tcps->tcps_dupack_fast_retransmit) { 3773 /* 3774 * RFC 3042 3775 * 3776 * What we need to do is temporarily 3777 * increase tcp_cwnd so that new 3778 * data can be sent if it is allowed 3779 * by the receive window (tcp_rwnd). 3780 * tcp_wput_data() will take care of 3781 * the rest. 3782 * 3783 * If the connection is SACK capable, 3784 * only do limited xmit when there 3785 * is SACK info. 3786 * 3787 * Note how tcp_cwnd is incremented. 3788 * The first dup ACK will increase 3789 * it by 1 MSS. The second dup ACK 3790 * will increase it by 2 MSS. This 3791 * means that only 1 new segment will 3792 * be sent for each dup ACK. 3793 */ 3794 if (tcp->tcp_unsent > 0 && 3795 (!tcp->tcp_snd_sack_ok || 3796 (tcp->tcp_snd_sack_ok && 3797 tcp->tcp_notsack_list != NULL))) { 3798 tcp->tcp_cwnd += mss << 3799 (tcp->tcp_dupack_cnt - 1); 3800 flags |= TH_LIMIT_XMIT; 3801 } 3802 } else if (dupack_cnt == 3803 tcps->tcps_dupack_fast_retransmit) { 3804 3805 /* 3806 * If we have reduced tcp_ssthresh 3807 * because of ECN, do not reduce it again 3808 * unless it is already one window of data 3809 * away. After one window of data, tcp_cwr 3810 * should then be cleared. Note that 3811 * for non ECN capable connection, tcp_cwr 3812 * should always be false. 3813 * 3814 * Adjust cwnd since the duplicate 3815 * ack indicates that a packet was 3816 * dropped (due to congestion.) 3817 */ 3818 if (!tcp->tcp_cwr) { 3819 npkt = ((tcp->tcp_snxt - 3820 tcp->tcp_suna) >> 1) / mss; 3821 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 3822 mss; 3823 tcp->tcp_cwnd = (npkt + 3824 tcp->tcp_dupack_cnt) * mss; 3825 } 3826 if (tcp->tcp_ecn_ok) { 3827 tcp->tcp_cwr = B_TRUE; 3828 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3829 tcp->tcp_ecn_cwr_sent = B_FALSE; 3830 } 3831 3832 /* 3833 * We do Hoe's algorithm. Refer to her 3834 * paper "Improving the Start-up Behavior 3835 * of a Congestion Control Scheme for TCP," 3836 * appeared in SIGCOMM'96. 3837 * 3838 * Save highest seq no we have sent so far. 3839 * Be careful about the invisible FIN byte. 3840 */ 3841 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 3842 (tcp->tcp_unsent == 0)) { 3843 tcp->tcp_rexmit_max = tcp->tcp_fss; 3844 } else { 3845 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3846 } 3847 3848 /* 3849 * Do not allow bursty traffic during. 3850 * fast recovery. Refer to Fall and Floyd's 3851 * paper "Simulation-based Comparisons of 3852 * Tahoe, Reno and SACK TCP" (in CCR?) 3853 * This is a best current practise. 3854 */ 3855 tcp->tcp_snd_burst = TCP_CWND_SS; 3856 3857 /* 3858 * For SACK: 3859 * Calculate tcp_pipe, which is the 3860 * estimated number of bytes in 3861 * network. 3862 * 3863 * tcp_fack is the highest sack'ed seq num 3864 * TCP has received. 3865 * 3866 * tcp_pipe is explained in the above quoted 3867 * Fall and Floyd's paper. tcp_fack is 3868 * explained in Mathis and Mahdavi's 3869 * "Forward Acknowledgment: Refining TCP 3870 * Congestion Control" in SIGCOMM '96. 3871 */ 3872 if (tcp->tcp_snd_sack_ok) { 3873 ASSERT(tcp->tcp_sack_info != NULL); 3874 if (tcp->tcp_notsack_list != NULL) { 3875 tcp->tcp_pipe = tcp->tcp_snxt - 3876 tcp->tcp_fack; 3877 tcp->tcp_sack_snxt = seg_ack; 3878 flags |= TH_NEED_SACK_REXMIT; 3879 } else { 3880 /* 3881 * Always initialize tcp_pipe 3882 * even though we don't have 3883 * any SACK info. If later 3884 * we get SACK info and 3885 * tcp_pipe is not initialized, 3886 * funny things will happen. 3887 */ 3888 tcp->tcp_pipe = 3889 tcp->tcp_cwnd_ssthresh; 3890 } 3891 } else { 3892 flags |= TH_REXMIT_NEEDED; 3893 } /* tcp_snd_sack_ok */ 3894 3895 } else { 3896 /* 3897 * Here we perform congestion 3898 * avoidance, but NOT slow start. 3899 * This is known as the Fast 3900 * Recovery Algorithm. 3901 */ 3902 if (tcp->tcp_snd_sack_ok && 3903 tcp->tcp_notsack_list != NULL) { 3904 flags |= TH_NEED_SACK_REXMIT; 3905 tcp->tcp_pipe -= mss; 3906 if (tcp->tcp_pipe < 0) 3907 tcp->tcp_pipe = 0; 3908 } else { 3909 /* 3910 * We know that one more packet has 3911 * left the pipe thus we can update 3912 * cwnd. 3913 */ 3914 cwnd = tcp->tcp_cwnd + mss; 3915 if (cwnd > tcp->tcp_cwnd_max) 3916 cwnd = tcp->tcp_cwnd_max; 3917 tcp->tcp_cwnd = cwnd; 3918 if (tcp->tcp_unsent > 0) 3919 flags |= TH_XMIT_NEEDED; 3920 } 3921 } 3922 } 3923 } else if (tcp->tcp_zero_win_probe) { 3924 /* 3925 * If the window has opened, need to arrange 3926 * to send additional data. 3927 */ 3928 if (new_swnd != 0) { 3929 /* tcp_suna != tcp_snxt */ 3930 /* Packet contains a window update */ 3931 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 3932 tcp->tcp_zero_win_probe = 0; 3933 tcp->tcp_timer_backoff = 0; 3934 tcp->tcp_ms_we_have_waited = 0; 3935 3936 /* 3937 * Transmit starting with tcp_suna since 3938 * the one byte probe is not ack'ed. 3939 * If TCP has sent more than one identical 3940 * probe, tcp_rexmit will be set. That means 3941 * tcp_ss_rexmit() will send out the one 3942 * byte along with new data. Otherwise, 3943 * fake the retransmission. 3944 */ 3945 flags |= TH_XMIT_NEEDED; 3946 if (!tcp->tcp_rexmit) { 3947 tcp->tcp_rexmit = B_TRUE; 3948 tcp->tcp_dupack_cnt = 0; 3949 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 3950 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 3951 } 3952 } 3953 } 3954 goto swnd_update; 3955 } 3956 3957 /* 3958 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 3959 * If the ACK value acks something that we have not yet sent, it might 3960 * be an old duplicate segment. Send an ACK to re-synchronize the 3961 * other side. 3962 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 3963 * state is handled above, so we can always just drop the segment and 3964 * send an ACK here. 3965 * 3966 * In the case where the peer shrinks the window, we see the new window 3967 * update, but all the data sent previously is queued up by the peer. 3968 * To account for this, in tcp_process_shrunk_swnd(), the sequence 3969 * number, which was already sent, and within window, is recorded. 3970 * tcp_snxt is then updated. 3971 * 3972 * If the window has previously shrunk, and an ACK for data not yet 3973 * sent, according to tcp_snxt is recieved, it may still be valid. If 3974 * the ACK is for data within the window at the time the window was 3975 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 3976 * the sequence number ACK'ed. 3977 * 3978 * If the ACK covers all the data sent at the time the window was 3979 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 3980 * 3981 * Should we send ACKs in response to ACK only segments? 3982 */ 3983 3984 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 3985 if ((tcp->tcp_is_wnd_shrnk) && 3986 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 3987 uint32_t data_acked_ahead_snxt; 3988 3989 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 3990 tcp_update_xmit_tail(tcp, seg_ack); 3991 tcp->tcp_unsent -= data_acked_ahead_snxt; 3992 } else { 3993 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 3994 /* drop the received segment */ 3995 freemsg(mp); 3996 3997 /* 3998 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 3999 * greater than 0, check if the number of such 4000 * bogus ACks is greater than that count. If yes, 4001 * don't send back any ACK. This prevents TCP from 4002 * getting into an ACK storm if somehow an attacker 4003 * successfully spoofs an acceptable segment to our 4004 * peer. If this continues (count > 2 X threshold), 4005 * we should abort this connection. 4006 */ 4007 if (tcp_drop_ack_unsent_cnt > 0 && 4008 ++tcp->tcp_in_ack_unsent > 4009 tcp_drop_ack_unsent_cnt) { 4010 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4011 if (tcp->tcp_in_ack_unsent > 2 * 4012 tcp_drop_ack_unsent_cnt) { 4013 (void) tcp_clean_death(tcp, EPROTO); 4014 } 4015 return; 4016 } 4017 mp = tcp_ack_mp(tcp); 4018 if (mp != NULL) { 4019 BUMP_LOCAL(tcp->tcp_obsegs); 4020 TCPS_BUMP_MIB(tcps, tcpOutAck); 4021 tcp_send_data(tcp, mp); 4022 } 4023 return; 4024 } 4025 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4026 tcp->tcp_snxt_shrunk)) { 4027 tcp->tcp_is_wnd_shrnk = B_FALSE; 4028 } 4029 4030 /* 4031 * TCP gets a new ACK, update the notsack'ed list to delete those 4032 * blocks that are covered by this ACK. 4033 */ 4034 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4035 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4036 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4037 } 4038 4039 /* 4040 * If we got an ACK after fast retransmit, check to see 4041 * if it is a partial ACK. If it is not and the congestion 4042 * window was inflated to account for the other side's 4043 * cached packets, retract it. If it is, do Hoe's algorithm. 4044 */ 4045 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4046 ASSERT(tcp->tcp_rexmit == B_FALSE); 4047 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4048 tcp->tcp_dupack_cnt = 0; 4049 /* 4050 * Restore the orig tcp_cwnd_ssthresh after 4051 * fast retransmit phase. 4052 */ 4053 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 4054 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 4055 } 4056 tcp->tcp_rexmit_max = seg_ack; 4057 tcp->tcp_cwnd_cnt = 0; 4058 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4059 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4060 4061 /* 4062 * Remove all notsack info to avoid confusion with 4063 * the next fast retrasnmit/recovery phase. 4064 */ 4065 if (tcp->tcp_snd_sack_ok && 4066 tcp->tcp_notsack_list != NULL) { 4067 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4068 tcp); 4069 } 4070 } else { 4071 if (tcp->tcp_snd_sack_ok && 4072 tcp->tcp_notsack_list != NULL) { 4073 flags |= TH_NEED_SACK_REXMIT; 4074 tcp->tcp_pipe -= mss; 4075 if (tcp->tcp_pipe < 0) 4076 tcp->tcp_pipe = 0; 4077 } else { 4078 /* 4079 * Hoe's algorithm: 4080 * 4081 * Retransmit the unack'ed segment and 4082 * restart fast recovery. Note that we 4083 * need to scale back tcp_cwnd to the 4084 * original value when we started fast 4085 * recovery. This is to prevent overly 4086 * aggressive behaviour in sending new 4087 * segments. 4088 */ 4089 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 4090 tcps->tcps_dupack_fast_retransmit * mss; 4091 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4092 flags |= TH_REXMIT_NEEDED; 4093 } 4094 } 4095 } else { 4096 tcp->tcp_dupack_cnt = 0; 4097 if (tcp->tcp_rexmit) { 4098 /* 4099 * TCP is retranmitting. If the ACK ack's all 4100 * outstanding data, update tcp_rexmit_max and 4101 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4102 * to the correct value. 4103 * 4104 * Note that SEQ_LEQ() is used. This is to avoid 4105 * unnecessary fast retransmit caused by dup ACKs 4106 * received when TCP does slow start retransmission 4107 * after a time out. During this phase, TCP may 4108 * send out segments which are already received. 4109 * This causes dup ACKs to be sent back. 4110 */ 4111 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4112 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4113 tcp->tcp_rexmit_nxt = seg_ack; 4114 } 4115 if (seg_ack != tcp->tcp_rexmit_max) { 4116 flags |= TH_XMIT_NEEDED; 4117 } 4118 } else { 4119 tcp->tcp_rexmit = B_FALSE; 4120 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4121 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4122 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4123 } 4124 tcp->tcp_ms_we_have_waited = 0; 4125 } 4126 } 4127 4128 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4129 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4130 tcp->tcp_suna = seg_ack; 4131 if (tcp->tcp_zero_win_probe != 0) { 4132 tcp->tcp_zero_win_probe = 0; 4133 tcp->tcp_timer_backoff = 0; 4134 } 4135 4136 /* 4137 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4138 * Note that it cannot be the SYN being ack'ed. The code flow 4139 * will not reach here. 4140 */ 4141 if (mp1 == NULL) { 4142 goto fin_acked; 4143 } 4144 4145 /* 4146 * Update the congestion window. 4147 * 4148 * If TCP is not ECN capable or TCP is ECN capable but the 4149 * congestion experience bit is not set, increase the tcp_cwnd as 4150 * usual. 4151 */ 4152 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4153 cwnd = tcp->tcp_cwnd; 4154 add = mss; 4155 4156 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 4157 /* 4158 * This is to prevent an increase of less than 1 MSS of 4159 * tcp_cwnd. With partial increase, tcp_wput_data() 4160 * may send out tinygrams in order to preserve mblk 4161 * boundaries. 4162 * 4163 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 4164 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 4165 * increased by 1 MSS for every RTTs. 4166 */ 4167 if (tcp->tcp_cwnd_cnt <= 0) { 4168 tcp->tcp_cwnd_cnt = cwnd + add; 4169 } else { 4170 tcp->tcp_cwnd_cnt -= add; 4171 add = 0; 4172 } 4173 } 4174 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 4175 } 4176 4177 /* See if the latest urgent data has been acknowledged */ 4178 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4179 SEQ_GT(seg_ack, tcp->tcp_urg)) 4180 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4181 4182 /* Can we update the RTT estimates? */ 4183 if (tcp->tcp_snd_ts_ok) { 4184 /* Ignore zero timestamp echo-reply. */ 4185 if (tcpopt.tcp_opt_ts_ecr != 0) { 4186 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4187 (int32_t)tcpopt.tcp_opt_ts_ecr); 4188 } 4189 4190 /* If needed, restart the timer. */ 4191 if (tcp->tcp_set_timer == 1) { 4192 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4193 tcp->tcp_set_timer = 0; 4194 } 4195 /* 4196 * Update tcp_csuna in case the other side stops sending 4197 * us timestamps. 4198 */ 4199 tcp->tcp_csuna = tcp->tcp_snxt; 4200 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4201 /* 4202 * An ACK sequence we haven't seen before, so get the RTT 4203 * and update the RTO. But first check if the timestamp is 4204 * valid to use. 4205 */ 4206 if ((mp1->b_next != NULL) && 4207 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 4208 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4209 (int32_t)(intptr_t)mp1->b_prev); 4210 else 4211 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4212 4213 /* Remeber the last sequence to be ACKed */ 4214 tcp->tcp_csuna = seg_ack; 4215 if (tcp->tcp_set_timer == 1) { 4216 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4217 tcp->tcp_set_timer = 0; 4218 } 4219 } else { 4220 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4221 } 4222 4223 /* Eat acknowledged bytes off the xmit queue. */ 4224 for (;;) { 4225 mblk_t *mp2; 4226 uchar_t *wptr; 4227 4228 wptr = mp1->b_wptr; 4229 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4230 bytes_acked -= (int)(wptr - mp1->b_rptr); 4231 if (bytes_acked < 0) { 4232 mp1->b_rptr = wptr + bytes_acked; 4233 /* 4234 * Set a new timestamp if all the bytes timed by the 4235 * old timestamp have been ack'ed. 4236 */ 4237 if (SEQ_GT(seg_ack, 4238 (uint32_t)(uintptr_t)(mp1->b_next))) { 4239 mp1->b_prev = 4240 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 4241 mp1->b_next = NULL; 4242 } 4243 break; 4244 } 4245 mp1->b_next = NULL; 4246 mp1->b_prev = NULL; 4247 mp2 = mp1; 4248 mp1 = mp1->b_cont; 4249 4250 /* 4251 * This notification is required for some zero-copy 4252 * clients to maintain a copy semantic. After the data 4253 * is ack'ed, client is safe to modify or reuse the buffer. 4254 */ 4255 if (tcp->tcp_snd_zcopy_aware && 4256 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4257 tcp_zcopy_notify(tcp); 4258 freeb(mp2); 4259 if (bytes_acked == 0) { 4260 if (mp1 == NULL) { 4261 /* Everything is ack'ed, clear the tail. */ 4262 tcp->tcp_xmit_tail = NULL; 4263 /* 4264 * Cancel the timer unless we are still 4265 * waiting for an ACK for the FIN packet. 4266 */ 4267 if (tcp->tcp_timer_tid != 0 && 4268 tcp->tcp_snxt == tcp->tcp_suna) { 4269 (void) TCP_TIMER_CANCEL(tcp, 4270 tcp->tcp_timer_tid); 4271 tcp->tcp_timer_tid = 0; 4272 } 4273 goto pre_swnd_update; 4274 } 4275 if (mp2 != tcp->tcp_xmit_tail) 4276 break; 4277 tcp->tcp_xmit_tail = mp1; 4278 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4279 (uintptr_t)INT_MAX); 4280 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4281 mp1->b_rptr); 4282 break; 4283 } 4284 if (mp1 == NULL) { 4285 /* 4286 * More was acked but there is nothing more 4287 * outstanding. This means that the FIN was 4288 * just acked or that we're talking to a clown. 4289 */ 4290 fin_acked: 4291 ASSERT(tcp->tcp_fin_sent); 4292 tcp->tcp_xmit_tail = NULL; 4293 if (tcp->tcp_fin_sent) { 4294 /* FIN was acked - making progress */ 4295 if (!tcp->tcp_fin_acked) 4296 tcp->tcp_ip_forward_progress = B_TRUE; 4297 tcp->tcp_fin_acked = B_TRUE; 4298 if (tcp->tcp_linger_tid != 0 && 4299 TCP_TIMER_CANCEL(tcp, 4300 tcp->tcp_linger_tid) >= 0) { 4301 tcp_stop_lingering(tcp); 4302 freemsg(mp); 4303 mp = NULL; 4304 } 4305 } else { 4306 /* 4307 * We should never get here because 4308 * we have already checked that the 4309 * number of bytes ack'ed should be 4310 * smaller than or equal to what we 4311 * have sent so far (it is the 4312 * acceptability check of the ACK). 4313 * We can only get here if the send 4314 * queue is corrupted. 4315 * 4316 * Terminate the connection and 4317 * panic the system. It is better 4318 * for us to panic instead of 4319 * continuing to avoid other disaster. 4320 */ 4321 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4322 tcp->tcp_rnxt, TH_RST|TH_ACK); 4323 panic("Memory corruption " 4324 "detected for connection %s.", 4325 tcp_display(tcp, NULL, 4326 DISP_ADDR_AND_PORT)); 4327 /*NOTREACHED*/ 4328 } 4329 goto pre_swnd_update; 4330 } 4331 ASSERT(mp2 != tcp->tcp_xmit_tail); 4332 } 4333 if (tcp->tcp_unsent) { 4334 flags |= TH_XMIT_NEEDED; 4335 } 4336 pre_swnd_update: 4337 tcp->tcp_xmit_head = mp1; 4338 swnd_update: 4339 /* 4340 * The following check is different from most other implementations. 4341 * For bi-directional transfer, when segments are dropped, the 4342 * "normal" check will not accept a window update in those 4343 * retransmitted segemnts. Failing to do that, TCP may send out 4344 * segments which are outside receiver's window. As TCP accepts 4345 * the ack in those retransmitted segments, if the window update in 4346 * the same segment is not accepted, TCP will incorrectly calculates 4347 * that it can send more segments. This can create a deadlock 4348 * with the receiver if its window becomes zero. 4349 */ 4350 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4351 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4352 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4353 /* 4354 * The criteria for update is: 4355 * 4356 * 1. the segment acknowledges some data. Or 4357 * 2. the segment is new, i.e. it has a higher seq num. Or 4358 * 3. the segment is not old and the advertised window is 4359 * larger than the previous advertised window. 4360 */ 4361 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4362 flags |= TH_XMIT_NEEDED; 4363 tcp->tcp_swnd = new_swnd; 4364 if (new_swnd > tcp->tcp_max_swnd) 4365 tcp->tcp_max_swnd = new_swnd; 4366 tcp->tcp_swl1 = seg_seq; 4367 tcp->tcp_swl2 = seg_ack; 4368 } 4369 est: 4370 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4371 4372 switch (tcp->tcp_state) { 4373 case TCPS_FIN_WAIT_1: 4374 if (tcp->tcp_fin_acked) { 4375 tcp->tcp_state = TCPS_FIN_WAIT_2; 4376 /* 4377 * We implement the non-standard BSD/SunOS 4378 * FIN_WAIT_2 flushing algorithm. 4379 * If there is no user attached to this 4380 * TCP endpoint, then this TCP struct 4381 * could hang around forever in FIN_WAIT_2 4382 * state if the peer forgets to send us 4383 * a FIN. To prevent this, we wait only 4384 * 2*MSL (a convenient time value) for 4385 * the FIN to arrive. If it doesn't show up, 4386 * we flush the TCP endpoint. This algorithm, 4387 * though a violation of RFC-793, has worked 4388 * for over 10 years in BSD systems. 4389 * Note: SunOS 4.x waits 675 seconds before 4390 * flushing the FIN_WAIT_2 connection. 4391 */ 4392 TCP_TIMER_RESTART(tcp, 4393 tcps->tcps_fin_wait_2_flush_interval); 4394 } 4395 break; 4396 case TCPS_FIN_WAIT_2: 4397 break; /* Shutdown hook? */ 4398 case TCPS_LAST_ACK: 4399 freemsg(mp); 4400 if (tcp->tcp_fin_acked) { 4401 (void) tcp_clean_death(tcp, 0); 4402 return; 4403 } 4404 goto xmit_check; 4405 case TCPS_CLOSING: 4406 if (tcp->tcp_fin_acked) 4407 SET_TIME_WAIT(tcps, tcp, connp); 4408 /*FALLTHRU*/ 4409 case TCPS_CLOSE_WAIT: 4410 freemsg(mp); 4411 goto xmit_check; 4412 default: 4413 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4414 break; 4415 } 4416 } 4417 if (flags & TH_FIN) { 4418 /* Make sure we ack the fin */ 4419 flags |= TH_ACK_NEEDED; 4420 if (!tcp->tcp_fin_rcvd) { 4421 tcp->tcp_fin_rcvd = B_TRUE; 4422 tcp->tcp_rnxt++; 4423 tcpha = tcp->tcp_tcpha; 4424 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4425 4426 /* 4427 * Generate the ordrel_ind at the end unless we 4428 * are an eager guy. 4429 * In the eager case tcp_rsrv will do this when run 4430 * after tcp_accept is done. 4431 */ 4432 if (tcp->tcp_listener == NULL && 4433 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 4434 flags |= TH_ORDREL_NEEDED; 4435 switch (tcp->tcp_state) { 4436 case TCPS_SYN_RCVD: 4437 case TCPS_ESTABLISHED: 4438 tcp->tcp_state = TCPS_CLOSE_WAIT; 4439 /* Keepalive? */ 4440 break; 4441 case TCPS_FIN_WAIT_1: 4442 if (!tcp->tcp_fin_acked) { 4443 tcp->tcp_state = TCPS_CLOSING; 4444 break; 4445 } 4446 /* FALLTHRU */ 4447 case TCPS_FIN_WAIT_2: 4448 SET_TIME_WAIT(tcps, tcp, connp); 4449 if (seg_len) { 4450 /* 4451 * implies data piggybacked on FIN. 4452 * break to handle data. 4453 */ 4454 break; 4455 } 4456 freemsg(mp); 4457 goto ack_check; 4458 } 4459 } 4460 } 4461 if (mp == NULL) 4462 goto xmit_check; 4463 if (seg_len == 0) { 4464 freemsg(mp); 4465 goto xmit_check; 4466 } 4467 if (mp->b_rptr == mp->b_wptr) { 4468 /* 4469 * The header has been consumed, so we remove the 4470 * zero-length mblk here. 4471 */ 4472 mp1 = mp; 4473 mp = mp->b_cont; 4474 freeb(mp1); 4475 } 4476 update_ack: 4477 tcpha = tcp->tcp_tcpha; 4478 tcp->tcp_rack_cnt++; 4479 { 4480 uint32_t cur_max; 4481 4482 cur_max = tcp->tcp_rack_cur_max; 4483 if (tcp->tcp_rack_cnt >= cur_max) { 4484 /* 4485 * We have more unacked data than we should - send 4486 * an ACK now. 4487 */ 4488 flags |= TH_ACK_NEEDED; 4489 cur_max++; 4490 if (cur_max > tcp->tcp_rack_abs_max) 4491 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4492 else 4493 tcp->tcp_rack_cur_max = cur_max; 4494 } else if (TCP_IS_DETACHED(tcp)) { 4495 /* We don't have an ACK timer for detached TCP. */ 4496 flags |= TH_ACK_NEEDED; 4497 } else if (seg_len < mss) { 4498 /* 4499 * If we get a segment that is less than an mss, and we 4500 * already have unacknowledged data, and the amount 4501 * unacknowledged is not a multiple of mss, then we 4502 * better generate an ACK now. Otherwise, this may be 4503 * the tail piece of a transaction, and we would rather 4504 * wait for the response. 4505 */ 4506 uint32_t udif; 4507 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4508 (uintptr_t)INT_MAX); 4509 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4510 if (udif && (udif % mss)) 4511 flags |= TH_ACK_NEEDED; 4512 else 4513 flags |= TH_ACK_TIMER_NEEDED; 4514 } else { 4515 /* Start delayed ack timer */ 4516 flags |= TH_ACK_TIMER_NEEDED; 4517 } 4518 } 4519 tcp->tcp_rnxt += seg_len; 4520 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4521 4522 if (mp == NULL) 4523 goto xmit_check; 4524 4525 /* Update SACK list */ 4526 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4527 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4528 &(tcp->tcp_num_sack_blk)); 4529 } 4530 4531 if (tcp->tcp_urp_mp) { 4532 tcp->tcp_urp_mp->b_cont = mp; 4533 mp = tcp->tcp_urp_mp; 4534 tcp->tcp_urp_mp = NULL; 4535 /* Ready for a new signal. */ 4536 tcp->tcp_urp_last_valid = B_FALSE; 4537 #ifdef DEBUG 4538 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4539 "tcp_rput: sending exdata_ind %s", 4540 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4541 #endif /* DEBUG */ 4542 } 4543 4544 /* 4545 * Check for ancillary data changes compared to last segment. 4546 */ 4547 if (connp->conn_recv_ancillary.crb_all != 0) { 4548 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4549 if (mp == NULL) 4550 return; 4551 } 4552 4553 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4554 /* 4555 * Side queue inbound data until the accept happens. 4556 * tcp_accept/tcp_rput drains this when the accept happens. 4557 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4558 * T_EXDATA_IND) it is queued on b_next. 4559 * XXX Make urgent data use this. Requires: 4560 * Removing tcp_listener check for TH_URG 4561 * Making M_PCPROTO and MARK messages skip the eager case 4562 */ 4563 4564 if (tcp->tcp_kssl_pending) { 4565 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 4566 mblk_t *, mp); 4567 tcp_kssl_input(tcp, mp, ira->ira_cred); 4568 } else { 4569 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4570 } 4571 } else if (IPCL_IS_NONSTR(connp)) { 4572 /* 4573 * Non-STREAMS socket 4574 * 4575 * Note that no KSSL processing is done here, because 4576 * KSSL is not supported for non-STREAMS sockets. 4577 */ 4578 boolean_t push = flags & (TH_PUSH|TH_FIN); 4579 int error; 4580 4581 if ((*connp->conn_upcalls->su_recv)( 4582 connp->conn_upper_handle, 4583 mp, seg_len, 0, &error, &push) <= 0) { 4584 /* 4585 * We should never be in middle of a 4586 * fallback, the squeue guarantees that. 4587 */ 4588 ASSERT(error != EOPNOTSUPP); 4589 if (error == ENOSPC) 4590 tcp->tcp_rwnd -= seg_len; 4591 } else if (push) { 4592 /* PUSH bit set and sockfs is not flow controlled */ 4593 flags |= tcp_rwnd_reopen(tcp); 4594 } 4595 } else { 4596 /* STREAMS socket */ 4597 if (mp->b_datap->db_type != M_DATA || 4598 (flags & TH_MARKNEXT_NEEDED)) { 4599 if (tcp->tcp_rcv_list != NULL) { 4600 flags |= tcp_rcv_drain(tcp); 4601 } 4602 ASSERT(tcp->tcp_rcv_list == NULL || 4603 tcp->tcp_fused_sigurg); 4604 4605 if (flags & TH_MARKNEXT_NEEDED) { 4606 #ifdef DEBUG 4607 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4608 "tcp_rput: sending MSGMARKNEXT %s", 4609 tcp_display(tcp, NULL, 4610 DISP_PORT_ONLY)); 4611 #endif /* DEBUG */ 4612 mp->b_flag |= MSGMARKNEXT; 4613 flags &= ~TH_MARKNEXT_NEEDED; 4614 } 4615 4616 /* Does this need SSL processing first? */ 4617 if ((tcp->tcp_kssl_ctx != NULL) && 4618 (DB_TYPE(mp) == M_DATA)) { 4619 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 4620 mblk_t *, mp); 4621 tcp_kssl_input(tcp, mp, ira->ira_cred); 4622 } else { 4623 if (is_system_labeled()) 4624 tcp_setcred_data(mp, ira); 4625 4626 putnext(connp->conn_rq, mp); 4627 if (!canputnext(connp->conn_rq)) 4628 tcp->tcp_rwnd -= seg_len; 4629 } 4630 } else if ((tcp->tcp_kssl_ctx != NULL) && 4631 (DB_TYPE(mp) == M_DATA)) { 4632 /* Does this need SSL processing first? */ 4633 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 4634 tcp_kssl_input(tcp, mp, ira->ira_cred); 4635 } else if ((flags & (TH_PUSH|TH_FIN)) || 4636 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4637 if (tcp->tcp_rcv_list != NULL) { 4638 /* 4639 * Enqueue the new segment first and then 4640 * call tcp_rcv_drain() to send all data 4641 * up. The other way to do this is to 4642 * send all queued data up and then call 4643 * putnext() to send the new segment up. 4644 * This way can remove the else part later 4645 * on. 4646 * 4647 * We don't do this to avoid one more call to 4648 * canputnext() as tcp_rcv_drain() needs to 4649 * call canputnext(). 4650 */ 4651 tcp_rcv_enqueue(tcp, mp, seg_len, 4652 ira->ira_cred); 4653 flags |= tcp_rcv_drain(tcp); 4654 } else { 4655 if (is_system_labeled()) 4656 tcp_setcred_data(mp, ira); 4657 4658 putnext(connp->conn_rq, mp); 4659 if (!canputnext(connp->conn_rq)) 4660 tcp->tcp_rwnd -= seg_len; 4661 } 4662 } else { 4663 /* 4664 * Enqueue all packets when processing an mblk 4665 * from the co queue and also enqueue normal packets. 4666 */ 4667 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4668 } 4669 /* 4670 * Make sure the timer is running if we have data waiting 4671 * for a push bit. This provides resiliency against 4672 * implementations that do not correctly generate push bits. 4673 */ 4674 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4675 /* 4676 * The connection may be closed at this point, so don't 4677 * do anything for a detached tcp. 4678 */ 4679 if (!TCP_IS_DETACHED(tcp)) 4680 tcp->tcp_push_tid = TCP_TIMER(tcp, 4681 tcp_push_timer, 4682 MSEC_TO_TICK( 4683 tcps->tcps_push_timer_interval)); 4684 } 4685 } 4686 4687 xmit_check: 4688 /* Is there anything left to do? */ 4689 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4690 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4691 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4692 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4693 goto done; 4694 4695 /* Any transmit work to do and a non-zero window? */ 4696 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4697 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4698 if (flags & TH_REXMIT_NEEDED) { 4699 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4700 4701 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4702 if (snd_size > mss) 4703 snd_size = mss; 4704 if (snd_size > tcp->tcp_swnd) 4705 snd_size = tcp->tcp_swnd; 4706 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4707 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4708 B_TRUE); 4709 4710 if (mp1 != NULL) { 4711 tcp->tcp_xmit_head->b_prev = 4712 (mblk_t *)LBOLT_FASTPATH; 4713 tcp->tcp_csuna = tcp->tcp_snxt; 4714 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4715 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4716 snd_size); 4717 tcp_send_data(tcp, mp1); 4718 } 4719 } 4720 if (flags & TH_NEED_SACK_REXMIT) { 4721 tcp_sack_rexmit(tcp, &flags); 4722 } 4723 /* 4724 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4725 * out new segment. Note that tcp_rexmit should not be 4726 * set, otherwise TH_LIMIT_XMIT should not be set. 4727 */ 4728 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4729 if (!tcp->tcp_rexmit) { 4730 tcp_wput_data(tcp, NULL, B_FALSE); 4731 } else { 4732 tcp_ss_rexmit(tcp); 4733 } 4734 } 4735 /* 4736 * Adjust tcp_cwnd back to normal value after sending 4737 * new data segments. 4738 */ 4739 if (flags & TH_LIMIT_XMIT) { 4740 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4741 /* 4742 * This will restart the timer. Restarting the 4743 * timer is used to avoid a timeout before the 4744 * limited transmitted segment's ACK gets back. 4745 */ 4746 if (tcp->tcp_xmit_head != NULL) 4747 tcp->tcp_xmit_head->b_prev = 4748 (mblk_t *)LBOLT_FASTPATH; 4749 } 4750 4751 /* Anything more to do? */ 4752 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4753 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4754 goto done; 4755 } 4756 ack_check: 4757 if (flags & TH_SEND_URP_MARK) { 4758 ASSERT(tcp->tcp_urp_mark_mp); 4759 ASSERT(!IPCL_IS_NONSTR(connp)); 4760 /* 4761 * Send up any queued data and then send the mark message 4762 */ 4763 if (tcp->tcp_rcv_list != NULL) { 4764 flags |= tcp_rcv_drain(tcp); 4765 4766 } 4767 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4768 mp1 = tcp->tcp_urp_mark_mp; 4769 tcp->tcp_urp_mark_mp = NULL; 4770 if (is_system_labeled()) 4771 tcp_setcred_data(mp1, ira); 4772 4773 putnext(connp->conn_rq, mp1); 4774 #ifdef DEBUG 4775 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4776 "tcp_rput: sending zero-length %s %s", 4777 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 4778 "MSGNOTMARKNEXT"), 4779 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4780 #endif /* DEBUG */ 4781 flags &= ~TH_SEND_URP_MARK; 4782 } 4783 if (flags & TH_ACK_NEEDED) { 4784 /* 4785 * Time to send an ack for some reason. 4786 */ 4787 mp1 = tcp_ack_mp(tcp); 4788 4789 if (mp1 != NULL) { 4790 tcp_send_data(tcp, mp1); 4791 BUMP_LOCAL(tcp->tcp_obsegs); 4792 TCPS_BUMP_MIB(tcps, tcpOutAck); 4793 } 4794 if (tcp->tcp_ack_tid != 0) { 4795 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4796 tcp->tcp_ack_tid = 0; 4797 } 4798 } 4799 if (flags & TH_ACK_TIMER_NEEDED) { 4800 /* 4801 * Arrange for deferred ACK or push wait timeout. 4802 * Start timer if it is not already running. 4803 */ 4804 if (tcp->tcp_ack_tid == 0) { 4805 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 4806 MSEC_TO_TICK(tcp->tcp_localnet ? 4807 (clock_t)tcps->tcps_local_dack_interval : 4808 (clock_t)tcps->tcps_deferred_ack_interval)); 4809 } 4810 } 4811 if (flags & TH_ORDREL_NEEDED) { 4812 /* 4813 * Send up the ordrel_ind unless we are an eager guy. 4814 * In the eager case tcp_rsrv will do this when run 4815 * after tcp_accept is done. 4816 */ 4817 ASSERT(tcp->tcp_listener == NULL); 4818 ASSERT(!tcp->tcp_detached); 4819 4820 if (IPCL_IS_NONSTR(connp)) { 4821 ASSERT(tcp->tcp_ordrel_mp == NULL); 4822 tcp->tcp_ordrel_done = B_TRUE; 4823 (*connp->conn_upcalls->su_opctl) 4824 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 4825 goto done; 4826 } 4827 4828 if (tcp->tcp_rcv_list != NULL) { 4829 /* 4830 * Push any mblk(s) enqueued from co processing. 4831 */ 4832 flags |= tcp_rcv_drain(tcp); 4833 } 4834 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4835 4836 mp1 = tcp->tcp_ordrel_mp; 4837 tcp->tcp_ordrel_mp = NULL; 4838 tcp->tcp_ordrel_done = B_TRUE; 4839 putnext(connp->conn_rq, mp1); 4840 } 4841 done: 4842 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4843 } 4844 4845 /* 4846 * Attach ancillary data to a received TCP segments for the 4847 * ancillary pieces requested by the application that are 4848 * different than they were in the previous data segment. 4849 * 4850 * Save the "current" values once memory allocation is ok so that 4851 * when memory allocation fails we can just wait for the next data segment. 4852 */ 4853 static mblk_t * 4854 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 4855 ip_recv_attr_t *ira) 4856 { 4857 struct T_optdata_ind *todi; 4858 int optlen; 4859 uchar_t *optptr; 4860 struct T_opthdr *toh; 4861 crb_t addflag; /* Which pieces to add */ 4862 mblk_t *mp1; 4863 conn_t *connp = tcp->tcp_connp; 4864 4865 optlen = 0; 4866 addflag.crb_all = 0; 4867 /* If app asked for pktinfo and the index has changed ... */ 4868 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 4869 ira->ira_ruifindex != tcp->tcp_recvifindex) { 4870 optlen += sizeof (struct T_opthdr) + 4871 sizeof (struct in6_pktinfo); 4872 addflag.crb_ip_recvpktinfo = 1; 4873 } 4874 /* If app asked for hoplimit and it has changed ... */ 4875 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 4876 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 4877 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4878 addflag.crb_ipv6_recvhoplimit = 1; 4879 } 4880 /* If app asked for tclass and it has changed ... */ 4881 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 4882 ipp->ipp_tclass != tcp->tcp_recvtclass) { 4883 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4884 addflag.crb_ipv6_recvtclass = 1; 4885 } 4886 /* 4887 * If app asked for hopbyhop headers and it has changed ... 4888 * For security labels, note that (1) security labels can't change on 4889 * a connected socket at all, (2) we're connected to at most one peer, 4890 * (3) if anything changes, then it must be some other extra option. 4891 */ 4892 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 4893 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 4894 (ipp->ipp_fields & IPPF_HOPOPTS), 4895 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 4896 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 4897 addflag.crb_ipv6_recvhopopts = 1; 4898 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 4899 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 4900 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 4901 return (mp); 4902 } 4903 /* If app asked for dst headers before routing headers ... */ 4904 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 4905 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 4906 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4907 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 4908 optlen += sizeof (struct T_opthdr) + 4909 ipp->ipp_rthdrdstoptslen; 4910 addflag.crb_ipv6_recvrthdrdstopts = 1; 4911 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 4912 &tcp->tcp_rthdrdstoptslen, 4913 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4914 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 4915 return (mp); 4916 } 4917 /* If app asked for routing headers and it has changed ... */ 4918 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 4919 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 4920 (ipp->ipp_fields & IPPF_RTHDR), 4921 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 4922 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 4923 addflag.crb_ipv6_recvrthdr = 1; 4924 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 4925 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 4926 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 4927 return (mp); 4928 } 4929 /* If app asked for dest headers and it has changed ... */ 4930 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 4931 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 4932 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 4933 (ipp->ipp_fields & IPPF_DSTOPTS), 4934 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 4935 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 4936 addflag.crb_ipv6_recvdstopts = 1; 4937 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 4938 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 4939 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 4940 return (mp); 4941 } 4942 4943 if (optlen == 0) { 4944 /* Nothing to add */ 4945 return (mp); 4946 } 4947 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 4948 if (mp1 == NULL) { 4949 /* 4950 * Defer sending ancillary data until the next TCP segment 4951 * arrives. 4952 */ 4953 return (mp); 4954 } 4955 mp1->b_cont = mp; 4956 mp = mp1; 4957 mp->b_wptr += sizeof (*todi) + optlen; 4958 mp->b_datap->db_type = M_PROTO; 4959 todi = (struct T_optdata_ind *)mp->b_rptr; 4960 todi->PRIM_type = T_OPTDATA_IND; 4961 todi->DATA_flag = 1; /* MORE data */ 4962 todi->OPT_length = optlen; 4963 todi->OPT_offset = sizeof (*todi); 4964 optptr = (uchar_t *)&todi[1]; 4965 /* 4966 * If app asked for pktinfo and the index has changed ... 4967 * Note that the local address never changes for the connection. 4968 */ 4969 if (addflag.crb_ip_recvpktinfo) { 4970 struct in6_pktinfo *pkti; 4971 uint_t ifindex; 4972 4973 ifindex = ira->ira_ruifindex; 4974 toh = (struct T_opthdr *)optptr; 4975 toh->level = IPPROTO_IPV6; 4976 toh->name = IPV6_PKTINFO; 4977 toh->len = sizeof (*toh) + sizeof (*pkti); 4978 toh->status = 0; 4979 optptr += sizeof (*toh); 4980 pkti = (struct in6_pktinfo *)optptr; 4981 pkti->ipi6_addr = connp->conn_laddr_v6; 4982 pkti->ipi6_ifindex = ifindex; 4983 optptr += sizeof (*pkti); 4984 ASSERT(OK_32PTR(optptr)); 4985 /* Save as "last" value */ 4986 tcp->tcp_recvifindex = ifindex; 4987 } 4988 /* If app asked for hoplimit and it has changed ... */ 4989 if (addflag.crb_ipv6_recvhoplimit) { 4990 toh = (struct T_opthdr *)optptr; 4991 toh->level = IPPROTO_IPV6; 4992 toh->name = IPV6_HOPLIMIT; 4993 toh->len = sizeof (*toh) + sizeof (uint_t); 4994 toh->status = 0; 4995 optptr += sizeof (*toh); 4996 *(uint_t *)optptr = ipp->ipp_hoplimit; 4997 optptr += sizeof (uint_t); 4998 ASSERT(OK_32PTR(optptr)); 4999 /* Save as "last" value */ 5000 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5001 } 5002 /* If app asked for tclass and it has changed ... */ 5003 if (addflag.crb_ipv6_recvtclass) { 5004 toh = (struct T_opthdr *)optptr; 5005 toh->level = IPPROTO_IPV6; 5006 toh->name = IPV6_TCLASS; 5007 toh->len = sizeof (*toh) + sizeof (uint_t); 5008 toh->status = 0; 5009 optptr += sizeof (*toh); 5010 *(uint_t *)optptr = ipp->ipp_tclass; 5011 optptr += sizeof (uint_t); 5012 ASSERT(OK_32PTR(optptr)); 5013 /* Save as "last" value */ 5014 tcp->tcp_recvtclass = ipp->ipp_tclass; 5015 } 5016 if (addflag.crb_ipv6_recvhopopts) { 5017 toh = (struct T_opthdr *)optptr; 5018 toh->level = IPPROTO_IPV6; 5019 toh->name = IPV6_HOPOPTS; 5020 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5021 toh->status = 0; 5022 optptr += sizeof (*toh); 5023 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5024 optptr += ipp->ipp_hopoptslen; 5025 ASSERT(OK_32PTR(optptr)); 5026 /* Save as last value */ 5027 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5028 (ipp->ipp_fields & IPPF_HOPOPTS), 5029 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5030 } 5031 if (addflag.crb_ipv6_recvrthdrdstopts) { 5032 toh = (struct T_opthdr *)optptr; 5033 toh->level = IPPROTO_IPV6; 5034 toh->name = IPV6_RTHDRDSTOPTS; 5035 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5036 toh->status = 0; 5037 optptr += sizeof (*toh); 5038 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5039 optptr += ipp->ipp_rthdrdstoptslen; 5040 ASSERT(OK_32PTR(optptr)); 5041 /* Save as last value */ 5042 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5043 &tcp->tcp_rthdrdstoptslen, 5044 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5045 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5046 } 5047 if (addflag.crb_ipv6_recvrthdr) { 5048 toh = (struct T_opthdr *)optptr; 5049 toh->level = IPPROTO_IPV6; 5050 toh->name = IPV6_RTHDR; 5051 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5052 toh->status = 0; 5053 optptr += sizeof (*toh); 5054 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5055 optptr += ipp->ipp_rthdrlen; 5056 ASSERT(OK_32PTR(optptr)); 5057 /* Save as last value */ 5058 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5059 (ipp->ipp_fields & IPPF_RTHDR), 5060 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5061 } 5062 if (addflag.crb_ipv6_recvdstopts) { 5063 toh = (struct T_opthdr *)optptr; 5064 toh->level = IPPROTO_IPV6; 5065 toh->name = IPV6_DSTOPTS; 5066 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5067 toh->status = 0; 5068 optptr += sizeof (*toh); 5069 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5070 optptr += ipp->ipp_dstoptslen; 5071 ASSERT(OK_32PTR(optptr)); 5072 /* Save as last value */ 5073 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5074 (ipp->ipp_fields & IPPF_DSTOPTS), 5075 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5076 } 5077 ASSERT(optptr == mp->b_wptr); 5078 return (mp); 5079 } 5080 5081 /* The minimum of smoothed mean deviation in RTO calculation. */ 5082 #define TCP_SD_MIN 400 5083 5084 /* 5085 * Set RTO for this connection. The formula is from Jacobson and Karels' 5086 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 5087 * are the same as those in Appendix A.2 of that paper. 5088 * 5089 * m = new measurement 5090 * sa = smoothed RTT average (8 * average estimates). 5091 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5092 */ 5093 static void 5094 tcp_set_rto(tcp_t *tcp, clock_t rtt) 5095 { 5096 long m = TICK_TO_MSEC(rtt); 5097 clock_t sa = tcp->tcp_rtt_sa; 5098 clock_t sv = tcp->tcp_rtt_sd; 5099 clock_t rto; 5100 tcp_stack_t *tcps = tcp->tcp_tcps; 5101 5102 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5103 tcp->tcp_rtt_update++; 5104 5105 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5106 if (sa != 0) { 5107 /* 5108 * Update average estimator: 5109 * new rtt = 7/8 old rtt + 1/8 Error 5110 */ 5111 5112 /* m is now Error in estimate. */ 5113 m -= sa >> 3; 5114 if ((sa += m) <= 0) { 5115 /* 5116 * Don't allow the smoothed average to be negative. 5117 * We use 0 to denote reinitialization of the 5118 * variables. 5119 */ 5120 sa = 1; 5121 } 5122 5123 /* 5124 * Update deviation estimator: 5125 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 5126 */ 5127 if (m < 0) 5128 m = -m; 5129 m -= sv >> 2; 5130 sv += m; 5131 } else { 5132 /* 5133 * This follows BSD's implementation. So the reinitialized 5134 * RTO is 3 * m. We cannot go less than 2 because if the 5135 * link is bandwidth dominated, doubling the window size 5136 * during slow start means doubling the RTT. We want to be 5137 * more conservative when we reinitialize our estimates. 3 5138 * is just a convenient number. 5139 */ 5140 sa = m << 3; 5141 sv = m << 1; 5142 } 5143 if (sv < TCP_SD_MIN) { 5144 /* 5145 * We do not know that if sa captures the delay ACK 5146 * effect as in a long train of segments, a receiver 5147 * does not delay its ACKs. So set the minimum of sv 5148 * to be TCP_SD_MIN, which is default to 400 ms, twice 5149 * of BSD DATO. That means the minimum of mean 5150 * deviation is 100 ms. 5151 * 5152 */ 5153 sv = TCP_SD_MIN; 5154 } 5155 tcp->tcp_rtt_sa = sa; 5156 tcp->tcp_rtt_sd = sv; 5157 /* 5158 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 5159 * 5160 * Add tcp_rexmit_interval extra in case of extreme environment 5161 * where the algorithm fails to work. The default value of 5162 * tcp_rexmit_interval_extra should be 0. 5163 * 5164 * As we use a finer grained clock than BSD and update 5165 * RTO for every ACKs, add in another .25 of RTT to the 5166 * deviation of RTO to accomodate burstiness of 1/4 of 5167 * window size. 5168 */ 5169 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 5170 5171 if (rto > tcps->tcps_rexmit_interval_max) { 5172 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 5173 } else if (rto < tcps->tcps_rexmit_interval_min) { 5174 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 5175 } else { 5176 tcp->tcp_rto = rto; 5177 } 5178 5179 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5180 tcp->tcp_timer_backoff = 0; 5181 } 5182 5183 /* 5184 * On a labeled system we have some protocols above TCP, such as RPC, which 5185 * appear to assume that every mblk in a chain has a db_credp. 5186 */ 5187 static void 5188 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5189 { 5190 ASSERT(is_system_labeled()); 5191 ASSERT(ira->ira_cred != NULL); 5192 5193 while (mp != NULL) { 5194 mblk_setcred(mp, ira->ira_cred, NOPID); 5195 mp = mp->b_cont; 5196 } 5197 } 5198 5199 uint_t 5200 tcp_rwnd_reopen(tcp_t *tcp) 5201 { 5202 uint_t ret = 0; 5203 uint_t thwin; 5204 conn_t *connp = tcp->tcp_connp; 5205 5206 /* Learn the latest rwnd information that we sent to the other side. */ 5207 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5208 << tcp->tcp_rcv_ws; 5209 /* This is peer's calculated send window (our receive window). */ 5210 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5211 /* 5212 * Increase the receive window to max. But we need to do receiver 5213 * SWS avoidance. This means that we need to check the increase of 5214 * of receive window is at least 1 MSS. 5215 */ 5216 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5217 /* 5218 * If the window that the other side knows is less than max 5219 * deferred acks segments, send an update immediately. 5220 */ 5221 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5222 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5223 ret = TH_ACK_NEEDED; 5224 } 5225 tcp->tcp_rwnd = connp->conn_rcvbuf; 5226 } 5227 return (ret); 5228 } 5229 5230 /* 5231 * Handle a packet that has been reclassified by TCP. 5232 * This function drops the ref on connp that the caller had. 5233 */ 5234 void 5235 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5236 { 5237 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5238 5239 if (connp->conn_incoming_ifindex != 0 && 5240 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5241 freemsg(mp); 5242 CONN_DEC_REF(connp); 5243 return; 5244 } 5245 5246 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5247 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5248 ip6_t *ip6h; 5249 ipha_t *ipha; 5250 5251 if (ira->ira_flags & IRAF_IS_IPV4) { 5252 ipha = (ipha_t *)mp->b_rptr; 5253 ip6h = NULL; 5254 } else { 5255 ipha = NULL; 5256 ip6h = (ip6_t *)mp->b_rptr; 5257 } 5258 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5259 if (mp == NULL) { 5260 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5261 /* Note that mp is NULL */ 5262 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5263 CONN_DEC_REF(connp); 5264 return; 5265 } 5266 } 5267 5268 if (IPCL_IS_TCP(connp)) { 5269 /* 5270 * do not drain, certain use cases can blow 5271 * the stack 5272 */ 5273 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5274 connp->conn_recv, connp, ira, 5275 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5276 } else { 5277 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5278 (connp->conn_recv)(connp, mp, NULL, 5279 ira); 5280 CONN_DEC_REF(connp); 5281 } 5282 5283 } 5284 5285 /* ARGSUSED */ 5286 static void 5287 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5288 { 5289 conn_t *connp = (conn_t *)arg; 5290 tcp_t *tcp = connp->conn_tcp; 5291 queue_t *q = connp->conn_rq; 5292 5293 ASSERT(!IPCL_IS_NONSTR(connp)); 5294 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5295 tcp->tcp_rsrv_mp = mp; 5296 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5297 5298 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5299 return; 5300 } 5301 5302 if (tcp->tcp_fused) { 5303 tcp_fuse_backenable(tcp); 5304 return; 5305 } 5306 5307 if (canputnext(q)) { 5308 /* Not flow-controlled, open rwnd */ 5309 tcp->tcp_rwnd = connp->conn_rcvbuf; 5310 5311 /* 5312 * Send back a window update immediately if TCP is above 5313 * ESTABLISHED state and the increase of the rcv window 5314 * that the other side knows is at least 1 MSS after flow 5315 * control is lifted. 5316 */ 5317 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5318 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5319 tcp_xmit_ctl(NULL, tcp, 5320 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5321 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5322 } 5323 } 5324 } 5325 5326 /* 5327 * The read side service routine is called mostly when we get back-enabled as a 5328 * result of flow control relief. Since we don't actually queue anything in 5329 * TCP, we have no data to send out of here. What we do is clear the receive 5330 * window, and send out a window update. 5331 */ 5332 void 5333 tcp_rsrv(queue_t *q) 5334 { 5335 conn_t *connp = Q_TO_CONN(q); 5336 tcp_t *tcp = connp->conn_tcp; 5337 mblk_t *mp; 5338 5339 /* No code does a putq on the read side */ 5340 ASSERT(q->q_first == NULL); 5341 5342 /* 5343 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5344 * been run. So just return. 5345 */ 5346 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5347 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5348 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5349 return; 5350 } 5351 tcp->tcp_rsrv_mp = NULL; 5352 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5353 5354 CONN_INC_REF(connp); 5355 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5356 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5357 } 5358 5359 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5360 #define ICMP_MIN_TCP_HDR 8 5361 5362 /* 5363 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5364 * passed up by IP. The message is always received on the correct tcp_t. 5365 * Assumes that IP has pulled up everything up to and including the ICMP header. 5366 */ 5367 /* ARGSUSED2 */ 5368 void 5369 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5370 { 5371 conn_t *connp = (conn_t *)arg1; 5372 icmph_t *icmph; 5373 ipha_t *ipha; 5374 int iph_hdr_length; 5375 tcpha_t *tcpha; 5376 uint32_t seg_seq; 5377 tcp_t *tcp = connp->conn_tcp; 5378 5379 /* Assume IP provides aligned packets */ 5380 ASSERT(OK_32PTR(mp->b_rptr)); 5381 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5382 5383 /* 5384 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5385 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5386 */ 5387 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5388 tcp_icmp_error_ipv6(tcp, mp, ira); 5389 return; 5390 } 5391 5392 /* Skip past the outer IP and ICMP headers */ 5393 iph_hdr_length = ira->ira_ip_hdr_length; 5394 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5395 /* 5396 * If we don't have the correct outer IP header length 5397 * or if we don't have a complete inner IP header 5398 * drop it. 5399 */ 5400 if (iph_hdr_length < sizeof (ipha_t) || 5401 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5402 noticmpv4: 5403 freemsg(mp); 5404 return; 5405 } 5406 ipha = (ipha_t *)&icmph[1]; 5407 5408 /* Skip past the inner IP and find the ULP header */ 5409 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5410 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5411 /* 5412 * If we don't have the correct inner IP header length or if the ULP 5413 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5414 * bytes of TCP header, drop it. 5415 */ 5416 if (iph_hdr_length < sizeof (ipha_t) || 5417 ipha->ipha_protocol != IPPROTO_TCP || 5418 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5419 goto noticmpv4; 5420 } 5421 5422 seg_seq = ntohl(tcpha->tha_seq); 5423 switch (icmph->icmph_type) { 5424 case ICMP_DEST_UNREACHABLE: 5425 switch (icmph->icmph_code) { 5426 case ICMP_FRAGMENTATION_NEEDED: 5427 /* 5428 * Update Path MTU, then try to send something out. 5429 */ 5430 tcp_update_pmtu(tcp, B_TRUE); 5431 tcp_rexmit_after_error(tcp); 5432 break; 5433 case ICMP_PORT_UNREACHABLE: 5434 case ICMP_PROTOCOL_UNREACHABLE: 5435 switch (tcp->tcp_state) { 5436 case TCPS_SYN_SENT: 5437 case TCPS_SYN_RCVD: 5438 /* 5439 * ICMP can snipe away incipient 5440 * TCP connections as long as 5441 * seq number is same as initial 5442 * send seq number. 5443 */ 5444 if (seg_seq == tcp->tcp_iss) { 5445 (void) tcp_clean_death(tcp, 5446 ECONNREFUSED); 5447 } 5448 break; 5449 } 5450 break; 5451 case ICMP_HOST_UNREACHABLE: 5452 case ICMP_NET_UNREACHABLE: 5453 /* Record the error in case we finally time out. */ 5454 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5455 tcp->tcp_client_errno = EHOSTUNREACH; 5456 else 5457 tcp->tcp_client_errno = ENETUNREACH; 5458 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5459 if (tcp->tcp_listener != NULL && 5460 tcp->tcp_listener->tcp_syn_defense) { 5461 /* 5462 * Ditch the half-open connection if we 5463 * suspect a SYN attack is under way. 5464 */ 5465 (void) tcp_clean_death(tcp, 5466 tcp->tcp_client_errno); 5467 } 5468 } 5469 break; 5470 default: 5471 break; 5472 } 5473 break; 5474 case ICMP_SOURCE_QUENCH: { 5475 /* 5476 * use a global boolean to control 5477 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5478 * The default is false. 5479 */ 5480 if (tcp_icmp_source_quench) { 5481 /* 5482 * Reduce the sending rate as if we got a 5483 * retransmit timeout 5484 */ 5485 uint32_t npkt; 5486 5487 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5488 tcp->tcp_mss; 5489 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5490 tcp->tcp_cwnd = tcp->tcp_mss; 5491 tcp->tcp_cwnd_cnt = 0; 5492 } 5493 break; 5494 } 5495 } 5496 freemsg(mp); 5497 } 5498 5499 /* 5500 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5501 * error messages passed up by IP. 5502 * Assumes that IP has pulled up all the extension headers as well 5503 * as the ICMPv6 header. 5504 */ 5505 static void 5506 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5507 { 5508 icmp6_t *icmp6; 5509 ip6_t *ip6h; 5510 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5511 tcpha_t *tcpha; 5512 uint8_t *nexthdrp; 5513 uint32_t seg_seq; 5514 5515 /* 5516 * Verify that we have a complete IP header. 5517 */ 5518 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5519 5520 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5521 ip6h = (ip6_t *)&icmp6[1]; 5522 /* 5523 * Verify if we have a complete ICMP and inner IP header. 5524 */ 5525 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5526 noticmpv6: 5527 freemsg(mp); 5528 return; 5529 } 5530 5531 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5532 goto noticmpv6; 5533 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5534 /* 5535 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5536 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5537 * packet. 5538 */ 5539 if ((*nexthdrp != IPPROTO_TCP) || 5540 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5541 goto noticmpv6; 5542 } 5543 5544 seg_seq = ntohl(tcpha->tha_seq); 5545 switch (icmp6->icmp6_type) { 5546 case ICMP6_PACKET_TOO_BIG: 5547 /* 5548 * Update Path MTU, then try to send something out. 5549 */ 5550 tcp_update_pmtu(tcp, B_TRUE); 5551 tcp_rexmit_after_error(tcp); 5552 break; 5553 case ICMP6_DST_UNREACH: 5554 switch (icmp6->icmp6_code) { 5555 case ICMP6_DST_UNREACH_NOPORT: 5556 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5557 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5558 (seg_seq == tcp->tcp_iss)) { 5559 (void) tcp_clean_death(tcp, ECONNREFUSED); 5560 } 5561 break; 5562 case ICMP6_DST_UNREACH_ADMIN: 5563 case ICMP6_DST_UNREACH_NOROUTE: 5564 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5565 case ICMP6_DST_UNREACH_ADDR: 5566 /* Record the error in case we finally time out. */ 5567 tcp->tcp_client_errno = EHOSTUNREACH; 5568 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5569 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5570 (seg_seq == tcp->tcp_iss)) { 5571 if (tcp->tcp_listener != NULL && 5572 tcp->tcp_listener->tcp_syn_defense) { 5573 /* 5574 * Ditch the half-open connection if we 5575 * suspect a SYN attack is under way. 5576 */ 5577 (void) tcp_clean_death(tcp, 5578 tcp->tcp_client_errno); 5579 } 5580 } 5581 5582 5583 break; 5584 default: 5585 break; 5586 } 5587 break; 5588 case ICMP6_PARAM_PROB: 5589 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5590 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5591 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5592 (uchar_t *)nexthdrp) { 5593 if (tcp->tcp_state == TCPS_SYN_SENT || 5594 tcp->tcp_state == TCPS_SYN_RCVD) { 5595 (void) tcp_clean_death(tcp, ECONNREFUSED); 5596 } 5597 break; 5598 } 5599 break; 5600 5601 case ICMP6_TIME_EXCEEDED: 5602 default: 5603 break; 5604 } 5605 freemsg(mp); 5606 } 5607 5608 /* 5609 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5610 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5611 * 5612 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5613 * error messages received by IP. The message is always received on the correct 5614 * tcp_t. 5615 */ 5616 /* ARGSUSED */ 5617 boolean_t 5618 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5619 ip_recv_attr_t *ira) 5620 { 5621 tcpha_t *tcpha = (tcpha_t *)arg2; 5622 uint32_t seq = ntohl(tcpha->tha_seq); 5623 tcp_t *tcp = connp->conn_tcp; 5624 5625 /* 5626 * TCP sequence number contained in payload of the ICMP error message 5627 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5628 * the message is either a stale ICMP error, or an attack from the 5629 * network. Fail the verification. 5630 */ 5631 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5632 return (B_FALSE); 5633 5634 /* For "too big" we also check the ignore flag */ 5635 if (ira->ira_flags & IRAF_IS_IPV4) { 5636 ASSERT(icmph != NULL); 5637 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5638 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5639 tcp->tcp_tcps->tcps_ignore_path_mtu) 5640 return (B_FALSE); 5641 } else { 5642 ASSERT(icmp6 != NULL); 5643 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5644 tcp->tcp_tcps->tcps_ignore_path_mtu) 5645 return (B_FALSE); 5646 } 5647 return (B_TRUE); 5648 } 5649