xref: /illumos-gate/usr/src/uts/common/inet/ip/ip_if.c (revision e9a5ec5aa8a1a14de1b019c6bd73e0a33f920e49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/tunables.h>
75 #include <inet/arp.h>
76 #include <inet/ip_arp.h>
77 #include <inet/mib2.h>
78 #include <inet/ip.h>
79 #include <inet/ip6.h>
80 #include <inet/ip6_asp.h>
81 #include <inet/tcp.h>
82 #include <inet/ip_multi.h>
83 #include <inet/ip_ire.h>
84 #include <inet/ip_ftable.h>
85 #include <inet/ip_rts.h>
86 #include <inet/ip_ndp.h>
87 #include <inet/ip_if.h>
88 #include <inet/ip_impl.h>
89 #include <inet/sctp_ip.h>
90 #include <inet/ip_netinfo.h>
91 #include <inet/ilb_ip.h>
92 
93 #include <netinet/igmp.h>
94 #include <inet/ip_listutils.h>
95 #include <inet/ipclassifier.h>
96 #include <sys/mac_client.h>
97 #include <sys/dld.h>
98 #include <sys/mac_flow.h>
99 
100 #include <sys/systeminfo.h>
101 #include <sys/bootconf.h>
102 
103 #include <sys/tsol/tndb.h>
104 #include <sys/tsol/tnet.h>
105 
106 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
107 #include <inet/udp_impl.h> /* needed for udp_stack_t */
108 
109 /* The character which tells where the ill_name ends */
110 #define	IPIF_SEPARATOR_CHAR	':'
111 
112 /* IP ioctl function table entry */
113 typedef struct ipft_s {
114 	int	ipft_cmd;
115 	pfi_t	ipft_pfi;
116 	int	ipft_min_size;
117 	int	ipft_flags;
118 } ipft_t;
119 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
120 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
121 
122 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
123 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
124 		    char *value, caddr_t cp, cred_t *ioc_cr);
125 
126 static boolean_t ill_is_quiescent(ill_t *);
127 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
128 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
129 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
130     mblk_t *mp, boolean_t need_up);
131 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
132     mblk_t *mp, boolean_t need_up);
133 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
134     queue_t *q, mblk_t *mp, boolean_t need_up);
135 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
136     mblk_t *mp);
137 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
138     mblk_t *mp);
139 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
140     queue_t *q, mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
142     int ioccmd, struct linkblk *li);
143 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
144 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
145 static void	ipsq_flush(ill_t *ill);
146 
147 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
148     queue_t *q, mblk_t *mp, boolean_t need_up);
149 static void	ipsq_delete(ipsq_t *);
150 
151 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
152     boolean_t initialize, boolean_t insert, int *errorp);
153 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
154 static void	ipif_delete_bcast_ires(ipif_t *ipif);
155 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
156 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
157 		    boolean_t isv6);
158 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
159 static void	ipif_free(ipif_t *ipif);
160 static void	ipif_free_tail(ipif_t *ipif);
161 static void	ipif_set_default(ipif_t *ipif);
162 static int	ipif_set_values(queue_t *q, mblk_t *mp,
163     char *interf_name, uint_t *ppa);
164 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
165     queue_t *q);
166 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
167     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
168     ip_stack_t *);
169 static ipif_t	*ipif_lookup_on_name_async(char *name, size_t namelen,
170     boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
171     int *error, ip_stack_t *);
172 
173 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
174 static void	ill_delete_interface_type(ill_if_t *);
175 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
176 static void	ill_dl_down(ill_t *ill);
177 static void	ill_down(ill_t *ill);
178 static void	ill_down_ipifs(ill_t *, boolean_t);
179 static void	ill_free_mib(ill_t *ill);
180 static void	ill_glist_delete(ill_t *);
181 static void	ill_phyint_reinit(ill_t *ill);
182 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
183 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
184 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
185 
186 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
187 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
188 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
189 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
190 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
191 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
192 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
193 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
194 static ip_v4mapinfo_func_t ip_mbcast_mapping;
195 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
196 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
197 static void	phyint_free(phyint_t *);
198 
199 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
200 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
204 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
205     dl_capability_sub_t *);
206 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
207 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
208 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
209 		    dl_capability_sub_t *);
210 static void	ill_capability_dld_enable(ill_t *);
211 static void	ill_capability_ack_thr(void *);
212 static void	ill_capability_lso_enable(ill_t *);
213 
214 static ill_t	*ill_prev_usesrc(ill_t *);
215 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
216 static void	ill_disband_usesrc_group(ill_t *);
217 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
218 
219 #ifdef DEBUG
220 static	void	ill_trace_cleanup(const ill_t *);
221 static	void	ipif_trace_cleanup(const ipif_t *);
222 #endif
223 
224 static	void	ill_dlpi_clear_deferred(ill_t *ill);
225 
226 /*
227  * if we go over the memory footprint limit more than once in this msec
228  * interval, we'll start pruning aggressively.
229  */
230 int ip_min_frag_prune_time = 0;
231 
232 static ipft_t	ip_ioctl_ftbl[] = {
233 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
234 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
235 		IPFT_F_NO_REPLY },
236 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
237 	{ 0 }
238 };
239 
240 /* Simple ICMP IP Header Template */
241 static ipha_t icmp_ipha = {
242 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
243 };
244 
245 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
246 
247 static ip_m_t   ip_m_tbl[] = {
248 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
249 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
250 	    ip_nodef_v6intfid },
251 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
252 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
253 	    ip_nodef_v6intfid },
254 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
255 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
256 	    ip_nodef_v6intfid },
257 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
258 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
259 	    ip_nodef_v6intfid },
260 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
261 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
262 	    ip_nodef_v6intfid },
263 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
264 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
265 	    ip_nodef_v6intfid },
266 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
267 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
268 	    ip_ipv4_v6destintfid },
269 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
270 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
271 	    ip_ipv6_v6destintfid },
272 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
273 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
274 	    ip_nodef_v6intfid },
275 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
276 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
277 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
278 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
279 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
280 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
281 	    ip_nodef_v6intfid }
282 };
283 
284 static ill_t	ill_null;		/* Empty ILL for init. */
285 char	ipif_loopback_name[] = "lo0";
286 
287 /* These are used by all IP network modules. */
288 sin6_t	sin6_null;	/* Zero address for quick clears */
289 sin_t	sin_null;	/* Zero address for quick clears */
290 
291 /* When set search for unused ipif_seqid */
292 static ipif_t	ipif_zero;
293 
294 /*
295  * ppa arena is created after these many
296  * interfaces have been plumbed.
297  */
298 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
299 
300 /*
301  * Allocate per-interface mibs.
302  * Returns true if ok. False otherwise.
303  *  ipsq  may not yet be allocated (loopback case ).
304  */
305 static boolean_t
306 ill_allocate_mibs(ill_t *ill)
307 {
308 	/* Already allocated? */
309 	if (ill->ill_ip_mib != NULL) {
310 		if (ill->ill_isv6)
311 			ASSERT(ill->ill_icmp6_mib != NULL);
312 		return (B_TRUE);
313 	}
314 
315 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
316 	    KM_NOSLEEP);
317 	if (ill->ill_ip_mib == NULL) {
318 		return (B_FALSE);
319 	}
320 
321 	/* Setup static information */
322 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
323 	    sizeof (mib2_ipIfStatsEntry_t));
324 	if (ill->ill_isv6) {
325 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
326 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
327 		    sizeof (mib2_ipv6AddrEntry_t));
328 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
329 		    sizeof (mib2_ipv6RouteEntry_t));
330 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
331 		    sizeof (mib2_ipv6NetToMediaEntry_t));
332 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
333 		    sizeof (ipv6_member_t));
334 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
335 		    sizeof (ipv6_grpsrc_t));
336 	} else {
337 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
338 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
339 		    sizeof (mib2_ipAddrEntry_t));
340 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
341 		    sizeof (mib2_ipRouteEntry_t));
342 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
343 		    sizeof (mib2_ipNetToMediaEntry_t));
344 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
345 		    sizeof (ip_member_t));
346 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
347 		    sizeof (ip_grpsrc_t));
348 
349 		/*
350 		 * For a v4 ill, we are done at this point, because per ill
351 		 * icmp mibs are only used for v6.
352 		 */
353 		return (B_TRUE);
354 	}
355 
356 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
357 	    KM_NOSLEEP);
358 	if (ill->ill_icmp6_mib == NULL) {
359 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
360 		ill->ill_ip_mib = NULL;
361 		return (B_FALSE);
362 	}
363 	/* static icmp info */
364 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
365 	    sizeof (mib2_ipv6IfIcmpEntry_t);
366 	/*
367 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
368 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
369 	 * -> ill_phyint_reinit
370 	 */
371 	return (B_TRUE);
372 }
373 
374 /*
375  * Completely vaporize a lower level tap and all associated interfaces.
376  * ill_delete is called only out of ip_close when the device control
377  * stream is being closed.
378  */
379 void
380 ill_delete(ill_t *ill)
381 {
382 	ipif_t	*ipif;
383 	ill_t	*prev_ill;
384 	ip_stack_t	*ipst = ill->ill_ipst;
385 
386 	/*
387 	 * ill_delete may be forcibly entering the ipsq. The previous
388 	 * ioctl may not have completed and may need to be aborted.
389 	 * ipsq_flush takes care of it. If we don't need to enter the
390 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
391 	 * ill_delete_tail is sufficient.
392 	 */
393 	ipsq_flush(ill);
394 
395 	/*
396 	 * Nuke all interfaces.  ipif_free will take down the interface,
397 	 * remove it from the list, and free the data structure.
398 	 * Walk down the ipif list and remove the logical interfaces
399 	 * first before removing the main ipif. We can't unplumb
400 	 * zeroth interface first in the case of IPv6 as update_conn_ill
401 	 * -> ip_ll_multireq de-references ill_ipif for checking
402 	 * POINTOPOINT.
403 	 *
404 	 * If ill_ipif was not properly initialized (i.e low on memory),
405 	 * then no interfaces to clean up. In this case just clean up the
406 	 * ill.
407 	 */
408 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
409 		ipif_free(ipif);
410 
411 	/*
412 	 * clean out all the nce_t entries that depend on this
413 	 * ill for the ill_phys_addr.
414 	 */
415 	nce_flush(ill, B_TRUE);
416 
417 	/* Clean up msgs on pending upcalls for mrouted */
418 	reset_mrt_ill(ill);
419 
420 	update_conn_ill(ill, ipst);
421 
422 	/*
423 	 * Remove multicast references added as a result of calls to
424 	 * ip_join_allmulti().
425 	 */
426 	ip_purge_allmulti(ill);
427 
428 	/*
429 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
430 	 */
431 	if (IS_UNDER_IPMP(ill))
432 		ipmp_ill_leave_illgrp(ill);
433 
434 	/*
435 	 * ill_down will arrange to blow off any IRE's dependent on this
436 	 * ILL, and shut down fragmentation reassembly.
437 	 */
438 	ill_down(ill);
439 
440 	/* Let SCTP know, so that it can remove this from its list. */
441 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
442 
443 	/*
444 	 * Walk all CONNs that can have a reference on an ire or nce for this
445 	 * ill (we actually walk all that now have stale references).
446 	 */
447 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
448 
449 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
450 	if (ill->ill_isv6)
451 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
452 
453 	/*
454 	 * If an address on this ILL is being used as a source address then
455 	 * clear out the pointers in other ILLs that point to this ILL.
456 	 */
457 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
458 	if (ill->ill_usesrc_grp_next != NULL) {
459 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
460 			ill_disband_usesrc_group(ill);
461 		} else {	/* consumer of the usesrc ILL */
462 			prev_ill = ill_prev_usesrc(ill);
463 			prev_ill->ill_usesrc_grp_next =
464 			    ill->ill_usesrc_grp_next;
465 		}
466 	}
467 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
468 }
469 
470 static void
471 ipif_non_duplicate(ipif_t *ipif)
472 {
473 	ill_t *ill = ipif->ipif_ill;
474 	mutex_enter(&ill->ill_lock);
475 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
476 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
477 		ASSERT(ill->ill_ipif_dup_count > 0);
478 		ill->ill_ipif_dup_count--;
479 	}
480 	mutex_exit(&ill->ill_lock);
481 }
482 
483 /*
484  * ill_delete_tail is called from ip_modclose after all references
485  * to the closing ill are gone. The wait is done in ip_modclose
486  */
487 void
488 ill_delete_tail(ill_t *ill)
489 {
490 	mblk_t	**mpp;
491 	ipif_t	*ipif;
492 	ip_stack_t *ipst = ill->ill_ipst;
493 
494 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
495 		ipif_non_duplicate(ipif);
496 		(void) ipif_down_tail(ipif);
497 	}
498 
499 	ASSERT(ill->ill_ipif_dup_count == 0);
500 
501 	/*
502 	 * If polling capability is enabled (which signifies direct
503 	 * upcall into IP and driver has ill saved as a handle),
504 	 * we need to make sure that unbind has completed before we
505 	 * let the ill disappear and driver no longer has any reference
506 	 * to this ill.
507 	 */
508 	mutex_enter(&ill->ill_lock);
509 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
510 		cv_wait(&ill->ill_cv, &ill->ill_lock);
511 	mutex_exit(&ill->ill_lock);
512 	ASSERT(!(ill->ill_capabilities &
513 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
514 
515 	if (ill->ill_net_type != IRE_LOOPBACK)
516 		qprocsoff(ill->ill_rq);
517 
518 	/*
519 	 * We do an ipsq_flush once again now. New messages could have
520 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
521 	 * could also have landed up if an ioctl thread had looked up
522 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
523 	 * enqueued the ioctl when we did the ipsq_flush last time.
524 	 */
525 	ipsq_flush(ill);
526 
527 	/*
528 	 * Free capabilities.
529 	 */
530 	if (ill->ill_hcksum_capab != NULL) {
531 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
532 		ill->ill_hcksum_capab = NULL;
533 	}
534 
535 	if (ill->ill_zerocopy_capab != NULL) {
536 		kmem_free(ill->ill_zerocopy_capab,
537 		    sizeof (ill_zerocopy_capab_t));
538 		ill->ill_zerocopy_capab = NULL;
539 	}
540 
541 	if (ill->ill_lso_capab != NULL) {
542 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
543 		ill->ill_lso_capab = NULL;
544 	}
545 
546 	if (ill->ill_dld_capab != NULL) {
547 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
548 		ill->ill_dld_capab = NULL;
549 	}
550 
551 	/* Clean up ill_allowed_ips* related state */
552 	if (ill->ill_allowed_ips != NULL) {
553 		ASSERT(ill->ill_allowed_ips_cnt > 0);
554 		kmem_free(ill->ill_allowed_ips,
555 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
556 		ill->ill_allowed_ips = NULL;
557 		ill->ill_allowed_ips_cnt = 0;
558 	}
559 
560 	while (ill->ill_ipif != NULL)
561 		ipif_free_tail(ill->ill_ipif);
562 
563 	/*
564 	 * We have removed all references to ilm from conn and the ones joined
565 	 * within the kernel.
566 	 *
567 	 * We don't walk conns, mrts and ires because
568 	 *
569 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
570 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
571 	 *    ill references.
572 	 */
573 
574 	/*
575 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
576 	 * is safe to do because the illgrp has already been unlinked from the
577 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
578 	 */
579 	if (IS_IPMP(ill)) {
580 		ipmp_illgrp_destroy(ill->ill_grp);
581 		ill->ill_grp = NULL;
582 	}
583 
584 	if (ill->ill_mphysaddr_list != NULL) {
585 		multiphysaddr_t *mpa, *tmpa;
586 
587 		mpa = ill->ill_mphysaddr_list;
588 		ill->ill_mphysaddr_list = NULL;
589 		while (mpa) {
590 			tmpa = mpa->mpa_next;
591 			kmem_free(mpa, sizeof (*mpa));
592 			mpa = tmpa;
593 		}
594 	}
595 	/*
596 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
597 	 * could free the phyint. No more reference to the phyint after this
598 	 * point.
599 	 */
600 	(void) ill_glist_delete(ill);
601 
602 	if (ill->ill_frag_ptr != NULL) {
603 		uint_t count;
604 
605 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
606 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
607 		}
608 		mi_free(ill->ill_frag_ptr);
609 		ill->ill_frag_ptr = NULL;
610 		ill->ill_frag_hash_tbl = NULL;
611 	}
612 
613 	freemsg(ill->ill_nd_lla_mp);
614 	/* Free all retained control messages. */
615 	mpp = &ill->ill_first_mp_to_free;
616 	do {
617 		while (mpp[0]) {
618 			mblk_t  *mp;
619 			mblk_t  *mp1;
620 
621 			mp = mpp[0];
622 			mpp[0] = mp->b_next;
623 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
624 				mp1->b_next = NULL;
625 				mp1->b_prev = NULL;
626 			}
627 			freemsg(mp);
628 		}
629 	} while (mpp++ != &ill->ill_last_mp_to_free);
630 
631 	ill_free_mib(ill);
632 
633 #ifdef DEBUG
634 	ill_trace_cleanup(ill);
635 #endif
636 
637 	/* The default multicast interface might have changed */
638 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
639 
640 	/* Drop refcnt here */
641 	netstack_rele(ill->ill_ipst->ips_netstack);
642 	ill->ill_ipst = NULL;
643 }
644 
645 static void
646 ill_free_mib(ill_t *ill)
647 {
648 	ip_stack_t *ipst = ill->ill_ipst;
649 
650 	/*
651 	 * MIB statistics must not be lost, so when an interface
652 	 * goes away the counter values will be added to the global
653 	 * MIBs.
654 	 */
655 	if (ill->ill_ip_mib != NULL) {
656 		if (ill->ill_isv6) {
657 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
658 			    ill->ill_ip_mib);
659 		} else {
660 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
661 			    ill->ill_ip_mib);
662 		}
663 
664 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
665 		ill->ill_ip_mib = NULL;
666 	}
667 	if (ill->ill_icmp6_mib != NULL) {
668 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
669 		    ill->ill_icmp6_mib);
670 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
671 		ill->ill_icmp6_mib = NULL;
672 	}
673 }
674 
675 /*
676  * Concatenate together a physical address and a sap.
677  *
678  * Sap_lengths are interpreted as follows:
679  *   sap_length == 0	==>	no sap
680  *   sap_length > 0	==>	sap is at the head of the dlpi address
681  *   sap_length < 0	==>	sap is at the tail of the dlpi address
682  */
683 static void
684 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
685     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
686 {
687 	uint16_t sap_addr = (uint16_t)sap_src;
688 
689 	if (sap_length == 0) {
690 		if (phys_src == NULL)
691 			bzero(dst, phys_length);
692 		else
693 			bcopy(phys_src, dst, phys_length);
694 	} else if (sap_length < 0) {
695 		if (phys_src == NULL)
696 			bzero(dst, phys_length);
697 		else
698 			bcopy(phys_src, dst, phys_length);
699 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
700 	} else {
701 		bcopy(&sap_addr, dst, sizeof (sap_addr));
702 		if (phys_src == NULL)
703 			bzero((char *)dst + sap_length, phys_length);
704 		else
705 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
706 	}
707 }
708 
709 /*
710  * Generate a dl_unitdata_req mblk for the device and address given.
711  * addr_length is the length of the physical portion of the address.
712  * If addr is NULL include an all zero address of the specified length.
713  * TRUE? In any case, addr_length is taken to be the entire length of the
714  * dlpi address, including the absolute value of sap_length.
715  */
716 mblk_t *
717 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
718 		t_scalar_t sap_length)
719 {
720 	dl_unitdata_req_t *dlur;
721 	mblk_t	*mp;
722 	t_scalar_t	abs_sap_length;		/* absolute value */
723 
724 	abs_sap_length = ABS(sap_length);
725 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
726 	    DL_UNITDATA_REQ);
727 	if (mp == NULL)
728 		return (NULL);
729 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
730 	/* HACK: accomodate incompatible DLPI drivers */
731 	if (addr_length == 8)
732 		addr_length = 6;
733 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
734 	dlur->dl_dest_addr_offset = sizeof (*dlur);
735 	dlur->dl_priority.dl_min = 0;
736 	dlur->dl_priority.dl_max = 0;
737 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
738 	    (uchar_t *)&dlur[1]);
739 	return (mp);
740 }
741 
742 /*
743  * Add the pending mp to the list. There can be only 1 pending mp
744  * in the list. Any exclusive ioctl that needs to wait for a response
745  * from another module or driver needs to use this function to set
746  * the ipx_pending_mp to the ioctl mblk and wait for the response from
747  * the other module/driver. This is also used while waiting for the
748  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
749  */
750 boolean_t
751 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
752     int waitfor)
753 {
754 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
755 
756 	ASSERT(IAM_WRITER_IPIF(ipif));
757 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
758 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
759 	ASSERT(ipx->ipx_pending_mp == NULL);
760 	/*
761 	 * The caller may be using a different ipif than the one passed into
762 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
763 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
764 	 * that `ipx_current_ipif == ipif'.
765 	 */
766 	ASSERT(ipx->ipx_current_ipif != NULL);
767 
768 	/*
769 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
770 	 * driver.
771 	 */
772 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
773 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
774 	    (DB_TYPE(add_mp) == M_PCPROTO));
775 
776 	if (connp != NULL) {
777 		ASSERT(MUTEX_HELD(&connp->conn_lock));
778 		/*
779 		 * Return error if the conn has started closing. The conn
780 		 * could have finished cleaning up the pending mp list,
781 		 * If so we should not add another mp to the list negating
782 		 * the cleanup.
783 		 */
784 		if (connp->conn_state_flags & CONN_CLOSING)
785 			return (B_FALSE);
786 	}
787 	mutex_enter(&ipx->ipx_lock);
788 	ipx->ipx_pending_ipif = ipif;
789 	/*
790 	 * Note down the queue in b_queue. This will be returned by
791 	 * ipsq_pending_mp_get. Caller will then use these values to restart
792 	 * the processing
793 	 */
794 	add_mp->b_next = NULL;
795 	add_mp->b_queue = q;
796 	ipx->ipx_pending_mp = add_mp;
797 	ipx->ipx_waitfor = waitfor;
798 	mutex_exit(&ipx->ipx_lock);
799 
800 	if (connp != NULL)
801 		connp->conn_oper_pending_ill = ipif->ipif_ill;
802 
803 	return (B_TRUE);
804 }
805 
806 /*
807  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
808  * queued in the list.
809  */
810 mblk_t *
811 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
812 {
813 	mblk_t	*curr = NULL;
814 	ipxop_t	*ipx = ipsq->ipsq_xop;
815 
816 	*connpp = NULL;
817 	mutex_enter(&ipx->ipx_lock);
818 	if (ipx->ipx_pending_mp == NULL) {
819 		mutex_exit(&ipx->ipx_lock);
820 		return (NULL);
821 	}
822 
823 	/* There can be only 1 such excl message */
824 	curr = ipx->ipx_pending_mp;
825 	ASSERT(curr->b_next == NULL);
826 	ipx->ipx_pending_ipif = NULL;
827 	ipx->ipx_pending_mp = NULL;
828 	ipx->ipx_waitfor = 0;
829 	mutex_exit(&ipx->ipx_lock);
830 
831 	if (CONN_Q(curr->b_queue)) {
832 		/*
833 		 * This mp did a refhold on the conn, at the start of the ioctl.
834 		 * So we can safely return a pointer to the conn to the caller.
835 		 */
836 		*connpp = Q_TO_CONN(curr->b_queue);
837 	} else {
838 		*connpp = NULL;
839 	}
840 	curr->b_next = NULL;
841 	curr->b_prev = NULL;
842 	return (curr);
843 }
844 
845 /*
846  * Cleanup the ioctl mp queued in ipx_pending_mp
847  * - Called in the ill_delete path
848  * - Called in the M_ERROR or M_HANGUP path on the ill.
849  * - Called in the conn close path.
850  *
851  * Returns success on finding the pending mblk associated with the ioctl or
852  * exclusive operation in progress, failure otherwise.
853  */
854 boolean_t
855 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
856 {
857 	mblk_t	*mp;
858 	ipxop_t	*ipx;
859 	queue_t	*q;
860 	ipif_t	*ipif;
861 	int	cmd;
862 
863 	ASSERT(IAM_WRITER_ILL(ill));
864 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
865 
866 	mutex_enter(&ipx->ipx_lock);
867 	mp = ipx->ipx_pending_mp;
868 	if (connp != NULL) {
869 		if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
870 			/*
871 			 * Nothing to clean since the conn that is closing
872 			 * does not have a matching pending mblk in
873 			 * ipx_pending_mp.
874 			 */
875 			mutex_exit(&ipx->ipx_lock);
876 			return (B_FALSE);
877 		}
878 	} else {
879 		/*
880 		 * A non-zero ill_error signifies we are called in the
881 		 * M_ERROR or M_HANGUP path and we need to unconditionally
882 		 * abort any current ioctl and do the corresponding cleanup.
883 		 * A zero ill_error means we are in the ill_delete path and
884 		 * we do the cleanup only if there is a pending mp.
885 		 */
886 		if (mp == NULL && ill->ill_error == 0) {
887 			mutex_exit(&ipx->ipx_lock);
888 			return (B_FALSE);
889 		}
890 	}
891 
892 	/* Now remove from the ipx_pending_mp */
893 	ipx->ipx_pending_mp = NULL;
894 	ipif = ipx->ipx_pending_ipif;
895 	ipx->ipx_pending_ipif = NULL;
896 	ipx->ipx_waitfor = 0;
897 	ipx->ipx_current_ipif = NULL;
898 	cmd = ipx->ipx_current_ioctl;
899 	ipx->ipx_current_ioctl = 0;
900 	ipx->ipx_current_done = B_TRUE;
901 	mutex_exit(&ipx->ipx_lock);
902 
903 	if (mp == NULL)
904 		return (B_FALSE);
905 
906 	q = mp->b_queue;
907 	mp->b_next = NULL;
908 	mp->b_prev = NULL;
909 	mp->b_queue = NULL;
910 
911 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
912 		DTRACE_PROBE4(ipif__ioctl,
913 		    char *, "ipsq_pending_mp_cleanup",
914 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
915 		    ipif_t *, ipif);
916 		if (connp == NULL) {
917 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
918 		} else {
919 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
920 			mutex_enter(&ipif->ipif_ill->ill_lock);
921 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
922 			mutex_exit(&ipif->ipif_ill->ill_lock);
923 		}
924 	} else {
925 		inet_freemsg(mp);
926 	}
927 	return (B_TRUE);
928 }
929 
930 /*
931  * Called in the conn close path and ill delete path
932  */
933 static void
934 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
935 {
936 	ipsq_t	*ipsq;
937 	mblk_t	*prev;
938 	mblk_t	*curr;
939 	mblk_t	*next;
940 	queue_t	*wq, *rq = NULL;
941 	mblk_t	*tmp_list = NULL;
942 
943 	ASSERT(IAM_WRITER_ILL(ill));
944 	if (connp != NULL)
945 		wq = CONNP_TO_WQ(connp);
946 	else
947 		wq = ill->ill_wq;
948 
949 	/*
950 	 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
951 	 * against this here.
952 	 */
953 	if (wq != NULL)
954 		rq = RD(wq);
955 
956 	ipsq = ill->ill_phyint->phyint_ipsq;
957 	/*
958 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
959 	 * In the case of ioctl from a conn, there can be only 1 mp
960 	 * queued on the ipsq. If an ill is being unplumbed flush all
961 	 * the messages.
962 	 */
963 	mutex_enter(&ipsq->ipsq_lock);
964 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
965 	    curr = next) {
966 		next = curr->b_next;
967 		if (connp == NULL ||
968 		    (curr->b_queue == wq || curr->b_queue == rq)) {
969 			/* Unlink the mblk from the pending mp list */
970 			if (prev != NULL) {
971 				prev->b_next = curr->b_next;
972 			} else {
973 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
974 				ipsq->ipsq_xopq_mphead = curr->b_next;
975 			}
976 			if (ipsq->ipsq_xopq_mptail == curr)
977 				ipsq->ipsq_xopq_mptail = prev;
978 			/*
979 			 * Create a temporary list and release the ipsq lock
980 			 * New elements are added to the head of the tmp_list
981 			 */
982 			curr->b_next = tmp_list;
983 			tmp_list = curr;
984 		} else {
985 			prev = curr;
986 		}
987 	}
988 	mutex_exit(&ipsq->ipsq_lock);
989 
990 	while (tmp_list != NULL) {
991 		curr = tmp_list;
992 		tmp_list = curr->b_next;
993 		curr->b_next = NULL;
994 		curr->b_prev = NULL;
995 		wq = curr->b_queue;
996 		curr->b_queue = NULL;
997 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
998 			DTRACE_PROBE4(ipif__ioctl,
999 			    char *, "ipsq_xopq_mp_cleanup",
1000 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
1001 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1002 			    CONN_CLOSE : NO_COPYOUT, NULL);
1003 		} else {
1004 			/*
1005 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1006 			 * this can't be just inet_freemsg. we have to
1007 			 * restart it otherwise the thread will be stuck.
1008 			 */
1009 			inet_freemsg(curr);
1010 		}
1011 	}
1012 }
1013 
1014 /*
1015  * This conn has started closing. Cleanup any pending ioctl from this conn.
1016  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1017  */
1018 void
1019 conn_ioctl_cleanup(conn_t *connp)
1020 {
1021 	ipsq_t	*ipsq;
1022 	ill_t	*ill;
1023 	boolean_t refheld;
1024 
1025 	/*
1026 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1027 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1028 	 * started the mp could be present in ipx_pending_mp. Note that if
1029 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1030 	 * not yet queued anywhere. In this case, the conn close code will wait
1031 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
1032 	 * tcp_close will wait first until all ioctls have completed for this
1033 	 * conn.
1034 	 */
1035 	mutex_enter(&connp->conn_lock);
1036 	ill = connp->conn_oper_pending_ill;
1037 	if (ill == NULL) {
1038 		mutex_exit(&connp->conn_lock);
1039 		return;
1040 	}
1041 
1042 	/*
1043 	 * We may not be able to refhold the ill if the ill/ipif
1044 	 * is changing. But we need to make sure that the ill will
1045 	 * not vanish. So we just bump up the ill_waiter count.
1046 	 */
1047 	refheld = ill_waiter_inc(ill);
1048 	mutex_exit(&connp->conn_lock);
1049 	if (refheld) {
1050 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1051 			ill_waiter_dcr(ill);
1052 			/*
1053 			 * Check whether this ioctl has started and is
1054 			 * pending. If it is not found there then check
1055 			 * whether this ioctl has not even started and is in
1056 			 * the ipsq_xopq list.
1057 			 */
1058 			if (!ipsq_pending_mp_cleanup(ill, connp))
1059 				ipsq_xopq_mp_cleanup(ill, connp);
1060 			ipsq = ill->ill_phyint->phyint_ipsq;
1061 			ipsq_exit(ipsq);
1062 			return;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * The ill is also closing and we could not bump up the
1068 	 * ill_waiter_count or we could not enter the ipsq. Leave
1069 	 * the cleanup to ill_delete
1070 	 */
1071 	mutex_enter(&connp->conn_lock);
1072 	while (connp->conn_oper_pending_ill != NULL)
1073 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1074 	mutex_exit(&connp->conn_lock);
1075 	if (refheld)
1076 		ill_waiter_dcr(ill);
1077 }
1078 
1079 /*
1080  * ipcl_walk function for cleaning up conn_*_ill fields.
1081  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1082  * conn_bound_if in place. We prefer dropping
1083  * packets instead of sending them out the wrong interface, or accepting
1084  * packets from the wrong ifindex.
1085  */
1086 static void
1087 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1088 {
1089 	ill_t	*ill = (ill_t *)arg;
1090 
1091 	mutex_enter(&connp->conn_lock);
1092 	if (connp->conn_dhcpinit_ill == ill) {
1093 		connp->conn_dhcpinit_ill = NULL;
1094 		ASSERT(ill->ill_dhcpinit != 0);
1095 		atomic_dec_32(&ill->ill_dhcpinit);
1096 		ill_set_inputfn(ill);
1097 	}
1098 	mutex_exit(&connp->conn_lock);
1099 }
1100 
1101 static int
1102 ill_down_ipifs_tail(ill_t *ill)
1103 {
1104 	ipif_t	*ipif;
1105 	int err;
1106 
1107 	ASSERT(IAM_WRITER_ILL(ill));
1108 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1109 		ipif_non_duplicate(ipif);
1110 		/*
1111 		 * ipif_down_tail will call arp_ll_down on the last ipif
1112 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1113 		 */
1114 		if ((err = ipif_down_tail(ipif)) != 0)
1115 			return (err);
1116 	}
1117 	return (0);
1118 }
1119 
1120 /* ARGSUSED */
1121 void
1122 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1123 {
1124 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1125 	(void) ill_down_ipifs_tail(q->q_ptr);
1126 	freemsg(mp);
1127 	ipsq_current_finish(ipsq);
1128 }
1129 
1130 /*
1131  * ill_down_start is called when we want to down this ill and bring it up again
1132  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1133  * all interfaces, but don't tear down any plumbing.
1134  */
1135 boolean_t
1136 ill_down_start(queue_t *q, mblk_t *mp)
1137 {
1138 	ill_t	*ill = q->q_ptr;
1139 	ipif_t	*ipif;
1140 
1141 	ASSERT(IAM_WRITER_ILL(ill));
1142 	/*
1143 	 * It is possible that some ioctl is already in progress while we
1144 	 * received the M_ERROR / M_HANGUP in which case, we need to abort
1145 	 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1146 	 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1147 	 * the in progress ioctl from ever completing.
1148 	 *
1149 	 * The thread that started the ioctl (if any) must have returned,
1150 	 * since we are now executing as writer. After the 2 calls below,
1151 	 * the state of the ipsq and the ill would reflect no trace of any
1152 	 * pending operation. Subsequently if there is any response to the
1153 	 * original ioctl from the driver, it would be discarded as an
1154 	 * unsolicited message from the driver.
1155 	 */
1156 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1157 	ill_dlpi_clear_deferred(ill);
1158 
1159 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1160 		(void) ipif_down(ipif, NULL, NULL);
1161 
1162 	ill_down(ill);
1163 
1164 	/*
1165 	 * Walk all CONNs that can have a reference on an ire or nce for this
1166 	 * ill (we actually walk all that now have stale references).
1167 	 */
1168 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1169 
1170 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1171 	if (ill->ill_isv6)
1172 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1173 
1174 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1175 
1176 	/*
1177 	 * Atomically test and add the pending mp if references are active.
1178 	 */
1179 	mutex_enter(&ill->ill_lock);
1180 	if (!ill_is_quiescent(ill)) {
1181 		/* call cannot fail since `conn_t *' argument is NULL */
1182 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1183 		    mp, ILL_DOWN);
1184 		mutex_exit(&ill->ill_lock);
1185 		return (B_FALSE);
1186 	}
1187 	mutex_exit(&ill->ill_lock);
1188 	return (B_TRUE);
1189 }
1190 
1191 static void
1192 ill_down(ill_t *ill)
1193 {
1194 	mblk_t	*mp;
1195 	ip_stack_t	*ipst = ill->ill_ipst;
1196 
1197 	/*
1198 	 * Blow off any IREs dependent on this ILL.
1199 	 * The caller needs to handle conn_ixa_cleanup
1200 	 */
1201 	ill_delete_ires(ill);
1202 
1203 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1204 
1205 	/* Remove any conn_*_ill depending on this ill */
1206 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1207 
1208 	/*
1209 	 * Free state for additional IREs.
1210 	 */
1211 	mutex_enter(&ill->ill_saved_ire_lock);
1212 	mp = ill->ill_saved_ire_mp;
1213 	ill->ill_saved_ire_mp = NULL;
1214 	ill->ill_saved_ire_cnt = 0;
1215 	mutex_exit(&ill->ill_saved_ire_lock);
1216 	freemsg(mp);
1217 }
1218 
1219 /*
1220  * ire_walk routine used to delete every IRE that depends on
1221  * 'ill'.  (Always called as writer, and may only be called from ire_walk.)
1222  *
1223  * Note: since the routes added by the kernel are deleted separately,
1224  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1225  *
1226  * We also remove references on ire_nce_cache entries that refer to the ill.
1227  */
1228 void
1229 ill_downi(ire_t *ire, char *ill_arg)
1230 {
1231 	ill_t	*ill = (ill_t *)ill_arg;
1232 	nce_t	*nce;
1233 
1234 	mutex_enter(&ire->ire_lock);
1235 	nce = ire->ire_nce_cache;
1236 	if (nce != NULL && nce->nce_ill == ill)
1237 		ire->ire_nce_cache = NULL;
1238 	else
1239 		nce = NULL;
1240 	mutex_exit(&ire->ire_lock);
1241 	if (nce != NULL)
1242 		nce_refrele(nce);
1243 	if (ire->ire_ill == ill) {
1244 		/*
1245 		 * The existing interface binding for ire must be
1246 		 * deleted before trying to bind the route to another
1247 		 * interface. However, since we are using the contents of the
1248 		 * ire after ire_delete, the caller has to ensure that
1249 		 * CONDEMNED (deleted) ire's are not removed from the list
1250 		 * when ire_delete() returns. Currently ill_downi() is
1251 		 * only called as part of ire_walk*() routines, so that
1252 		 * the irb_refhold() done by ire_walk*() will ensure that
1253 		 * ire_delete() does not lead to ire_inactive().
1254 		 */
1255 		ASSERT(ire->ire_bucket->irb_refcnt > 0);
1256 		ire_delete(ire);
1257 		if (ire->ire_unbound)
1258 			ire_rebind(ire);
1259 	}
1260 }
1261 
1262 /* Remove IRE_IF_CLONE on this ill */
1263 void
1264 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1265 {
1266 	ill_t	*ill = (ill_t *)ill_arg;
1267 
1268 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1269 	if (ire->ire_ill == ill)
1270 		ire_delete(ire);
1271 }
1272 
1273 /* Consume an M_IOCACK of the fastpath probe. */
1274 void
1275 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1276 {
1277 	mblk_t	*mp1 = mp;
1278 
1279 	/*
1280 	 * If this was the first attempt turn on the fastpath probing.
1281 	 */
1282 	mutex_enter(&ill->ill_lock);
1283 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1284 		ill->ill_dlpi_fastpath_state = IDS_OK;
1285 	mutex_exit(&ill->ill_lock);
1286 
1287 	/* Free the M_IOCACK mblk, hold on to the data */
1288 	mp = mp->b_cont;
1289 	freeb(mp1);
1290 	if (mp == NULL)
1291 		return;
1292 	if (mp->b_cont != NULL)
1293 		nce_fastpath_update(ill, mp);
1294 	else
1295 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1296 	freemsg(mp);
1297 }
1298 
1299 /*
1300  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1301  * The data portion of the request is a dl_unitdata_req_t template for
1302  * what we would send downstream in the absence of a fastpath confirmation.
1303  */
1304 int
1305 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1306 {
1307 	struct iocblk	*ioc;
1308 	mblk_t	*mp;
1309 
1310 	if (dlur_mp == NULL)
1311 		return (EINVAL);
1312 
1313 	mutex_enter(&ill->ill_lock);
1314 	switch (ill->ill_dlpi_fastpath_state) {
1315 	case IDS_FAILED:
1316 		/*
1317 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1318 		 * support it.
1319 		 */
1320 		mutex_exit(&ill->ill_lock);
1321 		return (ENOTSUP);
1322 	case IDS_UNKNOWN:
1323 		/* This is the first probe */
1324 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1325 		break;
1326 	default:
1327 		break;
1328 	}
1329 	mutex_exit(&ill->ill_lock);
1330 
1331 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1332 		return (EAGAIN);
1333 
1334 	mp->b_cont = copyb(dlur_mp);
1335 	if (mp->b_cont == NULL) {
1336 		freeb(mp);
1337 		return (EAGAIN);
1338 	}
1339 
1340 	ioc = (struct iocblk *)mp->b_rptr;
1341 	ioc->ioc_count = msgdsize(mp->b_cont);
1342 
1343 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1344 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1345 	putnext(ill->ill_wq, mp);
1346 	return (0);
1347 }
1348 
1349 void
1350 ill_capability_probe(ill_t *ill)
1351 {
1352 	mblk_t	*mp;
1353 
1354 	ASSERT(IAM_WRITER_ILL(ill));
1355 
1356 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1357 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1358 		return;
1359 
1360 	/*
1361 	 * We are starting a new cycle of capability negotiation.
1362 	 * Free up the capab reset messages of any previous incarnation.
1363 	 * We will do a fresh allocation when we get the response to our probe
1364 	 */
1365 	if (ill->ill_capab_reset_mp != NULL) {
1366 		freemsg(ill->ill_capab_reset_mp);
1367 		ill->ill_capab_reset_mp = NULL;
1368 	}
1369 
1370 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1371 
1372 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1373 	if (mp == NULL)
1374 		return;
1375 
1376 	ill_capability_send(ill, mp);
1377 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1378 }
1379 
1380 void
1381 ill_capability_reset(ill_t *ill, boolean_t reneg)
1382 {
1383 	ASSERT(IAM_WRITER_ILL(ill));
1384 
1385 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1386 		return;
1387 
1388 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1389 
1390 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1391 	ill->ill_capab_reset_mp = NULL;
1392 	/*
1393 	 * We turn off all capabilities except those pertaining to
1394 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1395 	 * which will be turned off by the corresponding reset functions.
1396 	 */
1397 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1398 }
1399 
1400 static void
1401 ill_capability_reset_alloc(ill_t *ill)
1402 {
1403 	mblk_t *mp;
1404 	size_t	size = 0;
1405 	int	err;
1406 	dl_capability_req_t	*capb;
1407 
1408 	ASSERT(IAM_WRITER_ILL(ill));
1409 	ASSERT(ill->ill_capab_reset_mp == NULL);
1410 
1411 	if (ILL_HCKSUM_CAPABLE(ill)) {
1412 		size += sizeof (dl_capability_sub_t) +
1413 		    sizeof (dl_capab_hcksum_t);
1414 	}
1415 
1416 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1417 		size += sizeof (dl_capability_sub_t) +
1418 		    sizeof (dl_capab_zerocopy_t);
1419 	}
1420 
1421 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1422 		size += sizeof (dl_capability_sub_t) +
1423 		    sizeof (dl_capab_dld_t);
1424 	}
1425 
1426 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1427 	    STR_NOSIG, &err);
1428 
1429 	mp->b_datap->db_type = M_PROTO;
1430 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1431 
1432 	capb = (dl_capability_req_t *)mp->b_rptr;
1433 	capb->dl_primitive = DL_CAPABILITY_REQ;
1434 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1435 	capb->dl_sub_length = size;
1436 
1437 	mp->b_wptr += sizeof (dl_capability_req_t);
1438 
1439 	/*
1440 	 * Each handler fills in the corresponding dl_capability_sub_t
1441 	 * inside the mblk,
1442 	 */
1443 	ill_capability_hcksum_reset_fill(ill, mp);
1444 	ill_capability_zerocopy_reset_fill(ill, mp);
1445 	ill_capability_dld_reset_fill(ill, mp);
1446 
1447 	ill->ill_capab_reset_mp = mp;
1448 }
1449 
1450 static void
1451 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1452 {
1453 	dl_capab_id_t *id_ic;
1454 	uint_t sub_dl_cap = outers->dl_cap;
1455 	dl_capability_sub_t *inners;
1456 	uint8_t *capend;
1457 
1458 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1459 
1460 	/*
1461 	 * Note: range checks here are not absolutely sufficient to
1462 	 * make us robust against malformed messages sent by drivers;
1463 	 * this is in keeping with the rest of IP's dlpi handling.
1464 	 * (Remember, it's coming from something else in the kernel
1465 	 * address space)
1466 	 */
1467 
1468 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1469 	if (capend > mp->b_wptr) {
1470 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1471 		    "malformed sub-capability too long for mblk");
1472 		return;
1473 	}
1474 
1475 	id_ic = (dl_capab_id_t *)(outers + 1);
1476 
1477 	if (outers->dl_length < sizeof (*id_ic) ||
1478 	    (inners = &id_ic->id_subcap,
1479 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1480 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1481 		    "encapsulated capab type %d too long for mblk",
1482 		    inners->dl_cap);
1483 		return;
1484 	}
1485 
1486 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1487 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1488 		    "isn't as expected; pass-thru module(s) detected, "
1489 		    "discarding capability\n", inners->dl_cap));
1490 		return;
1491 	}
1492 
1493 	/* Process the encapsulated sub-capability */
1494 	ill_capability_dispatch(ill, mp, inners);
1495 }
1496 
1497 static void
1498 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1499 {
1500 	dl_capability_sub_t *dl_subcap;
1501 
1502 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1503 		return;
1504 
1505 	/*
1506 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1507 	 * initialized below since it is not used by DLD.
1508 	 */
1509 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1510 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1511 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1512 
1513 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1514 }
1515 
1516 static void
1517 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1518 {
1519 	/*
1520 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1521 	 * is only to get the VRRP capability.
1522 	 *
1523 	 * Note that we cannot check ill_ipif_up_count here since
1524 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1525 	 * That is done asynchronously, and can race with this function.
1526 	 */
1527 	if (!ill->ill_dl_up) {
1528 		if (subp->dl_cap == DL_CAPAB_VRRP)
1529 			ill_capability_vrrp_ack(ill, mp, subp);
1530 		return;
1531 	}
1532 
1533 	switch (subp->dl_cap) {
1534 	case DL_CAPAB_HCKSUM:
1535 		ill_capability_hcksum_ack(ill, mp, subp);
1536 		break;
1537 	case DL_CAPAB_ZEROCOPY:
1538 		ill_capability_zerocopy_ack(ill, mp, subp);
1539 		break;
1540 	case DL_CAPAB_DLD:
1541 		ill_capability_dld_ack(ill, mp, subp);
1542 		break;
1543 	case DL_CAPAB_VRRP:
1544 		break;
1545 	default:
1546 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1547 		    subp->dl_cap));
1548 	}
1549 }
1550 
1551 /*
1552  * Process the vrrp capability received from a DLS Provider. isub must point
1553  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1554  */
1555 static void
1556 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1557 {
1558 	dl_capab_vrrp_t	*vrrp;
1559 	uint_t		sub_dl_cap = isub->dl_cap;
1560 	uint8_t		*capend;
1561 
1562 	ASSERT(IAM_WRITER_ILL(ill));
1563 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1564 
1565 	/*
1566 	 * Note: range checks here are not absolutely sufficient to
1567 	 * make us robust against malformed messages sent by drivers;
1568 	 * this is in keeping with the rest of IP's dlpi handling.
1569 	 * (Remember, it's coming from something else in the kernel
1570 	 * address space)
1571 	 */
1572 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1573 	if (capend > mp->b_wptr) {
1574 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1575 		    "malformed sub-capability too long for mblk");
1576 		return;
1577 	}
1578 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1579 
1580 	/*
1581 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1582 	 */
1583 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1584 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1585 		ill->ill_flags |= ILLF_VRRP;
1586 	}
1587 }
1588 
1589 /*
1590  * Process a hardware checksum offload capability negotiation ack received
1591  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1592  * of a DL_CAPABILITY_ACK message.
1593  */
1594 static void
1595 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1596 {
1597 	dl_capability_req_t	*ocap;
1598 	dl_capab_hcksum_t	*ihck, *ohck;
1599 	ill_hcksum_capab_t	**ill_hcksum;
1600 	mblk_t			*nmp = NULL;
1601 	uint_t			sub_dl_cap = isub->dl_cap;
1602 	uint8_t			*capend;
1603 
1604 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1605 
1606 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1607 
1608 	/*
1609 	 * Note: range checks here are not absolutely sufficient to
1610 	 * make us robust against malformed messages sent by drivers;
1611 	 * this is in keeping with the rest of IP's dlpi handling.
1612 	 * (Remember, it's coming from something else in the kernel
1613 	 * address space)
1614 	 */
1615 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1616 	if (capend > mp->b_wptr) {
1617 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1618 		    "malformed sub-capability too long for mblk");
1619 		return;
1620 	}
1621 
1622 	/*
1623 	 * There are two types of acks we process here:
1624 	 * 1. acks in reply to a (first form) generic capability req
1625 	 *    (no ENABLE flag set)
1626 	 * 2. acks in reply to a ENABLE capability req.
1627 	 *    (ENABLE flag set)
1628 	 */
1629 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1630 
1631 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1632 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1633 		    "unsupported hardware checksum "
1634 		    "sub-capability (version %d, expected %d)",
1635 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1636 		return;
1637 	}
1638 
1639 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1640 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1641 		    "checksum capability isn't as expected; pass-thru "
1642 		    "module(s) detected, discarding capability\n"));
1643 		return;
1644 	}
1645 
1646 #define	CURR_HCKSUM_CAPAB				\
1647 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1648 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1649 
1650 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1651 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1652 		/* do ENABLE processing */
1653 		if (*ill_hcksum == NULL) {
1654 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1655 			    KM_NOSLEEP);
1656 
1657 			if (*ill_hcksum == NULL) {
1658 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1659 				    "could not enable hcksum version %d "
1660 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1661 				    ill->ill_name);
1662 				return;
1663 			}
1664 		}
1665 
1666 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1667 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1668 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1669 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1670 		    "has enabled hardware checksumming\n ",
1671 		    ill->ill_name));
1672 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1673 		/*
1674 		 * Enabling hardware checksum offload
1675 		 * Currently IP supports {TCP,UDP}/IPv4
1676 		 * partial and full cksum offload and
1677 		 * IPv4 header checksum offload.
1678 		 * Allocate new mblk which will
1679 		 * contain a new capability request
1680 		 * to enable hardware checksum offload.
1681 		 */
1682 		uint_t	size;
1683 		uchar_t	*rptr;
1684 
1685 		size = sizeof (dl_capability_req_t) +
1686 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1687 
1688 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1689 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1690 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1691 			    ill->ill_name);
1692 			return;
1693 		}
1694 
1695 		rptr = nmp->b_rptr;
1696 		/* initialize dl_capability_req_t */
1697 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1698 		ocap->dl_sub_offset =
1699 		    sizeof (dl_capability_req_t);
1700 		ocap->dl_sub_length =
1701 		    sizeof (dl_capability_sub_t) +
1702 		    isub->dl_length;
1703 		nmp->b_rptr += sizeof (dl_capability_req_t);
1704 
1705 		/* initialize dl_capability_sub_t */
1706 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1707 		nmp->b_rptr += sizeof (*isub);
1708 
1709 		/* initialize dl_capab_hcksum_t */
1710 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1711 		bcopy(ihck, ohck, sizeof (*ihck));
1712 
1713 		nmp->b_rptr = rptr;
1714 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1715 
1716 		/* Set ENABLE flag */
1717 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1718 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1719 
1720 		/*
1721 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1722 		 * hardware checksum acceleration.
1723 		 */
1724 		ill_capability_send(ill, nmp);
1725 	} else {
1726 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1727 		    "advertised %x hardware checksum capability flags\n",
1728 		    ill->ill_name, ihck->hcksum_txflags));
1729 	}
1730 }
1731 
1732 static void
1733 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1734 {
1735 	dl_capab_hcksum_t *hck_subcap;
1736 	dl_capability_sub_t *dl_subcap;
1737 
1738 	if (!ILL_HCKSUM_CAPABLE(ill))
1739 		return;
1740 
1741 	ASSERT(ill->ill_hcksum_capab != NULL);
1742 
1743 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1744 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1745 	dl_subcap->dl_length = sizeof (*hck_subcap);
1746 
1747 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1748 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1749 	hck_subcap->hcksum_txflags = 0;
1750 
1751 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1752 }
1753 
1754 static void
1755 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1756 {
1757 	mblk_t *nmp = NULL;
1758 	dl_capability_req_t *oc;
1759 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1760 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1761 	uint_t sub_dl_cap = isub->dl_cap;
1762 	uint8_t *capend;
1763 
1764 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1765 
1766 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1767 
1768 	/*
1769 	 * Note: range checks here are not absolutely sufficient to
1770 	 * make us robust against malformed messages sent by drivers;
1771 	 * this is in keeping with the rest of IP's dlpi handling.
1772 	 * (Remember, it's coming from something else in the kernel
1773 	 * address space)
1774 	 */
1775 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1776 	if (capend > mp->b_wptr) {
1777 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1778 		    "malformed sub-capability too long for mblk");
1779 		return;
1780 	}
1781 
1782 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1783 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1784 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1785 		    "unsupported ZEROCOPY sub-capability (version %d, "
1786 		    "expected %d)", zc_ic->zerocopy_version,
1787 		    ZEROCOPY_VERSION_1);
1788 		return;
1789 	}
1790 
1791 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1792 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1793 		    "capability isn't as expected; pass-thru module(s) "
1794 		    "detected, discarding capability\n"));
1795 		return;
1796 	}
1797 
1798 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1799 		if (*ill_zerocopy_capab == NULL) {
1800 			*ill_zerocopy_capab =
1801 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1802 			    KM_NOSLEEP);
1803 
1804 			if (*ill_zerocopy_capab == NULL) {
1805 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1806 				    "could not enable Zero-copy version %d "
1807 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1808 				    ill->ill_name);
1809 				return;
1810 			}
1811 		}
1812 
1813 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1814 		    "supports Zero-copy version %d\n", ill->ill_name,
1815 		    ZEROCOPY_VERSION_1));
1816 
1817 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1818 		    zc_ic->zerocopy_version;
1819 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1820 		    zc_ic->zerocopy_flags;
1821 
1822 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1823 	} else {
1824 		uint_t size;
1825 		uchar_t *rptr;
1826 
1827 		size = sizeof (dl_capability_req_t) +
1828 		    sizeof (dl_capability_sub_t) +
1829 		    sizeof (dl_capab_zerocopy_t);
1830 
1831 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1832 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1833 			    "could not enable zerocopy for %s (ENOMEM)\n",
1834 			    ill->ill_name);
1835 			return;
1836 		}
1837 
1838 		rptr = nmp->b_rptr;
1839 		/* initialize dl_capability_req_t */
1840 		oc = (dl_capability_req_t *)rptr;
1841 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1842 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1843 		    sizeof (dl_capab_zerocopy_t);
1844 		rptr += sizeof (dl_capability_req_t);
1845 
1846 		/* initialize dl_capability_sub_t */
1847 		bcopy(isub, rptr, sizeof (*isub));
1848 		rptr += sizeof (*isub);
1849 
1850 		/* initialize dl_capab_zerocopy_t */
1851 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1852 		*zc_oc = *zc_ic;
1853 
1854 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1855 		    "to enable zero-copy version %d\n", ill->ill_name,
1856 		    ZEROCOPY_VERSION_1));
1857 
1858 		/* set VMSAFE_MEM flag */
1859 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1860 
1861 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1862 		ill_capability_send(ill, nmp);
1863 	}
1864 }
1865 
1866 static void
1867 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1868 {
1869 	dl_capab_zerocopy_t *zerocopy_subcap;
1870 	dl_capability_sub_t *dl_subcap;
1871 
1872 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1873 		return;
1874 
1875 	ASSERT(ill->ill_zerocopy_capab != NULL);
1876 
1877 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1878 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1879 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1880 
1881 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1882 	zerocopy_subcap->zerocopy_version =
1883 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1884 	zerocopy_subcap->zerocopy_flags = 0;
1885 
1886 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1887 }
1888 
1889 /*
1890  * DLD capability
1891  * Refer to dld.h for more information regarding the purpose and usage
1892  * of this capability.
1893  */
1894 static void
1895 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1896 {
1897 	dl_capab_dld_t		*dld_ic, dld;
1898 	uint_t			sub_dl_cap = isub->dl_cap;
1899 	uint8_t			*capend;
1900 	ill_dld_capab_t		*idc;
1901 
1902 	ASSERT(IAM_WRITER_ILL(ill));
1903 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1904 
1905 	/*
1906 	 * Note: range checks here are not absolutely sufficient to
1907 	 * make us robust against malformed messages sent by drivers;
1908 	 * this is in keeping with the rest of IP's dlpi handling.
1909 	 * (Remember, it's coming from something else in the kernel
1910 	 * address space)
1911 	 */
1912 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1913 	if (capend > mp->b_wptr) {
1914 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1915 		    "malformed sub-capability too long for mblk");
1916 		return;
1917 	}
1918 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1919 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1920 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1921 		    "unsupported DLD sub-capability (version %d, "
1922 		    "expected %d)", dld_ic->dld_version,
1923 		    DLD_CURRENT_VERSION);
1924 		return;
1925 	}
1926 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1927 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1928 		    "capability isn't as expected; pass-thru module(s) "
1929 		    "detected, discarding capability\n"));
1930 		return;
1931 	}
1932 
1933 	/*
1934 	 * Copy locally to ensure alignment.
1935 	 */
1936 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1937 
1938 	if ((idc = ill->ill_dld_capab) == NULL) {
1939 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1940 		if (idc == NULL) {
1941 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1942 			    "could not enable DLD version %d "
1943 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1944 			    ill->ill_name);
1945 			return;
1946 		}
1947 		ill->ill_dld_capab = idc;
1948 	}
1949 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1950 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1951 	ip1dbg(("ill_capability_dld_ack: interface %s "
1952 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1953 
1954 	ill_capability_dld_enable(ill);
1955 }
1956 
1957 /*
1958  * Typically capability negotiation between IP and the driver happens via
1959  * DLPI message exchange. However GLD also offers a direct function call
1960  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1961  * But arbitrary function calls into IP or GLD are not permitted, since both
1962  * of them are protected by their own perimeter mechanism. The perimeter can
1963  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1964  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1965  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1966  * to enter the mac perimeter and then do the direct function calls into
1967  * GLD to enable squeue polling. The ring related callbacks from the mac into
1968  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1969  * protected by the mac perimeter.
1970  */
1971 static void
1972 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1973 {
1974 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1975 	int			err;
1976 
1977 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1978 	    DLD_ENABLE);
1979 	ASSERT(err == 0);
1980 }
1981 
1982 static void
1983 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1984 {
1985 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1986 	int			err;
1987 
1988 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1989 	    DLD_DISABLE);
1990 	ASSERT(err == 0);
1991 }
1992 
1993 boolean_t
1994 ill_mac_perim_held(ill_t *ill)
1995 {
1996 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1997 
1998 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1999 	    DLD_QUERY));
2000 }
2001 
2002 static void
2003 ill_capability_direct_enable(ill_t *ill)
2004 {
2005 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2006 	ill_dld_direct_t	*idd = &idc->idc_direct;
2007 	dld_capab_direct_t	direct;
2008 	int			rc;
2009 
2010 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2011 
2012 	bzero(&direct, sizeof (direct));
2013 	direct.di_rx_cf = (uintptr_t)ip_input;
2014 	direct.di_rx_ch = ill;
2015 
2016 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2017 	    DLD_ENABLE);
2018 	if (rc == 0) {
2019 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2020 		idd->idd_tx_dh = direct.di_tx_dh;
2021 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2022 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2023 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2024 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2025 		ASSERT(idd->idd_tx_cb_df != NULL);
2026 		ASSERT(idd->idd_tx_fctl_df != NULL);
2027 		ASSERT(idd->idd_tx_df != NULL);
2028 		/*
2029 		 * One time registration of flow enable callback function
2030 		 */
2031 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2032 		    ill_flow_enable, ill);
2033 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2034 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
2035 	} else {
2036 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
2037 		    "capability, rc = %d\n", rc);
2038 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2039 	}
2040 }
2041 
2042 static void
2043 ill_capability_poll_enable(ill_t *ill)
2044 {
2045 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2046 	dld_capab_poll_t	poll;
2047 	int			rc;
2048 
2049 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2050 
2051 	bzero(&poll, sizeof (poll));
2052 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2053 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2054 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2055 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2056 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2057 	poll.poll_ring_ch = ill;
2058 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2059 	    DLD_ENABLE);
2060 	if (rc == 0) {
2061 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2062 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
2063 	} else {
2064 		ip1dbg(("warning: could not enable POLL "
2065 		    "capability, rc = %d\n", rc));
2066 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2067 	}
2068 }
2069 
2070 /*
2071  * Enable the LSO capability.
2072  */
2073 static void
2074 ill_capability_lso_enable(ill_t *ill)
2075 {
2076 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2077 	dld_capab_lso_t	lso;
2078 	int rc;
2079 
2080 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2081 
2082 	if (ill->ill_lso_capab == NULL) {
2083 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2084 		    KM_NOSLEEP);
2085 		if (ill->ill_lso_capab == NULL) {
2086 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2087 			    "could not enable LSO for %s (ENOMEM)\n",
2088 			    ill->ill_name);
2089 			return;
2090 		}
2091 	}
2092 
2093 	bzero(&lso, sizeof (lso));
2094 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2095 	    DLD_ENABLE)) == 0) {
2096 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2097 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2098 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2099 		ip1dbg(("ill_capability_lso_enable: interface %s "
2100 		    "has enabled LSO\n ", ill->ill_name));
2101 	} else {
2102 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2103 		ill->ill_lso_capab = NULL;
2104 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2105 	}
2106 }
2107 
2108 static void
2109 ill_capability_dld_enable(ill_t *ill)
2110 {
2111 	mac_perim_handle_t mph;
2112 
2113 	ASSERT(IAM_WRITER_ILL(ill));
2114 
2115 	if (ill->ill_isv6)
2116 		return;
2117 
2118 	ill_mac_perim_enter(ill, &mph);
2119 	if (!ill->ill_isv6) {
2120 		ill_capability_direct_enable(ill);
2121 		ill_capability_poll_enable(ill);
2122 		ill_capability_lso_enable(ill);
2123 	}
2124 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2125 	ill_mac_perim_exit(ill, mph);
2126 }
2127 
2128 static void
2129 ill_capability_dld_disable(ill_t *ill)
2130 {
2131 	ill_dld_capab_t	*idc;
2132 	ill_dld_direct_t *idd;
2133 	mac_perim_handle_t	mph;
2134 
2135 	ASSERT(IAM_WRITER_ILL(ill));
2136 
2137 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2138 		return;
2139 
2140 	ill_mac_perim_enter(ill, &mph);
2141 
2142 	idc = ill->ill_dld_capab;
2143 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2144 		/*
2145 		 * For performance we avoid locks in the transmit data path
2146 		 * and don't maintain a count of the number of threads using
2147 		 * direct calls. Thus some threads could be using direct
2148 		 * transmit calls to GLD, even after the capability mechanism
2149 		 * turns it off. This is still safe since the handles used in
2150 		 * the direct calls continue to be valid until the unplumb is
2151 		 * completed. Remove the callback that was added (1-time) at
2152 		 * capab enable time.
2153 		 */
2154 		mutex_enter(&ill->ill_lock);
2155 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2156 		mutex_exit(&ill->ill_lock);
2157 		if (ill->ill_flownotify_mh != NULL) {
2158 			idd = &idc->idc_direct;
2159 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2160 			    ill->ill_flownotify_mh);
2161 			ill->ill_flownotify_mh = NULL;
2162 		}
2163 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2164 		    NULL, DLD_DISABLE);
2165 	}
2166 
2167 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2168 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2169 		ip_squeue_clean_all(ill);
2170 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2171 		    NULL, DLD_DISABLE);
2172 	}
2173 
2174 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2175 		ASSERT(ill->ill_lso_capab != NULL);
2176 		/*
2177 		 * Clear the capability flag for LSO but retain the
2178 		 * ill_lso_capab structure since it's possible that another
2179 		 * thread is still referring to it.  The structure only gets
2180 		 * deallocated when we destroy the ill.
2181 		 */
2182 
2183 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2184 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2185 		    NULL, DLD_DISABLE);
2186 	}
2187 
2188 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2189 	ill_mac_perim_exit(ill, mph);
2190 }
2191 
2192 /*
2193  * Capability Negotiation protocol
2194  *
2195  * We don't wait for DLPI capability operations to finish during interface
2196  * bringup or teardown. Doing so would introduce more asynchrony and the
2197  * interface up/down operations will need multiple return and restarts.
2198  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2199  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2200  * exclusive operation won't start until the DLPI operations of the previous
2201  * exclusive operation complete.
2202  *
2203  * The capability state machine is shown below.
2204  *
2205  * state		next state		event, action
2206  *
2207  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2208  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2209  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2210  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2211  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2212  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2213  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2214  *						    ill_capability_probe.
2215  */
2216 
2217 /*
2218  * Dedicated thread started from ip_stack_init that handles capability
2219  * disable. This thread ensures the taskq dispatch does not fail by waiting
2220  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2221  * that direct calls to DLD are done in a cv_waitable context.
2222  */
2223 void
2224 ill_taskq_dispatch(ip_stack_t *ipst)
2225 {
2226 	callb_cpr_t cprinfo;
2227 	char 	name[64];
2228 	mblk_t	*mp;
2229 
2230 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2231 	    ipst->ips_netstack->netstack_stackid);
2232 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2233 	    name);
2234 	mutex_enter(&ipst->ips_capab_taskq_lock);
2235 
2236 	for (;;) {
2237 		mp = ipst->ips_capab_taskq_head;
2238 		while (mp != NULL) {
2239 			ipst->ips_capab_taskq_head = mp->b_next;
2240 			if (ipst->ips_capab_taskq_head == NULL)
2241 				ipst->ips_capab_taskq_tail = NULL;
2242 			mutex_exit(&ipst->ips_capab_taskq_lock);
2243 			mp->b_next = NULL;
2244 
2245 			VERIFY(taskq_dispatch(system_taskq,
2246 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2247 			mutex_enter(&ipst->ips_capab_taskq_lock);
2248 			mp = ipst->ips_capab_taskq_head;
2249 		}
2250 
2251 		if (ipst->ips_capab_taskq_quit)
2252 			break;
2253 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2254 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2255 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2256 	}
2257 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2258 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2259 	CALLB_CPR_EXIT(&cprinfo);
2260 	thread_exit();
2261 }
2262 
2263 /*
2264  * Consume a new-style hardware capabilities negotiation ack.
2265  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2266  */
2267 static void
2268 ill_capability_ack_thr(void *arg)
2269 {
2270 	mblk_t	*mp = arg;
2271 	dl_capability_ack_t *capp;
2272 	dl_capability_sub_t *subp, *endp;
2273 	ill_t	*ill;
2274 	boolean_t reneg;
2275 
2276 	ill = (ill_t *)mp->b_prev;
2277 	mp->b_prev = NULL;
2278 
2279 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2280 
2281 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2282 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2283 		/*
2284 		 * We have received the ack for our DL_CAPAB reset request.
2285 		 * There isnt' anything in the message that needs processing.
2286 		 * All message based capabilities have been disabled, now
2287 		 * do the function call based capability disable.
2288 		 */
2289 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2290 		ill_capability_dld_disable(ill);
2291 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2292 		if (reneg)
2293 			ill_capability_probe(ill);
2294 		goto done;
2295 	}
2296 
2297 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2298 		ill->ill_dlpi_capab_state = IDCS_OK;
2299 
2300 	capp = (dl_capability_ack_t *)mp->b_rptr;
2301 
2302 	if (capp->dl_sub_length == 0) {
2303 		/* no new-style capabilities */
2304 		goto done;
2305 	}
2306 
2307 	/* make sure the driver supplied correct dl_sub_length */
2308 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2309 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2310 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2311 		goto done;
2312 	}
2313 
2314 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2315 	/*
2316 	 * There are sub-capabilities. Process the ones we know about.
2317 	 * Loop until we don't have room for another sub-cap header..
2318 	 */
2319 	for (subp = SC(capp, capp->dl_sub_offset),
2320 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2321 	    subp <= endp;
2322 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2323 
2324 		switch (subp->dl_cap) {
2325 		case DL_CAPAB_ID_WRAPPER:
2326 			ill_capability_id_ack(ill, mp, subp);
2327 			break;
2328 		default:
2329 			ill_capability_dispatch(ill, mp, subp);
2330 			break;
2331 		}
2332 	}
2333 #undef SC
2334 done:
2335 	inet_freemsg(mp);
2336 	ill_capability_done(ill);
2337 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2338 }
2339 
2340 /*
2341  * This needs to be started in a taskq thread to provide a cv_waitable
2342  * context.
2343  */
2344 void
2345 ill_capability_ack(ill_t *ill, mblk_t *mp)
2346 {
2347 	ip_stack_t	*ipst = ill->ill_ipst;
2348 
2349 	mp->b_prev = (mblk_t *)ill;
2350 	ASSERT(mp->b_next == NULL);
2351 
2352 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2353 	    TQ_NOSLEEP) != 0)
2354 		return;
2355 
2356 	/*
2357 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2358 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2359 	 */
2360 	mutex_enter(&ipst->ips_capab_taskq_lock);
2361 	if (ipst->ips_capab_taskq_head == NULL) {
2362 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2363 		ipst->ips_capab_taskq_head = mp;
2364 	} else {
2365 		ipst->ips_capab_taskq_tail->b_next = mp;
2366 	}
2367 	ipst->ips_capab_taskq_tail = mp;
2368 
2369 	cv_signal(&ipst->ips_capab_taskq_cv);
2370 	mutex_exit(&ipst->ips_capab_taskq_lock);
2371 }
2372 
2373 /*
2374  * This routine is called to scan the fragmentation reassembly table for
2375  * the specified ILL for any packets that are starting to smell.
2376  * dead_interval is the maximum time in seconds that will be tolerated.  It
2377  * will either be the value specified in ip_g_frag_timeout, or zero if the
2378  * ILL is shutting down and it is time to blow everything off.
2379  *
2380  * It returns the number of seconds (as a time_t) that the next frag timer
2381  * should be scheduled for, 0 meaning that the timer doesn't need to be
2382  * re-started.  Note that the method of calculating next_timeout isn't
2383  * entirely accurate since time will flow between the time we grab
2384  * current_time and the time we schedule the next timeout.  This isn't a
2385  * big problem since this is the timer for sending an ICMP reassembly time
2386  * exceeded messages, and it doesn't have to be exactly accurate.
2387  *
2388  * This function is
2389  * sometimes called as writer, although this is not required.
2390  */
2391 time_t
2392 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2393 {
2394 	ipfb_t	*ipfb;
2395 	ipfb_t	*endp;
2396 	ipf_t	*ipf;
2397 	ipf_t	*ipfnext;
2398 	mblk_t	*mp;
2399 	time_t	current_time = gethrestime_sec();
2400 	time_t	next_timeout = 0;
2401 	uint32_t	hdr_length;
2402 	mblk_t	*send_icmp_head;
2403 	mblk_t	*send_icmp_head_v6;
2404 	ip_stack_t *ipst = ill->ill_ipst;
2405 	ip_recv_attr_t iras;
2406 
2407 	bzero(&iras, sizeof (iras));
2408 	iras.ira_flags = 0;
2409 	iras.ira_ill = iras.ira_rill = ill;
2410 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2411 	iras.ira_rifindex = iras.ira_ruifindex;
2412 
2413 	ipfb = ill->ill_frag_hash_tbl;
2414 	if (ipfb == NULL)
2415 		return (B_FALSE);
2416 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2417 	/* Walk the frag hash table. */
2418 	for (; ipfb < endp; ipfb++) {
2419 		send_icmp_head = NULL;
2420 		send_icmp_head_v6 = NULL;
2421 		mutex_enter(&ipfb->ipfb_lock);
2422 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2423 			time_t frag_time = current_time - ipf->ipf_timestamp;
2424 			time_t frag_timeout;
2425 
2426 			if (frag_time < dead_interval) {
2427 				/*
2428 				 * There are some outstanding fragments
2429 				 * that will timeout later.  Make note of
2430 				 * the time so that we can reschedule the
2431 				 * next timeout appropriately.
2432 				 */
2433 				frag_timeout = dead_interval - frag_time;
2434 				if (next_timeout == 0 ||
2435 				    frag_timeout < next_timeout) {
2436 					next_timeout = frag_timeout;
2437 				}
2438 				break;
2439 			}
2440 			/* Time's up.  Get it out of here. */
2441 			hdr_length = ipf->ipf_nf_hdr_len;
2442 			ipfnext = ipf->ipf_hash_next;
2443 			if (ipfnext)
2444 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2445 			*ipf->ipf_ptphn = ipfnext;
2446 			mp = ipf->ipf_mp->b_cont;
2447 			for (; mp; mp = mp->b_cont) {
2448 				/* Extra points for neatness. */
2449 				IP_REASS_SET_START(mp, 0);
2450 				IP_REASS_SET_END(mp, 0);
2451 			}
2452 			mp = ipf->ipf_mp->b_cont;
2453 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2454 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2455 			ipfb->ipfb_count -= ipf->ipf_count;
2456 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2457 			ipfb->ipfb_frag_pkts--;
2458 			/*
2459 			 * We do not send any icmp message from here because
2460 			 * we currently are holding the ipfb_lock for this
2461 			 * hash chain. If we try and send any icmp messages
2462 			 * from here we may end up via a put back into ip
2463 			 * trying to get the same lock, causing a recursive
2464 			 * mutex panic. Instead we build a list and send all
2465 			 * the icmp messages after we have dropped the lock.
2466 			 */
2467 			if (ill->ill_isv6) {
2468 				if (hdr_length != 0) {
2469 					mp->b_next = send_icmp_head_v6;
2470 					send_icmp_head_v6 = mp;
2471 				} else {
2472 					freemsg(mp);
2473 				}
2474 			} else {
2475 				if (hdr_length != 0) {
2476 					mp->b_next = send_icmp_head;
2477 					send_icmp_head = mp;
2478 				} else {
2479 					freemsg(mp);
2480 				}
2481 			}
2482 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2483 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2484 			freeb(ipf->ipf_mp);
2485 		}
2486 		mutex_exit(&ipfb->ipfb_lock);
2487 		/*
2488 		 * Now need to send any icmp messages that we delayed from
2489 		 * above.
2490 		 */
2491 		while (send_icmp_head_v6 != NULL) {
2492 			ip6_t *ip6h;
2493 
2494 			mp = send_icmp_head_v6;
2495 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2496 			mp->b_next = NULL;
2497 			ip6h = (ip6_t *)mp->b_rptr;
2498 			iras.ira_flags = 0;
2499 			/*
2500 			 * This will result in an incorrect ALL_ZONES zoneid
2501 			 * for multicast packets, but we
2502 			 * don't send ICMP errors for those in any case.
2503 			 */
2504 			iras.ira_zoneid =
2505 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2506 			    ill, ipst);
2507 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2508 			icmp_time_exceeded_v6(mp,
2509 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2510 			    &iras);
2511 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2512 		}
2513 		while (send_icmp_head != NULL) {
2514 			ipaddr_t dst;
2515 
2516 			mp = send_icmp_head;
2517 			send_icmp_head = send_icmp_head->b_next;
2518 			mp->b_next = NULL;
2519 
2520 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2521 
2522 			iras.ira_flags = IRAF_IS_IPV4;
2523 			/*
2524 			 * This will result in an incorrect ALL_ZONES zoneid
2525 			 * for broadcast and multicast packets, but we
2526 			 * don't send ICMP errors for those in any case.
2527 			 */
2528 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2529 			    ill, ipst);
2530 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2531 			icmp_time_exceeded(mp,
2532 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2533 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2534 		}
2535 	}
2536 	/*
2537 	 * A non-dying ILL will use the return value to decide whether to
2538 	 * restart the frag timer, and for how long.
2539 	 */
2540 	return (next_timeout);
2541 }
2542 
2543 /*
2544  * This routine is called when the approximate count of mblk memory used
2545  * for the specified ILL has exceeded max_count.
2546  */
2547 void
2548 ill_frag_prune(ill_t *ill, uint_t max_count)
2549 {
2550 	ipfb_t	*ipfb;
2551 	ipf_t	*ipf;
2552 	size_t	count;
2553 	clock_t now;
2554 
2555 	/*
2556 	 * If we are here within ip_min_frag_prune_time msecs remove
2557 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2558 	 * ill_frag_free_num_pkts.
2559 	 */
2560 	mutex_enter(&ill->ill_lock);
2561 	now = ddi_get_lbolt();
2562 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2563 	    (ip_min_frag_prune_time != 0 ?
2564 	    ip_min_frag_prune_time : msec_per_tick)) {
2565 
2566 		ill->ill_frag_free_num_pkts++;
2567 
2568 	} else {
2569 		ill->ill_frag_free_num_pkts = 0;
2570 	}
2571 	ill->ill_last_frag_clean_time = now;
2572 	mutex_exit(&ill->ill_lock);
2573 
2574 	/*
2575 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2576 	 */
2577 	if (ill->ill_frag_free_num_pkts != 0) {
2578 		int ix;
2579 
2580 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2581 			ipfb = &ill->ill_frag_hash_tbl[ix];
2582 			mutex_enter(&ipfb->ipfb_lock);
2583 			if (ipfb->ipfb_ipf != NULL) {
2584 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2585 				    ill->ill_frag_free_num_pkts);
2586 			}
2587 			mutex_exit(&ipfb->ipfb_lock);
2588 		}
2589 	}
2590 	/*
2591 	 * While the reassembly list for this ILL is too big, prune a fragment
2592 	 * queue by age, oldest first.
2593 	 */
2594 	while (ill->ill_frag_count > max_count) {
2595 		int	ix;
2596 		ipfb_t	*oipfb = NULL;
2597 		uint_t	oldest = UINT_MAX;
2598 
2599 		count = 0;
2600 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2601 			ipfb = &ill->ill_frag_hash_tbl[ix];
2602 			mutex_enter(&ipfb->ipfb_lock);
2603 			ipf = ipfb->ipfb_ipf;
2604 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2605 				oldest = ipf->ipf_gen;
2606 				oipfb = ipfb;
2607 			}
2608 			count += ipfb->ipfb_count;
2609 			mutex_exit(&ipfb->ipfb_lock);
2610 		}
2611 		if (oipfb == NULL)
2612 			break;
2613 
2614 		if (count <= max_count)
2615 			return;	/* Somebody beat us to it, nothing to do */
2616 		mutex_enter(&oipfb->ipfb_lock);
2617 		ipf = oipfb->ipfb_ipf;
2618 		if (ipf != NULL) {
2619 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2620 		}
2621 		mutex_exit(&oipfb->ipfb_lock);
2622 	}
2623 }
2624 
2625 /*
2626  * free 'free_cnt' fragmented packets starting at ipf.
2627  */
2628 void
2629 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2630 {
2631 	size_t	count;
2632 	mblk_t	*mp;
2633 	mblk_t	*tmp;
2634 	ipf_t **ipfp = ipf->ipf_ptphn;
2635 
2636 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2637 	ASSERT(ipfp != NULL);
2638 	ASSERT(ipf != NULL);
2639 
2640 	while (ipf != NULL && free_cnt-- > 0) {
2641 		count = ipf->ipf_count;
2642 		mp = ipf->ipf_mp;
2643 		ipf = ipf->ipf_hash_next;
2644 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2645 			IP_REASS_SET_START(tmp, 0);
2646 			IP_REASS_SET_END(tmp, 0);
2647 		}
2648 		atomic_add_32(&ill->ill_frag_count, -count);
2649 		ASSERT(ipfb->ipfb_count >= count);
2650 		ipfb->ipfb_count -= count;
2651 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2652 		ipfb->ipfb_frag_pkts--;
2653 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2654 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2655 		freemsg(mp);
2656 	}
2657 
2658 	if (ipf)
2659 		ipf->ipf_ptphn = ipfp;
2660 	ipfp[0] = ipf;
2661 }
2662 
2663 /*
2664  * Helper function for ill_forward_set().
2665  */
2666 static void
2667 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2668 {
2669 	ip_stack_t	*ipst = ill->ill_ipst;
2670 
2671 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2672 
2673 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2674 	    (enable ? "Enabling" : "Disabling"),
2675 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2676 	mutex_enter(&ill->ill_lock);
2677 	if (enable)
2678 		ill->ill_flags |= ILLF_ROUTER;
2679 	else
2680 		ill->ill_flags &= ~ILLF_ROUTER;
2681 	mutex_exit(&ill->ill_lock);
2682 	if (ill->ill_isv6)
2683 		ill_set_nce_router_flags(ill, enable);
2684 	/* Notify routing socket listeners of this change. */
2685 	if (ill->ill_ipif != NULL)
2686 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2687 }
2688 
2689 /*
2690  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2691  * socket messages for each interface whose flags we change.
2692  */
2693 int
2694 ill_forward_set(ill_t *ill, boolean_t enable)
2695 {
2696 	ipmp_illgrp_t *illg;
2697 	ip_stack_t *ipst = ill->ill_ipst;
2698 
2699 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2700 
2701 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2702 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2703 		return (0);
2704 
2705 	if (IS_LOOPBACK(ill))
2706 		return (EINVAL);
2707 
2708 	if (enable && ill->ill_allowed_ips_cnt > 0)
2709 		return (EPERM);
2710 
2711 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2712 		/*
2713 		 * Update all of the interfaces in the group.
2714 		 */
2715 		illg = ill->ill_grp;
2716 		ill = list_head(&illg->ig_if);
2717 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2718 			ill_forward_set_on_ill(ill, enable);
2719 
2720 		/*
2721 		 * Update the IPMP meta-interface.
2722 		 */
2723 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2724 		return (0);
2725 	}
2726 
2727 	ill_forward_set_on_ill(ill, enable);
2728 	return (0);
2729 }
2730 
2731 /*
2732  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2733  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2734  * set or clear.
2735  */
2736 static void
2737 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2738 {
2739 	ipif_t *ipif;
2740 	ncec_t *ncec;
2741 	nce_t *nce;
2742 
2743 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2744 		/*
2745 		 * NOTE: we match across the illgrp because nce's for
2746 		 * addresses on IPMP interfaces have an nce_ill that points to
2747 		 * the bound underlying ill.
2748 		 */
2749 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2750 		if (nce != NULL) {
2751 			ncec = nce->nce_common;
2752 			mutex_enter(&ncec->ncec_lock);
2753 			if (enable)
2754 				ncec->ncec_flags |= NCE_F_ISROUTER;
2755 			else
2756 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2757 			mutex_exit(&ncec->ncec_lock);
2758 			nce_refrele(nce);
2759 		}
2760 	}
2761 }
2762 
2763 /*
2764  * Intializes the context structure and returns the first ill in the list
2765  * cuurently start_list and end_list can have values:
2766  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2767  * IP_V4_G_HEAD		Traverse IPV4 list only.
2768  * IP_V6_G_HEAD		Traverse IPV6 list only.
2769  */
2770 
2771 /*
2772  * We don't check for CONDEMNED ills here. Caller must do that if
2773  * necessary under the ill lock.
2774  */
2775 ill_t *
2776 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2777     ip_stack_t *ipst)
2778 {
2779 	ill_if_t *ifp;
2780 	ill_t *ill;
2781 	avl_tree_t *avl_tree;
2782 
2783 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2784 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2785 
2786 	/*
2787 	 * setup the lists to search
2788 	 */
2789 	if (end_list != MAX_G_HEADS) {
2790 		ctx->ctx_current_list = start_list;
2791 		ctx->ctx_last_list = end_list;
2792 	} else {
2793 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2794 		ctx->ctx_current_list = 0;
2795 	}
2796 
2797 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2798 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2799 		if (ifp != (ill_if_t *)
2800 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2801 			avl_tree = &ifp->illif_avl_by_ppa;
2802 			ill = avl_first(avl_tree);
2803 			/*
2804 			 * ill is guaranteed to be non NULL or ifp should have
2805 			 * not existed.
2806 			 */
2807 			ASSERT(ill != NULL);
2808 			return (ill);
2809 		}
2810 		ctx->ctx_current_list++;
2811 	}
2812 
2813 	return (NULL);
2814 }
2815 
2816 /*
2817  * returns the next ill in the list. ill_first() must have been called
2818  * before calling ill_next() or bad things will happen.
2819  */
2820 
2821 /*
2822  * We don't check for CONDEMNED ills here. Caller must do that if
2823  * necessary under the ill lock.
2824  */
2825 ill_t *
2826 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2827 {
2828 	ill_if_t *ifp;
2829 	ill_t *ill;
2830 	ip_stack_t	*ipst = lastill->ill_ipst;
2831 
2832 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2833 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2834 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2835 	    AVL_AFTER)) != NULL) {
2836 		return (ill);
2837 	}
2838 
2839 	/* goto next ill_ifp in the list. */
2840 	ifp = lastill->ill_ifptr->illif_next;
2841 
2842 	/* make sure not at end of circular list */
2843 	while (ifp ==
2844 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2845 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2846 			return (NULL);
2847 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2848 	}
2849 
2850 	return (avl_first(&ifp->illif_avl_by_ppa));
2851 }
2852 
2853 /*
2854  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2855  * The final number (PPA) must not have any leading zeros.  Upon success, a
2856  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2857  */
2858 static char *
2859 ill_get_ppa_ptr(char *name)
2860 {
2861 	int namelen = strlen(name);
2862 	int end_ndx = namelen - 1;
2863 	int ppa_ndx, i;
2864 
2865 	/*
2866 	 * Check that the first character is [a-zA-Z], and that the last
2867 	 * character is [0-9].
2868 	 */
2869 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2870 		return (NULL);
2871 
2872 	/*
2873 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2874 	 */
2875 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2876 		if (!isdigit(name[ppa_ndx - 1]))
2877 			break;
2878 
2879 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2880 		return (NULL);
2881 
2882 	/*
2883 	 * Check that the intermediate characters are [a-z0-9.]
2884 	 */
2885 	for (i = 1; i < ppa_ndx; i++) {
2886 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2887 		    name[i] != '.' && name[i] != '_') {
2888 			return (NULL);
2889 		}
2890 	}
2891 
2892 	return (name + ppa_ndx);
2893 }
2894 
2895 /*
2896  * use avl tree to locate the ill.
2897  */
2898 static ill_t *
2899 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2900 {
2901 	char *ppa_ptr = NULL;
2902 	int len;
2903 	uint_t ppa;
2904 	ill_t *ill = NULL;
2905 	ill_if_t *ifp;
2906 	int list;
2907 
2908 	/*
2909 	 * get ppa ptr
2910 	 */
2911 	if (isv6)
2912 		list = IP_V6_G_HEAD;
2913 	else
2914 		list = IP_V4_G_HEAD;
2915 
2916 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2917 		return (NULL);
2918 	}
2919 
2920 	len = ppa_ptr - name + 1;
2921 
2922 	ppa = stoi(&ppa_ptr);
2923 
2924 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2925 
2926 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2927 		/*
2928 		 * match is done on len - 1 as the name is not null
2929 		 * terminated it contains ppa in addition to the interface
2930 		 * name.
2931 		 */
2932 		if ((ifp->illif_name_len == len) &&
2933 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2934 			break;
2935 		} else {
2936 			ifp = ifp->illif_next;
2937 		}
2938 	}
2939 
2940 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2941 		/*
2942 		 * Even the interface type does not exist.
2943 		 */
2944 		return (NULL);
2945 	}
2946 
2947 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2948 	if (ill != NULL) {
2949 		mutex_enter(&ill->ill_lock);
2950 		if (ILL_CAN_LOOKUP(ill)) {
2951 			ill_refhold_locked(ill);
2952 			mutex_exit(&ill->ill_lock);
2953 			return (ill);
2954 		}
2955 		mutex_exit(&ill->ill_lock);
2956 	}
2957 	return (NULL);
2958 }
2959 
2960 /*
2961  * comparison function for use with avl.
2962  */
2963 static int
2964 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2965 {
2966 	uint_t ppa;
2967 	uint_t ill_ppa;
2968 
2969 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2970 
2971 	ppa = *((uint_t *)ppa_ptr);
2972 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2973 	/*
2974 	 * We want the ill with the lowest ppa to be on the
2975 	 * top.
2976 	 */
2977 	if (ill_ppa < ppa)
2978 		return (1);
2979 	if (ill_ppa > ppa)
2980 		return (-1);
2981 	return (0);
2982 }
2983 
2984 /*
2985  * remove an interface type from the global list.
2986  */
2987 static void
2988 ill_delete_interface_type(ill_if_t *interface)
2989 {
2990 	ASSERT(interface != NULL);
2991 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2992 
2993 	avl_destroy(&interface->illif_avl_by_ppa);
2994 	if (interface->illif_ppa_arena != NULL)
2995 		vmem_destroy(interface->illif_ppa_arena);
2996 
2997 	remque(interface);
2998 
2999 	mi_free(interface);
3000 }
3001 
3002 /*
3003  * remove ill from the global list.
3004  */
3005 static void
3006 ill_glist_delete(ill_t *ill)
3007 {
3008 	ip_stack_t	*ipst;
3009 	phyint_t	*phyi;
3010 
3011 	if (ill == NULL)
3012 		return;
3013 	ipst = ill->ill_ipst;
3014 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3015 
3016 	/*
3017 	 * If the ill was never inserted into the AVL tree
3018 	 * we skip the if branch.
3019 	 */
3020 	if (ill->ill_ifptr != NULL) {
3021 		/*
3022 		 * remove from AVL tree and free ppa number
3023 		 */
3024 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3025 
3026 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3027 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3028 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3029 		}
3030 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3031 			ill_delete_interface_type(ill->ill_ifptr);
3032 		}
3033 
3034 		/*
3035 		 * Indicate ill is no longer in the list.
3036 		 */
3037 		ill->ill_ifptr = NULL;
3038 		ill->ill_name_length = 0;
3039 		ill->ill_name[0] = '\0';
3040 		ill->ill_ppa = UINT_MAX;
3041 	}
3042 
3043 	/* Generate one last event for this ill. */
3044 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3045 	    ill->ill_name_length);
3046 
3047 	ASSERT(ill->ill_phyint != NULL);
3048 	phyi = ill->ill_phyint;
3049 	ill->ill_phyint = NULL;
3050 
3051 	/*
3052 	 * ill_init allocates a phyint always to store the copy
3053 	 * of flags relevant to phyint. At that point in time, we could
3054 	 * not assign the name and hence phyint_illv4/v6 could not be
3055 	 * initialized. Later in ipif_set_values, we assign the name to
3056 	 * the ill, at which point in time we assign phyint_illv4/v6.
3057 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3058 	 */
3059 	if (ill->ill_flags & ILLF_IPV6)
3060 		phyi->phyint_illv6 = NULL;
3061 	else
3062 		phyi->phyint_illv4 = NULL;
3063 
3064 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3065 		rw_exit(&ipst->ips_ill_g_lock);
3066 		return;
3067 	}
3068 
3069 	/*
3070 	 * There are no ills left on this phyint; pull it out of the phyint
3071 	 * avl trees, and free it.
3072 	 */
3073 	if (phyi->phyint_ifindex > 0) {
3074 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3075 		    phyi);
3076 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3077 		    phyi);
3078 	}
3079 	rw_exit(&ipst->ips_ill_g_lock);
3080 
3081 	phyint_free(phyi);
3082 }
3083 
3084 /*
3085  * allocate a ppa, if the number of plumbed interfaces of this type are
3086  * less than ill_no_arena do a linear search to find a unused ppa.
3087  * When the number goes beyond ill_no_arena switch to using an arena.
3088  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3089  * is the return value for an error condition, so allocation starts at one
3090  * and is decremented by one.
3091  */
3092 static int
3093 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3094 {
3095 	ill_t *tmp_ill;
3096 	uint_t start, end;
3097 	int ppa;
3098 
3099 	if (ifp->illif_ppa_arena == NULL &&
3100 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3101 		/*
3102 		 * Create an arena.
3103 		 */
3104 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3105 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3106 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3107 			/* allocate what has already been assigned */
3108 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3109 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3110 		    tmp_ill, AVL_AFTER)) {
3111 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3112 			    1,		/* size */
3113 			    1,		/* align/quantum */
3114 			    0,		/* phase */
3115 			    0,		/* nocross */
3116 			    /* minaddr */
3117 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3118 			    /* maxaddr */
3119 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3120 			    VM_NOSLEEP|VM_FIRSTFIT);
3121 			if (ppa == 0) {
3122 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3123 				    " failed while switching"));
3124 				vmem_destroy(ifp->illif_ppa_arena);
3125 				ifp->illif_ppa_arena = NULL;
3126 				break;
3127 			}
3128 		}
3129 	}
3130 
3131 	if (ifp->illif_ppa_arena != NULL) {
3132 		if (ill->ill_ppa == UINT_MAX) {
3133 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3134 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3135 			if (ppa == 0)
3136 				return (EAGAIN);
3137 			ill->ill_ppa = --ppa;
3138 		} else {
3139 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3140 			    1, 		/* size */
3141 			    1, 		/* align/quantum */
3142 			    0, 		/* phase */
3143 			    0, 		/* nocross */
3144 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3145 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3146 			    VM_NOSLEEP|VM_FIRSTFIT);
3147 			/*
3148 			 * Most likely the allocation failed because
3149 			 * the requested ppa was in use.
3150 			 */
3151 			if (ppa == 0)
3152 				return (EEXIST);
3153 		}
3154 		return (0);
3155 	}
3156 
3157 	/*
3158 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3159 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3160 	 */
3161 	if (ill->ill_ppa == UINT_MAX) {
3162 		end = UINT_MAX - 1;
3163 		start = 0;
3164 	} else {
3165 		end = start = ill->ill_ppa;
3166 	}
3167 
3168 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3169 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3170 		if (start++ >= end) {
3171 			if (ill->ill_ppa == UINT_MAX)
3172 				return (EAGAIN);
3173 			else
3174 				return (EEXIST);
3175 		}
3176 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3177 	}
3178 	ill->ill_ppa = start;
3179 	return (0);
3180 }
3181 
3182 /*
3183  * Insert ill into the list of configured ill's. Once this function completes,
3184  * the ill is globally visible and is available through lookups. More precisely
3185  * this happens after the caller drops the ill_g_lock.
3186  */
3187 static int
3188 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3189 {
3190 	ill_if_t *ill_interface;
3191 	avl_index_t where = 0;
3192 	int error;
3193 	int name_length;
3194 	int index;
3195 	boolean_t check_length = B_FALSE;
3196 	ip_stack_t	*ipst = ill->ill_ipst;
3197 
3198 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3199 
3200 	name_length = mi_strlen(name) + 1;
3201 
3202 	if (isv6)
3203 		index = IP_V6_G_HEAD;
3204 	else
3205 		index = IP_V4_G_HEAD;
3206 
3207 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3208 	/*
3209 	 * Search for interface type based on name
3210 	 */
3211 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3212 		if ((ill_interface->illif_name_len == name_length) &&
3213 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3214 			break;
3215 		}
3216 		ill_interface = ill_interface->illif_next;
3217 	}
3218 
3219 	/*
3220 	 * Interface type not found, create one.
3221 	 */
3222 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3223 		ill_g_head_t ghead;
3224 
3225 		/*
3226 		 * allocate ill_if_t structure
3227 		 */
3228 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3229 		if (ill_interface == NULL) {
3230 			return (ENOMEM);
3231 		}
3232 
3233 		(void) strcpy(ill_interface->illif_name, name);
3234 		ill_interface->illif_name_len = name_length;
3235 
3236 		avl_create(&ill_interface->illif_avl_by_ppa,
3237 		    ill_compare_ppa, sizeof (ill_t),
3238 		    offsetof(struct ill_s, ill_avl_byppa));
3239 
3240 		/*
3241 		 * link the structure in the back to maintain order
3242 		 * of configuration for ifconfig output.
3243 		 */
3244 		ghead = ipst->ips_ill_g_heads[index];
3245 		insque(ill_interface, ghead.ill_g_list_tail);
3246 	}
3247 
3248 	if (ill->ill_ppa == UINT_MAX)
3249 		check_length = B_TRUE;
3250 
3251 	error = ill_alloc_ppa(ill_interface, ill);
3252 	if (error != 0) {
3253 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3254 			ill_delete_interface_type(ill->ill_ifptr);
3255 		return (error);
3256 	}
3257 
3258 	/*
3259 	 * When the ppa is choosen by the system, check that there is
3260 	 * enough space to insert ppa. if a specific ppa was passed in this
3261 	 * check is not required as the interface name passed in will have
3262 	 * the right ppa in it.
3263 	 */
3264 	if (check_length) {
3265 		/*
3266 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3267 		 */
3268 		char buf[sizeof (uint_t) * 3];
3269 
3270 		/*
3271 		 * convert ppa to string to calculate the amount of space
3272 		 * required for it in the name.
3273 		 */
3274 		numtos(ill->ill_ppa, buf);
3275 
3276 		/* Do we have enough space to insert ppa ? */
3277 
3278 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3279 			/* Free ppa and interface type struct */
3280 			if (ill_interface->illif_ppa_arena != NULL) {
3281 				vmem_free(ill_interface->illif_ppa_arena,
3282 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3283 			}
3284 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3285 				ill_delete_interface_type(ill->ill_ifptr);
3286 
3287 			return (EINVAL);
3288 		}
3289 	}
3290 
3291 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3292 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3293 
3294 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3295 	    &where);
3296 	ill->ill_ifptr = ill_interface;
3297 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3298 
3299 	ill_phyint_reinit(ill);
3300 	return (0);
3301 }
3302 
3303 /* Initialize the per phyint ipsq used for serialization */
3304 static boolean_t
3305 ipsq_init(ill_t *ill, boolean_t enter)
3306 {
3307 	ipsq_t  *ipsq;
3308 	ipxop_t	*ipx;
3309 
3310 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3311 		return (B_FALSE);
3312 
3313 	ill->ill_phyint->phyint_ipsq = ipsq;
3314 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3315 	ipx->ipx_ipsq = ipsq;
3316 	ipsq->ipsq_next = ipsq;
3317 	ipsq->ipsq_phyint = ill->ill_phyint;
3318 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3319 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3320 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3321 	if (enter) {
3322 		ipx->ipx_writer = curthread;
3323 		ipx->ipx_forced = B_FALSE;
3324 		ipx->ipx_reentry_cnt = 1;
3325 #ifdef DEBUG
3326 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3327 #endif
3328 	}
3329 	return (B_TRUE);
3330 }
3331 
3332 /*
3333  * ill_init is called by ip_open when a device control stream is opened.
3334  * It does a few initializations, and shoots a DL_INFO_REQ message down
3335  * to the driver.  The response is later picked up in ip_rput_dlpi and
3336  * used to set up default mechanisms for talking to the driver.  (Always
3337  * called as writer.)
3338  *
3339  * If this function returns error, ip_open will call ip_close which in
3340  * turn will call ill_delete to clean up any memory allocated here that
3341  * is not yet freed.
3342  */
3343 int
3344 ill_init(queue_t *q, ill_t *ill)
3345 {
3346 	int	count;
3347 	dl_info_req_t	*dlir;
3348 	mblk_t	*info_mp;
3349 	uchar_t *frag_ptr;
3350 
3351 	/*
3352 	 * The ill is initialized to zero by mi_alloc*(). In addition
3353 	 * some fields already contain valid values, initialized in
3354 	 * ip_open(), before we reach here.
3355 	 */
3356 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3357 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3358 	ill->ill_saved_ire_cnt = 0;
3359 
3360 	ill->ill_rq = q;
3361 	ill->ill_wq = WR(q);
3362 
3363 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3364 	    BPRI_HI);
3365 	if (info_mp == NULL)
3366 		return (ENOMEM);
3367 
3368 	/*
3369 	 * Allocate sufficient space to contain our fragment hash table and
3370 	 * the device name.
3371 	 */
3372 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3373 	if (frag_ptr == NULL) {
3374 		freemsg(info_mp);
3375 		return (ENOMEM);
3376 	}
3377 	ill->ill_frag_ptr = frag_ptr;
3378 	ill->ill_frag_free_num_pkts = 0;
3379 	ill->ill_last_frag_clean_time = 0;
3380 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3381 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3382 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3383 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3384 		    NULL, MUTEX_DEFAULT, NULL);
3385 	}
3386 
3387 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3388 	if (ill->ill_phyint == NULL) {
3389 		freemsg(info_mp);
3390 		mi_free(frag_ptr);
3391 		return (ENOMEM);
3392 	}
3393 
3394 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3395 	/*
3396 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3397 	 * at this point because of the following reason. If we can't
3398 	 * enter the ipsq at some point and cv_wait, the writer that
3399 	 * wakes us up tries to locate us using the list of all phyints
3400 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3401 	 * If we don't set it now, we risk a missed wakeup.
3402 	 */
3403 	ill->ill_phyint->phyint_illv4 = ill;
3404 	ill->ill_ppa = UINT_MAX;
3405 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3406 
3407 	ill_set_inputfn(ill);
3408 
3409 	if (!ipsq_init(ill, B_TRUE)) {
3410 		freemsg(info_mp);
3411 		mi_free(frag_ptr);
3412 		mi_free(ill->ill_phyint);
3413 		return (ENOMEM);
3414 	}
3415 
3416 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3417 
3418 	/* Frag queue limit stuff */
3419 	ill->ill_frag_count = 0;
3420 	ill->ill_ipf_gen = 0;
3421 
3422 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3423 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3424 	ill->ill_global_timer = INFINITY;
3425 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3426 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3427 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3428 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3429 
3430 	/*
3431 	 * Initialize IPv6 configuration variables.  The IP module is always
3432 	 * opened as an IPv4 module.  Instead tracking down the cases where
3433 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3434 	 * here for convenience, this has no effect until the ill is set to do
3435 	 * IPv6.
3436 	 */
3437 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3438 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3439 	ill->ill_max_buf = ND_MAX_Q;
3440 	ill->ill_refcnt = 0;
3441 
3442 	/* Send down the Info Request to the driver. */
3443 	info_mp->b_datap->db_type = M_PCPROTO;
3444 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3445 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3446 	dlir->dl_primitive = DL_INFO_REQ;
3447 
3448 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3449 
3450 	qprocson(q);
3451 	ill_dlpi_send(ill, info_mp);
3452 
3453 	return (0);
3454 }
3455 
3456 /*
3457  * ill_dls_info
3458  * creates datalink socket info from the device.
3459  */
3460 int
3461 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3462 {
3463 	size_t	len;
3464 
3465 	sdl->sdl_family = AF_LINK;
3466 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3467 	sdl->sdl_type = ill->ill_type;
3468 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3469 	len = strlen(sdl->sdl_data);
3470 	ASSERT(len < 256);
3471 	sdl->sdl_nlen = (uchar_t)len;
3472 	sdl->sdl_alen = ill->ill_phys_addr_length;
3473 	sdl->sdl_slen = 0;
3474 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3475 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3476 
3477 	return (sizeof (struct sockaddr_dl));
3478 }
3479 
3480 /*
3481  * ill_xarp_info
3482  * creates xarp info from the device.
3483  */
3484 static int
3485 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3486 {
3487 	sdl->sdl_family = AF_LINK;
3488 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3489 	sdl->sdl_type = ill->ill_type;
3490 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3491 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3492 	sdl->sdl_alen = ill->ill_phys_addr_length;
3493 	sdl->sdl_slen = 0;
3494 	return (sdl->sdl_nlen);
3495 }
3496 
3497 static int
3498 loopback_kstat_update(kstat_t *ksp, int rw)
3499 {
3500 	kstat_named_t *kn;
3501 	netstackid_t	stackid;
3502 	netstack_t	*ns;
3503 	ip_stack_t	*ipst;
3504 
3505 	if (ksp == NULL || ksp->ks_data == NULL)
3506 		return (EIO);
3507 
3508 	if (rw == KSTAT_WRITE)
3509 		return (EACCES);
3510 
3511 	kn = KSTAT_NAMED_PTR(ksp);
3512 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3513 
3514 	ns = netstack_find_by_stackid(stackid);
3515 	if (ns == NULL)
3516 		return (-1);
3517 
3518 	ipst = ns->netstack_ip;
3519 	if (ipst == NULL) {
3520 		netstack_rele(ns);
3521 		return (-1);
3522 	}
3523 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3524 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3525 	netstack_rele(ns);
3526 	return (0);
3527 }
3528 
3529 /*
3530  * Has ifindex been plumbed already?
3531  */
3532 static boolean_t
3533 phyint_exists(uint_t index, ip_stack_t *ipst)
3534 {
3535 	ASSERT(index != 0);
3536 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3537 
3538 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3539 	    &index, NULL) != NULL);
3540 }
3541 
3542 /*
3543  * Pick a unique ifindex.
3544  * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3545  * flag is set so that next time time ip_assign_ifindex() is called, it
3546  * falls through and resets the index counter back to 1, the minimum value
3547  * for the interface index. The logic below assumes that ips_ill_index
3548  * can hold a value of IF_INDEX_MAX+1 without there being any loss
3549  * (i.e. reset back to 0.)
3550  */
3551 boolean_t
3552 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3553 {
3554 	uint_t loops;
3555 
3556 	if (!ipst->ips_ill_index_wrap) {
3557 		*indexp = ipst->ips_ill_index++;
3558 		if (ipst->ips_ill_index > IF_INDEX_MAX) {
3559 			/*
3560 			 * Reached the maximum ifindex value, set the wrap
3561 			 * flag to indicate that it is no longer possible
3562 			 * to assume that a given index is unallocated.
3563 			 */
3564 			ipst->ips_ill_index_wrap = B_TRUE;
3565 		}
3566 		return (B_TRUE);
3567 	}
3568 
3569 	if (ipst->ips_ill_index > IF_INDEX_MAX)
3570 		ipst->ips_ill_index = 1;
3571 
3572 	/*
3573 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3574 	 * at this point and don't want to call any function that attempts
3575 	 * to get the lock again.
3576 	 */
3577 	for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3578 		if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3579 			/* found unused index - use it */
3580 			*indexp = ipst->ips_ill_index;
3581 			return (B_TRUE);
3582 		}
3583 
3584 		ipst->ips_ill_index++;
3585 		if (ipst->ips_ill_index > IF_INDEX_MAX)
3586 			ipst->ips_ill_index = 1;
3587 	}
3588 
3589 	/*
3590 	 * all interface indicies are inuse.
3591 	 */
3592 	return (B_FALSE);
3593 }
3594 
3595 /*
3596  * Assign a unique interface index for the phyint.
3597  */
3598 static boolean_t
3599 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3600 {
3601 	ASSERT(phyi->phyint_ifindex == 0);
3602 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3603 }
3604 
3605 /*
3606  * Initialize the flags on `phyi' as per the provided mactype.
3607  */
3608 static void
3609 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3610 {
3611 	uint64_t flags = 0;
3612 
3613 	/*
3614 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3615 	 * we always presume the underlying hardware is working and set
3616 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3617 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3618 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3619 	 */
3620 	if (mactype == SUNW_DL_IPMP)
3621 		flags |= PHYI_FAILED;
3622 	else
3623 		flags |= PHYI_RUNNING;
3624 
3625 	switch (mactype) {
3626 	case SUNW_DL_VNI:
3627 		flags |= PHYI_VIRTUAL;
3628 		break;
3629 	case SUNW_DL_IPMP:
3630 		flags |= PHYI_IPMP;
3631 		break;
3632 	case DL_LOOP:
3633 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3634 		break;
3635 	}
3636 
3637 	mutex_enter(&phyi->phyint_lock);
3638 	phyi->phyint_flags |= flags;
3639 	mutex_exit(&phyi->phyint_lock);
3640 }
3641 
3642 /*
3643  * Return a pointer to the ill which matches the supplied name.  Note that
3644  * the ill name length includes the null termination character.  (May be
3645  * called as writer.)
3646  * If do_alloc and the interface is "lo0" it will be automatically created.
3647  * Cannot bump up reference on condemned ills. So dup detect can't be done
3648  * using this func.
3649  */
3650 ill_t *
3651 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3652     boolean_t *did_alloc, ip_stack_t *ipst)
3653 {
3654 	ill_t	*ill;
3655 	ipif_t	*ipif;
3656 	ipsq_t	*ipsq;
3657 	kstat_named_t	*kn;
3658 	boolean_t isloopback;
3659 	in6_addr_t ov6addr;
3660 
3661 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3662 
3663 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3664 	ill = ill_find_by_name(name, isv6, ipst);
3665 	rw_exit(&ipst->ips_ill_g_lock);
3666 	if (ill != NULL)
3667 		return (ill);
3668 
3669 	/*
3670 	 * Couldn't find it.  Does this happen to be a lookup for the
3671 	 * loopback device and are we allowed to allocate it?
3672 	 */
3673 	if (!isloopback || !do_alloc)
3674 		return (NULL);
3675 
3676 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3677 	ill = ill_find_by_name(name, isv6, ipst);
3678 	if (ill != NULL) {
3679 		rw_exit(&ipst->ips_ill_g_lock);
3680 		return (ill);
3681 	}
3682 
3683 	/* Create the loopback device on demand */
3684 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3685 	    sizeof (ipif_loopback_name), BPRI_MED));
3686 	if (ill == NULL)
3687 		goto done;
3688 
3689 	*ill = ill_null;
3690 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3691 	ill->ill_ipst = ipst;
3692 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3693 	netstack_hold(ipst->ips_netstack);
3694 	/*
3695 	 * For exclusive stacks we set the zoneid to zero
3696 	 * to make IP operate as if in the global zone.
3697 	 */
3698 	ill->ill_zoneid = GLOBAL_ZONEID;
3699 
3700 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3701 	if (ill->ill_phyint == NULL)
3702 		goto done;
3703 
3704 	if (isv6)
3705 		ill->ill_phyint->phyint_illv6 = ill;
3706 	else
3707 		ill->ill_phyint->phyint_illv4 = ill;
3708 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3709 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3710 
3711 	if (isv6) {
3712 		ill->ill_isv6 = B_TRUE;
3713 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3714 	} else {
3715 		ill->ill_max_frag = ip_loopback_mtuplus;
3716 	}
3717 	if (!ill_allocate_mibs(ill))
3718 		goto done;
3719 	ill->ill_current_frag = ill->ill_max_frag;
3720 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3721 	ill->ill_mc_mtu = ill->ill_mtu;
3722 	/*
3723 	 * ipif_loopback_name can't be pointed at directly because its used
3724 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3725 	 * from the glist, ill_glist_delete() sets the first character of
3726 	 * ill_name to '\0'.
3727 	 */
3728 	ill->ill_name = (char *)ill + sizeof (*ill);
3729 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3730 	ill->ill_name_length = sizeof (ipif_loopback_name);
3731 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3732 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3733 
3734 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3735 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3736 	ill->ill_global_timer = INFINITY;
3737 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3738 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3739 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3740 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3741 
3742 	/* No resolver here. */
3743 	ill->ill_net_type = IRE_LOOPBACK;
3744 
3745 	/* Initialize the ipsq */
3746 	if (!ipsq_init(ill, B_FALSE))
3747 		goto done;
3748 
3749 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3750 	if (ipif == NULL)
3751 		goto done;
3752 
3753 	ill->ill_flags = ILLF_MULTICAST;
3754 
3755 	ov6addr = ipif->ipif_v6lcl_addr;
3756 	/* Set up default loopback address and mask. */
3757 	if (!isv6) {
3758 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3759 
3760 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3761 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3762 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3763 		    ipif->ipif_v6subnet);
3764 		ill->ill_flags |= ILLF_IPV4;
3765 	} else {
3766 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3767 		ipif->ipif_v6net_mask = ipv6_all_ones;
3768 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3769 		    ipif->ipif_v6subnet);
3770 		ill->ill_flags |= ILLF_IPV6;
3771 	}
3772 
3773 	/*
3774 	 * Chain us in at the end of the ill list. hold the ill
3775 	 * before we make it globally visible. 1 for the lookup.
3776 	 */
3777 	ill->ill_refcnt = 0;
3778 	ill_refhold(ill);
3779 
3780 	ill->ill_frag_count = 0;
3781 	ill->ill_frag_free_num_pkts = 0;
3782 	ill->ill_last_frag_clean_time = 0;
3783 
3784 	ipsq = ill->ill_phyint->phyint_ipsq;
3785 
3786 	ill_set_inputfn(ill);
3787 
3788 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3789 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3790 
3791 	/* Let SCTP know so that it can add this to its list */
3792 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3793 
3794 	/*
3795 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3796 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3797 	 * requires to be after ill_glist_insert() since we need the
3798 	 * ill_index set. Pass on ipv6_loopback as the old address.
3799 	 */
3800 	sctp_update_ipif_addr(ipif, ov6addr);
3801 
3802 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3803 
3804 	/*
3805 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3806 	 * If so, free our original one.
3807 	 */
3808 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3809 		ipsq_delete(ipsq);
3810 
3811 	if (ipst->ips_loopback_ksp == NULL) {
3812 		/* Export loopback interface statistics */
3813 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3814 		    ipif_loopback_name, "net",
3815 		    KSTAT_TYPE_NAMED, 2, 0,
3816 		    ipst->ips_netstack->netstack_stackid);
3817 		if (ipst->ips_loopback_ksp != NULL) {
3818 			ipst->ips_loopback_ksp->ks_update =
3819 			    loopback_kstat_update;
3820 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3821 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3822 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3823 			ipst->ips_loopback_ksp->ks_private =
3824 			    (void *)(uintptr_t)ipst->ips_netstack->
3825 			    netstack_stackid;
3826 			kstat_install(ipst->ips_loopback_ksp);
3827 		}
3828 	}
3829 
3830 	*did_alloc = B_TRUE;
3831 	rw_exit(&ipst->ips_ill_g_lock);
3832 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3833 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3834 	return (ill);
3835 done:
3836 	if (ill != NULL) {
3837 		if (ill->ill_phyint != NULL) {
3838 			ipsq = ill->ill_phyint->phyint_ipsq;
3839 			if (ipsq != NULL) {
3840 				ipsq->ipsq_phyint = NULL;
3841 				ipsq_delete(ipsq);
3842 			}
3843 			mi_free(ill->ill_phyint);
3844 		}
3845 		ill_free_mib(ill);
3846 		if (ill->ill_ipst != NULL)
3847 			netstack_rele(ill->ill_ipst->ips_netstack);
3848 		mi_free(ill);
3849 	}
3850 	rw_exit(&ipst->ips_ill_g_lock);
3851 	return (NULL);
3852 }
3853 
3854 /*
3855  * For IPP calls - use the ip_stack_t for global stack.
3856  */
3857 ill_t *
3858 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3859 {
3860 	ip_stack_t	*ipst;
3861 	ill_t		*ill;
3862 
3863 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3864 	if (ipst == NULL) {
3865 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3866 		return (NULL);
3867 	}
3868 
3869 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3870 	netstack_rele(ipst->ips_netstack);
3871 	return (ill);
3872 }
3873 
3874 /*
3875  * Return a pointer to the ill which matches the index and IP version type.
3876  */
3877 ill_t *
3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3879 {
3880 	ill_t	*ill;
3881 	phyint_t *phyi;
3882 
3883 	/*
3884 	 * Indexes are stored in the phyint - a common structure
3885 	 * to both IPv4 and IPv6.
3886 	 */
3887 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3888 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3889 	    (void *) &index, NULL);
3890 	if (phyi != NULL) {
3891 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3892 		if (ill != NULL) {
3893 			mutex_enter(&ill->ill_lock);
3894 			if (!ILL_IS_CONDEMNED(ill)) {
3895 				ill_refhold_locked(ill);
3896 				mutex_exit(&ill->ill_lock);
3897 				rw_exit(&ipst->ips_ill_g_lock);
3898 				return (ill);
3899 			}
3900 			mutex_exit(&ill->ill_lock);
3901 		}
3902 	}
3903 	rw_exit(&ipst->ips_ill_g_lock);
3904 	return (NULL);
3905 }
3906 
3907 /*
3908  * Verify whether or not an interface index is valid for the specified zoneid
3909  * to transmit packets.
3910  * It can be zero (meaning "reset") or an interface index assigned
3911  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3912  */
3913 boolean_t
3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3915     ip_stack_t *ipst)
3916 {
3917 	ill_t		*ill;
3918 
3919 	if (ifindex == 0)
3920 		return (B_TRUE);
3921 
3922 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3923 	if (ill == NULL)
3924 		return (B_FALSE);
3925 	if (IS_VNI(ill)) {
3926 		ill_refrele(ill);
3927 		return (B_FALSE);
3928 	}
3929 	ill_refrele(ill);
3930 	return (B_TRUE);
3931 }
3932 
3933 /*
3934  * Return the ifindex next in sequence after the passed in ifindex.
3935  * If there is no next ifindex for the given protocol, return 0.
3936  */
3937 uint_t
3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3939 {
3940 	phyint_t *phyi;
3941 	phyint_t *phyi_initial;
3942 	uint_t   ifindex;
3943 
3944 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3945 
3946 	if (index == 0) {
3947 		phyi = avl_first(
3948 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3949 	} else {
3950 		phyi = phyi_initial = avl_find(
3951 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3952 		    (void *) &index, NULL);
3953 	}
3954 
3955 	for (; phyi != NULL;
3956 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3957 	    phyi, AVL_AFTER)) {
3958 		/*
3959 		 * If we're not returning the first interface in the tree
3960 		 * and we still haven't moved past the phyint_t that
3961 		 * corresponds to index, avl_walk needs to be called again
3962 		 */
3963 		if (!((index != 0) && (phyi == phyi_initial))) {
3964 			if (isv6) {
3965 				if ((phyi->phyint_illv6) &&
3966 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3967 				    (phyi->phyint_illv6->ill_isv6 == 1))
3968 					break;
3969 			} else {
3970 				if ((phyi->phyint_illv4) &&
3971 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3972 				    (phyi->phyint_illv4->ill_isv6 == 0))
3973 					break;
3974 			}
3975 		}
3976 	}
3977 
3978 	rw_exit(&ipst->ips_ill_g_lock);
3979 
3980 	if (phyi != NULL)
3981 		ifindex = phyi->phyint_ifindex;
3982 	else
3983 		ifindex = 0;
3984 
3985 	return (ifindex);
3986 }
3987 
3988 /*
3989  * Return the ifindex for the named interface.
3990  * If there is no next ifindex for the interface, return 0.
3991  */
3992 uint_t
3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3994 {
3995 	phyint_t	*phyi;
3996 	avl_index_t	where = 0;
3997 	uint_t		ifindex;
3998 
3999 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4000 
4001 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4002 	    name, &where)) == NULL) {
4003 		rw_exit(&ipst->ips_ill_g_lock);
4004 		return (0);
4005 	}
4006 
4007 	ifindex = phyi->phyint_ifindex;
4008 
4009 	rw_exit(&ipst->ips_ill_g_lock);
4010 
4011 	return (ifindex);
4012 }
4013 
4014 /*
4015  * Return the ifindex to be used by upper layer protocols for instance
4016  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4017  */
4018 uint_t
4019 ill_get_upper_ifindex(const ill_t *ill)
4020 {
4021 	if (IS_UNDER_IPMP(ill))
4022 		return (ipmp_ill_get_ipmp_ifindex(ill));
4023 	else
4024 		return (ill->ill_phyint->phyint_ifindex);
4025 }
4026 
4027 
4028 /*
4029  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4030  * that gives a running thread a reference to the ill. This reference must be
4031  * released by the thread when it is done accessing the ill and related
4032  * objects. ill_refcnt can not be used to account for static references
4033  * such as other structures pointing to an ill. Callers must generally
4034  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4035  * or be sure that the ill is not being deleted or changing state before
4036  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4037  * ill won't change any of its critical state such as address, netmask etc.
4038  */
4039 void
4040 ill_refhold(ill_t *ill)
4041 {
4042 	mutex_enter(&ill->ill_lock);
4043 	ill->ill_refcnt++;
4044 	ILL_TRACE_REF(ill);
4045 	mutex_exit(&ill->ill_lock);
4046 }
4047 
4048 void
4049 ill_refhold_locked(ill_t *ill)
4050 {
4051 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4052 	ill->ill_refcnt++;
4053 	ILL_TRACE_REF(ill);
4054 }
4055 
4056 /* Returns true if we managed to get a refhold */
4057 boolean_t
4058 ill_check_and_refhold(ill_t *ill)
4059 {
4060 	mutex_enter(&ill->ill_lock);
4061 	if (!ILL_IS_CONDEMNED(ill)) {
4062 		ill_refhold_locked(ill);
4063 		mutex_exit(&ill->ill_lock);
4064 		return (B_TRUE);
4065 	}
4066 	mutex_exit(&ill->ill_lock);
4067 	return (B_FALSE);
4068 }
4069 
4070 /*
4071  * Must not be called while holding any locks. Otherwise if this is
4072  * the last reference to be released, there is a chance of recursive mutex
4073  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4074  * to restart an ioctl.
4075  */
4076 void
4077 ill_refrele(ill_t *ill)
4078 {
4079 	mutex_enter(&ill->ill_lock);
4080 	ASSERT(ill->ill_refcnt != 0);
4081 	ill->ill_refcnt--;
4082 	ILL_UNTRACE_REF(ill);
4083 	if (ill->ill_refcnt != 0) {
4084 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4085 		mutex_exit(&ill->ill_lock);
4086 		return;
4087 	}
4088 
4089 	/* Drops the ill_lock */
4090 	ipif_ill_refrele_tail(ill);
4091 }
4092 
4093 /*
4094  * Obtain a weak reference count on the ill. This reference ensures the
4095  * ill won't be freed, but the ill may change any of its critical state
4096  * such as netmask, address etc. Returns an error if the ill has started
4097  * closing.
4098  */
4099 boolean_t
4100 ill_waiter_inc(ill_t *ill)
4101 {
4102 	mutex_enter(&ill->ill_lock);
4103 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4104 		mutex_exit(&ill->ill_lock);
4105 		return (B_FALSE);
4106 	}
4107 	ill->ill_waiters++;
4108 	mutex_exit(&ill->ill_lock);
4109 	return (B_TRUE);
4110 }
4111 
4112 void
4113 ill_waiter_dcr(ill_t *ill)
4114 {
4115 	mutex_enter(&ill->ill_lock);
4116 	ill->ill_waiters--;
4117 	if (ill->ill_waiters == 0)
4118 		cv_broadcast(&ill->ill_cv);
4119 	mutex_exit(&ill->ill_lock);
4120 }
4121 
4122 /*
4123  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4124  * driver.  We construct best guess defaults for lower level information that
4125  * we need.  If an interface is brought up without injection of any overriding
4126  * information from outside, we have to be ready to go with these defaults.
4127  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4128  * we primarely want the dl_provider_style.
4129  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4130  * at which point we assume the other part of the information is valid.
4131  */
4132 void
4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4134 {
4135 	uchar_t		*brdcst_addr;
4136 	uint_t		brdcst_addr_length, phys_addr_length;
4137 	t_scalar_t	sap_length;
4138 	dl_info_ack_t	*dlia;
4139 	ip_m_t		*ipm;
4140 	dl_qos_cl_sel1_t *sel1;
4141 	int		min_mtu;
4142 
4143 	ASSERT(IAM_WRITER_ILL(ill));
4144 
4145 	/*
4146 	 * Till the ill is fully up  the ill is not globally visible.
4147 	 * So no need for a lock.
4148 	 */
4149 	dlia = (dl_info_ack_t *)mp->b_rptr;
4150 	ill->ill_mactype = dlia->dl_mac_type;
4151 
4152 	ipm = ip_m_lookup(dlia->dl_mac_type);
4153 	if (ipm == NULL) {
4154 		ipm = ip_m_lookup(DL_OTHER);
4155 		ASSERT(ipm != NULL);
4156 	}
4157 	ill->ill_media = ipm;
4158 
4159 	/*
4160 	 * When the new DLPI stuff is ready we'll pull lengths
4161 	 * from dlia.
4162 	 */
4163 	if (dlia->dl_version == DL_VERSION_2) {
4164 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4165 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4166 		    brdcst_addr_length);
4167 		if (brdcst_addr == NULL) {
4168 			brdcst_addr_length = 0;
4169 		}
4170 		sap_length = dlia->dl_sap_length;
4171 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4172 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4173 		    brdcst_addr_length, sap_length, phys_addr_length));
4174 	} else {
4175 		brdcst_addr_length = 6;
4176 		brdcst_addr = ip_six_byte_all_ones;
4177 		sap_length = -2;
4178 		phys_addr_length = brdcst_addr_length;
4179 	}
4180 
4181 	ill->ill_bcast_addr_length = brdcst_addr_length;
4182 	ill->ill_phys_addr_length = phys_addr_length;
4183 	ill->ill_sap_length = sap_length;
4184 
4185 	/*
4186 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4187 	 * but we must ensure a minimum IP MTU is used since other bits of
4188 	 * IP will fly apart otherwise.
4189 	 */
4190 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4191 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4192 	ill->ill_current_frag = ill->ill_max_frag;
4193 	ill->ill_mtu = ill->ill_max_frag;
4194 	ill->ill_mc_mtu = ill->ill_mtu;	/* Overridden by DL_NOTE_SDU_SIZE2 */
4195 
4196 	ill->ill_type = ipm->ip_m_type;
4197 
4198 	if (!ill->ill_dlpi_style_set) {
4199 		if (dlia->dl_provider_style == DL_STYLE2)
4200 			ill->ill_needs_attach = 1;
4201 
4202 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4203 
4204 		/*
4205 		 * Allocate the first ipif on this ill.  We don't delay it
4206 		 * further as ioctl handling assumes at least one ipif exists.
4207 		 *
4208 		 * At this point we don't know whether the ill is v4 or v6.
4209 		 * We will know this whan the SIOCSLIFNAME happens and
4210 		 * the correct value for ill_isv6 will be assigned in
4211 		 * ipif_set_values(). We need to hold the ill lock and
4212 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4213 		 * the wakeup.
4214 		 */
4215 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4216 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4217 		mutex_enter(&ill->ill_lock);
4218 		ASSERT(ill->ill_dlpi_style_set == 0);
4219 		ill->ill_dlpi_style_set = 1;
4220 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4221 		cv_broadcast(&ill->ill_cv);
4222 		mutex_exit(&ill->ill_lock);
4223 		freemsg(mp);
4224 		return;
4225 	}
4226 	ASSERT(ill->ill_ipif != NULL);
4227 	/*
4228 	 * We know whether it is IPv4 or IPv6 now, as this is the
4229 	 * second DL_INFO_ACK we are recieving in response to the
4230 	 * DL_INFO_REQ sent in ipif_set_values.
4231 	 */
4232 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4233 	/*
4234 	 * Clear all the flags that were set based on ill_bcast_addr_length
4235 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4236 	 * changed now and we need to re-evaluate.
4237 	 */
4238 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4239 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4240 
4241 	/*
4242 	 * Free ill_bcast_mp as things could have changed now.
4243 	 *
4244 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4245 	 * with no underlying interfaces (and thus an unknown broadcast
4246 	 * address length), but we enforce that an interface is broadcast-
4247 	 * capable as part of allowing it to join a group.
4248 	 */
4249 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4250 		if (ill->ill_bcast_mp != NULL)
4251 			freemsg(ill->ill_bcast_mp);
4252 		ill->ill_net_type = IRE_IF_NORESOLVER;
4253 
4254 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4255 		    ill->ill_phys_addr_length,
4256 		    ill->ill_sap,
4257 		    ill->ill_sap_length);
4258 
4259 		if (ill->ill_isv6)
4260 			/*
4261 			 * Note: xresolv interfaces will eventually need NOARP
4262 			 * set here as well, but that will require those
4263 			 * external resolvers to have some knowledge of
4264 			 * that flag and act appropriately. Not to be changed
4265 			 * at present.
4266 			 */
4267 			ill->ill_flags |= ILLF_NONUD;
4268 		else
4269 			ill->ill_flags |= ILLF_NOARP;
4270 
4271 		if (ill->ill_mactype == SUNW_DL_VNI) {
4272 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4273 		} else if (ill->ill_phys_addr_length == 0 ||
4274 		    ill->ill_mactype == DL_IPV4 ||
4275 		    ill->ill_mactype == DL_IPV6) {
4276 			/*
4277 			 * The underying link is point-to-point, so mark the
4278 			 * interface as such.  We can do IP multicast over
4279 			 * such a link since it transmits all network-layer
4280 			 * packets to the remote side the same way.
4281 			 */
4282 			ill->ill_flags |= ILLF_MULTICAST;
4283 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4284 		}
4285 	} else {
4286 		ill->ill_net_type = IRE_IF_RESOLVER;
4287 		if (ill->ill_bcast_mp != NULL)
4288 			freemsg(ill->ill_bcast_mp);
4289 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4290 		    ill->ill_bcast_addr_length, ill->ill_sap,
4291 		    ill->ill_sap_length);
4292 		/*
4293 		 * Later detect lack of DLPI driver multicast
4294 		 * capability by catching DL_ENABMULTI errors in
4295 		 * ip_rput_dlpi.
4296 		 */
4297 		ill->ill_flags |= ILLF_MULTICAST;
4298 		if (!ill->ill_isv6)
4299 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4300 	}
4301 
4302 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4303 	if (ill->ill_mactype == SUNW_DL_IPMP)
4304 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4305 
4306 	/* By default an interface does not support any CoS marking */
4307 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4308 
4309 	/*
4310 	 * If we get QoS information in DL_INFO_ACK, the device supports
4311 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4312 	 */
4313 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4314 	    dlia->dl_qos_length);
4315 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4316 		ill->ill_flags |= ILLF_COS_ENABLED;
4317 	}
4318 
4319 	/* Clear any previous error indication. */
4320 	ill->ill_error = 0;
4321 	freemsg(mp);
4322 }
4323 
4324 /*
4325  * Perform various checks to verify that an address would make sense as a
4326  * local, remote, or subnet interface address.
4327  */
4328 static boolean_t
4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4330 {
4331 	ipaddr_t	net_mask;
4332 
4333 	/*
4334 	 * Don't allow all zeroes, or all ones, but allow
4335 	 * all ones netmask.
4336 	 */
4337 	if ((net_mask = ip_net_mask(addr)) == 0)
4338 		return (B_FALSE);
4339 	/* A given netmask overrides the "guess" netmask */
4340 	if (subnet_mask != 0)
4341 		net_mask = subnet_mask;
4342 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4343 	    (addr == (addr | ~net_mask)))) {
4344 		return (B_FALSE);
4345 	}
4346 
4347 	/*
4348 	 * Even if the netmask is all ones, we do not allow address to be
4349 	 * 255.255.255.255
4350 	 */
4351 	if (addr == INADDR_BROADCAST)
4352 		return (B_FALSE);
4353 
4354 	if (CLASSD(addr))
4355 		return (B_FALSE);
4356 
4357 	return (B_TRUE);
4358 }
4359 
4360 #define	V6_IPIF_LINKLOCAL(p)	\
4361 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4362 
4363 /*
4364  * Compare two given ipifs and check if the second one is better than
4365  * the first one using the order of preference (not taking deprecated
4366  * into acount) specified in ipif_lookup_multicast().
4367  */
4368 static boolean_t
4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4370 {
4371 	/* Check the least preferred first. */
4372 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4373 		/* If both ipifs are the same, use the first one. */
4374 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4375 			return (B_FALSE);
4376 		else
4377 			return (B_TRUE);
4378 	}
4379 
4380 	/* For IPv6, check for link local address. */
4381 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4382 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4383 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4384 			/* The second one is equal or less preferred. */
4385 			return (B_FALSE);
4386 		} else {
4387 			return (B_TRUE);
4388 		}
4389 	}
4390 
4391 	/* Then check for point to point interface. */
4392 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4393 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4394 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4395 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4396 			return (B_FALSE);
4397 		} else {
4398 			return (B_TRUE);
4399 		}
4400 	}
4401 
4402 	/* old_ipif is a normal interface, so no need to use the new one. */
4403 	return (B_FALSE);
4404 }
4405 
4406 /*
4407  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4408  * The ipif must be up, and its ill must multicast-capable, not
4409  * condemned, not an underlying interface in an IPMP group, and
4410  * not a VNI interface.  Order of preference:
4411  *
4412  * 	1a. normal
4413  * 	1b. normal, but deprecated
4414  * 	2a. point to point
4415  * 	2b. point to point, but deprecated
4416  * 	3a. link local
4417  * 	3b. link local, but deprecated
4418  * 	4. loopback.
4419  */
4420 static ipif_t *
4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4422 {
4423 	ill_t			*ill;
4424 	ill_walk_context_t	ctx;
4425 	ipif_t			*ipif;
4426 	ipif_t			*saved_ipif = NULL;
4427 	ipif_t			*dep_ipif = NULL;
4428 
4429 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4430 	if (isv6)
4431 		ill = ILL_START_WALK_V6(&ctx, ipst);
4432 	else
4433 		ill = ILL_START_WALK_V4(&ctx, ipst);
4434 
4435 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4436 		mutex_enter(&ill->ill_lock);
4437 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4438 		    ILL_IS_CONDEMNED(ill) ||
4439 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4440 			mutex_exit(&ill->ill_lock);
4441 			continue;
4442 		}
4443 		for (ipif = ill->ill_ipif; ipif != NULL;
4444 		    ipif = ipif->ipif_next) {
4445 			if (zoneid != ipif->ipif_zoneid &&
4446 			    zoneid != ALL_ZONES &&
4447 			    ipif->ipif_zoneid != ALL_ZONES) {
4448 				continue;
4449 			}
4450 			if (!(ipif->ipif_flags & IPIF_UP) ||
4451 			    IPIF_IS_CONDEMNED(ipif)) {
4452 				continue;
4453 			}
4454 
4455 			/*
4456 			 * Found one candidate.  If it is deprecated,
4457 			 * remember it in dep_ipif.  If it is not deprecated,
4458 			 * remember it in saved_ipif.
4459 			 */
4460 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4461 				if (dep_ipif == NULL) {
4462 					dep_ipif = ipif;
4463 				} else if (ipif_comp_multi(dep_ipif, ipif,
4464 				    isv6)) {
4465 					/*
4466 					 * If the previous dep_ipif does not
4467 					 * belong to the same ill, we've done
4468 					 * a ipif_refhold() on it.  So we need
4469 					 * to release it.
4470 					 */
4471 					if (dep_ipif->ipif_ill != ill)
4472 						ipif_refrele(dep_ipif);
4473 					dep_ipif = ipif;
4474 				}
4475 				continue;
4476 			}
4477 			if (saved_ipif == NULL) {
4478 				saved_ipif = ipif;
4479 			} else {
4480 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4481 					if (saved_ipif->ipif_ill != ill)
4482 						ipif_refrele(saved_ipif);
4483 					saved_ipif = ipif;
4484 				}
4485 			}
4486 		}
4487 		/*
4488 		 * Before going to the next ill, do a ipif_refhold() on the
4489 		 * saved ones.
4490 		 */
4491 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4492 			ipif_refhold_locked(saved_ipif);
4493 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4494 			ipif_refhold_locked(dep_ipif);
4495 		mutex_exit(&ill->ill_lock);
4496 	}
4497 	rw_exit(&ipst->ips_ill_g_lock);
4498 
4499 	/*
4500 	 * If we have only the saved_ipif, return it.  But if we have both
4501 	 * saved_ipif and dep_ipif, check to see which one is better.
4502 	 */
4503 	if (saved_ipif != NULL) {
4504 		if (dep_ipif != NULL) {
4505 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4506 				ipif_refrele(saved_ipif);
4507 				return (dep_ipif);
4508 			} else {
4509 				ipif_refrele(dep_ipif);
4510 				return (saved_ipif);
4511 			}
4512 		}
4513 		return (saved_ipif);
4514 	} else {
4515 		return (dep_ipif);
4516 	}
4517 }
4518 
4519 ill_t *
4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4521 {
4522 	ipif_t *ipif;
4523 	ill_t *ill;
4524 
4525 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4526 	if (ipif == NULL)
4527 		return (NULL);
4528 
4529 	ill = ipif->ipif_ill;
4530 	ill_refhold(ill);
4531 	ipif_refrele(ipif);
4532 	return (ill);
4533 }
4534 
4535 /*
4536  * This function is called when an application does not specify an interface
4537  * to be used for multicast traffic (joining a group/sending data).  It
4538  * calls ire_lookup_multi() to look for an interface route for the
4539  * specified multicast group.  Doing this allows the administrator to add
4540  * prefix routes for multicast to indicate which interface to be used for
4541  * multicast traffic in the above scenario.  The route could be for all
4542  * multicast (224.0/4), for a single multicast group (a /32 route) or
4543  * anything in between.  If there is no such multicast route, we just find
4544  * any multicast capable interface and return it.  The returned ipif
4545  * is refhold'ed.
4546  *
4547  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4548  * unicast table. This is used by CGTP.
4549  */
4550 ill_t *
4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4552     boolean_t *multirtp, ipaddr_t *setsrcp)
4553 {
4554 	ill_t			*ill;
4555 
4556 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4557 	if (ill != NULL)
4558 		return (ill);
4559 
4560 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4561 }
4562 
4563 /*
4564  * Look for an ipif with the specified interface address and destination.
4565  * The destination address is used only for matching point-to-point interfaces.
4566  */
4567 ipif_t *
4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4569 {
4570 	ipif_t	*ipif;
4571 	ill_t	*ill;
4572 	ill_walk_context_t ctx;
4573 
4574 	/*
4575 	 * First match all the point-to-point interfaces
4576 	 * before looking at non-point-to-point interfaces.
4577 	 * This is done to avoid returning non-point-to-point
4578 	 * ipif instead of unnumbered point-to-point ipif.
4579 	 */
4580 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4581 	ill = ILL_START_WALK_V4(&ctx, ipst);
4582 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4583 		mutex_enter(&ill->ill_lock);
4584 		for (ipif = ill->ill_ipif; ipif != NULL;
4585 		    ipif = ipif->ipif_next) {
4586 			/* Allow the ipif to be down */
4587 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4588 			    (ipif->ipif_lcl_addr == if_addr) &&
4589 			    (ipif->ipif_pp_dst_addr == dst)) {
4590 				if (!IPIF_IS_CONDEMNED(ipif)) {
4591 					ipif_refhold_locked(ipif);
4592 					mutex_exit(&ill->ill_lock);
4593 					rw_exit(&ipst->ips_ill_g_lock);
4594 					return (ipif);
4595 				}
4596 			}
4597 		}
4598 		mutex_exit(&ill->ill_lock);
4599 	}
4600 	rw_exit(&ipst->ips_ill_g_lock);
4601 
4602 	/* lookup the ipif based on interface address */
4603 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4604 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4605 	return (ipif);
4606 }
4607 
4608 /*
4609  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4610  */
4611 static ipif_t *
4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4613     zoneid_t zoneid, ip_stack_t *ipst)
4614 {
4615 	ipif_t  *ipif;
4616 	ill_t   *ill;
4617 	boolean_t ptp = B_FALSE;
4618 	ill_walk_context_t	ctx;
4619 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4620 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4621 
4622 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4623 	/*
4624 	 * Repeat twice, first based on local addresses and
4625 	 * next time for pointopoint.
4626 	 */
4627 repeat:
4628 	ill = ILL_START_WALK_V4(&ctx, ipst);
4629 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4630 		if (match_ill != NULL && ill != match_ill &&
4631 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4632 			continue;
4633 		}
4634 		mutex_enter(&ill->ill_lock);
4635 		for (ipif = ill->ill_ipif; ipif != NULL;
4636 		    ipif = ipif->ipif_next) {
4637 			if (zoneid != ALL_ZONES &&
4638 			    zoneid != ipif->ipif_zoneid &&
4639 			    ipif->ipif_zoneid != ALL_ZONES)
4640 				continue;
4641 
4642 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4643 				continue;
4644 
4645 			/* Allow the ipif to be down */
4646 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4647 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4648 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4649 			    (ipif->ipif_pp_dst_addr == addr))) {
4650 				if (!IPIF_IS_CONDEMNED(ipif)) {
4651 					ipif_refhold_locked(ipif);
4652 					mutex_exit(&ill->ill_lock);
4653 					rw_exit(&ipst->ips_ill_g_lock);
4654 					return (ipif);
4655 				}
4656 			}
4657 		}
4658 		mutex_exit(&ill->ill_lock);
4659 	}
4660 
4661 	/* If we already did the ptp case, then we are done */
4662 	if (ptp) {
4663 		rw_exit(&ipst->ips_ill_g_lock);
4664 		return (NULL);
4665 	}
4666 	ptp = B_TRUE;
4667 	goto repeat;
4668 }
4669 
4670 /*
4671  * Lookup an ipif with the specified address.  For point-to-point links we
4672  * look for matches on either the destination address or the local address,
4673  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4674  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4675  * (or illgrp if `match_ill' is in an IPMP group).
4676  */
4677 ipif_t *
4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4679     ip_stack_t *ipst)
4680 {
4681 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4682 	    zoneid, ipst));
4683 }
4684 
4685 /*
4686  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4687  * except that we will only return an address if it is not marked as
4688  * IPIF_DUPLICATE
4689  */
4690 ipif_t *
4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4692     ip_stack_t *ipst)
4693 {
4694 	return (ipif_lookup_addr_common(addr, match_ill,
4695 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4696 	    zoneid, ipst));
4697 }
4698 
4699 /*
4700  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4701  * `match_ill' across the IPMP group.  This function is only needed in some
4702  * corner-cases; almost everything should use ipif_lookup_addr().
4703  */
4704 ipif_t *
4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4706 {
4707 	ASSERT(match_ill != NULL);
4708 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4709 	    ipst));
4710 }
4711 
4712 /*
4713  * Look for an ipif with the specified address. For point-point links
4714  * we look for matches on either the destination address and the local
4715  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4716  * is set.
4717  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4718  * ill (or illgrp if `match_ill' is in an IPMP group).
4719  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4720  */
4721 zoneid_t
4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4723 {
4724 	zoneid_t zoneid;
4725 	ipif_t  *ipif;
4726 	ill_t   *ill;
4727 	boolean_t ptp = B_FALSE;
4728 	ill_walk_context_t	ctx;
4729 
4730 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4731 	/*
4732 	 * Repeat twice, first based on local addresses and
4733 	 * next time for pointopoint.
4734 	 */
4735 repeat:
4736 	ill = ILL_START_WALK_V4(&ctx, ipst);
4737 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4738 		if (match_ill != NULL && ill != match_ill &&
4739 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4740 			continue;
4741 		}
4742 		mutex_enter(&ill->ill_lock);
4743 		for (ipif = ill->ill_ipif; ipif != NULL;
4744 		    ipif = ipif->ipif_next) {
4745 			/* Allow the ipif to be down */
4746 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4747 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4748 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4749 			    (ipif->ipif_pp_dst_addr == addr)) &&
4750 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4751 				zoneid = ipif->ipif_zoneid;
4752 				mutex_exit(&ill->ill_lock);
4753 				rw_exit(&ipst->ips_ill_g_lock);
4754 				/*
4755 				 * If ipif_zoneid was ALL_ZONES then we have
4756 				 * a trusted extensions shared IP address.
4757 				 * In that case GLOBAL_ZONEID works to send.
4758 				 */
4759 				if (zoneid == ALL_ZONES)
4760 					zoneid = GLOBAL_ZONEID;
4761 				return (zoneid);
4762 			}
4763 		}
4764 		mutex_exit(&ill->ill_lock);
4765 	}
4766 
4767 	/* If we already did the ptp case, then we are done */
4768 	if (ptp) {
4769 		rw_exit(&ipst->ips_ill_g_lock);
4770 		return (ALL_ZONES);
4771 	}
4772 	ptp = B_TRUE;
4773 	goto repeat;
4774 }
4775 
4776 /*
4777  * Look for an ipif that matches the specified remote address i.e. the
4778  * ipif that would receive the specified packet.
4779  * First look for directly connected interfaces and then do a recursive
4780  * IRE lookup and pick the first ipif corresponding to the source address in the
4781  * ire.
4782  * Returns: held ipif
4783  *
4784  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4785  */
4786 ipif_t *
4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4788 {
4789 	ipif_t	*ipif;
4790 
4791 	ASSERT(!ill->ill_isv6);
4792 
4793 	/*
4794 	 * Someone could be changing this ipif currently or change it
4795 	 * after we return this. Thus  a few packets could use the old
4796 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4797 	 * will atomically be updated or cleaned up with the new value
4798 	 * Thus we don't need a lock to check the flags or other attrs below.
4799 	 */
4800 	mutex_enter(&ill->ill_lock);
4801 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4802 		if (IPIF_IS_CONDEMNED(ipif))
4803 			continue;
4804 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4805 		    ipif->ipif_zoneid != ALL_ZONES)
4806 			continue;
4807 		/* Allow the ipif to be down */
4808 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4809 			if ((ipif->ipif_pp_dst_addr == addr) ||
4810 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4811 			    ipif->ipif_lcl_addr == addr)) {
4812 				ipif_refhold_locked(ipif);
4813 				mutex_exit(&ill->ill_lock);
4814 				return (ipif);
4815 			}
4816 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4817 			ipif_refhold_locked(ipif);
4818 			mutex_exit(&ill->ill_lock);
4819 			return (ipif);
4820 		}
4821 	}
4822 	mutex_exit(&ill->ill_lock);
4823 	/*
4824 	 * For a remote destination it isn't possible to nail down a particular
4825 	 * ipif.
4826 	 */
4827 
4828 	/* Pick the first interface */
4829 	ipif = ipif_get_next_ipif(NULL, ill);
4830 	return (ipif);
4831 }
4832 
4833 /*
4834  * This func does not prevent refcnt from increasing. But if
4835  * the caller has taken steps to that effect, then this func
4836  * can be used to determine whether the ill has become quiescent
4837  */
4838 static boolean_t
4839 ill_is_quiescent(ill_t *ill)
4840 {
4841 	ipif_t	*ipif;
4842 
4843 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4844 
4845 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4846 		if (ipif->ipif_refcnt != 0)
4847 			return (B_FALSE);
4848 	}
4849 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4850 		return (B_FALSE);
4851 	}
4852 	return (B_TRUE);
4853 }
4854 
4855 boolean_t
4856 ill_is_freeable(ill_t *ill)
4857 {
4858 	ipif_t	*ipif;
4859 
4860 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4861 
4862 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4863 		if (ipif->ipif_refcnt != 0) {
4864 			return (B_FALSE);
4865 		}
4866 	}
4867 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4868 		return (B_FALSE);
4869 	}
4870 	return (B_TRUE);
4871 }
4872 
4873 /*
4874  * This func does not prevent refcnt from increasing. But if
4875  * the caller has taken steps to that effect, then this func
4876  * can be used to determine whether the ipif has become quiescent
4877  */
4878 static boolean_t
4879 ipif_is_quiescent(ipif_t *ipif)
4880 {
4881 	ill_t *ill;
4882 
4883 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4884 
4885 	if (ipif->ipif_refcnt != 0)
4886 		return (B_FALSE);
4887 
4888 	ill = ipif->ipif_ill;
4889 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4890 	    ill->ill_logical_down) {
4891 		return (B_TRUE);
4892 	}
4893 
4894 	/* This is the last ipif going down or being deleted on this ill */
4895 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4896 		return (B_FALSE);
4897 	}
4898 
4899 	return (B_TRUE);
4900 }
4901 
4902 /*
4903  * return true if the ipif can be destroyed: the ipif has to be quiescent
4904  * with zero references from ire/ilm to it.
4905  */
4906 static boolean_t
4907 ipif_is_freeable(ipif_t *ipif)
4908 {
4909 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4910 	ASSERT(ipif->ipif_id != 0);
4911 	return (ipif->ipif_refcnt == 0);
4912 }
4913 
4914 /*
4915  * The ipif/ill/ire has been refreled. Do the tail processing.
4916  * Determine if the ipif or ill in question has become quiescent and if so
4917  * wakeup close and/or restart any queued pending ioctl that is waiting
4918  * for the ipif_down (or ill_down)
4919  */
4920 void
4921 ipif_ill_refrele_tail(ill_t *ill)
4922 {
4923 	mblk_t	*mp;
4924 	conn_t	*connp;
4925 	ipsq_t	*ipsq;
4926 	ipxop_t	*ipx;
4927 	ipif_t	*ipif;
4928 	dl_notify_ind_t *dlindp;
4929 
4930 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4931 
4932 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4933 		/* ip_modclose() may be waiting */
4934 		cv_broadcast(&ill->ill_cv);
4935 	}
4936 
4937 	ipsq = ill->ill_phyint->phyint_ipsq;
4938 	mutex_enter(&ipsq->ipsq_lock);
4939 	ipx = ipsq->ipsq_xop;
4940 	mutex_enter(&ipx->ipx_lock);
4941 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4942 		goto unlock;
4943 
4944 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4945 
4946 	ipif = ipx->ipx_pending_ipif;
4947 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4948 		goto unlock;
4949 
4950 	switch (ipx->ipx_waitfor) {
4951 	case IPIF_DOWN:
4952 		if (!ipif_is_quiescent(ipif))
4953 			goto unlock;
4954 		break;
4955 	case IPIF_FREE:
4956 		if (!ipif_is_freeable(ipif))
4957 			goto unlock;
4958 		break;
4959 	case ILL_DOWN:
4960 		if (!ill_is_quiescent(ill))
4961 			goto unlock;
4962 		break;
4963 	case ILL_FREE:
4964 		/*
4965 		 * ILL_FREE is only for loopback; normal ill teardown waits
4966 		 * synchronously in ip_modclose() without using ipx_waitfor,
4967 		 * handled by the cv_broadcast() at the top of this function.
4968 		 */
4969 		if (!ill_is_freeable(ill))
4970 			goto unlock;
4971 		break;
4972 	default:
4973 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4974 		    (void *)ipsq, ipx->ipx_waitfor);
4975 	}
4976 
4977 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4978 	mutex_exit(&ipx->ipx_lock);
4979 	mp = ipsq_pending_mp_get(ipsq, &connp);
4980 	mutex_exit(&ipsq->ipsq_lock);
4981 	mutex_exit(&ill->ill_lock);
4982 
4983 	ASSERT(mp != NULL);
4984 	/*
4985 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4986 	 * we can only get here when the current operation decides it
4987 	 * it needs to quiesce via ipsq_pending_mp_add().
4988 	 */
4989 	switch (mp->b_datap->db_type) {
4990 	case M_PCPROTO:
4991 	case M_PROTO:
4992 		/*
4993 		 * For now, only DL_NOTIFY_IND messages can use this facility.
4994 		 */
4995 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
4996 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4997 
4998 		switch (dlindp->dl_notification) {
4999 		case DL_NOTE_PHYS_ADDR:
5000 			qwriter_ip(ill, ill->ill_rq, mp,
5001 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5002 			return;
5003 		case DL_NOTE_REPLUMB:
5004 			qwriter_ip(ill, ill->ill_rq, mp,
5005 			    ill_replumb_tail, CUR_OP, B_TRUE);
5006 			return;
5007 		default:
5008 			ASSERT(0);
5009 			ill_refrele(ill);
5010 		}
5011 		break;
5012 
5013 	case M_ERROR:
5014 	case M_HANGUP:
5015 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5016 		    B_TRUE);
5017 		return;
5018 
5019 	case M_IOCTL:
5020 	case M_IOCDATA:
5021 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5022 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5023 		return;
5024 
5025 	default:
5026 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5027 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5028 	}
5029 	return;
5030 unlock:
5031 	mutex_exit(&ipsq->ipsq_lock);
5032 	mutex_exit(&ipx->ipx_lock);
5033 	mutex_exit(&ill->ill_lock);
5034 }
5035 
5036 #ifdef DEBUG
5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5038 static void
5039 th_trace_rrecord(th_trace_t *th_trace)
5040 {
5041 	tr_buf_t *tr_buf;
5042 	uint_t lastref;
5043 
5044 	lastref = th_trace->th_trace_lastref;
5045 	lastref++;
5046 	if (lastref == TR_BUF_MAX)
5047 		lastref = 0;
5048 	th_trace->th_trace_lastref = lastref;
5049 	tr_buf = &th_trace->th_trbuf[lastref];
5050 	tr_buf->tr_time = ddi_get_lbolt();
5051 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5052 }
5053 
5054 static void
5055 th_trace_free(void *value)
5056 {
5057 	th_trace_t *th_trace = value;
5058 
5059 	ASSERT(th_trace->th_refcnt == 0);
5060 	kmem_free(th_trace, sizeof (*th_trace));
5061 }
5062 
5063 /*
5064  * Find or create the per-thread hash table used to track object references.
5065  * The ipst argument is NULL if we shouldn't allocate.
5066  *
5067  * Accesses per-thread data, so there's no need to lock here.
5068  */
5069 static mod_hash_t *
5070 th_trace_gethash(ip_stack_t *ipst)
5071 {
5072 	th_hash_t *thh;
5073 
5074 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5075 		mod_hash_t *mh;
5076 		char name[256];
5077 		size_t objsize, rshift;
5078 		int retv;
5079 
5080 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5081 			return (NULL);
5082 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5083 		    (void *)curthread);
5084 
5085 		/*
5086 		 * We use mod_hash_create_extended here rather than the more
5087 		 * obvious mod_hash_create_ptrhash because the latter has a
5088 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5089 		 * block.
5090 		 */
5091 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5092 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5093 		rshift = highbit(objsize);
5094 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5095 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5096 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5097 		if (mh == NULL) {
5098 			kmem_free(thh, sizeof (*thh));
5099 			return (NULL);
5100 		}
5101 		thh->thh_hash = mh;
5102 		thh->thh_ipst = ipst;
5103 		/*
5104 		 * We trace ills, ipifs, ires, and nces.  All of these are
5105 		 * per-IP-stack, so the lock on the thread list is as well.
5106 		 */
5107 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5108 		list_insert_tail(&ip_thread_list, thh);
5109 		rw_exit(&ip_thread_rwlock);
5110 		retv = tsd_set(ip_thread_data, thh);
5111 		ASSERT(retv == 0);
5112 	}
5113 	return (thh != NULL ? thh->thh_hash : NULL);
5114 }
5115 
5116 boolean_t
5117 th_trace_ref(const void *obj, ip_stack_t *ipst)
5118 {
5119 	th_trace_t *th_trace;
5120 	mod_hash_t *mh;
5121 	mod_hash_val_t val;
5122 
5123 	if ((mh = th_trace_gethash(ipst)) == NULL)
5124 		return (B_FALSE);
5125 
5126 	/*
5127 	 * Attempt to locate the trace buffer for this obj and thread.
5128 	 * If it does not exist, then allocate a new trace buffer and
5129 	 * insert into the hash.
5130 	 */
5131 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5132 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5133 		if (th_trace == NULL)
5134 			return (B_FALSE);
5135 
5136 		th_trace->th_id = curthread;
5137 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5138 		    (mod_hash_val_t)th_trace) != 0) {
5139 			kmem_free(th_trace, sizeof (th_trace_t));
5140 			return (B_FALSE);
5141 		}
5142 	} else {
5143 		th_trace = (th_trace_t *)val;
5144 	}
5145 
5146 	ASSERT(th_trace->th_refcnt >= 0 &&
5147 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5148 
5149 	th_trace->th_refcnt++;
5150 	th_trace_rrecord(th_trace);
5151 	return (B_TRUE);
5152 }
5153 
5154 /*
5155  * For the purpose of tracing a reference release, we assume that global
5156  * tracing is always on and that the same thread initiated the reference hold
5157  * is releasing.
5158  */
5159 void
5160 th_trace_unref(const void *obj)
5161 {
5162 	int retv;
5163 	mod_hash_t *mh;
5164 	th_trace_t *th_trace;
5165 	mod_hash_val_t val;
5166 
5167 	mh = th_trace_gethash(NULL);
5168 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5169 	ASSERT(retv == 0);
5170 	th_trace = (th_trace_t *)val;
5171 
5172 	ASSERT(th_trace->th_refcnt > 0);
5173 	th_trace->th_refcnt--;
5174 	th_trace_rrecord(th_trace);
5175 }
5176 
5177 /*
5178  * If tracing has been disabled, then we assume that the reference counts are
5179  * now useless, and we clear them out before destroying the entries.
5180  */
5181 void
5182 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5183 {
5184 	th_hash_t	*thh;
5185 	mod_hash_t	*mh;
5186 	mod_hash_val_t	val;
5187 	th_trace_t	*th_trace;
5188 	int		retv;
5189 
5190 	rw_enter(&ip_thread_rwlock, RW_READER);
5191 	for (thh = list_head(&ip_thread_list); thh != NULL;
5192 	    thh = list_next(&ip_thread_list, thh)) {
5193 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5194 		    &val) == 0) {
5195 			th_trace = (th_trace_t *)val;
5196 			if (trace_disable)
5197 				th_trace->th_refcnt = 0;
5198 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5199 			ASSERT(retv == 0);
5200 		}
5201 	}
5202 	rw_exit(&ip_thread_rwlock);
5203 }
5204 
5205 void
5206 ipif_trace_ref(ipif_t *ipif)
5207 {
5208 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5209 
5210 	if (ipif->ipif_trace_disable)
5211 		return;
5212 
5213 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5214 		ipif->ipif_trace_disable = B_TRUE;
5215 		ipif_trace_cleanup(ipif);
5216 	}
5217 }
5218 
5219 void
5220 ipif_untrace_ref(ipif_t *ipif)
5221 {
5222 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5223 
5224 	if (!ipif->ipif_trace_disable)
5225 		th_trace_unref(ipif);
5226 }
5227 
5228 void
5229 ill_trace_ref(ill_t *ill)
5230 {
5231 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5232 
5233 	if (ill->ill_trace_disable)
5234 		return;
5235 
5236 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5237 		ill->ill_trace_disable = B_TRUE;
5238 		ill_trace_cleanup(ill);
5239 	}
5240 }
5241 
5242 void
5243 ill_untrace_ref(ill_t *ill)
5244 {
5245 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5246 
5247 	if (!ill->ill_trace_disable)
5248 		th_trace_unref(ill);
5249 }
5250 
5251 /*
5252  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5253  * failure, ipif_trace_disable is set.
5254  */
5255 static void
5256 ipif_trace_cleanup(const ipif_t *ipif)
5257 {
5258 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5259 }
5260 
5261 /*
5262  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5263  * failure, ill_trace_disable is set.
5264  */
5265 static void
5266 ill_trace_cleanup(const ill_t *ill)
5267 {
5268 	th_trace_cleanup(ill, ill->ill_trace_disable);
5269 }
5270 #endif /* DEBUG */
5271 
5272 void
5273 ipif_refhold_locked(ipif_t *ipif)
5274 {
5275 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5276 	ipif->ipif_refcnt++;
5277 	IPIF_TRACE_REF(ipif);
5278 }
5279 
5280 void
5281 ipif_refhold(ipif_t *ipif)
5282 {
5283 	ill_t	*ill;
5284 
5285 	ill = ipif->ipif_ill;
5286 	mutex_enter(&ill->ill_lock);
5287 	ipif->ipif_refcnt++;
5288 	IPIF_TRACE_REF(ipif);
5289 	mutex_exit(&ill->ill_lock);
5290 }
5291 
5292 /*
5293  * Must not be called while holding any locks. Otherwise if this is
5294  * the last reference to be released there is a chance of recursive mutex
5295  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5296  * to restart an ioctl.
5297  */
5298 void
5299 ipif_refrele(ipif_t *ipif)
5300 {
5301 	ill_t	*ill;
5302 
5303 	ill = ipif->ipif_ill;
5304 
5305 	mutex_enter(&ill->ill_lock);
5306 	ASSERT(ipif->ipif_refcnt != 0);
5307 	ipif->ipif_refcnt--;
5308 	IPIF_UNTRACE_REF(ipif);
5309 	if (ipif->ipif_refcnt != 0) {
5310 		mutex_exit(&ill->ill_lock);
5311 		return;
5312 	}
5313 
5314 	/* Drops the ill_lock */
5315 	ipif_ill_refrele_tail(ill);
5316 }
5317 
5318 ipif_t *
5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5320 {
5321 	ipif_t	*ipif;
5322 
5323 	mutex_enter(&ill->ill_lock);
5324 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5325 	    ipif != NULL; ipif = ipif->ipif_next) {
5326 		if (IPIF_IS_CONDEMNED(ipif))
5327 			continue;
5328 		ipif_refhold_locked(ipif);
5329 		mutex_exit(&ill->ill_lock);
5330 		return (ipif);
5331 	}
5332 	mutex_exit(&ill->ill_lock);
5333 	return (NULL);
5334 }
5335 
5336 /*
5337  * TODO: make this table extendible at run time
5338  * Return a pointer to the mac type info for 'mac_type'
5339  */
5340 static ip_m_t *
5341 ip_m_lookup(t_uscalar_t mac_type)
5342 {
5343 	ip_m_t	*ipm;
5344 
5345 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5346 		if (ipm->ip_m_mac_type == mac_type)
5347 			return (ipm);
5348 	return (NULL);
5349 }
5350 
5351 /*
5352  * Make a link layer address from the multicast IP address *addr.
5353  * To form the link layer address, invoke the ip_m_v*mapping function
5354  * associated with the link-layer type.
5355  */
5356 void
5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5358 {
5359 	ip_m_t *ipm;
5360 
5361 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5362 		return;
5363 
5364 	ASSERT(addr != NULL);
5365 
5366 	ipm = ip_m_lookup(ill->ill_mactype);
5367 	if (ipm == NULL ||
5368 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5369 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5370 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5371 		    ill->ill_name, ill->ill_mactype));
5372 		return;
5373 	}
5374 	if (ill->ill_isv6)
5375 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5376 	else
5377 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5378 }
5379 
5380 /*
5381  * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5382  * Otherwise returns B_TRUE.
5383  *
5384  * The netmask can be verified to be contiguous with 32 shifts and or
5385  * operations. Take the contiguous mask (in host byte order) and compute
5386  * 	mask | mask << 1 | mask << 2 | ... | mask << 31
5387  * the result will be the same as the 'mask' for contiguous mask.
5388  */
5389 static boolean_t
5390 ip_contiguous_mask(uint32_t mask)
5391 {
5392 	uint32_t	m = mask;
5393 	int		i;
5394 
5395 	for (i = 1; i < 32; i++)
5396 		m |= (mask << i);
5397 
5398 	return (m == mask);
5399 }
5400 
5401 /*
5402  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5403  * ill is passed in to associate it with the correct interface.
5404  * If ire_arg is set, then we return the held IRE in that location.
5405  */
5406 int
5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5408     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5409     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5410 {
5411 	ire_t	*ire, *nire;
5412 	ire_t	*gw_ire = NULL;
5413 	ipif_t	*ipif = NULL;
5414 	uint_t	type;
5415 	int	match_flags = MATCH_IRE_TYPE;
5416 	tsol_gc_t *gc = NULL;
5417 	tsol_gcgrp_t *gcgrp = NULL;
5418 	boolean_t gcgrp_xtraref = B_FALSE;
5419 	boolean_t cgtp_broadcast;
5420 	boolean_t unbound = B_FALSE;
5421 
5422 	ip1dbg(("ip_rt_add:"));
5423 
5424 	if (ire_arg != NULL)
5425 		*ire_arg = NULL;
5426 
5427 	/* disallow non-contiguous netmasks */
5428 	if (!ip_contiguous_mask(ntohl(mask)))
5429 		return (ENOTSUP);
5430 
5431 	/*
5432 	 * If this is the case of RTF_HOST being set, then we set the netmask
5433 	 * to all ones (regardless if one was supplied).
5434 	 */
5435 	if (flags & RTF_HOST)
5436 		mask = IP_HOST_MASK;
5437 
5438 	/*
5439 	 * Prevent routes with a zero gateway from being created (since
5440 	 * interfaces can currently be plumbed and brought up no assigned
5441 	 * address).
5442 	 */
5443 	if (gw_addr == 0)
5444 		return (ENETUNREACH);
5445 	/*
5446 	 * Get the ipif, if any, corresponding to the gw_addr
5447 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5448 	 * we match on the gatway and destination to handle unnumbered pt-pt
5449 	 * interfaces.
5450 	 */
5451 	if (ill != NULL)
5452 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5453 	else
5454 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5455 	if (ipif != NULL) {
5456 		if (IS_VNI(ipif->ipif_ill)) {
5457 			ipif_refrele(ipif);
5458 			return (EINVAL);
5459 		}
5460 	}
5461 
5462 	/*
5463 	 * GateD will attempt to create routes with a loopback interface
5464 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5465 	 * these routes to be added, but create them as interface routes
5466 	 * since the gateway is an interface address.
5467 	 */
5468 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5469 		flags &= ~RTF_GATEWAY;
5470 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5471 		    mask == IP_HOST_MASK) {
5472 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5473 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5474 			    NULL);
5475 			if (ire != NULL) {
5476 				ire_refrele(ire);
5477 				ipif_refrele(ipif);
5478 				return (EEXIST);
5479 			}
5480 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5481 			    "for 0x%x\n", (void *)ipif,
5482 			    ipif->ipif_ire_type,
5483 			    ntohl(ipif->ipif_lcl_addr)));
5484 			ire = ire_create(
5485 			    (uchar_t *)&dst_addr,	/* dest address */
5486 			    (uchar_t *)&mask,		/* mask */
5487 			    NULL,			/* no gateway */
5488 			    ipif->ipif_ire_type,	/* LOOPBACK */
5489 			    ipif->ipif_ill,
5490 			    zoneid,
5491 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5492 			    NULL,
5493 			    ipst);
5494 
5495 			if (ire == NULL) {
5496 				ipif_refrele(ipif);
5497 				return (ENOMEM);
5498 			}
5499 			/* src address assigned by the caller? */
5500 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5501 				ire->ire_setsrc_addr = src_addr;
5502 
5503 			nire = ire_add(ire);
5504 			if (nire == NULL) {
5505 				/*
5506 				 * In the result of failure, ire_add() will have
5507 				 * already deleted the ire in question, so there
5508 				 * is no need to do that here.
5509 				 */
5510 				ipif_refrele(ipif);
5511 				return (ENOMEM);
5512 			}
5513 			/*
5514 			 * Check if it was a duplicate entry. This handles
5515 			 * the case of two racing route adds for the same route
5516 			 */
5517 			if (nire != ire) {
5518 				ASSERT(nire->ire_identical_ref > 1);
5519 				ire_delete(nire);
5520 				ire_refrele(nire);
5521 				ipif_refrele(ipif);
5522 				return (EEXIST);
5523 			}
5524 			ire = nire;
5525 			goto save_ire;
5526 		}
5527 	}
5528 
5529 	/*
5530 	 * The routes for multicast with CGTP are quite special in that
5531 	 * the gateway is the local interface address, yet RTF_GATEWAY
5532 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5533 	 * this undocumented and unusual use of multicast routes.
5534 	 */
5535 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5536 		flags &= ~RTF_GATEWAY;
5537 
5538 	/*
5539 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5540 	 * and the gateway address provided is one of the system's interface
5541 	 * addresses.  By using the routing socket interface and supplying an
5542 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5543 	 * specifying an interface route to be created is available which uses
5544 	 * the interface index that specifies the outgoing interface rather than
5545 	 * the address of an outgoing interface (which may not be able to
5546 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5547 	 * flag, routes can be specified which not only specify the next-hop to
5548 	 * be used when routing to a certain prefix, but also which outgoing
5549 	 * interface should be used.
5550 	 *
5551 	 * Previously, interfaces would have unique addresses assigned to them
5552 	 * and so the address assigned to a particular interface could be used
5553 	 * to identify a particular interface.  One exception to this was the
5554 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5555 	 *
5556 	 * With the advent of IPv6 and its link-local addresses, this
5557 	 * restriction was relaxed and interfaces could share addresses between
5558 	 * themselves.  In fact, typically all of the link-local interfaces on
5559 	 * an IPv6 node or router will have the same link-local address.  In
5560 	 * order to differentiate between these interfaces, the use of an
5561 	 * interface index is necessary and this index can be carried inside a
5562 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5563 	 * of using the interface index, however, is that all of the ipif's that
5564 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5565 	 * cannot be used to differentiate between ipif's (or logical
5566 	 * interfaces) that belong to the same ill (physical interface).
5567 	 *
5568 	 * For example, in the following case involving IPv4 interfaces and
5569 	 * logical interfaces
5570 	 *
5571 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5572 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5573 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5574 	 *
5575 	 * the ipif's corresponding to each of these interface routes can be
5576 	 * uniquely identified by the "gateway" (actually interface address).
5577 	 *
5578 	 * In this case involving multiple IPv6 default routes to a particular
5579 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5580 	 * default route is of interest:
5581 	 *
5582 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5583 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5584 	 */
5585 
5586 	/* RTF_GATEWAY not set */
5587 	if (!(flags & RTF_GATEWAY)) {
5588 		if (sp != NULL) {
5589 			ip2dbg(("ip_rt_add: gateway security attributes "
5590 			    "cannot be set with interface route\n"));
5591 			if (ipif != NULL)
5592 				ipif_refrele(ipif);
5593 			return (EINVAL);
5594 		}
5595 
5596 		/*
5597 		 * Whether or not ill (RTA_IFP) is set, we require that
5598 		 * the gateway is one of our local addresses.
5599 		 */
5600 		if (ipif == NULL)
5601 			return (ENETUNREACH);
5602 
5603 		/*
5604 		 * We use MATCH_IRE_ILL here. If the caller specified an
5605 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5606 		 * we use the ill derived from the gateway address.
5607 		 * We can always match the gateway address since we record it
5608 		 * in ire_gateway_addr.
5609 		 * We don't allow RTA_IFP to specify a different ill than the
5610 		 * one matching the ipif to make sure we can delete the route.
5611 		 */
5612 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5613 		if (ill == NULL) {
5614 			ill = ipif->ipif_ill;
5615 		} else if (ill != ipif->ipif_ill) {
5616 			ipif_refrele(ipif);
5617 			return (EINVAL);
5618 		}
5619 
5620 		/*
5621 		 * We check for an existing entry at this point.
5622 		 *
5623 		 * Since a netmask isn't passed in via the ioctl interface
5624 		 * (SIOCADDRT), we don't check for a matching netmask in that
5625 		 * case.
5626 		 */
5627 		if (!ioctl_msg)
5628 			match_flags |= MATCH_IRE_MASK;
5629 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5630 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5631 		    NULL);
5632 		if (ire != NULL) {
5633 			ire_refrele(ire);
5634 			ipif_refrele(ipif);
5635 			return (EEXIST);
5636 		}
5637 
5638 		/*
5639 		 * Some software (for example, GateD and Sun Cluster) attempts
5640 		 * to create (what amount to) IRE_PREFIX routes with the
5641 		 * loopback address as the gateway.  This is primarily done to
5642 		 * set up prefixes with the RTF_REJECT flag set (for example,
5643 		 * when generating aggregate routes.)
5644 		 *
5645 		 * If the IRE type (as defined by ill->ill_net_type) would be
5646 		 * IRE_LOOPBACK, then we map the request into a
5647 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5648 		 * these interface routes, by definition, can only be that.
5649 		 *
5650 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5651 		 * routine, but rather using ire_create() directly.
5652 		 *
5653 		 */
5654 		type = ill->ill_net_type;
5655 		if (type == IRE_LOOPBACK) {
5656 			type = IRE_IF_NORESOLVER;
5657 			flags |= RTF_BLACKHOLE;
5658 		}
5659 
5660 		/*
5661 		 * Create a copy of the IRE_IF_NORESOLVER or
5662 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5663 		 * gateway.
5664 		 */
5665 		ire = ire_create(
5666 		    (uchar_t *)&dst_addr,
5667 		    (uint8_t *)&mask,
5668 		    (uint8_t *)&gw_addr,
5669 		    type,
5670 		    ill,
5671 		    zoneid,
5672 		    flags,
5673 		    NULL,
5674 		    ipst);
5675 		if (ire == NULL) {
5676 			ipif_refrele(ipif);
5677 			return (ENOMEM);
5678 		}
5679 
5680 		/* src address assigned by the caller? */
5681 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5682 			ire->ire_setsrc_addr = src_addr;
5683 
5684 		nire = ire_add(ire);
5685 		if (nire == NULL) {
5686 			/*
5687 			 * In the result of failure, ire_add() will have
5688 			 * already deleted the ire in question, so there
5689 			 * is no need to do that here.
5690 			 */
5691 			ipif_refrele(ipif);
5692 			return (ENOMEM);
5693 		}
5694 		/*
5695 		 * Check if it was a duplicate entry. This handles
5696 		 * the case of two racing route adds for the same route
5697 		 */
5698 		if (nire != ire) {
5699 			ire_delete(nire);
5700 			ire_refrele(nire);
5701 			ipif_refrele(ipif);
5702 			return (EEXIST);
5703 		}
5704 		ire = nire;
5705 		goto save_ire;
5706 	}
5707 
5708 	/*
5709 	 * Get an interface IRE for the specified gateway.
5710 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5711 	 * gateway, it is currently unreachable and we fail the request
5712 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5713 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5714 	 * If RTA_IFP was specified we look on that particular ill.
5715 	 */
5716 	if (ill != NULL)
5717 		match_flags |= MATCH_IRE_ILL;
5718 
5719 	/* Check whether the gateway is reachable. */
5720 again:
5721 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5722 	if (flags & RTF_INDIRECT)
5723 		type |= IRE_OFFLINK;
5724 
5725 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5726 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5727 	if (gw_ire == NULL) {
5728 		/*
5729 		 * With IPMP, we allow host routes to influence in.mpathd's
5730 		 * target selection.  However, if the test addresses are on
5731 		 * their own network, the above lookup will fail since the
5732 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5733 		 * hidden test IREs to be found and try again.
5734 		 */
5735 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5736 			match_flags |= MATCH_IRE_TESTHIDDEN;
5737 			goto again;
5738 		}
5739 		if (ipif != NULL)
5740 			ipif_refrele(ipif);
5741 		return (ENETUNREACH);
5742 	}
5743 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5744 		ire_refrele(gw_ire);
5745 		if (ipif != NULL)
5746 			ipif_refrele(ipif);
5747 		return (ENETUNREACH);
5748 	}
5749 
5750 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
5751 		unbound = B_TRUE;
5752 		if (ipst->ips_ip_strict_src_multihoming > 0)
5753 			ill = gw_ire->ire_ill;
5754 	}
5755 
5756 	/*
5757 	 * We create one of three types of IREs as a result of this request
5758 	 * based on the netmask.  A netmask of all ones (which is automatically
5759 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5760 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5761 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5762 	 * destination prefix.
5763 	 */
5764 	if (mask == IP_HOST_MASK)
5765 		type = IRE_HOST;
5766 	else if (mask == 0)
5767 		type = IRE_DEFAULT;
5768 	else
5769 		type = IRE_PREFIX;
5770 
5771 	/* check for a duplicate entry */
5772 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5773 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5774 	    0, ipst, NULL);
5775 	if (ire != NULL) {
5776 		if (ipif != NULL)
5777 			ipif_refrele(ipif);
5778 		ire_refrele(gw_ire);
5779 		ire_refrele(ire);
5780 		return (EEXIST);
5781 	}
5782 
5783 	/* Security attribute exists */
5784 	if (sp != NULL) {
5785 		tsol_gcgrp_addr_t ga;
5786 
5787 		/* find or create the gateway credentials group */
5788 		ga.ga_af = AF_INET;
5789 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5790 
5791 		/* we hold reference to it upon success */
5792 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5793 		if (gcgrp == NULL) {
5794 			if (ipif != NULL)
5795 				ipif_refrele(ipif);
5796 			ire_refrele(gw_ire);
5797 			return (ENOMEM);
5798 		}
5799 
5800 		/*
5801 		 * Create and add the security attribute to the group; a
5802 		 * reference to the group is made upon allocating a new
5803 		 * entry successfully.  If it finds an already-existing
5804 		 * entry for the security attribute in the group, it simply
5805 		 * returns it and no new reference is made to the group.
5806 		 */
5807 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5808 		if (gc == NULL) {
5809 			if (ipif != NULL)
5810 				ipif_refrele(ipif);
5811 			/* release reference held by gcgrp_lookup */
5812 			GCGRP_REFRELE(gcgrp);
5813 			ire_refrele(gw_ire);
5814 			return (ENOMEM);
5815 		}
5816 	}
5817 
5818 	/* Create the IRE. */
5819 	ire = ire_create(
5820 	    (uchar_t *)&dst_addr,		/* dest address */
5821 	    (uchar_t *)&mask,			/* mask */
5822 	    (uchar_t *)&gw_addr,		/* gateway address */
5823 	    (ushort_t)type,			/* IRE type */
5824 	    ill,
5825 	    zoneid,
5826 	    flags,
5827 	    gc,					/* security attribute */
5828 	    ipst);
5829 
5830 	/*
5831 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5832 	 * reference to the 'gcgrp'. We can now release the extra reference
5833 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5834 	 */
5835 	if (gcgrp_xtraref)
5836 		GCGRP_REFRELE(gcgrp);
5837 	if (ire == NULL) {
5838 		if (gc != NULL)
5839 			GC_REFRELE(gc);
5840 		if (ipif != NULL)
5841 			ipif_refrele(ipif);
5842 		ire_refrele(gw_ire);
5843 		return (ENOMEM);
5844 	}
5845 
5846 	/* Before we add, check if an extra CGTP broadcast is needed */
5847 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5848 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5849 
5850 	/* src address assigned by the caller? */
5851 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5852 		ire->ire_setsrc_addr = src_addr;
5853 
5854 	ire->ire_unbound = unbound;
5855 
5856 	/*
5857 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5858 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5859 	 */
5860 
5861 	/* Add the new IRE. */
5862 	nire = ire_add(ire);
5863 	if (nire == NULL) {
5864 		/*
5865 		 * In the result of failure, ire_add() will have
5866 		 * already deleted the ire in question, so there
5867 		 * is no need to do that here.
5868 		 */
5869 		if (ipif != NULL)
5870 			ipif_refrele(ipif);
5871 		ire_refrele(gw_ire);
5872 		return (ENOMEM);
5873 	}
5874 	/*
5875 	 * Check if it was a duplicate entry. This handles
5876 	 * the case of two racing route adds for the same route
5877 	 */
5878 	if (nire != ire) {
5879 		ire_delete(nire);
5880 		ire_refrele(nire);
5881 		if (ipif != NULL)
5882 			ipif_refrele(ipif);
5883 		ire_refrele(gw_ire);
5884 		return (EEXIST);
5885 	}
5886 	ire = nire;
5887 
5888 	if (flags & RTF_MULTIRT) {
5889 		/*
5890 		 * Invoke the CGTP (multirouting) filtering module
5891 		 * to add the dst address in the filtering database.
5892 		 * Replicated inbound packets coming from that address
5893 		 * will be filtered to discard the duplicates.
5894 		 * It is not necessary to call the CGTP filter hook
5895 		 * when the dst address is a broadcast or multicast,
5896 		 * because an IP source address cannot be a broadcast
5897 		 * or a multicast.
5898 		 */
5899 		if (cgtp_broadcast) {
5900 			ip_cgtp_bcast_add(ire, ipst);
5901 			goto save_ire;
5902 		}
5903 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5904 		    !CLASSD(ire->ire_addr)) {
5905 			int res;
5906 			ipif_t *src_ipif;
5907 
5908 			/* Find the source address corresponding to gw_ire */
5909 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5910 			    NULL, zoneid, ipst);
5911 			if (src_ipif != NULL) {
5912 				res = ipst->ips_ip_cgtp_filter_ops->
5913 				    cfo_add_dest_v4(
5914 				    ipst->ips_netstack->netstack_stackid,
5915 				    ire->ire_addr,
5916 				    ire->ire_gateway_addr,
5917 				    ire->ire_setsrc_addr,
5918 				    src_ipif->ipif_lcl_addr);
5919 				ipif_refrele(src_ipif);
5920 			} else {
5921 				res = EADDRNOTAVAIL;
5922 			}
5923 			if (res != 0) {
5924 				if (ipif != NULL)
5925 					ipif_refrele(ipif);
5926 				ire_refrele(gw_ire);
5927 				ire_delete(ire);
5928 				ire_refrele(ire);	/* Held in ire_add */
5929 				return (res);
5930 			}
5931 		}
5932 	}
5933 
5934 save_ire:
5935 	if (gw_ire != NULL) {
5936 		ire_refrele(gw_ire);
5937 		gw_ire = NULL;
5938 	}
5939 	if (ill != NULL) {
5940 		/*
5941 		 * Save enough information so that we can recreate the IRE if
5942 		 * the interface goes down and then up.  The metrics associated
5943 		 * with the route will be saved as well when rts_setmetrics() is
5944 		 * called after the IRE has been created.  In the case where
5945 		 * memory cannot be allocated, none of this information will be
5946 		 * saved.
5947 		 */
5948 		ill_save_ire(ill, ire);
5949 	}
5950 	if (ioctl_msg)
5951 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5952 	if (ire_arg != NULL) {
5953 		/*
5954 		 * Store the ire that was successfully added into where ire_arg
5955 		 * points to so that callers don't have to look it up
5956 		 * themselves (but they are responsible for ire_refrele()ing
5957 		 * the ire when they are finished with it).
5958 		 */
5959 		*ire_arg = ire;
5960 	} else {
5961 		ire_refrele(ire);		/* Held in ire_add */
5962 	}
5963 	if (ipif != NULL)
5964 		ipif_refrele(ipif);
5965 	return (0);
5966 }
5967 
5968 /*
5969  * ip_rt_delete is called to delete an IPv4 route.
5970  * ill is passed in to associate it with the correct interface.
5971  */
5972 /* ARGSUSED4 */
5973 int
5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5975     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5976     ip_stack_t *ipst, zoneid_t zoneid)
5977 {
5978 	ire_t	*ire = NULL;
5979 	ipif_t	*ipif;
5980 	uint_t	type;
5981 	uint_t	match_flags = MATCH_IRE_TYPE;
5982 	int	err = 0;
5983 
5984 	ip1dbg(("ip_rt_delete:"));
5985 	/*
5986 	 * If this is the case of RTF_HOST being set, then we set the netmask
5987 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5988 	 */
5989 	if (flags & RTF_HOST) {
5990 		mask = IP_HOST_MASK;
5991 		match_flags |= MATCH_IRE_MASK;
5992 	} else if (rtm_addrs & RTA_NETMASK) {
5993 		match_flags |= MATCH_IRE_MASK;
5994 	}
5995 
5996 	/*
5997 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5998 	 * we check if the gateway address is one of our interfaces first,
5999 	 * and fall back on RTF_GATEWAY routes.
6000 	 *
6001 	 * This makes it possible to delete an original
6002 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6003 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
6004 	 * and those can not be deleted here.
6005 	 *
6006 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
6007 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
6008 	 * otherwise we use the ill derived from the gateway address.
6009 	 * We can always match the gateway address since we record it
6010 	 * in ire_gateway_addr.
6011 	 *
6012 	 * For more detail on specifying routes by gateway address and by
6013 	 * interface index, see the comments in ip_rt_add().
6014 	 */
6015 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6016 	if (ipif != NULL) {
6017 		ill_t	*ill_match;
6018 
6019 		if (ill != NULL)
6020 			ill_match = ill;
6021 		else
6022 			ill_match = ipif->ipif_ill;
6023 
6024 		match_flags |= MATCH_IRE_ILL;
6025 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6026 			ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6027 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6028 			    match_flags, 0, ipst, NULL);
6029 		}
6030 		if (ire == NULL) {
6031 			match_flags |= MATCH_IRE_GW;
6032 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6033 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6034 			    match_flags, 0, ipst, NULL);
6035 		}
6036 		/* Avoid deleting routes created by kernel from an ipif */
6037 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6038 			ire_refrele(ire);
6039 			ire = NULL;
6040 		}
6041 
6042 		/* Restore in case we didn't find a match */
6043 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6044 	}
6045 
6046 	if (ire == NULL) {
6047 		/*
6048 		 * At this point, the gateway address is not one of our own
6049 		 * addresses or a matching interface route was not found.  We
6050 		 * set the IRE type to lookup based on whether
6051 		 * this is a host route, a default route or just a prefix.
6052 		 *
6053 		 * If an ill was passed in, then the lookup is based on an
6054 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6055 		 */
6056 		match_flags |= MATCH_IRE_GW;
6057 		if (ill != NULL)
6058 			match_flags |= MATCH_IRE_ILL;
6059 		if (mask == IP_HOST_MASK)
6060 			type = IRE_HOST;
6061 		else if (mask == 0)
6062 			type = IRE_DEFAULT;
6063 		else
6064 			type = IRE_PREFIX;
6065 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6066 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6067 	}
6068 
6069 	if (ipif != NULL) {
6070 		ipif_refrele(ipif);
6071 		ipif = NULL;
6072 	}
6073 
6074 	if (ire == NULL)
6075 		return (ESRCH);
6076 
6077 	if (ire->ire_flags & RTF_MULTIRT) {
6078 		/*
6079 		 * Invoke the CGTP (multirouting) filtering module
6080 		 * to remove the dst address from the filtering database.
6081 		 * Packets coming from that address will no longer be
6082 		 * filtered to remove duplicates.
6083 		 */
6084 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6085 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6086 			    ipst->ips_netstack->netstack_stackid,
6087 			    ire->ire_addr, ire->ire_gateway_addr);
6088 		}
6089 		ip_cgtp_bcast_delete(ire, ipst);
6090 	}
6091 
6092 	ill = ire->ire_ill;
6093 	if (ill != NULL)
6094 		ill_remove_saved_ire(ill, ire);
6095 	if (ioctl_msg)
6096 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6097 	ire_delete(ire);
6098 	ire_refrele(ire);
6099 	return (err);
6100 }
6101 
6102 /*
6103  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6104  */
6105 /* ARGSUSED */
6106 int
6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6108     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6109 {
6110 	ipaddr_t dst_addr;
6111 	ipaddr_t gw_addr;
6112 	ipaddr_t mask;
6113 	int error = 0;
6114 	mblk_t *mp1;
6115 	struct rtentry *rt;
6116 	ipif_t *ipif = NULL;
6117 	ip_stack_t	*ipst;
6118 
6119 	ASSERT(q->q_next == NULL);
6120 	ipst = CONNQ_TO_IPST(q);
6121 
6122 	ip1dbg(("ip_siocaddrt:"));
6123 	/* Existence of mp1 verified in ip_wput_nondata */
6124 	mp1 = mp->b_cont->b_cont;
6125 	rt = (struct rtentry *)mp1->b_rptr;
6126 
6127 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6128 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6129 
6130 	/*
6131 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6132 	 * to a particular host address.  In this case, we set the netmask to
6133 	 * all ones for the particular destination address.  Otherwise,
6134 	 * determine the netmask to be used based on dst_addr and the interfaces
6135 	 * in use.
6136 	 */
6137 	if (rt->rt_flags & RTF_HOST) {
6138 		mask = IP_HOST_MASK;
6139 	} else {
6140 		/*
6141 		 * Note that ip_subnet_mask returns a zero mask in the case of
6142 		 * default (an all-zeroes address).
6143 		 */
6144 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6145 	}
6146 
6147 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6148 	    B_TRUE, NULL, ipst, ALL_ZONES);
6149 	if (ipif != NULL)
6150 		ipif_refrele(ipif);
6151 	return (error);
6152 }
6153 
6154 /*
6155  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6156  */
6157 /* ARGSUSED */
6158 int
6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6160     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6161 {
6162 	ipaddr_t dst_addr;
6163 	ipaddr_t gw_addr;
6164 	ipaddr_t mask;
6165 	int error;
6166 	mblk_t *mp1;
6167 	struct rtentry *rt;
6168 	ipif_t *ipif = NULL;
6169 	ip_stack_t	*ipst;
6170 
6171 	ASSERT(q->q_next == NULL);
6172 	ipst = CONNQ_TO_IPST(q);
6173 
6174 	ip1dbg(("ip_siocdelrt:"));
6175 	/* Existence of mp1 verified in ip_wput_nondata */
6176 	mp1 = mp->b_cont->b_cont;
6177 	rt = (struct rtentry *)mp1->b_rptr;
6178 
6179 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6180 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6181 
6182 	/*
6183 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6184 	 * to a particular host address.  In this case, we set the netmask to
6185 	 * all ones for the particular destination address.  Otherwise,
6186 	 * determine the netmask to be used based on dst_addr and the interfaces
6187 	 * in use.
6188 	 */
6189 	if (rt->rt_flags & RTF_HOST) {
6190 		mask = IP_HOST_MASK;
6191 	} else {
6192 		/*
6193 		 * Note that ip_subnet_mask returns a zero mask in the case of
6194 		 * default (an all-zeroes address).
6195 		 */
6196 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6197 	}
6198 
6199 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6200 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6201 	    ipst, ALL_ZONES);
6202 	if (ipif != NULL)
6203 		ipif_refrele(ipif);
6204 	return (error);
6205 }
6206 
6207 /*
6208  * Enqueue the mp onto the ipsq, chained by b_next.
6209  * b_prev stores the function to be executed later, and b_queue the queue
6210  * where this mp originated.
6211  */
6212 void
6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6214     ill_t *pending_ill)
6215 {
6216 	conn_t	*connp;
6217 	ipxop_t *ipx = ipsq->ipsq_xop;
6218 
6219 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6220 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6221 	ASSERT(func != NULL);
6222 
6223 	mp->b_queue = q;
6224 	mp->b_prev = (void *)func;
6225 	mp->b_next = NULL;
6226 
6227 	switch (type) {
6228 	case CUR_OP:
6229 		if (ipx->ipx_mptail != NULL) {
6230 			ASSERT(ipx->ipx_mphead != NULL);
6231 			ipx->ipx_mptail->b_next = mp;
6232 		} else {
6233 			ASSERT(ipx->ipx_mphead == NULL);
6234 			ipx->ipx_mphead = mp;
6235 		}
6236 		ipx->ipx_mptail = mp;
6237 		break;
6238 
6239 	case NEW_OP:
6240 		if (ipsq->ipsq_xopq_mptail != NULL) {
6241 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6242 			ipsq->ipsq_xopq_mptail->b_next = mp;
6243 		} else {
6244 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6245 			ipsq->ipsq_xopq_mphead = mp;
6246 		}
6247 		ipsq->ipsq_xopq_mptail = mp;
6248 		ipx->ipx_ipsq_queued = B_TRUE;
6249 		break;
6250 
6251 	case SWITCH_OP:
6252 		ASSERT(ipsq->ipsq_swxop != NULL);
6253 		/* only one switch operation is currently allowed */
6254 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6255 		ipsq->ipsq_switch_mp = mp;
6256 		ipx->ipx_ipsq_queued = B_TRUE;
6257 		break;
6258 	default:
6259 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6260 	}
6261 
6262 	if (CONN_Q(q) && pending_ill != NULL) {
6263 		connp = Q_TO_CONN(q);
6264 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6265 		connp->conn_oper_pending_ill = pending_ill;
6266 	}
6267 }
6268 
6269 /*
6270  * Dequeue the next message that requested exclusive access to this IPSQ's
6271  * xop.  Specifically:
6272  *
6273  *  1. If we're still processing the current operation on `ipsq', then
6274  *     dequeue the next message for the operation (from ipx_mphead), or
6275  *     return NULL if there are no queued messages for the operation.
6276  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6277  *
6278  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6279  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6280  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6281  *     leaving IPMP groups and require a careful dance -- see the comments
6282  *     in-line below for details.  If we're leaving a group xop or if we're
6283  *     joining a group xop and become writer on it, then we proceed to (3).
6284  *     Otherwise, we return NULL and exit the xop.
6285  *
6286  *  3. For each IPSQ in the xop, return any switch operation stored on
6287  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6288  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6289  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6290  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6291  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6292  *     each phyint in the group, including the IPMP meta-interface phyint.
6293  */
6294 static mblk_t *
6295 ipsq_dq(ipsq_t *ipsq)
6296 {
6297 	ill_t	*illv4, *illv6;
6298 	mblk_t	*mp;
6299 	ipsq_t	*xopipsq;
6300 	ipsq_t	*leftipsq = NULL;
6301 	ipxop_t *ipx;
6302 	phyint_t *phyi = ipsq->ipsq_phyint;
6303 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6304 	boolean_t emptied = B_FALSE;
6305 
6306 	/*
6307 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6308 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6309 	 */
6310 	rw_enter(&ipst->ips_ill_g_lock,
6311 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6312 	mutex_enter(&ipsq->ipsq_lock);
6313 	ipx = ipsq->ipsq_xop;
6314 	mutex_enter(&ipx->ipx_lock);
6315 
6316 	/*
6317 	 * Dequeue the next message associated with the current exclusive
6318 	 * operation, if any.
6319 	 */
6320 	if ((mp = ipx->ipx_mphead) != NULL) {
6321 		ipx->ipx_mphead = mp->b_next;
6322 		if (ipx->ipx_mphead == NULL)
6323 			ipx->ipx_mptail = NULL;
6324 		mp->b_next = (void *)ipsq;
6325 		goto out;
6326 	}
6327 
6328 	if (ipx->ipx_current_ipif != NULL)
6329 		goto empty;
6330 
6331 	if (ipsq->ipsq_swxop != NULL) {
6332 		/*
6333 		 * The exclusive operation that is now being completed has
6334 		 * requested a switch to a different xop.  This happens
6335 		 * when an interface joins or leaves an IPMP group.  Joins
6336 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6337 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6338 		 * (phyint_free()), or interface plumb for an ill type
6339 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6340 		 *
6341 		 * Xop switches are not allowed on the IPMP meta-interface.
6342 		 */
6343 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6344 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6345 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6346 
6347 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6348 			/*
6349 			 * We're switching back to our own xop, so we have two
6350 			 * xop's to drain/exit: our own, and the group xop
6351 			 * that we are leaving.
6352 			 *
6353 			 * First, pull ourselves out of the group ipsq list.
6354 			 * This is safe since we're writer on ill_g_lock.
6355 			 */
6356 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6357 
6358 			xopipsq = ipx->ipx_ipsq;
6359 			while (xopipsq->ipsq_next != ipsq)
6360 				xopipsq = xopipsq->ipsq_next;
6361 
6362 			xopipsq->ipsq_next = ipsq->ipsq_next;
6363 			ipsq->ipsq_next = ipsq;
6364 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6365 			ipsq->ipsq_swxop = NULL;
6366 
6367 			/*
6368 			 * Second, prepare to exit the group xop.  The actual
6369 			 * ipsq_exit() is done at the end of this function
6370 			 * since we cannot hold any locks across ipsq_exit().
6371 			 * Note that although we drop the group's ipx_lock, no
6372 			 * threads can proceed since we're still ipx_writer.
6373 			 */
6374 			leftipsq = xopipsq;
6375 			mutex_exit(&ipx->ipx_lock);
6376 
6377 			/*
6378 			 * Third, set ipx to point to our own xop (which was
6379 			 * inactive and therefore can be entered).
6380 			 */
6381 			ipx = ipsq->ipsq_xop;
6382 			mutex_enter(&ipx->ipx_lock);
6383 			ASSERT(ipx->ipx_writer == NULL);
6384 			ASSERT(ipx->ipx_current_ipif == NULL);
6385 		} else {
6386 			/*
6387 			 * We're switching from our own xop to a group xop.
6388 			 * The requestor of the switch must ensure that the
6389 			 * group xop cannot go away (e.g. by ensuring the
6390 			 * phyint associated with the xop cannot go away).
6391 			 *
6392 			 * If we can become writer on our new xop, then we'll
6393 			 * do the drain.  Otherwise, the current writer of our
6394 			 * new xop will do the drain when it exits.
6395 			 *
6396 			 * First, splice ourselves into the group IPSQ list.
6397 			 * This is safe since we're writer on ill_g_lock.
6398 			 */
6399 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6400 
6401 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6402 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6403 				xopipsq = xopipsq->ipsq_next;
6404 
6405 			xopipsq->ipsq_next = ipsq;
6406 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6407 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6408 			ipsq->ipsq_swxop = NULL;
6409 
6410 			/*
6411 			 * Second, exit our own xop, since it's now unused.
6412 			 * This is safe since we've got the only reference.
6413 			 */
6414 			ASSERT(ipx->ipx_writer == curthread);
6415 			ipx->ipx_writer = NULL;
6416 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6417 			ipx->ipx_ipsq_queued = B_FALSE;
6418 			mutex_exit(&ipx->ipx_lock);
6419 
6420 			/*
6421 			 * Third, set ipx to point to our new xop, and check
6422 			 * if we can become writer on it.  If we cannot, then
6423 			 * the current writer will drain the IPSQ group when
6424 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6425 			 * because we're still holding ipsq_lock.
6426 			 */
6427 			ipx = ipsq->ipsq_xop;
6428 			mutex_enter(&ipx->ipx_lock);
6429 			if (ipx->ipx_writer != NULL ||
6430 			    ipx->ipx_current_ipif != NULL) {
6431 				goto out;
6432 			}
6433 		}
6434 
6435 		/*
6436 		 * Fourth, become writer on our new ipx before we continue
6437 		 * with the drain.  Note that we never dropped ipsq_lock
6438 		 * above, so no other thread could've raced with us to
6439 		 * become writer first.  Also, we're holding ipx_lock, so
6440 		 * no other thread can examine the ipx right now.
6441 		 */
6442 		ASSERT(ipx->ipx_current_ipif == NULL);
6443 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6444 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6445 		ipx->ipx_writer = curthread;
6446 		ipx->ipx_forced = B_FALSE;
6447 #ifdef DEBUG
6448 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6449 #endif
6450 	}
6451 
6452 	xopipsq = ipsq;
6453 	do {
6454 		/*
6455 		 * So that other operations operate on a consistent and
6456 		 * complete phyint, a switch message on an IPSQ must be
6457 		 * handled prior to any other operations on that IPSQ.
6458 		 */
6459 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6460 			xopipsq->ipsq_switch_mp = NULL;
6461 			ASSERT(mp->b_next == NULL);
6462 			mp->b_next = (void *)xopipsq;
6463 			goto out;
6464 		}
6465 
6466 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6467 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6468 			if (xopipsq->ipsq_xopq_mphead == NULL)
6469 				xopipsq->ipsq_xopq_mptail = NULL;
6470 			mp->b_next = (void *)xopipsq;
6471 			goto out;
6472 		}
6473 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6474 empty:
6475 	/*
6476 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6477 	 * new messages can end up on any IPSQ in the xop.
6478 	 */
6479 	ipx->ipx_writer = NULL;
6480 	ipx->ipx_forced = B_FALSE;
6481 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6482 	ipx->ipx_ipsq_queued = B_FALSE;
6483 	emptied = B_TRUE;
6484 #ifdef	DEBUG
6485 	ipx->ipx_depth = 0;
6486 #endif
6487 out:
6488 	mutex_exit(&ipx->ipx_lock);
6489 	mutex_exit(&ipsq->ipsq_lock);
6490 
6491 	/*
6492 	 * If we completely emptied the xop, then wake up any threads waiting
6493 	 * to enter any of the IPSQ's associated with it.
6494 	 */
6495 	if (emptied) {
6496 		xopipsq = ipsq;
6497 		do {
6498 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6499 				continue;
6500 
6501 			illv4 = phyi->phyint_illv4;
6502 			illv6 = phyi->phyint_illv6;
6503 
6504 			GRAB_ILL_LOCKS(illv4, illv6);
6505 			if (illv4 != NULL)
6506 				cv_broadcast(&illv4->ill_cv);
6507 			if (illv6 != NULL)
6508 				cv_broadcast(&illv6->ill_cv);
6509 			RELEASE_ILL_LOCKS(illv4, illv6);
6510 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6511 	}
6512 	rw_exit(&ipst->ips_ill_g_lock);
6513 
6514 	/*
6515 	 * Now that all locks are dropped, exit the IPSQ we left.
6516 	 */
6517 	if (leftipsq != NULL)
6518 		ipsq_exit(leftipsq);
6519 
6520 	return (mp);
6521 }
6522 
6523 /*
6524  * Return completion status of previously initiated DLPI operations on
6525  * ills in the purview of an ipsq.
6526  */
6527 static boolean_t
6528 ipsq_dlpi_done(ipsq_t *ipsq)
6529 {
6530 	ipsq_t		*ipsq_start;
6531 	phyint_t	*phyi;
6532 	ill_t		*ill;
6533 
6534 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6535 	ipsq_start = ipsq;
6536 
6537 	do {
6538 		/*
6539 		 * The only current users of this function are ipsq_try_enter
6540 		 * and ipsq_enter which have made sure that ipsq_writer is
6541 		 * NULL before we reach here. ill_dlpi_pending is modified
6542 		 * only by an ipsq writer
6543 		 */
6544 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6545 		phyi = ipsq->ipsq_phyint;
6546 		/*
6547 		 * phyi could be NULL if a phyint that is part of an
6548 		 * IPMP group is being unplumbed. A more detailed
6549 		 * comment is in ipmp_grp_update_kstats()
6550 		 */
6551 		if (phyi != NULL) {
6552 			ill = phyi->phyint_illv4;
6553 			if (ill != NULL &&
6554 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6555 			    ill->ill_arl_dlpi_pending))
6556 				return (B_FALSE);
6557 
6558 			ill = phyi->phyint_illv6;
6559 			if (ill != NULL &&
6560 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6561 				return (B_FALSE);
6562 		}
6563 
6564 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6565 
6566 	return (B_TRUE);
6567 }
6568 
6569 /*
6570  * Enter the ipsq corresponding to ill, by waiting synchronously till
6571  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6572  * will have to drain completely before ipsq_enter returns success.
6573  * ipx_current_ipif will be set if some exclusive op is in progress,
6574  * and the ipsq_exit logic will start the next enqueued op after
6575  * completion of the current op. If 'force' is used, we don't wait
6576  * for the enqueued ops. This is needed when a conn_close wants to
6577  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6578  * of an ill can also use this option. But we dont' use it currently.
6579  */
6580 #define	ENTER_SQ_WAIT_TICKS 100
6581 boolean_t
6582 ipsq_enter(ill_t *ill, boolean_t force, int type)
6583 {
6584 	ipsq_t	*ipsq;
6585 	ipxop_t *ipx;
6586 	boolean_t waited_enough = B_FALSE;
6587 	ip_stack_t *ipst = ill->ill_ipst;
6588 
6589 	/*
6590 	 * Note that the relationship between ill and ipsq is fixed as long as
6591 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6592 	 * relationship between the IPSQ and xop cannot change.  However,
6593 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6594 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6595 	 * waking up all ills in the xop when it becomes available.
6596 	 */
6597 	for (;;) {
6598 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6599 		mutex_enter(&ill->ill_lock);
6600 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6601 			mutex_exit(&ill->ill_lock);
6602 			rw_exit(&ipst->ips_ill_g_lock);
6603 			return (B_FALSE);
6604 		}
6605 
6606 		ipsq = ill->ill_phyint->phyint_ipsq;
6607 		mutex_enter(&ipsq->ipsq_lock);
6608 		ipx = ipsq->ipsq_xop;
6609 		mutex_enter(&ipx->ipx_lock);
6610 
6611 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6612 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6613 		    waited_enough))
6614 			break;
6615 
6616 		rw_exit(&ipst->ips_ill_g_lock);
6617 
6618 		if (!force || ipx->ipx_writer != NULL) {
6619 			mutex_exit(&ipx->ipx_lock);
6620 			mutex_exit(&ipsq->ipsq_lock);
6621 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6622 		} else {
6623 			mutex_exit(&ipx->ipx_lock);
6624 			mutex_exit(&ipsq->ipsq_lock);
6625 			(void) cv_reltimedwait(&ill->ill_cv,
6626 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6627 			waited_enough = B_TRUE;
6628 		}
6629 		mutex_exit(&ill->ill_lock);
6630 	}
6631 
6632 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6633 	ASSERT(ipx->ipx_reentry_cnt == 0);
6634 	ipx->ipx_writer = curthread;
6635 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6636 	ipx->ipx_reentry_cnt++;
6637 #ifdef DEBUG
6638 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6639 #endif
6640 	mutex_exit(&ipx->ipx_lock);
6641 	mutex_exit(&ipsq->ipsq_lock);
6642 	mutex_exit(&ill->ill_lock);
6643 	rw_exit(&ipst->ips_ill_g_lock);
6644 
6645 	return (B_TRUE);
6646 }
6647 
6648 /*
6649  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6650  * across the call to the core interface ipsq_try_enter() and hence calls this
6651  * function directly. This is explained more fully in ipif_set_values().
6652  * In order to support the above constraint, ipsq_try_enter is implemented as
6653  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6654  */
6655 static ipsq_t *
6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6657     int type, boolean_t reentry_ok)
6658 {
6659 	ipsq_t	*ipsq;
6660 	ipxop_t	*ipx;
6661 	ip_stack_t *ipst = ill->ill_ipst;
6662 
6663 	/*
6664 	 * lock ordering:
6665 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6666 	 *
6667 	 * ipx of an ipsq can't change when ipsq_lock is held.
6668 	 */
6669 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6670 	GRAB_CONN_LOCK(q);
6671 	mutex_enter(&ill->ill_lock);
6672 	ipsq = ill->ill_phyint->phyint_ipsq;
6673 	mutex_enter(&ipsq->ipsq_lock);
6674 	ipx = ipsq->ipsq_xop;
6675 	mutex_enter(&ipx->ipx_lock);
6676 
6677 	/*
6678 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6679 	 *    (Note: If the caller does not specify reentry_ok then neither
6680 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6681 	 *    again. Otherwise it can lead to an infinite loop
6682 	 * 2. Enter the ipsq if there is no current writer and this attempted
6683 	 *    entry is part of the current operation
6684 	 * 3. Enter the ipsq if there is no current writer and this is a new
6685 	 *    operation and the operation queue is empty and there is no
6686 	 *    operation currently in progress and if all previously initiated
6687 	 *    DLPI operations have completed.
6688 	 */
6689 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6690 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6691 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6692 	    ipsq_dlpi_done(ipsq))))) {
6693 		/* Success. */
6694 		ipx->ipx_reentry_cnt++;
6695 		ipx->ipx_writer = curthread;
6696 		ipx->ipx_forced = B_FALSE;
6697 		mutex_exit(&ipx->ipx_lock);
6698 		mutex_exit(&ipsq->ipsq_lock);
6699 		mutex_exit(&ill->ill_lock);
6700 		RELEASE_CONN_LOCK(q);
6701 #ifdef DEBUG
6702 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6703 #endif
6704 		return (ipsq);
6705 	}
6706 
6707 	if (func != NULL)
6708 		ipsq_enq(ipsq, q, mp, func, type, ill);
6709 
6710 	mutex_exit(&ipx->ipx_lock);
6711 	mutex_exit(&ipsq->ipsq_lock);
6712 	mutex_exit(&ill->ill_lock);
6713 	RELEASE_CONN_LOCK(q);
6714 	return (NULL);
6715 }
6716 
6717 /*
6718  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6719  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6720  * There is one ipsq per phyint. The ipsq
6721  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6722  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6723  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6724  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6725  * up the interface) and are enqueued in ipx_mphead.
6726  *
6727  * If a thread does not want to reenter the ipsq when it is already writer,
6728  * it must make sure that the specified reentry point to be called later
6729  * when the ipsq is empty, nor any code path starting from the specified reentry
6730  * point must never ever try to enter the ipsq again. Otherwise it can lead
6731  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6732  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6733  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6734  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6735  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6736  * ioctl if the current ioctl has completed. If the current ioctl is still
6737  * in progress it simply returns. The current ioctl could be waiting for
6738  * a response from another module (the driver or could be waiting for
6739  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6740  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6741  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6742  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6743  * all associated DLPI operations have completed.
6744  */
6745 
6746 /*
6747  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6748  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6749  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6750  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6751  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6752  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6753  */
6754 ipsq_t *
6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6756     ipsq_func_t func, int type, boolean_t reentry_ok)
6757 {
6758 	ip_stack_t	*ipst;
6759 	ipsq_t		*ipsq;
6760 
6761 	/* Only 1 of ipif or ill can be specified */
6762 	ASSERT((ipif != NULL) ^ (ill != NULL));
6763 
6764 	if (ipif != NULL)
6765 		ill = ipif->ipif_ill;
6766 	ipst = ill->ill_ipst;
6767 
6768 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6769 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6770 	rw_exit(&ipst->ips_ill_g_lock);
6771 
6772 	return (ipsq);
6773 }
6774 
6775 /*
6776  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6777  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6778  * cannot be entered, the mp is queued for completion.
6779  */
6780 void
6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6782     boolean_t reentry_ok)
6783 {
6784 	ipsq_t	*ipsq;
6785 
6786 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6787 
6788 	/*
6789 	 * Drop the caller's refhold on the ill.  This is safe since we either
6790 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6791 	 * IPSQ, in which case we return without accessing ill anymore.  This
6792 	 * is needed because func needs to see the correct refcount.
6793 	 * e.g. removeif can work only then.
6794 	 */
6795 	ill_refrele(ill);
6796 	if (ipsq != NULL) {
6797 		(*func)(ipsq, q, mp, NULL);
6798 		ipsq_exit(ipsq);
6799 	}
6800 }
6801 
6802 /*
6803  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6804  * prior to exiting.  Caller must be writer on the specified IPSQ.
6805  */
6806 void
6807 ipsq_exit(ipsq_t *ipsq)
6808 {
6809 	mblk_t *mp;
6810 	ipsq_t *mp_ipsq;
6811 	queue_t	*q;
6812 	phyint_t *phyi;
6813 	ipsq_func_t func;
6814 
6815 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6816 
6817 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6818 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6819 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6820 		return;
6821 	}
6822 
6823 	for (;;) {
6824 		phyi = ipsq->ipsq_phyint;
6825 		mp = ipsq_dq(ipsq);
6826 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6827 
6828 		/*
6829 		 * If we've changed to a new IPSQ, and the phyint associated
6830 		 * with the old one has gone away, free the old IPSQ.  Note
6831 		 * that this cannot happen while the IPSQ is in a group.
6832 		 */
6833 		if (mp_ipsq != ipsq && phyi == NULL) {
6834 			ASSERT(ipsq->ipsq_next == ipsq);
6835 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6836 			ipsq_delete(ipsq);
6837 		}
6838 
6839 		if (mp == NULL)
6840 			break;
6841 
6842 		q = mp->b_queue;
6843 		func = (ipsq_func_t)mp->b_prev;
6844 		ipsq = mp_ipsq;
6845 		mp->b_next = mp->b_prev = NULL;
6846 		mp->b_queue = NULL;
6847 
6848 		/*
6849 		 * If 'q' is an conn queue, it is valid, since we did a
6850 		 * a refhold on the conn at the start of the ioctl.
6851 		 * If 'q' is an ill queue, it is valid, since close of an
6852 		 * ill will clean up its IPSQ.
6853 		 */
6854 		(*func)(ipsq, q, mp, NULL);
6855 	}
6856 }
6857 
6858 /*
6859  * Used to start any igmp or mld timers that could not be started
6860  * while holding ill_mcast_lock. The timers can't be started while holding
6861  * the lock, since mld/igmp_start_timers may need to call untimeout()
6862  * which can't be done while holding the lock which the timeout handler
6863  * acquires. Otherwise
6864  * there could be a deadlock since the timeout handlers
6865  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6866  * ill_mcast_lock.
6867  */
6868 void
6869 ill_mcast_timer_start(ip_stack_t *ipst)
6870 {
6871 	int		next;
6872 
6873 	mutex_enter(&ipst->ips_igmp_timer_lock);
6874 	next = ipst->ips_igmp_deferred_next;
6875 	ipst->ips_igmp_deferred_next = INFINITY;
6876 	mutex_exit(&ipst->ips_igmp_timer_lock);
6877 
6878 	if (next != INFINITY)
6879 		igmp_start_timers(next, ipst);
6880 
6881 	mutex_enter(&ipst->ips_mld_timer_lock);
6882 	next = ipst->ips_mld_deferred_next;
6883 	ipst->ips_mld_deferred_next = INFINITY;
6884 	mutex_exit(&ipst->ips_mld_timer_lock);
6885 
6886 	if (next != INFINITY)
6887 		mld_start_timers(next, ipst);
6888 }
6889 
6890 /*
6891  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6892  * and `ioccmd'.
6893  */
6894 void
6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6896 {
6897 	ill_t *ill = ipif->ipif_ill;
6898 	ipxop_t *ipx = ipsq->ipsq_xop;
6899 
6900 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6901 	ASSERT(ipx->ipx_current_ipif == NULL);
6902 	ASSERT(ipx->ipx_current_ioctl == 0);
6903 
6904 	ipx->ipx_current_done = B_FALSE;
6905 	ipx->ipx_current_ioctl = ioccmd;
6906 	mutex_enter(&ipx->ipx_lock);
6907 	ipx->ipx_current_ipif = ipif;
6908 	mutex_exit(&ipx->ipx_lock);
6909 
6910 	/*
6911 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6912 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6913 	 * references to the ipif (so that the references will eventually
6914 	 * drop to zero) and also prevents any "get" operations (e.g.,
6915 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6916 	 * operation has completed and the ipif is again in a stable state.
6917 	 *
6918 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6919 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6920 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6921 	 * ipifs will be affected.
6922 	 *
6923 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6924 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6925 	 * operate on.
6926 	 */
6927 	switch (ioccmd) {
6928 	case SIOCLIFREMOVEIF:
6929 		break;
6930 	case 0:
6931 		mutex_enter(&ill->ill_lock);
6932 		ipif = ipif->ipif_ill->ill_ipif;
6933 		for (; ipif != NULL; ipif = ipif->ipif_next)
6934 			ipif->ipif_state_flags |= IPIF_CHANGING;
6935 		mutex_exit(&ill->ill_lock);
6936 		break;
6937 	default:
6938 		mutex_enter(&ill->ill_lock);
6939 		ipif->ipif_state_flags |= IPIF_CHANGING;
6940 		mutex_exit(&ill->ill_lock);
6941 	}
6942 }
6943 
6944 /*
6945  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6946  * the next exclusive operation to begin once we ipsq_exit().  However, if
6947  * pending DLPI operations remain, then we will wait for the queue to drain
6948  * before allowing the next exclusive operation to begin.  This ensures that
6949  * DLPI operations from one exclusive operation are never improperly processed
6950  * as part of a subsequent exclusive operation.
6951  */
6952 void
6953 ipsq_current_finish(ipsq_t *ipsq)
6954 {
6955 	ipxop_t	*ipx = ipsq->ipsq_xop;
6956 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6957 	ipif_t	*ipif = ipx->ipx_current_ipif;
6958 
6959 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6960 
6961 	/*
6962 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6963 	 * (but in that case, IPIF_CHANGING will already be clear and no
6964 	 * pending DLPI messages can remain).
6965 	 */
6966 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6967 		ill_t *ill = ipif->ipif_ill;
6968 
6969 		mutex_enter(&ill->ill_lock);
6970 		dlpi_pending = ill->ill_dlpi_pending;
6971 		if (ipx->ipx_current_ioctl == 0) {
6972 			ipif = ill->ill_ipif;
6973 			for (; ipif != NULL; ipif = ipif->ipif_next)
6974 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6975 		} else {
6976 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6977 		}
6978 		mutex_exit(&ill->ill_lock);
6979 	}
6980 
6981 	ASSERT(!ipx->ipx_current_done);
6982 	ipx->ipx_current_done = B_TRUE;
6983 	ipx->ipx_current_ioctl = 0;
6984 	if (dlpi_pending == DL_PRIM_INVAL) {
6985 		mutex_enter(&ipx->ipx_lock);
6986 		ipx->ipx_current_ipif = NULL;
6987 		mutex_exit(&ipx->ipx_lock);
6988 	}
6989 }
6990 
6991 /*
6992  * The ill is closing. Flush all messages on the ipsq that originated
6993  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6994  * for this ill since ipsq_enter could not have entered until then.
6995  * New messages can't be queued since the CONDEMNED flag is set.
6996  */
6997 static void
6998 ipsq_flush(ill_t *ill)
6999 {
7000 	queue_t	*q;
7001 	mblk_t	*prev;
7002 	mblk_t	*mp;
7003 	mblk_t	*mp_next;
7004 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7005 
7006 	ASSERT(IAM_WRITER_ILL(ill));
7007 
7008 	/*
7009 	 * Flush any messages sent up by the driver.
7010 	 */
7011 	mutex_enter(&ipx->ipx_lock);
7012 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7013 		mp_next = mp->b_next;
7014 		q = mp->b_queue;
7015 		if (q == ill->ill_rq || q == ill->ill_wq) {
7016 			/* dequeue mp */
7017 			if (prev == NULL)
7018 				ipx->ipx_mphead = mp->b_next;
7019 			else
7020 				prev->b_next = mp->b_next;
7021 			if (ipx->ipx_mptail == mp) {
7022 				ASSERT(mp_next == NULL);
7023 				ipx->ipx_mptail = prev;
7024 			}
7025 			inet_freemsg(mp);
7026 		} else {
7027 			prev = mp;
7028 		}
7029 	}
7030 	mutex_exit(&ipx->ipx_lock);
7031 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7032 	ipsq_xopq_mp_cleanup(ill, NULL);
7033 }
7034 
7035 /*
7036  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7037  * and return the associated ipif.
7038  * Return value:
7039  *	Non zero: An error has occurred. ci may not be filled out.
7040  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7041  *	a held ipif in ci.ci_ipif.
7042  */
7043 int
7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7045     cmd_info_t *ci)
7046 {
7047 	char		*name;
7048 	struct ifreq    *ifr;
7049 	struct lifreq    *lifr;
7050 	ipif_t		*ipif = NULL;
7051 	ill_t		*ill;
7052 	conn_t		*connp;
7053 	boolean_t	isv6;
7054 	int		err;
7055 	mblk_t		*mp1;
7056 	zoneid_t	zoneid;
7057 	ip_stack_t	*ipst;
7058 
7059 	if (q->q_next != NULL) {
7060 		ill = (ill_t *)q->q_ptr;
7061 		isv6 = ill->ill_isv6;
7062 		connp = NULL;
7063 		zoneid = ALL_ZONES;
7064 		ipst = ill->ill_ipst;
7065 	} else {
7066 		ill = NULL;
7067 		connp = Q_TO_CONN(q);
7068 		isv6 = (connp->conn_family == AF_INET6);
7069 		zoneid = connp->conn_zoneid;
7070 		if (zoneid == GLOBAL_ZONEID) {
7071 			/* global zone can access ipifs in all zones */
7072 			zoneid = ALL_ZONES;
7073 		}
7074 		ipst = connp->conn_netstack->netstack_ip;
7075 	}
7076 
7077 	/* Has been checked in ip_wput_nondata */
7078 	mp1 = mp->b_cont->b_cont;
7079 
7080 	if (ipip->ipi_cmd_type == IF_CMD) {
7081 		/* This a old style SIOC[GS]IF* command */
7082 		ifr = (struct ifreq *)mp1->b_rptr;
7083 		/*
7084 		 * Null terminate the string to protect against buffer
7085 		 * overrun. String was generated by user code and may not
7086 		 * be trusted.
7087 		 */
7088 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7089 		name = ifr->ifr_name;
7090 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7091 		ci->ci_sin6 = NULL;
7092 		ci->ci_lifr = (struct lifreq *)ifr;
7093 	} else {
7094 		/* This a new style SIOC[GS]LIF* command */
7095 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7096 		lifr = (struct lifreq *)mp1->b_rptr;
7097 		/*
7098 		 * Null terminate the string to protect against buffer
7099 		 * overrun. String was generated by user code and may not
7100 		 * be trusted.
7101 		 */
7102 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7103 		name = lifr->lifr_name;
7104 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7105 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7106 		ci->ci_lifr = lifr;
7107 	}
7108 
7109 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7110 		/*
7111 		 * The ioctl will be failed if the ioctl comes down
7112 		 * an conn stream
7113 		 */
7114 		if (ill == NULL) {
7115 			/*
7116 			 * Not an ill queue, return EINVAL same as the
7117 			 * old error code.
7118 			 */
7119 			return (ENXIO);
7120 		}
7121 		ipif = ill->ill_ipif;
7122 		ipif_refhold(ipif);
7123 	} else {
7124 		/*
7125 		 * Ensure that ioctls don't see any internal state changes
7126 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7127 		 * set.
7128 		 */
7129 		ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7130 		    isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7131 		if (ipif == NULL) {
7132 			if (err == EINPROGRESS)
7133 				return (err);
7134 			err = 0;	/* Ensure we don't use it below */
7135 		}
7136 	}
7137 
7138 	/*
7139 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7140 	 */
7141 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7142 		ipif_refrele(ipif);
7143 		return (ENXIO);
7144 	}
7145 
7146 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7147 	    name[0] == '\0') {
7148 		/*
7149 		 * Handle a or a SIOC?IF* with a null name
7150 		 * during plumb (on the ill queue before the I_PLINK).
7151 		 */
7152 		ipif = ill->ill_ipif;
7153 		ipif_refhold(ipif);
7154 	}
7155 
7156 	if (ipif == NULL)
7157 		return (ENXIO);
7158 
7159 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7160 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7161 
7162 	ci->ci_ipif = ipif;
7163 	return (0);
7164 }
7165 
7166 /*
7167  * Return the total number of ipifs.
7168  */
7169 static uint_t
7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7171 {
7172 	uint_t numifs = 0;
7173 	ill_t	*ill;
7174 	ill_walk_context_t	ctx;
7175 	ipif_t	*ipif;
7176 
7177 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7178 	ill = ILL_START_WALK_V4(&ctx, ipst);
7179 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7180 		if (IS_UNDER_IPMP(ill))
7181 			continue;
7182 		for (ipif = ill->ill_ipif; ipif != NULL;
7183 		    ipif = ipif->ipif_next) {
7184 			if (ipif->ipif_zoneid == zoneid ||
7185 			    ipif->ipif_zoneid == ALL_ZONES)
7186 				numifs++;
7187 		}
7188 	}
7189 	rw_exit(&ipst->ips_ill_g_lock);
7190 	return (numifs);
7191 }
7192 
7193 /*
7194  * Return the total number of ipifs.
7195  */
7196 static uint_t
7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7198 {
7199 	uint_t numifs = 0;
7200 	ill_t	*ill;
7201 	ipif_t	*ipif;
7202 	ill_walk_context_t	ctx;
7203 
7204 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7205 
7206 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7207 	if (family == AF_INET)
7208 		ill = ILL_START_WALK_V4(&ctx, ipst);
7209 	else if (family == AF_INET6)
7210 		ill = ILL_START_WALK_V6(&ctx, ipst);
7211 	else
7212 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7213 
7214 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7215 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7216 			continue;
7217 
7218 		for (ipif = ill->ill_ipif; ipif != NULL;
7219 		    ipif = ipif->ipif_next) {
7220 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7221 			    !(lifn_flags & LIFC_NOXMIT))
7222 				continue;
7223 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7224 			    !(lifn_flags & LIFC_TEMPORARY))
7225 				continue;
7226 			if (((ipif->ipif_flags &
7227 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7228 			    IPIF_DEPRECATED)) ||
7229 			    IS_LOOPBACK(ill) ||
7230 			    !(ipif->ipif_flags & IPIF_UP)) &&
7231 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7232 				continue;
7233 
7234 			if (zoneid != ipif->ipif_zoneid &&
7235 			    ipif->ipif_zoneid != ALL_ZONES &&
7236 			    (zoneid != GLOBAL_ZONEID ||
7237 			    !(lifn_flags & LIFC_ALLZONES)))
7238 				continue;
7239 
7240 			numifs++;
7241 		}
7242 	}
7243 	rw_exit(&ipst->ips_ill_g_lock);
7244 	return (numifs);
7245 }
7246 
7247 uint_t
7248 ip_get_lifsrcofnum(ill_t *ill)
7249 {
7250 	uint_t numifs = 0;
7251 	ill_t	*ill_head = ill;
7252 	ip_stack_t	*ipst = ill->ill_ipst;
7253 
7254 	/*
7255 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7256 	 * other thread may be trying to relink the ILLs in this usesrc group
7257 	 * and adjusting the ill_usesrc_grp_next pointers
7258 	 */
7259 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7260 	if ((ill->ill_usesrc_ifindex == 0) &&
7261 	    (ill->ill_usesrc_grp_next != NULL)) {
7262 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7263 		    ill = ill->ill_usesrc_grp_next)
7264 			numifs++;
7265 	}
7266 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7267 
7268 	return (numifs);
7269 }
7270 
7271 /* Null values are passed in for ipif, sin, and ifreq */
7272 /* ARGSUSED */
7273 int
7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7275     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7276 {
7277 	int *nump;
7278 	conn_t *connp = Q_TO_CONN(q);
7279 
7280 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7281 
7282 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7283 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7284 
7285 	*nump = ip_get_numifs(connp->conn_zoneid,
7286 	    connp->conn_netstack->netstack_ip);
7287 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7288 	return (0);
7289 }
7290 
7291 /* Null values are passed in for ipif, sin, and ifreq */
7292 /* ARGSUSED */
7293 int
7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7295     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7296 {
7297 	struct lifnum *lifn;
7298 	mblk_t	*mp1;
7299 	conn_t *connp = Q_TO_CONN(q);
7300 
7301 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7302 
7303 	/* Existence checked in ip_wput_nondata */
7304 	mp1 = mp->b_cont->b_cont;
7305 
7306 	lifn = (struct lifnum *)mp1->b_rptr;
7307 	switch (lifn->lifn_family) {
7308 	case AF_UNSPEC:
7309 	case AF_INET:
7310 	case AF_INET6:
7311 		break;
7312 	default:
7313 		return (EAFNOSUPPORT);
7314 	}
7315 
7316 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7317 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7318 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7319 	return (0);
7320 }
7321 
7322 /* ARGSUSED */
7323 int
7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7325     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7326 {
7327 	STRUCT_HANDLE(ifconf, ifc);
7328 	mblk_t *mp1;
7329 	struct iocblk *iocp;
7330 	struct ifreq *ifr;
7331 	ill_walk_context_t	ctx;
7332 	ill_t	*ill;
7333 	ipif_t	*ipif;
7334 	struct sockaddr_in *sin;
7335 	int32_t	ifclen;
7336 	zoneid_t zoneid;
7337 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7338 
7339 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7340 
7341 	ip1dbg(("ip_sioctl_get_ifconf"));
7342 	/* Existence verified in ip_wput_nondata */
7343 	mp1 = mp->b_cont->b_cont;
7344 	iocp = (struct iocblk *)mp->b_rptr;
7345 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7346 
7347 	/*
7348 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7349 	 * the user buffer address and length into which the list of struct
7350 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7351 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7352 	 * the SIOCGIFCONF operation was redefined to simply provide
7353 	 * a large output buffer into which we are supposed to jam the ifreq
7354 	 * array.  The same ioctl command code was used, despite the fact that
7355 	 * both the applications and the kernel code had to change, thus making
7356 	 * it impossible to support both interfaces.
7357 	 *
7358 	 * For reasons not good enough to try to explain, the following
7359 	 * algorithm is used for deciding what to do with one of these:
7360 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7361 	 * form with the output buffer coming down as the continuation message.
7362 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7363 	 * and we have to copy in the ifconf structure to find out how big the
7364 	 * output buffer is and where to copy out to.  Sure no problem...
7365 	 *
7366 	 */
7367 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7368 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7369 		int numifs = 0;
7370 		size_t ifc_bufsize;
7371 
7372 		/*
7373 		 * Must be (better be!) continuation of a TRANSPARENT
7374 		 * IOCTL.  We just copied in the ifconf structure.
7375 		 */
7376 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7377 		    (struct ifconf *)mp1->b_rptr);
7378 
7379 		/*
7380 		 * Allocate a buffer to hold requested information.
7381 		 *
7382 		 * If ifc_len is larger than what is needed, we only
7383 		 * allocate what we will use.
7384 		 *
7385 		 * If ifc_len is smaller than what is needed, return
7386 		 * EINVAL.
7387 		 *
7388 		 * XXX: the ill_t structure can hava 2 counters, for
7389 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7390 		 * number of interfaces for a device, so we don't need
7391 		 * to count them here...
7392 		 */
7393 		numifs = ip_get_numifs(zoneid, ipst);
7394 
7395 		ifclen = STRUCT_FGET(ifc, ifc_len);
7396 		ifc_bufsize = numifs * sizeof (struct ifreq);
7397 		if (ifc_bufsize > ifclen) {
7398 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7399 				/* old behaviour */
7400 				return (EINVAL);
7401 			} else {
7402 				ifc_bufsize = ifclen;
7403 			}
7404 		}
7405 
7406 		mp1 = mi_copyout_alloc(q, mp,
7407 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7408 		if (mp1 == NULL)
7409 			return (ENOMEM);
7410 
7411 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7412 	}
7413 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7414 	/*
7415 	 * the SIOCGIFCONF ioctl only knows about
7416 	 * IPv4 addresses, so don't try to tell
7417 	 * it about interfaces with IPv6-only
7418 	 * addresses. (Last parm 'isv6' is B_FALSE)
7419 	 */
7420 
7421 	ifr = (struct ifreq *)mp1->b_rptr;
7422 
7423 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7424 	ill = ILL_START_WALK_V4(&ctx, ipst);
7425 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7426 		if (IS_UNDER_IPMP(ill))
7427 			continue;
7428 		for (ipif = ill->ill_ipif; ipif != NULL;
7429 		    ipif = ipif->ipif_next) {
7430 			if (zoneid != ipif->ipif_zoneid &&
7431 			    ipif->ipif_zoneid != ALL_ZONES)
7432 				continue;
7433 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7434 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7435 					/* old behaviour */
7436 					rw_exit(&ipst->ips_ill_g_lock);
7437 					return (EINVAL);
7438 				} else {
7439 					goto if_copydone;
7440 				}
7441 			}
7442 			ipif_get_name(ipif, ifr->ifr_name,
7443 			    sizeof (ifr->ifr_name));
7444 			sin = (sin_t *)&ifr->ifr_addr;
7445 			*sin = sin_null;
7446 			sin->sin_family = AF_INET;
7447 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7448 			ifr++;
7449 		}
7450 	}
7451 if_copydone:
7452 	rw_exit(&ipst->ips_ill_g_lock);
7453 	mp1->b_wptr = (uchar_t *)ifr;
7454 
7455 	if (STRUCT_BUF(ifc) != NULL) {
7456 		STRUCT_FSET(ifc, ifc_len,
7457 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7458 	}
7459 	return (0);
7460 }
7461 
7462 /*
7463  * Get the interfaces using the address hosted on the interface passed in,
7464  * as a source adddress
7465  */
7466 /* ARGSUSED */
7467 int
7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7469     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7470 {
7471 	mblk_t *mp1;
7472 	ill_t	*ill, *ill_head;
7473 	ipif_t	*ipif, *orig_ipif;
7474 	int	numlifs = 0;
7475 	size_t	lifs_bufsize, lifsmaxlen;
7476 	struct	lifreq *lifr;
7477 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7478 	uint_t	ifindex;
7479 	zoneid_t zoneid;
7480 	boolean_t isv6 = B_FALSE;
7481 	struct	sockaddr_in	*sin;
7482 	struct	sockaddr_in6	*sin6;
7483 	STRUCT_HANDLE(lifsrcof, lifs);
7484 	ip_stack_t		*ipst;
7485 
7486 	ipst = CONNQ_TO_IPST(q);
7487 
7488 	ASSERT(q->q_next == NULL);
7489 
7490 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7491 
7492 	/* Existence verified in ip_wput_nondata */
7493 	mp1 = mp->b_cont->b_cont;
7494 
7495 	/*
7496 	 * Must be (better be!) continuation of a TRANSPARENT
7497 	 * IOCTL.  We just copied in the lifsrcof structure.
7498 	 */
7499 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7500 	    (struct lifsrcof *)mp1->b_rptr);
7501 
7502 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7503 		return (EINVAL);
7504 
7505 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7506 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7507 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7508 	if (ipif == NULL) {
7509 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7510 		    ifindex));
7511 		return (ENXIO);
7512 	}
7513 
7514 	/* Allocate a buffer to hold requested information */
7515 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7516 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7517 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7518 	/* The actual size needed is always returned in lifs_len */
7519 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7520 
7521 	/* If the amount we need is more than what is passed in, abort */
7522 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7523 		ipif_refrele(ipif);
7524 		return (0);
7525 	}
7526 
7527 	mp1 = mi_copyout_alloc(q, mp,
7528 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7529 	if (mp1 == NULL) {
7530 		ipif_refrele(ipif);
7531 		return (ENOMEM);
7532 	}
7533 
7534 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7535 	bzero(mp1->b_rptr, lifs_bufsize);
7536 
7537 	lifr = (struct lifreq *)mp1->b_rptr;
7538 
7539 	ill = ill_head = ipif->ipif_ill;
7540 	orig_ipif = ipif;
7541 
7542 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7543 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7544 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7545 
7546 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7547 	for (; (ill != NULL) && (ill != ill_head);
7548 	    ill = ill->ill_usesrc_grp_next) {
7549 
7550 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7551 			break;
7552 
7553 		ipif = ill->ill_ipif;
7554 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7555 		if (ipif->ipif_isv6) {
7556 			sin6 = (sin6_t *)&lifr->lifr_addr;
7557 			*sin6 = sin6_null;
7558 			sin6->sin6_family = AF_INET6;
7559 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7560 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7561 			    &ipif->ipif_v6net_mask);
7562 		} else {
7563 			sin = (sin_t *)&lifr->lifr_addr;
7564 			*sin = sin_null;
7565 			sin->sin_family = AF_INET;
7566 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7567 			lifr->lifr_addrlen = ip_mask_to_plen(
7568 			    ipif->ipif_net_mask);
7569 		}
7570 		lifr++;
7571 	}
7572 	rw_exit(&ipst->ips_ill_g_lock);
7573 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7574 	ipif_refrele(orig_ipif);
7575 	mp1->b_wptr = (uchar_t *)lifr;
7576 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7577 
7578 	return (0);
7579 }
7580 
7581 /* ARGSUSED */
7582 int
7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7584     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7585 {
7586 	mblk_t *mp1;
7587 	int	list;
7588 	ill_t	*ill;
7589 	ipif_t	*ipif;
7590 	int	flags;
7591 	int	numlifs = 0;
7592 	size_t	lifc_bufsize;
7593 	struct	lifreq *lifr;
7594 	sa_family_t	family;
7595 	struct	sockaddr_in	*sin;
7596 	struct	sockaddr_in6	*sin6;
7597 	ill_walk_context_t	ctx;
7598 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7599 	int32_t	lifclen;
7600 	zoneid_t zoneid;
7601 	STRUCT_HANDLE(lifconf, lifc);
7602 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7603 
7604 	ip1dbg(("ip_sioctl_get_lifconf"));
7605 
7606 	ASSERT(q->q_next == NULL);
7607 
7608 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7609 
7610 	/* Existence verified in ip_wput_nondata */
7611 	mp1 = mp->b_cont->b_cont;
7612 
7613 	/*
7614 	 * An extended version of SIOCGIFCONF that takes an
7615 	 * additional address family and flags field.
7616 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7617 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7618 	 * interfaces are omitted.
7619 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7620 	 * unless LIFC_TEMPORARY is specified.
7621 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7622 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7623 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7624 	 * has priority over LIFC_NOXMIT.
7625 	 */
7626 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7627 
7628 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7629 		return (EINVAL);
7630 
7631 	/*
7632 	 * Must be (better be!) continuation of a TRANSPARENT
7633 	 * IOCTL.  We just copied in the lifconf structure.
7634 	 */
7635 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7636 
7637 	family = STRUCT_FGET(lifc, lifc_family);
7638 	flags = STRUCT_FGET(lifc, lifc_flags);
7639 
7640 	switch (family) {
7641 	case AF_UNSPEC:
7642 		/*
7643 		 * walk all ILL's.
7644 		 */
7645 		list = MAX_G_HEADS;
7646 		break;
7647 	case AF_INET:
7648 		/*
7649 		 * walk only IPV4 ILL's.
7650 		 */
7651 		list = IP_V4_G_HEAD;
7652 		break;
7653 	case AF_INET6:
7654 		/*
7655 		 * walk only IPV6 ILL's.
7656 		 */
7657 		list = IP_V6_G_HEAD;
7658 		break;
7659 	default:
7660 		return (EAFNOSUPPORT);
7661 	}
7662 
7663 	/*
7664 	 * Allocate a buffer to hold requested information.
7665 	 *
7666 	 * If lifc_len is larger than what is needed, we only
7667 	 * allocate what we will use.
7668 	 *
7669 	 * If lifc_len is smaller than what is needed, return
7670 	 * EINVAL.
7671 	 */
7672 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7673 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7674 	lifclen = STRUCT_FGET(lifc, lifc_len);
7675 	if (lifc_bufsize > lifclen) {
7676 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7677 			return (EINVAL);
7678 		else
7679 			lifc_bufsize = lifclen;
7680 	}
7681 
7682 	mp1 = mi_copyout_alloc(q, mp,
7683 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7684 	if (mp1 == NULL)
7685 		return (ENOMEM);
7686 
7687 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7688 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7689 
7690 	lifr = (struct lifreq *)mp1->b_rptr;
7691 
7692 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7693 	ill = ill_first(list, list, &ctx, ipst);
7694 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7695 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7696 			continue;
7697 
7698 		for (ipif = ill->ill_ipif; ipif != NULL;
7699 		    ipif = ipif->ipif_next) {
7700 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7701 			    !(flags & LIFC_NOXMIT))
7702 				continue;
7703 
7704 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7705 			    !(flags & LIFC_TEMPORARY))
7706 				continue;
7707 
7708 			if (((ipif->ipif_flags &
7709 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7710 			    IPIF_DEPRECATED)) ||
7711 			    IS_LOOPBACK(ill) ||
7712 			    !(ipif->ipif_flags & IPIF_UP)) &&
7713 			    (flags & LIFC_EXTERNAL_SOURCE))
7714 				continue;
7715 
7716 			if (zoneid != ipif->ipif_zoneid &&
7717 			    ipif->ipif_zoneid != ALL_ZONES &&
7718 			    (zoneid != GLOBAL_ZONEID ||
7719 			    !(flags & LIFC_ALLZONES)))
7720 				continue;
7721 
7722 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7723 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7724 					rw_exit(&ipst->ips_ill_g_lock);
7725 					return (EINVAL);
7726 				} else {
7727 					goto lif_copydone;
7728 				}
7729 			}
7730 
7731 			ipif_get_name(ipif, lifr->lifr_name,
7732 			    sizeof (lifr->lifr_name));
7733 			lifr->lifr_type = ill->ill_type;
7734 			if (ipif->ipif_isv6) {
7735 				sin6 = (sin6_t *)&lifr->lifr_addr;
7736 				*sin6 = sin6_null;
7737 				sin6->sin6_family = AF_INET6;
7738 				sin6->sin6_addr =
7739 				    ipif->ipif_v6lcl_addr;
7740 				lifr->lifr_addrlen =
7741 				    ip_mask_to_plen_v6(
7742 				    &ipif->ipif_v6net_mask);
7743 			} else {
7744 				sin = (sin_t *)&lifr->lifr_addr;
7745 				*sin = sin_null;
7746 				sin->sin_family = AF_INET;
7747 				sin->sin_addr.s_addr =
7748 				    ipif->ipif_lcl_addr;
7749 				lifr->lifr_addrlen =
7750 				    ip_mask_to_plen(
7751 				    ipif->ipif_net_mask);
7752 			}
7753 			lifr++;
7754 		}
7755 	}
7756 lif_copydone:
7757 	rw_exit(&ipst->ips_ill_g_lock);
7758 
7759 	mp1->b_wptr = (uchar_t *)lifr;
7760 	if (STRUCT_BUF(lifc) != NULL) {
7761 		STRUCT_FSET(lifc, lifc_len,
7762 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7763 	}
7764 	return (0);
7765 }
7766 
7767 static void
7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7769 {
7770 	ip6_asp_t *table;
7771 	size_t table_size;
7772 	mblk_t *data_mp;
7773 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7774 	ip_stack_t	*ipst;
7775 
7776 	if (q->q_next == NULL)
7777 		ipst = CONNQ_TO_IPST(q);
7778 	else
7779 		ipst = ILLQ_TO_IPST(q);
7780 
7781 	/* These two ioctls are I_STR only */
7782 	if (iocp->ioc_count == TRANSPARENT) {
7783 		miocnak(q, mp, 0, EINVAL);
7784 		return;
7785 	}
7786 
7787 	data_mp = mp->b_cont;
7788 	if (data_mp == NULL) {
7789 		/* The user passed us a NULL argument */
7790 		table = NULL;
7791 		table_size = iocp->ioc_count;
7792 	} else {
7793 		/*
7794 		 * The user provided a table.  The stream head
7795 		 * may have copied in the user data in chunks,
7796 		 * so make sure everything is pulled up
7797 		 * properly.
7798 		 */
7799 		if (MBLKL(data_mp) < iocp->ioc_count) {
7800 			mblk_t *new_data_mp;
7801 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7802 			    NULL) {
7803 				miocnak(q, mp, 0, ENOMEM);
7804 				return;
7805 			}
7806 			freemsg(data_mp);
7807 			data_mp = new_data_mp;
7808 			mp->b_cont = data_mp;
7809 		}
7810 		table = (ip6_asp_t *)data_mp->b_rptr;
7811 		table_size = iocp->ioc_count;
7812 	}
7813 
7814 	switch (iocp->ioc_cmd) {
7815 	case SIOCGIP6ADDRPOLICY:
7816 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7817 		if (iocp->ioc_rval == -1)
7818 			iocp->ioc_error = EINVAL;
7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7820 		else if (table != NULL &&
7821 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7822 			ip6_asp_t *src = table;
7823 			ip6_asp32_t *dst = (void *)table;
7824 			int count = table_size / sizeof (ip6_asp_t);
7825 			int i;
7826 
7827 			/*
7828 			 * We need to do an in-place shrink of the array
7829 			 * to match the alignment attributes of the
7830 			 * 32-bit ABI looking at it.
7831 			 */
7832 			/* LINTED: logical expression always true: op "||" */
7833 			ASSERT(sizeof (*src) > sizeof (*dst));
7834 			for (i = 1; i < count; i++)
7835 				bcopy(src + i, dst + i, sizeof (*dst));
7836 		}
7837 #endif
7838 		break;
7839 
7840 	case SIOCSIP6ADDRPOLICY:
7841 		ASSERT(mp->b_prev == NULL);
7842 		mp->b_prev = (void *)q;
7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7844 		/*
7845 		 * We pass in the datamodel here so that the ip6_asp_replace()
7846 		 * routine can handle converting from 32-bit to native formats
7847 		 * where necessary.
7848 		 *
7849 		 * A better way to handle this might be to convert the inbound
7850 		 * data structure here, and hang it off a new 'mp'; thus the
7851 		 * ip6_asp_replace() logic would always be dealing with native
7852 		 * format data structures..
7853 		 *
7854 		 * (An even simpler way to handle these ioctls is to just
7855 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7856 		 * and just recompile everything that depends on it.)
7857 		 */
7858 #endif
7859 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7860 		    iocp->ioc_flag & IOC_MODELS);
7861 		return;
7862 	}
7863 
7864 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7865 	qreply(q, mp);
7866 }
7867 
7868 static void
7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7870 {
7871 	mblk_t 		*data_mp;
7872 	struct dstinforeq	*dir;
7873 	uint8_t		*end, *cur;
7874 	in6_addr_t	*daddr, *saddr;
7875 	ipaddr_t	v4daddr;
7876 	ire_t		*ire;
7877 	ipaddr_t	v4setsrc;
7878 	in6_addr_t	v6setsrc;
7879 	char		*slabel, *dlabel;
7880 	boolean_t	isipv4;
7881 	int		match_ire;
7882 	ill_t		*dst_ill;
7883 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7884 	conn_t		*connp = Q_TO_CONN(q);
7885 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7886 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7887 	uint64_t	ipif_flags;
7888 
7889 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7890 
7891 	/*
7892 	 * This ioctl is I_STR only, and must have a
7893 	 * data mblk following the M_IOCTL mblk.
7894 	 */
7895 	data_mp = mp->b_cont;
7896 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7897 		miocnak(q, mp, 0, EINVAL);
7898 		return;
7899 	}
7900 
7901 	if (MBLKL(data_mp) < iocp->ioc_count) {
7902 		mblk_t *new_data_mp;
7903 
7904 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7905 			miocnak(q, mp, 0, ENOMEM);
7906 			return;
7907 		}
7908 		freemsg(data_mp);
7909 		data_mp = new_data_mp;
7910 		mp->b_cont = data_mp;
7911 	}
7912 	match_ire = MATCH_IRE_DSTONLY;
7913 
7914 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7915 	    end - cur >= sizeof (struct dstinforeq);
7916 	    cur += sizeof (struct dstinforeq)) {
7917 		dir = (struct dstinforeq *)cur;
7918 		daddr = &dir->dir_daddr;
7919 		saddr = &dir->dir_saddr;
7920 
7921 		/*
7922 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7923 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7924 		 * and ip_select_source_v6() do not.
7925 		 */
7926 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7927 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7928 
7929 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7930 		if (isipv4) {
7931 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7932 			v4setsrc = INADDR_ANY;
7933 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7934 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7935 			    NULL, NULL);
7936 		} else {
7937 			v6setsrc = ipv6_all_zeros;
7938 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7939 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7940 			    NULL, NULL);
7941 		}
7942 		ASSERT(ire != NULL);
7943 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7944 			ire_refrele(ire);
7945 			dir->dir_dreachable = 0;
7946 
7947 			/* move on to next dst addr */
7948 			continue;
7949 		}
7950 		dir->dir_dreachable = 1;
7951 
7952 		dst_ill = ire_nexthop_ill(ire);
7953 		if (dst_ill == NULL) {
7954 			ire_refrele(ire);
7955 			continue;
7956 		}
7957 
7958 		/* With ipmp we most likely look at the ipmp ill here */
7959 		dir->dir_dmactype = dst_ill->ill_mactype;
7960 
7961 		if (isipv4) {
7962 			ipaddr_t v4saddr;
7963 
7964 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7965 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7966 			    &v4saddr, NULL, &ipif_flags) != 0) {
7967 				v4saddr = INADDR_ANY;
7968 				ipif_flags = 0;
7969 			}
7970 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7971 		} else {
7972 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7973 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7974 			    saddr, NULL, &ipif_flags) != 0) {
7975 				*saddr = ipv6_all_zeros;
7976 				ipif_flags = 0;
7977 			}
7978 		}
7979 
7980 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7981 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7982 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7983 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7984 		ire_refrele(ire);
7985 		ill_refrele(dst_ill);
7986 	}
7987 	miocack(q, mp, iocp->ioc_count, 0);
7988 }
7989 
7990 /*
7991  * Check if this is an address assigned to this machine.
7992  * Skips interfaces that are down by using ire checks.
7993  * Translates mapped addresses to v4 addresses and then
7994  * treats them as such, returning true if the v4 address
7995  * associated with this mapped address is configured.
7996  * Note: Applications will have to be careful what they do
7997  * with the response; use of mapped addresses limits
7998  * what can be done with the socket, especially with
7999  * respect to socket options and ioctls - neither IPv4
8000  * options nor IPv6 sticky options/ancillary data options
8001  * may be used.
8002  */
8003 /* ARGSUSED */
8004 int
8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8006     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8007 {
8008 	struct sioc_addrreq *sia;
8009 	sin_t *sin;
8010 	ire_t *ire;
8011 	mblk_t *mp1;
8012 	zoneid_t zoneid;
8013 	ip_stack_t	*ipst;
8014 
8015 	ip1dbg(("ip_sioctl_tmyaddr"));
8016 
8017 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8018 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8019 	ipst = CONNQ_TO_IPST(q);
8020 
8021 	/* Existence verified in ip_wput_nondata */
8022 	mp1 = mp->b_cont->b_cont;
8023 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8024 	sin = (sin_t *)&sia->sa_addr;
8025 	switch (sin->sin_family) {
8026 	case AF_INET6: {
8027 		sin6_t *sin6 = (sin6_t *)sin;
8028 
8029 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8030 			ipaddr_t v4_addr;
8031 
8032 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8033 			    v4_addr);
8034 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8035 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8036 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8037 		} else {
8038 			in6_addr_t v6addr;
8039 
8040 			v6addr = sin6->sin6_addr;
8041 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8042 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8043 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8044 		}
8045 		break;
8046 	}
8047 	case AF_INET: {
8048 		ipaddr_t v4addr;
8049 
8050 		v4addr = sin->sin_addr.s_addr;
8051 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8052 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8053 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8054 		break;
8055 	}
8056 	default:
8057 		return (EAFNOSUPPORT);
8058 	}
8059 	if (ire != NULL) {
8060 		sia->sa_res = 1;
8061 		ire_refrele(ire);
8062 	} else {
8063 		sia->sa_res = 0;
8064 	}
8065 	return (0);
8066 }
8067 
8068 /*
8069  * Check if this is an address assigned on-link i.e. neighbor,
8070  * and makes sure it's reachable from the current zone.
8071  * Returns true for my addresses as well.
8072  * Translates mapped addresses to v4 addresses and then
8073  * treats them as such, returning true if the v4 address
8074  * associated with this mapped address is configured.
8075  * Note: Applications will have to be careful what they do
8076  * with the response; use of mapped addresses limits
8077  * what can be done with the socket, especially with
8078  * respect to socket options and ioctls - neither IPv4
8079  * options nor IPv6 sticky options/ancillary data options
8080  * may be used.
8081  */
8082 /* ARGSUSED */
8083 int
8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8085     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8086 {
8087 	struct sioc_addrreq *sia;
8088 	sin_t *sin;
8089 	mblk_t	*mp1;
8090 	ire_t *ire = NULL;
8091 	zoneid_t zoneid;
8092 	ip_stack_t	*ipst;
8093 
8094 	ip1dbg(("ip_sioctl_tonlink"));
8095 
8096 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8097 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8098 	ipst = CONNQ_TO_IPST(q);
8099 
8100 	/* Existence verified in ip_wput_nondata */
8101 	mp1 = mp->b_cont->b_cont;
8102 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8103 	sin = (sin_t *)&sia->sa_addr;
8104 
8105 	/*
8106 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8107 	 * to make sure we only look at on-link unicast address.
8108 	 */
8109 	switch (sin->sin_family) {
8110 	case AF_INET6: {
8111 		sin6_t *sin6 = (sin6_t *)sin;
8112 
8113 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8114 			ipaddr_t v4_addr;
8115 
8116 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8117 			    v4_addr);
8118 			if (!CLASSD(v4_addr)) {
8119 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8120 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8121 				    0, ipst, NULL);
8122 			}
8123 		} else {
8124 			in6_addr_t v6addr;
8125 
8126 			v6addr = sin6->sin6_addr;
8127 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8128 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8129 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8130 				    ipst, NULL);
8131 			}
8132 		}
8133 		break;
8134 	}
8135 	case AF_INET: {
8136 		ipaddr_t v4addr;
8137 
8138 		v4addr = sin->sin_addr.s_addr;
8139 		if (!CLASSD(v4addr)) {
8140 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8141 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8142 		}
8143 		break;
8144 	}
8145 	default:
8146 		return (EAFNOSUPPORT);
8147 	}
8148 	sia->sa_res = 0;
8149 	if (ire != NULL) {
8150 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8151 
8152 		if ((ire->ire_type & IRE_ONLINK) &&
8153 		    !(ire->ire_type & IRE_BROADCAST))
8154 			sia->sa_res = 1;
8155 		ire_refrele(ire);
8156 	}
8157 	return (0);
8158 }
8159 
8160 /*
8161  * TBD: implement when kernel maintaines a list of site prefixes.
8162  */
8163 /* ARGSUSED */
8164 int
8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8166     ip_ioctl_cmd_t *ipip, void *ifreq)
8167 {
8168 	return (ENXIO);
8169 }
8170 
8171 /* ARP IOCTLs. */
8172 /* ARGSUSED */
8173 int
8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8175     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8176 {
8177 	int		err;
8178 	ipaddr_t	ipaddr;
8179 	struct iocblk	*iocp;
8180 	conn_t		*connp;
8181 	struct arpreq	*ar;
8182 	struct xarpreq	*xar;
8183 	int		arp_flags, flags, alength;
8184 	uchar_t		*lladdr;
8185 	ip_stack_t	*ipst;
8186 	ill_t		*ill = ipif->ipif_ill;
8187 	ill_t		*proxy_ill = NULL;
8188 	ipmp_arpent_t	*entp = NULL;
8189 	boolean_t	proxyarp = B_FALSE;
8190 	boolean_t	if_arp_ioctl = B_FALSE;
8191 	ncec_t		*ncec = NULL;
8192 	nce_t		*nce;
8193 
8194 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8195 	connp = Q_TO_CONN(q);
8196 	ipst = connp->conn_netstack->netstack_ip;
8197 	iocp = (struct iocblk *)mp->b_rptr;
8198 
8199 	if (ipip->ipi_cmd_type == XARP_CMD) {
8200 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8201 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8202 		ar = NULL;
8203 
8204 		arp_flags = xar->xarp_flags;
8205 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8206 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8207 		/*
8208 		 * Validate against user's link layer address length
8209 		 * input and name and addr length limits.
8210 		 */
8211 		alength = ill->ill_phys_addr_length;
8212 		if (ipip->ipi_cmd == SIOCSXARP) {
8213 			if (alength != xar->xarp_ha.sdl_alen ||
8214 			    (alength + xar->xarp_ha.sdl_nlen >
8215 			    sizeof (xar->xarp_ha.sdl_data)))
8216 				return (EINVAL);
8217 		}
8218 	} else {
8219 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8220 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8221 		xar = NULL;
8222 
8223 		arp_flags = ar->arp_flags;
8224 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8225 		/*
8226 		 * Theoretically, the sa_family could tell us what link
8227 		 * layer type this operation is trying to deal with. By
8228 		 * common usage AF_UNSPEC means ethernet. We'll assume
8229 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8230 		 * for now. Our new SIOC*XARP ioctls can be used more
8231 		 * generally.
8232 		 *
8233 		 * If the underlying media happens to have a non 6 byte
8234 		 * address, arp module will fail set/get, but the del
8235 		 * operation will succeed.
8236 		 */
8237 		alength = 6;
8238 		if ((ipip->ipi_cmd != SIOCDARP) &&
8239 		    (alength != ill->ill_phys_addr_length)) {
8240 			return (EINVAL);
8241 		}
8242 	}
8243 
8244 	/* Translate ATF* flags to NCE* flags */
8245 	flags = 0;
8246 	if (arp_flags & ATF_AUTHORITY)
8247 		flags |= NCE_F_AUTHORITY;
8248 	if (arp_flags & ATF_PERM)
8249 		flags |= NCE_F_NONUD; /* not subject to aging */
8250 	if (arp_flags & ATF_PUBL)
8251 		flags |= NCE_F_PUBLISH;
8252 
8253 	/*
8254 	 * IPMP ARP special handling:
8255 	 *
8256 	 * 1. Since ARP mappings must appear consistent across the group,
8257 	 *    prohibit changing ARP mappings on the underlying interfaces.
8258 	 *
8259 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8260 	 *    IP itself, prohibit changing them.
8261 	 *
8262 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8263 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8264 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8265 	 */
8266 	if (IS_UNDER_IPMP(ill)) {
8267 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8268 			return (EPERM);
8269 	}
8270 	if (IS_IPMP(ill)) {
8271 		ipmp_illgrp_t *illg = ill->ill_grp;
8272 
8273 		switch (ipip->ipi_cmd) {
8274 		case SIOCSARP:
8275 		case SIOCSXARP:
8276 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8277 			if (proxy_ill != NULL) {
8278 				proxyarp = B_TRUE;
8279 				if (!ipmp_ill_is_active(proxy_ill))
8280 					proxy_ill = ipmp_illgrp_next_ill(illg);
8281 				if (proxy_ill != NULL)
8282 					lladdr = proxy_ill->ill_phys_addr;
8283 			}
8284 			/* FALLTHRU */
8285 		}
8286 	}
8287 
8288 	ipaddr = sin->sin_addr.s_addr;
8289 	/*
8290 	 * don't match across illgrp per case (1) and (2).
8291 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8292 	 */
8293 	nce = nce_lookup_v4(ill, &ipaddr);
8294 	if (nce != NULL)
8295 		ncec = nce->nce_common;
8296 
8297 	switch (iocp->ioc_cmd) {
8298 	case SIOCDARP:
8299 	case SIOCDXARP: {
8300 		/*
8301 		 * Delete the NCE if any.
8302 		 */
8303 		if (ncec == NULL) {
8304 			iocp->ioc_error = ENXIO;
8305 			break;
8306 		}
8307 		/* Don't allow changes to arp mappings of local addresses. */
8308 		if (NCE_MYADDR(ncec)) {
8309 			nce_refrele(nce);
8310 			return (ENOTSUP);
8311 		}
8312 		iocp->ioc_error = 0;
8313 
8314 		/*
8315 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8316 		 * This will delete all the nce entries on the under_ills.
8317 		 */
8318 		ncec_delete(ncec);
8319 		/*
8320 		 * Once the NCE has been deleted, then the ire_dep* consistency
8321 		 * mechanism will find any IRE which depended on the now
8322 		 * condemned NCE (as part of sending packets).
8323 		 * That mechanism handles redirects by deleting redirects
8324 		 * that refer to UNREACHABLE nces.
8325 		 */
8326 		break;
8327 	}
8328 	case SIOCGARP:
8329 	case SIOCGXARP:
8330 		if (ncec != NULL) {
8331 			lladdr = ncec->ncec_lladdr;
8332 			flags = ncec->ncec_flags;
8333 			iocp->ioc_error = 0;
8334 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8335 		} else {
8336 			iocp->ioc_error = ENXIO;
8337 		}
8338 		break;
8339 	case SIOCSARP:
8340 	case SIOCSXARP:
8341 		/* Don't allow changes to arp mappings of local addresses. */
8342 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8343 			nce_refrele(nce);
8344 			return (ENOTSUP);
8345 		}
8346 
8347 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8348 		flags |= NCE_F_STATIC;
8349 		if (!if_arp_ioctl) {
8350 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8351 			    lladdr, alength, flags);
8352 		} else {
8353 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8354 			if (ipif != NULL) {
8355 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8356 				    lladdr, alength, flags);
8357 				ipif_refrele(ipif);
8358 			}
8359 		}
8360 		if (nce != NULL) {
8361 			nce_refrele(nce);
8362 			nce = NULL;
8363 		}
8364 		/*
8365 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8366 		 * by nce_add_common()
8367 		 */
8368 		err = nce_lookup_then_add_v4(ill, lladdr,
8369 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8370 		    &nce);
8371 		if (err == EEXIST) {
8372 			ncec = nce->nce_common;
8373 			mutex_enter(&ncec->ncec_lock);
8374 			ncec->ncec_state = ND_REACHABLE;
8375 			ncec->ncec_flags = flags;
8376 			nce_update(ncec, ND_UNCHANGED, lladdr);
8377 			mutex_exit(&ncec->ncec_lock);
8378 			err = 0;
8379 		}
8380 		if (nce != NULL) {
8381 			nce_refrele(nce);
8382 			nce = NULL;
8383 		}
8384 		if (IS_IPMP(ill) && err == 0) {
8385 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8386 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8387 			    flags);
8388 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8389 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8390 				break;
8391 			}
8392 		}
8393 		iocp->ioc_error = err;
8394 	}
8395 
8396 	if (nce != NULL) {
8397 		nce_refrele(nce);
8398 	}
8399 
8400 	/*
8401 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8402 	 */
8403 	if (entp != NULL)
8404 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8405 
8406 	return (iocp->ioc_error);
8407 }
8408 
8409 /*
8410  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8411  * the associated sin and refhold and return the associated ipif via `ci'.
8412  */
8413 int
8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8415     cmd_info_t *ci)
8416 {
8417 	mblk_t	*mp1;
8418 	sin_t	*sin;
8419 	conn_t	*connp;
8420 	ipif_t	*ipif;
8421 	ire_t	*ire = NULL;
8422 	ill_t	*ill = NULL;
8423 	boolean_t exists;
8424 	ip_stack_t *ipst;
8425 	struct arpreq *ar;
8426 	struct xarpreq *xar;
8427 	struct sockaddr_dl *sdl;
8428 
8429 	/* ioctl comes down on a conn */
8430 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8431 	connp = Q_TO_CONN(q);
8432 	if (connp->conn_family == AF_INET6)
8433 		return (ENXIO);
8434 
8435 	ipst = connp->conn_netstack->netstack_ip;
8436 
8437 	/* Verified in ip_wput_nondata */
8438 	mp1 = mp->b_cont->b_cont;
8439 
8440 	if (ipip->ipi_cmd_type == XARP_CMD) {
8441 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8442 		xar = (struct xarpreq *)mp1->b_rptr;
8443 		sin = (sin_t *)&xar->xarp_pa;
8444 		sdl = &xar->xarp_ha;
8445 
8446 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8447 			return (ENXIO);
8448 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8449 			return (EINVAL);
8450 	} else {
8451 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8452 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8453 		ar = (struct arpreq *)mp1->b_rptr;
8454 		sin = (sin_t *)&ar->arp_pa;
8455 	}
8456 
8457 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8458 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8459 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8460 		if (ipif == NULL)
8461 			return (ENXIO);
8462 		if (ipif->ipif_id != 0) {
8463 			ipif_refrele(ipif);
8464 			return (ENXIO);
8465 		}
8466 	} else {
8467 		/*
8468 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8469 		 * of 0: use the IP address to find the ipif.  If the IP
8470 		 * address is an IPMP test address, ire_ftable_lookup() will
8471 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8472 		 */
8473 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8474 		    ipst);
8475 		if (ipif == NULL) {
8476 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8477 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8478 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8479 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8480 				if (ire != NULL)
8481 					ire_refrele(ire);
8482 				return (ENXIO);
8483 			}
8484 			ASSERT(ire != NULL && ill != NULL);
8485 			ipif = ill->ill_ipif;
8486 			ipif_refhold(ipif);
8487 			ire_refrele(ire);
8488 		}
8489 	}
8490 
8491 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8492 		ipif_refrele(ipif);
8493 		return (ENXIO);
8494 	}
8495 
8496 	ci->ci_sin = sin;
8497 	ci->ci_ipif = ipif;
8498 	return (0);
8499 }
8500 
8501 /*
8502  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8503  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8504  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8505  * up and thus an ill can join that illgrp.
8506  *
8507  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8508  * open()/close() primarily because close() is not allowed to fail or block
8509  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8510  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8511  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8512  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8513  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8514  * state if I_UNLINK didn't occur.
8515  *
8516  * Note that for each plumb/unplumb operation, we may end up here more than
8517  * once because of the way ifconfig works.  However, it's OK to link the same
8518  * illgrp more than once, or unlink an illgrp that's already unlinked.
8519  */
8520 static int
8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8522 {
8523 	int err;
8524 	ip_stack_t *ipst = ill->ill_ipst;
8525 
8526 	ASSERT(IS_IPMP(ill));
8527 	ASSERT(IAM_WRITER_ILL(ill));
8528 
8529 	switch (ioccmd) {
8530 	case I_LINK:
8531 		return (ENOTSUP);
8532 
8533 	case I_PLINK:
8534 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8535 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8536 		rw_exit(&ipst->ips_ipmp_lock);
8537 		break;
8538 
8539 	case I_PUNLINK:
8540 		/*
8541 		 * Require all UP ipifs be brought down prior to unlinking the
8542 		 * illgrp so any associated IREs (and other state) is torched.
8543 		 */
8544 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8545 			return (EBUSY);
8546 
8547 		/*
8548 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8549 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8550 		 * join this group.  Specifically: ills trying to join grab
8551 		 * ipmp_lock and bump a "pending join" counter checked by
8552 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8553 		 * joins can occur (since we have ipmp_lock).  Once we drop
8554 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8555 		 * find the illgrp (since we unlinked it) and will return
8556 		 * EAFNOSUPPORT.  This will then take them back through the
8557 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8558 		 * back through I_PLINK above.
8559 		 */
8560 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8561 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8562 		rw_exit(&ipst->ips_ipmp_lock);
8563 		return (err);
8564 	default:
8565 		break;
8566 	}
8567 	return (0);
8568 }
8569 
8570 /*
8571  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8572  * atomically set/clear the muxids. Also complete the ioctl by acking or
8573  * naking it.  Note that the code is structured such that the link type,
8574  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8575  * its clones use the persistent link, while pppd(1M) and perhaps many
8576  * other daemons may use non-persistent link.  When combined with some
8577  * ill_t states, linking and unlinking lower streams may be used as
8578  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8579  */
8580 /* ARGSUSED */
8581 void
8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8583 {
8584 	mblk_t		*mp1;
8585 	struct linkblk	*li;
8586 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8587 	int		err = 0;
8588 
8589 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8590 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8591 
8592 	mp1 = mp->b_cont;	/* This is the linkblk info */
8593 	li = (struct linkblk *)mp1->b_rptr;
8594 
8595 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8596 	if (err == EINPROGRESS)
8597 		return;
8598 	if (err == 0)
8599 		miocack(q, mp, 0, 0);
8600 	else
8601 		miocnak(q, mp, 0, err);
8602 
8603 	/* Conn was refheld in ip_sioctl_copyin_setup */
8604 	if (CONN_Q(q)) {
8605 		CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8606 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8607 	}
8608 }
8609 
8610 /*
8611  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8612  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8613  * module stream).
8614  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8615  * an error code on failure.
8616  */
8617 static int
8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8619     struct linkblk *li)
8620 {
8621 	int		err = 0;
8622 	ill_t  		*ill;
8623 	queue_t		*ipwq, *dwq;
8624 	const char	*name;
8625 	struct qinit	*qinfo;
8626 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8627 	boolean_t	entered_ipsq = B_FALSE;
8628 	boolean_t	is_ip = B_FALSE;
8629 	arl_t		*arl;
8630 
8631 	/*
8632 	 * Walk the lower stream to verify it's the IP module stream.
8633 	 * The IP module is identified by its name, wput function,
8634 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8635 	 * (li->l_qbot) will not vanish until this ioctl completes.
8636 	 */
8637 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8638 		qinfo = ipwq->q_qinfo;
8639 		name = qinfo->qi_minfo->mi_idname;
8640 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8641 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8642 			is_ip = B_TRUE;
8643 			break;
8644 		}
8645 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8646 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8647 			break;
8648 		}
8649 	}
8650 
8651 	/*
8652 	 * If this isn't an IP module stream, bail.
8653 	 */
8654 	if (ipwq == NULL)
8655 		return (0);
8656 
8657 	if (!is_ip) {
8658 		arl = (arl_t *)ipwq->q_ptr;
8659 		ill = arl_to_ill(arl);
8660 		if (ill == NULL)
8661 			return (0);
8662 	} else {
8663 		ill = ipwq->q_ptr;
8664 	}
8665 	ASSERT(ill != NULL);
8666 
8667 	if (ipsq == NULL) {
8668 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8669 		    NEW_OP, B_FALSE);
8670 		if (ipsq == NULL) {
8671 			if (!is_ip)
8672 				ill_refrele(ill);
8673 			return (EINPROGRESS);
8674 		}
8675 		entered_ipsq = B_TRUE;
8676 	}
8677 	ASSERT(IAM_WRITER_ILL(ill));
8678 	mutex_enter(&ill->ill_lock);
8679 	if (!is_ip) {
8680 		if (islink && ill->ill_muxid == 0) {
8681 			/*
8682 			 * Plumbing has to be done with IP plumbed first, arp
8683 			 * second, but here we have arp being plumbed first.
8684 			 */
8685 			mutex_exit(&ill->ill_lock);
8686 			if (entered_ipsq)
8687 				ipsq_exit(ipsq);
8688 			ill_refrele(ill);
8689 			return (EINVAL);
8690 		}
8691 	}
8692 	mutex_exit(&ill->ill_lock);
8693 	if (!is_ip) {
8694 		arl->arl_muxid = islink ? li->l_index : 0;
8695 		ill_refrele(ill);
8696 		goto done;
8697 	}
8698 
8699 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8700 		goto done;
8701 
8702 	/*
8703 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8704 	 * the read queue of the module immediately below IP in the ill.
8705 	 * These are used during the capability negotiation below.
8706 	 */
8707 	ill->ill_lmod_rq = NULL;
8708 	ill->ill_lmod_cnt = 0;
8709 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8710 		ill->ill_lmod_rq = RD(dwq);
8711 		for (; dwq != NULL; dwq = dwq->q_next)
8712 			ill->ill_lmod_cnt++;
8713 	}
8714 
8715 	ill->ill_muxid = islink ? li->l_index : 0;
8716 
8717 	/*
8718 	 * Mark the ipsq busy until the capability operations initiated below
8719 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8720 	 * returns, but the capability operation may complete asynchronously
8721 	 * much later.
8722 	 */
8723 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8724 	/*
8725 	 * If there's at least one up ipif on this ill, then we're bound to
8726 	 * the underlying driver via DLPI.  In that case, renegotiate
8727 	 * capabilities to account for any possible change in modules
8728 	 * interposed between IP and the driver.
8729 	 */
8730 	if (ill->ill_ipif_up_count > 0) {
8731 		if (islink)
8732 			ill_capability_probe(ill);
8733 		else
8734 			ill_capability_reset(ill, B_FALSE);
8735 	}
8736 	ipsq_current_finish(ipsq);
8737 done:
8738 	if (entered_ipsq)
8739 		ipsq_exit(ipsq);
8740 
8741 	return (err);
8742 }
8743 
8744 /*
8745  * Search the ioctl command in the ioctl tables and return a pointer
8746  * to the ioctl command information. The ioctl command tables are
8747  * static and fully populated at compile time.
8748  */
8749 ip_ioctl_cmd_t *
8750 ip_sioctl_lookup(int ioc_cmd)
8751 {
8752 	int index;
8753 	ip_ioctl_cmd_t *ipip;
8754 	ip_ioctl_cmd_t *ipip_end;
8755 
8756 	if (ioc_cmd == IPI_DONTCARE)
8757 		return (NULL);
8758 
8759 	/*
8760 	 * Do a 2 step search. First search the indexed table
8761 	 * based on the least significant byte of the ioctl cmd.
8762 	 * If we don't find a match, then search the misc table
8763 	 * serially.
8764 	 */
8765 	index = ioc_cmd & 0xFF;
8766 	if (index < ip_ndx_ioctl_count) {
8767 		ipip = &ip_ndx_ioctl_table[index];
8768 		if (ipip->ipi_cmd == ioc_cmd) {
8769 			/* Found a match in the ndx table */
8770 			return (ipip);
8771 		}
8772 	}
8773 
8774 	/* Search the misc table */
8775 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8776 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8777 		if (ipip->ipi_cmd == ioc_cmd)
8778 			/* Found a match in the misc table */
8779 			return (ipip);
8780 	}
8781 
8782 	return (NULL);
8783 }
8784 
8785 /*
8786  * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8787  */
8788 static boolean_t
8789 getset_ioctl_checks(mblk_t *mp)
8790 {
8791 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8792 	mblk_t		*mp1 = mp->b_cont;
8793 	mod_ioc_prop_t	*pioc;
8794 	uint_t		flags;
8795 	uint_t		pioc_size;
8796 
8797 	/* do sanity checks on various arguments */
8798 	if (mp1 == NULL || iocp->ioc_count == 0 ||
8799 	    iocp->ioc_count == TRANSPARENT) {
8800 		return (B_FALSE);
8801 	}
8802 	if (msgdsize(mp1) < iocp->ioc_count) {
8803 		if (!pullupmsg(mp1, iocp->ioc_count))
8804 			return (B_FALSE);
8805 	}
8806 
8807 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8808 
8809 	/* sanity checks on mpr_valsize */
8810 	pioc_size = sizeof (mod_ioc_prop_t);
8811 	if (pioc->mpr_valsize != 0)
8812 		pioc_size += pioc->mpr_valsize - 1;
8813 
8814 	if (iocp->ioc_count != pioc_size)
8815 		return (B_FALSE);
8816 
8817 	flags = pioc->mpr_flags;
8818 	if (iocp->ioc_cmd == SIOCSETPROP) {
8819 		/*
8820 		 * One can either reset the value to it's default value or
8821 		 * change the current value or append/remove the value from
8822 		 * a multi-valued properties.
8823 		 */
8824 		if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8825 		    flags != MOD_PROP_ACTIVE &&
8826 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8827 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8828 			return (B_FALSE);
8829 	} else {
8830 		ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8831 
8832 		/*
8833 		 * One can retrieve only one kind of property information
8834 		 * at a time.
8835 		 */
8836 		if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8837 		    (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8838 		    (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8839 		    (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8840 			return (B_FALSE);
8841 	}
8842 
8843 	return (B_TRUE);
8844 }
8845 
8846 /*
8847  * process the SIOC{SET|GET}PROP ioctl's
8848  */
8849 /* ARGSUSED */
8850 static void
8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8852 {
8853 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8854 	mblk_t		*mp1 = mp->b_cont;
8855 	mod_ioc_prop_t	*pioc;
8856 	mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8857 	ip_stack_t	*ipst;
8858 	netstack_t	*stack;
8859 	cred_t		*cr;
8860 	boolean_t	set;
8861 	int		err;
8862 
8863 	ASSERT(q->q_next == NULL);
8864 	ASSERT(CONN_Q(q));
8865 
8866 	if (!getset_ioctl_checks(mp)) {
8867 		miocnak(q, mp, 0, EINVAL);
8868 		return;
8869 	}
8870 	ipst = CONNQ_TO_IPST(q);
8871 	stack = ipst->ips_netstack;
8872 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8873 
8874 	switch (pioc->mpr_proto) {
8875 	case MOD_PROTO_IP:
8876 	case MOD_PROTO_IPV4:
8877 	case MOD_PROTO_IPV6:
8878 		ptbl = ipst->ips_propinfo_tbl;
8879 		break;
8880 	case MOD_PROTO_RAWIP:
8881 		ptbl = stack->netstack_icmp->is_propinfo_tbl;
8882 		break;
8883 	case MOD_PROTO_TCP:
8884 		ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8885 		break;
8886 	case MOD_PROTO_UDP:
8887 		ptbl = stack->netstack_udp->us_propinfo_tbl;
8888 		break;
8889 	case MOD_PROTO_SCTP:
8890 		ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8891 		break;
8892 	default:
8893 		miocnak(q, mp, 0, EINVAL);
8894 		return;
8895 	}
8896 
8897 	pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8898 	if (pinfo == NULL) {
8899 		miocnak(q, mp, 0, ENOENT);
8900 		return;
8901 	}
8902 
8903 	set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8904 	if (set && pinfo->mpi_setf != NULL) {
8905 		cr = msg_getcred(mp, NULL);
8906 		if (cr == NULL)
8907 			cr = iocp->ioc_cr;
8908 		err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8909 		    pioc->mpr_val, pioc->mpr_flags);
8910 	} else if (!set && pinfo->mpi_getf != NULL) {
8911 		err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8912 		    pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8913 	} else {
8914 		err = EPERM;
8915 	}
8916 
8917 	if (err != 0) {
8918 		miocnak(q, mp, 0, err);
8919 	} else {
8920 		if (set)
8921 			miocack(q, mp, 0, 0);
8922 		else    /* For get, we need to return back the data */
8923 			miocack(q, mp, iocp->ioc_count, 0);
8924 	}
8925 }
8926 
8927 /*
8928  * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8929  * as several routing daemons have unfortunately used this 'unpublished'
8930  * but well-known ioctls.
8931  */
8932 /* ARGSUSED */
8933 static void
8934 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8935 {
8936 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8937 	mblk_t		*mp1 = mp->b_cont;
8938 	char		*pname, *pval, *buf;
8939 	uint_t		bufsize, proto;
8940 	mod_prop_info_t *pinfo = NULL;
8941 	ip_stack_t	*ipst;
8942 	int		err = 0;
8943 
8944 	ASSERT(CONN_Q(q));
8945 	ipst = CONNQ_TO_IPST(q);
8946 
8947 	if (iocp->ioc_count == 0 || mp1 == NULL) {
8948 		miocnak(q, mp, 0, EINVAL);
8949 		return;
8950 	}
8951 
8952 	mp1->b_datap->db_lim[-1] = '\0';	/* Force null termination */
8953 	pval = buf = pname = (char *)mp1->b_rptr;
8954 	bufsize = MBLKL(mp1);
8955 
8956 	if (strcmp(pname, "ip_forwarding") == 0) {
8957 		pname = "forwarding";
8958 		proto = MOD_PROTO_IPV4;
8959 	} else if (strcmp(pname, "ip6_forwarding") == 0) {
8960 		pname = "forwarding";
8961 		proto = MOD_PROTO_IPV6;
8962 	} else {
8963 		miocnak(q, mp, 0, EINVAL);
8964 		return;
8965 	}
8966 
8967 	pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8968 
8969 	switch (iocp->ioc_cmd) {
8970 	case ND_GET:
8971 		if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8972 		    bufsize, 0)) == 0) {
8973 			miocack(q, mp, iocp->ioc_count, 0);
8974 			return;
8975 		}
8976 		break;
8977 	case ND_SET:
8978 		/*
8979 		 * buffer will have property name and value in the following
8980 		 * format,
8981 		 * <property name>'\0'<property value>'\0', extract them;
8982 		 */
8983 		while (*pval++)
8984 			noop;
8985 
8986 		if (!*pval || pval >= (char *)mp1->b_wptr) {
8987 			err = EINVAL;
8988 		} else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8989 		    pinfo, NULL, pval, 0)) == 0) {
8990 			miocack(q, mp, 0, 0);
8991 			return;
8992 		}
8993 		break;
8994 	default:
8995 		err = EINVAL;
8996 		break;
8997 	}
8998 	miocnak(q, mp, 0, err);
8999 }
9000 
9001 /*
9002  * Wrapper function for resuming deferred ioctl processing
9003  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9004  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9005  */
9006 /* ARGSUSED */
9007 void
9008 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9009     void *dummy_arg)
9010 {
9011 	ip_sioctl_copyin_setup(q, mp);
9012 }
9013 
9014 /*
9015  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9016  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
9017  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9018  * We establish here the size of the block to be copied in.  mi_copyin
9019  * arranges for this to happen, an processing continues in ip_wput_nondata with
9020  * an M_IOCDATA message.
9021  */
9022 void
9023 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9024 {
9025 	int	copyin_size;
9026 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9027 	ip_ioctl_cmd_t *ipip;
9028 	cred_t *cr;
9029 	ip_stack_t	*ipst;
9030 
9031 	if (CONN_Q(q))
9032 		ipst = CONNQ_TO_IPST(q);
9033 	else
9034 		ipst = ILLQ_TO_IPST(q);
9035 
9036 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9037 	if (ipip == NULL) {
9038 		/*
9039 		 * The ioctl is not one we understand or own.
9040 		 * Pass it along to be processed down stream,
9041 		 * if this is a module instance of IP, else nak
9042 		 * the ioctl.
9043 		 */
9044 		if (q->q_next == NULL) {
9045 			goto nak;
9046 		} else {
9047 			putnext(q, mp);
9048 			return;
9049 		}
9050 	}
9051 
9052 	/*
9053 	 * If this is deferred, then we will do all the checks when we
9054 	 * come back.
9055 	 */
9056 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9057 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9058 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9059 		return;
9060 	}
9061 
9062 	/*
9063 	 * Only allow a very small subset of IP ioctls on this stream if
9064 	 * IP is a module and not a driver. Allowing ioctls to be processed
9065 	 * in this case may cause assert failures or data corruption.
9066 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9067 	 * ioctls allowed on an IP module stream, after which this stream
9068 	 * normally becomes a multiplexor (at which time the stream head
9069 	 * will fail all ioctls).
9070 	 */
9071 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9072 		goto nak;
9073 	}
9074 
9075 	/* Make sure we have ioctl data to process. */
9076 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9077 		goto nak;
9078 
9079 	/*
9080 	 * Prefer dblk credential over ioctl credential; some synthesized
9081 	 * ioctls have kcred set because there's no way to crhold()
9082 	 * a credential in some contexts.  (ioc_cr is not crfree() by
9083 	 * the framework; the caller of ioctl needs to hold the reference
9084 	 * for the duration of the call).
9085 	 */
9086 	cr = msg_getcred(mp, NULL);
9087 	if (cr == NULL)
9088 		cr = iocp->ioc_cr;
9089 
9090 	/* Make sure normal users don't send down privileged ioctls */
9091 	if ((ipip->ipi_flags & IPI_PRIV) &&
9092 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9093 		/* We checked the privilege earlier but log it here */
9094 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9095 		return;
9096 	}
9097 
9098 	/*
9099 	 * The ioctl command tables can only encode fixed length
9100 	 * ioctl data. If the length is variable, the table will
9101 	 * encode the length as zero. Such special cases are handled
9102 	 * below in the switch.
9103 	 */
9104 	if (ipip->ipi_copyin_size != 0) {
9105 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9106 		return;
9107 	}
9108 
9109 	switch (iocp->ioc_cmd) {
9110 	case O_SIOCGIFCONF:
9111 	case SIOCGIFCONF:
9112 		/*
9113 		 * This IOCTL is hilarious.  See comments in
9114 		 * ip_sioctl_get_ifconf for the story.
9115 		 */
9116 		if (iocp->ioc_count == TRANSPARENT)
9117 			copyin_size = SIZEOF_STRUCT(ifconf,
9118 			    iocp->ioc_flag);
9119 		else
9120 			copyin_size = iocp->ioc_count;
9121 		mi_copyin(q, mp, NULL, copyin_size);
9122 		return;
9123 
9124 	case O_SIOCGLIFCONF:
9125 	case SIOCGLIFCONF:
9126 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9127 		mi_copyin(q, mp, NULL, copyin_size);
9128 		return;
9129 
9130 	case SIOCGLIFSRCOF:
9131 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9132 		mi_copyin(q, mp, NULL, copyin_size);
9133 		return;
9134 
9135 	case SIOCGIP6ADDRPOLICY:
9136 		ip_sioctl_ip6addrpolicy(q, mp);
9137 		ip6_asp_table_refrele(ipst);
9138 		return;
9139 
9140 	case SIOCSIP6ADDRPOLICY:
9141 		ip_sioctl_ip6addrpolicy(q, mp);
9142 		return;
9143 
9144 	case SIOCGDSTINFO:
9145 		ip_sioctl_dstinfo(q, mp);
9146 		ip6_asp_table_refrele(ipst);
9147 		return;
9148 
9149 	case ND_SET:
9150 	case ND_GET:
9151 		ip_process_legacy_nddprop(q, mp);
9152 		return;
9153 
9154 	case SIOCSETPROP:
9155 	case SIOCGETPROP:
9156 		ip_sioctl_getsetprop(q, mp);
9157 		return;
9158 
9159 	case I_PLINK:
9160 	case I_PUNLINK:
9161 	case I_LINK:
9162 	case I_UNLINK:
9163 		/*
9164 		 * We treat non-persistent link similarly as the persistent
9165 		 * link case, in terms of plumbing/unplumbing, as well as
9166 		 * dynamic re-plumbing events indicator.  See comments
9167 		 * in ip_sioctl_plink() for more.
9168 		 *
9169 		 * Request can be enqueued in the 'ipsq' while waiting
9170 		 * to become exclusive. So bump up the conn ref.
9171 		 */
9172 		if (CONN_Q(q)) {
9173 			CONN_INC_REF(Q_TO_CONN(q));
9174 			CONN_INC_IOCTLREF(Q_TO_CONN(q))
9175 		}
9176 		ip_sioctl_plink(NULL, q, mp, NULL);
9177 		return;
9178 
9179 	case IP_IOCTL:
9180 		ip_wput_ioctl(q, mp);
9181 		return;
9182 
9183 	case SIOCILB:
9184 		/* The ioctl length varies depending on the ILB command. */
9185 		copyin_size = iocp->ioc_count;
9186 		if (copyin_size < sizeof (ilb_cmd_t))
9187 			goto nak;
9188 		mi_copyin(q, mp, NULL, copyin_size);
9189 		return;
9190 
9191 	default:
9192 		cmn_err(CE_PANIC, "should not happen ");
9193 	}
9194 nak:
9195 	if (mp->b_cont != NULL) {
9196 		freemsg(mp->b_cont);
9197 		mp->b_cont = NULL;
9198 	}
9199 	iocp->ioc_error = EINVAL;
9200 	mp->b_datap->db_type = M_IOCNAK;
9201 	iocp->ioc_count = 0;
9202 	qreply(q, mp);
9203 }
9204 
9205 static void
9206 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9207 {
9208 	struct arpreq *ar;
9209 	struct xarpreq *xar;
9210 	mblk_t	*tmp;
9211 	struct iocblk *iocp;
9212 	int x_arp_ioctl = B_FALSE;
9213 	int *flagsp;
9214 	char *storage = NULL;
9215 
9216 	ASSERT(ill != NULL);
9217 
9218 	iocp = (struct iocblk *)mp->b_rptr;
9219 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9220 
9221 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9222 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9223 	    (iocp->ioc_cmd == SIOCSXARP)) {
9224 		x_arp_ioctl = B_TRUE;
9225 		xar = (struct xarpreq *)tmp->b_rptr;
9226 		flagsp = &xar->xarp_flags;
9227 		storage = xar->xarp_ha.sdl_data;
9228 	} else {
9229 		ar = (struct arpreq *)tmp->b_rptr;
9230 		flagsp = &ar->arp_flags;
9231 		storage = ar->arp_ha.sa_data;
9232 	}
9233 
9234 	/*
9235 	 * We're done if this is not an SIOCG{X}ARP
9236 	 */
9237 	if (x_arp_ioctl) {
9238 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9239 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9240 		    sizeof (xar->xarp_ha.sdl_data)) {
9241 			iocp->ioc_error = EINVAL;
9242 			return;
9243 		}
9244 	}
9245 	*flagsp = ATF_INUSE;
9246 	/*
9247 	 * If /sbin/arp told us we are the authority using the "permanent"
9248 	 * flag, or if this is one of my addresses print "permanent"
9249 	 * in the /sbin/arp output.
9250 	 */
9251 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9252 		*flagsp |= ATF_AUTHORITY;
9253 	if (flags & NCE_F_NONUD)
9254 		*flagsp |= ATF_PERM; /* not subject to aging */
9255 	if (flags & NCE_F_PUBLISH)
9256 		*flagsp |= ATF_PUBL;
9257 	if (hwaddr != NULL) {
9258 		*flagsp |= ATF_COM;
9259 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9260 	}
9261 }
9262 
9263 /*
9264  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9265  * interface) create the next available logical interface for this
9266  * physical interface.
9267  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9268  * ipif with the specified name.
9269  *
9270  * If the address family is not AF_UNSPEC then set the address as well.
9271  *
9272  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9273  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9274  *
9275  * Executed as a writer on the ill.
9276  * So no lock is needed to traverse the ipif chain, or examine the
9277  * phyint flags.
9278  */
9279 /* ARGSUSED */
9280 int
9281 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9282     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9283 {
9284 	mblk_t	*mp1;
9285 	struct lifreq *lifr;
9286 	boolean_t	isv6;
9287 	boolean_t	exists;
9288 	char 	*name;
9289 	char	*endp;
9290 	char	*cp;
9291 	int	namelen;
9292 	ipif_t	*ipif;
9293 	long	id;
9294 	ipsq_t	*ipsq;
9295 	ill_t	*ill;
9296 	sin_t	*sin;
9297 	int	err = 0;
9298 	boolean_t found_sep = B_FALSE;
9299 	conn_t	*connp;
9300 	zoneid_t zoneid;
9301 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9302 
9303 	ASSERT(q->q_next == NULL);
9304 	ip1dbg(("ip_sioctl_addif\n"));
9305 	/* Existence of mp1 has been checked in ip_wput_nondata */
9306 	mp1 = mp->b_cont->b_cont;
9307 	/*
9308 	 * Null terminate the string to protect against buffer
9309 	 * overrun. String was generated by user code and may not
9310 	 * be trusted.
9311 	 */
9312 	lifr = (struct lifreq *)mp1->b_rptr;
9313 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9314 	name = lifr->lifr_name;
9315 	ASSERT(CONN_Q(q));
9316 	connp = Q_TO_CONN(q);
9317 	isv6 = (connp->conn_family == AF_INET6);
9318 	zoneid = connp->conn_zoneid;
9319 	namelen = mi_strlen(name);
9320 	if (namelen == 0)
9321 		return (EINVAL);
9322 
9323 	exists = B_FALSE;
9324 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9325 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9326 		/*
9327 		 * Allow creating lo0 using SIOCLIFADDIF.
9328 		 * can't be any other writer thread. So can pass null below
9329 		 * for the last 4 args to ipif_lookup_name.
9330 		 */
9331 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9332 		    &exists, isv6, zoneid, ipst);
9333 		/* Prevent any further action */
9334 		if (ipif == NULL) {
9335 			return (ENOBUFS);
9336 		} else if (!exists) {
9337 			/* We created the ipif now and as writer */
9338 			ipif_refrele(ipif);
9339 			return (0);
9340 		} else {
9341 			ill = ipif->ipif_ill;
9342 			ill_refhold(ill);
9343 			ipif_refrele(ipif);
9344 		}
9345 	} else {
9346 		/* Look for a colon in the name. */
9347 		endp = &name[namelen];
9348 		for (cp = endp; --cp > name; ) {
9349 			if (*cp == IPIF_SEPARATOR_CHAR) {
9350 				found_sep = B_TRUE;
9351 				/*
9352 				 * Reject any non-decimal aliases for plumbing
9353 				 * of logical interfaces. Aliases with leading
9354 				 * zeroes are also rejected as they introduce
9355 				 * ambiguity in the naming of the interfaces.
9356 				 * Comparing with "0" takes care of all such
9357 				 * cases.
9358 				 */
9359 				if ((strncmp("0", cp+1, 1)) == 0)
9360 					return (EINVAL);
9361 
9362 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9363 				    id <= 0 || *endp != '\0') {
9364 					return (EINVAL);
9365 				}
9366 				*cp = '\0';
9367 				break;
9368 			}
9369 		}
9370 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9371 		if (found_sep)
9372 			*cp = IPIF_SEPARATOR_CHAR;
9373 		if (ill == NULL)
9374 			return (ENXIO);
9375 	}
9376 
9377 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9378 	    B_TRUE);
9379 
9380 	/*
9381 	 * Release the refhold due to the lookup, now that we are excl
9382 	 * or we are just returning
9383 	 */
9384 	ill_refrele(ill);
9385 
9386 	if (ipsq == NULL)
9387 		return (EINPROGRESS);
9388 
9389 	/* We are now exclusive on the IPSQ */
9390 	ASSERT(IAM_WRITER_ILL(ill));
9391 
9392 	if (found_sep) {
9393 		/* Now see if there is an IPIF with this unit number. */
9394 		for (ipif = ill->ill_ipif; ipif != NULL;
9395 		    ipif = ipif->ipif_next) {
9396 			if (ipif->ipif_id == id) {
9397 				err = EEXIST;
9398 				goto done;
9399 			}
9400 		}
9401 	}
9402 
9403 	/*
9404 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9405 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9406 	 * instead.
9407 	 */
9408 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9409 	    B_TRUE, B_TRUE, &err)) == NULL) {
9410 		goto done;
9411 	}
9412 
9413 	/* Return created name with ioctl */
9414 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9415 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9416 	ip1dbg(("created %s\n", lifr->lifr_name));
9417 
9418 	/* Set address */
9419 	sin = (sin_t *)&lifr->lifr_addr;
9420 	if (sin->sin_family != AF_UNSPEC) {
9421 		err = ip_sioctl_addr(ipif, sin, q, mp,
9422 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9423 	}
9424 
9425 done:
9426 	ipsq_exit(ipsq);
9427 	return (err);
9428 }
9429 
9430 /*
9431  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9432  * interface) delete it based on the IP address (on this physical interface).
9433  * Otherwise delete it based on the ipif_id.
9434  * Also, special handling to allow a removeif of lo0.
9435  */
9436 /* ARGSUSED */
9437 int
9438 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9439     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9440 {
9441 	conn_t		*connp;
9442 	ill_t		*ill = ipif->ipif_ill;
9443 	boolean_t	 success;
9444 	ip_stack_t	*ipst;
9445 
9446 	ipst = CONNQ_TO_IPST(q);
9447 
9448 	ASSERT(q->q_next == NULL);
9449 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9450 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9451 	ASSERT(IAM_WRITER_IPIF(ipif));
9452 
9453 	connp = Q_TO_CONN(q);
9454 	/*
9455 	 * Special case for unplumbing lo0 (the loopback physical interface).
9456 	 * If unplumbing lo0, the incoming address structure has been
9457 	 * initialized to all zeros. When unplumbing lo0, all its logical
9458 	 * interfaces must be removed too.
9459 	 *
9460 	 * Note that this interface may be called to remove a specific
9461 	 * loopback logical interface (eg, lo0:1). But in that case
9462 	 * ipif->ipif_id != 0 so that the code path for that case is the
9463 	 * same as any other interface (meaning it skips the code directly
9464 	 * below).
9465 	 */
9466 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9467 		if (sin->sin_family == AF_UNSPEC &&
9468 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9469 			/*
9470 			 * Mark it condemned. No new ref. will be made to ill.
9471 			 */
9472 			mutex_enter(&ill->ill_lock);
9473 			ill->ill_state_flags |= ILL_CONDEMNED;
9474 			for (ipif = ill->ill_ipif; ipif != NULL;
9475 			    ipif = ipif->ipif_next) {
9476 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9477 			}
9478 			mutex_exit(&ill->ill_lock);
9479 
9480 			ipif = ill->ill_ipif;
9481 			/* unplumb the loopback interface */
9482 			ill_delete(ill);
9483 			mutex_enter(&connp->conn_lock);
9484 			mutex_enter(&ill->ill_lock);
9485 
9486 			/* Are any references to this ill active */
9487 			if (ill_is_freeable(ill)) {
9488 				mutex_exit(&ill->ill_lock);
9489 				mutex_exit(&connp->conn_lock);
9490 				ill_delete_tail(ill);
9491 				mi_free(ill);
9492 				return (0);
9493 			}
9494 			success = ipsq_pending_mp_add(connp, ipif,
9495 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9496 			mutex_exit(&connp->conn_lock);
9497 			mutex_exit(&ill->ill_lock);
9498 			if (success)
9499 				return (EINPROGRESS);
9500 			else
9501 				return (EINTR);
9502 		}
9503 	}
9504 
9505 	if (ipif->ipif_id == 0) {
9506 		ipsq_t *ipsq;
9507 
9508 		/* Find based on address */
9509 		if (ipif->ipif_isv6) {
9510 			sin6_t *sin6;
9511 
9512 			if (sin->sin_family != AF_INET6)
9513 				return (EAFNOSUPPORT);
9514 
9515 			sin6 = (sin6_t *)sin;
9516 			/* We are a writer, so we should be able to lookup */
9517 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9518 			    ipst);
9519 		} else {
9520 			if (sin->sin_family != AF_INET)
9521 				return (EAFNOSUPPORT);
9522 
9523 			/* We are a writer, so we should be able to lookup */
9524 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9525 			    ipst);
9526 		}
9527 		if (ipif == NULL) {
9528 			return (EADDRNOTAVAIL);
9529 		}
9530 
9531 		/*
9532 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9533 		 * lifr_name of the physical interface but with an ip address
9534 		 * lifr_addr of a logical interface plumbed over it.
9535 		 * So update ipx_current_ipif now that ipif points to the
9536 		 * correct one.
9537 		 */
9538 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9539 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9540 
9541 		/* This is a writer */
9542 		ipif_refrele(ipif);
9543 	}
9544 
9545 	/*
9546 	 * Can not delete instance zero since it is tied to the ill.
9547 	 */
9548 	if (ipif->ipif_id == 0)
9549 		return (EBUSY);
9550 
9551 	mutex_enter(&ill->ill_lock);
9552 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9553 	mutex_exit(&ill->ill_lock);
9554 
9555 	ipif_free(ipif);
9556 
9557 	mutex_enter(&connp->conn_lock);
9558 	mutex_enter(&ill->ill_lock);
9559 
9560 	/* Are any references to this ipif active */
9561 	if (ipif_is_freeable(ipif)) {
9562 		mutex_exit(&ill->ill_lock);
9563 		mutex_exit(&connp->conn_lock);
9564 		ipif_non_duplicate(ipif);
9565 		(void) ipif_down_tail(ipif);
9566 		ipif_free_tail(ipif); /* frees ipif */
9567 		return (0);
9568 	}
9569 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9570 	    IPIF_FREE);
9571 	mutex_exit(&ill->ill_lock);
9572 	mutex_exit(&connp->conn_lock);
9573 	if (success)
9574 		return (EINPROGRESS);
9575 	else
9576 		return (EINTR);
9577 }
9578 
9579 /*
9580  * Restart the removeif ioctl. The refcnt has gone down to 0.
9581  * The ipif is already condemned. So can't find it thru lookups.
9582  */
9583 /* ARGSUSED */
9584 int
9585 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9586     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9587 {
9588 	ill_t *ill = ipif->ipif_ill;
9589 
9590 	ASSERT(IAM_WRITER_IPIF(ipif));
9591 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9592 
9593 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9594 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9595 
9596 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9597 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9598 		ill_delete_tail(ill);
9599 		mi_free(ill);
9600 		return (0);
9601 	}
9602 
9603 	ipif_non_duplicate(ipif);
9604 	(void) ipif_down_tail(ipif);
9605 	ipif_free_tail(ipif);
9606 
9607 	return (0);
9608 }
9609 
9610 /*
9611  * Set the local interface address using the given prefix and ill_token.
9612  */
9613 /* ARGSUSED */
9614 int
9615 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9616     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9617 {
9618 	int err;
9619 	in6_addr_t v6addr;
9620 	sin6_t *sin6;
9621 	ill_t *ill;
9622 	int i;
9623 
9624 	ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9625 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9626 
9627 	ASSERT(IAM_WRITER_IPIF(ipif));
9628 
9629 	if (!ipif->ipif_isv6)
9630 		return (EINVAL);
9631 
9632 	if (sin->sin_family != AF_INET6)
9633 		return (EAFNOSUPPORT);
9634 
9635 	sin6 = (sin6_t *)sin;
9636 	v6addr = sin6->sin6_addr;
9637 	ill = ipif->ipif_ill;
9638 
9639 	if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9640 	    IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9641 		return (EADDRNOTAVAIL);
9642 
9643 	for (i = 0; i < 4; i++)
9644 		sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9645 
9646 	err = ip_sioctl_addr(ipif, sin, q, mp,
9647 	    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9648 	return (err);
9649 }
9650 
9651 /*
9652  * Restart entry point to restart the address set operation after the
9653  * refcounts have dropped to zero.
9654  */
9655 /* ARGSUSED */
9656 int
9657 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9658     ip_ioctl_cmd_t *ipip, void *ifreq)
9659 {
9660 	ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9661 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9662 	return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9663 }
9664 
9665 /*
9666  * Set the local interface address.
9667  * Allow an address of all zero when the interface is down.
9668  */
9669 /* ARGSUSED */
9670 int
9671 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9672     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9673 {
9674 	int err = 0;
9675 	in6_addr_t v6addr;
9676 	boolean_t need_up = B_FALSE;
9677 	ill_t *ill;
9678 	int i;
9679 
9680 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9681 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9682 
9683 	ASSERT(IAM_WRITER_IPIF(ipif));
9684 
9685 	ill = ipif->ipif_ill;
9686 	if (ipif->ipif_isv6) {
9687 		sin6_t *sin6;
9688 		phyint_t *phyi;
9689 
9690 		if (sin->sin_family != AF_INET6)
9691 			return (EAFNOSUPPORT);
9692 
9693 		sin6 = (sin6_t *)sin;
9694 		v6addr = sin6->sin6_addr;
9695 		phyi = ill->ill_phyint;
9696 
9697 		/*
9698 		 * Enforce that true multicast interfaces have a link-local
9699 		 * address for logical unit 0.
9700 		 *
9701 		 * However for those ipif's for which link-local address was
9702 		 * not created by default, also allow setting :: as the address.
9703 		 * This scenario would arise, when we delete an address on ipif
9704 		 * with logical unit 0, we would want to set :: as the address.
9705 		 */
9706 		if (ipif->ipif_id == 0 &&
9707 		    (ill->ill_flags & ILLF_MULTICAST) &&
9708 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9709 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9710 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9711 
9712 			/*
9713 			 * if default link-local was not created by kernel for
9714 			 * this ill, allow setting :: as the address on ipif:0.
9715 			 */
9716 			if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9717 				if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9718 					return (EADDRNOTAVAIL);
9719 			} else {
9720 				return (EADDRNOTAVAIL);
9721 			}
9722 		}
9723 
9724 		/*
9725 		 * up interfaces shouldn't have the unspecified address
9726 		 * unless they also have the IPIF_NOLOCAL flags set and
9727 		 * have a subnet assigned.
9728 		 */
9729 		if ((ipif->ipif_flags & IPIF_UP) &&
9730 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9731 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9732 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9733 			return (EADDRNOTAVAIL);
9734 		}
9735 
9736 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9737 			return (EADDRNOTAVAIL);
9738 	} else {
9739 		ipaddr_t addr;
9740 
9741 		if (sin->sin_family != AF_INET)
9742 			return (EAFNOSUPPORT);
9743 
9744 		addr = sin->sin_addr.s_addr;
9745 
9746 		/* Allow INADDR_ANY as the local address. */
9747 		if (addr != INADDR_ANY &&
9748 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9749 			return (EADDRNOTAVAIL);
9750 
9751 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9752 	}
9753 	/*
9754 	 * verify that the address being configured is permitted by the
9755 	 * ill_allowed_ips[] for the interface.
9756 	 */
9757 	if (ill->ill_allowed_ips_cnt > 0) {
9758 		for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9759 			if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9760 			    &v6addr))
9761 				break;
9762 		}
9763 		if (i == ill->ill_allowed_ips_cnt) {
9764 			pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9765 			return (EPERM);
9766 		}
9767 	}
9768 	/*
9769 	 * Even if there is no change we redo things just to rerun
9770 	 * ipif_set_default.
9771 	 */
9772 	if (ipif->ipif_flags & IPIF_UP) {
9773 		/*
9774 		 * Setting a new local address, make sure
9775 		 * we have net and subnet bcast ire's for
9776 		 * the old address if we need them.
9777 		 */
9778 		/*
9779 		 * If the interface is already marked up,
9780 		 * we call ipif_down which will take care
9781 		 * of ditching any IREs that have been set
9782 		 * up based on the old interface address.
9783 		 */
9784 		err = ipif_logical_down(ipif, q, mp);
9785 		if (err == EINPROGRESS)
9786 			return (err);
9787 		(void) ipif_down_tail(ipif);
9788 		need_up = 1;
9789 	}
9790 
9791 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9792 	return (err);
9793 }
9794 
9795 int
9796 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9797     boolean_t need_up)
9798 {
9799 	in6_addr_t v6addr;
9800 	in6_addr_t ov6addr;
9801 	ipaddr_t addr;
9802 	sin6_t	*sin6;
9803 	int	sinlen;
9804 	int	err = 0;
9805 	ill_t	*ill = ipif->ipif_ill;
9806 	boolean_t need_dl_down;
9807 	boolean_t need_arp_down;
9808 	struct iocblk *iocp;
9809 
9810 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9811 
9812 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9813 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9814 	ASSERT(IAM_WRITER_IPIF(ipif));
9815 
9816 	/* Must cancel any pending timer before taking the ill_lock */
9817 	if (ipif->ipif_recovery_id != 0)
9818 		(void) untimeout(ipif->ipif_recovery_id);
9819 	ipif->ipif_recovery_id = 0;
9820 
9821 	if (ipif->ipif_isv6) {
9822 		sin6 = (sin6_t *)sin;
9823 		v6addr = sin6->sin6_addr;
9824 		sinlen = sizeof (struct sockaddr_in6);
9825 	} else {
9826 		addr = sin->sin_addr.s_addr;
9827 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9828 		sinlen = sizeof (struct sockaddr_in);
9829 	}
9830 	mutex_enter(&ill->ill_lock);
9831 	ov6addr = ipif->ipif_v6lcl_addr;
9832 	ipif->ipif_v6lcl_addr = v6addr;
9833 	sctp_update_ipif_addr(ipif, ov6addr);
9834 	ipif->ipif_addr_ready = 0;
9835 
9836 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9837 
9838 	/*
9839 	 * If the interface was previously marked as a duplicate, then since
9840 	 * we've now got a "new" address, it should no longer be considered a
9841 	 * duplicate -- even if the "new" address is the same as the old one.
9842 	 * Note that if all ipifs are down, we may have a pending ARP down
9843 	 * event to handle.  This is because we want to recover from duplicates
9844 	 * and thus delay tearing down ARP until the duplicates have been
9845 	 * removed or disabled.
9846 	 */
9847 	need_dl_down = need_arp_down = B_FALSE;
9848 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9849 		need_arp_down = !need_up;
9850 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9851 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9852 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9853 			need_dl_down = B_TRUE;
9854 		}
9855 	}
9856 
9857 	ipif_set_default(ipif);
9858 
9859 	/*
9860 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9861 	 * tag the ill so that future updates to the interface ID don't result
9862 	 * in this address getting automatically reconfigured from under the
9863 	 * administrator.
9864 	 */
9865 	if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9866 		if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9867 		    !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9868 			ill->ill_manual_linklocal = 1;
9869 	}
9870 
9871 	/*
9872 	 * When publishing an interface address change event, we only notify
9873 	 * the event listeners of the new address.  It is assumed that if they
9874 	 * actively care about the addresses assigned that they will have
9875 	 * already discovered the previous address assigned (if there was one.)
9876 	 *
9877 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9878 	 */
9879 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9880 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9881 		    NE_ADDRESS_CHANGE, sin, sinlen);
9882 	}
9883 
9884 	mutex_exit(&ill->ill_lock);
9885 
9886 	if (need_up) {
9887 		/*
9888 		 * Now bring the interface back up.  If this
9889 		 * is the only IPIF for the ILL, ipif_up
9890 		 * will have to re-bind to the device, so
9891 		 * we may get back EINPROGRESS, in which
9892 		 * case, this IOCTL will get completed in
9893 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9894 		 */
9895 		err = ipif_up(ipif, q, mp);
9896 	} else {
9897 		/* Perhaps ilgs should use this ill */
9898 		update_conn_ill(NULL, ill->ill_ipst);
9899 	}
9900 
9901 	if (need_dl_down)
9902 		ill_dl_down(ill);
9903 
9904 	if (need_arp_down && !ill->ill_isv6)
9905 		(void) ipif_arp_down(ipif);
9906 
9907 	/*
9908 	 * The default multicast interface might have changed (for
9909 	 * instance if the IPv6 scope of the address changed)
9910 	 */
9911 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9912 
9913 	return (err);
9914 }
9915 
9916 /*
9917  * Restart entry point to restart the address set operation after the
9918  * refcounts have dropped to zero.
9919  */
9920 /* ARGSUSED */
9921 int
9922 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9923     ip_ioctl_cmd_t *ipip, void *ifreq)
9924 {
9925 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9926 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9927 	ASSERT(IAM_WRITER_IPIF(ipif));
9928 	(void) ipif_down_tail(ipif);
9929 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9930 }
9931 
9932 /* ARGSUSED */
9933 int
9934 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9935     ip_ioctl_cmd_t *ipip, void *if_req)
9936 {
9937 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9938 	struct lifreq *lifr = (struct lifreq *)if_req;
9939 
9940 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9941 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9942 	/*
9943 	 * The net mask and address can't change since we have a
9944 	 * reference to the ipif. So no lock is necessary.
9945 	 */
9946 	if (ipif->ipif_isv6) {
9947 		*sin6 = sin6_null;
9948 		sin6->sin6_family = AF_INET6;
9949 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9950 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9951 		lifr->lifr_addrlen =
9952 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9953 	} else {
9954 		*sin = sin_null;
9955 		sin->sin_family = AF_INET;
9956 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9957 		if (ipip->ipi_cmd_type == LIF_CMD) {
9958 			lifr->lifr_addrlen =
9959 			    ip_mask_to_plen(ipif->ipif_net_mask);
9960 		}
9961 	}
9962 	return (0);
9963 }
9964 
9965 /*
9966  * Set the destination address for a pt-pt interface.
9967  */
9968 /* ARGSUSED */
9969 int
9970 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9971     ip_ioctl_cmd_t *ipip, void *if_req)
9972 {
9973 	int err = 0;
9974 	in6_addr_t v6addr;
9975 	boolean_t need_up = B_FALSE;
9976 
9977 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9978 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9979 	ASSERT(IAM_WRITER_IPIF(ipif));
9980 
9981 	if (ipif->ipif_isv6) {
9982 		sin6_t *sin6;
9983 
9984 		if (sin->sin_family != AF_INET6)
9985 			return (EAFNOSUPPORT);
9986 
9987 		sin6 = (sin6_t *)sin;
9988 		v6addr = sin6->sin6_addr;
9989 
9990 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9991 			return (EADDRNOTAVAIL);
9992 	} else {
9993 		ipaddr_t addr;
9994 
9995 		if (sin->sin_family != AF_INET)
9996 			return (EAFNOSUPPORT);
9997 
9998 		addr = sin->sin_addr.s_addr;
9999 		if (addr != INADDR_ANY &&
10000 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10001 			return (EADDRNOTAVAIL);
10002 		}
10003 
10004 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10005 	}
10006 
10007 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10008 		return (0);	/* No change */
10009 
10010 	if (ipif->ipif_flags & IPIF_UP) {
10011 		/*
10012 		 * If the interface is already marked up,
10013 		 * we call ipif_down which will take care
10014 		 * of ditching any IREs that have been set
10015 		 * up based on the old pp dst address.
10016 		 */
10017 		err = ipif_logical_down(ipif, q, mp);
10018 		if (err == EINPROGRESS)
10019 			return (err);
10020 		(void) ipif_down_tail(ipif);
10021 		need_up = B_TRUE;
10022 	}
10023 	/*
10024 	 * could return EINPROGRESS. If so ioctl will complete in
10025 	 * ip_rput_dlpi_writer
10026 	 */
10027 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10028 	return (err);
10029 }
10030 
10031 static int
10032 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10033     boolean_t need_up)
10034 {
10035 	in6_addr_t v6addr;
10036 	ill_t	*ill = ipif->ipif_ill;
10037 	int	err = 0;
10038 	boolean_t need_dl_down;
10039 	boolean_t need_arp_down;
10040 
10041 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10042 	    ipif->ipif_id, (void *)ipif));
10043 
10044 	/* Must cancel any pending timer before taking the ill_lock */
10045 	if (ipif->ipif_recovery_id != 0)
10046 		(void) untimeout(ipif->ipif_recovery_id);
10047 	ipif->ipif_recovery_id = 0;
10048 
10049 	if (ipif->ipif_isv6) {
10050 		sin6_t *sin6;
10051 
10052 		sin6 = (sin6_t *)sin;
10053 		v6addr = sin6->sin6_addr;
10054 	} else {
10055 		ipaddr_t addr;
10056 
10057 		addr = sin->sin_addr.s_addr;
10058 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10059 	}
10060 	mutex_enter(&ill->ill_lock);
10061 	/* Set point to point destination address. */
10062 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10063 		/*
10064 		 * Allow this as a means of creating logical
10065 		 * pt-pt interfaces on top of e.g. an Ethernet.
10066 		 * XXX Undocumented HACK for testing.
10067 		 * pt-pt interfaces are created with NUD disabled.
10068 		 */
10069 		ipif->ipif_flags |= IPIF_POINTOPOINT;
10070 		ipif->ipif_flags &= ~IPIF_BROADCAST;
10071 		if (ipif->ipif_isv6)
10072 			ill->ill_flags |= ILLF_NONUD;
10073 	}
10074 
10075 	/*
10076 	 * If the interface was previously marked as a duplicate, then since
10077 	 * we've now got a "new" address, it should no longer be considered a
10078 	 * duplicate -- even if the "new" address is the same as the old one.
10079 	 * Note that if all ipifs are down, we may have a pending ARP down
10080 	 * event to handle.
10081 	 */
10082 	need_dl_down = need_arp_down = B_FALSE;
10083 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
10084 		need_arp_down = !need_up;
10085 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
10086 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10087 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10088 			need_dl_down = B_TRUE;
10089 		}
10090 	}
10091 
10092 	/*
10093 	 * If we've just manually set the IPv6 destination link-local address
10094 	 * (0th ipif), tag the ill so that future updates to the destination
10095 	 * interface ID (as can happen with interfaces over IP tunnels) don't
10096 	 * result in this address getting automatically reconfigured from
10097 	 * under the administrator.
10098 	 */
10099 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10100 		ill->ill_manual_dst_linklocal = 1;
10101 
10102 	/* Set the new address. */
10103 	ipif->ipif_v6pp_dst_addr = v6addr;
10104 	/* Make sure subnet tracks pp_dst */
10105 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10106 	mutex_exit(&ill->ill_lock);
10107 
10108 	if (need_up) {
10109 		/*
10110 		 * Now bring the interface back up.  If this
10111 		 * is the only IPIF for the ILL, ipif_up
10112 		 * will have to re-bind to the device, so
10113 		 * we may get back EINPROGRESS, in which
10114 		 * case, this IOCTL will get completed in
10115 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10116 		 */
10117 		err = ipif_up(ipif, q, mp);
10118 	}
10119 
10120 	if (need_dl_down)
10121 		ill_dl_down(ill);
10122 	if (need_arp_down && !ipif->ipif_isv6)
10123 		(void) ipif_arp_down(ipif);
10124 
10125 	return (err);
10126 }
10127 
10128 /*
10129  * Restart entry point to restart the dstaddress set operation after the
10130  * refcounts have dropped to zero.
10131  */
10132 /* ARGSUSED */
10133 int
10134 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10135     ip_ioctl_cmd_t *ipip, void *ifreq)
10136 {
10137 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10138 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10139 	(void) ipif_down_tail(ipif);
10140 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10141 }
10142 
10143 /* ARGSUSED */
10144 int
10145 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10146     ip_ioctl_cmd_t *ipip, void *if_req)
10147 {
10148 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
10149 
10150 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10151 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10152 	/*
10153 	 * Get point to point destination address. The addresses can't
10154 	 * change since we hold a reference to the ipif.
10155 	 */
10156 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10157 		return (EADDRNOTAVAIL);
10158 
10159 	if (ipif->ipif_isv6) {
10160 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10161 		*sin6 = sin6_null;
10162 		sin6->sin6_family = AF_INET6;
10163 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10164 	} else {
10165 		*sin = sin_null;
10166 		sin->sin_family = AF_INET;
10167 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10168 	}
10169 	return (0);
10170 }
10171 
10172 /*
10173  * Check which flags will change by the given flags being set
10174  * silently ignore flags which userland is not allowed to control.
10175  * (Because these flags may change between SIOCGLIFFLAGS and
10176  * SIOCSLIFFLAGS, and that's outside of userland's control,
10177  * we need to silently ignore them rather than fail.)
10178  */
10179 static void
10180 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10181     uint64_t *offp)
10182 {
10183 	ill_t		*ill = ipif->ipif_ill;
10184 	phyint_t 	*phyi = ill->ill_phyint;
10185 	uint64_t	cantchange_flags, intf_flags;
10186 	uint64_t	turn_on, turn_off;
10187 
10188 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10189 	cantchange_flags = IFF_CANTCHANGE;
10190 	if (IS_IPMP(ill))
10191 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
10192 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10193 	turn_off = intf_flags & turn_on;
10194 	turn_on ^= turn_off;
10195 	*onp = turn_on;
10196 	*offp = turn_off;
10197 }
10198 
10199 /*
10200  * Set interface flags.  Many flags require special handling (e.g.,
10201  * bringing the interface down); see below for details.
10202  *
10203  * NOTE : We really don't enforce that ipif_id zero should be used
10204  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
10205  *	  is because applications generally does SICGLIFFLAGS and
10206  *	  ORs in the new flags (that affects the logical) and does a
10207  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10208  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10209  *	  flags that will be turned on is correct with respect to
10210  *	  ipif_id 0. For backward compatibility reasons, it is not done.
10211  */
10212 /* ARGSUSED */
10213 int
10214 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10215     ip_ioctl_cmd_t *ipip, void *if_req)
10216 {
10217 	uint64_t turn_on;
10218 	uint64_t turn_off;
10219 	int	err = 0;
10220 	phyint_t *phyi;
10221 	ill_t *ill;
10222 	conn_t *connp;
10223 	uint64_t intf_flags;
10224 	boolean_t phyint_flags_modified = B_FALSE;
10225 	uint64_t flags;
10226 	struct ifreq *ifr;
10227 	struct lifreq *lifr;
10228 	boolean_t set_linklocal = B_FALSE;
10229 
10230 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10231 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10232 
10233 	ASSERT(IAM_WRITER_IPIF(ipif));
10234 
10235 	ill = ipif->ipif_ill;
10236 	phyi = ill->ill_phyint;
10237 
10238 	if (ipip->ipi_cmd_type == IF_CMD) {
10239 		ifr = (struct ifreq *)if_req;
10240 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10241 	} else {
10242 		lifr = (struct lifreq *)if_req;
10243 		flags = lifr->lifr_flags;
10244 	}
10245 
10246 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10247 
10248 	/*
10249 	 * Have the flags been set correctly until now?
10250 	 */
10251 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10252 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10253 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10254 	/*
10255 	 * Compare the new flags to the old, and partition
10256 	 * into those coming on and those going off.
10257 	 * For the 16 bit command keep the bits above bit 16 unchanged.
10258 	 */
10259 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
10260 		flags |= intf_flags & ~0xFFFF;
10261 
10262 	/*
10263 	 * Explicitly fail attempts to change flags that are always invalid on
10264 	 * an IPMP meta-interface.
10265 	 */
10266 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10267 		return (EINVAL);
10268 
10269 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10270 	if ((turn_on|turn_off) == 0)
10271 		return (0);	/* No change */
10272 
10273 	/*
10274 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
10275 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10276 	 * allow it to be turned off.
10277 	 */
10278 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10279 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
10280 		return (EINVAL);
10281 
10282 	if ((connp = Q_TO_CONN(q)) == NULL)
10283 		return (EINVAL);
10284 
10285 	/*
10286 	 * Only vrrp control socket is allowed to change IFF_UP and
10287 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
10288 	 */
10289 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10290 		if (!connp->conn_isvrrp)
10291 			return (EINVAL);
10292 	}
10293 
10294 	/*
10295 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10296 	 * VRRP control socket.
10297 	 */
10298 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10299 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10300 			return (EINVAL);
10301 	}
10302 
10303 	if (turn_on & IFF_NOFAILOVER) {
10304 		turn_on |= IFF_DEPRECATED;
10305 		flags |= IFF_DEPRECATED;
10306 	}
10307 
10308 	/*
10309 	 * On underlying interfaces, only allow applications to manage test
10310 	 * addresses -- otherwise, they may get confused when the address
10311 	 * moves as part of being brought up.  Likewise, prevent an
10312 	 * application-managed test address from being converted to a data
10313 	 * address.  To prevent migration of administratively up addresses in
10314 	 * the kernel, we don't allow them to be converted either.
10315 	 */
10316 	if (IS_UNDER_IPMP(ill)) {
10317 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10318 
10319 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10320 			return (EINVAL);
10321 
10322 		if ((turn_off & IFF_NOFAILOVER) &&
10323 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10324 			return (EINVAL);
10325 	}
10326 
10327 	/*
10328 	 * Only allow IFF_TEMPORARY flag to be set on
10329 	 * IPv6 interfaces.
10330 	 */
10331 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10332 		return (EINVAL);
10333 
10334 	/*
10335 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10336 	 */
10337 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10338 		return (EINVAL);
10339 
10340 	/*
10341 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10342 	 * interfaces.  It makes no sense in that context.
10343 	 */
10344 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10345 		return (EINVAL);
10346 
10347 	/*
10348 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10349 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10350 	 * If the link local address isn't set, and can be set, it will get
10351 	 * set later on in this function.
10352 	 */
10353 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10354 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10355 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10356 		if (ipif_cant_setlinklocal(ipif))
10357 			return (EINVAL);
10358 		set_linklocal = B_TRUE;
10359 	}
10360 
10361 	/*
10362 	 * If we modify physical interface flags, we'll potentially need to
10363 	 * send up two routing socket messages for the changes (one for the
10364 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10365 	 */
10366 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10367 		phyint_flags_modified = B_TRUE;
10368 
10369 	/*
10370 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10371 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10372 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10373 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10374 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10375 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10376 	 * will not be honored.
10377 	 */
10378 	if (turn_on & PHYI_STANDBY) {
10379 		/*
10380 		 * No need to grab ill_g_usesrc_lock here; see the
10381 		 * synchronization notes in ip.c.
10382 		 */
10383 		if (ill->ill_usesrc_grp_next != NULL ||
10384 		    intf_flags & PHYI_INACTIVE)
10385 			return (EINVAL);
10386 		if (!(flags & PHYI_FAILED)) {
10387 			flags |= PHYI_INACTIVE;
10388 			turn_on |= PHYI_INACTIVE;
10389 		}
10390 	}
10391 
10392 	if (turn_off & PHYI_STANDBY) {
10393 		flags &= ~PHYI_INACTIVE;
10394 		turn_off |= PHYI_INACTIVE;
10395 	}
10396 
10397 	/*
10398 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10399 	 * would end up on.
10400 	 */
10401 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10402 	    (PHYI_FAILED | PHYI_INACTIVE))
10403 		return (EINVAL);
10404 
10405 	/*
10406 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10407 	 * status of the interface.
10408 	 */
10409 	if ((turn_on | turn_off) & ILLF_ROUTER) {
10410 		err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10411 		if (err != 0)
10412 			return (err);
10413 	}
10414 
10415 	/*
10416 	 * If the interface is not UP and we are not going to
10417 	 * bring it UP, record the flags and return. When the
10418 	 * interface comes UP later, the right actions will be
10419 	 * taken.
10420 	 */
10421 	if (!(ipif->ipif_flags & IPIF_UP) &&
10422 	    !(turn_on & IPIF_UP)) {
10423 		/* Record new flags in their respective places. */
10424 		mutex_enter(&ill->ill_lock);
10425 		mutex_enter(&ill->ill_phyint->phyint_lock);
10426 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10427 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10428 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10429 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10430 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10431 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10432 		mutex_exit(&ill->ill_lock);
10433 		mutex_exit(&ill->ill_phyint->phyint_lock);
10434 
10435 		/*
10436 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10437 		 * same to the kernel: if any of them has been set by
10438 		 * userland, the interface cannot be used for data traffic.
10439 		 */
10440 		if ((turn_on|turn_off) &
10441 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10442 			ASSERT(!IS_IPMP(ill));
10443 			/*
10444 			 * It's possible the ill is part of an "anonymous"
10445 			 * IPMP group rather than a real group.  In that case,
10446 			 * there are no other interfaces in the group and thus
10447 			 * no need to call ipmp_phyint_refresh_active().
10448 			 */
10449 			if (IS_UNDER_IPMP(ill))
10450 				ipmp_phyint_refresh_active(phyi);
10451 		}
10452 
10453 		if (phyint_flags_modified) {
10454 			if (phyi->phyint_illv4 != NULL) {
10455 				ip_rts_ifmsg(phyi->phyint_illv4->
10456 				    ill_ipif, RTSQ_DEFAULT);
10457 			}
10458 			if (phyi->phyint_illv6 != NULL) {
10459 				ip_rts_ifmsg(phyi->phyint_illv6->
10460 				    ill_ipif, RTSQ_DEFAULT);
10461 			}
10462 		}
10463 		/* The default multicast interface might have changed */
10464 		ire_increment_multicast_generation(ill->ill_ipst,
10465 		    ill->ill_isv6);
10466 
10467 		return (0);
10468 	} else if (set_linklocal) {
10469 		mutex_enter(&ill->ill_lock);
10470 		if (set_linklocal)
10471 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10472 		mutex_exit(&ill->ill_lock);
10473 	}
10474 
10475 	/*
10476 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10477 	 * or point-to-point interfaces with an unspecified destination. We do
10478 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10479 	 * have a subnet assigned, which is how in.ndpd currently manages its
10480 	 * onlink prefix list when no addresses are configured with those
10481 	 * prefixes.
10482 	 */
10483 	if (ipif->ipif_isv6 &&
10484 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10485 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10486 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10487 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10488 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10489 		return (EINVAL);
10490 	}
10491 
10492 	/*
10493 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10494 	 * from being brought up.
10495 	 */
10496 	if (!ipif->ipif_isv6 &&
10497 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10498 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10499 		return (EINVAL);
10500 	}
10501 
10502 	/*
10503 	 * If we are going to change one or more of the flags that are
10504 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10505 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10506 	 * IPIF_NOFAILOVER, we will take special action.  This is
10507 	 * done by bring the ipif down, changing the flags and bringing
10508 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10509 	 * back up will trigger the address to be moved.
10510 	 *
10511 	 * If we are going to change IFF_NOACCEPT, we need to bring
10512 	 * all the ipifs down then bring them up again.	 The act of
10513 	 * bringing all the ipifs back up will trigger the local
10514 	 * ires being recreated with "no_accept" set/cleared.
10515 	 *
10516 	 * Note that ILLF_NOACCEPT is always set separately from the
10517 	 * other flags.
10518 	 */
10519 	if ((turn_on|turn_off) &
10520 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10521 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10522 	    IPIF_NOFAILOVER)) {
10523 		/*
10524 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10525 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10526 		 * entries shared between multiple ipifs on the same subnet.
10527 		 */
10528 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10529 		    !(turn_off & IPIF_UP)) {
10530 			if (ipif->ipif_flags & IPIF_UP)
10531 				ill->ill_logical_down = 1;
10532 			turn_on &= ~IPIF_UP;
10533 		}
10534 		err = ipif_down(ipif, q, mp);
10535 		ip1dbg(("ipif_down returns %d err ", err));
10536 		if (err == EINPROGRESS)
10537 			return (err);
10538 		(void) ipif_down_tail(ipif);
10539 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10540 		/*
10541 		 * If we can quiesce the ill, then continue.  If not, then
10542 		 * ip_sioctl_flags_tail() will be called from
10543 		 * ipif_ill_refrele_tail().
10544 		 */
10545 		ill_down_ipifs(ill, B_TRUE);
10546 
10547 		mutex_enter(&connp->conn_lock);
10548 		mutex_enter(&ill->ill_lock);
10549 		if (!ill_is_quiescent(ill)) {
10550 			boolean_t success;
10551 
10552 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10553 			    q, mp, ILL_DOWN);
10554 			mutex_exit(&ill->ill_lock);
10555 			mutex_exit(&connp->conn_lock);
10556 			return (success ? EINPROGRESS : EINTR);
10557 		}
10558 		mutex_exit(&ill->ill_lock);
10559 		mutex_exit(&connp->conn_lock);
10560 	}
10561 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10562 }
10563 
10564 static int
10565 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10566 {
10567 	ill_t	*ill;
10568 	phyint_t *phyi;
10569 	uint64_t turn_on, turn_off;
10570 	boolean_t phyint_flags_modified = B_FALSE;
10571 	int	err = 0;
10572 	boolean_t set_linklocal = B_FALSE;
10573 
10574 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10575 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10576 
10577 	ASSERT(IAM_WRITER_IPIF(ipif));
10578 
10579 	ill = ipif->ipif_ill;
10580 	phyi = ill->ill_phyint;
10581 
10582 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10583 
10584 	/*
10585 	 * IFF_UP is handled separately.
10586 	 */
10587 	turn_on &= ~IFF_UP;
10588 	turn_off &= ~IFF_UP;
10589 
10590 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10591 		phyint_flags_modified = B_TRUE;
10592 
10593 	/*
10594 	 * Now we change the flags. Track current value of
10595 	 * other flags in their respective places.
10596 	 */
10597 	mutex_enter(&ill->ill_lock);
10598 	mutex_enter(&phyi->phyint_lock);
10599 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10600 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10601 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10602 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10603 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10604 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10605 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10606 		set_linklocal = B_TRUE;
10607 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10608 	}
10609 
10610 	mutex_exit(&ill->ill_lock);
10611 	mutex_exit(&phyi->phyint_lock);
10612 
10613 	if (set_linklocal)
10614 		(void) ipif_setlinklocal(ipif);
10615 
10616 	/*
10617 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10618 	 * the kernel: if any of them has been set by userland, the interface
10619 	 * cannot be used for data traffic.
10620 	 */
10621 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10622 		ASSERT(!IS_IPMP(ill));
10623 		/*
10624 		 * It's possible the ill is part of an "anonymous" IPMP group
10625 		 * rather than a real group.  In that case, there are no other
10626 		 * interfaces in the group and thus no need for us to call
10627 		 * ipmp_phyint_refresh_active().
10628 		 */
10629 		if (IS_UNDER_IPMP(ill))
10630 			ipmp_phyint_refresh_active(phyi);
10631 	}
10632 
10633 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10634 		/*
10635 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10636 		 * ipifs that were brought down.
10637 		 *
10638 		 * The routing sockets messages are sent as the result
10639 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10640 		 * as well.
10641 		 */
10642 		err = ill_up_ipifs(ill, q, mp);
10643 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10644 		/*
10645 		 * XXX ipif_up really does not know whether a phyint flags
10646 		 * was modified or not. So, it sends up information on
10647 		 * only one routing sockets message. As we don't bring up
10648 		 * the interface and also set PHYI_ flags simultaneously
10649 		 * it should be okay.
10650 		 */
10651 		err = ipif_up(ipif, q, mp);
10652 	} else {
10653 		/*
10654 		 * Make sure routing socket sees all changes to the flags.
10655 		 * ipif_up_done* handles this when we use ipif_up.
10656 		 */
10657 		if (phyint_flags_modified) {
10658 			if (phyi->phyint_illv4 != NULL) {
10659 				ip_rts_ifmsg(phyi->phyint_illv4->
10660 				    ill_ipif, RTSQ_DEFAULT);
10661 			}
10662 			if (phyi->phyint_illv6 != NULL) {
10663 				ip_rts_ifmsg(phyi->phyint_illv6->
10664 				    ill_ipif, RTSQ_DEFAULT);
10665 			}
10666 		} else {
10667 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10668 		}
10669 		/*
10670 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10671 		 * this in need_up case.
10672 		 */
10673 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10674 	}
10675 
10676 	/* The default multicast interface might have changed */
10677 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10678 	return (err);
10679 }
10680 
10681 /*
10682  * Restart the flags operation now that the refcounts have dropped to zero.
10683  */
10684 /* ARGSUSED */
10685 int
10686 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10687     ip_ioctl_cmd_t *ipip, void *if_req)
10688 {
10689 	uint64_t flags;
10690 	struct ifreq *ifr = if_req;
10691 	struct lifreq *lifr = if_req;
10692 	uint64_t turn_on, turn_off;
10693 
10694 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10695 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10696 
10697 	if (ipip->ipi_cmd_type == IF_CMD) {
10698 		/* cast to uint16_t prevents unwanted sign extension */
10699 		flags = (uint16_t)ifr->ifr_flags;
10700 	} else {
10701 		flags = lifr->lifr_flags;
10702 	}
10703 
10704 	/*
10705 	 * If this function call is a result of the ILLF_NOACCEPT flag
10706 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10707 	 */
10708 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10709 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10710 		(void) ipif_down_tail(ipif);
10711 
10712 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10713 }
10714 
10715 /*
10716  * Can operate on either a module or a driver queue.
10717  */
10718 /* ARGSUSED */
10719 int
10720 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10721     ip_ioctl_cmd_t *ipip, void *if_req)
10722 {
10723 	/*
10724 	 * Has the flags been set correctly till now ?
10725 	 */
10726 	ill_t *ill = ipif->ipif_ill;
10727 	phyint_t *phyi = ill->ill_phyint;
10728 
10729 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10730 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10731 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10732 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10733 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10734 
10735 	/*
10736 	 * Need a lock since some flags can be set even when there are
10737 	 * references to the ipif.
10738 	 */
10739 	mutex_enter(&ill->ill_lock);
10740 	if (ipip->ipi_cmd_type == IF_CMD) {
10741 		struct ifreq *ifr = (struct ifreq *)if_req;
10742 
10743 		/* Get interface flags (low 16 only). */
10744 		ifr->ifr_flags = ((ipif->ipif_flags |
10745 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10746 	} else {
10747 		struct lifreq *lifr = (struct lifreq *)if_req;
10748 
10749 		/* Get interface flags. */
10750 		lifr->lifr_flags = ipif->ipif_flags |
10751 		    ill->ill_flags | phyi->phyint_flags;
10752 	}
10753 	mutex_exit(&ill->ill_lock);
10754 	return (0);
10755 }
10756 
10757 /*
10758  * We allow the MTU to be set on an ILL, but not have it be different
10759  * for different IPIFs since we don't actually send packets on IPIFs.
10760  */
10761 /* ARGSUSED */
10762 int
10763 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10764     ip_ioctl_cmd_t *ipip, void *if_req)
10765 {
10766 	int mtu;
10767 	int ip_min_mtu;
10768 	struct ifreq	*ifr;
10769 	struct lifreq *lifr;
10770 	ill_t	*ill;
10771 
10772 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10773 	    ipif->ipif_id, (void *)ipif));
10774 	if (ipip->ipi_cmd_type == IF_CMD) {
10775 		ifr = (struct ifreq *)if_req;
10776 		mtu = ifr->ifr_metric;
10777 	} else {
10778 		lifr = (struct lifreq *)if_req;
10779 		mtu = lifr->lifr_mtu;
10780 	}
10781 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10782 	if (ipif->ipif_id != 0)
10783 		return (EINVAL);
10784 
10785 	ill = ipif->ipif_ill;
10786 	if (ipif->ipif_isv6)
10787 		ip_min_mtu = IPV6_MIN_MTU;
10788 	else
10789 		ip_min_mtu = IP_MIN_MTU;
10790 
10791 	mutex_enter(&ill->ill_lock);
10792 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10793 		mutex_exit(&ill->ill_lock);
10794 		return (EINVAL);
10795 	}
10796 	/* Avoid increasing ill_mc_mtu */
10797 	if (ill->ill_mc_mtu > mtu)
10798 		ill->ill_mc_mtu = mtu;
10799 
10800 	/*
10801 	 * The dce and fragmentation code can handle changes to ill_mtu
10802 	 * concurrent with sending/fragmenting packets.
10803 	 */
10804 	ill->ill_mtu = mtu;
10805 	ill->ill_flags |= ILLF_FIXEDMTU;
10806 	mutex_exit(&ill->ill_lock);
10807 
10808 	/*
10809 	 * Make sure all dce_generation checks find out
10810 	 * that ill_mtu/ill_mc_mtu has changed.
10811 	 */
10812 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10813 
10814 	/*
10815 	 * Refresh IPMP meta-interface MTU if necessary.
10816 	 */
10817 	if (IS_UNDER_IPMP(ill))
10818 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
10819 
10820 	/* Update the MTU in SCTP's list */
10821 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10822 	return (0);
10823 }
10824 
10825 /* Get interface MTU. */
10826 /* ARGSUSED */
10827 int
10828 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10829 	ip_ioctl_cmd_t *ipip, void *if_req)
10830 {
10831 	struct ifreq	*ifr;
10832 	struct lifreq	*lifr;
10833 
10834 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10835 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10836 
10837 	/*
10838 	 * We allow a get on any logical interface even though the set
10839 	 * can only be done on logical unit 0.
10840 	 */
10841 	if (ipip->ipi_cmd_type == IF_CMD) {
10842 		ifr = (struct ifreq *)if_req;
10843 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10844 	} else {
10845 		lifr = (struct lifreq *)if_req;
10846 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10847 	}
10848 	return (0);
10849 }
10850 
10851 /* Set interface broadcast address. */
10852 /* ARGSUSED2 */
10853 int
10854 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10855 	ip_ioctl_cmd_t *ipip, void *if_req)
10856 {
10857 	ipaddr_t addr;
10858 	ire_t	*ire;
10859 	ill_t		*ill = ipif->ipif_ill;
10860 	ip_stack_t	*ipst = ill->ill_ipst;
10861 
10862 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10863 	    ipif->ipif_id));
10864 
10865 	ASSERT(IAM_WRITER_IPIF(ipif));
10866 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10867 		return (EADDRNOTAVAIL);
10868 
10869 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10870 
10871 	if (sin->sin_family != AF_INET)
10872 		return (EAFNOSUPPORT);
10873 
10874 	addr = sin->sin_addr.s_addr;
10875 
10876 	if (ipif->ipif_flags & IPIF_UP) {
10877 		/*
10878 		 * If we are already up, make sure the new
10879 		 * broadcast address makes sense.  If it does,
10880 		 * there should be an IRE for it already.
10881 		 */
10882 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10883 		    ill, ipif->ipif_zoneid, NULL,
10884 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10885 		if (ire == NULL) {
10886 			return (EINVAL);
10887 		} else {
10888 			ire_refrele(ire);
10889 		}
10890 	}
10891 	/*
10892 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10893 	 * needs to already exist we never need to change the set of
10894 	 * IRE_BROADCASTs when we are UP.
10895 	 */
10896 	if (addr != ipif->ipif_brd_addr)
10897 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10898 
10899 	return (0);
10900 }
10901 
10902 /* Get interface broadcast address. */
10903 /* ARGSUSED */
10904 int
10905 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10906     ip_ioctl_cmd_t *ipip, void *if_req)
10907 {
10908 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10909 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10910 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10911 		return (EADDRNOTAVAIL);
10912 
10913 	/* IPIF_BROADCAST not possible with IPv6 */
10914 	ASSERT(!ipif->ipif_isv6);
10915 	*sin = sin_null;
10916 	sin->sin_family = AF_INET;
10917 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10918 	return (0);
10919 }
10920 
10921 /*
10922  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10923  */
10924 /* ARGSUSED */
10925 int
10926 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10927     ip_ioctl_cmd_t *ipip, void *if_req)
10928 {
10929 	int err = 0;
10930 	in6_addr_t v6mask;
10931 
10932 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10933 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10934 
10935 	ASSERT(IAM_WRITER_IPIF(ipif));
10936 
10937 	if (ipif->ipif_isv6) {
10938 		sin6_t *sin6;
10939 
10940 		if (sin->sin_family != AF_INET6)
10941 			return (EAFNOSUPPORT);
10942 
10943 		sin6 = (sin6_t *)sin;
10944 		v6mask = sin6->sin6_addr;
10945 	} else {
10946 		ipaddr_t mask;
10947 
10948 		if (sin->sin_family != AF_INET)
10949 			return (EAFNOSUPPORT);
10950 
10951 		mask = sin->sin_addr.s_addr;
10952 		if (!ip_contiguous_mask(ntohl(mask)))
10953 			return (ENOTSUP);
10954 		V4MASK_TO_V6(mask, v6mask);
10955 	}
10956 
10957 	/*
10958 	 * No big deal if the interface isn't already up, or the mask
10959 	 * isn't really changing, or this is pt-pt.
10960 	 */
10961 	if (!(ipif->ipif_flags & IPIF_UP) ||
10962 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10963 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10964 		ipif->ipif_v6net_mask = v6mask;
10965 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10966 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10967 			    ipif->ipif_v6net_mask,
10968 			    ipif->ipif_v6subnet);
10969 		}
10970 		return (0);
10971 	}
10972 	/*
10973 	 * Make sure we have valid net and subnet broadcast ire's
10974 	 * for the old netmask, if needed by other logical interfaces.
10975 	 */
10976 	err = ipif_logical_down(ipif, q, mp);
10977 	if (err == EINPROGRESS)
10978 		return (err);
10979 	(void) ipif_down_tail(ipif);
10980 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10981 	return (err);
10982 }
10983 
10984 static int
10985 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10986 {
10987 	in6_addr_t v6mask;
10988 	int err = 0;
10989 
10990 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10991 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10992 
10993 	if (ipif->ipif_isv6) {
10994 		sin6_t *sin6;
10995 
10996 		sin6 = (sin6_t *)sin;
10997 		v6mask = sin6->sin6_addr;
10998 	} else {
10999 		ipaddr_t mask;
11000 
11001 		mask = sin->sin_addr.s_addr;
11002 		V4MASK_TO_V6(mask, v6mask);
11003 	}
11004 
11005 	ipif->ipif_v6net_mask = v6mask;
11006 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11007 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11008 		    ipif->ipif_v6subnet);
11009 	}
11010 	err = ipif_up(ipif, q, mp);
11011 
11012 	if (err == 0 || err == EINPROGRESS) {
11013 		/*
11014 		 * The interface must be DL_BOUND if this packet has to
11015 		 * go out on the wire. Since we only go through a logical
11016 		 * down and are bound with the driver during an internal
11017 		 * down/up that is satisfied.
11018 		 */
11019 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11020 			/* Potentially broadcast an address mask reply. */
11021 			ipif_mask_reply(ipif);
11022 		}
11023 	}
11024 	return (err);
11025 }
11026 
11027 /* ARGSUSED */
11028 int
11029 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11030     ip_ioctl_cmd_t *ipip, void *if_req)
11031 {
11032 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11033 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11034 	(void) ipif_down_tail(ipif);
11035 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11036 }
11037 
11038 /* Get interface net mask. */
11039 /* ARGSUSED */
11040 int
11041 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11042     ip_ioctl_cmd_t *ipip, void *if_req)
11043 {
11044 	struct lifreq *lifr = (struct lifreq *)if_req;
11045 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11046 
11047 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11048 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11049 
11050 	/*
11051 	 * net mask can't change since we have a reference to the ipif.
11052 	 */
11053 	if (ipif->ipif_isv6) {
11054 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11055 		*sin6 = sin6_null;
11056 		sin6->sin6_family = AF_INET6;
11057 		sin6->sin6_addr = ipif->ipif_v6net_mask;
11058 		lifr->lifr_addrlen =
11059 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11060 	} else {
11061 		*sin = sin_null;
11062 		sin->sin_family = AF_INET;
11063 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
11064 		if (ipip->ipi_cmd_type == LIF_CMD) {
11065 			lifr->lifr_addrlen =
11066 			    ip_mask_to_plen(ipif->ipif_net_mask);
11067 		}
11068 	}
11069 	return (0);
11070 }
11071 
11072 /* ARGSUSED */
11073 int
11074 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11075     ip_ioctl_cmd_t *ipip, void *if_req)
11076 {
11077 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11078 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11079 
11080 	/*
11081 	 * Since no applications should ever be setting metrics on underlying
11082 	 * interfaces, we explicitly fail to smoke 'em out.
11083 	 */
11084 	if (IS_UNDER_IPMP(ipif->ipif_ill))
11085 		return (EINVAL);
11086 
11087 	/*
11088 	 * Set interface metric.  We don't use this for
11089 	 * anything but we keep track of it in case it is
11090 	 * important to routing applications or such.
11091 	 */
11092 	if (ipip->ipi_cmd_type == IF_CMD) {
11093 		struct ifreq    *ifr;
11094 
11095 		ifr = (struct ifreq *)if_req;
11096 		ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11097 	} else {
11098 		struct lifreq   *lifr;
11099 
11100 		lifr = (struct lifreq *)if_req;
11101 		ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11102 	}
11103 	return (0);
11104 }
11105 
11106 /* ARGSUSED */
11107 int
11108 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11109     ip_ioctl_cmd_t *ipip, void *if_req)
11110 {
11111 	/* Get interface metric. */
11112 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11113 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11114 
11115 	if (ipip->ipi_cmd_type == IF_CMD) {
11116 		struct ifreq    *ifr;
11117 
11118 		ifr = (struct ifreq *)if_req;
11119 		ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11120 	} else {
11121 		struct lifreq   *lifr;
11122 
11123 		lifr = (struct lifreq *)if_req;
11124 		lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11125 	}
11126 
11127 	return (0);
11128 }
11129 
11130 /* ARGSUSED */
11131 int
11132 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11133     ip_ioctl_cmd_t *ipip, void *if_req)
11134 {
11135 	int	arp_muxid;
11136 
11137 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11138 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11139 	/*
11140 	 * Set the muxid returned from I_PLINK.
11141 	 */
11142 	if (ipip->ipi_cmd_type == IF_CMD) {
11143 		struct ifreq *ifr = (struct ifreq *)if_req;
11144 
11145 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11146 		arp_muxid = ifr->ifr_arp_muxid;
11147 	} else {
11148 		struct lifreq *lifr = (struct lifreq *)if_req;
11149 
11150 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11151 		arp_muxid = lifr->lifr_arp_muxid;
11152 	}
11153 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
11154 	return (0);
11155 }
11156 
11157 /* ARGSUSED */
11158 int
11159 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11160     ip_ioctl_cmd_t *ipip, void *if_req)
11161 {
11162 	int	arp_muxid = 0;
11163 
11164 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11165 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11166 	/*
11167 	 * Get the muxid saved in ill for I_PUNLINK.
11168 	 */
11169 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
11170 	if (ipip->ipi_cmd_type == IF_CMD) {
11171 		struct ifreq *ifr = (struct ifreq *)if_req;
11172 
11173 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11174 		ifr->ifr_arp_muxid = arp_muxid;
11175 	} else {
11176 		struct lifreq *lifr = (struct lifreq *)if_req;
11177 
11178 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11179 		lifr->lifr_arp_muxid = arp_muxid;
11180 	}
11181 	return (0);
11182 }
11183 
11184 /*
11185  * Set the subnet prefix. Does not modify the broadcast address.
11186  */
11187 /* ARGSUSED */
11188 int
11189 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11190     ip_ioctl_cmd_t *ipip, void *if_req)
11191 {
11192 	int err = 0;
11193 	in6_addr_t v6addr;
11194 	in6_addr_t v6mask;
11195 	boolean_t need_up = B_FALSE;
11196 	int addrlen;
11197 
11198 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11199 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11200 
11201 	ASSERT(IAM_WRITER_IPIF(ipif));
11202 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11203 
11204 	if (ipif->ipif_isv6) {
11205 		sin6_t *sin6;
11206 
11207 		if (sin->sin_family != AF_INET6)
11208 			return (EAFNOSUPPORT);
11209 
11210 		sin6 = (sin6_t *)sin;
11211 		v6addr = sin6->sin6_addr;
11212 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11213 			return (EADDRNOTAVAIL);
11214 	} else {
11215 		ipaddr_t addr;
11216 
11217 		if (sin->sin_family != AF_INET)
11218 			return (EAFNOSUPPORT);
11219 
11220 		addr = sin->sin_addr.s_addr;
11221 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11222 			return (EADDRNOTAVAIL);
11223 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11224 		/* Add 96 bits */
11225 		addrlen += IPV6_ABITS - IP_ABITS;
11226 	}
11227 
11228 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11229 		return (EINVAL);
11230 
11231 	/* Check if bits in the address is set past the mask */
11232 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11233 		return (EINVAL);
11234 
11235 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11236 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11237 		return (0);	/* No change */
11238 
11239 	if (ipif->ipif_flags & IPIF_UP) {
11240 		/*
11241 		 * If the interface is already marked up,
11242 		 * we call ipif_down which will take care
11243 		 * of ditching any IREs that have been set
11244 		 * up based on the old interface address.
11245 		 */
11246 		err = ipif_logical_down(ipif, q, mp);
11247 		if (err == EINPROGRESS)
11248 			return (err);
11249 		(void) ipif_down_tail(ipif);
11250 		need_up = B_TRUE;
11251 	}
11252 
11253 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11254 	return (err);
11255 }
11256 
11257 static int
11258 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11259     queue_t *q, mblk_t *mp, boolean_t need_up)
11260 {
11261 	ill_t	*ill = ipif->ipif_ill;
11262 	int	err = 0;
11263 
11264 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11265 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11266 
11267 	/* Set the new address. */
11268 	mutex_enter(&ill->ill_lock);
11269 	ipif->ipif_v6net_mask = v6mask;
11270 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11271 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11272 		    ipif->ipif_v6subnet);
11273 	}
11274 	mutex_exit(&ill->ill_lock);
11275 
11276 	if (need_up) {
11277 		/*
11278 		 * Now bring the interface back up.  If this
11279 		 * is the only IPIF for the ILL, ipif_up
11280 		 * will have to re-bind to the device, so
11281 		 * we may get back EINPROGRESS, in which
11282 		 * case, this IOCTL will get completed in
11283 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11284 		 */
11285 		err = ipif_up(ipif, q, mp);
11286 		if (err == EINPROGRESS)
11287 			return (err);
11288 	}
11289 	return (err);
11290 }
11291 
11292 /* ARGSUSED */
11293 int
11294 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11295     ip_ioctl_cmd_t *ipip, void *if_req)
11296 {
11297 	int	addrlen;
11298 	in6_addr_t v6addr;
11299 	in6_addr_t v6mask;
11300 	struct lifreq *lifr = (struct lifreq *)if_req;
11301 
11302 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11303 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11304 	(void) ipif_down_tail(ipif);
11305 
11306 	addrlen = lifr->lifr_addrlen;
11307 	if (ipif->ipif_isv6) {
11308 		sin6_t *sin6;
11309 
11310 		sin6 = (sin6_t *)sin;
11311 		v6addr = sin6->sin6_addr;
11312 	} else {
11313 		ipaddr_t addr;
11314 
11315 		addr = sin->sin_addr.s_addr;
11316 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11317 		addrlen += IPV6_ABITS - IP_ABITS;
11318 	}
11319 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11320 
11321 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11322 }
11323 
11324 /* ARGSUSED */
11325 int
11326 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11327     ip_ioctl_cmd_t *ipip, void *if_req)
11328 {
11329 	struct lifreq *lifr = (struct lifreq *)if_req;
11330 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11331 
11332 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11333 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11334 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11335 
11336 	if (ipif->ipif_isv6) {
11337 		*sin6 = sin6_null;
11338 		sin6->sin6_family = AF_INET6;
11339 		sin6->sin6_addr = ipif->ipif_v6subnet;
11340 		lifr->lifr_addrlen =
11341 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11342 	} else {
11343 		*sin = sin_null;
11344 		sin->sin_family = AF_INET;
11345 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11346 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11347 	}
11348 	return (0);
11349 }
11350 
11351 /*
11352  * Set the IPv6 address token.
11353  */
11354 /* ARGSUSED */
11355 int
11356 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11357     ip_ioctl_cmd_t *ipi, void *if_req)
11358 {
11359 	ill_t *ill = ipif->ipif_ill;
11360 	int err;
11361 	in6_addr_t v6addr;
11362 	in6_addr_t v6mask;
11363 	boolean_t need_up = B_FALSE;
11364 	int i;
11365 	sin6_t *sin6 = (sin6_t *)sin;
11366 	struct lifreq *lifr = (struct lifreq *)if_req;
11367 	int addrlen;
11368 
11369 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11370 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11371 	ASSERT(IAM_WRITER_IPIF(ipif));
11372 
11373 	addrlen = lifr->lifr_addrlen;
11374 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11375 	if (ipif->ipif_id != 0)
11376 		return (EINVAL);
11377 
11378 	if (!ipif->ipif_isv6)
11379 		return (EINVAL);
11380 
11381 	if (addrlen > IPV6_ABITS)
11382 		return (EINVAL);
11383 
11384 	v6addr = sin6->sin6_addr;
11385 
11386 	/*
11387 	 * The length of the token is the length from the end.  To get
11388 	 * the proper mask for this, compute the mask of the bits not
11389 	 * in the token; ie. the prefix, and then xor to get the mask.
11390 	 */
11391 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11392 		return (EINVAL);
11393 	for (i = 0; i < 4; i++) {
11394 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11395 	}
11396 
11397 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11398 	    ill->ill_token_length == addrlen)
11399 		return (0);	/* No change */
11400 
11401 	if (ipif->ipif_flags & IPIF_UP) {
11402 		err = ipif_logical_down(ipif, q, mp);
11403 		if (err == EINPROGRESS)
11404 			return (err);
11405 		(void) ipif_down_tail(ipif);
11406 		need_up = B_TRUE;
11407 	}
11408 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11409 	return (err);
11410 }
11411 
11412 static int
11413 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11414     mblk_t *mp, boolean_t need_up)
11415 {
11416 	in6_addr_t v6addr;
11417 	in6_addr_t v6mask;
11418 	ill_t	*ill = ipif->ipif_ill;
11419 	int	i;
11420 	int	err = 0;
11421 
11422 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11423 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11424 	v6addr = sin6->sin6_addr;
11425 	/*
11426 	 * The length of the token is the length from the end.  To get
11427 	 * the proper mask for this, compute the mask of the bits not
11428 	 * in the token; ie. the prefix, and then xor to get the mask.
11429 	 */
11430 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11431 	for (i = 0; i < 4; i++)
11432 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11433 
11434 	mutex_enter(&ill->ill_lock);
11435 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11436 	ill->ill_token_length = addrlen;
11437 	ill->ill_manual_token = 1;
11438 
11439 	/* Reconfigure the link-local address based on this new token */
11440 	ipif_setlinklocal(ill->ill_ipif);
11441 
11442 	mutex_exit(&ill->ill_lock);
11443 
11444 	if (need_up) {
11445 		/*
11446 		 * Now bring the interface back up.  If this
11447 		 * is the only IPIF for the ILL, ipif_up
11448 		 * will have to re-bind to the device, so
11449 		 * we may get back EINPROGRESS, in which
11450 		 * case, this IOCTL will get completed in
11451 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11452 		 */
11453 		err = ipif_up(ipif, q, mp);
11454 		if (err == EINPROGRESS)
11455 			return (err);
11456 	}
11457 	return (err);
11458 }
11459 
11460 /* ARGSUSED */
11461 int
11462 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11463     ip_ioctl_cmd_t *ipi, void *if_req)
11464 {
11465 	ill_t *ill;
11466 	sin6_t *sin6 = (sin6_t *)sin;
11467 	struct lifreq *lifr = (struct lifreq *)if_req;
11468 
11469 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11470 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11471 	if (ipif->ipif_id != 0)
11472 		return (EINVAL);
11473 
11474 	ill = ipif->ipif_ill;
11475 	if (!ill->ill_isv6)
11476 		return (ENXIO);
11477 
11478 	*sin6 = sin6_null;
11479 	sin6->sin6_family = AF_INET6;
11480 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11481 	sin6->sin6_addr = ill->ill_token;
11482 	lifr->lifr_addrlen = ill->ill_token_length;
11483 	return (0);
11484 }
11485 
11486 /*
11487  * Set (hardware) link specific information that might override
11488  * what was acquired through the DL_INFO_ACK.
11489  */
11490 /* ARGSUSED */
11491 int
11492 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11493     ip_ioctl_cmd_t *ipi, void *if_req)
11494 {
11495 	ill_t		*ill = ipif->ipif_ill;
11496 	int		ip_min_mtu;
11497 	struct lifreq	*lifr = (struct lifreq *)if_req;
11498 	lif_ifinfo_req_t *lir;
11499 
11500 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11501 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11502 	lir = &lifr->lifr_ifinfo;
11503 	ASSERT(IAM_WRITER_IPIF(ipif));
11504 
11505 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11506 	if (ipif->ipif_id != 0)
11507 		return (EINVAL);
11508 
11509 	/* Set interface MTU. */
11510 	if (ipif->ipif_isv6)
11511 		ip_min_mtu = IPV6_MIN_MTU;
11512 	else
11513 		ip_min_mtu = IP_MIN_MTU;
11514 
11515 	/*
11516 	 * Verify values before we set anything. Allow zero to
11517 	 * mean unspecified.
11518 	 *
11519 	 * XXX We should be able to set the user-defined lir_mtu to some value
11520 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11521 	 * ill_max_frag value tells us the max MTU that can be handled by the
11522 	 * datalink, whereas the ill_current_frag is dynamically computed for
11523 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11524 	 * since there is currently no way of distinguishing between
11525 	 * administratively fixed link mtu values (e.g., those set via
11526 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11527 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11528 	 * upper-bound.
11529 	 */
11530 	if (lir->lir_maxmtu != 0 &&
11531 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11532 	    lir->lir_maxmtu < ip_min_mtu))
11533 		return (EINVAL);
11534 	if (lir->lir_reachtime != 0 &&
11535 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11536 		return (EINVAL);
11537 	if (lir->lir_reachretrans != 0 &&
11538 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11539 		return (EINVAL);
11540 
11541 	mutex_enter(&ill->ill_lock);
11542 	/*
11543 	 * The dce and fragmentation code can handle changes to ill_mtu
11544 	 * concurrent with sending/fragmenting packets.
11545 	 */
11546 	if (lir->lir_maxmtu != 0)
11547 		ill->ill_user_mtu = lir->lir_maxmtu;
11548 
11549 	if (lir->lir_reachtime != 0)
11550 		ill->ill_reachable_time = lir->lir_reachtime;
11551 
11552 	if (lir->lir_reachretrans != 0)
11553 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11554 
11555 	ill->ill_max_hops = lir->lir_maxhops;
11556 	ill->ill_max_buf = ND_MAX_Q;
11557 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11558 		/*
11559 		 * ill_mtu is the actual interface MTU, obtained as the min
11560 		 * of user-configured mtu and the value announced by the
11561 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11562 		 * we have already made the choice of requiring
11563 		 * ill_user_mtu < ill_current_frag by the time we get here,
11564 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11565 		 * here.
11566 		 */
11567 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11568 		ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11569 	}
11570 	mutex_exit(&ill->ill_lock);
11571 
11572 	/*
11573 	 * Make sure all dce_generation checks find out
11574 	 * that ill_mtu/ill_mc_mtu has changed.
11575 	 */
11576 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11577 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11578 
11579 	/*
11580 	 * Refresh IPMP meta-interface MTU if necessary.
11581 	 */
11582 	if (IS_UNDER_IPMP(ill))
11583 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11584 
11585 	return (0);
11586 }
11587 
11588 /* ARGSUSED */
11589 int
11590 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11591     ip_ioctl_cmd_t *ipi, void *if_req)
11592 {
11593 	struct lif_ifinfo_req *lir;
11594 	ill_t *ill = ipif->ipif_ill;
11595 
11596 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11597 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11598 	if (ipif->ipif_id != 0)
11599 		return (EINVAL);
11600 
11601 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11602 	lir->lir_maxhops = ill->ill_max_hops;
11603 	lir->lir_reachtime = ill->ill_reachable_time;
11604 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11605 	lir->lir_maxmtu = ill->ill_mtu;
11606 
11607 	return (0);
11608 }
11609 
11610 /*
11611  * Return best guess as to the subnet mask for the specified address.
11612  * Based on the subnet masks for all the configured interfaces.
11613  *
11614  * We end up returning a zero mask in the case of default, multicast or
11615  * experimental.
11616  */
11617 static ipaddr_t
11618 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11619 {
11620 	ipaddr_t net_mask;
11621 	ill_t	*ill;
11622 	ipif_t	*ipif;
11623 	ill_walk_context_t ctx;
11624 	ipif_t	*fallback_ipif = NULL;
11625 
11626 	net_mask = ip_net_mask(addr);
11627 	if (net_mask == 0) {
11628 		*ipifp = NULL;
11629 		return (0);
11630 	}
11631 
11632 	/* Let's check to see if this is maybe a local subnet route. */
11633 	/* this function only applies to IPv4 interfaces */
11634 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11635 	ill = ILL_START_WALK_V4(&ctx, ipst);
11636 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11637 		mutex_enter(&ill->ill_lock);
11638 		for (ipif = ill->ill_ipif; ipif != NULL;
11639 		    ipif = ipif->ipif_next) {
11640 			if (IPIF_IS_CONDEMNED(ipif))
11641 				continue;
11642 			if (!(ipif->ipif_flags & IPIF_UP))
11643 				continue;
11644 			if ((ipif->ipif_subnet & net_mask) ==
11645 			    (addr & net_mask)) {
11646 				/*
11647 				 * Don't trust pt-pt interfaces if there are
11648 				 * other interfaces.
11649 				 */
11650 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11651 					if (fallback_ipif == NULL) {
11652 						ipif_refhold_locked(ipif);
11653 						fallback_ipif = ipif;
11654 					}
11655 					continue;
11656 				}
11657 
11658 				/*
11659 				 * Fine. Just assume the same net mask as the
11660 				 * directly attached subnet interface is using.
11661 				 */
11662 				ipif_refhold_locked(ipif);
11663 				mutex_exit(&ill->ill_lock);
11664 				rw_exit(&ipst->ips_ill_g_lock);
11665 				if (fallback_ipif != NULL)
11666 					ipif_refrele(fallback_ipif);
11667 				*ipifp = ipif;
11668 				return (ipif->ipif_net_mask);
11669 			}
11670 		}
11671 		mutex_exit(&ill->ill_lock);
11672 	}
11673 	rw_exit(&ipst->ips_ill_g_lock);
11674 
11675 	*ipifp = fallback_ipif;
11676 	return ((fallback_ipif != NULL) ?
11677 	    fallback_ipif->ipif_net_mask : net_mask);
11678 }
11679 
11680 /*
11681  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11682  */
11683 static void
11684 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11685 {
11686 	IOCP	iocp;
11687 	ipft_t	*ipft;
11688 	ipllc_t	*ipllc;
11689 	mblk_t	*mp1;
11690 	cred_t	*cr;
11691 	int	error = 0;
11692 	conn_t	*connp;
11693 
11694 	ip1dbg(("ip_wput_ioctl"));
11695 	iocp = (IOCP)mp->b_rptr;
11696 	mp1 = mp->b_cont;
11697 	if (mp1 == NULL) {
11698 		iocp->ioc_error = EINVAL;
11699 		mp->b_datap->db_type = M_IOCNAK;
11700 		iocp->ioc_count = 0;
11701 		qreply(q, mp);
11702 		return;
11703 	}
11704 
11705 	/*
11706 	 * These IOCTLs provide various control capabilities to
11707 	 * upstream agents such as ULPs and processes.	There
11708 	 * are currently two such IOCTLs implemented.  They
11709 	 * are used by TCP to provide update information for
11710 	 * existing IREs and to forcibly delete an IRE for a
11711 	 * host that is not responding, thereby forcing an
11712 	 * attempt at a new route.
11713 	 */
11714 	iocp->ioc_error = EINVAL;
11715 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11716 		goto done;
11717 
11718 	ipllc = (ipllc_t *)mp1->b_rptr;
11719 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11720 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11721 			break;
11722 	}
11723 	/*
11724 	 * prefer credential from mblk over ioctl;
11725 	 * see ip_sioctl_copyin_setup
11726 	 */
11727 	cr = msg_getcred(mp, NULL);
11728 	if (cr == NULL)
11729 		cr = iocp->ioc_cr;
11730 
11731 	/*
11732 	 * Refhold the conn in case the request gets queued up in some lookup
11733 	 */
11734 	ASSERT(CONN_Q(q));
11735 	connp = Q_TO_CONN(q);
11736 	CONN_INC_REF(connp);
11737 	CONN_INC_IOCTLREF(connp);
11738 	if (ipft->ipft_pfi &&
11739 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11740 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11741 		error = (*ipft->ipft_pfi)(q,
11742 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11743 	}
11744 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11745 		/*
11746 		 * CONN_OPER_PENDING_DONE happens in the function called
11747 		 * through ipft_pfi above.
11748 		 */
11749 		return;
11750 	}
11751 
11752 	CONN_DEC_IOCTLREF(connp);
11753 	CONN_OPER_PENDING_DONE(connp);
11754 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11755 		freemsg(mp);
11756 		return;
11757 	}
11758 	iocp->ioc_error = error;
11759 
11760 done:
11761 	mp->b_datap->db_type = M_IOCACK;
11762 	if (iocp->ioc_error)
11763 		iocp->ioc_count = 0;
11764 	qreply(q, mp);
11765 }
11766 
11767 /*
11768  * Assign a unique id for the ipif. This is used by sctp_addr.c
11769  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11770  */
11771 static void
11772 ipif_assign_seqid(ipif_t *ipif)
11773 {
11774 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11775 
11776 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11777 }
11778 
11779 /*
11780  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11781  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11782  * that the clone is complete -- including the seqid -- and the expectation is
11783  * that the caller will either free or overwrite `sipif' before it's unlocked.
11784  */
11785 static void
11786 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11787 {
11788 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11789 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11790 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11791 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11792 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11793 
11794 	dipif->ipif_flags = sipif->ipif_flags;
11795 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11796 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11797 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11798 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11799 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11800 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11801 
11802 	/*
11803 	 * As per the comment atop the function, we assume that these sipif
11804 	 * fields will be changed before sipif is unlocked.
11805 	 */
11806 	dipif->ipif_seqid = sipif->ipif_seqid;
11807 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11808 }
11809 
11810 /*
11811  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11812  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11813  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11814  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11815  * down (i.e., no DAD), of the same type, and unlocked.
11816  */
11817 static void
11818 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11819 {
11820 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11821 	ipxop_t *ipx = ipsq->ipsq_xop;
11822 
11823 	ASSERT(sipif != dipif);
11824 	ASSERT(sipif != virgipif);
11825 
11826 	/*
11827 	 * Grab all of the locks that protect the ipif in a defined order.
11828 	 */
11829 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11830 
11831 	ipif_clone(sipif, dipif);
11832 	if (virgipif != NULL) {
11833 		ipif_clone(virgipif, sipif);
11834 		mi_free(virgipif);
11835 	}
11836 
11837 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11838 
11839 	/*
11840 	 * Transfer ownership of the current xop, if necessary.
11841 	 */
11842 	if (ipx->ipx_current_ipif == sipif) {
11843 		ASSERT(ipx->ipx_pending_ipif == NULL);
11844 		mutex_enter(&ipx->ipx_lock);
11845 		ipx->ipx_current_ipif = dipif;
11846 		mutex_exit(&ipx->ipx_lock);
11847 	}
11848 
11849 	if (virgipif == NULL)
11850 		mi_free(sipif);
11851 }
11852 
11853 /*
11854  * checks if:
11855  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11856  *	- logical interface is within the allowed range
11857  */
11858 static int
11859 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11860 {
11861 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11862 		return (ENAMETOOLONG);
11863 
11864 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11865 		return (ERANGE);
11866 	return (0);
11867 }
11868 
11869 /*
11870  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11871  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11872  * be inserted into the first space available in the list. The value of
11873  * ipif_id will then be set to the appropriate value for its position.
11874  */
11875 static int
11876 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11877 {
11878 	ill_t *ill;
11879 	ipif_t *tipif;
11880 	ipif_t **tipifp;
11881 	int id, err;
11882 	ip_stack_t	*ipst;
11883 
11884 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11885 	    IAM_WRITER_IPIF(ipif));
11886 
11887 	ill = ipif->ipif_ill;
11888 	ASSERT(ill != NULL);
11889 	ipst = ill->ill_ipst;
11890 
11891 	/*
11892 	 * In the case of lo0:0 we already hold the ill_g_lock.
11893 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11894 	 * ipif_insert.
11895 	 */
11896 	if (acquire_g_lock)
11897 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11898 	mutex_enter(&ill->ill_lock);
11899 	id = ipif->ipif_id;
11900 	tipifp = &(ill->ill_ipif);
11901 	if (id == -1) {	/* need to find a real id */
11902 		id = 0;
11903 		while ((tipif = *tipifp) != NULL) {
11904 			ASSERT(tipif->ipif_id >= id);
11905 			if (tipif->ipif_id != id)
11906 				break; /* non-consecutive id */
11907 			id++;
11908 			tipifp = &(tipif->ipif_next);
11909 		}
11910 		if ((err = is_lifname_valid(ill, id)) != 0) {
11911 			mutex_exit(&ill->ill_lock);
11912 			if (acquire_g_lock)
11913 				rw_exit(&ipst->ips_ill_g_lock);
11914 			return (err);
11915 		}
11916 		ipif->ipif_id = id; /* assign new id */
11917 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11918 		/* we have a real id; insert ipif in the right place */
11919 		while ((tipif = *tipifp) != NULL) {
11920 			ASSERT(tipif->ipif_id != id);
11921 			if (tipif->ipif_id > id)
11922 				break; /* found correct location */
11923 			tipifp = &(tipif->ipif_next);
11924 		}
11925 	} else {
11926 		mutex_exit(&ill->ill_lock);
11927 		if (acquire_g_lock)
11928 			rw_exit(&ipst->ips_ill_g_lock);
11929 		return (err);
11930 	}
11931 
11932 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11933 
11934 	ipif->ipif_next = tipif;
11935 	*tipifp = ipif;
11936 	mutex_exit(&ill->ill_lock);
11937 	if (acquire_g_lock)
11938 		rw_exit(&ipst->ips_ill_g_lock);
11939 
11940 	return (0);
11941 }
11942 
11943 static void
11944 ipif_remove(ipif_t *ipif)
11945 {
11946 	ipif_t	**ipifp;
11947 	ill_t	*ill = ipif->ipif_ill;
11948 
11949 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11950 
11951 	mutex_enter(&ill->ill_lock);
11952 	ipifp = &ill->ill_ipif;
11953 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11954 		if (*ipifp == ipif) {
11955 			*ipifp = ipif->ipif_next;
11956 			break;
11957 		}
11958 	}
11959 	mutex_exit(&ill->ill_lock);
11960 }
11961 
11962 /*
11963  * Allocate and initialize a new interface control structure.  (Always
11964  * called as writer.)
11965  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11966  * is not part of the global linked list of ills. ipif_seqid is unique
11967  * in the system and to preserve the uniqueness, it is assigned only
11968  * when ill becomes part of the global list. At that point ill will
11969  * have a name. If it doesn't get assigned here, it will get assigned
11970  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11971  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11972  * the interface flags or any other information from the DL_INFO_ACK for
11973  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11974  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11975  * second DL_INFO_ACK comes in from the driver.
11976  */
11977 static ipif_t *
11978 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11979     boolean_t insert, int *errorp)
11980 {
11981 	int err;
11982 	ipif_t	*ipif;
11983 	ip_stack_t *ipst = ill->ill_ipst;
11984 
11985 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11986 	    ill->ill_name, id, (void *)ill));
11987 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11988 
11989 	if (errorp != NULL)
11990 		*errorp = 0;
11991 
11992 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11993 		if (errorp != NULL)
11994 			*errorp = ENOMEM;
11995 		return (NULL);
11996 	}
11997 	*ipif = ipif_zero;	/* start clean */
11998 
11999 	ipif->ipif_ill = ill;
12000 	ipif->ipif_id = id;	/* could be -1 */
12001 	/*
12002 	 * Inherit the zoneid from the ill; for the shared stack instance
12003 	 * this is always the global zone
12004 	 */
12005 	ipif->ipif_zoneid = ill->ill_zoneid;
12006 
12007 	ipif->ipif_refcnt = 0;
12008 
12009 	if (insert) {
12010 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12011 			mi_free(ipif);
12012 			if (errorp != NULL)
12013 				*errorp = err;
12014 			return (NULL);
12015 		}
12016 		/* -1 id should have been replaced by real id */
12017 		id = ipif->ipif_id;
12018 		ASSERT(id >= 0);
12019 	}
12020 
12021 	if (ill->ill_name[0] != '\0')
12022 		ipif_assign_seqid(ipif);
12023 
12024 	/*
12025 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12026 	 * (which must not exist yet because the zeroth ipif is created once
12027 	 * per ill).  However, do not not link it to the ipmp_grp_t until
12028 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12029 	 */
12030 	if (id == 0 && IS_IPMP(ill)) {
12031 		if (ipmp_illgrp_create(ill) == NULL) {
12032 			if (insert) {
12033 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12034 				ipif_remove(ipif);
12035 				rw_exit(&ipst->ips_ill_g_lock);
12036 			}
12037 			mi_free(ipif);
12038 			if (errorp != NULL)
12039 				*errorp = ENOMEM;
12040 			return (NULL);
12041 		}
12042 	}
12043 
12044 	/*
12045 	 * We grab ill_lock to protect the flag changes.  The ipif is still
12046 	 * not up and can't be looked up until the ioctl completes and the
12047 	 * IPIF_CHANGING flag is cleared.
12048 	 */
12049 	mutex_enter(&ill->ill_lock);
12050 
12051 	ipif->ipif_ire_type = ire_type;
12052 
12053 	if (ipif->ipif_isv6) {
12054 		ill->ill_flags |= ILLF_IPV6;
12055 	} else {
12056 		ipaddr_t inaddr_any = INADDR_ANY;
12057 
12058 		ill->ill_flags |= ILLF_IPV4;
12059 
12060 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12061 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12062 		    &ipif->ipif_v6lcl_addr);
12063 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12064 		    &ipif->ipif_v6subnet);
12065 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12066 		    &ipif->ipif_v6net_mask);
12067 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12068 		    &ipif->ipif_v6brd_addr);
12069 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12070 		    &ipif->ipif_v6pp_dst_addr);
12071 	}
12072 
12073 	/*
12074 	 * Don't set the interface flags etc. now, will do it in
12075 	 * ip_ll_subnet_defaults.
12076 	 */
12077 	if (!initialize)
12078 		goto out;
12079 
12080 	/*
12081 	 * NOTE: The IPMP meta-interface is special-cased because it starts
12082 	 * with no underlying interfaces (and thus an unknown broadcast
12083 	 * address length), but all interfaces that can be placed into an IPMP
12084 	 * group are required to be broadcast-capable.
12085 	 */
12086 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12087 		/*
12088 		 * Later detect lack of DLPI driver multicast capability by
12089 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12090 		 */
12091 		ill->ill_flags |= ILLF_MULTICAST;
12092 		if (!ipif->ipif_isv6)
12093 			ipif->ipif_flags |= IPIF_BROADCAST;
12094 	} else {
12095 		if (ill->ill_net_type != IRE_LOOPBACK) {
12096 			if (ipif->ipif_isv6)
12097 				/*
12098 				 * Note: xresolv interfaces will eventually need
12099 				 * NOARP set here as well, but that will require
12100 				 * those external resolvers to have some
12101 				 * knowledge of that flag and act appropriately.
12102 				 * Not to be changed at present.
12103 				 */
12104 				ill->ill_flags |= ILLF_NONUD;
12105 			else
12106 				ill->ill_flags |= ILLF_NOARP;
12107 		}
12108 		if (ill->ill_phys_addr_length == 0) {
12109 			if (IS_VNI(ill)) {
12110 				ipif->ipif_flags |= IPIF_NOXMIT;
12111 			} else {
12112 				/* pt-pt supports multicast. */
12113 				ill->ill_flags |= ILLF_MULTICAST;
12114 				if (ill->ill_net_type != IRE_LOOPBACK)
12115 					ipif->ipif_flags |= IPIF_POINTOPOINT;
12116 			}
12117 		}
12118 	}
12119 out:
12120 	mutex_exit(&ill->ill_lock);
12121 	return (ipif);
12122 }
12123 
12124 /*
12125  * Remove the neighbor cache entries associated with this logical
12126  * interface.
12127  */
12128 int
12129 ipif_arp_down(ipif_t *ipif)
12130 {
12131 	ill_t	*ill = ipif->ipif_ill;
12132 	int	err = 0;
12133 
12134 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12135 	ASSERT(IAM_WRITER_IPIF(ipif));
12136 
12137 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12138 	    ill_t *, ill, ipif_t *, ipif);
12139 	ipif_nce_down(ipif);
12140 
12141 	/*
12142 	 * If this is the last ipif that is going down and there are no
12143 	 * duplicate addresses we may yet attempt to re-probe, then we need to
12144 	 * clean up ARP completely.
12145 	 */
12146 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12147 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12148 		/*
12149 		 * If this was the last ipif on an IPMP interface, purge any
12150 		 * static ARP entries associated with it.
12151 		 */
12152 		if (IS_IPMP(ill))
12153 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
12154 
12155 		/* UNBIND, DETACH */
12156 		err = arp_ll_down(ill);
12157 	}
12158 
12159 	return (err);
12160 }
12161 
12162 /*
12163  * Get the resolver set up for a new IP address.  (Always called as writer.)
12164  * Called both for IPv4 and IPv6 interfaces, though it only does some
12165  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12166  *
12167  * The enumerated value res_act tunes the behavior:
12168  * 	* Res_act_initial: set up all the resolver structures for a new
12169  *	  IP address.
12170  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
12171  *	  ARP message in defense of the address.
12172  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
12173  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
12174  *
12175  * Returns zero on success, or an errno upon failure.
12176  */
12177 int
12178 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12179 {
12180 	ill_t		*ill = ipif->ipif_ill;
12181 	int		err;
12182 	boolean_t	was_dup;
12183 
12184 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12185 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12186 	ASSERT(IAM_WRITER_IPIF(ipif));
12187 
12188 	was_dup = B_FALSE;
12189 	if (res_act == Res_act_initial) {
12190 		ipif->ipif_addr_ready = 0;
12191 		/*
12192 		 * We're bringing an interface up here.  There's no way that we
12193 		 * should need to shut down ARP now.
12194 		 */
12195 		mutex_enter(&ill->ill_lock);
12196 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
12197 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
12198 			ill->ill_ipif_dup_count--;
12199 			was_dup = B_TRUE;
12200 		}
12201 		mutex_exit(&ill->ill_lock);
12202 	}
12203 	if (ipif->ipif_recovery_id != 0)
12204 		(void) untimeout(ipif->ipif_recovery_id);
12205 	ipif->ipif_recovery_id = 0;
12206 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
12207 		ipif->ipif_addr_ready = 1;
12208 		return (0);
12209 	}
12210 	/* NDP will set the ipif_addr_ready flag when it's ready */
12211 	if (ill->ill_isv6)
12212 		return (0);
12213 
12214 	err = ipif_arp_up(ipif, res_act, was_dup);
12215 	return (err);
12216 }
12217 
12218 /*
12219  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12220  * when a link has just gone back up.
12221  */
12222 static void
12223 ipif_nce_start_dad(ipif_t *ipif)
12224 {
12225 	ncec_t *ncec;
12226 	ill_t *ill = ipif->ipif_ill;
12227 	boolean_t isv6 = ill->ill_isv6;
12228 
12229 	if (isv6) {
12230 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12231 		    &ipif->ipif_v6lcl_addr);
12232 	} else {
12233 		ipaddr_t v4addr;
12234 
12235 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
12236 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12237 		    ipif->ipif_lcl_addr == INADDR_ANY) {
12238 			/*
12239 			 * If we can't contact ARP for some reason,
12240 			 * that's not really a problem.  Just send
12241 			 * out the routing socket notification that
12242 			 * DAD completion would have done, and continue.
12243 			 */
12244 			ipif_mask_reply(ipif);
12245 			ipif_up_notify(ipif);
12246 			ipif->ipif_addr_ready = 1;
12247 			return;
12248 		}
12249 
12250 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12251 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12252 	}
12253 
12254 	if (ncec == NULL) {
12255 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12256 		    (void *)ipif));
12257 		return;
12258 	}
12259 	if (!nce_restart_dad(ncec)) {
12260 		/*
12261 		 * If we can't restart DAD for some reason, that's not really a
12262 		 * problem.  Just send out the routing socket notification that
12263 		 * DAD completion would have done, and continue.
12264 		 */
12265 		ipif_up_notify(ipif);
12266 		ipif->ipif_addr_ready = 1;
12267 	}
12268 	ncec_refrele(ncec);
12269 }
12270 
12271 /*
12272  * Restart duplicate address detection on all interfaces on the given ill.
12273  *
12274  * This is called when an interface transitions from down to up
12275  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12276  *
12277  * Note that since the underlying physical link has transitioned, we must cause
12278  * at least one routing socket message to be sent here, either via DAD
12279  * completion or just by default on the first ipif.  (If we don't do this, then
12280  * in.mpathd will see long delays when doing link-based failure recovery.)
12281  */
12282 void
12283 ill_restart_dad(ill_t *ill, boolean_t went_up)
12284 {
12285 	ipif_t *ipif;
12286 
12287 	if (ill == NULL)
12288 		return;
12289 
12290 	/*
12291 	 * If layer two doesn't support duplicate address detection, then just
12292 	 * send the routing socket message now and be done with it.
12293 	 */
12294 	if (!ill->ill_isv6 && arp_no_defense) {
12295 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12296 		return;
12297 	}
12298 
12299 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12300 		if (went_up) {
12301 
12302 			if (ipif->ipif_flags & IPIF_UP) {
12303 				ipif_nce_start_dad(ipif);
12304 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12305 				/*
12306 				 * kick off the bring-up process now.
12307 				 */
12308 				ipif_do_recovery(ipif);
12309 			} else {
12310 				/*
12311 				 * Unfortunately, the first ipif is "special"
12312 				 * and represents the underlying ill in the
12313 				 * routing socket messages.  Thus, when this
12314 				 * one ipif is down, we must still notify so
12315 				 * that the user knows the IFF_RUNNING status
12316 				 * change.  (If the first ipif is up, then
12317 				 * we'll handle eventual routing socket
12318 				 * notification via DAD completion.)
12319 				 */
12320 				if (ipif == ill->ill_ipif) {
12321 					ip_rts_ifmsg(ill->ill_ipif,
12322 					    RTSQ_DEFAULT);
12323 				}
12324 			}
12325 		} else {
12326 			/*
12327 			 * After link down, we'll need to send a new routing
12328 			 * message when the link comes back, so clear
12329 			 * ipif_addr_ready.
12330 			 */
12331 			ipif->ipif_addr_ready = 0;
12332 		}
12333 	}
12334 
12335 	/*
12336 	 * If we've torn down links, then notify the user right away.
12337 	 */
12338 	if (!went_up)
12339 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12340 }
12341 
12342 static void
12343 ipsq_delete(ipsq_t *ipsq)
12344 {
12345 	ipxop_t *ipx = ipsq->ipsq_xop;
12346 
12347 	ipsq->ipsq_ipst = NULL;
12348 	ASSERT(ipsq->ipsq_phyint == NULL);
12349 	ASSERT(ipsq->ipsq_xop != NULL);
12350 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12351 	ASSERT(ipx->ipx_pending_mp == NULL);
12352 	kmem_free(ipsq, sizeof (ipsq_t));
12353 }
12354 
12355 static int
12356 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12357 {
12358 	int err = 0;
12359 	ipif_t *ipif;
12360 
12361 	if (ill == NULL)
12362 		return (0);
12363 
12364 	ASSERT(IAM_WRITER_ILL(ill));
12365 	ill->ill_up_ipifs = B_TRUE;
12366 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12367 		if (ipif->ipif_was_up) {
12368 			if (!(ipif->ipif_flags & IPIF_UP))
12369 				err = ipif_up(ipif, q, mp);
12370 			ipif->ipif_was_up = B_FALSE;
12371 			if (err != 0) {
12372 				ASSERT(err == EINPROGRESS);
12373 				return (err);
12374 			}
12375 		}
12376 	}
12377 	ill->ill_up_ipifs = B_FALSE;
12378 	return (0);
12379 }
12380 
12381 /*
12382  * This function is called to bring up all the ipifs that were up before
12383  * bringing the ill down via ill_down_ipifs().
12384  */
12385 int
12386 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12387 {
12388 	int err;
12389 
12390 	ASSERT(IAM_WRITER_ILL(ill));
12391 
12392 	if (ill->ill_replumbing) {
12393 		ill->ill_replumbing = 0;
12394 		/*
12395 		 * Send down REPLUMB_DONE notification followed by the
12396 		 * BIND_REQ on the arp stream.
12397 		 */
12398 		if (!ill->ill_isv6)
12399 			arp_send_replumb_conf(ill);
12400 	}
12401 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12402 	if (err != 0)
12403 		return (err);
12404 
12405 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12406 }
12407 
12408 /*
12409  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12410  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12411  */
12412 static void
12413 ill_down_ipifs(ill_t *ill, boolean_t logical)
12414 {
12415 	ipif_t *ipif;
12416 
12417 	ASSERT(IAM_WRITER_ILL(ill));
12418 
12419 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12420 		/*
12421 		 * We go through the ipif_down logic even if the ipif
12422 		 * is already down, since routes can be added based
12423 		 * on down ipifs. Going through ipif_down once again
12424 		 * will delete any IREs created based on these routes.
12425 		 */
12426 		if (ipif->ipif_flags & IPIF_UP)
12427 			ipif->ipif_was_up = B_TRUE;
12428 
12429 		if (logical) {
12430 			(void) ipif_logical_down(ipif, NULL, NULL);
12431 			ipif_non_duplicate(ipif);
12432 			(void) ipif_down_tail(ipif);
12433 		} else {
12434 			(void) ipif_down(ipif, NULL, NULL);
12435 		}
12436 	}
12437 }
12438 
12439 /*
12440  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12441  * a look again at valid source addresses.
12442  * This should be called each time after the set of source addresses has been
12443  * changed.
12444  */
12445 void
12446 ip_update_source_selection(ip_stack_t *ipst)
12447 {
12448 	/* We skip past SRC_GENERATION_VERIFY */
12449 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12450 	    SRC_GENERATION_VERIFY)
12451 		atomic_add_32(&ipst->ips_src_generation, 1);
12452 }
12453 
12454 /*
12455  * Finish the group join started in ip_sioctl_groupname().
12456  */
12457 /* ARGSUSED */
12458 static void
12459 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12460 {
12461 	ill_t		*ill = q->q_ptr;
12462 	phyint_t	*phyi = ill->ill_phyint;
12463 	ipmp_grp_t	*grp = phyi->phyint_grp;
12464 	ip_stack_t	*ipst = ill->ill_ipst;
12465 
12466 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12467 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12468 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12469 
12470 	if (phyi->phyint_illv4 != NULL) {
12471 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12472 		VERIFY(grp->gr_pendv4-- > 0);
12473 		rw_exit(&ipst->ips_ipmp_lock);
12474 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12475 	}
12476 	if (phyi->phyint_illv6 != NULL) {
12477 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12478 		VERIFY(grp->gr_pendv6-- > 0);
12479 		rw_exit(&ipst->ips_ipmp_lock);
12480 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12481 	}
12482 	freemsg(mp);
12483 }
12484 
12485 /*
12486  * Process an SIOCSLIFGROUPNAME request.
12487  */
12488 /* ARGSUSED */
12489 int
12490 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12491     ip_ioctl_cmd_t *ipip, void *ifreq)
12492 {
12493 	struct lifreq	*lifr = ifreq;
12494 	ill_t		*ill = ipif->ipif_ill;
12495 	ip_stack_t	*ipst = ill->ill_ipst;
12496 	phyint_t	*phyi = ill->ill_phyint;
12497 	ipmp_grp_t	*grp = phyi->phyint_grp;
12498 	mblk_t		*ipsq_mp;
12499 	int		err = 0;
12500 
12501 	/*
12502 	 * Note that phyint_grp can only change here, where we're exclusive.
12503 	 */
12504 	ASSERT(IAM_WRITER_ILL(ill));
12505 
12506 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12507 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12508 		return (EINVAL);
12509 
12510 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12511 
12512 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12513 
12514 	/*
12515 	 * If the name hasn't changed, there's nothing to do.
12516 	 */
12517 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12518 		goto unlock;
12519 
12520 	/*
12521 	 * Handle requests to rename an IPMP meta-interface.
12522 	 *
12523 	 * Note that creation of the IPMP meta-interface is handled in
12524 	 * userland through the standard plumbing sequence.  As part of the
12525 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12526 	 * the name of the interface (see ipif_set_values_tail()).
12527 	 */
12528 	if (IS_IPMP(ill)) {
12529 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12530 		goto unlock;
12531 	}
12532 
12533 	/*
12534 	 * Handle requests to add or remove an IP interface from a group.
12535 	 */
12536 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12537 		/*
12538 		 * Moves are handled by first removing the interface from
12539 		 * its existing group, and then adding it to another group.
12540 		 * So, fail if it's already in a group.
12541 		 */
12542 		if (IS_UNDER_IPMP(ill)) {
12543 			err = EALREADY;
12544 			goto unlock;
12545 		}
12546 
12547 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12548 		if (grp == NULL) {
12549 			err = ENOENT;
12550 			goto unlock;
12551 		}
12552 
12553 		/*
12554 		 * Check if the phyint and its ills are suitable for
12555 		 * inclusion into the group.
12556 		 */
12557 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12558 			goto unlock;
12559 
12560 		/*
12561 		 * Checks pass; join the group, and enqueue the remaining
12562 		 * illgrp joins for when we've become part of the group xop
12563 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12564 		 * requires an mblk_t to scribble on, and since `mp' will be
12565 		 * freed as part of completing the ioctl, allocate another.
12566 		 */
12567 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12568 			err = ENOMEM;
12569 			goto unlock;
12570 		}
12571 
12572 		/*
12573 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12574 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12575 		 * before ip_join_illgrps() is called back.  See the comments
12576 		 * in ip_sioctl_plink_ipmp() for more.
12577 		 */
12578 		if (phyi->phyint_illv4 != NULL)
12579 			grp->gr_pendv4++;
12580 		if (phyi->phyint_illv6 != NULL)
12581 			grp->gr_pendv6++;
12582 
12583 		rw_exit(&ipst->ips_ipmp_lock);
12584 
12585 		ipmp_phyint_join_grp(phyi, grp);
12586 		ill_refhold(ill);
12587 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12588 		    SWITCH_OP, B_FALSE);
12589 		return (0);
12590 	} else {
12591 		/*
12592 		 * Request to remove the interface from a group.  If the
12593 		 * interface is not in a group, this trivially succeeds.
12594 		 */
12595 		rw_exit(&ipst->ips_ipmp_lock);
12596 		if (IS_UNDER_IPMP(ill))
12597 			ipmp_phyint_leave_grp(phyi);
12598 		return (0);
12599 	}
12600 unlock:
12601 	rw_exit(&ipst->ips_ipmp_lock);
12602 	return (err);
12603 }
12604 
12605 /*
12606  * Process an SIOCGLIFBINDING request.
12607  */
12608 /* ARGSUSED */
12609 int
12610 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12611     ip_ioctl_cmd_t *ipip, void *ifreq)
12612 {
12613 	ill_t		*ill;
12614 	struct lifreq	*lifr = ifreq;
12615 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12616 
12617 	if (!IS_IPMP(ipif->ipif_ill))
12618 		return (EINVAL);
12619 
12620 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12621 	if ((ill = ipif->ipif_bound_ill) == NULL)
12622 		lifr->lifr_binding[0] = '\0';
12623 	else
12624 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12625 	rw_exit(&ipst->ips_ipmp_lock);
12626 	return (0);
12627 }
12628 
12629 /*
12630  * Process an SIOCGLIFGROUPNAME request.
12631  */
12632 /* ARGSUSED */
12633 int
12634 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12635     ip_ioctl_cmd_t *ipip, void *ifreq)
12636 {
12637 	ipmp_grp_t	*grp;
12638 	struct lifreq	*lifr = ifreq;
12639 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12640 
12641 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12642 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12643 		lifr->lifr_groupname[0] = '\0';
12644 	else
12645 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12646 	rw_exit(&ipst->ips_ipmp_lock);
12647 	return (0);
12648 }
12649 
12650 /*
12651  * Process an SIOCGLIFGROUPINFO request.
12652  */
12653 /* ARGSUSED */
12654 int
12655 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12656     ip_ioctl_cmd_t *ipip, void *dummy)
12657 {
12658 	ipmp_grp_t	*grp;
12659 	lifgroupinfo_t	*lifgr;
12660 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12661 
12662 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12663 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12664 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12665 
12666 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12667 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12668 		rw_exit(&ipst->ips_ipmp_lock);
12669 		return (ENOENT);
12670 	}
12671 	ipmp_grp_info(grp, lifgr);
12672 	rw_exit(&ipst->ips_ipmp_lock);
12673 	return (0);
12674 }
12675 
12676 static void
12677 ill_dl_down(ill_t *ill)
12678 {
12679 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12680 
12681 	/*
12682 	 * The ill is down; unbind but stay attached since we're still
12683 	 * associated with a PPA. If we have negotiated DLPI capabilites
12684 	 * with the data link service provider (IDS_OK) then reset them.
12685 	 * The interval between unbinding and rebinding is potentially
12686 	 * unbounded hence we cannot assume things will be the same.
12687 	 * The DLPI capabilities will be probed again when the data link
12688 	 * is brought up.
12689 	 */
12690 	mblk_t	*mp = ill->ill_unbind_mp;
12691 
12692 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12693 
12694 	if (!ill->ill_replumbing) {
12695 		/* Free all ilms for this ill */
12696 		update_conn_ill(ill, ill->ill_ipst);
12697 	} else {
12698 		ill_leave_multicast(ill);
12699 	}
12700 
12701 	ill->ill_unbind_mp = NULL;
12702 	if (mp != NULL) {
12703 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12704 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12705 		    ill->ill_name));
12706 		mutex_enter(&ill->ill_lock);
12707 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12708 		mutex_exit(&ill->ill_lock);
12709 		/*
12710 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12711 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12712 		 * ill_capability_dld_disable disable rightaway. If this is not
12713 		 * an unplumb operation then the disable happens on receipt of
12714 		 * the capab ack via ip_rput_dlpi_writer ->
12715 		 * ill_capability_ack_thr. In both cases the order of
12716 		 * the operations seen by DLD is capability disable followed
12717 		 * by DL_UNBIND. Also the DLD capability disable needs a
12718 		 * cv_wait'able context.
12719 		 */
12720 		if (ill->ill_state_flags & ILL_CONDEMNED)
12721 			ill_capability_dld_disable(ill);
12722 		ill_capability_reset(ill, B_FALSE);
12723 		ill_dlpi_send(ill, mp);
12724 	}
12725 	mutex_enter(&ill->ill_lock);
12726 	ill->ill_dl_up = 0;
12727 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12728 	mutex_exit(&ill->ill_lock);
12729 }
12730 
12731 void
12732 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12733 {
12734 	union DL_primitives *dlp;
12735 	t_uscalar_t prim;
12736 	boolean_t waitack = B_FALSE;
12737 
12738 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12739 
12740 	dlp = (union DL_primitives *)mp->b_rptr;
12741 	prim = dlp->dl_primitive;
12742 
12743 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12744 	    dl_primstr(prim), prim, ill->ill_name));
12745 
12746 	switch (prim) {
12747 	case DL_PHYS_ADDR_REQ:
12748 	{
12749 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12750 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12751 		break;
12752 	}
12753 	case DL_BIND_REQ:
12754 		mutex_enter(&ill->ill_lock);
12755 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12756 		mutex_exit(&ill->ill_lock);
12757 		break;
12758 	}
12759 
12760 	/*
12761 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12762 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12763 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12764 	 */
12765 	mutex_enter(&ill->ill_lock);
12766 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12767 	    (prim == DL_UNBIND_REQ)) {
12768 		ill->ill_dlpi_pending = prim;
12769 		waitack = B_TRUE;
12770 	}
12771 
12772 	mutex_exit(&ill->ill_lock);
12773 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12774 	    char *, dl_primstr(prim), ill_t *, ill);
12775 	putnext(ill->ill_wq, mp);
12776 
12777 	/*
12778 	 * There is no ack for DL_NOTIFY_CONF messages
12779 	 */
12780 	if (waitack && prim == DL_NOTIFY_CONF)
12781 		ill_dlpi_done(ill, prim);
12782 }
12783 
12784 /*
12785  * Helper function for ill_dlpi_send().
12786  */
12787 /* ARGSUSED */
12788 static void
12789 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12790 {
12791 	ill_dlpi_send(q->q_ptr, mp);
12792 }
12793 
12794 /*
12795  * Send a DLPI control message to the driver but make sure there
12796  * is only one outstanding message. Uses ill_dlpi_pending to tell
12797  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12798  * when an ACK or a NAK is received to process the next queued message.
12799  */
12800 void
12801 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12802 {
12803 	mblk_t **mpp;
12804 
12805 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12806 
12807 	/*
12808 	 * To ensure that any DLPI requests for current exclusive operation
12809 	 * are always completely sent before any DLPI messages for other
12810 	 * operations, require writer access before enqueuing.
12811 	 */
12812 	if (!IAM_WRITER_ILL(ill)) {
12813 		ill_refhold(ill);
12814 		/* qwriter_ip() does the ill_refrele() */
12815 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12816 		    NEW_OP, B_TRUE);
12817 		return;
12818 	}
12819 
12820 	mutex_enter(&ill->ill_lock);
12821 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12822 		/* Must queue message. Tail insertion */
12823 		mpp = &ill->ill_dlpi_deferred;
12824 		while (*mpp != NULL)
12825 			mpp = &((*mpp)->b_next);
12826 
12827 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12828 		    "while %s pending\n", ill->ill_name,
12829 		    dl_primstr(ill->ill_dlpi_pending)));
12830 
12831 		*mpp = mp;
12832 		mutex_exit(&ill->ill_lock);
12833 		return;
12834 	}
12835 	mutex_exit(&ill->ill_lock);
12836 	ill_dlpi_dispatch(ill, mp);
12837 }
12838 
12839 void
12840 ill_capability_send(ill_t *ill, mblk_t *mp)
12841 {
12842 	ill->ill_capab_pending_cnt++;
12843 	ill_dlpi_send(ill, mp);
12844 }
12845 
12846 void
12847 ill_capability_done(ill_t *ill)
12848 {
12849 	ASSERT(ill->ill_capab_pending_cnt != 0);
12850 
12851 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12852 
12853 	ill->ill_capab_pending_cnt--;
12854 	if (ill->ill_capab_pending_cnt == 0 &&
12855 	    ill->ill_dlpi_capab_state == IDCS_OK)
12856 		ill_capability_reset_alloc(ill);
12857 }
12858 
12859 /*
12860  * Send all deferred DLPI messages without waiting for their ACKs.
12861  */
12862 void
12863 ill_dlpi_send_deferred(ill_t *ill)
12864 {
12865 	mblk_t *mp, *nextmp;
12866 
12867 	/*
12868 	 * Clear ill_dlpi_pending so that the message is not queued in
12869 	 * ill_dlpi_send().
12870 	 */
12871 	mutex_enter(&ill->ill_lock);
12872 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12873 	mp = ill->ill_dlpi_deferred;
12874 	ill->ill_dlpi_deferred = NULL;
12875 	mutex_exit(&ill->ill_lock);
12876 
12877 	for (; mp != NULL; mp = nextmp) {
12878 		nextmp = mp->b_next;
12879 		mp->b_next = NULL;
12880 		ill_dlpi_send(ill, mp);
12881 	}
12882 }
12883 
12884 /*
12885  * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12886  * or M_HANGUP
12887  */
12888 static void
12889 ill_dlpi_clear_deferred(ill_t *ill)
12890 {
12891 	mblk_t	*mp, *nextmp;
12892 
12893 	mutex_enter(&ill->ill_lock);
12894 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12895 	mp = ill->ill_dlpi_deferred;
12896 	ill->ill_dlpi_deferred = NULL;
12897 	mutex_exit(&ill->ill_lock);
12898 
12899 	for (; mp != NULL; mp = nextmp) {
12900 		nextmp = mp->b_next;
12901 		inet_freemsg(mp);
12902 	}
12903 }
12904 
12905 /*
12906  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12907  */
12908 boolean_t
12909 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12910 {
12911 	t_uscalar_t pending;
12912 
12913 	mutex_enter(&ill->ill_lock);
12914 	if (ill->ill_dlpi_pending == prim) {
12915 		mutex_exit(&ill->ill_lock);
12916 		return (B_TRUE);
12917 	}
12918 
12919 	/*
12920 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12921 	 * without waiting, so don't print any warnings in that case.
12922 	 */
12923 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12924 		mutex_exit(&ill->ill_lock);
12925 		return (B_FALSE);
12926 	}
12927 	pending = ill->ill_dlpi_pending;
12928 	mutex_exit(&ill->ill_lock);
12929 
12930 	if (pending == DL_PRIM_INVAL) {
12931 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12932 		    "received unsolicited ack for %s on %s\n",
12933 		    dl_primstr(prim), ill->ill_name);
12934 	} else {
12935 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12936 		    "received unexpected ack for %s on %s (expecting %s)\n",
12937 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12938 	}
12939 	return (B_FALSE);
12940 }
12941 
12942 /*
12943  * Complete the current DLPI operation associated with `prim' on `ill' and
12944  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12945  * operations and the ill's current exclusive IPSQ operation has finished
12946  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12947  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12948  * the comments above ipsq_current_finish() for details.
12949  */
12950 void
12951 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12952 {
12953 	mblk_t *mp;
12954 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12955 	ipxop_t *ipx = ipsq->ipsq_xop;
12956 
12957 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12958 	mutex_enter(&ill->ill_lock);
12959 
12960 	ASSERT(prim != DL_PRIM_INVAL);
12961 	ASSERT(ill->ill_dlpi_pending == prim);
12962 
12963 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12964 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12965 
12966 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12967 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12968 		if (ipx->ipx_current_done) {
12969 			mutex_enter(&ipx->ipx_lock);
12970 			ipx->ipx_current_ipif = NULL;
12971 			mutex_exit(&ipx->ipx_lock);
12972 		}
12973 		cv_signal(&ill->ill_cv);
12974 		mutex_exit(&ill->ill_lock);
12975 		return;
12976 	}
12977 
12978 	ill->ill_dlpi_deferred = mp->b_next;
12979 	mp->b_next = NULL;
12980 	mutex_exit(&ill->ill_lock);
12981 
12982 	ill_dlpi_dispatch(ill, mp);
12983 }
12984 
12985 /*
12986  * Queue a (multicast) DLPI control message to be sent to the driver by
12987  * later calling ill_dlpi_send_queued.
12988  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12989  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12990  * for the same group to race.
12991  * We send DLPI control messages in order using ill_lock.
12992  * For IPMP we should be called on the cast_ill.
12993  */
12994 void
12995 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12996 {
12997 	mblk_t **mpp;
12998 
12999 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13000 
13001 	mutex_enter(&ill->ill_lock);
13002 	/* Must queue message. Tail insertion */
13003 	mpp = &ill->ill_dlpi_deferred;
13004 	while (*mpp != NULL)
13005 		mpp = &((*mpp)->b_next);
13006 
13007 	*mpp = mp;
13008 	mutex_exit(&ill->ill_lock);
13009 }
13010 
13011 /*
13012  * Send the messages that were queued. Make sure there is only
13013  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13014  * when an ACK or a NAK is received to process the next queued message.
13015  * For IPMP we are called on the upper ill, but when send what is queued
13016  * on the cast_ill.
13017  */
13018 void
13019 ill_dlpi_send_queued(ill_t *ill)
13020 {
13021 	mblk_t	*mp;
13022 	union DL_primitives *dlp;
13023 	t_uscalar_t prim;
13024 	ill_t *release_ill = NULL;
13025 
13026 	if (IS_IPMP(ill)) {
13027 		/* On the upper IPMP ill. */
13028 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13029 		if (release_ill == NULL) {
13030 			/* Avoid ever sending anything down to the ipmpstub */
13031 			return;
13032 		}
13033 		ill = release_ill;
13034 	}
13035 	mutex_enter(&ill->ill_lock);
13036 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
13037 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13038 			/* Can't send. Somebody else will send it */
13039 			mutex_exit(&ill->ill_lock);
13040 			goto done;
13041 		}
13042 		ill->ill_dlpi_deferred = mp->b_next;
13043 		mp->b_next = NULL;
13044 		if (!ill->ill_dl_up) {
13045 			/*
13046 			 * Nobody there. All multicast addresses will be
13047 			 * re-joined when we get the DL_BIND_ACK bringing the
13048 			 * interface up.
13049 			 */
13050 			freemsg(mp);
13051 			continue;
13052 		}
13053 		dlp = (union DL_primitives *)mp->b_rptr;
13054 		prim = dlp->dl_primitive;
13055 
13056 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13057 		    (prim == DL_UNBIND_REQ)) {
13058 			ill->ill_dlpi_pending = prim;
13059 		}
13060 		mutex_exit(&ill->ill_lock);
13061 
13062 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13063 		    char *, dl_primstr(prim), ill_t *, ill);
13064 		putnext(ill->ill_wq, mp);
13065 		mutex_enter(&ill->ill_lock);
13066 	}
13067 	mutex_exit(&ill->ill_lock);
13068 done:
13069 	if (release_ill != NULL)
13070 		ill_refrele(release_ill);
13071 }
13072 
13073 /*
13074  * Queue an IP (IGMP/MLD) message to be sent by IP from
13075  * ill_mcast_send_queued
13076  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13077  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13078  * group to race.
13079  * We send them in order using ill_lock.
13080  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13081  */
13082 void
13083 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13084 {
13085 	mblk_t **mpp;
13086 	ill_t *release_ill = NULL;
13087 
13088 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13089 
13090 	if (IS_IPMP(ill)) {
13091 		/* On the upper IPMP ill. */
13092 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13093 		if (release_ill == NULL) {
13094 			/* Discard instead of queuing for the ipmp interface */
13095 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13096 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13097 			    mp, ill);
13098 			freemsg(mp);
13099 			return;
13100 		}
13101 		ill = release_ill;
13102 	}
13103 
13104 	mutex_enter(&ill->ill_lock);
13105 	/* Must queue message. Tail insertion */
13106 	mpp = &ill->ill_mcast_deferred;
13107 	while (*mpp != NULL)
13108 		mpp = &((*mpp)->b_next);
13109 
13110 	*mpp = mp;
13111 	mutex_exit(&ill->ill_lock);
13112 	if (release_ill != NULL)
13113 		ill_refrele(release_ill);
13114 }
13115 
13116 /*
13117  * Send the IP packets that were queued by ill_mcast_queue.
13118  * These are IGMP/MLD packets.
13119  *
13120  * For IPMP we are called on the upper ill, but when send what is queued
13121  * on the cast_ill.
13122  *
13123  * Request loopback of the report if we are acting as a multicast
13124  * router, so that the process-level routing demon can hear it.
13125  * This will run multiple times for the same group if there are members
13126  * on the same group for multiple ipif's on the same ill. The
13127  * igmp_input/mld_input code will suppress this due to the loopback thus we
13128  * always loopback membership report.
13129  *
13130  * We also need to make sure that this does not get load balanced
13131  * by IPMP. We do this by passing an ill to ip_output_simple.
13132  */
13133 void
13134 ill_mcast_send_queued(ill_t *ill)
13135 {
13136 	mblk_t	*mp;
13137 	ip_xmit_attr_t ixas;
13138 	ill_t *release_ill = NULL;
13139 
13140 	if (IS_IPMP(ill)) {
13141 		/* On the upper IPMP ill. */
13142 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13143 		if (release_ill == NULL) {
13144 			/*
13145 			 * We should have no messages on the ipmp interface
13146 			 * but no point in trying to send them.
13147 			 */
13148 			return;
13149 		}
13150 		ill = release_ill;
13151 	}
13152 	bzero(&ixas, sizeof (ixas));
13153 	ixas.ixa_zoneid = ALL_ZONES;
13154 	ixas.ixa_cred = kcred;
13155 	ixas.ixa_cpid = NOPID;
13156 	ixas.ixa_tsl = NULL;
13157 	/*
13158 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13159 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13160 	 * That is necessary to handle IGMP/MLD snooping switches.
13161 	 */
13162 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13163 	ixas.ixa_ipst = ill->ill_ipst;
13164 
13165 	mutex_enter(&ill->ill_lock);
13166 	while ((mp = ill->ill_mcast_deferred) != NULL) {
13167 		ill->ill_mcast_deferred = mp->b_next;
13168 		mp->b_next = NULL;
13169 		if (!ill->ill_dl_up) {
13170 			/*
13171 			 * Nobody there. Just drop the ip packets.
13172 			 * IGMP/MLD will resend later, if this is a replumb.
13173 			 */
13174 			freemsg(mp);
13175 			continue;
13176 		}
13177 		mutex_enter(&ill->ill_phyint->phyint_lock);
13178 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13179 			/*
13180 			 * When the ill is getting deactivated, we only want to
13181 			 * send the DLPI messages, so drop IGMP/MLD packets.
13182 			 * DLPI messages are handled by ill_dlpi_send_queued()
13183 			 */
13184 			mutex_exit(&ill->ill_phyint->phyint_lock);
13185 			freemsg(mp);
13186 			continue;
13187 		}
13188 		mutex_exit(&ill->ill_phyint->phyint_lock);
13189 		mutex_exit(&ill->ill_lock);
13190 
13191 		/* Check whether we are sending IPv4 or IPv6. */
13192 		if (ill->ill_isv6) {
13193 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
13194 
13195 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13196 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13197 		} else {
13198 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
13199 
13200 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13201 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13202 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13203 		}
13204 		ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13205 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13206 		(void) ip_output_simple(mp, &ixas);
13207 		ixa_cleanup(&ixas);
13208 
13209 		mutex_enter(&ill->ill_lock);
13210 	}
13211 	mutex_exit(&ill->ill_lock);
13212 
13213 done:
13214 	if (release_ill != NULL)
13215 		ill_refrele(release_ill);
13216 }
13217 
13218 /*
13219  * Take down a specific interface, but don't lose any information about it.
13220  * (Always called as writer.)
13221  * This function goes through the down sequence even if the interface is
13222  * already down. There are 2 reasons.
13223  * a. Currently we permit interface routes that depend on down interfaces
13224  *    to be added. This behaviour itself is questionable. However it appears
13225  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13226  *    time. We go thru the cleanup in order to remove these routes.
13227  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13228  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
13229  *    down, but we need to cleanup i.e. do ill_dl_down and
13230  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13231  *
13232  * IP-MT notes:
13233  *
13234  * Model of reference to interfaces.
13235  *
13236  * The following members in ipif_t track references to the ipif.
13237  *	int     ipif_refcnt;    Active reference count
13238  *
13239  * The following members in ill_t track references to the ill.
13240  *	int             ill_refcnt;     active refcnt
13241  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
13242  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
13243  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
13244  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
13245  *
13246  * Reference to an ipif or ill can be obtained in any of the following ways.
13247  *
13248  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13249  * Pointers to ipif / ill from other data structures viz ire and conn.
13250  * Implicit reference to the ipif / ill by holding a reference to the ire.
13251  *
13252  * The ipif/ill lookup functions return a reference held ipif / ill.
13253  * ipif_refcnt and ill_refcnt track the reference counts respectively.
13254  * This is a purely dynamic reference count associated with threads holding
13255  * references to the ipif / ill. Pointers from other structures do not
13256  * count towards this reference count.
13257  *
13258  * ill_ire_cnt is the number of ire's associated with the
13259  * ill. This is incremented whenever a new ire is created referencing the
13260  * ill. This is done atomically inside ire_add_v[46] where the ire is
13261  * actually added to the ire hash table. The count is decremented in
13262  * ire_inactive where the ire is destroyed.
13263  *
13264  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13265  * This is incremented atomically in
13266  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13267  * table. Similarly it is decremented in ncec_inactive() where the ncec
13268  * is destroyed.
13269  *
13270  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13271  * incremented atomically in nce_add() where the nce is actually added to the
13272  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13273  * is destroyed.
13274  *
13275  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13276  * ilm_add() and decremented before the ilm is freed in ilm_delete().
13277  *
13278  * Flow of ioctls involving interface down/up
13279  *
13280  * The following is the sequence of an attempt to set some critical flags on an
13281  * up interface.
13282  * ip_sioctl_flags
13283  * ipif_down
13284  * wait for ipif to be quiescent
13285  * ipif_down_tail
13286  * ip_sioctl_flags_tail
13287  *
13288  * All set ioctls that involve down/up sequence would have a skeleton similar
13289  * to the above. All the *tail functions are called after the refcounts have
13290  * dropped to the appropriate values.
13291  *
13292  * SIOC ioctls during the IPIF_CHANGING interval.
13293  *
13294  * Threads handling SIOC set ioctls serialize on the squeue, but this
13295  * is not done for SIOC get ioctls. Since a set ioctl can cause several
13296  * steps of internal changes to the state, some of which are visible in
13297  * ipif_flags (such as IFF_UP being cleared and later set), and we want
13298  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13299  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13300  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13301  * the current exclusive operation completes. The IPIF_CHANGING check
13302  * and enqueue is atomic using the ill_lock and ipsq_lock. The
13303  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13304  * change while the ill_lock is held. Before dropping the ill_lock we acquire
13305  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13306  * until we release the ipsq_lock, even though the ill/ipif state flags
13307  * can change after we drop the ill_lock.
13308  */
13309 int
13310 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13311 {
13312 	ill_t		*ill = ipif->ipif_ill;
13313 	conn_t		*connp;
13314 	boolean_t	success;
13315 	boolean_t	ipif_was_up = B_FALSE;
13316 	ip_stack_t	*ipst = ill->ill_ipst;
13317 
13318 	ASSERT(IAM_WRITER_IPIF(ipif));
13319 
13320 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13321 
13322 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13323 	    ill_t *, ill, ipif_t *, ipif);
13324 
13325 	if (ipif->ipif_flags & IPIF_UP) {
13326 		mutex_enter(&ill->ill_lock);
13327 		ipif->ipif_flags &= ~IPIF_UP;
13328 		ASSERT(ill->ill_ipif_up_count > 0);
13329 		--ill->ill_ipif_up_count;
13330 		mutex_exit(&ill->ill_lock);
13331 		ipif_was_up = B_TRUE;
13332 		/* Update status in SCTP's list */
13333 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13334 		ill_nic_event_dispatch(ipif->ipif_ill,
13335 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13336 	}
13337 
13338 	/*
13339 	 * Removal of the last ipif from an ill may result in a DL_UNBIND
13340 	 * being sent to the driver, and we must not send any data packets to
13341 	 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13342 	 * ire and nce entries used in the data path will be cleaned
13343 	 * up, and we also set  the ILL_DOWN_IN_PROGRESS bit to make
13344 	 * sure on new entries will be added until the ill is bound
13345 	 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13346 	 * receipt of a DL_BIND_ACK.
13347 	 */
13348 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13349 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13350 	    ill->ill_dl_up) {
13351 		ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13352 	}
13353 
13354 	/*
13355 	 * Blow away memberships we established in ipif_multicast_up().
13356 	 */
13357 	ipif_multicast_down(ipif);
13358 
13359 	/*
13360 	 * Remove from the mapping for __sin6_src_id. We insert only
13361 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13362 	 * stored as mapped addresses, we need to check for mapped
13363 	 * INADDR_ANY also.
13364 	 */
13365 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13366 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13367 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13368 		int err;
13369 
13370 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13371 		    ipif->ipif_zoneid, ipst);
13372 		if (err != 0) {
13373 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13374 		}
13375 	}
13376 
13377 	if (ipif_was_up) {
13378 		/* only delete if we'd added ire's before */
13379 		if (ipif->ipif_isv6)
13380 			ipif_delete_ires_v6(ipif);
13381 		else
13382 			ipif_delete_ires_v4(ipif);
13383 	}
13384 
13385 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13386 		/*
13387 		 * Since the interface is now down, it may have just become
13388 		 * inactive.  Note that this needs to be done even for a
13389 		 * lll_logical_down(), or ARP entries will not get correctly
13390 		 * restored when the interface comes back up.
13391 		 */
13392 		if (IS_UNDER_IPMP(ill))
13393 			ipmp_ill_refresh_active(ill);
13394 	}
13395 
13396 	/*
13397 	 * neighbor-discovery or arp entries for this interface. The ipif
13398 	 * has to be quiesced, so we walk all the nce's and delete those
13399 	 * that point at the ipif->ipif_ill. At the same time, we also
13400 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13401 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13402 	 * that for ipif_down_tail()
13403 	 */
13404 	ipif_nce_down(ipif);
13405 
13406 	/*
13407 	 * If this is the last ipif on the ill, we also need to remove
13408 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13409 	 * never succeed.
13410 	 */
13411 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13412 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13413 
13414 	/*
13415 	 * Walk all CONNs that can have a reference on an ire for this
13416 	 * ipif (we actually walk all that now have stale references).
13417 	 */
13418 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13419 
13420 	/*
13421 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13422 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13423 	 * and ill_delete -> ipif_free -> ipif_down
13424 	 */
13425 	if (mp == NULL) {
13426 		ASSERT(q == NULL);
13427 		return (0);
13428 	}
13429 
13430 	if (CONN_Q(q)) {
13431 		connp = Q_TO_CONN(q);
13432 		mutex_enter(&connp->conn_lock);
13433 	} else {
13434 		connp = NULL;
13435 	}
13436 	mutex_enter(&ill->ill_lock);
13437 	/*
13438 	 * Are there any ire's pointing to this ipif that are still active ?
13439 	 * If this is the last ipif going down, are there any ire's pointing
13440 	 * to this ill that are still active ?
13441 	 */
13442 	if (ipif_is_quiescent(ipif)) {
13443 		mutex_exit(&ill->ill_lock);
13444 		if (connp != NULL)
13445 			mutex_exit(&connp->conn_lock);
13446 		return (0);
13447 	}
13448 
13449 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13450 	    ill->ill_name, (void *)ill));
13451 	/*
13452 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13453 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13454 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13455 	 */
13456 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13457 	if (!success) {
13458 		/* The conn is closing. So just return */
13459 		ASSERT(connp != NULL);
13460 		mutex_exit(&ill->ill_lock);
13461 		mutex_exit(&connp->conn_lock);
13462 		return (EINTR);
13463 	}
13464 
13465 	mutex_exit(&ill->ill_lock);
13466 	if (connp != NULL)
13467 		mutex_exit(&connp->conn_lock);
13468 	return (EINPROGRESS);
13469 }
13470 
13471 int
13472 ipif_down_tail(ipif_t *ipif)
13473 {
13474 	ill_t	*ill = ipif->ipif_ill;
13475 	int	err = 0;
13476 
13477 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13478 	    ill_t *, ill, ipif_t *, ipif);
13479 
13480 	/*
13481 	 * Skip any loopback interface (null wq).
13482 	 * If this is the last logical interface on the ill
13483 	 * have ill_dl_down tell the driver we are gone (unbind)
13484 	 * Note that lun 0 can ipif_down even though
13485 	 * there are other logical units that are up.
13486 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13487 	 */
13488 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13489 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13490 	    ill->ill_dl_up) {
13491 		ill_dl_down(ill);
13492 	}
13493 	if (!ipif->ipif_isv6)
13494 		err = ipif_arp_down(ipif);
13495 
13496 	ill->ill_logical_down = 0;
13497 
13498 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13499 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13500 	return (err);
13501 }
13502 
13503 /*
13504  * Bring interface logically down without bringing the physical interface
13505  * down e.g. when the netmask is changed. This avoids long lasting link
13506  * negotiations between an ethernet interface and a certain switches.
13507  */
13508 static int
13509 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13510 {
13511 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13512 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13513 
13514 	/*
13515 	 * The ill_logical_down flag is a transient flag. It is set here
13516 	 * and is cleared once the down has completed in ipif_down_tail.
13517 	 * This flag does not indicate whether the ill stream is in the
13518 	 * DL_BOUND state with the driver. Instead this flag is used by
13519 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13520 	 * the driver. The state of the ill stream i.e. whether it is
13521 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13522 	 */
13523 	ipif->ipif_ill->ill_logical_down = 1;
13524 	return (ipif_down(ipif, q, mp));
13525 }
13526 
13527 /*
13528  * Initiate deallocate of an IPIF. Always called as writer. Called by
13529  * ill_delete or ip_sioctl_removeif.
13530  */
13531 static void
13532 ipif_free(ipif_t *ipif)
13533 {
13534 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13535 
13536 	ASSERT(IAM_WRITER_IPIF(ipif));
13537 
13538 	if (ipif->ipif_recovery_id != 0)
13539 		(void) untimeout(ipif->ipif_recovery_id);
13540 	ipif->ipif_recovery_id = 0;
13541 
13542 	/*
13543 	 * Take down the interface. We can be called either from ill_delete
13544 	 * or from ip_sioctl_removeif.
13545 	 */
13546 	(void) ipif_down(ipif, NULL, NULL);
13547 
13548 	/*
13549 	 * Now that the interface is down, there's no chance it can still
13550 	 * become a duplicate.  Cancel any timer that may have been set while
13551 	 * tearing down.
13552 	 */
13553 	if (ipif->ipif_recovery_id != 0)
13554 		(void) untimeout(ipif->ipif_recovery_id);
13555 	ipif->ipif_recovery_id = 0;
13556 
13557 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13558 	/* Remove pointers to this ill in the multicast routing tables */
13559 	reset_mrt_vif_ipif(ipif);
13560 	/* If necessary, clear the cached source ipif rotor. */
13561 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13562 		ipif->ipif_ill->ill_src_ipif = NULL;
13563 	rw_exit(&ipst->ips_ill_g_lock);
13564 }
13565 
13566 static void
13567 ipif_free_tail(ipif_t *ipif)
13568 {
13569 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13570 
13571 	/*
13572 	 * Need to hold both ill_g_lock and ill_lock while
13573 	 * inserting or removing an ipif from the linked list
13574 	 * of ipifs hanging off the ill.
13575 	 */
13576 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13577 
13578 #ifdef DEBUG
13579 	ipif_trace_cleanup(ipif);
13580 #endif
13581 
13582 	/* Ask SCTP to take it out of it list */
13583 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13584 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13585 
13586 	/* Get it out of the ILL interface list. */
13587 	ipif_remove(ipif);
13588 	rw_exit(&ipst->ips_ill_g_lock);
13589 
13590 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13591 	ASSERT(ipif->ipif_recovery_id == 0);
13592 	ASSERT(ipif->ipif_ire_local == NULL);
13593 	ASSERT(ipif->ipif_ire_if == NULL);
13594 
13595 	/* Free the memory. */
13596 	mi_free(ipif);
13597 }
13598 
13599 /*
13600  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13601  * is zero.
13602  */
13603 void
13604 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13605 {
13606 	char	lbuf[LIFNAMSIZ];
13607 	char	*name;
13608 	size_t	name_len;
13609 
13610 	buf[0] = '\0';
13611 	name = ipif->ipif_ill->ill_name;
13612 	name_len = ipif->ipif_ill->ill_name_length;
13613 	if (ipif->ipif_id != 0) {
13614 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13615 		    ipif->ipif_id);
13616 		name = lbuf;
13617 		name_len = mi_strlen(name) + 1;
13618 	}
13619 	len -= 1;
13620 	buf[len] = '\0';
13621 	len = MIN(len, name_len);
13622 	bcopy(name, buf, len);
13623 }
13624 
13625 /*
13626  * Sets `buf' to an ill name.
13627  */
13628 void
13629 ill_get_name(const ill_t *ill, char *buf, int len)
13630 {
13631 	char	*name;
13632 	size_t	name_len;
13633 
13634 	name = ill->ill_name;
13635 	name_len = ill->ill_name_length;
13636 	len -= 1;
13637 	buf[len] = '\0';
13638 	len = MIN(len, name_len);
13639 	bcopy(name, buf, len);
13640 }
13641 
13642 /*
13643  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13644  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13645  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13646  * (May be called as writer.)
13647  */
13648 static ipif_t *
13649 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13650     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13651 {
13652 	char	*cp;
13653 	char	*endp;
13654 	long	id;
13655 	ill_t	*ill;
13656 	ipif_t	*ipif;
13657 	uint_t	ire_type;
13658 	boolean_t did_alloc = B_FALSE;
13659 	char	last;
13660 
13661 	/*
13662 	 * If the caller wants to us to create the ipif, make sure we have a
13663 	 * valid zoneid
13664 	 */
13665 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13666 
13667 	if (namelen == 0) {
13668 		return (NULL);
13669 	}
13670 
13671 	*exists = B_FALSE;
13672 	/* Look for a colon in the name. */
13673 	endp = &name[namelen];
13674 	for (cp = endp; --cp > name; ) {
13675 		if (*cp == IPIF_SEPARATOR_CHAR)
13676 			break;
13677 	}
13678 
13679 	if (*cp == IPIF_SEPARATOR_CHAR) {
13680 		/*
13681 		 * Reject any non-decimal aliases for logical
13682 		 * interfaces. Aliases with leading zeroes
13683 		 * are also rejected as they introduce ambiguity
13684 		 * in the naming of the interfaces.
13685 		 * In order to confirm with existing semantics,
13686 		 * and to not break any programs/script relying
13687 		 * on that behaviour, if<0>:0 is considered to be
13688 		 * a valid interface.
13689 		 *
13690 		 * If alias has two or more digits and the first
13691 		 * is zero, fail.
13692 		 */
13693 		if (&cp[2] < endp && cp[1] == '0') {
13694 			return (NULL);
13695 		}
13696 	}
13697 
13698 	if (cp <= name) {
13699 		cp = endp;
13700 	}
13701 	last = *cp;
13702 	*cp = '\0';
13703 
13704 	/*
13705 	 * Look up the ILL, based on the portion of the name
13706 	 * before the slash. ill_lookup_on_name returns a held ill.
13707 	 * Temporary to check whether ill exists already. If so
13708 	 * ill_lookup_on_name will clear it.
13709 	 */
13710 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13711 	    &did_alloc, ipst);
13712 	*cp = last;
13713 	if (ill == NULL)
13714 		return (NULL);
13715 
13716 	/* Establish the unit number in the name. */
13717 	id = 0;
13718 	if (cp < endp && *endp == '\0') {
13719 		/* If there was a colon, the unit number follows. */
13720 		cp++;
13721 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13722 			ill_refrele(ill);
13723 			return (NULL);
13724 		}
13725 	}
13726 
13727 	mutex_enter(&ill->ill_lock);
13728 	/* Now see if there is an IPIF with this unit number. */
13729 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13730 		if (ipif->ipif_id == id) {
13731 			if (zoneid != ALL_ZONES &&
13732 			    zoneid != ipif->ipif_zoneid &&
13733 			    ipif->ipif_zoneid != ALL_ZONES) {
13734 				mutex_exit(&ill->ill_lock);
13735 				ill_refrele(ill);
13736 				return (NULL);
13737 			}
13738 			if (IPIF_CAN_LOOKUP(ipif)) {
13739 				ipif_refhold_locked(ipif);
13740 				mutex_exit(&ill->ill_lock);
13741 				if (!did_alloc)
13742 					*exists = B_TRUE;
13743 				/*
13744 				 * Drop locks before calling ill_refrele
13745 				 * since it can potentially call into
13746 				 * ipif_ill_refrele_tail which can end up
13747 				 * in trying to acquire any lock.
13748 				 */
13749 				ill_refrele(ill);
13750 				return (ipif);
13751 			}
13752 		}
13753 	}
13754 
13755 	if (!do_alloc) {
13756 		mutex_exit(&ill->ill_lock);
13757 		ill_refrele(ill);
13758 		return (NULL);
13759 	}
13760 
13761 	/*
13762 	 * If none found, atomically allocate and return a new one.
13763 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13764 	 * to support "receive only" use of lo0:1 etc. as is still done
13765 	 * below as an initial guess.
13766 	 * However, this is now likely to be overriden later in ipif_up_done()
13767 	 * when we know for sure what address has been configured on the
13768 	 * interface, since we might have more than one loopback interface
13769 	 * with a loopback address, e.g. in the case of zones, and all the
13770 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13771 	 */
13772 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13773 		ire_type = IRE_LOOPBACK;
13774 	else
13775 		ire_type = IRE_LOCAL;
13776 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13777 	if (ipif != NULL)
13778 		ipif_refhold_locked(ipif);
13779 	mutex_exit(&ill->ill_lock);
13780 	ill_refrele(ill);
13781 	return (ipif);
13782 }
13783 
13784 /*
13785  * Variant of the above that queues the request on the ipsq when
13786  * IPIF_CHANGING is set.
13787  */
13788 static ipif_t *
13789 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13790     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13791     ip_stack_t *ipst)
13792 {
13793 	char	*cp;
13794 	char	*endp;
13795 	long	id;
13796 	ill_t	*ill;
13797 	ipif_t	*ipif;
13798 	boolean_t did_alloc = B_FALSE;
13799 	ipsq_t	*ipsq;
13800 
13801 	if (error != NULL)
13802 		*error = 0;
13803 
13804 	if (namelen == 0) {
13805 		if (error != NULL)
13806 			*error = ENXIO;
13807 		return (NULL);
13808 	}
13809 
13810 	/* Look for a colon in the name. */
13811 	endp = &name[namelen];
13812 	for (cp = endp; --cp > name; ) {
13813 		if (*cp == IPIF_SEPARATOR_CHAR)
13814 			break;
13815 	}
13816 
13817 	if (*cp == IPIF_SEPARATOR_CHAR) {
13818 		/*
13819 		 * Reject any non-decimal aliases for logical
13820 		 * interfaces. Aliases with leading zeroes
13821 		 * are also rejected as they introduce ambiguity
13822 		 * in the naming of the interfaces.
13823 		 * In order to confirm with existing semantics,
13824 		 * and to not break any programs/script relying
13825 		 * on that behaviour, if<0>:0 is considered to be
13826 		 * a valid interface.
13827 		 *
13828 		 * If alias has two or more digits and the first
13829 		 * is zero, fail.
13830 		 */
13831 		if (&cp[2] < endp && cp[1] == '0') {
13832 			if (error != NULL)
13833 				*error = EINVAL;
13834 			return (NULL);
13835 		}
13836 	}
13837 
13838 	if (cp <= name) {
13839 		cp = endp;
13840 	} else {
13841 		*cp = '\0';
13842 	}
13843 
13844 	/*
13845 	 * Look up the ILL, based on the portion of the name
13846 	 * before the slash. ill_lookup_on_name returns a held ill.
13847 	 * Temporary to check whether ill exists already. If so
13848 	 * ill_lookup_on_name will clear it.
13849 	 */
13850 	ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13851 	if (cp != endp)
13852 		*cp = IPIF_SEPARATOR_CHAR;
13853 	if (ill == NULL)
13854 		return (NULL);
13855 
13856 	/* Establish the unit number in the name. */
13857 	id = 0;
13858 	if (cp < endp && *endp == '\0') {
13859 		/* If there was a colon, the unit number follows. */
13860 		cp++;
13861 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13862 			ill_refrele(ill);
13863 			if (error != NULL)
13864 				*error = ENXIO;
13865 			return (NULL);
13866 		}
13867 	}
13868 
13869 	GRAB_CONN_LOCK(q);
13870 	mutex_enter(&ill->ill_lock);
13871 	/* Now see if there is an IPIF with this unit number. */
13872 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13873 		if (ipif->ipif_id == id) {
13874 			if (zoneid != ALL_ZONES &&
13875 			    zoneid != ipif->ipif_zoneid &&
13876 			    ipif->ipif_zoneid != ALL_ZONES) {
13877 				mutex_exit(&ill->ill_lock);
13878 				RELEASE_CONN_LOCK(q);
13879 				ill_refrele(ill);
13880 				if (error != NULL)
13881 					*error = ENXIO;
13882 				return (NULL);
13883 			}
13884 
13885 			if (!(IPIF_IS_CHANGING(ipif) ||
13886 			    IPIF_IS_CONDEMNED(ipif)) ||
13887 			    IAM_WRITER_IPIF(ipif)) {
13888 				ipif_refhold_locked(ipif);
13889 				mutex_exit(&ill->ill_lock);
13890 				/*
13891 				 * Drop locks before calling ill_refrele
13892 				 * since it can potentially call into
13893 				 * ipif_ill_refrele_tail which can end up
13894 				 * in trying to acquire any lock.
13895 				 */
13896 				RELEASE_CONN_LOCK(q);
13897 				ill_refrele(ill);
13898 				return (ipif);
13899 			} else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13900 				ipsq = ill->ill_phyint->phyint_ipsq;
13901 				mutex_enter(&ipsq->ipsq_lock);
13902 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13903 				mutex_exit(&ill->ill_lock);
13904 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13905 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13906 				mutex_exit(&ipsq->ipsq_lock);
13907 				RELEASE_CONN_LOCK(q);
13908 				ill_refrele(ill);
13909 				if (error != NULL)
13910 					*error = EINPROGRESS;
13911 				return (NULL);
13912 			}
13913 		}
13914 	}
13915 	RELEASE_CONN_LOCK(q);
13916 	mutex_exit(&ill->ill_lock);
13917 	ill_refrele(ill);
13918 	if (error != NULL)
13919 		*error = ENXIO;
13920 	return (NULL);
13921 }
13922 
13923 /*
13924  * This routine is called whenever a new address comes up on an ipif.  If
13925  * we are configured to respond to address mask requests, then we are supposed
13926  * to broadcast an address mask reply at this time.  This routine is also
13927  * called if we are already up, but a netmask change is made.  This is legal
13928  * but might not make the system manager very popular.	(May be called
13929  * as writer.)
13930  */
13931 void
13932 ipif_mask_reply(ipif_t *ipif)
13933 {
13934 	icmph_t	*icmph;
13935 	ipha_t	*ipha;
13936 	mblk_t	*mp;
13937 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13938 	ip_xmit_attr_t ixas;
13939 
13940 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13941 
13942 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13943 		return;
13944 
13945 	/* ICMP mask reply is IPv4 only */
13946 	ASSERT(!ipif->ipif_isv6);
13947 	/* ICMP mask reply is not for a loopback interface */
13948 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13949 
13950 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13951 		return;
13952 
13953 	mp = allocb(REPLY_LEN, BPRI_HI);
13954 	if (mp == NULL)
13955 		return;
13956 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13957 
13958 	ipha = (ipha_t *)mp->b_rptr;
13959 	bzero(ipha, REPLY_LEN);
13960 	*ipha = icmp_ipha;
13961 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13962 	ipha->ipha_src = ipif->ipif_lcl_addr;
13963 	ipha->ipha_dst = ipif->ipif_brd_addr;
13964 	ipha->ipha_length = htons(REPLY_LEN);
13965 	ipha->ipha_ident = 0;
13966 
13967 	icmph = (icmph_t *)&ipha[1];
13968 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13969 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13970 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13971 
13972 	bzero(&ixas, sizeof (ixas));
13973 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13974 	ixas.ixa_zoneid = ALL_ZONES;
13975 	ixas.ixa_ifindex = 0;
13976 	ixas.ixa_ipst = ipst;
13977 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13978 	(void) ip_output_simple(mp, &ixas);
13979 	ixa_cleanup(&ixas);
13980 #undef	REPLY_LEN
13981 }
13982 
13983 /*
13984  * Join the ipif specific multicast groups.
13985  * Must be called after a mapping has been set up in the resolver.  (Always
13986  * called as writer.)
13987  */
13988 void
13989 ipif_multicast_up(ipif_t *ipif)
13990 {
13991 	int err;
13992 	ill_t *ill;
13993 	ilm_t *ilm;
13994 
13995 	ASSERT(IAM_WRITER_IPIF(ipif));
13996 
13997 	ill = ipif->ipif_ill;
13998 
13999 	ip1dbg(("ipif_multicast_up\n"));
14000 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
14001 	    ipif->ipif_allhosts_ilm != NULL)
14002 		return;
14003 
14004 	if (ipif->ipif_isv6) {
14005 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14006 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14007 
14008 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14009 
14010 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14011 			return;
14012 
14013 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14014 
14015 		/*
14016 		 * Join the all hosts multicast address.  We skip this for
14017 		 * underlying IPMP interfaces since they should be invisible.
14018 		 */
14019 		if (!IS_UNDER_IPMP(ill)) {
14020 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14021 			    &err);
14022 			if (ilm == NULL) {
14023 				ASSERT(err != 0);
14024 				ip0dbg(("ipif_multicast_up: "
14025 				    "all_hosts_mcast failed %d\n", err));
14026 				return;
14027 			}
14028 			ipif->ipif_allhosts_ilm = ilm;
14029 		}
14030 
14031 		/*
14032 		 * Enable multicast for the solicited node multicast address.
14033 		 * If IPMP we need to put the membership on the upper ill.
14034 		 */
14035 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14036 			ill_t *mcast_ill = NULL;
14037 			boolean_t need_refrele;
14038 
14039 			if (IS_UNDER_IPMP(ill) &&
14040 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14041 				need_refrele = B_TRUE;
14042 			} else {
14043 				mcast_ill = ill;
14044 				need_refrele = B_FALSE;
14045 			}
14046 
14047 			ilm = ip_addmulti(&v6solmc, mcast_ill,
14048 			    ipif->ipif_zoneid, &err);
14049 			if (need_refrele)
14050 				ill_refrele(mcast_ill);
14051 
14052 			if (ilm == NULL) {
14053 				ASSERT(err != 0);
14054 				ip0dbg(("ipif_multicast_up: solicited MC"
14055 				    " failed %d\n", err));
14056 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14057 					ipif->ipif_allhosts_ilm = NULL;
14058 					(void) ip_delmulti(ilm);
14059 				}
14060 				return;
14061 			}
14062 			ipif->ipif_solmulti_ilm = ilm;
14063 		}
14064 	} else {
14065 		in6_addr_t v6group;
14066 
14067 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14068 			return;
14069 
14070 		/* Join the all hosts multicast address */
14071 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14072 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14073 
14074 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14075 		if (ilm == NULL) {
14076 			ASSERT(err != 0);
14077 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
14078 			return;
14079 		}
14080 		ipif->ipif_allhosts_ilm = ilm;
14081 	}
14082 }
14083 
14084 /*
14085  * Blow away any multicast groups that we joined in ipif_multicast_up().
14086  * (ilms from explicit memberships are handled in conn_update_ill.)
14087  */
14088 void
14089 ipif_multicast_down(ipif_t *ipif)
14090 {
14091 	ASSERT(IAM_WRITER_IPIF(ipif));
14092 
14093 	ip1dbg(("ipif_multicast_down\n"));
14094 
14095 	if (ipif->ipif_allhosts_ilm != NULL) {
14096 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
14097 		ipif->ipif_allhosts_ilm = NULL;
14098 	}
14099 	if (ipif->ipif_solmulti_ilm != NULL) {
14100 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
14101 		ipif->ipif_solmulti_ilm = NULL;
14102 	}
14103 }
14104 
14105 /*
14106  * Used when an interface comes up to recreate any extra routes on this
14107  * interface.
14108  */
14109 int
14110 ill_recover_saved_ire(ill_t *ill)
14111 {
14112 	mblk_t		*mp;
14113 	ip_stack_t	*ipst = ill->ill_ipst;
14114 
14115 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14116 
14117 	mutex_enter(&ill->ill_saved_ire_lock);
14118 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14119 		ire_t		*ire, *nire;
14120 		ifrt_t		*ifrt;
14121 
14122 		ifrt = (ifrt_t *)mp->b_rptr;
14123 		/*
14124 		 * Create a copy of the IRE with the saved address and netmask.
14125 		 */
14126 		if (ill->ill_isv6) {
14127 			ire = ire_create_v6(
14128 			    &ifrt->ifrt_v6addr,
14129 			    &ifrt->ifrt_v6mask,
14130 			    &ifrt->ifrt_v6gateway_addr,
14131 			    ifrt->ifrt_type,
14132 			    ill,
14133 			    ifrt->ifrt_zoneid,
14134 			    ifrt->ifrt_flags,
14135 			    NULL,
14136 			    ipst);
14137 		} else {
14138 			ire = ire_create(
14139 			    (uint8_t *)&ifrt->ifrt_addr,
14140 			    (uint8_t *)&ifrt->ifrt_mask,
14141 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
14142 			    ifrt->ifrt_type,
14143 			    ill,
14144 			    ifrt->ifrt_zoneid,
14145 			    ifrt->ifrt_flags,
14146 			    NULL,
14147 			    ipst);
14148 		}
14149 		if (ire == NULL) {
14150 			mutex_exit(&ill->ill_saved_ire_lock);
14151 			return (ENOMEM);
14152 		}
14153 
14154 		if (ifrt->ifrt_flags & RTF_SETSRC) {
14155 			if (ill->ill_isv6) {
14156 				ire->ire_setsrc_addr_v6 =
14157 				    ifrt->ifrt_v6setsrc_addr;
14158 			} else {
14159 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14160 			}
14161 		}
14162 
14163 		/*
14164 		 * Some software (for example, GateD and Sun Cluster) attempts
14165 		 * to create (what amount to) IRE_PREFIX routes with the
14166 		 * loopback address as the gateway.  This is primarily done to
14167 		 * set up prefixes with the RTF_REJECT flag set (for example,
14168 		 * when generating aggregate routes.)
14169 		 *
14170 		 * If the IRE type (as defined by ill->ill_net_type) is
14171 		 * IRE_LOOPBACK, then we map the request into a
14172 		 * IRE_IF_NORESOLVER.
14173 		 */
14174 		if (ill->ill_net_type == IRE_LOOPBACK)
14175 			ire->ire_type = IRE_IF_NORESOLVER;
14176 
14177 		/*
14178 		 * ire held by ire_add, will be refreled' towards the
14179 		 * the end of ipif_up_done
14180 		 */
14181 		nire = ire_add(ire);
14182 		/*
14183 		 * Check if it was a duplicate entry. This handles
14184 		 * the case of two racing route adds for the same route
14185 		 */
14186 		if (nire == NULL) {
14187 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14188 		} else if (nire != ire) {
14189 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14190 			    (void *)nire));
14191 			ire_delete(nire);
14192 		} else {
14193 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14194 			    (void *)nire));
14195 		}
14196 		if (nire != NULL)
14197 			ire_refrele(nire);
14198 	}
14199 	mutex_exit(&ill->ill_saved_ire_lock);
14200 	return (0);
14201 }
14202 
14203 /*
14204  * Used to set the netmask and broadcast address to default values when the
14205  * interface is brought up.  (Always called as writer.)
14206  */
14207 static void
14208 ipif_set_default(ipif_t *ipif)
14209 {
14210 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14211 
14212 	if (!ipif->ipif_isv6) {
14213 		/*
14214 		 * Interface holds an IPv4 address. Default
14215 		 * mask is the natural netmask.
14216 		 */
14217 		if (!ipif->ipif_net_mask) {
14218 			ipaddr_t	v4mask;
14219 
14220 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14221 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14222 		}
14223 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14224 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14225 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14226 		} else {
14227 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14228 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14229 		}
14230 		/*
14231 		 * NOTE: SunOS 4.X does this even if the broadcast address
14232 		 * has been already set thus we do the same here.
14233 		 */
14234 		if (ipif->ipif_flags & IPIF_BROADCAST) {
14235 			ipaddr_t	v4addr;
14236 
14237 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14238 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14239 		}
14240 	} else {
14241 		/*
14242 		 * Interface holds an IPv6-only address.  Default
14243 		 * mask is all-ones.
14244 		 */
14245 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14246 			ipif->ipif_v6net_mask = ipv6_all_ones;
14247 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14248 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14249 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14250 		} else {
14251 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14252 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14253 		}
14254 	}
14255 }
14256 
14257 /*
14258  * Return 0 if this address can be used as local address without causing
14259  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14260  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14261  * Note that the same IPv6 link-local address is allowed as long as the ills
14262  * are not on the same link.
14263  */
14264 int
14265 ip_addr_availability_check(ipif_t *new_ipif)
14266 {
14267 	in6_addr_t our_v6addr;
14268 	ill_t *ill;
14269 	ipif_t *ipif;
14270 	ill_walk_context_t ctx;
14271 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
14272 
14273 	ASSERT(IAM_WRITER_IPIF(new_ipif));
14274 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14275 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14276 
14277 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14278 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14279 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14280 		return (0);
14281 
14282 	our_v6addr = new_ipif->ipif_v6lcl_addr;
14283 
14284 	if (new_ipif->ipif_isv6)
14285 		ill = ILL_START_WALK_V6(&ctx, ipst);
14286 	else
14287 		ill = ILL_START_WALK_V4(&ctx, ipst);
14288 
14289 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14290 		for (ipif = ill->ill_ipif; ipif != NULL;
14291 		    ipif = ipif->ipif_next) {
14292 			if ((ipif == new_ipif) ||
14293 			    !(ipif->ipif_flags & IPIF_UP) ||
14294 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14295 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14296 			    &our_v6addr))
14297 				continue;
14298 
14299 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14300 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14301 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14302 				ipif->ipif_flags |= IPIF_UNNUMBERED;
14303 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14304 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14305 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14306 				continue;
14307 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14308 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14309 				continue;
14310 			else if (new_ipif->ipif_ill == ill)
14311 				return (EADDRINUSE);
14312 			else
14313 				return (EADDRNOTAVAIL);
14314 		}
14315 	}
14316 
14317 	return (0);
14318 }
14319 
14320 /*
14321  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14322  * IREs for the ipif.
14323  * When the routine returns EINPROGRESS then mp has been consumed and
14324  * the ioctl will be acked from ip_rput_dlpi.
14325  */
14326 int
14327 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14328 {
14329 	ill_t		*ill = ipif->ipif_ill;
14330 	boolean_t 	isv6 = ipif->ipif_isv6;
14331 	int		err = 0;
14332 	boolean_t	success;
14333 	uint_t		ipif_orig_id;
14334 	ip_stack_t	*ipst = ill->ill_ipst;
14335 
14336 	ASSERT(IAM_WRITER_IPIF(ipif));
14337 
14338 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14339 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14340 	    ill_t *, ill, ipif_t *, ipif);
14341 
14342 	/* Shouldn't get here if it is already up. */
14343 	if (ipif->ipif_flags & IPIF_UP)
14344 		return (EALREADY);
14345 
14346 	/*
14347 	 * If this is a request to bring up a data address on an interface
14348 	 * under IPMP, then move the address to its IPMP meta-interface and
14349 	 * try to bring it up.  One complication is that the zeroth ipif for
14350 	 * an ill is special, in that every ill always has one, and that code
14351 	 * throughout IP deferences ill->ill_ipif without holding any locks.
14352 	 */
14353 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14354 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14355 		ipif_t	*stubipif = NULL, *moveipif = NULL;
14356 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14357 
14358 		/*
14359 		 * The ipif being brought up should be quiesced.  If it's not,
14360 		 * something has gone amiss and we need to bail out.  (If it's
14361 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14362 		 */
14363 		mutex_enter(&ill->ill_lock);
14364 		if (!ipif_is_quiescent(ipif)) {
14365 			mutex_exit(&ill->ill_lock);
14366 			return (EINVAL);
14367 		}
14368 		mutex_exit(&ill->ill_lock);
14369 
14370 		/*
14371 		 * If we're going to need to allocate ipifs, do it prior
14372 		 * to starting the move (and grabbing locks).
14373 		 */
14374 		if (ipif->ipif_id == 0) {
14375 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14376 			    B_FALSE, &err)) == NULL) {
14377 				return (err);
14378 			}
14379 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14380 			    B_FALSE, &err)) == NULL) {
14381 				mi_free(moveipif);
14382 				return (err);
14383 			}
14384 		}
14385 
14386 		/*
14387 		 * Grab or transfer the ipif to move.  During the move, keep
14388 		 * ill_g_lock held to prevent any ill walker threads from
14389 		 * seeing things in an inconsistent state.
14390 		 */
14391 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14392 		if (ipif->ipif_id != 0) {
14393 			ipif_remove(ipif);
14394 		} else {
14395 			ipif_transfer(ipif, moveipif, stubipif);
14396 			ipif = moveipif;
14397 		}
14398 
14399 		/*
14400 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
14401 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
14402 		 * replace that one.  Otherwise, pick the next available slot.
14403 		 */
14404 		ipif->ipif_ill = ipmp_ill;
14405 		ipif_orig_id = ipif->ipif_id;
14406 
14407 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14408 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14409 			ipif = ipmp_ill->ill_ipif;
14410 		} else {
14411 			ipif->ipif_id = -1;
14412 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14413 				/*
14414 				 * No more available ipif_id's -- put it back
14415 				 * on the original ill and fail the operation.
14416 				 * Since we're writer on the ill, we can be
14417 				 * sure our old slot is still available.
14418 				 */
14419 				ipif->ipif_id = ipif_orig_id;
14420 				ipif->ipif_ill = ill;
14421 				if (ipif_orig_id == 0) {
14422 					ipif_transfer(ipif, ill->ill_ipif,
14423 					    NULL);
14424 				} else {
14425 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14426 				}
14427 				rw_exit(&ipst->ips_ill_g_lock);
14428 				return (err);
14429 			}
14430 		}
14431 		rw_exit(&ipst->ips_ill_g_lock);
14432 
14433 		/*
14434 		 * Tell SCTP that the ipif has moved.  Note that even if we
14435 		 * had to allocate a new ipif, the original sequence id was
14436 		 * preserved and therefore SCTP won't know.
14437 		 */
14438 		sctp_move_ipif(ipif, ill, ipmp_ill);
14439 
14440 		/*
14441 		 * If the ipif being brought up was on slot zero, then we
14442 		 * first need to bring up the placeholder we stuck there.  In
14443 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14444 		 * call to ipif_up() itself, if we successfully bring up the
14445 		 * placeholder, we'll check ill_move_ipif and bring it up too.
14446 		 */
14447 		if (ipif_orig_id == 0) {
14448 			ASSERT(ill->ill_move_ipif == NULL);
14449 			ill->ill_move_ipif = ipif;
14450 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14451 				ASSERT(ill->ill_move_ipif == NULL);
14452 			if (err != EINPROGRESS)
14453 				ill->ill_move_ipif = NULL;
14454 			return (err);
14455 		}
14456 
14457 		/*
14458 		 * Bring it up on the IPMP ill.
14459 		 */
14460 		return (ipif_up(ipif, q, mp));
14461 	}
14462 
14463 	/* Skip arp/ndp for any loopback interface. */
14464 	if (ill->ill_wq != NULL) {
14465 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14466 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
14467 
14468 		if (!ill->ill_dl_up) {
14469 			/*
14470 			 * ill_dl_up is not yet set. i.e. we are yet to
14471 			 * DL_BIND with the driver and this is the first
14472 			 * logical interface on the ill to become "up".
14473 			 * Tell the driver to get going (via DL_BIND_REQ).
14474 			 * Note that changing "significant" IFF_ flags
14475 			 * address/netmask etc cause a down/up dance, but
14476 			 * does not cause an unbind (DL_UNBIND) with the driver
14477 			 */
14478 			return (ill_dl_up(ill, ipif, mp, q));
14479 		}
14480 
14481 		/*
14482 		 * ipif_resolver_up may end up needeing to bind/attach
14483 		 * the ARP stream, which in turn necessitates a
14484 		 * DLPI message exchange with the driver. ioctls are
14485 		 * serialized and so we cannot send more than one
14486 		 * interface up message at a time. If ipif_resolver_up
14487 		 * does need to wait for the DLPI handshake for the ARP stream,
14488 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14489 		 */
14490 
14491 		ASSERT(connp != NULL || !CONN_Q(q));
14492 		if (connp != NULL)
14493 			mutex_enter(&connp->conn_lock);
14494 		mutex_enter(&ill->ill_lock);
14495 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14496 		mutex_exit(&ill->ill_lock);
14497 		if (connp != NULL)
14498 			mutex_exit(&connp->conn_lock);
14499 		if (!success)
14500 			return (EINTR);
14501 
14502 		/*
14503 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14504 		 * complete when ipif_ndp_up returns.
14505 		 */
14506 		err = ipif_resolver_up(ipif, Res_act_initial);
14507 		if (err == EINPROGRESS) {
14508 			/* We will complete it in arp_bringup_done() */
14509 			return (err);
14510 		}
14511 
14512 		if (isv6 && err == 0)
14513 			err = ipif_ndp_up(ipif, B_TRUE);
14514 
14515 		ASSERT(err != EINPROGRESS);
14516 		mp = ipsq_pending_mp_get(ipsq, &connp);
14517 		ASSERT(mp != NULL);
14518 		if (err != 0)
14519 			return (err);
14520 	} else {
14521 		/*
14522 		 * Interfaces without underlying hardware don't do duplicate
14523 		 * address detection.
14524 		 */
14525 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14526 		ipif->ipif_addr_ready = 1;
14527 		err = ill_add_ires(ill);
14528 		/* allocation failure? */
14529 		if (err != 0)
14530 			return (err);
14531 	}
14532 
14533 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14534 	if (err == 0 && ill->ill_move_ipif != NULL) {
14535 		ipif = ill->ill_move_ipif;
14536 		ill->ill_move_ipif = NULL;
14537 		return (ipif_up(ipif, q, mp));
14538 	}
14539 	return (err);
14540 }
14541 
14542 /*
14543  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14544  * The identical set of IREs need to be removed in ill_delete_ires().
14545  */
14546 int
14547 ill_add_ires(ill_t *ill)
14548 {
14549 	ire_t	*ire;
14550 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14551 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14552 
14553 	if (ill->ill_ire_multicast != NULL)
14554 		return (0);
14555 
14556 	/*
14557 	 * provide some dummy ire_addr for creating the ire.
14558 	 */
14559 	if (ill->ill_isv6) {
14560 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14561 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14562 	} else {
14563 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14564 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14565 	}
14566 	if (ire == NULL)
14567 		return (ENOMEM);
14568 
14569 	ill->ill_ire_multicast = ire;
14570 	return (0);
14571 }
14572 
14573 void
14574 ill_delete_ires(ill_t *ill)
14575 {
14576 	if (ill->ill_ire_multicast != NULL) {
14577 		/*
14578 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14579 		 * which was taken without any th_tracing enabled.
14580 		 * We also mark it as condemned (note that it was never added)
14581 		 * so that caching conn's can move off of it.
14582 		 */
14583 		ire_make_condemned(ill->ill_ire_multicast);
14584 		ire_refrele_notr(ill->ill_ire_multicast);
14585 		ill->ill_ire_multicast = NULL;
14586 	}
14587 }
14588 
14589 /*
14590  * Perform a bind for the physical device.
14591  * When the routine returns EINPROGRESS then mp has been consumed and
14592  * the ioctl will be acked from ip_rput_dlpi.
14593  * Allocate an unbind message and save it until ipif_down.
14594  */
14595 static int
14596 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14597 {
14598 	mblk_t	*bind_mp = NULL;
14599 	mblk_t	*unbind_mp = NULL;
14600 	conn_t	*connp;
14601 	boolean_t success;
14602 	int	err;
14603 
14604 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14605 
14606 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14607 	ASSERT(IAM_WRITER_ILL(ill));
14608 	ASSERT(mp != NULL);
14609 
14610 	/*
14611 	 * Make sure we have an IRE_MULTICAST in case we immediately
14612 	 * start receiving packets.
14613 	 */
14614 	err = ill_add_ires(ill);
14615 	if (err != 0)
14616 		goto bad;
14617 
14618 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14619 	    DL_BIND_REQ);
14620 	if (bind_mp == NULL)
14621 		goto bad;
14622 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14623 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14624 
14625 	/*
14626 	 * ill_unbind_mp would be non-null if the following sequence had
14627 	 * happened:
14628 	 * - send DL_BIND_REQ to driver, wait for response
14629 	 * - multiple ioctls that need to bring the ipif up are encountered,
14630 	 *   but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14631 	 *   These ioctls will then be enqueued on the ipsq
14632 	 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14633 	 * At this point, the pending ioctls in the ipsq will be drained, and
14634 	 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14635 	 * a non-null ill->ill_unbind_mp
14636 	 */
14637 	if (ill->ill_unbind_mp == NULL) {
14638 		unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14639 		    DL_UNBIND_REQ);
14640 		if (unbind_mp == NULL)
14641 			goto bad;
14642 	}
14643 	/*
14644 	 * Record state needed to complete this operation when the
14645 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14646 	 */
14647 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14648 	ASSERT(connp != NULL || !CONN_Q(q));
14649 	GRAB_CONN_LOCK(q);
14650 	mutex_enter(&ipif->ipif_ill->ill_lock);
14651 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14652 	mutex_exit(&ipif->ipif_ill->ill_lock);
14653 	RELEASE_CONN_LOCK(q);
14654 	if (!success)
14655 		goto bad;
14656 
14657 	/*
14658 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14659 	 * the interface goes down.
14660 	 */
14661 	if (ill->ill_unbind_mp == NULL)
14662 		ill->ill_unbind_mp = unbind_mp;
14663 
14664 	ill_dlpi_send(ill, bind_mp);
14665 	/* Send down link-layer capabilities probe if not already done. */
14666 	ill_capability_probe(ill);
14667 
14668 	/*
14669 	 * Sysid used to rely on the fact that netboots set domainname
14670 	 * and the like. Now that miniroot boots aren't strictly netboots
14671 	 * and miniroot network configuration is driven from userland
14672 	 * these things still need to be set. This situation can be detected
14673 	 * by comparing the interface being configured here to the one
14674 	 * dhcifname was set to reference by the boot loader. Once sysid is
14675 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14676 	 */
14677 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14678 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14679 	    (strlen(srpc_domain) == 0)) {
14680 		if (dhcpinit() != 0)
14681 			cmn_err(CE_WARN, "no cached dhcp response");
14682 	}
14683 
14684 	/*
14685 	 * This operation will complete in ip_rput_dlpi with either
14686 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14687 	 */
14688 	return (EINPROGRESS);
14689 bad:
14690 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14691 
14692 	freemsg(bind_mp);
14693 	freemsg(unbind_mp);
14694 	return (ENOMEM);
14695 }
14696 
14697 /* Add room for tcp+ip headers */
14698 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14699 
14700 /*
14701  * DLPI and ARP is up.
14702  * Create all the IREs associated with an interface. Bring up multicast.
14703  * Set the interface flag and finish other initialization
14704  * that potentially had to be deferred to after DL_BIND_ACK.
14705  */
14706 int
14707 ipif_up_done(ipif_t *ipif)
14708 {
14709 	ill_t		*ill = ipif->ipif_ill;
14710 	int		err = 0;
14711 	boolean_t	loopback = B_FALSE;
14712 	boolean_t	update_src_selection = B_TRUE;
14713 	ipif_t		*tmp_ipif;
14714 
14715 	ip1dbg(("ipif_up_done(%s:%u)\n",
14716 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14717 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14718 	    ill_t *, ill, ipif_t *, ipif);
14719 
14720 	/* Check if this is a loopback interface */
14721 	if (ipif->ipif_ill->ill_wq == NULL)
14722 		loopback = B_TRUE;
14723 
14724 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14725 
14726 	/*
14727 	 * If all other interfaces for this ill are down or DEPRECATED,
14728 	 * or otherwise unsuitable for source address selection,
14729 	 * reset the src generation numbers to make sure source
14730 	 * address selection gets to take this new ipif into account.
14731 	 * No need to hold ill_lock while traversing the ipif list since
14732 	 * we are writer
14733 	 */
14734 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14735 	    tmp_ipif = tmp_ipif->ipif_next) {
14736 		if (((tmp_ipif->ipif_flags &
14737 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14738 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14739 		    (tmp_ipif == ipif))
14740 			continue;
14741 		/* first useable pre-existing interface */
14742 		update_src_selection = B_FALSE;
14743 		break;
14744 	}
14745 	if (update_src_selection)
14746 		ip_update_source_selection(ill->ill_ipst);
14747 
14748 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14749 		nce_t *loop_nce = NULL;
14750 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14751 
14752 		/*
14753 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14754 		 * ipif_lookup_on_name(), but in the case of zones we can have
14755 		 * several loopback addresses on lo0. So all the interfaces with
14756 		 * loopback addresses need to be marked IRE_LOOPBACK.
14757 		 */
14758 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14759 		    htonl(INADDR_LOOPBACK))
14760 			ipif->ipif_ire_type = IRE_LOOPBACK;
14761 		else
14762 			ipif->ipif_ire_type = IRE_LOCAL;
14763 		if (ill->ill_net_type != IRE_LOOPBACK)
14764 			flags |= NCE_F_PUBLISH;
14765 
14766 		/* add unicast nce for the local addr */
14767 		err = nce_lookup_then_add_v4(ill, NULL,
14768 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14769 		    ND_REACHABLE, &loop_nce);
14770 		/* A shared-IP zone sees EEXIST for lo0:N */
14771 		if (err == 0 || err == EEXIST) {
14772 			ipif->ipif_added_nce = 1;
14773 			loop_nce->nce_ipif_cnt++;
14774 			nce_refrele(loop_nce);
14775 			err = 0;
14776 		} else {
14777 			ASSERT(loop_nce == NULL);
14778 			return (err);
14779 		}
14780 	}
14781 
14782 	/* Create all the IREs associated with this interface */
14783 	err = ipif_add_ires_v4(ipif, loopback);
14784 	if (err != 0) {
14785 		/*
14786 		 * see comments about return value from
14787 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14788 		 */
14789 		if (err != EADDRINUSE) {
14790 			(void) ipif_arp_down(ipif);
14791 		} else {
14792 			/*
14793 			 * Make IPMP aware of the deleted ipif so that
14794 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14795 			 * can be completed. Note that we do not want to
14796 			 * destroy the nce that was created on the ipmp_ill
14797 			 * for the active copy of the duplicate address in
14798 			 * use.
14799 			 */
14800 			if (IS_IPMP(ill))
14801 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14802 			err = EADDRNOTAVAIL;
14803 		}
14804 		return (err);
14805 	}
14806 
14807 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14808 		/* Recover any additional IREs entries for this ill */
14809 		(void) ill_recover_saved_ire(ill);
14810 	}
14811 
14812 	if (ill->ill_need_recover_multicast) {
14813 		/*
14814 		 * Need to recover all multicast memberships in the driver.
14815 		 * This had to be deferred until we had attached.  The same
14816 		 * code exists in ipif_up_done_v6() to recover IPv6
14817 		 * memberships.
14818 		 *
14819 		 * Note that it would be preferable to unconditionally do the
14820 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14821 		 * that since ill_join_allmulti() depends on ill_dl_up being
14822 		 * set, and it is not set until we receive a DL_BIND_ACK after
14823 		 * having called ill_dl_up().
14824 		 */
14825 		ill_recover_multicast(ill);
14826 	}
14827 
14828 	if (ill->ill_ipif_up_count == 1) {
14829 		/*
14830 		 * Since the interface is now up, it may now be active.
14831 		 */
14832 		if (IS_UNDER_IPMP(ill))
14833 			ipmp_ill_refresh_active(ill);
14834 
14835 		/*
14836 		 * If this is an IPMP interface, we may now be able to
14837 		 * establish ARP entries.
14838 		 */
14839 		if (IS_IPMP(ill))
14840 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14841 	}
14842 
14843 	/* Join the allhosts multicast address */
14844 	ipif_multicast_up(ipif);
14845 
14846 	if (!loopback && !update_src_selection &&
14847 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14848 		ip_update_source_selection(ill->ill_ipst);
14849 
14850 	if (!loopback && ipif->ipif_addr_ready) {
14851 		/* Broadcast an address mask reply. */
14852 		ipif_mask_reply(ipif);
14853 	}
14854 	/* Perhaps ilgs should use this ill */
14855 	update_conn_ill(NULL, ill->ill_ipst);
14856 
14857 	/*
14858 	 * This had to be deferred until we had bound.  Tell routing sockets and
14859 	 * others that this interface is up if it looks like the address has
14860 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14861 	 * duplicate address detection to do its thing.
14862 	 */
14863 	if (ipif->ipif_addr_ready)
14864 		ipif_up_notify(ipif);
14865 	return (0);
14866 }
14867 
14868 /*
14869  * Add the IREs associated with the ipif.
14870  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14871  */
14872 static int
14873 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14874 {
14875 	ill_t		*ill = ipif->ipif_ill;
14876 	ip_stack_t	*ipst = ill->ill_ipst;
14877 	ire_t		*ire_array[20];
14878 	ire_t		**irep = ire_array;
14879 	ire_t		**irep1;
14880 	ipaddr_t	net_mask = 0;
14881 	ipaddr_t	subnet_mask, route_mask;
14882 	int		err;
14883 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14884 	ire_t		*ire_if = NULL;
14885 	uchar_t		*gw;
14886 
14887 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14888 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14889 		/*
14890 		 * If we're on a labeled system then make sure that zone-
14891 		 * private addresses have proper remote host database entries.
14892 		 */
14893 		if (is_system_labeled() &&
14894 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14895 		    !tsol_check_interface_address(ipif))
14896 			return (EINVAL);
14897 
14898 		/* Register the source address for __sin6_src_id */
14899 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14900 		    ipif->ipif_zoneid, ipst);
14901 		if (err != 0) {
14902 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14903 			return (err);
14904 		}
14905 
14906 		if (loopback)
14907 			gw = (uchar_t *)&ipif->ipif_lcl_addr;
14908 		else
14909 			gw = NULL;
14910 
14911 		/* If the interface address is set, create the local IRE. */
14912 		ire_local = ire_create(
14913 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14914 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14915 		    gw,					/* gateway */
14916 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14917 		    ipif->ipif_ill,
14918 		    ipif->ipif_zoneid,
14919 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14920 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14921 		    NULL,
14922 		    ipst);
14923 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14924 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14925 		    ipif->ipif_ire_type,
14926 		    ntohl(ipif->ipif_lcl_addr)));
14927 		if (ire_local == NULL) {
14928 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14929 			err = ENOMEM;
14930 			goto bad;
14931 		}
14932 	} else {
14933 		ip1dbg((
14934 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14935 		    ipif->ipif_ire_type,
14936 		    ntohl(ipif->ipif_lcl_addr),
14937 		    (uint_t)ipif->ipif_flags));
14938 	}
14939 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14940 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14941 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14942 	} else {
14943 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14944 	}
14945 
14946 	subnet_mask = ipif->ipif_net_mask;
14947 
14948 	/*
14949 	 * If mask was not specified, use natural netmask of
14950 	 * interface address. Also, store this mask back into the
14951 	 * ipif struct.
14952 	 */
14953 	if (subnet_mask == 0) {
14954 		subnet_mask = net_mask;
14955 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14956 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14957 		    ipif->ipif_v6subnet);
14958 	}
14959 
14960 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14961 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14962 	    ipif->ipif_subnet != INADDR_ANY) {
14963 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14964 
14965 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14966 			route_mask = IP_HOST_MASK;
14967 		} else {
14968 			route_mask = subnet_mask;
14969 		}
14970 
14971 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14972 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14973 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14974 		    ntohl(ipif->ipif_subnet)));
14975 		ire_if = ire_create(
14976 		    (uchar_t *)&ipif->ipif_subnet,
14977 		    (uchar_t *)&route_mask,
14978 		    (uchar_t *)&ipif->ipif_lcl_addr,
14979 		    ill->ill_net_type,
14980 		    ill,
14981 		    ipif->ipif_zoneid,
14982 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14983 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14984 		    NULL,
14985 		    ipst);
14986 		if (ire_if == NULL) {
14987 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14988 			err = ENOMEM;
14989 			goto bad;
14990 		}
14991 	}
14992 
14993 	/*
14994 	 * Create any necessary broadcast IREs.
14995 	 */
14996 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14997 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14998 		irep = ipif_create_bcast_ires(ipif, irep);
14999 
15000 	/* If an earlier ire_create failed, get out now */
15001 	for (irep1 = irep; irep1 > ire_array; ) {
15002 		irep1--;
15003 		if (*irep1 == NULL) {
15004 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15005 			err = ENOMEM;
15006 			goto bad;
15007 		}
15008 	}
15009 
15010 	/*
15011 	 * Need to atomically check for IP address availability under
15012 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
15013 	 * ills or new ipifs can be added while we are checking availability.
15014 	 */
15015 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15016 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
15017 	/* Mark it up, and increment counters. */
15018 	ipif->ipif_flags |= IPIF_UP;
15019 	ill->ill_ipif_up_count++;
15020 	err = ip_addr_availability_check(ipif);
15021 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
15022 	rw_exit(&ipst->ips_ill_g_lock);
15023 
15024 	if (err != 0) {
15025 		/*
15026 		 * Our address may already be up on the same ill. In this case,
15027 		 * the ARP entry for our ipif replaced the one for the other
15028 		 * ipif. So we don't want to delete it (otherwise the other ipif
15029 		 * would be unable to send packets).
15030 		 * ip_addr_availability_check() identifies this case for us and
15031 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15032 		 * which is the expected error code.
15033 		 */
15034 		ill->ill_ipif_up_count--;
15035 		ipif->ipif_flags &= ~IPIF_UP;
15036 		goto bad;
15037 	}
15038 
15039 	/*
15040 	 * Add in all newly created IREs.  ire_create_bcast() has
15041 	 * already checked for duplicates of the IRE_BROADCAST type.
15042 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15043 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15044 	 * a /32 route.
15045 	 */
15046 	if (ire_if != NULL) {
15047 		ire_if = ire_add(ire_if);
15048 		if (ire_if == NULL) {
15049 			err = ENOMEM;
15050 			goto bad2;
15051 		}
15052 #ifdef DEBUG
15053 		ire_refhold_notr(ire_if);
15054 		ire_refrele(ire_if);
15055 #endif
15056 	}
15057 	if (ire_local != NULL) {
15058 		ire_local = ire_add(ire_local);
15059 		if (ire_local == NULL) {
15060 			err = ENOMEM;
15061 			goto bad2;
15062 		}
15063 #ifdef DEBUG
15064 		ire_refhold_notr(ire_local);
15065 		ire_refrele(ire_local);
15066 #endif
15067 	}
15068 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15069 	if (ire_local != NULL)
15070 		ipif->ipif_ire_local = ire_local;
15071 	if (ire_if != NULL)
15072 		ipif->ipif_ire_if = ire_if;
15073 	rw_exit(&ipst->ips_ill_g_lock);
15074 	ire_local = NULL;
15075 	ire_if = NULL;
15076 
15077 	/*
15078 	 * We first add all of them, and if that succeeds we refrele the
15079 	 * bunch. That enables us to delete all of them should any of the
15080 	 * ire_adds fail.
15081 	 */
15082 	for (irep1 = irep; irep1 > ire_array; ) {
15083 		irep1--;
15084 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15085 		*irep1 = ire_add(*irep1);
15086 		if (*irep1 == NULL) {
15087 			err = ENOMEM;
15088 			goto bad2;
15089 		}
15090 	}
15091 
15092 	for (irep1 = irep; irep1 > ire_array; ) {
15093 		irep1--;
15094 		/* refheld by ire_add. */
15095 		if (*irep1 != NULL) {
15096 			ire_refrele(*irep1);
15097 			*irep1 = NULL;
15098 		}
15099 	}
15100 
15101 	if (!loopback) {
15102 		/*
15103 		 * If the broadcast address has been set, make sure it makes
15104 		 * sense based on the interface address.
15105 		 * Only match on ill since we are sharing broadcast addresses.
15106 		 */
15107 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15108 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
15109 			ire_t	*ire;
15110 
15111 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15112 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15113 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15114 
15115 			if (ire == NULL) {
15116 				/*
15117 				 * If there isn't a matching broadcast IRE,
15118 				 * revert to the default for this netmask.
15119 				 */
15120 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
15121 				mutex_enter(&ipif->ipif_ill->ill_lock);
15122 				ipif_set_default(ipif);
15123 				mutex_exit(&ipif->ipif_ill->ill_lock);
15124 			} else {
15125 				ire_refrele(ire);
15126 			}
15127 		}
15128 
15129 	}
15130 	return (0);
15131 
15132 bad2:
15133 	ill->ill_ipif_up_count--;
15134 	ipif->ipif_flags &= ~IPIF_UP;
15135 
15136 bad:
15137 	ip1dbg(("ipif_add_ires: FAILED \n"));
15138 	if (ire_local != NULL)
15139 		ire_delete(ire_local);
15140 	if (ire_if != NULL)
15141 		ire_delete(ire_if);
15142 
15143 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15144 	ire_local = ipif->ipif_ire_local;
15145 	ipif->ipif_ire_local = NULL;
15146 	ire_if = ipif->ipif_ire_if;
15147 	ipif->ipif_ire_if = NULL;
15148 	rw_exit(&ipst->ips_ill_g_lock);
15149 	if (ire_local != NULL) {
15150 		ire_delete(ire_local);
15151 		ire_refrele_notr(ire_local);
15152 	}
15153 	if (ire_if != NULL) {
15154 		ire_delete(ire_if);
15155 		ire_refrele_notr(ire_if);
15156 	}
15157 
15158 	while (irep > ire_array) {
15159 		irep--;
15160 		if (*irep != NULL) {
15161 			ire_delete(*irep);
15162 		}
15163 	}
15164 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15165 
15166 	return (err);
15167 }
15168 
15169 /* Remove all the IREs created by ipif_add_ires_v4 */
15170 void
15171 ipif_delete_ires_v4(ipif_t *ipif)
15172 {
15173 	ill_t		*ill = ipif->ipif_ill;
15174 	ip_stack_t	*ipst = ill->ill_ipst;
15175 	ire_t		*ire;
15176 
15177 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15178 	ire = ipif->ipif_ire_local;
15179 	ipif->ipif_ire_local = NULL;
15180 	rw_exit(&ipst->ips_ill_g_lock);
15181 	if (ire != NULL) {
15182 		/*
15183 		 * Move count to ipif so we don't loose the count due to
15184 		 * a down/up dance.
15185 		 */
15186 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15187 
15188 		ire_delete(ire);
15189 		ire_refrele_notr(ire);
15190 	}
15191 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15192 	ire = ipif->ipif_ire_if;
15193 	ipif->ipif_ire_if = NULL;
15194 	rw_exit(&ipst->ips_ill_g_lock);
15195 	if (ire != NULL) {
15196 		ire_delete(ire);
15197 		ire_refrele_notr(ire);
15198 	}
15199 
15200 	/*
15201 	 * Delete the broadcast IREs.
15202 	 */
15203 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15204 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15205 		ipif_delete_bcast_ires(ipif);
15206 }
15207 
15208 /*
15209  * Checks for availbility of a usable source address (if there is one) when the
15210  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15211  * this selection is done regardless of the destination.
15212  */
15213 boolean_t
15214 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15215     ip_stack_t *ipst)
15216 {
15217 	ipif_t		*ipif = NULL;
15218 	ill_t		*uill;
15219 
15220 	ASSERT(ifindex != 0);
15221 
15222 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15223 	if (uill == NULL)
15224 		return (B_FALSE);
15225 
15226 	mutex_enter(&uill->ill_lock);
15227 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15228 		if (IPIF_IS_CONDEMNED(ipif))
15229 			continue;
15230 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15231 			continue;
15232 		if (!(ipif->ipif_flags & IPIF_UP))
15233 			continue;
15234 		if (ipif->ipif_zoneid != zoneid)
15235 			continue;
15236 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15237 		    ipif->ipif_lcl_addr == INADDR_ANY)
15238 			continue;
15239 		mutex_exit(&uill->ill_lock);
15240 		ill_refrele(uill);
15241 		return (B_TRUE);
15242 	}
15243 	mutex_exit(&uill->ill_lock);
15244 	ill_refrele(uill);
15245 	return (B_FALSE);
15246 }
15247 
15248 /*
15249  * Find an ipif with a good local address on the ill+zoneid.
15250  */
15251 ipif_t *
15252 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15253 {
15254 	ipif_t		*ipif;
15255 
15256 	mutex_enter(&ill->ill_lock);
15257 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15258 		if (IPIF_IS_CONDEMNED(ipif))
15259 			continue;
15260 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15261 			continue;
15262 		if (!(ipif->ipif_flags & IPIF_UP))
15263 			continue;
15264 		if (ipif->ipif_zoneid != zoneid &&
15265 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15266 			continue;
15267 		if (ill->ill_isv6 ?
15268 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15269 		    ipif->ipif_lcl_addr == INADDR_ANY)
15270 			continue;
15271 		ipif_refhold_locked(ipif);
15272 		mutex_exit(&ill->ill_lock);
15273 		return (ipif);
15274 	}
15275 	mutex_exit(&ill->ill_lock);
15276 	return (NULL);
15277 }
15278 
15279 /*
15280  * IP source address type, sorted from worst to best.  For a given type,
15281  * always prefer IP addresses on the same subnet.  All-zones addresses are
15282  * suboptimal because they pose problems with unlabeled destinations.
15283  */
15284 typedef enum {
15285 	IPIF_NONE,
15286 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
15287 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
15288 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
15289 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
15290 	IPIF_DIFFNET,			/* normal and different subnet */
15291 	IPIF_SAMENET,			/* normal and same subnet */
15292 	IPIF_LOCALADDR			/* local loopback */
15293 } ipif_type_t;
15294 
15295 /*
15296  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15297  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
15298  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
15299  * the first one, unless IPMP is used in which case we round-robin among them;
15300  * see below for more.
15301  *
15302  * Returns NULL if there is no suitable source address for the ill.
15303  * This only occurs when there is no valid source address for the ill.
15304  */
15305 ipif_t *
15306 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15307     boolean_t allow_usesrc, boolean_t *notreadyp)
15308 {
15309 	ill_t	*usill = NULL;
15310 	ill_t	*ipmp_ill = NULL;
15311 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
15312 	ipif_type_t type, best_type;
15313 	tsol_tpc_t *src_rhtp, *dst_rhtp;
15314 	ip_stack_t *ipst = ill->ill_ipst;
15315 	boolean_t samenet;
15316 
15317 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15318 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15319 		    B_FALSE, ipst);
15320 		if (usill != NULL)
15321 			ill = usill;	/* Select source from usesrc ILL */
15322 		else
15323 			return (NULL);
15324 	}
15325 
15326 	/*
15327 	 * Test addresses should never be used for source address selection,
15328 	 * so if we were passed one, switch to the IPMP meta-interface.
15329 	 */
15330 	if (IS_UNDER_IPMP(ill)) {
15331 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15332 			ill = ipmp_ill;	/* Select source from IPMP ill */
15333 		else
15334 			return (NULL);
15335 	}
15336 
15337 	/*
15338 	 * If we're dealing with an unlabeled destination on a labeled system,
15339 	 * make sure that we ignore source addresses that are incompatible with
15340 	 * the destination's default label.  That destination's default label
15341 	 * must dominate the minimum label on the source address.
15342 	 */
15343 	dst_rhtp = NULL;
15344 	if (is_system_labeled()) {
15345 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15346 		if (dst_rhtp == NULL)
15347 			return (NULL);
15348 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15349 			TPC_RELE(dst_rhtp);
15350 			dst_rhtp = NULL;
15351 		}
15352 	}
15353 
15354 	/*
15355 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15356 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15357 	 * After selecting the right ipif, under ill_lock make sure ipif is
15358 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15359 	 * we retry. Inside the loop we still need to check for CONDEMNED,
15360 	 * but not under a lock.
15361 	 */
15362 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15363 retry:
15364 	/*
15365 	 * For source address selection, we treat the ipif list as circular
15366 	 * and continue until we get back to where we started.  This allows
15367 	 * IPMP to vary source address selection (which improves inbound load
15368 	 * spreading) by caching its last ending point and starting from
15369 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
15370 	 * ills since that can't happen on the IPMP ill.
15371 	 */
15372 	start_ipif = ill->ill_ipif;
15373 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15374 		start_ipif = ill->ill_src_ipif;
15375 
15376 	ipif = start_ipif;
15377 	best_ipif = NULL;
15378 	best_type = IPIF_NONE;
15379 	do {
15380 		if ((next_ipif = ipif->ipif_next) == NULL)
15381 			next_ipif = ill->ill_ipif;
15382 
15383 		if (IPIF_IS_CONDEMNED(ipif))
15384 			continue;
15385 		/* Always skip NOLOCAL and ANYCAST interfaces */
15386 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15387 			continue;
15388 		/* Always skip NOACCEPT interfaces */
15389 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15390 			continue;
15391 		if (!(ipif->ipif_flags & IPIF_UP))
15392 			continue;
15393 
15394 		if (!ipif->ipif_addr_ready) {
15395 			if (notreadyp != NULL)
15396 				*notreadyp = B_TRUE;
15397 			continue;
15398 		}
15399 
15400 		if (zoneid != ALL_ZONES &&
15401 		    ipif->ipif_zoneid != zoneid &&
15402 		    ipif->ipif_zoneid != ALL_ZONES)
15403 			continue;
15404 
15405 		/*
15406 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15407 		 * are not valid as source addresses.
15408 		 */
15409 		if (ipif->ipif_lcl_addr == INADDR_ANY)
15410 			continue;
15411 
15412 		/*
15413 		 * Check compatibility of local address for destination's
15414 		 * default label if we're on a labeled system.	Incompatible
15415 		 * addresses can't be used at all.
15416 		 */
15417 		if (dst_rhtp != NULL) {
15418 			boolean_t incompat;
15419 
15420 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15421 			    IPV4_VERSION, B_FALSE);
15422 			if (src_rhtp == NULL)
15423 				continue;
15424 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15425 			    src_rhtp->tpc_tp.tp_doi !=
15426 			    dst_rhtp->tpc_tp.tp_doi ||
15427 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15428 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15429 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15430 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
15431 			TPC_RELE(src_rhtp);
15432 			if (incompat)
15433 				continue;
15434 		}
15435 
15436 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15437 
15438 		if (ipif->ipif_lcl_addr == dst) {
15439 			type = IPIF_LOCALADDR;
15440 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15441 			type = samenet ? IPIF_SAMENET_DEPRECATED :
15442 			    IPIF_DIFFNET_DEPRECATED;
15443 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
15444 			type = samenet ? IPIF_SAMENET_ALLZONES :
15445 			    IPIF_DIFFNET_ALLZONES;
15446 		} else {
15447 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15448 		}
15449 
15450 		if (type > best_type) {
15451 			best_type = type;
15452 			best_ipif = ipif;
15453 			if (best_type == IPIF_LOCALADDR)
15454 				break; /* can't get better */
15455 		}
15456 	} while ((ipif = next_ipif) != start_ipif);
15457 
15458 	if ((ipif = best_ipif) != NULL) {
15459 		mutex_enter(&ipif->ipif_ill->ill_lock);
15460 		if (IPIF_IS_CONDEMNED(ipif)) {
15461 			mutex_exit(&ipif->ipif_ill->ill_lock);
15462 			goto retry;
15463 		}
15464 		ipif_refhold_locked(ipif);
15465 
15466 		/*
15467 		 * For IPMP, update the source ipif rotor to the next ipif,
15468 		 * provided we can look it up.  (We must not use it if it's
15469 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15470 		 * ipif_free() checked ill_src_ipif.)
15471 		 */
15472 		if (IS_IPMP(ill) && ipif != NULL) {
15473 			next_ipif = ipif->ipif_next;
15474 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15475 				ill->ill_src_ipif = next_ipif;
15476 			else
15477 				ill->ill_src_ipif = NULL;
15478 		}
15479 		mutex_exit(&ipif->ipif_ill->ill_lock);
15480 	}
15481 
15482 	rw_exit(&ipst->ips_ill_g_lock);
15483 	if (usill != NULL)
15484 		ill_refrele(usill);
15485 	if (ipmp_ill != NULL)
15486 		ill_refrele(ipmp_ill);
15487 	if (dst_rhtp != NULL)
15488 		TPC_RELE(dst_rhtp);
15489 
15490 #ifdef DEBUG
15491 	if (ipif == NULL) {
15492 		char buf1[INET6_ADDRSTRLEN];
15493 
15494 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15495 		    ill->ill_name,
15496 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15497 	} else {
15498 		char buf1[INET6_ADDRSTRLEN];
15499 		char buf2[INET6_ADDRSTRLEN];
15500 
15501 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15502 		    ipif->ipif_ill->ill_name,
15503 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15504 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15505 		    buf2, sizeof (buf2))));
15506 	}
15507 #endif /* DEBUG */
15508 	return (ipif);
15509 }
15510 
15511 /*
15512  * Pick a source address based on the destination ill and an optional setsrc
15513  * address.
15514  * The result is stored in srcp. If generation is set, then put the source
15515  * generation number there before we look for the source address (to avoid
15516  * missing changes in the set of source addresses.
15517  * If flagsp is set, then us it to pass back ipif_flags.
15518  *
15519  * If the caller wants to cache the returned source address and detect when
15520  * that might be stale, the caller should pass in a generation argument,
15521  * which the caller can later compare against ips_src_generation
15522  *
15523  * The precedence order for selecting an IPv4 source address is:
15524  *  - RTF_SETSRC on the offlink ire always wins.
15525  *  - If usrsrc is set, swap the ill to be the usesrc one.
15526  *  - If IPMP is used on the ill, select a random address from the most
15527  *    preferred ones below:
15528  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15529  * 2. Not deprecated, not ALL_ZONES
15530  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15531  * 4. Not deprecated, ALL_ZONES
15532  * 5. If onlink destination, same subnet and deprecated
15533  * 6. Deprecated.
15534  *
15535  * We have lower preference for ALL_ZONES IP addresses,
15536  * as they pose problems with unlabeled destinations.
15537  *
15538  * Note that when multiple IP addresses match e.g., #1 we pick
15539  * the first one if IPMP is not in use. With IPMP we randomize.
15540  */
15541 int
15542 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15543     ipaddr_t multicast_ifaddr,
15544     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15545     uint32_t *generation, uint64_t *flagsp)
15546 {
15547 	ipif_t *ipif;
15548 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15549 
15550 	if (flagsp != NULL)
15551 		*flagsp = 0;
15552 
15553 	/*
15554 	 * Need to grab the generation number before we check to
15555 	 * avoid a race with a change to the set of local addresses.
15556 	 * No lock needed since the thread which updates the set of local
15557 	 * addresses use ipif/ill locks and exit those (hence a store memory
15558 	 * barrier) before doing the atomic increase of ips_src_generation.
15559 	 */
15560 	if (generation != NULL) {
15561 		*generation = ipst->ips_src_generation;
15562 	}
15563 
15564 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15565 		*srcp = multicast_ifaddr;
15566 		return (0);
15567 	}
15568 
15569 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15570 	if (setsrc != INADDR_ANY) {
15571 		*srcp = setsrc;
15572 		return (0);
15573 	}
15574 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15575 	if (ipif == NULL) {
15576 		if (notready)
15577 			return (ENETDOWN);
15578 		else
15579 			return (EADDRNOTAVAIL);
15580 	}
15581 	*srcp = ipif->ipif_lcl_addr;
15582 	if (flagsp != NULL)
15583 		*flagsp = ipif->ipif_flags;
15584 	ipif_refrele(ipif);
15585 	return (0);
15586 }
15587 
15588 /* ARGSUSED */
15589 int
15590 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15591 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15592 {
15593 	/*
15594 	 * ill_phyint_reinit merged the v4 and v6 into a single
15595 	 * ipsq.  We might not have been able to complete the
15596 	 * operation in ipif_set_values, if we could not become
15597 	 * exclusive.  If so restart it here.
15598 	 */
15599 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15600 }
15601 
15602 /*
15603  * Can operate on either a module or a driver queue.
15604  * Returns an error if not a module queue.
15605  */
15606 /* ARGSUSED */
15607 int
15608 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15609     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15610 {
15611 	queue_t		*q1 = q;
15612 	char 		*cp;
15613 	char		interf_name[LIFNAMSIZ];
15614 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15615 
15616 	if (q->q_next == NULL) {
15617 		ip1dbg((
15618 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15619 		return (EINVAL);
15620 	}
15621 
15622 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15623 		return (EALREADY);
15624 
15625 	do {
15626 		q1 = q1->q_next;
15627 	} while (q1->q_next);
15628 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15629 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15630 
15631 	/*
15632 	 * Here we are not going to delay the ioack until after
15633 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15634 	 * original ioctl message before sending the requests.
15635 	 */
15636 	return (ipif_set_values(q, mp, interf_name, &ppa));
15637 }
15638 
15639 /* ARGSUSED */
15640 int
15641 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15642     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15643 {
15644 	return (ENXIO);
15645 }
15646 
15647 /*
15648  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15649  * `irep'.  Returns a pointer to the next free `irep' entry
15650  * A mirror exists in ipif_delete_bcast_ires().
15651  *
15652  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15653  * done in ire_add.
15654  */
15655 static ire_t **
15656 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15657 {
15658 	ipaddr_t addr;
15659 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15660 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15661 	ill_t *ill = ipif->ipif_ill;
15662 	zoneid_t zoneid = ipif->ipif_zoneid;
15663 
15664 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15665 
15666 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15667 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15668 
15669 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15670 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15671 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15672 
15673 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15674 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15675 
15676 	/*
15677 	 * For backward compatibility, we create net broadcast IREs based on
15678 	 * the old "IP address class system", since some old machines only
15679 	 * respond to these class derived net broadcast.  However, we must not
15680 	 * create these net broadcast IREs if the subnetmask is shorter than
15681 	 * the IP address class based derived netmask.  Otherwise, we may
15682 	 * create a net broadcast address which is the same as an IP address
15683 	 * on the subnet -- and then TCP will refuse to talk to that address.
15684 	 */
15685 	if (netmask < subnetmask) {
15686 		addr = netmask & ipif->ipif_subnet;
15687 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15688 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15689 	}
15690 
15691 	/*
15692 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15693 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15694 	 * created.  Creating these broadcast IREs will only create confusion
15695 	 * as `addr' will be the same as the IP address.
15696 	 */
15697 	if (subnetmask != 0xFFFFFFFF) {
15698 		addr = ipif->ipif_subnet;
15699 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15700 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15701 	}
15702 
15703 	return (irep);
15704 }
15705 
15706 /*
15707  * Mirror of ipif_create_bcast_ires()
15708  */
15709 static void
15710 ipif_delete_bcast_ires(ipif_t *ipif)
15711 {
15712 	ipaddr_t	addr;
15713 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15714 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15715 	ill_t		*ill = ipif->ipif_ill;
15716 	zoneid_t	zoneid = ipif->ipif_zoneid;
15717 	ire_t		*ire;
15718 
15719 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15720 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15721 
15722 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15723 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15724 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15725 
15726 	ire = ire_lookup_bcast(ill, 0, zoneid);
15727 	ASSERT(ire != NULL);
15728 	ire_delete(ire); ire_refrele(ire);
15729 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15730 	ASSERT(ire != NULL);
15731 	ire_delete(ire); ire_refrele(ire);
15732 
15733 	/*
15734 	 * For backward compatibility, we create net broadcast IREs based on
15735 	 * the old "IP address class system", since some old machines only
15736 	 * respond to these class derived net broadcast.  However, we must not
15737 	 * create these net broadcast IREs if the subnetmask is shorter than
15738 	 * the IP address class based derived netmask.  Otherwise, we may
15739 	 * create a net broadcast address which is the same as an IP address
15740 	 * on the subnet -- and then TCP will refuse to talk to that address.
15741 	 */
15742 	if (netmask < subnetmask) {
15743 		addr = netmask & ipif->ipif_subnet;
15744 		ire = ire_lookup_bcast(ill, addr, zoneid);
15745 		ASSERT(ire != NULL);
15746 		ire_delete(ire); ire_refrele(ire);
15747 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15748 		ASSERT(ire != NULL);
15749 		ire_delete(ire); ire_refrele(ire);
15750 	}
15751 
15752 	/*
15753 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15754 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15755 	 * created.  Creating these broadcast IREs will only create confusion
15756 	 * as `addr' will be the same as the IP address.
15757 	 */
15758 	if (subnetmask != 0xFFFFFFFF) {
15759 		addr = ipif->ipif_subnet;
15760 		ire = ire_lookup_bcast(ill, addr, zoneid);
15761 		ASSERT(ire != NULL);
15762 		ire_delete(ire); ire_refrele(ire);
15763 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15764 		ASSERT(ire != NULL);
15765 		ire_delete(ire); ire_refrele(ire);
15766 	}
15767 }
15768 
15769 /*
15770  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15771  * from lifr_flags and the name from lifr_name.
15772  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15773  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15774  * Returns EINPROGRESS when mp has been consumed by queueing it on
15775  * ipx_pending_mp and the ioctl will complete in ip_rput.
15776  *
15777  * Can operate on either a module or a driver queue.
15778  * Returns an error if not a module queue.
15779  */
15780 /* ARGSUSED */
15781 int
15782 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15783     ip_ioctl_cmd_t *ipip, void *if_req)
15784 {
15785 	ill_t	*ill = q->q_ptr;
15786 	phyint_t *phyi;
15787 	ip_stack_t *ipst;
15788 	struct lifreq *lifr = if_req;
15789 	uint64_t new_flags;
15790 
15791 	ASSERT(ipif != NULL);
15792 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15793 
15794 	if (q->q_next == NULL) {
15795 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15796 		return (EINVAL);
15797 	}
15798 
15799 	/*
15800 	 * If we are not writer on 'q' then this interface exists already
15801 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15802 	 * so return EALREADY.
15803 	 */
15804 	if (ill != ipif->ipif_ill)
15805 		return (EALREADY);
15806 
15807 	if (ill->ill_name[0] != '\0')
15808 		return (EALREADY);
15809 
15810 	/*
15811 	 * If there's another ill already with the requested name, ensure
15812 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15813 	 * fuse together two unrelated ills, which will cause chaos.
15814 	 */
15815 	ipst = ill->ill_ipst;
15816 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15817 	    lifr->lifr_name, NULL);
15818 	if (phyi != NULL) {
15819 		ill_t *ill_mate = phyi->phyint_illv4;
15820 
15821 		if (ill_mate == NULL)
15822 			ill_mate = phyi->phyint_illv6;
15823 		ASSERT(ill_mate != NULL);
15824 
15825 		if (ill_mate->ill_media->ip_m_mac_type !=
15826 		    ill->ill_media->ip_m_mac_type) {
15827 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15828 			    "use the same ill name on differing media\n"));
15829 			return (EINVAL);
15830 		}
15831 	}
15832 
15833 	/*
15834 	 * We start off as IFF_IPV4 in ipif_allocate and become
15835 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15836 	 * The only flags that we read from user space are IFF_IPV4,
15837 	 * IFF_IPV6, and IFF_BROADCAST.
15838 	 *
15839 	 * This ill has not been inserted into the global list.
15840 	 * So we are still single threaded and don't need any lock
15841 	 *
15842 	 * Saniy check the flags.
15843 	 */
15844 
15845 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15846 	    ((lifr->lifr_flags & IFF_IPV6) ||
15847 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15848 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15849 		    "or IPv6 i.e., no broadcast \n"));
15850 		return (EINVAL);
15851 	}
15852 
15853 	new_flags =
15854 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15855 
15856 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15857 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15858 		    "IFF_IPV4 or IFF_IPV6\n"));
15859 		return (EINVAL);
15860 	}
15861 
15862 	/*
15863 	 * We always start off as IPv4, so only need to check for IPv6.
15864 	 */
15865 	if ((new_flags & IFF_IPV6) != 0) {
15866 		ill->ill_flags |= ILLF_IPV6;
15867 		ill->ill_flags &= ~ILLF_IPV4;
15868 
15869 		if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15870 			ill->ill_flags |= ILLF_NOLINKLOCAL;
15871 	}
15872 
15873 	if ((new_flags & IFF_BROADCAST) != 0)
15874 		ipif->ipif_flags |= IPIF_BROADCAST;
15875 	else
15876 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15877 
15878 	/* We started off as V4. */
15879 	if (ill->ill_flags & ILLF_IPV6) {
15880 		ill->ill_phyint->phyint_illv6 = ill;
15881 		ill->ill_phyint->phyint_illv4 = NULL;
15882 	}
15883 
15884 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15885 }
15886 
15887 /* ARGSUSED */
15888 int
15889 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15890     ip_ioctl_cmd_t *ipip, void *if_req)
15891 {
15892 	/*
15893 	 * ill_phyint_reinit merged the v4 and v6 into a single
15894 	 * ipsq.  We might not have been able to complete the
15895 	 * slifname in ipif_set_values, if we could not become
15896 	 * exclusive.  If so restart it here
15897 	 */
15898 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15899 }
15900 
15901 /*
15902  * Return a pointer to the ipif which matches the index, IP version type and
15903  * zoneid.
15904  */
15905 ipif_t *
15906 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15907     ip_stack_t *ipst)
15908 {
15909 	ill_t	*ill;
15910 	ipif_t	*ipif = NULL;
15911 
15912 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15913 	if (ill != NULL) {
15914 		mutex_enter(&ill->ill_lock);
15915 		for (ipif = ill->ill_ipif; ipif != NULL;
15916 		    ipif = ipif->ipif_next) {
15917 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15918 			    zoneid == ipif->ipif_zoneid ||
15919 			    ipif->ipif_zoneid == ALL_ZONES)) {
15920 				ipif_refhold_locked(ipif);
15921 				break;
15922 			}
15923 		}
15924 		mutex_exit(&ill->ill_lock);
15925 		ill_refrele(ill);
15926 	}
15927 	return (ipif);
15928 }
15929 
15930 /*
15931  * Change an existing physical interface's index. If the new index
15932  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15933  * Finally, we update other systems which may have a dependence on the
15934  * index value.
15935  */
15936 /* ARGSUSED */
15937 int
15938 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15939     ip_ioctl_cmd_t *ipip, void *ifreq)
15940 {
15941 	ill_t		*ill;
15942 	phyint_t	*phyi;
15943 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15944 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15945 	uint_t	old_index, index;
15946 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15947 	avl_index_t	where;
15948 
15949 	if (ipip->ipi_cmd_type == IF_CMD)
15950 		index = ifr->ifr_index;
15951 	else
15952 		index = lifr->lifr_index;
15953 
15954 	/*
15955 	 * Only allow on physical interface. Also, index zero is illegal.
15956 	 */
15957 	ill = ipif->ipif_ill;
15958 	phyi = ill->ill_phyint;
15959 	if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15960 		return (EINVAL);
15961 	}
15962 
15963 	/* If the index is not changing, no work to do */
15964 	if (phyi->phyint_ifindex == index)
15965 		return (0);
15966 
15967 	/*
15968 	 * Use phyint_exists() to determine if the new interface index
15969 	 * is already in use. If the index is unused then we need to
15970 	 * change the phyint's position in the phyint_list_avl_by_index
15971 	 * tree. If we do not do this, subsequent lookups (using the new
15972 	 * index value) will not find the phyint.
15973 	 */
15974 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15975 	if (phyint_exists(index, ipst)) {
15976 		rw_exit(&ipst->ips_ill_g_lock);
15977 		return (EEXIST);
15978 	}
15979 
15980 	/*
15981 	 * The new index is unused. Set it in the phyint. However we must not
15982 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15983 	 * changes. The event must be bound to old ifindex value.
15984 	 */
15985 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15986 	    &index, sizeof (index));
15987 
15988 	old_index = phyi->phyint_ifindex;
15989 	phyi->phyint_ifindex = index;
15990 
15991 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15992 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15993 	    &index, &where);
15994 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15995 	    phyi, where);
15996 	rw_exit(&ipst->ips_ill_g_lock);
15997 
15998 	/* Update SCTP's ILL list */
15999 	sctp_ill_reindex(ill, old_index);
16000 
16001 	/* Send the routing sockets message */
16002 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16003 	if (ILL_OTHER(ill))
16004 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16005 
16006 	/* Perhaps ilgs should use this ill */
16007 	update_conn_ill(NULL, ill->ill_ipst);
16008 	return (0);
16009 }
16010 
16011 /* ARGSUSED */
16012 int
16013 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16014     ip_ioctl_cmd_t *ipip, void *ifreq)
16015 {
16016 	struct ifreq	*ifr = (struct ifreq *)ifreq;
16017 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16018 
16019 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16020 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16021 	/* Get the interface index */
16022 	if (ipip->ipi_cmd_type == IF_CMD) {
16023 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16024 	} else {
16025 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16026 	}
16027 	return (0);
16028 }
16029 
16030 /* ARGSUSED */
16031 int
16032 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16033     ip_ioctl_cmd_t *ipip, void *ifreq)
16034 {
16035 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16036 
16037 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16038 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16039 	/* Get the interface zone */
16040 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16041 	lifr->lifr_zoneid = ipif->ipif_zoneid;
16042 	return (0);
16043 }
16044 
16045 /*
16046  * Set the zoneid of an interface.
16047  */
16048 /* ARGSUSED */
16049 int
16050 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16051     ip_ioctl_cmd_t *ipip, void *ifreq)
16052 {
16053 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16054 	int err = 0;
16055 	boolean_t need_up = B_FALSE;
16056 	zone_t *zptr;
16057 	zone_status_t status;
16058 	zoneid_t zoneid;
16059 
16060 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16061 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16062 		if (!is_system_labeled())
16063 			return (ENOTSUP);
16064 		zoneid = GLOBAL_ZONEID;
16065 	}
16066 
16067 	/* cannot assign instance zero to a non-global zone */
16068 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16069 		return (ENOTSUP);
16070 
16071 	/*
16072 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
16073 	 * the event of a race with the zone shutdown processing, since IP
16074 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16075 	 * interface will be cleaned up even if the zone is shut down
16076 	 * immediately after the status check. If the interface can't be brought
16077 	 * down right away, and the zone is shut down before the restart
16078 	 * function is called, we resolve the possible races by rechecking the
16079 	 * zone status in the restart function.
16080 	 */
16081 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
16082 		return (EINVAL);
16083 	status = zone_status_get(zptr);
16084 	zone_rele(zptr);
16085 
16086 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16087 		return (EINVAL);
16088 
16089 	if (ipif->ipif_flags & IPIF_UP) {
16090 		/*
16091 		 * If the interface is already marked up,
16092 		 * we call ipif_down which will take care
16093 		 * of ditching any IREs that have been set
16094 		 * up based on the old interface address.
16095 		 */
16096 		err = ipif_logical_down(ipif, q, mp);
16097 		if (err == EINPROGRESS)
16098 			return (err);
16099 		(void) ipif_down_tail(ipif);
16100 		need_up = B_TRUE;
16101 	}
16102 
16103 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16104 	return (err);
16105 }
16106 
16107 static int
16108 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16109     queue_t *q, mblk_t *mp, boolean_t need_up)
16110 {
16111 	int	err = 0;
16112 	ip_stack_t	*ipst;
16113 
16114 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16115 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16116 
16117 	if (CONN_Q(q))
16118 		ipst = CONNQ_TO_IPST(q);
16119 	else
16120 		ipst = ILLQ_TO_IPST(q);
16121 
16122 	/*
16123 	 * For exclusive stacks we don't allow a different zoneid than
16124 	 * global.
16125 	 */
16126 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16127 	    zoneid != GLOBAL_ZONEID)
16128 		return (EINVAL);
16129 
16130 	/* Set the new zone id. */
16131 	ipif->ipif_zoneid = zoneid;
16132 
16133 	/* Update sctp list */
16134 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16135 
16136 	/* The default multicast interface might have changed */
16137 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16138 
16139 	if (need_up) {
16140 		/*
16141 		 * Now bring the interface back up.  If this
16142 		 * is the only IPIF for the ILL, ipif_up
16143 		 * will have to re-bind to the device, so
16144 		 * we may get back EINPROGRESS, in which
16145 		 * case, this IOCTL will get completed in
16146 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
16147 		 */
16148 		err = ipif_up(ipif, q, mp);
16149 	}
16150 	return (err);
16151 }
16152 
16153 /* ARGSUSED */
16154 int
16155 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16156     ip_ioctl_cmd_t *ipip, void *if_req)
16157 {
16158 	struct lifreq *lifr = (struct lifreq *)if_req;
16159 	zoneid_t zoneid;
16160 	zone_t *zptr;
16161 	zone_status_t status;
16162 
16163 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16164 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16165 		zoneid = GLOBAL_ZONEID;
16166 
16167 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16168 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16169 
16170 	/*
16171 	 * We recheck the zone status to resolve the following race condition:
16172 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16173 	 * 2) hme0:1 is up and can't be brought down right away;
16174 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16175 	 * 3) zone "myzone" is halted; the zone status switches to
16176 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16177 	 * the interfaces to remove - hme0:1 is not returned because it's not
16178 	 * yet in "myzone", so it won't be removed;
16179 	 * 4) the restart function for SIOCSLIFZONE is called; without the
16180 	 * status check here, we would have hme0:1 in "myzone" after it's been
16181 	 * destroyed.
16182 	 * Note that if the status check fails, we need to bring the interface
16183 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16184 	 * ipif_up_done[_v6]().
16185 	 */
16186 	status = ZONE_IS_UNINITIALIZED;
16187 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16188 		status = zone_status_get(zptr);
16189 		zone_rele(zptr);
16190 	}
16191 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16192 		if (ipif->ipif_isv6) {
16193 			(void) ipif_up_done_v6(ipif);
16194 		} else {
16195 			(void) ipif_up_done(ipif);
16196 		}
16197 		return (EINVAL);
16198 	}
16199 
16200 	(void) ipif_down_tail(ipif);
16201 
16202 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16203 	    B_TRUE));
16204 }
16205 
16206 /*
16207  * Return the number of addresses on `ill' with one or more of the values
16208  * in `set' set and all of the values in `clear' clear.
16209  */
16210 static uint_t
16211 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16212 {
16213 	ipif_t	*ipif;
16214 	uint_t	cnt = 0;
16215 
16216 	ASSERT(IAM_WRITER_ILL(ill));
16217 
16218 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16219 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16220 			cnt++;
16221 
16222 	return (cnt);
16223 }
16224 
16225 /*
16226  * Return the number of migratable addresses on `ill' that are under
16227  * application control.
16228  */
16229 uint_t
16230 ill_appaddr_cnt(const ill_t *ill)
16231 {
16232 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16233 	    IPIF_NOFAILOVER));
16234 }
16235 
16236 /*
16237  * Return the number of point-to-point addresses on `ill'.
16238  */
16239 uint_t
16240 ill_ptpaddr_cnt(const ill_t *ill)
16241 {
16242 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16243 }
16244 
16245 /* ARGSUSED */
16246 int
16247 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16248 	ip_ioctl_cmd_t *ipip, void *ifreq)
16249 {
16250 	struct lifreq	*lifr = ifreq;
16251 
16252 	ASSERT(q->q_next == NULL);
16253 	ASSERT(CONN_Q(q));
16254 
16255 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16256 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16257 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16258 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16259 
16260 	return (0);
16261 }
16262 
16263 /* Find the previous ILL in this usesrc group */
16264 static ill_t *
16265 ill_prev_usesrc(ill_t *uill)
16266 {
16267 	ill_t *ill;
16268 
16269 	for (ill = uill->ill_usesrc_grp_next;
16270 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16271 	    ill = ill->ill_usesrc_grp_next)
16272 		/* do nothing */;
16273 	return (ill);
16274 }
16275 
16276 /*
16277  * Release all members of the usesrc group. This routine is called
16278  * from ill_delete when the interface being unplumbed is the
16279  * group head.
16280  *
16281  * This silently clears the usesrc that ifconfig setup.
16282  * An alternative would be to keep that ifindex, and drop packets on the floor
16283  * since no source address can be selected.
16284  * Even if we keep the current semantics, don't need a lock and a linked list.
16285  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16286  * the one that is being removed. Issue is how we return the usesrc users
16287  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16288  * ill_usesrc_ifindex matching a target ill. We could also do that with an
16289  * ill walk, but the walker would need to insert in the ioctl response.
16290  */
16291 static void
16292 ill_disband_usesrc_group(ill_t *uill)
16293 {
16294 	ill_t *next_ill, *tmp_ill;
16295 	ip_stack_t	*ipst = uill->ill_ipst;
16296 
16297 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16298 	next_ill = uill->ill_usesrc_grp_next;
16299 
16300 	do {
16301 		ASSERT(next_ill != NULL);
16302 		tmp_ill = next_ill->ill_usesrc_grp_next;
16303 		ASSERT(tmp_ill != NULL);
16304 		next_ill->ill_usesrc_grp_next = NULL;
16305 		next_ill->ill_usesrc_ifindex = 0;
16306 		next_ill = tmp_ill;
16307 	} while (next_ill->ill_usesrc_ifindex != 0);
16308 	uill->ill_usesrc_grp_next = NULL;
16309 }
16310 
16311 /*
16312  * Remove the client usesrc ILL from the list and relink to a new list
16313  */
16314 int
16315 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16316 {
16317 	ill_t *ill, *tmp_ill;
16318 	ip_stack_t	*ipst = ucill->ill_ipst;
16319 
16320 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16321 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16322 
16323 	/*
16324 	 * Check if the usesrc client ILL passed in is not already
16325 	 * in use as a usesrc ILL i.e one whose source address is
16326 	 * in use OR a usesrc ILL is not already in use as a usesrc
16327 	 * client ILL
16328 	 */
16329 	if ((ucill->ill_usesrc_ifindex == 0) ||
16330 	    (uill->ill_usesrc_ifindex != 0)) {
16331 		return (-1);
16332 	}
16333 
16334 	ill = ill_prev_usesrc(ucill);
16335 	ASSERT(ill->ill_usesrc_grp_next != NULL);
16336 
16337 	/* Remove from the current list */
16338 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16339 		/* Only two elements in the list */
16340 		ASSERT(ill->ill_usesrc_ifindex == 0);
16341 		ill->ill_usesrc_grp_next = NULL;
16342 	} else {
16343 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16344 	}
16345 
16346 	if (ifindex == 0) {
16347 		ucill->ill_usesrc_ifindex = 0;
16348 		ucill->ill_usesrc_grp_next = NULL;
16349 		return (0);
16350 	}
16351 
16352 	ucill->ill_usesrc_ifindex = ifindex;
16353 	tmp_ill = uill->ill_usesrc_grp_next;
16354 	uill->ill_usesrc_grp_next = ucill;
16355 	ucill->ill_usesrc_grp_next =
16356 	    (tmp_ill != NULL) ? tmp_ill : uill;
16357 	return (0);
16358 }
16359 
16360 /*
16361  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16362  * ip.c for locking details.
16363  */
16364 /* ARGSUSED */
16365 int
16366 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16367     ip_ioctl_cmd_t *ipip, void *ifreq)
16368 {
16369 	struct lifreq *lifr = (struct lifreq *)ifreq;
16370 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16371 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16372 	int err = 0, ret;
16373 	uint_t ifindex;
16374 	ipsq_t *ipsq = NULL;
16375 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16376 
16377 	ASSERT(IAM_WRITER_IPIF(ipif));
16378 	ASSERT(q->q_next == NULL);
16379 	ASSERT(CONN_Q(q));
16380 
16381 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16382 
16383 	ifindex = lifr->lifr_index;
16384 	if (ifindex == 0) {
16385 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16386 			/* non usesrc group interface, nothing to reset */
16387 			return (0);
16388 		}
16389 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16390 		/* valid reset request */
16391 		reset_flg = B_TRUE;
16392 	}
16393 
16394 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16395 	if (usesrc_ill == NULL)
16396 		return (ENXIO);
16397 	if (usesrc_ill == ipif->ipif_ill) {
16398 		ill_refrele(usesrc_ill);
16399 		return (EINVAL);
16400 	}
16401 
16402 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16403 	    NEW_OP, B_TRUE);
16404 	if (ipsq == NULL) {
16405 		err = EINPROGRESS;
16406 		/* Operation enqueued on the ipsq of the usesrc ILL */
16407 		goto done;
16408 	}
16409 
16410 	/* USESRC isn't currently supported with IPMP */
16411 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16412 		err = ENOTSUP;
16413 		goto done;
16414 	}
16415 
16416 	/*
16417 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
16418 	 * used by IPMP underlying interfaces, but someone might think it's
16419 	 * more general and try to use it independently with VNI.)
16420 	 */
16421 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16422 		err = ENOTSUP;
16423 		goto done;
16424 	}
16425 
16426 	/*
16427 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16428 	 * already a client then return EINVAL
16429 	 */
16430 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16431 		err = EINVAL;
16432 		goto done;
16433 	}
16434 
16435 	/*
16436 	 * If the ill_usesrc_ifindex field is already set to what it needs to
16437 	 * be then this is a duplicate operation.
16438 	 */
16439 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16440 		err = 0;
16441 		goto done;
16442 	}
16443 
16444 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16445 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16446 	    usesrc_ill->ill_isv6));
16447 
16448 	/*
16449 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16450 	 * and the ill_usesrc_ifindex fields
16451 	 */
16452 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16453 
16454 	if (reset_flg) {
16455 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16456 		if (ret != 0) {
16457 			err = EINVAL;
16458 		}
16459 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
16460 		goto done;
16461 	}
16462 
16463 	/*
16464 	 * Four possibilities to consider:
16465 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16466 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16467 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16468 	 * 4. Both are part of their respective usesrc groups
16469 	 */
16470 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16471 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16472 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16473 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16474 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16475 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16476 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16477 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16478 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16479 		/* Insert at head of list */
16480 		usesrc_cli_ill->ill_usesrc_grp_next =
16481 		    usesrc_ill->ill_usesrc_grp_next;
16482 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16483 	} else {
16484 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16485 		    ifindex);
16486 		if (ret != 0)
16487 			err = EINVAL;
16488 	}
16489 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
16490 
16491 done:
16492 	if (ipsq != NULL)
16493 		ipsq_exit(ipsq);
16494 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16495 	ill_refrele(usesrc_ill);
16496 
16497 	/* Let conn_ixa caching know that source address selection changed */
16498 	ip_update_source_selection(ipst);
16499 
16500 	return (err);
16501 }
16502 
16503 /* ARGSUSED */
16504 int
16505 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16506     ip_ioctl_cmd_t *ipip, void *if_req)
16507 {
16508 	struct lifreq	*lifr = (struct lifreq *)if_req;
16509 	ill_t		*ill = ipif->ipif_ill;
16510 
16511 	/*
16512 	 * Need a lock since IFF_UP can be set even when there are
16513 	 * references to the ipif.
16514 	 */
16515 	mutex_enter(&ill->ill_lock);
16516 	if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16517 		lifr->lifr_dadstate = DAD_IN_PROGRESS;
16518 	else
16519 		lifr->lifr_dadstate = DAD_DONE;
16520 	mutex_exit(&ill->ill_lock);
16521 	return (0);
16522 }
16523 
16524 /*
16525  * comparison function used by avl.
16526  */
16527 static int
16528 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16529 {
16530 
16531 	uint_t index;
16532 
16533 	ASSERT(phyip != NULL && index_ptr != NULL);
16534 
16535 	index = *((uint_t *)index_ptr);
16536 	/*
16537 	 * let the phyint with the lowest index be on top.
16538 	 */
16539 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16540 		return (1);
16541 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16542 		return (-1);
16543 	return (0);
16544 }
16545 
16546 /*
16547  * comparison function used by avl.
16548  */
16549 static int
16550 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16551 {
16552 	ill_t *ill;
16553 	int res = 0;
16554 
16555 	ASSERT(phyip != NULL && name_ptr != NULL);
16556 
16557 	if (((phyint_t *)phyip)->phyint_illv4)
16558 		ill = ((phyint_t *)phyip)->phyint_illv4;
16559 	else
16560 		ill = ((phyint_t *)phyip)->phyint_illv6;
16561 	ASSERT(ill != NULL);
16562 
16563 	res = strcmp(ill->ill_name, (char *)name_ptr);
16564 	if (res > 0)
16565 		return (1);
16566 	else if (res < 0)
16567 		return (-1);
16568 	return (0);
16569 }
16570 
16571 /*
16572  * This function is called on the unplumb path via ill_glist_delete() when
16573  * there are no ills left on the phyint and thus the phyint can be freed.
16574  */
16575 static void
16576 phyint_free(phyint_t *phyi)
16577 {
16578 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16579 
16580 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16581 
16582 	/*
16583 	 * If this phyint was an IPMP meta-interface, blow away the group.
16584 	 * This is safe to do because all of the illgrps have already been
16585 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16586 	 * If we're cleaning up as a result of failed initialization,
16587 	 * phyint_grp may be NULL.
16588 	 */
16589 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16590 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16591 		ipmp_grp_destroy(phyi->phyint_grp);
16592 		phyi->phyint_grp = NULL;
16593 		rw_exit(&ipst->ips_ipmp_lock);
16594 	}
16595 
16596 	/*
16597 	 * If this interface was under IPMP, take it out of the group.
16598 	 */
16599 	if (phyi->phyint_grp != NULL)
16600 		ipmp_phyint_leave_grp(phyi);
16601 
16602 	/*
16603 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16604 	 * will be freed in ipsq_exit().
16605 	 */
16606 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16607 	phyi->phyint_name[0] = '\0';
16608 
16609 	mi_free(phyi);
16610 }
16611 
16612 /*
16613  * Attach the ill to the phyint structure which can be shared by both
16614  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16615  * function is called from ipif_set_values and ill_lookup_on_name (for
16616  * loopback) where we know the name of the ill. We lookup the ill and if
16617  * there is one present already with the name use that phyint. Otherwise
16618  * reuse the one allocated by ill_init.
16619  */
16620 static void
16621 ill_phyint_reinit(ill_t *ill)
16622 {
16623 	boolean_t isv6 = ill->ill_isv6;
16624 	phyint_t *phyi_old;
16625 	phyint_t *phyi;
16626 	avl_index_t where = 0;
16627 	ill_t	*ill_other = NULL;
16628 	ip_stack_t	*ipst = ill->ill_ipst;
16629 
16630 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16631 
16632 	phyi_old = ill->ill_phyint;
16633 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16634 	    phyi_old->phyint_illv6 == NULL));
16635 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16636 	    phyi_old->phyint_illv4 == NULL));
16637 	ASSERT(phyi_old->phyint_ifindex == 0);
16638 
16639 	/*
16640 	 * Now that our ill has a name, set it in the phyint.
16641 	 */
16642 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16643 
16644 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16645 	    ill->ill_name, &where);
16646 
16647 	/*
16648 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16649 	 *    the global list of ills. So no other thread could have located
16650 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16651 	 * 2. Now locate the other protocol instance of this ill.
16652 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16653 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16654 	 *    of neither ill can change.
16655 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16656 	 *    other ill.
16657 	 * 5. Release all locks.
16658 	 */
16659 
16660 	/*
16661 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16662 	 * we are initializing IPv4.
16663 	 */
16664 	if (phyi != NULL) {
16665 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16666 		ASSERT(ill_other->ill_phyint != NULL);
16667 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16668 		    (!isv6 && ill_other->ill_isv6));
16669 		GRAB_ILL_LOCKS(ill, ill_other);
16670 		/*
16671 		 * We are potentially throwing away phyint_flags which
16672 		 * could be different from the one that we obtain from
16673 		 * ill_other->ill_phyint. But it is okay as we are assuming
16674 		 * that the state maintained within IP is correct.
16675 		 */
16676 		mutex_enter(&phyi->phyint_lock);
16677 		if (isv6) {
16678 			ASSERT(phyi->phyint_illv6 == NULL);
16679 			phyi->phyint_illv6 = ill;
16680 		} else {
16681 			ASSERT(phyi->phyint_illv4 == NULL);
16682 			phyi->phyint_illv4 = ill;
16683 		}
16684 
16685 		/*
16686 		 * Delete the old phyint and make its ipsq eligible
16687 		 * to be freed in ipsq_exit().
16688 		 */
16689 		phyi_old->phyint_illv4 = NULL;
16690 		phyi_old->phyint_illv6 = NULL;
16691 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16692 		phyi_old->phyint_name[0] = '\0';
16693 		mi_free(phyi_old);
16694 	} else {
16695 		mutex_enter(&ill->ill_lock);
16696 		/*
16697 		 * We don't need to acquire any lock, since
16698 		 * the ill is not yet visible globally  and we
16699 		 * have not yet released the ill_g_lock.
16700 		 */
16701 		phyi = phyi_old;
16702 		mutex_enter(&phyi->phyint_lock);
16703 		/* XXX We need a recovery strategy here. */
16704 		if (!phyint_assign_ifindex(phyi, ipst))
16705 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16706 
16707 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16708 		    (void *)phyi, where);
16709 
16710 		(void) avl_find(&ipst->ips_phyint_g_list->
16711 		    phyint_list_avl_by_index,
16712 		    &phyi->phyint_ifindex, &where);
16713 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16714 		    (void *)phyi, where);
16715 	}
16716 
16717 	/*
16718 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16719 	 * pending mp is not affected because that is per ill basis.
16720 	 */
16721 	ill->ill_phyint = phyi;
16722 
16723 	/*
16724 	 * Now that the phyint's ifindex has been assigned, complete the
16725 	 * remaining
16726 	 */
16727 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16728 	if (ill->ill_isv6) {
16729 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16730 		    ill->ill_phyint->phyint_ifindex;
16731 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16732 	} else {
16733 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16734 	}
16735 
16736 	/*
16737 	 * Generate an event within the hooks framework to indicate that
16738 	 * a new interface has just been added to IP.  For this event to
16739 	 * be generated, the network interface must, at least, have an
16740 	 * ifindex assigned to it.  (We don't generate the event for
16741 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16742 	 *
16743 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16744 	 * that the ordering of delivered events to listeners matches the
16745 	 * order of them in the kernel.
16746 	 */
16747 	if (!IS_LOOPBACK(ill)) {
16748 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16749 		    ill->ill_name_length);
16750 	}
16751 	RELEASE_ILL_LOCKS(ill, ill_other);
16752 	mutex_exit(&phyi->phyint_lock);
16753 }
16754 
16755 /*
16756  * Notify any downstream modules of the name of this interface.
16757  * An M_IOCTL is used even though we don't expect a successful reply.
16758  * Any reply message from the driver (presumably an M_IOCNAK) will
16759  * eventually get discarded somewhere upstream.  The message format is
16760  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16761  * to IP.
16762  */
16763 static void
16764 ip_ifname_notify(ill_t *ill, queue_t *q)
16765 {
16766 	mblk_t *mp1, *mp2;
16767 	struct iocblk *iocp;
16768 	struct lifreq *lifr;
16769 
16770 	mp1 = mkiocb(SIOCSLIFNAME);
16771 	if (mp1 == NULL)
16772 		return;
16773 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16774 	if (mp2 == NULL) {
16775 		freeb(mp1);
16776 		return;
16777 	}
16778 
16779 	mp1->b_cont = mp2;
16780 	iocp = (struct iocblk *)mp1->b_rptr;
16781 	iocp->ioc_count = sizeof (struct lifreq);
16782 
16783 	lifr = (struct lifreq *)mp2->b_rptr;
16784 	mp2->b_wptr += sizeof (struct lifreq);
16785 	bzero(lifr, sizeof (struct lifreq));
16786 
16787 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16788 	lifr->lifr_ppa = ill->ill_ppa;
16789 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16790 
16791 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16792 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16793 	putnext(q, mp1);
16794 }
16795 
16796 static int
16797 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16798 {
16799 	int		err;
16800 	ip_stack_t	*ipst = ill->ill_ipst;
16801 	phyint_t	*phyi = ill->ill_phyint;
16802 
16803 	/*
16804 	 * Now that ill_name is set, the configuration for the IPMP
16805 	 * meta-interface can be performed.
16806 	 */
16807 	if (IS_IPMP(ill)) {
16808 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16809 		/*
16810 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16811 		 * meta-interface and we need to create the IPMP group.
16812 		 */
16813 		if (phyi->phyint_grp == NULL) {
16814 			/*
16815 			 * If someone has renamed another IPMP group to have
16816 			 * the same name as our interface, bail.
16817 			 */
16818 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16819 				rw_exit(&ipst->ips_ipmp_lock);
16820 				return (EEXIST);
16821 			}
16822 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16823 			if (phyi->phyint_grp == NULL) {
16824 				rw_exit(&ipst->ips_ipmp_lock);
16825 				return (ENOMEM);
16826 			}
16827 		}
16828 		rw_exit(&ipst->ips_ipmp_lock);
16829 	}
16830 
16831 	/* Tell downstream modules where they are. */
16832 	ip_ifname_notify(ill, q);
16833 
16834 	/*
16835 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16836 	 * Error cases are ENOMEM ...
16837 	 */
16838 	err = ill_dl_phys(ill, ipif, mp, q);
16839 
16840 	if (ill->ill_isv6) {
16841 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16842 		if (ipst->ips_mld_slowtimeout_id == 0) {
16843 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16844 			    (void *)ipst,
16845 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16846 		}
16847 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16848 	} else {
16849 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16850 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16851 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16852 			    (void *)ipst,
16853 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16854 		}
16855 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16856 	}
16857 
16858 	return (err);
16859 }
16860 
16861 /*
16862  * Common routine for ppa and ifname setting. Should be called exclusive.
16863  *
16864  * Returns EINPROGRESS when mp has been consumed by queueing it on
16865  * ipx_pending_mp and the ioctl will complete in ip_rput.
16866  *
16867  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16868  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16869  * For SLIFNAME, we pass these values back to the userland.
16870  */
16871 static int
16872 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16873 {
16874 	ill_t	*ill;
16875 	ipif_t	*ipif;
16876 	ipsq_t	*ipsq;
16877 	char	*ppa_ptr;
16878 	char	*old_ptr;
16879 	char	old_char;
16880 	int	error;
16881 	ip_stack_t	*ipst;
16882 
16883 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16884 	ASSERT(q->q_next != NULL);
16885 	ASSERT(interf_name != NULL);
16886 
16887 	ill = (ill_t *)q->q_ptr;
16888 	ipst = ill->ill_ipst;
16889 
16890 	ASSERT(ill->ill_ipst != NULL);
16891 	ASSERT(ill->ill_name[0] == '\0');
16892 	ASSERT(IAM_WRITER_ILL(ill));
16893 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16894 	ASSERT(ill->ill_ppa == UINT_MAX);
16895 
16896 	ill->ill_defend_start = ill->ill_defend_count = 0;
16897 	/* The ppa is sent down by ifconfig or is chosen */
16898 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16899 		return (EINVAL);
16900 	}
16901 
16902 	/*
16903 	 * make sure ppa passed in is same as ppa in the name.
16904 	 * This check is not made when ppa == UINT_MAX in that case ppa
16905 	 * in the name could be anything. System will choose a ppa and
16906 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16907 	 */
16908 	if (*new_ppa_ptr != UINT_MAX) {
16909 		/* stoi changes the pointer */
16910 		old_ptr = ppa_ptr;
16911 		/*
16912 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16913 		 * (they don't have an externally visible ppa).  We assign one
16914 		 * here so that we can manage the interface.  Note that in
16915 		 * the past this value was always 0 for DLPI 1 drivers.
16916 		 */
16917 		if (*new_ppa_ptr == 0)
16918 			*new_ppa_ptr = stoi(&old_ptr);
16919 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16920 			return (EINVAL);
16921 	}
16922 	/*
16923 	 * terminate string before ppa
16924 	 * save char at that location.
16925 	 */
16926 	old_char = ppa_ptr[0];
16927 	ppa_ptr[0] = '\0';
16928 
16929 	ill->ill_ppa = *new_ppa_ptr;
16930 	/*
16931 	 * Finish as much work now as possible before calling ill_glist_insert
16932 	 * which makes the ill globally visible and also merges it with the
16933 	 * other protocol instance of this phyint. The remaining work is
16934 	 * done after entering the ipsq which may happen sometime later.
16935 	 */
16936 	ipif = ill->ill_ipif;
16937 
16938 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16939 	ipif_assign_seqid(ipif);
16940 
16941 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16942 		ill->ill_flags |= ILLF_IPV4;
16943 
16944 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16945 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16946 
16947 	if (ill->ill_flags & ILLF_IPV6) {
16948 
16949 		ill->ill_isv6 = B_TRUE;
16950 		ill_set_inputfn(ill);
16951 		if (ill->ill_rq != NULL) {
16952 			ill->ill_rq->q_qinfo = &iprinitv6;
16953 		}
16954 
16955 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16956 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16957 		ipif->ipif_v6subnet = ipv6_all_zeros;
16958 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16959 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16960 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16961 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16962 		/*
16963 		 * point-to-point or Non-mulicast capable
16964 		 * interfaces won't do NUD unless explicitly
16965 		 * configured to do so.
16966 		 */
16967 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16968 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16969 			ill->ill_flags |= ILLF_NONUD;
16970 		}
16971 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16972 		if (ill->ill_flags & ILLF_NOARP) {
16973 			/*
16974 			 * Note: xresolv interfaces will eventually need
16975 			 * NOARP set here as well, but that will require
16976 			 * those external resolvers to have some
16977 			 * knowledge of that flag and act appropriately.
16978 			 * Not to be changed at present.
16979 			 */
16980 			ill->ill_flags &= ~ILLF_NOARP;
16981 		}
16982 		/*
16983 		 * Set the ILLF_ROUTER flag according to the global
16984 		 * IPv6 forwarding policy.
16985 		 */
16986 		if (ipst->ips_ipv6_forwarding != 0)
16987 			ill->ill_flags |= ILLF_ROUTER;
16988 	} else if (ill->ill_flags & ILLF_IPV4) {
16989 		ill->ill_isv6 = B_FALSE;
16990 		ill_set_inputfn(ill);
16991 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16992 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16993 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16994 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16995 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16996 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16997 		/*
16998 		 * Set the ILLF_ROUTER flag according to the global
16999 		 * IPv4 forwarding policy.
17000 		 */
17001 		if (ipst->ips_ip_forwarding != 0)
17002 			ill->ill_flags |= ILLF_ROUTER;
17003 	}
17004 
17005 	ASSERT(ill->ill_phyint != NULL);
17006 
17007 	/*
17008 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17009 	 * be completed in ill_glist_insert -> ill_phyint_reinit
17010 	 */
17011 	if (!ill_allocate_mibs(ill))
17012 		return (ENOMEM);
17013 
17014 	/*
17015 	 * Pick a default sap until we get the DL_INFO_ACK back from
17016 	 * the driver.
17017 	 */
17018 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17019 	    ill->ill_media->ip_m_ipv4sap;
17020 
17021 	ill->ill_ifname_pending = 1;
17022 	ill->ill_ifname_pending_err = 0;
17023 
17024 	/*
17025 	 * When the first ipif comes up in ipif_up_done(), multicast groups
17026 	 * that were joined while this ill was not bound to the DLPI link need
17027 	 * to be recovered by ill_recover_multicast().
17028 	 */
17029 	ill->ill_need_recover_multicast = 1;
17030 
17031 	ill_refhold(ill);
17032 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17033 	if ((error = ill_glist_insert(ill, interf_name,
17034 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17035 		ill->ill_ppa = UINT_MAX;
17036 		ill->ill_name[0] = '\0';
17037 		/*
17038 		 * undo null termination done above.
17039 		 */
17040 		ppa_ptr[0] = old_char;
17041 		rw_exit(&ipst->ips_ill_g_lock);
17042 		ill_refrele(ill);
17043 		return (error);
17044 	}
17045 
17046 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17047 
17048 	/*
17049 	 * When we return the buffer pointed to by interf_name should contain
17050 	 * the same name as in ill_name.
17051 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17052 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17053 	 * so copy full name and update the ppa ptr.
17054 	 * When ppa passed in != UINT_MAX all values are correct just undo
17055 	 * null termination, this saves a bcopy.
17056 	 */
17057 	if (*new_ppa_ptr == UINT_MAX) {
17058 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17059 		*new_ppa_ptr = ill->ill_ppa;
17060 	} else {
17061 		/*
17062 		 * undo null termination done above.
17063 		 */
17064 		ppa_ptr[0] = old_char;
17065 	}
17066 
17067 	/* Let SCTP know about this ILL */
17068 	sctp_update_ill(ill, SCTP_ILL_INSERT);
17069 
17070 	/*
17071 	 * ill_glist_insert has made the ill visible globally, and
17072 	 * ill_phyint_reinit could have changed the ipsq. At this point,
17073 	 * we need to hold the ips_ill_g_lock across the call to enter the
17074 	 * ipsq to enforce atomicity and prevent reordering. In the event
17075 	 * the ipsq has changed, and if the new ipsq is currently busy,
17076 	 * we need to make sure that this half-completed ioctl is ahead of
17077 	 * any subsequent ioctl. We achieve this by not dropping the
17078 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
17079 	 * ensuring that new ioctls can't start.
17080 	 */
17081 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17082 	    B_TRUE);
17083 
17084 	rw_exit(&ipst->ips_ill_g_lock);
17085 	ill_refrele(ill);
17086 	if (ipsq == NULL)
17087 		return (EINPROGRESS);
17088 
17089 	/*
17090 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17091 	 */
17092 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17093 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17094 	else
17095 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17096 
17097 	error = ipif_set_values_tail(ill, ipif, mp, q);
17098 	ipsq_exit(ipsq);
17099 	if (error != 0 && error != EINPROGRESS) {
17100 		/*
17101 		 * restore previous values
17102 		 */
17103 		ill->ill_isv6 = B_FALSE;
17104 		ill_set_inputfn(ill);
17105 	}
17106 	return (error);
17107 }
17108 
17109 void
17110 ipif_init(ip_stack_t *ipst)
17111 {
17112 	int i;
17113 
17114 	for (i = 0; i < MAX_G_HEADS; i++) {
17115 		ipst->ips_ill_g_heads[i].ill_g_list_head =
17116 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17117 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
17118 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17119 	}
17120 
17121 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17122 	    ill_phyint_compare_index,
17123 	    sizeof (phyint_t),
17124 	    offsetof(struct phyint, phyint_avl_by_index));
17125 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17126 	    ill_phyint_compare_name,
17127 	    sizeof (phyint_t),
17128 	    offsetof(struct phyint, phyint_avl_by_name));
17129 }
17130 
17131 /*
17132  * Save enough information so that we can recreate the IRE if
17133  * the interface goes down and then up.
17134  */
17135 void
17136 ill_save_ire(ill_t *ill, ire_t *ire)
17137 {
17138 	mblk_t	*save_mp;
17139 
17140 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17141 	if (save_mp != NULL) {
17142 		ifrt_t	*ifrt;
17143 
17144 		save_mp->b_wptr += sizeof (ifrt_t);
17145 		ifrt = (ifrt_t *)save_mp->b_rptr;
17146 		bzero(ifrt, sizeof (ifrt_t));
17147 		ifrt->ifrt_type = ire->ire_type;
17148 		if (ire->ire_ipversion == IPV4_VERSION) {
17149 			ASSERT(!ill->ill_isv6);
17150 			ifrt->ifrt_addr = ire->ire_addr;
17151 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17152 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17153 			ifrt->ifrt_mask = ire->ire_mask;
17154 		} else {
17155 			ASSERT(ill->ill_isv6);
17156 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
17157 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17158 			mutex_enter(&ire->ire_lock);
17159 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17160 			mutex_exit(&ire->ire_lock);
17161 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17162 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
17163 		}
17164 		ifrt->ifrt_flags = ire->ire_flags;
17165 		ifrt->ifrt_zoneid = ire->ire_zoneid;
17166 		mutex_enter(&ill->ill_saved_ire_lock);
17167 		save_mp->b_cont = ill->ill_saved_ire_mp;
17168 		ill->ill_saved_ire_mp = save_mp;
17169 		ill->ill_saved_ire_cnt++;
17170 		mutex_exit(&ill->ill_saved_ire_lock);
17171 	}
17172 }
17173 
17174 /*
17175  * Remove one entry from ill_saved_ire_mp.
17176  */
17177 void
17178 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17179 {
17180 	mblk_t	**mpp;
17181 	mblk_t	*mp;
17182 	ifrt_t	*ifrt;
17183 
17184 	/* Remove from ill_saved_ire_mp list if it is there */
17185 	mutex_enter(&ill->ill_saved_ire_lock);
17186 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17187 	    mpp = &(*mpp)->b_cont) {
17188 		in6_addr_t	gw_addr_v6;
17189 
17190 		/*
17191 		 * On a given ill, the tuple of address, gateway, mask,
17192 		 * ire_type, and zoneid is unique for each saved IRE.
17193 		 */
17194 		mp = *mpp;
17195 		ifrt = (ifrt_t *)mp->b_rptr;
17196 		/* ire_gateway_addr_v6 can change - need lock */
17197 		mutex_enter(&ire->ire_lock);
17198 		gw_addr_v6 = ire->ire_gateway_addr_v6;
17199 		mutex_exit(&ire->ire_lock);
17200 
17201 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17202 		    ifrt->ifrt_type != ire->ire_type)
17203 			continue;
17204 
17205 		if (ill->ill_isv6 ?
17206 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17207 		    &ire->ire_addr_v6) &&
17208 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17209 		    &gw_addr_v6) &&
17210 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17211 		    &ire->ire_mask_v6)) :
17212 		    (ifrt->ifrt_addr == ire->ire_addr &&
17213 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17214 		    ifrt->ifrt_mask == ire->ire_mask)) {
17215 			*mpp = mp->b_cont;
17216 			ill->ill_saved_ire_cnt--;
17217 			freeb(mp);
17218 			break;
17219 		}
17220 	}
17221 	mutex_exit(&ill->ill_saved_ire_lock);
17222 }
17223 
17224 /*
17225  * IP multirouting broadcast routes handling
17226  * Append CGTP broadcast IREs to regular ones created
17227  * at ifconfig time.
17228  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17229  * the destination and the gateway are broadcast addresses.
17230  * The caller has verified that the destination is an IRE_BROADCAST and that
17231  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17232  * we create a MULTIRT IRE_BROADCAST.
17233  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17234  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17235  */
17236 static void
17237 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17238 {
17239 	ire_t *ire_prim;
17240 
17241 	ASSERT(ire != NULL);
17242 
17243 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17244 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17245 	    NULL);
17246 	if (ire_prim != NULL) {
17247 		/*
17248 		 * We are in the special case of broadcasts for
17249 		 * CGTP. We add an IRE_BROADCAST that holds
17250 		 * the RTF_MULTIRT flag, the destination
17251 		 * address and the low level
17252 		 * info of ire_prim. In other words, CGTP
17253 		 * broadcast is added to the redundant ipif.
17254 		 */
17255 		ill_t *ill_prim;
17256 		ire_t  *bcast_ire;
17257 
17258 		ill_prim = ire_prim->ire_ill;
17259 
17260 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17261 		    (void *)ire_prim, (void *)ill_prim));
17262 
17263 		bcast_ire = ire_create(
17264 		    (uchar_t *)&ire->ire_addr,
17265 		    (uchar_t *)&ip_g_all_ones,
17266 		    (uchar_t *)&ire->ire_gateway_addr,
17267 		    IRE_BROADCAST,
17268 		    ill_prim,
17269 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
17270 		    ire->ire_flags | RTF_KERNEL,
17271 		    NULL,
17272 		    ipst);
17273 
17274 		/*
17275 		 * Here we assume that ire_add does head insertion so that
17276 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17277 		 */
17278 		if (bcast_ire != NULL) {
17279 			if (ire->ire_flags & RTF_SETSRC) {
17280 				bcast_ire->ire_setsrc_addr =
17281 				    ire->ire_setsrc_addr;
17282 			}
17283 			bcast_ire = ire_add(bcast_ire);
17284 			if (bcast_ire != NULL) {
17285 				ip2dbg(("ip_cgtp_filter_bcast_add: "
17286 				    "added bcast_ire %p\n",
17287 				    (void *)bcast_ire));
17288 
17289 				ill_save_ire(ill_prim, bcast_ire);
17290 				ire_refrele(bcast_ire);
17291 			}
17292 		}
17293 		ire_refrele(ire_prim);
17294 	}
17295 }
17296 
17297 /*
17298  * IP multirouting broadcast routes handling
17299  * Remove the broadcast ire.
17300  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17301  * the destination and the gateway are broadcast addresses.
17302  * The caller has only verified that RTF_MULTIRT was set. We check
17303  * that the destination is broadcast and that the gateway is a broadcast
17304  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17305  */
17306 static void
17307 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17308 {
17309 	ASSERT(ire != NULL);
17310 
17311 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17312 		ire_t *ire_prim;
17313 
17314 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17315 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17316 		    ipst, NULL);
17317 		if (ire_prim != NULL) {
17318 			ill_t *ill_prim;
17319 			ire_t  *bcast_ire;
17320 
17321 			ill_prim = ire_prim->ire_ill;
17322 
17323 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
17324 			    "ire_prim %p, ill_prim %p\n",
17325 			    (void *)ire_prim, (void *)ill_prim));
17326 
17327 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17328 			    ire->ire_gateway_addr, IRE_BROADCAST,
17329 			    ill_prim, ALL_ZONES, NULL,
17330 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17331 			    MATCH_IRE_MASK, 0, ipst, NULL);
17332 
17333 			if (bcast_ire != NULL) {
17334 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
17335 				    "looked up bcast_ire %p\n",
17336 				    (void *)bcast_ire));
17337 				ill_remove_saved_ire(bcast_ire->ire_ill,
17338 				    bcast_ire);
17339 				ire_delete(bcast_ire);
17340 				ire_refrele(bcast_ire);
17341 			}
17342 			ire_refrele(ire_prim);
17343 		}
17344 	}
17345 }
17346 
17347 /*
17348  * Derive an interface id from the link layer address.
17349  * Knows about IEEE 802 and IEEE EUI-64 mappings.
17350  */
17351 static void
17352 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17353 {
17354 	char		*addr;
17355 
17356 	/*
17357 	 * Note that some IPv6 interfaces get plumbed over links that claim to
17358 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17359 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
17360 	 * interface ID on IPv6 interfaces above links that actually have real
17361 	 * Ethernet addresses.
17362 	 */
17363 	if (ill->ill_phys_addr_length == ETHERADDRL) {
17364 		/* Form EUI-64 like address */
17365 		addr = (char *)&v6addr->s6_addr32[2];
17366 		bcopy(ill->ill_phys_addr, addr, 3);
17367 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
17368 		addr[3] = (char)0xff;
17369 		addr[4] = (char)0xfe;
17370 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17371 	}
17372 }
17373 
17374 /* ARGSUSED */
17375 static void
17376 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17377 {
17378 }
17379 
17380 typedef struct ipmp_ifcookie {
17381 	uint32_t	ic_hostid;
17382 	char		ic_ifname[LIFNAMSIZ];
17383 	char		ic_zonename[ZONENAME_MAX];
17384 } ipmp_ifcookie_t;
17385 
17386 /*
17387  * Construct a pseudo-random interface ID for the IPMP interface that's both
17388  * predictable and (almost) guaranteed to be unique.
17389  */
17390 static void
17391 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17392 {
17393 	zone_t		*zp;
17394 	uint8_t		*addr;
17395 	uchar_t		hash[16];
17396 	ulong_t 	hostid;
17397 	MD5_CTX		ctx;
17398 	ipmp_ifcookie_t	ic = { 0 };
17399 
17400 	ASSERT(IS_IPMP(ill));
17401 
17402 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17403 	ic.ic_hostid = htonl((uint32_t)hostid);
17404 
17405 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17406 
17407 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17408 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17409 		zone_rele(zp);
17410 	}
17411 
17412 	MD5Init(&ctx);
17413 	MD5Update(&ctx, &ic, sizeof (ic));
17414 	MD5Final(hash, &ctx);
17415 
17416 	/*
17417 	 * Map the hash to an interface ID per the basic approach in RFC3041.
17418 	 */
17419 	addr = &v6addr->s6_addr8[8];
17420 	bcopy(hash + 8, addr, sizeof (uint64_t));
17421 	addr[0] &= ~0x2;				/* set local bit */
17422 }
17423 
17424 /*
17425  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17426  */
17427 static void
17428 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17429 {
17430 	phyint_t *phyi = ill->ill_phyint;
17431 
17432 	/*
17433 	 * Check PHYI_MULTI_BCAST and length of physical
17434 	 * address to determine if we use the mapping or the
17435 	 * broadcast address.
17436 	 */
17437 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17438 	    ill->ill_phys_addr_length != ETHERADDRL) {
17439 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17440 		return;
17441 	}
17442 	m_physaddr[0] = 0x33;
17443 	m_physaddr[1] = 0x33;
17444 	m_physaddr[2] = m_ip6addr[12];
17445 	m_physaddr[3] = m_ip6addr[13];
17446 	m_physaddr[4] = m_ip6addr[14];
17447 	m_physaddr[5] = m_ip6addr[15];
17448 }
17449 
17450 /*
17451  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17452  */
17453 static void
17454 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17455 {
17456 	phyint_t *phyi = ill->ill_phyint;
17457 
17458 	/*
17459 	 * Check PHYI_MULTI_BCAST and length of physical
17460 	 * address to determine if we use the mapping or the
17461 	 * broadcast address.
17462 	 */
17463 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17464 	    ill->ill_phys_addr_length != ETHERADDRL) {
17465 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17466 		return;
17467 	}
17468 	m_physaddr[0] = 0x01;
17469 	m_physaddr[1] = 0x00;
17470 	m_physaddr[2] = 0x5e;
17471 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
17472 	m_physaddr[4] = m_ipaddr[2];
17473 	m_physaddr[5] = m_ipaddr[3];
17474 }
17475 
17476 /* ARGSUSED */
17477 static void
17478 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17479 {
17480 	/*
17481 	 * for the MULTI_BCAST case and other cases when we want to
17482 	 * use the link-layer broadcast address for multicast.
17483 	 */
17484 	uint8_t	*bphys_addr;
17485 	dl_unitdata_req_t *dlur;
17486 
17487 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17488 	if (ill->ill_sap_length < 0) {
17489 		bphys_addr = (uchar_t *)dlur +
17490 		    dlur->dl_dest_addr_offset;
17491 	} else  {
17492 		bphys_addr = (uchar_t *)dlur +
17493 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
17494 	}
17495 
17496 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17497 }
17498 
17499 /*
17500  * Derive IPoIB interface id from the link layer address.
17501  */
17502 static void
17503 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17504 {
17505 	char		*addr;
17506 
17507 	ASSERT(ill->ill_phys_addr_length == 20);
17508 	addr = (char *)&v6addr->s6_addr32[2];
17509 	bcopy(ill->ill_phys_addr + 12, addr, 8);
17510 	/*
17511 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17512 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17513 	 * rules. In these cases, the IBA considers these GUIDs to be in
17514 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17515 	 * required; vendors are required not to assign global EUI-64's
17516 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
17517 	 * of the interface identifier. Whether the GUID is in modified
17518 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17519 	 * bit set to 1.
17520 	 */
17521 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
17522 }
17523 
17524 /*
17525  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17526  * Note on mapping from multicast IP addresses to IPoIB multicast link
17527  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17528  * The format of an IPoIB multicast address is:
17529  *
17530  *  4 byte QPN      Scope Sign.  Pkey
17531  * +--------------------------------------------+
17532  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17533  * +--------------------------------------------+
17534  *
17535  * The Scope and Pkey components are properties of the IBA port and
17536  * network interface. They can be ascertained from the broadcast address.
17537  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17538  */
17539 static void
17540 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17541 {
17542 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17543 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17544 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17545 	uint8_t	*bphys_addr;
17546 	dl_unitdata_req_t *dlur;
17547 
17548 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17549 
17550 	/*
17551 	 * RFC 4391: IPv4 MGID is 28-bit long.
17552 	 */
17553 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17554 	m_physaddr[17] = m_ipaddr[1];
17555 	m_physaddr[18] = m_ipaddr[2];
17556 	m_physaddr[19] = m_ipaddr[3];
17557 
17558 
17559 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17560 	if (ill->ill_sap_length < 0) {
17561 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17562 	} else  {
17563 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17564 		    ill->ill_sap_length;
17565 	}
17566 	/*
17567 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17568 	 */
17569 	m_physaddr[5] = bphys_addr[5];
17570 	m_physaddr[8] = bphys_addr[8];
17571 	m_physaddr[9] = bphys_addr[9];
17572 }
17573 
17574 static void
17575 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17576 {
17577 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17578 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17579 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17580 	uint8_t	*bphys_addr;
17581 	dl_unitdata_req_t *dlur;
17582 
17583 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17584 
17585 	/*
17586 	 * RFC 4391: IPv4 MGID is 80-bit long.
17587 	 */
17588 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17589 
17590 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17591 	if (ill->ill_sap_length < 0) {
17592 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17593 	} else  {
17594 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17595 		    ill->ill_sap_length;
17596 	}
17597 	/*
17598 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17599 	 */
17600 	m_physaddr[5] = bphys_addr[5];
17601 	m_physaddr[8] = bphys_addr[8];
17602 	m_physaddr[9] = bphys_addr[9];
17603 }
17604 
17605 /*
17606  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17607  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17608  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17609  * of RFC4213.
17610  */
17611 static void
17612 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17613 {
17614 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17615 	v6addr->s6_addr32[2] = 0;
17616 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17617 }
17618 
17619 /*
17620  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17621  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17622  * id.
17623  */
17624 static void
17625 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17626 {
17627 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17628 
17629 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17630 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17631 }
17632 
17633 static void
17634 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17635 {
17636 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17637 }
17638 
17639 static void
17640 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17641 {
17642 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17643 }
17644 
17645 static void
17646 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17647 {
17648 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17649 }
17650 
17651 static void
17652 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17653 {
17654 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17655 }
17656 
17657 /*
17658  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17659  * Returns an held ill, or NULL.
17660  */
17661 ill_t *
17662 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17663     ip_stack_t *ipst)
17664 {
17665 	ill_t	*ill;
17666 	ipif_t	*ipif;
17667 
17668 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17669 	if (ill == NULL)
17670 		return (NULL);
17671 
17672 	mutex_enter(&ill->ill_lock);
17673 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17674 		if (IPIF_IS_CONDEMNED(ipif))
17675 			continue;
17676 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17677 		    ipif->ipif_zoneid != ALL_ZONES)
17678 			continue;
17679 
17680 		mutex_exit(&ill->ill_lock);
17681 		return (ill);
17682 	}
17683 	mutex_exit(&ill->ill_lock);
17684 	ill_refrele(ill);
17685 	return (NULL);
17686 }
17687 
17688 /*
17689  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17690  * If a pointer to an ipif_t is returned then the caller will need to do
17691  * an ill_refrele().
17692  */
17693 ipif_t *
17694 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17695     ip_stack_t *ipst)
17696 {
17697 	ipif_t *ipif;
17698 	ill_t *ill;
17699 
17700 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17701 	if (ill == NULL)
17702 		return (NULL);
17703 
17704 	mutex_enter(&ill->ill_lock);
17705 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17706 		mutex_exit(&ill->ill_lock);
17707 		ill_refrele(ill);
17708 		return (NULL);
17709 	}
17710 
17711 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17712 		if (!IPIF_CAN_LOOKUP(ipif))
17713 			continue;
17714 		if (lifidx == ipif->ipif_id) {
17715 			ipif_refhold_locked(ipif);
17716 			break;
17717 		}
17718 	}
17719 
17720 	mutex_exit(&ill->ill_lock);
17721 	ill_refrele(ill);
17722 	return (ipif);
17723 }
17724 
17725 /*
17726  * Set ill_inputfn based on the current know state.
17727  * This needs to be called when any of the factors taken into
17728  * account changes.
17729  */
17730 void
17731 ill_set_inputfn(ill_t *ill)
17732 {
17733 	ip_stack_t	*ipst = ill->ill_ipst;
17734 
17735 	if (ill->ill_isv6) {
17736 		if (is_system_labeled())
17737 			ill->ill_inputfn = ill_input_full_v6;
17738 		else
17739 			ill->ill_inputfn = ill_input_short_v6;
17740 	} else {
17741 		if (is_system_labeled())
17742 			ill->ill_inputfn = ill_input_full_v4;
17743 		else if (ill->ill_dhcpinit != 0)
17744 			ill->ill_inputfn = ill_input_full_v4;
17745 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17746 		    != NULL)
17747 			ill->ill_inputfn = ill_input_full_v4;
17748 		else if (ipst->ips_ip_cgtp_filter &&
17749 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17750 			ill->ill_inputfn = ill_input_full_v4;
17751 		else
17752 			ill->ill_inputfn = ill_input_short_v4;
17753 	}
17754 }
17755 
17756 /*
17757  * Re-evaluate ill_inputfn for all the IPv4 ills.
17758  * Used when RSVP and CGTP comes and goes.
17759  */
17760 void
17761 ill_set_inputfn_all(ip_stack_t *ipst)
17762 {
17763 	ill_walk_context_t	ctx;
17764 	ill_t			*ill;
17765 
17766 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17767 	ill = ILL_START_WALK_V4(&ctx, ipst);
17768 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17769 		ill_set_inputfn(ill);
17770 
17771 	rw_exit(&ipst->ips_ill_g_lock);
17772 }
17773 
17774 /*
17775  * Set the physical address information for `ill' to the contents of the
17776  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17777  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17778  * EINPROGRESS will be returned.
17779  */
17780 int
17781 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17782 {
17783 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17784 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17785 
17786 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17787 
17788 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17789 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17790 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17791 		/* Changing DL_IPV6_TOKEN is not yet supported */
17792 		return (0);
17793 	}
17794 
17795 	/*
17796 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17797 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17798 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17799 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17800 	 */
17801 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17802 		freemsg(mp);
17803 		return (ENOMEM);
17804 	}
17805 
17806 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17807 
17808 	/*
17809 	 * Since we'll only do a logical down, we can't rely on ipif_down
17810 	 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17811 	 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17812 	 * case, to quiesce ire's and nce's for ill_is_quiescent.
17813 	 */
17814 	mutex_enter(&ill->ill_lock);
17815 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17816 	/* no more ire/nce addition allowed */
17817 	mutex_exit(&ill->ill_lock);
17818 
17819 	/*
17820 	 * If we can quiesce the ill, then set the address.  If not, then
17821 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17822 	 */
17823 	ill_down_ipifs(ill, B_TRUE);
17824 	mutex_enter(&ill->ill_lock);
17825 	if (!ill_is_quiescent(ill)) {
17826 		/* call cannot fail since `conn_t *' argument is NULL */
17827 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17828 		    mp, ILL_DOWN);
17829 		mutex_exit(&ill->ill_lock);
17830 		return (EINPROGRESS);
17831 	}
17832 	mutex_exit(&ill->ill_lock);
17833 
17834 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17835 	return (0);
17836 }
17837 
17838 /*
17839  * When the allowed-ips link property is set on the datalink, IP receives a
17840  * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17841  * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17842  * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17843  * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17844  * array.
17845  */
17846 void
17847 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17848 {
17849 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17850 	dl_notify_ind_t	*dlip = (dl_notify_ind_t *)mp->b_rptr;
17851 	mac_protect_t *mrp;
17852 	int i;
17853 
17854 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17855 	mrp = (mac_protect_t *)&dlip[1];
17856 
17857 	if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17858 		kmem_free(ill->ill_allowed_ips,
17859 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17860 		ill->ill_allowed_ips_cnt = 0;
17861 		ill->ill_allowed_ips = NULL;
17862 		mutex_enter(&ill->ill_phyint->phyint_lock);
17863 		ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17864 		mutex_exit(&ill->ill_phyint->phyint_lock);
17865 		return;
17866 	}
17867 
17868 	if (ill->ill_allowed_ips != NULL) {
17869 		kmem_free(ill->ill_allowed_ips,
17870 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17871 	}
17872 	ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17873 	ill->ill_allowed_ips = kmem_alloc(
17874 	    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17875 	for (i = 0; i < mrp->mp_ipaddrcnt;  i++)
17876 		ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17877 
17878 	mutex_enter(&ill->ill_phyint->phyint_lock);
17879 	ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17880 	mutex_exit(&ill->ill_phyint->phyint_lock);
17881 }
17882 
17883 /*
17884  * Once the ill associated with `q' has quiesced, set its physical address
17885  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17886  * are passed (linked by b_cont), since we sometimes need to save two distinct
17887  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17888  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17889  * is quiesced, we know any stale nce's with the old address information have
17890  * already been removed, so we don't need to call nce_flush().
17891  */
17892 /* ARGSUSED */
17893 static void
17894 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17895 {
17896 	ill_t		*ill = q->q_ptr;
17897 	mblk_t		*addrmp2 = unlinkb(addrmp);
17898 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17899 	uint_t		addrlen, addroff;
17900 	int		status;
17901 
17902 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17903 
17904 	addroff	= dlindp->dl_addr_offset;
17905 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17906 
17907 	switch (dlindp->dl_data) {
17908 	case DL_IPV6_LINK_LAYER_ADDR:
17909 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17910 		freemsg(addrmp2);
17911 		break;
17912 
17913 	case DL_CURR_DEST_ADDR:
17914 		freemsg(ill->ill_dest_addr_mp);
17915 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17916 		ill->ill_dest_addr_mp = addrmp;
17917 		if (ill->ill_isv6) {
17918 			ill_setdesttoken(ill);
17919 			ipif_setdestlinklocal(ill->ill_ipif);
17920 		}
17921 		freemsg(addrmp2);
17922 		break;
17923 
17924 	case DL_CURR_PHYS_ADDR:
17925 		freemsg(ill->ill_phys_addr_mp);
17926 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17927 		ill->ill_phys_addr_mp = addrmp;
17928 		ill->ill_phys_addr_length = addrlen;
17929 		if (ill->ill_isv6)
17930 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17931 		else
17932 			freemsg(addrmp2);
17933 		if (ill->ill_isv6) {
17934 			ill_setdefaulttoken(ill);
17935 			ipif_setlinklocal(ill->ill_ipif);
17936 		}
17937 		break;
17938 	default:
17939 		ASSERT(0);
17940 	}
17941 
17942 	/*
17943 	 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17944 	 * as we bring the ipifs up again.
17945 	 */
17946 	mutex_enter(&ill->ill_lock);
17947 	ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17948 	mutex_exit(&ill->ill_lock);
17949 	/*
17950 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17951 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17952 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17953 	 * brought up.
17954 	 */
17955 	status = ill_up_ipifs(ill, q, addrmp);
17956 	if (status != EINPROGRESS)
17957 		ipsq_current_finish(ipsq);
17958 }
17959 
17960 /*
17961  * Helper routine for setting the ill_nd_lla fields.
17962  */
17963 void
17964 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17965 {
17966 	freemsg(ill->ill_nd_lla_mp);
17967 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17968 	ill->ill_nd_lla_mp = ndmp;
17969 	ill->ill_nd_lla_len = addrlen;
17970 }
17971 
17972 /*
17973  * Replumb the ill.
17974  */
17975 int
17976 ill_replumb(ill_t *ill, mblk_t *mp)
17977 {
17978 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17979 
17980 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17981 
17982 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17983 
17984 	/*
17985 	 * If we can quiesce the ill, then continue.  If not, then
17986 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17987 	 */
17988 	ill_down_ipifs(ill, B_FALSE);
17989 
17990 	mutex_enter(&ill->ill_lock);
17991 	if (!ill_is_quiescent(ill)) {
17992 		/* call cannot fail since `conn_t *' argument is NULL */
17993 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17994 		    mp, ILL_DOWN);
17995 		mutex_exit(&ill->ill_lock);
17996 		return (EINPROGRESS);
17997 	}
17998 	mutex_exit(&ill->ill_lock);
17999 
18000 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18001 	return (0);
18002 }
18003 
18004 /* ARGSUSED */
18005 static void
18006 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18007 {
18008 	ill_t *ill = q->q_ptr;
18009 	int err;
18010 	conn_t *connp = NULL;
18011 
18012 	ASSERT(IAM_WRITER_IPSQ(ipsq));
18013 	freemsg(ill->ill_replumb_mp);
18014 	ill->ill_replumb_mp = copyb(mp);
18015 
18016 	if (ill->ill_replumb_mp == NULL) {
18017 		/* out of memory */
18018 		ipsq_current_finish(ipsq);
18019 		return;
18020 	}
18021 
18022 	mutex_enter(&ill->ill_lock);
18023 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18024 	    ill->ill_rq, ill->ill_replumb_mp, 0);
18025 	mutex_exit(&ill->ill_lock);
18026 
18027 	if (!ill->ill_up_ipifs) {
18028 		/* already closing */
18029 		ipsq_current_finish(ipsq);
18030 		return;
18031 	}
18032 	ill->ill_replumbing = 1;
18033 	err = ill_down_ipifs_tail(ill);
18034 
18035 	/*
18036 	 * Successfully quiesced and brought down the interface, now we send
18037 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18038 	 * DL_NOTE_REPLUMB message.
18039 	 */
18040 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18041 	    DL_NOTIFY_CONF);
18042 	ASSERT(mp != NULL);
18043 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18044 	    DL_NOTE_REPLUMB_DONE;
18045 	ill_dlpi_send(ill, mp);
18046 
18047 	/*
18048 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18049 	 * streams have to be unbound. When all the DLPI exchanges are done,
18050 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
18051 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18052 	 * arp_bringup_done().
18053 	 */
18054 	ASSERT(ill->ill_replumb_mp != NULL);
18055 	if (err == EINPROGRESS)
18056 		return;
18057 	else
18058 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18059 	ASSERT(connp == NULL);
18060 	if (err == 0 && ill->ill_replumb_mp != NULL &&
18061 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18062 		return;
18063 	}
18064 	ipsq_current_finish(ipsq);
18065 }
18066 
18067 /*
18068  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18069  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
18070  * as per the ioctl.  On failure, an errno is returned.
18071  */
18072 static int
18073 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18074 {
18075 	int rval;
18076 	struct strioctl iocb;
18077 
18078 	iocb.ic_cmd = cmd;
18079 	iocb.ic_timout = 15;
18080 	iocb.ic_len = bufsize;
18081 	iocb.ic_dp = buf;
18082 
18083 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18084 }
18085 
18086 /*
18087  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18088  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18089  */
18090 static int
18091 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18092     uint_t *bufsizep, cred_t *cr)
18093 {
18094 	int err;
18095 	struct lifnum lifn;
18096 
18097 	bzero(&lifn, sizeof (lifn));
18098 	lifn.lifn_family = af;
18099 	lifn.lifn_flags = LIFC_UNDER_IPMP;
18100 
18101 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18102 		return (err);
18103 
18104 	/*
18105 	 * Pad the interface count to account for additional interfaces that
18106 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18107 	 */
18108 	lifn.lifn_count += 4;
18109 	bzero(lifcp, sizeof (*lifcp));
18110 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
18111 	lifcp->lifc_family = af;
18112 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18113 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18114 
18115 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18116 	if (err != 0) {
18117 		kmem_free(lifcp->lifc_buf, *bufsizep);
18118 		return (err);
18119 	}
18120 
18121 	return (0);
18122 }
18123 
18124 /*
18125  * Helper for ip_interface_cleanup() that removes the loopback interface.
18126  */
18127 static void
18128 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18129 {
18130 	int err;
18131 	struct lifreq lifr;
18132 
18133 	bzero(&lifr, sizeof (lifr));
18134 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
18135 
18136 	/*
18137 	 * Attempt to remove the interface.  It may legitimately not exist
18138 	 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18139 	 */
18140 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18141 	if (err != 0 && err != ENXIO) {
18142 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18143 		    "error %d\n", isv6 ? "v6" : "v4", err));
18144 	}
18145 }
18146 
18147 /*
18148  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18149  * groups and that IPMP data addresses are down.  These conditions must be met
18150  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18151  */
18152 static void
18153 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18154 {
18155 	int af = isv6 ? AF_INET6 : AF_INET;
18156 	int i, nifs;
18157 	int err;
18158 	uint_t bufsize;
18159 	uint_t lifrsize = sizeof (struct lifreq);
18160 	struct lifconf lifc;
18161 	struct lifreq *lifrp;
18162 
18163 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18164 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18165 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
18166 		return;
18167 	}
18168 
18169 	nifs = lifc.lifc_len / lifrsize;
18170 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18171 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18172 		if (err != 0) {
18173 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18174 			    "flags: error %d", lifrp->lifr_name, err);
18175 			continue;
18176 		}
18177 
18178 		if (lifrp->lifr_flags & IFF_IPMP) {
18179 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18180 				continue;
18181 
18182 			lifrp->lifr_flags &= ~IFF_UP;
18183 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18184 			if (err != 0) {
18185 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18186 				    "bring down (error %d); IPMP interface may "
18187 				    "not be shutdown", lifrp->lifr_name, err);
18188 			}
18189 
18190 			/*
18191 			 * Check if IFF_DUPLICATE is still set -- and if so,
18192 			 * reset the address to clear it.
18193 			 */
18194 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18195 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18196 				continue;
18197 
18198 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18199 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18200 			    lifrp, lifrsize, cr)) != 0) {
18201 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18202 				    "reset DAD (error %d); IPMP interface may "
18203 				    "not be shutdown", lifrp->lifr_name, err);
18204 			}
18205 			continue;
18206 		}
18207 
18208 		if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18209 			lifrp->lifr_groupname[0] = '\0';
18210 			if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18211 			    lifrsize, cr)) != 0) {
18212 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18213 				    "leave IPMP group (error %d); associated "
18214 				    "IPMP interface may not be shutdown",
18215 				    lifrp->lifr_name, err);
18216 				continue;
18217 			}
18218 		}
18219 	}
18220 
18221 	kmem_free(lifc.lifc_buf, bufsize);
18222 }
18223 
18224 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
18225 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
18226 
18227 /*
18228  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18229  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18230  * when the user-level processes in the zone are killed and the latter are
18231  * cleaned up by str_stack_shutdown().
18232  */
18233 void
18234 ip_interface_cleanup(ip_stack_t *ipst)
18235 {
18236 	ldi_handle_t	lh;
18237 	ldi_ident_t	li;
18238 	cred_t		*cr;
18239 	int		err;
18240 	int		i;
18241 	char		*devs[] = { UDP6DEV, UDPDEV };
18242 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
18243 
18244 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18245 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18246 		    " error %d", err);
18247 		return;
18248 	}
18249 
18250 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18251 	ASSERT(cr != NULL);
18252 
18253 	/*
18254 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
18255 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
18256 	 * the loop.)
18257 	 */
18258 	for (i = 0; i < 2; i++) {
18259 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18260 		if (err != 0) {
18261 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18262 			    " error %d", devs[i], err);
18263 			continue;
18264 		}
18265 
18266 		ip_loopback_removeif(lh, i == 0, cr);
18267 		ip_ipmp_cleanup(lh, i == 0, cr);
18268 
18269 		(void) ldi_close(lh, FREAD|FWRITE, cr);
18270 	}
18271 
18272 	ldi_ident_release(li);
18273 	crfree(cr);
18274 }
18275 
18276 /*
18277  * This needs to be in-sync with nic_event_t definition
18278  */
18279 static const char *
18280 ill_hook_event2str(nic_event_t event)
18281 {
18282 	switch (event) {
18283 	case NE_PLUMB:
18284 		return ("PLUMB");
18285 	case NE_UNPLUMB:
18286 		return ("UNPLUMB");
18287 	case NE_UP:
18288 		return ("UP");
18289 	case NE_DOWN:
18290 		return ("DOWN");
18291 	case NE_ADDRESS_CHANGE:
18292 		return ("ADDRESS_CHANGE");
18293 	case NE_LIF_UP:
18294 		return ("LIF_UP");
18295 	case NE_LIF_DOWN:
18296 		return ("LIF_DOWN");
18297 	case NE_IFINDEX_CHANGE:
18298 		return ("IFINDEX_CHANGE");
18299 	default:
18300 		return ("UNKNOWN");
18301 	}
18302 }
18303 
18304 void
18305 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18306     nic_event_data_t data, size_t datalen)
18307 {
18308 	ip_stack_t		*ipst = ill->ill_ipst;
18309 	hook_nic_event_int_t	*info;
18310 	const char		*str = NULL;
18311 
18312 	/* create a new nic event info */
18313 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18314 		goto fail;
18315 
18316 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18317 	info->hnei_event.hne_lif = lif;
18318 	info->hnei_event.hne_event = event;
18319 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
18320 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18321 	info->hnei_event.hne_data = NULL;
18322 	info->hnei_event.hne_datalen = 0;
18323 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18324 
18325 	if (data != NULL && datalen != 0) {
18326 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18327 		if (info->hnei_event.hne_data == NULL)
18328 			goto fail;
18329 		bcopy(data, info->hnei_event.hne_data, datalen);
18330 		info->hnei_event.hne_datalen = datalen;
18331 	}
18332 
18333 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18334 	    DDI_NOSLEEP) == DDI_SUCCESS)
18335 		return;
18336 
18337 fail:
18338 	if (info != NULL) {
18339 		if (info->hnei_event.hne_data != NULL) {
18340 			kmem_free(info->hnei_event.hne_data,
18341 			    info->hnei_event.hne_datalen);
18342 		}
18343 		kmem_free(info, sizeof (hook_nic_event_t));
18344 	}
18345 	str = ill_hook_event2str(event);
18346 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18347 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
18348 }
18349 
18350 static int
18351 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18352 {
18353 	int		err = 0;
18354 	const in_addr_t	*addr = NULL;
18355 	nce_t		*nce = NULL;
18356 	ill_t		*ill = ipif->ipif_ill;
18357 	ill_t		*bound_ill;
18358 	boolean_t	added_ipif = B_FALSE;
18359 	uint16_t	state;
18360 	uint16_t	flags;
18361 
18362 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18363 	    ill_t *, ill, ipif_t *, ipif);
18364 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
18365 		addr = &ipif->ipif_lcl_addr;
18366 	}
18367 
18368 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18369 		if (res_act != Res_act_initial)
18370 			return (EINVAL);
18371 	}
18372 
18373 	if (addr != NULL) {
18374 		ipmp_illgrp_t	*illg = ill->ill_grp;
18375 
18376 		/* add unicast nce for the local addr */
18377 
18378 		if (IS_IPMP(ill)) {
18379 			/*
18380 			 * If we're here via ipif_up(), then the ipif
18381 			 * won't be bound yet -- add it to the group,
18382 			 * which will bind it if possible. (We would
18383 			 * add it in ipif_up(), but deleting on failure
18384 			 * there is gruesome.)  If we're here via
18385 			 * ipmp_ill_bind_ipif(), then the ipif has
18386 			 * already been added to the group and we
18387 			 * just need to use the binding.
18388 			 */
18389 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18390 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
18391 				if (bound_ill == NULL) {
18392 					/*
18393 					 * We couldn't bind the ipif to an ill
18394 					 * yet, so we have nothing to publish.
18395 					 * Mark the address as ready and return.
18396 					 */
18397 					ipif->ipif_addr_ready = 1;
18398 					return (0);
18399 				}
18400 				added_ipif = B_TRUE;
18401 			}
18402 		} else {
18403 			bound_ill = ill;
18404 		}
18405 
18406 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18407 		    NCE_F_NONUD);
18408 		/*
18409 		 * If this is an initial bring-up (or the ipif was never
18410 		 * completely brought up), do DAD.  Otherwise, we're here
18411 		 * because IPMP has rebound an address to this ill: send
18412 		 * unsolicited advertisements (ARP announcements) to
18413 		 * inform others.
18414 		 */
18415 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18416 			state = ND_UNCHANGED; /* compute in nce_add_common() */
18417 		} else {
18418 			state = ND_REACHABLE;
18419 			flags |= NCE_F_UNSOL_ADV;
18420 		}
18421 
18422 retry:
18423 		err = nce_lookup_then_add_v4(ill,
18424 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18425 		    addr, flags, state, &nce);
18426 
18427 		/*
18428 		 * note that we may encounter EEXIST if we are moving
18429 		 * the nce as a result of a rebind operation.
18430 		 */
18431 		switch (err) {
18432 		case 0:
18433 			ipif->ipif_added_nce = 1;
18434 			nce->nce_ipif_cnt++;
18435 			break;
18436 		case EEXIST:
18437 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18438 			    ill->ill_name));
18439 			if (!NCE_MYADDR(nce->nce_common)) {
18440 				/*
18441 				 * A leftover nce from before this address
18442 				 * existed
18443 				 */
18444 				ncec_delete(nce->nce_common);
18445 				nce_refrele(nce);
18446 				nce = NULL;
18447 				goto retry;
18448 			}
18449 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18450 				nce_refrele(nce);
18451 				nce = NULL;
18452 				ip1dbg(("ipif_arp_up: NCE already exists "
18453 				    "for %s:%u\n", ill->ill_name,
18454 				    ipif->ipif_id));
18455 				goto arp_up_done;
18456 			}
18457 			/*
18458 			 * Duplicate local addresses are permissible for
18459 			 * IPIF_POINTOPOINT interfaces which will get marked
18460 			 * IPIF_UNNUMBERED later in
18461 			 * ip_addr_availability_check().
18462 			 *
18463 			 * The nce_ipif_cnt field tracks the number of
18464 			 * ipifs that have nce_addr as their local address.
18465 			 */
18466 			ipif->ipif_addr_ready = 1;
18467 			ipif->ipif_added_nce = 1;
18468 			nce->nce_ipif_cnt++;
18469 			err = 0;
18470 			break;
18471 		default:
18472 			ASSERT(nce == NULL);
18473 			goto arp_up_done;
18474 		}
18475 		if (arp_no_defense) {
18476 			if ((ipif->ipif_flags & IPIF_UP) &&
18477 			    !ipif->ipif_addr_ready)
18478 				ipif_up_notify(ipif);
18479 			ipif->ipif_addr_ready = 1;
18480 		}
18481 	} else {
18482 		/* zero address. nothing to publish */
18483 		ipif->ipif_addr_ready = 1;
18484 	}
18485 	if (nce != NULL)
18486 		nce_refrele(nce);
18487 arp_up_done:
18488 	if (added_ipif && err != 0)
18489 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18490 	return (err);
18491 }
18492 
18493 int
18494 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18495 {
18496 	int 		err = 0;
18497 	ill_t 		*ill = ipif->ipif_ill;
18498 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
18499 
18500 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18501 	    ill_t *, ill, ipif_t *, ipif);
18502 
18503 	/*
18504 	 * need to bring up ARP or setup mcast mapping only
18505 	 * when the first interface is coming UP.
18506 	 */
18507 	first_interface = (ill->ill_ipif_up_count == 0 &&
18508 	    ill->ill_ipif_dup_count == 0 && !was_dup);
18509 
18510 	if (res_act == Res_act_initial && first_interface) {
18511 		/*
18512 		 * Send ATTACH + BIND
18513 		 */
18514 		err = arp_ll_up(ill);
18515 		if (err != EINPROGRESS && err != 0)
18516 			return (err);
18517 
18518 		/*
18519 		 * Add NCE for local address. Start DAD.
18520 		 * we'll wait to hear that DAD has finished
18521 		 * before using the interface.
18522 		 */
18523 		if (err == EINPROGRESS)
18524 			wait_for_dlpi = B_TRUE;
18525 	}
18526 
18527 	if (!wait_for_dlpi)
18528 		(void) ipif_arp_up_done_tail(ipif, res_act);
18529 
18530 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
18531 }
18532 
18533 /*
18534  * Finish processing of "arp_up" after all the DLPI message
18535  * exchanges have completed between arp and the driver.
18536  */
18537 void
18538 arp_bringup_done(ill_t *ill, int err)
18539 {
18540 	mblk_t	*mp1;
18541 	ipif_t  *ipif;
18542 	conn_t *connp = NULL;
18543 	ipsq_t	*ipsq;
18544 	queue_t *q;
18545 
18546 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18547 
18548 	ASSERT(IAM_WRITER_ILL(ill));
18549 
18550 	ipsq = ill->ill_phyint->phyint_ipsq;
18551 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18552 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18553 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18554 	if (mp1 == NULL) /* bringup was aborted by the user */
18555 		return;
18556 
18557 	/*
18558 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18559 	 * must have an associated conn_t.  Otherwise, we're bringing this
18560 	 * interface back up as part of handling an asynchronous event (e.g.,
18561 	 * physical address change).
18562 	 */
18563 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18564 		ASSERT(connp != NULL);
18565 		q = CONNP_TO_WQ(connp);
18566 	} else {
18567 		ASSERT(connp == NULL);
18568 		q = ill->ill_rq;
18569 	}
18570 	if (err == 0) {
18571 		if (ipif->ipif_isv6) {
18572 			if ((err = ipif_up_done_v6(ipif)) != 0)
18573 				ip0dbg(("arp_bringup_done: init failed\n"));
18574 		} else {
18575 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18576 			if (err != 0 ||
18577 			    (err = ipif_up_done(ipif)) != 0) {
18578 				ip0dbg(("arp_bringup_done: "
18579 				    "init failed err %x\n", err));
18580 				(void) ipif_arp_down(ipif);
18581 			}
18582 
18583 		}
18584 	} else {
18585 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18586 	}
18587 
18588 	if ((err == 0) && (ill->ill_up_ipifs)) {
18589 		err = ill_up_ipifs(ill, q, mp1);
18590 		if (err == EINPROGRESS)
18591 			return;
18592 	}
18593 
18594 	/*
18595 	 * If we have a moved ipif to bring up, and everything has succeeded
18596 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18597 	 * down -- the admin can try to bring it up by hand if need be.
18598 	 */
18599 	if (ill->ill_move_ipif != NULL) {
18600 		ipif = ill->ill_move_ipif;
18601 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18602 		    ipif->ipif_ill->ill_name));
18603 		ill->ill_move_ipif = NULL;
18604 		if (err == 0) {
18605 			err = ipif_up(ipif, q, mp1);
18606 			if (err == EINPROGRESS)
18607 				return;
18608 		}
18609 	}
18610 
18611 	/*
18612 	 * The operation must complete without EINPROGRESS since
18613 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18614 	 * Otherwise, the operation will be stuck forever in the ipsq.
18615 	 */
18616 	ASSERT(err != EINPROGRESS);
18617 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18618 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18619 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18620 		    ill_t *, ill, ipif_t *, ipif);
18621 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18622 	} else {
18623 		ipsq_current_finish(ipsq);
18624 	}
18625 }
18626 
18627 /*
18628  * Finish processing of arp replumb after all the DLPI message
18629  * exchanges have completed between arp and the driver.
18630  */
18631 void
18632 arp_replumb_done(ill_t *ill, int err)
18633 {
18634 	mblk_t	*mp1;
18635 	ipif_t  *ipif;
18636 	conn_t *connp = NULL;
18637 	ipsq_t	*ipsq;
18638 	queue_t *q;
18639 
18640 	ASSERT(IAM_WRITER_ILL(ill));
18641 
18642 	ipsq = ill->ill_phyint->phyint_ipsq;
18643 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18644 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18645 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18646 	if (mp1 == NULL) {
18647 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18648 		    ipsq->ipsq_xop->ipx_current_ioctl));
18649 		/* bringup was aborted by the user */
18650 		return;
18651 	}
18652 	/*
18653 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18654 	 * must have an associated conn_t.  Otherwise, we're bringing this
18655 	 * interface back up as part of handling an asynchronous event (e.g.,
18656 	 * physical address change).
18657 	 */
18658 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18659 		ASSERT(connp != NULL);
18660 		q = CONNP_TO_WQ(connp);
18661 	} else {
18662 		ASSERT(connp == NULL);
18663 		q = ill->ill_rq;
18664 	}
18665 	if ((err == 0) && (ill->ill_up_ipifs)) {
18666 		err = ill_up_ipifs(ill, q, mp1);
18667 		if (err == EINPROGRESS)
18668 			return;
18669 	}
18670 	/*
18671 	 * The operation must complete without EINPROGRESS since
18672 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18673 	 * Otherwise, the operation will be stuck forever in the ipsq.
18674 	 */
18675 	ASSERT(err != EINPROGRESS);
18676 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18677 		DTRACE_PROBE4(ipif__ioctl, char *,
18678 		    "arp_replumb_done finish",
18679 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18680 		    ill_t *, ill, ipif_t *, ipif);
18681 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18682 	} else {
18683 		ipsq_current_finish(ipsq);
18684 	}
18685 }
18686 
18687 void
18688 ipif_up_notify(ipif_t *ipif)
18689 {
18690 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18691 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18692 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18693 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18694 	    NE_LIF_UP, NULL, 0);
18695 }
18696 
18697 /*
18698  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18699  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18700  * TPI end points with STREAMS modules pushed above.  This is assured by not
18701  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18702  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18703  * while unwinding from the ispq and that could be a thread from the bottom.
18704  */
18705 /* ARGSUSED */
18706 int
18707 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18708     ip_ioctl_cmd_t *ipip, void *arg)
18709 {
18710 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18711 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18712 	int ret = 0;
18713 	int i;
18714 	size_t size;
18715 	ip_stack_t *ipst;
18716 	zoneid_t zoneid;
18717 	ilb_stack_t *ilbs;
18718 
18719 	ipst = CONNQ_TO_IPST(q);
18720 	ilbs = ipst->ips_netstack->netstack_ilb;
18721 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18722 
18723 	switch (command) {
18724 	case ILB_CREATE_RULE: {
18725 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18726 
18727 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18728 			ret = EINVAL;
18729 			break;
18730 		}
18731 
18732 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18733 		break;
18734 	}
18735 	case ILB_DESTROY_RULE:
18736 	case ILB_ENABLE_RULE:
18737 	case ILB_DISABLE_RULE: {
18738 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18739 
18740 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18741 			ret = EINVAL;
18742 			break;
18743 		}
18744 
18745 		if (cmd->flags & ILB_RULE_ALLRULES) {
18746 			if (command == ILB_DESTROY_RULE) {
18747 				ilb_rule_del_all(ilbs, zoneid);
18748 				break;
18749 			} else if (command == ILB_ENABLE_RULE) {
18750 				ilb_rule_enable_all(ilbs, zoneid);
18751 				break;
18752 			} else if (command == ILB_DISABLE_RULE) {
18753 				ilb_rule_disable_all(ilbs, zoneid);
18754 				break;
18755 			}
18756 		} else {
18757 			if (command == ILB_DESTROY_RULE) {
18758 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18759 			} else if (command == ILB_ENABLE_RULE) {
18760 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18761 				    NULL);
18762 			} else if (command == ILB_DISABLE_RULE) {
18763 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18764 				    NULL);
18765 			}
18766 		}
18767 		break;
18768 	}
18769 	case ILB_NUM_RULES: {
18770 		ilb_num_rules_cmd_t *cmd;
18771 
18772 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18773 			ret = EINVAL;
18774 			break;
18775 		}
18776 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18777 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18778 		break;
18779 	}
18780 	case ILB_RULE_NAMES: {
18781 		ilb_rule_names_cmd_t *cmd;
18782 
18783 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18784 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18785 		    cmd->num_names == 0) {
18786 			ret = EINVAL;
18787 			break;
18788 		}
18789 		size = cmd->num_names * ILB_RULE_NAMESZ;
18790 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18791 		    size != cmd_mp->b_wptr) {
18792 			ret = EINVAL;
18793 			break;
18794 		}
18795 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18796 		break;
18797 	}
18798 	case ILB_NUM_SERVERS: {
18799 		ilb_num_servers_cmd_t *cmd;
18800 
18801 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18802 			ret = EINVAL;
18803 			break;
18804 		}
18805 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18806 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18807 		    &(cmd->num));
18808 		break;
18809 	}
18810 	case ILB_LIST_RULE: {
18811 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18812 
18813 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18814 			ret = EINVAL;
18815 			break;
18816 		}
18817 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18818 		break;
18819 	}
18820 	case ILB_LIST_SERVERS: {
18821 		ilb_servers_info_cmd_t *cmd;
18822 
18823 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18824 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18825 		    cmd->num_servers == 0) {
18826 			ret = EINVAL;
18827 			break;
18828 		}
18829 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18830 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18831 		    size != cmd_mp->b_wptr) {
18832 			ret = EINVAL;
18833 			break;
18834 		}
18835 
18836 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18837 		    &cmd->num_servers);
18838 		break;
18839 	}
18840 	case ILB_ADD_SERVERS: {
18841 		ilb_servers_info_cmd_t *cmd;
18842 		ilb_rule_t *rule;
18843 
18844 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18845 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18846 			ret = EINVAL;
18847 			break;
18848 		}
18849 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18850 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18851 		    size != cmd_mp->b_wptr) {
18852 			ret = EINVAL;
18853 			break;
18854 		}
18855 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18856 		if (rule == NULL) {
18857 			ASSERT(ret != 0);
18858 			break;
18859 		}
18860 		for (i = 0; i < cmd->num_servers; i++) {
18861 			ilb_server_info_t *s;
18862 
18863 			s = &cmd->servers[i];
18864 			s->err = ilb_server_add(ilbs, rule, s);
18865 		}
18866 		ILB_RULE_REFRELE(rule);
18867 		break;
18868 	}
18869 	case ILB_DEL_SERVERS:
18870 	case ILB_ENABLE_SERVERS:
18871 	case ILB_DISABLE_SERVERS: {
18872 		ilb_servers_cmd_t *cmd;
18873 		ilb_rule_t *rule;
18874 		int (*f)();
18875 
18876 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18877 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18878 			ret = EINVAL;
18879 			break;
18880 		}
18881 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18882 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18883 		    size != cmd_mp->b_wptr) {
18884 			ret = EINVAL;
18885 			break;
18886 		}
18887 
18888 		if (command == ILB_DEL_SERVERS)
18889 			f = ilb_server_del;
18890 		else if (command == ILB_ENABLE_SERVERS)
18891 			f = ilb_server_enable;
18892 		else if (command == ILB_DISABLE_SERVERS)
18893 			f = ilb_server_disable;
18894 
18895 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18896 		if (rule == NULL) {
18897 			ASSERT(ret != 0);
18898 			break;
18899 		}
18900 
18901 		for (i = 0; i < cmd->num_servers; i++) {
18902 			ilb_server_arg_t *s;
18903 
18904 			s = &cmd->servers[i];
18905 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18906 		}
18907 		ILB_RULE_REFRELE(rule);
18908 		break;
18909 	}
18910 	case ILB_LIST_NAT_TABLE: {
18911 		ilb_list_nat_cmd_t *cmd;
18912 
18913 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18914 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18915 			ret = EINVAL;
18916 			break;
18917 		}
18918 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18919 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18920 		    size != cmd_mp->b_wptr) {
18921 			ret = EINVAL;
18922 			break;
18923 		}
18924 
18925 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18926 		    &cmd->flags);
18927 		break;
18928 	}
18929 	case ILB_LIST_STICKY_TABLE: {
18930 		ilb_list_sticky_cmd_t *cmd;
18931 
18932 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18933 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18934 			ret = EINVAL;
18935 			break;
18936 		}
18937 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18938 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18939 		    size != cmd_mp->b_wptr) {
18940 			ret = EINVAL;
18941 			break;
18942 		}
18943 
18944 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18945 		    &cmd->num_sticky, &cmd->flags);
18946 		break;
18947 	}
18948 	default:
18949 		ret = EINVAL;
18950 		break;
18951 	}
18952 done:
18953 	return (ret);
18954 }
18955 
18956 /* Remove all cache entries for this logical interface */
18957 void
18958 ipif_nce_down(ipif_t *ipif)
18959 {
18960 	ill_t *ill = ipif->ipif_ill;
18961 	nce_t *nce;
18962 
18963 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18964 	    ill_t *, ill, ipif_t *, ipif);
18965 	if (ipif->ipif_added_nce) {
18966 		if (ipif->ipif_isv6)
18967 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18968 		else
18969 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18970 		if (nce != NULL) {
18971 			if (--nce->nce_ipif_cnt == 0)
18972 				ncec_delete(nce->nce_common);
18973 			ipif->ipif_added_nce = 0;
18974 			nce_refrele(nce);
18975 		} else {
18976 			/*
18977 			 * nce may already be NULL because it was already
18978 			 * flushed, e.g., due to a call to nce_flush
18979 			 */
18980 			ipif->ipif_added_nce = 0;
18981 		}
18982 	}
18983 	/*
18984 	 * Make IPMP aware of the deleted data address.
18985 	 */
18986 	if (IS_IPMP(ill))
18987 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18988 
18989 	/*
18990 	 * Remove all other nces dependent on this ill when the last ipif
18991 	 * is going away.
18992 	 */
18993 	if (ill->ill_ipif_up_count == 0) {
18994 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18995 		    (uchar_t *)ill, ill->ill_ipst);
18996 		if (IS_UNDER_IPMP(ill))
18997 			nce_flush(ill, B_TRUE);
18998 	}
18999 }
19000 
19001 /*
19002  * find the first interface that uses usill for its source address.
19003  */
19004 ill_t *
19005 ill_lookup_usesrc(ill_t *usill)
19006 {
19007 	ip_stack_t *ipst = usill->ill_ipst;
19008 	ill_t *ill;
19009 
19010 	ASSERT(usill != NULL);
19011 
19012 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19013 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19014 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19015 	for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19016 	    ill = ill->ill_usesrc_grp_next) {
19017 		if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19018 		    !ILL_IS_CONDEMNED(ill)) {
19019 			ill_refhold(ill);
19020 			break;
19021 		}
19022 	}
19023 	rw_exit(&ipst->ips_ill_g_lock);
19024 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
19025 	return (ill);
19026 }
19027 
19028 /*
19029  * This comment applies to both ip_sioctl_get_ifhwaddr and
19030  * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19031  * is the same.
19032  *
19033  * The goal here is to find an IP interface that corresponds to the name
19034  * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19035  * chain and to fill out a sockaddr/sockaddr_storage structure with the
19036  * mac address.
19037  *
19038  * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19039  * of different reasons:
19040  * ENXIO - the device name is not known to IP.
19041  * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19042  * by ill_phys_addr not pointing to an actual address.
19043  * EPFNOSUPPORT - this will indicate that a request is being made for a
19044  * mac address that will not fit in the data structure supplier (struct
19045  * sockaddr).
19046  *
19047  */
19048 /* ARGSUSED */
19049 int
19050 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19051     ip_ioctl_cmd_t *ipip, void *if_req)
19052 {
19053 	struct sockaddr *sock;
19054 	struct ifreq *ifr;
19055 	mblk_t *mp1;
19056 	ill_t *ill;
19057 
19058 	ASSERT(ipif != NULL);
19059 	ill = ipif->ipif_ill;
19060 
19061 	if (ill->ill_phys_addr == NULL) {
19062 		return (EADDRNOTAVAIL);
19063 	}
19064 	if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19065 		return (EPFNOSUPPORT);
19066 	}
19067 
19068 	ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19069 
19070 	/* Existence of mp1 has been checked in ip_wput_nondata */
19071 	mp1 = mp->b_cont->b_cont;
19072 	ifr = (struct ifreq *)mp1->b_rptr;
19073 
19074 	sock = &ifr->ifr_addr;
19075 	/*
19076 	 * The "family" field in the returned structure is set to a value
19077 	 * that represents the type of device to which the address belongs.
19078 	 * The value returned may differ to that on Linux but it will still
19079 	 * represent the correct symbol on Solaris.
19080 	 */
19081 	sock->sa_family = arp_hw_type(ill->ill_mactype);
19082 	bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19083 
19084 	return (0);
19085 }
19086 
19087 /*
19088  * The expection of applications using SIOCGIFHWADDR is that data will
19089  * be returned in the sa_data field of the sockaddr structure. With
19090  * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19091  * equivalent. In light of this, struct sockaddr_dl is used as it
19092  * offers more space for address storage in sll_data.
19093  */
19094 /* ARGSUSED */
19095 int
19096 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19097     ip_ioctl_cmd_t *ipip, void *if_req)
19098 {
19099 	struct sockaddr_dl *sock;
19100 	struct lifreq *lifr;
19101 	mblk_t *mp1;
19102 	ill_t *ill;
19103 
19104 	ASSERT(ipif != NULL);
19105 	ill = ipif->ipif_ill;
19106 
19107 	if (ill->ill_phys_addr == NULL) {
19108 		return (EADDRNOTAVAIL);
19109 	}
19110 	if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19111 		return (EPFNOSUPPORT);
19112 	}
19113 
19114 	ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19115 
19116 	/* Existence of mp1 has been checked in ip_wput_nondata */
19117 	mp1 = mp->b_cont->b_cont;
19118 	lifr = (struct lifreq *)mp1->b_rptr;
19119 
19120 	/*
19121 	 * sockaddr_ll is used here because it is also the structure used in
19122 	 * responding to the same ioctl in sockpfp. The only other choice is
19123 	 * sockaddr_dl which contains fields that are not required here
19124 	 * because its purpose is different.
19125 	 */
19126 	lifr->lifr_type = ill->ill_type;
19127 	sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19128 	sock->sdl_family = AF_LINK;
19129 	sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19130 	sock->sdl_type = ill->ill_mactype;
19131 	sock->sdl_nlen = 0;
19132 	sock->sdl_slen = 0;
19133 	sock->sdl_alen = ill->ill_phys_addr_length;
19134 	bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19135 
19136 	return (0);
19137 }
19138