1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 * Copyright 2023 Oxide Computer Company 28 */ 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strsubr.h> 41 #include <sys/strlog.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/kstat.h> 46 #include <sys/debug.h> 47 #include <sys/zone.h> 48 #include <sys/sunldi.h> 49 #include <sys/file.h> 50 #include <sys/bitmap.h> 51 #include <sys/cpuvar.h> 52 #include <sys/time.h> 53 #include <sys/ctype.h> 54 #include <sys/kmem.h> 55 #include <sys/systm.h> 56 #include <sys/param.h> 57 #include <sys/socket.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/if_types.h> 62 #include <net/if_dl.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <netinet/igmp_var.h> 69 #include <sys/policy.h> 70 #include <sys/ethernet.h> 71 #include <sys/callb.h> 72 #include <sys/md5.h> 73 74 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 75 #include <inet/mi.h> 76 #include <inet/nd.h> 77 #include <inet/tunables.h> 78 #include <inet/arp.h> 79 #include <inet/ip_arp.h> 80 #include <inet/mib2.h> 81 #include <inet/ip.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_if.h> 91 #include <inet/ip_impl.h> 92 #include <inet/sctp_ip.h> 93 #include <inet/ip_netinfo.h> 94 #include <inet/ilb_ip.h> 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac_client.h> 100 #include <sys/dld.h> 101 #include <sys/mac_flow.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 110 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 111 112 /* The character which tells where the ill_name ends */ 113 #define IPIF_SEPARATOR_CHAR ':' 114 115 /* IP ioctl function table entry */ 116 typedef struct ipft_s { 117 int ipft_cmd; 118 pfi_t ipft_pfi; 119 int ipft_min_size; 120 int ipft_flags; 121 } ipft_t; 122 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 123 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ill_is_quiescent(ill_t *); 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 145 int ioccmd, struct linkblk *li); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize, boolean_t insert, int *errorp); 156 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 157 static void ipif_delete_bcast_ires(ipif_t *ipif); 158 static int ipif_add_ires_v4(ipif_t *, boolean_t); 159 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 160 boolean_t isv6); 161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 162 static void ipif_free(ipif_t *ipif); 163 static void ipif_free_tail(ipif_t *ipif); 164 static void ipif_set_default(ipif_t *ipif); 165 static int ipif_set_values(queue_t *q, mblk_t *mp, 166 char *interf_name, uint_t *ppa); 167 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 168 queue_t *q); 169 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 170 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 171 ip_stack_t *); 172 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 173 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 174 int *error, ip_stack_t *); 175 176 static int ill_alloc_ppa(ill_if_t *, ill_t *); 177 static void ill_delete_interface_type(ill_if_t *); 178 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 179 static void ill_dl_down(ill_t *ill); 180 static void ill_down(ill_t *ill); 181 static void ill_down_ipifs(ill_t *, boolean_t); 182 static void ill_free_mib(ill_t *ill); 183 static void ill_glist_delete(ill_t *); 184 static void ill_phyint_reinit(ill_t *ill); 185 static void ill_set_nce_router_flags(ill_t *, boolean_t); 186 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 188 189 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 190 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 191 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 192 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 193 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 194 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 195 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 196 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 197 static ip_v4mapinfo_func_t ip_mbcast_mapping; 198 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 199 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 200 static void phyint_free(phyint_t *); 201 202 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 206 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 208 dl_capability_sub_t *); 209 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 211 static void ill_capability_dld_ack(ill_t *, mblk_t *, 212 dl_capability_sub_t *); 213 static void ill_capability_dld_enable(ill_t *); 214 static void ill_capability_ack_thr(void *); 215 static void ill_capability_lso_enable(ill_t *); 216 217 static ill_t *ill_prev_usesrc(ill_t *); 218 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 219 static void ill_disband_usesrc_group(ill_t *); 220 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 221 222 #ifdef DEBUG 223 static void ill_trace_cleanup(const ill_t *); 224 static void ipif_trace_cleanup(const ipif_t *); 225 #endif 226 227 static void ill_dlpi_clear_deferred(ill_t *ill); 228 229 static void phyint_flags_init(phyint_t *, t_uscalar_t); 230 231 /* 232 * if we go over the memory footprint limit more than once in this msec 233 * interval, we'll start pruning aggressively. 234 */ 235 int ip_min_frag_prune_time = 0; 236 237 static ipft_t ip_ioctl_ftbl[] = { 238 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 239 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 240 IPFT_F_NO_REPLY }, 241 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 242 { 0 } 243 }; 244 245 /* Simple ICMP IP Header Template */ 246 static ipha_t icmp_ipha = { 247 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 248 }; 249 250 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 251 252 static ip_m_t ip_m_tbl[] = { 253 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 258 ip_nodef_v6intfid }, 259 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 261 ip_nodef_v6intfid }, 262 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 263 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 264 ip_nodef_v6intfid }, 265 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 266 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 267 ip_nodef_v6intfid }, 268 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 269 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 270 ip_nodef_v6intfid }, 271 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 273 ip_ipv4_v6destintfid }, 274 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 275 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 276 ip_ipv6_v6destintfid }, 277 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 278 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 279 ip_nodef_v6intfid }, 280 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 281 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 282 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 283 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 284 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 285 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 286 ip_nodef_v6intfid } 287 }; 288 289 char ipif_loopback_name[] = "lo0"; 290 291 /* These are used by all IP network modules. */ 292 sin6_t sin6_null; /* Zero address for quick clears */ 293 sin_t sin_null; /* Zero address for quick clears */ 294 295 /* When set search for unused ipif_seqid */ 296 static ipif_t ipif_zero; 297 298 /* 299 * ppa arena is created after these many 300 * interfaces have been plumbed. 301 */ 302 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 303 304 /* 305 * Allocate per-interface mibs. 306 * Returns true if ok. False otherwise. 307 * ipsq may not yet be allocated (loopback case ). 308 */ 309 static boolean_t 310 ill_allocate_mibs(ill_t *ill) 311 { 312 /* Already allocated? */ 313 if (ill->ill_ip_mib != NULL) { 314 if (ill->ill_isv6) 315 ASSERT(ill->ill_icmp6_mib != NULL); 316 return (B_TRUE); 317 } 318 319 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 320 KM_NOSLEEP); 321 if (ill->ill_ip_mib == NULL) { 322 return (B_FALSE); 323 } 324 325 /* Setup static information */ 326 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 327 sizeof (mib2_ipIfStatsEntry_t)); 328 if (ill->ill_isv6) { 329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 331 sizeof (mib2_ipv6AddrEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 333 sizeof (mib2_ipv6RouteEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 335 sizeof (mib2_ipv6NetToMediaEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 337 sizeof (ipv6_member_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 339 sizeof (ipv6_grpsrc_t)); 340 } else { 341 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 342 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 343 sizeof (mib2_ipAddrEntry_t)); 344 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 345 sizeof (mib2_ipRouteEntry_t)); 346 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 347 sizeof (mib2_ipNetToMediaEntry_t)); 348 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 349 sizeof (ip_member_t)); 350 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 351 sizeof (ip_grpsrc_t)); 352 353 /* 354 * For a v4 ill, we are done at this point, because per ill 355 * icmp mibs are only used for v6. 356 */ 357 return (B_TRUE); 358 } 359 360 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 361 KM_NOSLEEP); 362 if (ill->ill_icmp6_mib == NULL) { 363 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 364 ill->ill_ip_mib = NULL; 365 return (B_FALSE); 366 } 367 /* static icmp info */ 368 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 369 sizeof (mib2_ipv6IfIcmpEntry_t); 370 /* 371 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 372 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 373 * -> ill_phyint_reinit 374 */ 375 return (B_TRUE); 376 } 377 378 /* 379 * Completely vaporize a lower level tap and all associated interfaces. 380 * ill_delete is called only out of ip_close when the device control 381 * stream is being closed. 382 */ 383 void 384 ill_delete(ill_t *ill) 385 { 386 ipif_t *ipif; 387 ill_t *prev_ill; 388 ip_stack_t *ipst = ill->ill_ipst; 389 390 /* 391 * ill_delete may be forcibly entering the ipsq. The previous 392 * ioctl may not have completed and may need to be aborted. 393 * ipsq_flush takes care of it. If we don't need to enter the 394 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 395 * ill_delete_tail is sufficient. 396 */ 397 ipsq_flush(ill); 398 399 /* 400 * Nuke all interfaces. ipif_free will take down the interface, 401 * remove it from the list, and free the data structure. 402 * Walk down the ipif list and remove the logical interfaces 403 * first before removing the main ipif. We can't unplumb 404 * zeroth interface first in the case of IPv6 as update_conn_ill 405 * -> ip_ll_multireq de-references ill_ipif for checking 406 * POINTOPOINT. 407 * 408 * If ill_ipif was not properly initialized (i.e low on memory), 409 * then no interfaces to clean up. In this case just clean up the 410 * ill. 411 */ 412 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 413 ipif_free(ipif); 414 415 /* 416 * clean out all the nce_t entries that depend on this 417 * ill for the ill_phys_addr. 418 */ 419 nce_flush(ill, B_TRUE); 420 421 /* Clean up msgs on pending upcalls for mrouted */ 422 reset_mrt_ill(ill); 423 424 update_conn_ill(ill, ipst); 425 426 /* 427 * Remove multicast references added as a result of calls to 428 * ip_join_allmulti(). 429 */ 430 ip_purge_allmulti(ill); 431 432 /* 433 * If the ill being deleted is under IPMP, boot it out of the illgrp. 434 */ 435 if (IS_UNDER_IPMP(ill)) 436 ipmp_ill_leave_illgrp(ill); 437 438 /* 439 * ill_down will arrange to blow off any IRE's dependent on this 440 * ILL, and shut down fragmentation reassembly. 441 */ 442 ill_down(ill); 443 444 /* Let SCTP know, so that it can remove this from its list. */ 445 sctp_update_ill(ill, SCTP_ILL_REMOVE); 446 447 /* 448 * Walk all CONNs that can have a reference on an ire or nce for this 449 * ill (we actually walk all that now have stale references). 450 */ 451 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 452 453 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 454 if (ill->ill_isv6) 455 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 456 457 /* 458 * If an address on this ILL is being used as a source address then 459 * clear out the pointers in other ILLs that point to this ILL. 460 */ 461 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 462 if (ill->ill_usesrc_grp_next != NULL) { 463 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 464 ill_disband_usesrc_group(ill); 465 } else { /* consumer of the usesrc ILL */ 466 prev_ill = ill_prev_usesrc(ill); 467 prev_ill->ill_usesrc_grp_next = 468 ill->ill_usesrc_grp_next; 469 } 470 } 471 rw_exit(&ipst->ips_ill_g_usesrc_lock); 472 } 473 474 static void 475 ipif_non_duplicate(ipif_t *ipif) 476 { 477 ill_t *ill = ipif->ipif_ill; 478 mutex_enter(&ill->ill_lock); 479 if (ipif->ipif_flags & IPIF_DUPLICATE) { 480 ipif->ipif_flags &= ~IPIF_DUPLICATE; 481 ASSERT(ill->ill_ipif_dup_count > 0); 482 ill->ill_ipif_dup_count--; 483 } 484 mutex_exit(&ill->ill_lock); 485 } 486 487 /* 488 * ill_delete_tail is called from ip_modclose after all references 489 * to the closing ill are gone. The wait is done in ip_modclose 490 */ 491 void 492 ill_delete_tail(ill_t *ill) 493 { 494 mblk_t **mpp; 495 ipif_t *ipif; 496 ip_stack_t *ipst = ill->ill_ipst; 497 498 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 499 ipif_non_duplicate(ipif); 500 (void) ipif_down_tail(ipif); 501 } 502 503 ASSERT(ill->ill_ipif_dup_count == 0); 504 505 /* 506 * If polling capability is enabled (which signifies direct 507 * upcall into IP and driver has ill saved as a handle), 508 * we need to make sure that unbind has completed before we 509 * let the ill disappear and driver no longer has any reference 510 * to this ill. 511 */ 512 mutex_enter(&ill->ill_lock); 513 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 514 cv_wait(&ill->ill_cv, &ill->ill_lock); 515 mutex_exit(&ill->ill_lock); 516 ASSERT(!(ill->ill_capabilities & 517 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 518 519 if (ill->ill_net_type != IRE_LOOPBACK) 520 qprocsoff(ill->ill_rq); 521 522 /* 523 * We do an ipsq_flush once again now. New messages could have 524 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 525 * could also have landed up if an ioctl thread had looked up 526 * the ill before we set the ILL_CONDEMNED flag, but not yet 527 * enqueued the ioctl when we did the ipsq_flush last time. 528 */ 529 ipsq_flush(ill); 530 531 /* 532 * Free capabilities. 533 */ 534 if (ill->ill_hcksum_capab != NULL) { 535 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 536 ill->ill_hcksum_capab = NULL; 537 } 538 539 if (ill->ill_zerocopy_capab != NULL) { 540 kmem_free(ill->ill_zerocopy_capab, 541 sizeof (ill_zerocopy_capab_t)); 542 ill->ill_zerocopy_capab = NULL; 543 } 544 545 if (ill->ill_lso_capab != NULL) { 546 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 547 ill->ill_lso_capab = NULL; 548 } 549 550 if (ill->ill_dld_capab != NULL) { 551 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 552 ill->ill_dld_capab = NULL; 553 } 554 555 /* Clean up ill_allowed_ips* related state */ 556 if (ill->ill_allowed_ips != NULL) { 557 ASSERT(ill->ill_allowed_ips_cnt > 0); 558 kmem_free(ill->ill_allowed_ips, 559 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 560 ill->ill_allowed_ips = NULL; 561 ill->ill_allowed_ips_cnt = 0; 562 } 563 564 while (ill->ill_ipif != NULL) 565 ipif_free_tail(ill->ill_ipif); 566 567 /* 568 * We have removed all references to ilm from conn and the ones joined 569 * within the kernel. 570 * 571 * We don't walk conns, mrts and ires because 572 * 573 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 574 * 2) ill_down ->ill_downi walks all the ires and cleans up 575 * ill references. 576 */ 577 578 /* 579 * If this ill is an IPMP meta-interface, blow away the illgrp. This 580 * is safe to do because the illgrp has already been unlinked from the 581 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 582 */ 583 if (IS_IPMP(ill)) { 584 ipmp_illgrp_destroy(ill->ill_grp); 585 ill->ill_grp = NULL; 586 } 587 588 if (ill->ill_mphysaddr_list != NULL) { 589 multiphysaddr_t *mpa, *tmpa; 590 591 mpa = ill->ill_mphysaddr_list; 592 ill->ill_mphysaddr_list = NULL; 593 while (mpa) { 594 tmpa = mpa->mpa_next; 595 kmem_free(mpa, sizeof (*mpa)); 596 mpa = tmpa; 597 } 598 } 599 /* 600 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 601 * could free the phyint. No more reference to the phyint after this 602 * point. 603 */ 604 (void) ill_glist_delete(ill); 605 606 if (ill->ill_frag_ptr != NULL) { 607 uint_t count; 608 609 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 610 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 611 } 612 mi_free(ill->ill_frag_ptr); 613 ill->ill_frag_ptr = NULL; 614 ill->ill_frag_hash_tbl = NULL; 615 } 616 617 freemsg(ill->ill_nd_lla_mp); 618 /* Free all retained control messages. */ 619 mpp = &ill->ill_first_mp_to_free; 620 do { 621 while (mpp[0]) { 622 mblk_t *mp; 623 mblk_t *mp1; 624 625 mp = mpp[0]; 626 mpp[0] = mp->b_next; 627 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 628 mp1->b_next = NULL; 629 mp1->b_prev = NULL; 630 } 631 freemsg(mp); 632 } 633 } while (mpp++ != &ill->ill_last_mp_to_free); 634 635 ill_free_mib(ill); 636 637 #ifdef DEBUG 638 ill_trace_cleanup(ill); 639 #endif 640 641 /* The default multicast interface might have changed */ 642 ire_increment_multicast_generation(ipst, ill->ill_isv6); 643 644 /* Drop refcnt here */ 645 netstack_rele(ill->ill_ipst->ips_netstack); 646 ill->ill_ipst = NULL; 647 } 648 649 static void 650 ill_free_mib(ill_t *ill) 651 { 652 ip_stack_t *ipst = ill->ill_ipst; 653 654 /* 655 * MIB statistics must not be lost, so when an interface 656 * goes away the counter values will be added to the global 657 * MIBs. 658 */ 659 if (ill->ill_ip_mib != NULL) { 660 if (ill->ill_isv6) { 661 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 662 ill->ill_ip_mib); 663 } else { 664 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 665 ill->ill_ip_mib); 666 } 667 668 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 669 ill->ill_ip_mib = NULL; 670 } 671 if (ill->ill_icmp6_mib != NULL) { 672 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 673 ill->ill_icmp6_mib); 674 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 675 ill->ill_icmp6_mib = NULL; 676 } 677 } 678 679 /* 680 * Concatenate together a physical address and a sap. 681 * 682 * Sap_lengths are interpreted as follows: 683 * sap_length == 0 ==> no sap 684 * sap_length > 0 ==> sap is at the head of the dlpi address 685 * sap_length < 0 ==> sap is at the tail of the dlpi address 686 */ 687 static void 688 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 689 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 690 { 691 uint16_t sap_addr = (uint16_t)sap_src; 692 693 if (sap_length == 0) { 694 if (phys_src == NULL) 695 bzero(dst, phys_length); 696 else 697 bcopy(phys_src, dst, phys_length); 698 } else if (sap_length < 0) { 699 if (phys_src == NULL) 700 bzero(dst, phys_length); 701 else 702 bcopy(phys_src, dst, phys_length); 703 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 704 } else { 705 bcopy(&sap_addr, dst, sizeof (sap_addr)); 706 if (phys_src == NULL) 707 bzero((char *)dst + sap_length, phys_length); 708 else 709 bcopy(phys_src, (char *)dst + sap_length, phys_length); 710 } 711 } 712 713 /* 714 * Generate a dl_unitdata_req mblk for the device and address given. 715 * addr_length is the length of the physical portion of the address. 716 * If addr is NULL include an all zero address of the specified length. 717 * TRUE? In any case, addr_length is taken to be the entire length of the 718 * dlpi address, including the absolute value of sap_length. 719 */ 720 mblk_t * 721 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 722 t_scalar_t sap_length) 723 { 724 dl_unitdata_req_t *dlur; 725 mblk_t *mp; 726 t_scalar_t abs_sap_length; /* absolute value */ 727 728 abs_sap_length = ABS(sap_length); 729 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 730 DL_UNITDATA_REQ); 731 if (mp == NULL) 732 return (NULL); 733 dlur = (dl_unitdata_req_t *)mp->b_rptr; 734 /* HACK: accomodate incompatible DLPI drivers */ 735 if (addr_length == 8) 736 addr_length = 6; 737 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 738 dlur->dl_dest_addr_offset = sizeof (*dlur); 739 dlur->dl_priority.dl_min = 0; 740 dlur->dl_priority.dl_max = 0; 741 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 742 (uchar_t *)&dlur[1]); 743 return (mp); 744 } 745 746 /* 747 * Add the pending mp to the list. There can be only 1 pending mp 748 * in the list. Any exclusive ioctl that needs to wait for a response 749 * from another module or driver needs to use this function to set 750 * the ipx_pending_mp to the ioctl mblk and wait for the response from 751 * the other module/driver. This is also used while waiting for the 752 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 753 */ 754 boolean_t 755 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 756 int waitfor) 757 { 758 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 759 760 ASSERT(IAM_WRITER_IPIF(ipif)); 761 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 762 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 763 ASSERT(ipx->ipx_pending_mp == NULL); 764 /* 765 * The caller may be using a different ipif than the one passed into 766 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 767 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 768 * that `ipx_current_ipif == ipif'. 769 */ 770 ASSERT(ipx->ipx_current_ipif != NULL); 771 772 /* 773 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 774 * driver. 775 */ 776 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 777 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 778 (DB_TYPE(add_mp) == M_PCPROTO)); 779 780 if (connp != NULL) { 781 ASSERT(MUTEX_HELD(&connp->conn_lock)); 782 /* 783 * Return error if the conn has started closing. The conn 784 * could have finished cleaning up the pending mp list, 785 * If so we should not add another mp to the list negating 786 * the cleanup. 787 */ 788 if (connp->conn_state_flags & CONN_CLOSING) 789 return (B_FALSE); 790 } 791 mutex_enter(&ipx->ipx_lock); 792 ipx->ipx_pending_ipif = ipif; 793 /* 794 * Note down the queue in b_queue. This will be returned by 795 * ipsq_pending_mp_get. Caller will then use these values to restart 796 * the processing 797 */ 798 add_mp->b_next = NULL; 799 add_mp->b_queue = q; 800 ipx->ipx_pending_mp = add_mp; 801 ipx->ipx_waitfor = waitfor; 802 mutex_exit(&ipx->ipx_lock); 803 804 if (connp != NULL) 805 connp->conn_oper_pending_ill = ipif->ipif_ill; 806 807 return (B_TRUE); 808 } 809 810 /* 811 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 812 * queued in the list. 813 */ 814 mblk_t * 815 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 816 { 817 mblk_t *curr = NULL; 818 ipxop_t *ipx = ipsq->ipsq_xop; 819 820 *connpp = NULL; 821 mutex_enter(&ipx->ipx_lock); 822 if (ipx->ipx_pending_mp == NULL) { 823 mutex_exit(&ipx->ipx_lock); 824 return (NULL); 825 } 826 827 /* There can be only 1 such excl message */ 828 curr = ipx->ipx_pending_mp; 829 ASSERT(curr->b_next == NULL); 830 ipx->ipx_pending_ipif = NULL; 831 ipx->ipx_pending_mp = NULL; 832 ipx->ipx_waitfor = 0; 833 mutex_exit(&ipx->ipx_lock); 834 835 if (CONN_Q(curr->b_queue)) { 836 /* 837 * This mp did a refhold on the conn, at the start of the ioctl. 838 * So we can safely return a pointer to the conn to the caller. 839 */ 840 *connpp = Q_TO_CONN(curr->b_queue); 841 } else { 842 *connpp = NULL; 843 } 844 curr->b_next = NULL; 845 curr->b_prev = NULL; 846 return (curr); 847 } 848 849 /* 850 * Cleanup the ioctl mp queued in ipx_pending_mp 851 * - Called in the ill_delete path 852 * - Called in the M_ERROR or M_HANGUP path on the ill. 853 * - Called in the conn close path. 854 * 855 * Returns success on finding the pending mblk associated with the ioctl or 856 * exclusive operation in progress, failure otherwise. 857 */ 858 boolean_t 859 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 860 { 861 mblk_t *mp; 862 ipxop_t *ipx; 863 queue_t *q; 864 ipif_t *ipif; 865 int cmd; 866 867 ASSERT(IAM_WRITER_ILL(ill)); 868 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 869 870 mutex_enter(&ipx->ipx_lock); 871 mp = ipx->ipx_pending_mp; 872 if (connp != NULL) { 873 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 874 /* 875 * Nothing to clean since the conn that is closing 876 * does not have a matching pending mblk in 877 * ipx_pending_mp. 878 */ 879 mutex_exit(&ipx->ipx_lock); 880 return (B_FALSE); 881 } 882 } else { 883 /* 884 * A non-zero ill_error signifies we are called in the 885 * M_ERROR or M_HANGUP path and we need to unconditionally 886 * abort any current ioctl and do the corresponding cleanup. 887 * A zero ill_error means we are in the ill_delete path and 888 * we do the cleanup only if there is a pending mp. 889 */ 890 if (mp == NULL && ill->ill_error == 0) { 891 mutex_exit(&ipx->ipx_lock); 892 return (B_FALSE); 893 } 894 } 895 896 /* Now remove from the ipx_pending_mp */ 897 ipx->ipx_pending_mp = NULL; 898 ipif = ipx->ipx_pending_ipif; 899 ipx->ipx_pending_ipif = NULL; 900 ipx->ipx_waitfor = 0; 901 ipx->ipx_current_ipif = NULL; 902 cmd = ipx->ipx_current_ioctl; 903 ipx->ipx_current_ioctl = 0; 904 ipx->ipx_current_done = B_TRUE; 905 mutex_exit(&ipx->ipx_lock); 906 907 if (mp == NULL) 908 return (B_FALSE); 909 910 q = mp->b_queue; 911 mp->b_next = NULL; 912 mp->b_prev = NULL; 913 mp->b_queue = NULL; 914 915 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 916 DTRACE_PROBE4(ipif__ioctl, 917 char *, "ipsq_pending_mp_cleanup", 918 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 919 ipif_t *, ipif); 920 if (connp == NULL) { 921 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 922 } else { 923 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 924 mutex_enter(&ipif->ipif_ill->ill_lock); 925 ipif->ipif_state_flags &= ~IPIF_CHANGING; 926 mutex_exit(&ipif->ipif_ill->ill_lock); 927 } 928 } else { 929 inet_freemsg(mp); 930 } 931 return (B_TRUE); 932 } 933 934 /* 935 * Called in the conn close path and ill delete path 936 */ 937 static void 938 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 939 { 940 ipsq_t *ipsq; 941 mblk_t *prev; 942 mblk_t *curr; 943 mblk_t *next; 944 queue_t *wq, *rq = NULL; 945 mblk_t *tmp_list = NULL; 946 947 ASSERT(IAM_WRITER_ILL(ill)); 948 if (connp != NULL) 949 wq = CONNP_TO_WQ(connp); 950 else 951 wq = ill->ill_wq; 952 953 /* 954 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 955 * against this here. 956 */ 957 if (wq != NULL) 958 rq = RD(wq); 959 960 ipsq = ill->ill_phyint->phyint_ipsq; 961 /* 962 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 963 * In the case of ioctl from a conn, there can be only 1 mp 964 * queued on the ipsq. If an ill is being unplumbed flush all 965 * the messages. 966 */ 967 mutex_enter(&ipsq->ipsq_lock); 968 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 969 curr = next) { 970 next = curr->b_next; 971 if (connp == NULL || 972 (curr->b_queue == wq || curr->b_queue == rq)) { 973 /* Unlink the mblk from the pending mp list */ 974 if (prev != NULL) { 975 prev->b_next = curr->b_next; 976 } else { 977 ASSERT(ipsq->ipsq_xopq_mphead == curr); 978 ipsq->ipsq_xopq_mphead = curr->b_next; 979 } 980 if (ipsq->ipsq_xopq_mptail == curr) 981 ipsq->ipsq_xopq_mptail = prev; 982 /* 983 * Create a temporary list and release the ipsq lock 984 * New elements are added to the head of the tmp_list 985 */ 986 curr->b_next = tmp_list; 987 tmp_list = curr; 988 } else { 989 prev = curr; 990 } 991 } 992 mutex_exit(&ipsq->ipsq_lock); 993 994 while (tmp_list != NULL) { 995 curr = tmp_list; 996 tmp_list = curr->b_next; 997 curr->b_next = NULL; 998 curr->b_prev = NULL; 999 wq = curr->b_queue; 1000 curr->b_queue = NULL; 1001 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1002 DTRACE_PROBE4(ipif__ioctl, 1003 char *, "ipsq_xopq_mp_cleanup", 1004 int, 0, ill_t *, NULL, ipif_t *, NULL); 1005 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1006 CONN_CLOSE : NO_COPYOUT, NULL); 1007 } else { 1008 /* 1009 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1010 * this can't be just inet_freemsg. we have to 1011 * restart it otherwise the thread will be stuck. 1012 */ 1013 inet_freemsg(curr); 1014 } 1015 } 1016 } 1017 1018 /* 1019 * This conn has started closing. Cleanup any pending ioctl from this conn. 1020 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1021 */ 1022 void 1023 conn_ioctl_cleanup(conn_t *connp) 1024 { 1025 ipsq_t *ipsq; 1026 ill_t *ill; 1027 boolean_t refheld; 1028 1029 /* 1030 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1031 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1032 * started the mp could be present in ipx_pending_mp. Note that if 1033 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1034 * not yet queued anywhere. In this case, the conn close code will wait 1035 * until the conn_ref is dropped. If the stream was a tcp stream, then 1036 * tcp_close will wait first until all ioctls have completed for this 1037 * conn. 1038 */ 1039 mutex_enter(&connp->conn_lock); 1040 ill = connp->conn_oper_pending_ill; 1041 if (ill == NULL) { 1042 mutex_exit(&connp->conn_lock); 1043 return; 1044 } 1045 1046 /* 1047 * We may not be able to refhold the ill if the ill/ipif 1048 * is changing. But we need to make sure that the ill will 1049 * not vanish. So we just bump up the ill_waiter count. 1050 */ 1051 refheld = ill_waiter_inc(ill); 1052 mutex_exit(&connp->conn_lock); 1053 if (refheld) { 1054 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1055 ill_waiter_dcr(ill); 1056 /* 1057 * Check whether this ioctl has started and is 1058 * pending. If it is not found there then check 1059 * whether this ioctl has not even started and is in 1060 * the ipsq_xopq list. 1061 */ 1062 if (!ipsq_pending_mp_cleanup(ill, connp)) 1063 ipsq_xopq_mp_cleanup(ill, connp); 1064 ipsq = ill->ill_phyint->phyint_ipsq; 1065 ipsq_exit(ipsq); 1066 return; 1067 } 1068 } 1069 1070 /* 1071 * The ill is also closing and we could not bump up the 1072 * ill_waiter_count or we could not enter the ipsq. Leave 1073 * the cleanup to ill_delete 1074 */ 1075 mutex_enter(&connp->conn_lock); 1076 while (connp->conn_oper_pending_ill != NULL) 1077 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1078 mutex_exit(&connp->conn_lock); 1079 if (refheld) 1080 ill_waiter_dcr(ill); 1081 } 1082 1083 /* 1084 * ipcl_walk function for cleaning up conn_*_ill fields. 1085 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1086 * conn_bound_if in place. We prefer dropping 1087 * packets instead of sending them out the wrong interface, or accepting 1088 * packets from the wrong ifindex. 1089 */ 1090 static void 1091 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1092 { 1093 ill_t *ill = (ill_t *)arg; 1094 1095 mutex_enter(&connp->conn_lock); 1096 if (connp->conn_dhcpinit_ill == ill) { 1097 connp->conn_dhcpinit_ill = NULL; 1098 ASSERT(ill->ill_dhcpinit != 0); 1099 atomic_dec_32(&ill->ill_dhcpinit); 1100 ill_set_inputfn(ill); 1101 } 1102 mutex_exit(&connp->conn_lock); 1103 } 1104 1105 static int 1106 ill_down_ipifs_tail(ill_t *ill) 1107 { 1108 ipif_t *ipif; 1109 int err; 1110 1111 ASSERT(IAM_WRITER_ILL(ill)); 1112 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1113 ipif_non_duplicate(ipif); 1114 /* 1115 * ipif_down_tail will call arp_ll_down on the last ipif 1116 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1117 */ 1118 if ((err = ipif_down_tail(ipif)) != 0) 1119 return (err); 1120 } 1121 return (0); 1122 } 1123 1124 /* ARGSUSED */ 1125 void 1126 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1127 { 1128 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1129 (void) ill_down_ipifs_tail(q->q_ptr); 1130 freemsg(mp); 1131 ipsq_current_finish(ipsq); 1132 } 1133 1134 /* 1135 * ill_down_start is called when we want to down this ill and bring it up again 1136 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1137 * all interfaces, but don't tear down any plumbing. 1138 */ 1139 boolean_t 1140 ill_down_start(queue_t *q, mblk_t *mp) 1141 { 1142 ill_t *ill = q->q_ptr; 1143 ipif_t *ipif; 1144 1145 ASSERT(IAM_WRITER_ILL(ill)); 1146 /* 1147 * It is possible that some ioctl is already in progress while we 1148 * received the M_ERROR / M_HANGUP in which case, we need to abort 1149 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1150 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1151 * the in progress ioctl from ever completing. 1152 * 1153 * The thread that started the ioctl (if any) must have returned, 1154 * since we are now executing as writer. After the 2 calls below, 1155 * the state of the ipsq and the ill would reflect no trace of any 1156 * pending operation. Subsequently if there is any response to the 1157 * original ioctl from the driver, it would be discarded as an 1158 * unsolicited message from the driver. 1159 */ 1160 (void) ipsq_pending_mp_cleanup(ill, NULL); 1161 ill_dlpi_clear_deferred(ill); 1162 1163 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1164 (void) ipif_down(ipif, NULL, NULL); 1165 1166 ill_down(ill); 1167 1168 /* 1169 * Walk all CONNs that can have a reference on an ire or nce for this 1170 * ill (we actually walk all that now have stale references). 1171 */ 1172 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1173 1174 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1175 if (ill->ill_isv6) 1176 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1177 1178 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1179 1180 /* 1181 * Atomically test and add the pending mp if references are active. 1182 */ 1183 mutex_enter(&ill->ill_lock); 1184 if (!ill_is_quiescent(ill)) { 1185 /* call cannot fail since `conn_t *' argument is NULL */ 1186 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1187 mp, ILL_DOWN); 1188 mutex_exit(&ill->ill_lock); 1189 return (B_FALSE); 1190 } 1191 mutex_exit(&ill->ill_lock); 1192 return (B_TRUE); 1193 } 1194 1195 static void 1196 ill_down(ill_t *ill) 1197 { 1198 mblk_t *mp; 1199 ip_stack_t *ipst = ill->ill_ipst; 1200 1201 /* 1202 * Blow off any IREs dependent on this ILL. 1203 * The caller needs to handle conn_ixa_cleanup 1204 */ 1205 ill_delete_ires(ill); 1206 1207 ire_walk_ill(0, 0, ill_downi, ill, ill); 1208 1209 /* Remove any conn_*_ill depending on this ill */ 1210 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1211 1212 /* 1213 * Free state for additional IREs. 1214 */ 1215 mutex_enter(&ill->ill_saved_ire_lock); 1216 mp = ill->ill_saved_ire_mp; 1217 ill->ill_saved_ire_mp = NULL; 1218 ill->ill_saved_ire_cnt = 0; 1219 mutex_exit(&ill->ill_saved_ire_lock); 1220 freemsg(mp); 1221 } 1222 1223 /* 1224 * ire_walk routine used to delete every IRE that depends on 1225 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1226 * 1227 * Note: since the routes added by the kernel are deleted separately, 1228 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1229 * 1230 * We also remove references on ire_nce_cache entries that refer to the ill. 1231 */ 1232 void 1233 ill_downi(ire_t *ire, char *ill_arg) 1234 { 1235 ill_t *ill = (ill_t *)ill_arg; 1236 nce_t *nce; 1237 1238 mutex_enter(&ire->ire_lock); 1239 nce = ire->ire_nce_cache; 1240 if (nce != NULL && nce->nce_ill == ill) 1241 ire->ire_nce_cache = NULL; 1242 else 1243 nce = NULL; 1244 mutex_exit(&ire->ire_lock); 1245 if (nce != NULL) 1246 nce_refrele(nce); 1247 if (ire->ire_ill == ill) { 1248 /* 1249 * The existing interface binding for ire must be 1250 * deleted before trying to bind the route to another 1251 * interface. However, since we are using the contents of the 1252 * ire after ire_delete, the caller has to ensure that 1253 * CONDEMNED (deleted) ire's are not removed from the list 1254 * when ire_delete() returns. Currently ill_downi() is 1255 * only called as part of ire_walk*() routines, so that 1256 * the irb_refhold() done by ire_walk*() will ensure that 1257 * ire_delete() does not lead to ire_inactive(). 1258 */ 1259 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1260 ire_delete(ire); 1261 if (ire->ire_unbound) 1262 ire_rebind(ire); 1263 } 1264 } 1265 1266 /* Remove IRE_IF_CLONE on this ill */ 1267 void 1268 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1269 { 1270 ill_t *ill = (ill_t *)ill_arg; 1271 1272 ASSERT(ire->ire_type & IRE_IF_CLONE); 1273 if (ire->ire_ill == ill) 1274 ire_delete(ire); 1275 } 1276 1277 /* Consume an M_IOCACK of the fastpath probe. */ 1278 void 1279 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1280 { 1281 mblk_t *mp1 = mp; 1282 1283 /* 1284 * If this was the first attempt turn on the fastpath probing. 1285 */ 1286 mutex_enter(&ill->ill_lock); 1287 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1288 ill->ill_dlpi_fastpath_state = IDS_OK; 1289 mutex_exit(&ill->ill_lock); 1290 1291 /* Free the M_IOCACK mblk, hold on to the data */ 1292 mp = mp->b_cont; 1293 freeb(mp1); 1294 if (mp == NULL) 1295 return; 1296 if (mp->b_cont != NULL) 1297 nce_fastpath_update(ill, mp); 1298 else 1299 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1300 freemsg(mp); 1301 } 1302 1303 /* 1304 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1305 * The data portion of the request is a dl_unitdata_req_t template for 1306 * what we would send downstream in the absence of a fastpath confirmation. 1307 */ 1308 int 1309 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1310 { 1311 struct iocblk *ioc; 1312 mblk_t *mp; 1313 1314 if (dlur_mp == NULL) 1315 return (EINVAL); 1316 1317 mutex_enter(&ill->ill_lock); 1318 switch (ill->ill_dlpi_fastpath_state) { 1319 case IDS_FAILED: 1320 /* 1321 * Driver NAKed the first fastpath ioctl - assume it doesn't 1322 * support it. 1323 */ 1324 mutex_exit(&ill->ill_lock); 1325 return (ENOTSUP); 1326 case IDS_UNKNOWN: 1327 /* This is the first probe */ 1328 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1329 break; 1330 default: 1331 break; 1332 } 1333 mutex_exit(&ill->ill_lock); 1334 1335 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1336 return (EAGAIN); 1337 1338 mp->b_cont = copyb(dlur_mp); 1339 if (mp->b_cont == NULL) { 1340 freeb(mp); 1341 return (EAGAIN); 1342 } 1343 1344 ioc = (struct iocblk *)mp->b_rptr; 1345 ioc->ioc_count = msgdsize(mp->b_cont); 1346 1347 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1348 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1349 putnext(ill->ill_wq, mp); 1350 return (0); 1351 } 1352 1353 void 1354 ill_capability_probe(ill_t *ill) 1355 { 1356 mblk_t *mp; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1361 ill->ill_dlpi_capab_state != IDCS_FAILED) 1362 return; 1363 1364 /* 1365 * We are starting a new cycle of capability negotiation. 1366 * Free up the capab reset messages of any previous incarnation. 1367 * We will do a fresh allocation when we get the response to our probe 1368 */ 1369 if (ill->ill_capab_reset_mp != NULL) { 1370 freemsg(ill->ill_capab_reset_mp); 1371 ill->ill_capab_reset_mp = NULL; 1372 } 1373 1374 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1375 1376 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1377 if (mp == NULL) 1378 return; 1379 1380 ill_capability_send(ill, mp); 1381 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1382 } 1383 1384 void 1385 ill_capability_reset(ill_t *ill, boolean_t reneg) 1386 { 1387 ASSERT(IAM_WRITER_ILL(ill)); 1388 1389 if (ill->ill_dlpi_capab_state != IDCS_OK) 1390 return; 1391 1392 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1393 1394 ill_capability_send(ill, ill->ill_capab_reset_mp); 1395 ill->ill_capab_reset_mp = NULL; 1396 /* 1397 * We turn off all capabilities except those pertaining to 1398 * direct function call capabilities viz. ILL_CAPAB_DLD* 1399 * which will be turned off by the corresponding reset functions. 1400 */ 1401 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1402 } 1403 1404 static void 1405 ill_capability_reset_alloc(ill_t *ill) 1406 { 1407 mblk_t *mp; 1408 size_t size = 0; 1409 int err; 1410 dl_capability_req_t *capb; 1411 1412 ASSERT(IAM_WRITER_ILL(ill)); 1413 ASSERT(ill->ill_capab_reset_mp == NULL); 1414 1415 if (ILL_HCKSUM_CAPABLE(ill)) { 1416 size += sizeof (dl_capability_sub_t) + 1417 sizeof (dl_capab_hcksum_t); 1418 } 1419 1420 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1421 size += sizeof (dl_capability_sub_t) + 1422 sizeof (dl_capab_zerocopy_t); 1423 } 1424 1425 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1426 size += sizeof (dl_capability_sub_t) + 1427 sizeof (dl_capab_dld_t); 1428 } 1429 1430 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1431 STR_NOSIG, &err); 1432 1433 mp->b_datap->db_type = M_PROTO; 1434 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1435 1436 capb = (dl_capability_req_t *)mp->b_rptr; 1437 capb->dl_primitive = DL_CAPABILITY_REQ; 1438 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1439 capb->dl_sub_length = size; 1440 1441 mp->b_wptr += sizeof (dl_capability_req_t); 1442 1443 /* 1444 * Each handler fills in the corresponding dl_capability_sub_t 1445 * inside the mblk, 1446 */ 1447 ill_capability_hcksum_reset_fill(ill, mp); 1448 ill_capability_zerocopy_reset_fill(ill, mp); 1449 ill_capability_dld_reset_fill(ill, mp); 1450 1451 ill->ill_capab_reset_mp = mp; 1452 } 1453 1454 static void 1455 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1456 { 1457 dl_capab_id_t *id_ic; 1458 uint_t sub_dl_cap = outers->dl_cap; 1459 dl_capability_sub_t *inners; 1460 uint8_t *capend; 1461 1462 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1463 1464 /* 1465 * Note: range checks here are not absolutely sufficient to 1466 * make us robust against malformed messages sent by drivers; 1467 * this is in keeping with the rest of IP's dlpi handling. 1468 * (Remember, it's coming from something else in the kernel 1469 * address space) 1470 */ 1471 1472 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1473 if (capend > mp->b_wptr) { 1474 cmn_err(CE_WARN, "ill_capability_id_ack: " 1475 "malformed sub-capability too long for mblk"); 1476 return; 1477 } 1478 1479 id_ic = (dl_capab_id_t *)(outers + 1); 1480 1481 inners = &id_ic->id_subcap; 1482 if (outers->dl_length < sizeof (*id_ic) || 1483 inners->dl_length > (outers->dl_length - sizeof (*inners))) { 1484 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1485 "encapsulated capab type %d too long for mblk", 1486 inners->dl_cap); 1487 return; 1488 } 1489 1490 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1491 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1492 "isn't as expected; pass-thru module(s) detected, " 1493 "discarding capability\n", inners->dl_cap)); 1494 return; 1495 } 1496 1497 /* Process the encapsulated sub-capability */ 1498 ill_capability_dispatch(ill, mp, inners); 1499 } 1500 1501 static void 1502 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1503 { 1504 dl_capability_sub_t *dl_subcap; 1505 1506 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1507 return; 1508 1509 /* 1510 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1511 * initialized below since it is not used by DLD. 1512 */ 1513 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1514 dl_subcap->dl_cap = DL_CAPAB_DLD; 1515 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1516 1517 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1518 } 1519 1520 static void 1521 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1522 { 1523 /* 1524 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1525 * is only to get the VRRP capability. 1526 * 1527 * Note that we cannot check ill_ipif_up_count here since 1528 * ill_ipif_up_count is only incremented when the resolver is setup. 1529 * That is done asynchronously, and can race with this function. 1530 */ 1531 if (!ill->ill_dl_up) { 1532 if (subp->dl_cap == DL_CAPAB_VRRP) 1533 ill_capability_vrrp_ack(ill, mp, subp); 1534 return; 1535 } 1536 1537 switch (subp->dl_cap) { 1538 case DL_CAPAB_HCKSUM: 1539 ill_capability_hcksum_ack(ill, mp, subp); 1540 break; 1541 case DL_CAPAB_ZEROCOPY: 1542 ill_capability_zerocopy_ack(ill, mp, subp); 1543 break; 1544 case DL_CAPAB_DLD: 1545 ill_capability_dld_ack(ill, mp, subp); 1546 break; 1547 case DL_CAPAB_VRRP: 1548 break; 1549 default: 1550 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1551 subp->dl_cap)); 1552 } 1553 } 1554 1555 /* 1556 * Process the vrrp capability received from a DLS Provider. isub must point 1557 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1558 */ 1559 static void 1560 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1561 { 1562 dl_capab_vrrp_t *vrrp; 1563 uint_t sub_dl_cap = isub->dl_cap; 1564 uint8_t *capend; 1565 1566 ASSERT(IAM_WRITER_ILL(ill)); 1567 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1568 1569 /* 1570 * Note: range checks here are not absolutely sufficient to 1571 * make us robust against malformed messages sent by drivers; 1572 * this is in keeping with the rest of IP's dlpi handling. 1573 * (Remember, it's coming from something else in the kernel 1574 * address space) 1575 */ 1576 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1577 if (capend > mp->b_wptr) { 1578 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1579 "malformed sub-capability too long for mblk"); 1580 return; 1581 } 1582 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1583 1584 /* 1585 * Compare the IP address family and set ILLF_VRRP for the right ill. 1586 */ 1587 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1588 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1589 ill->ill_flags |= ILLF_VRRP; 1590 } 1591 } 1592 1593 /* 1594 * Process a hardware checksum offload capability negotiation ack received 1595 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1596 * of a DL_CAPABILITY_ACK message. 1597 */ 1598 static void 1599 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1600 { 1601 dl_capability_req_t *ocap; 1602 dl_capab_hcksum_t *ihck, *ohck; 1603 ill_hcksum_capab_t **ill_hcksum; 1604 mblk_t *nmp = NULL; 1605 uint_t sub_dl_cap = isub->dl_cap; 1606 uint8_t *capend; 1607 1608 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1609 1610 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1611 1612 /* 1613 * Note: range checks here are not absolutely sufficient to 1614 * make us robust against malformed messages sent by drivers; 1615 * this is in keeping with the rest of IP's dlpi handling. 1616 * (Remember, it's coming from something else in the kernel 1617 * address space) 1618 */ 1619 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1620 if (capend > mp->b_wptr) { 1621 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1622 "malformed sub-capability too long for mblk"); 1623 return; 1624 } 1625 1626 /* 1627 * There are two types of acks we process here: 1628 * 1. acks in reply to a (first form) generic capability req 1629 * (no ENABLE flag set) 1630 * 2. acks in reply to a ENABLE capability req. 1631 * (ENABLE flag set) 1632 */ 1633 ihck = (dl_capab_hcksum_t *)(isub + 1); 1634 1635 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1636 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1637 "unsupported hardware checksum " 1638 "sub-capability (version %d, expected %d)", 1639 ihck->hcksum_version, HCKSUM_VERSION_1); 1640 return; 1641 } 1642 1643 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1644 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1645 "checksum capability isn't as expected; pass-thru " 1646 "module(s) detected, discarding capability\n")); 1647 return; 1648 } 1649 1650 #define CURR_HCKSUM_CAPAB \ 1651 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1652 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1653 1654 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1655 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1656 /* do ENABLE processing */ 1657 if (*ill_hcksum == NULL) { 1658 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1659 KM_NOSLEEP); 1660 1661 if (*ill_hcksum == NULL) { 1662 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1663 "could not enable hcksum version %d " 1664 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1665 ill->ill_name); 1666 return; 1667 } 1668 } 1669 1670 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1671 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1672 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1673 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1674 "has enabled hardware checksumming\n ", 1675 ill->ill_name)); 1676 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1677 /* 1678 * Enabling hardware checksum offload 1679 * Currently IP supports {TCP,UDP}/IPv4 1680 * partial and full cksum offload and 1681 * IPv4 header checksum offload. 1682 * Allocate new mblk which will 1683 * contain a new capability request 1684 * to enable hardware checksum offload. 1685 */ 1686 uint_t size; 1687 uchar_t *rptr; 1688 1689 size = sizeof (dl_capability_req_t) + 1690 sizeof (dl_capability_sub_t) + isub->dl_length; 1691 1692 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1693 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1694 "could not enable hardware cksum for %s (ENOMEM)\n", 1695 ill->ill_name); 1696 return; 1697 } 1698 1699 rptr = nmp->b_rptr; 1700 /* initialize dl_capability_req_t */ 1701 ocap = (dl_capability_req_t *)nmp->b_rptr; 1702 ocap->dl_sub_offset = 1703 sizeof (dl_capability_req_t); 1704 ocap->dl_sub_length = 1705 sizeof (dl_capability_sub_t) + 1706 isub->dl_length; 1707 nmp->b_rptr += sizeof (dl_capability_req_t); 1708 1709 /* initialize dl_capability_sub_t */ 1710 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1711 nmp->b_rptr += sizeof (*isub); 1712 1713 /* initialize dl_capab_hcksum_t */ 1714 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1715 bcopy(ihck, ohck, sizeof (*ihck)); 1716 1717 nmp->b_rptr = rptr; 1718 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1719 1720 /* Set ENABLE flag */ 1721 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1722 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1723 1724 /* 1725 * nmp points to a DL_CAPABILITY_REQ message to enable 1726 * hardware checksum acceleration. 1727 */ 1728 ill_capability_send(ill, nmp); 1729 } else { 1730 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1731 "advertised %x hardware checksum capability flags\n", 1732 ill->ill_name, ihck->hcksum_txflags)); 1733 } 1734 } 1735 1736 static void 1737 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1738 { 1739 dl_capab_hcksum_t *hck_subcap; 1740 dl_capability_sub_t *dl_subcap; 1741 1742 if (!ILL_HCKSUM_CAPABLE(ill)) 1743 return; 1744 1745 ASSERT(ill->ill_hcksum_capab != NULL); 1746 1747 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1748 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1749 dl_subcap->dl_length = sizeof (*hck_subcap); 1750 1751 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1752 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1753 hck_subcap->hcksum_txflags = 0; 1754 1755 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1756 } 1757 1758 static void 1759 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1760 { 1761 mblk_t *nmp = NULL; 1762 dl_capability_req_t *oc; 1763 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1764 ill_zerocopy_capab_t **ill_zerocopy_capab; 1765 uint_t sub_dl_cap = isub->dl_cap; 1766 uint8_t *capend; 1767 1768 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1769 1770 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1771 1772 /* 1773 * Note: range checks here are not absolutely sufficient to 1774 * make us robust against malformed messages sent by drivers; 1775 * this is in keeping with the rest of IP's dlpi handling. 1776 * (Remember, it's coming from something else in the kernel 1777 * address space) 1778 */ 1779 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1780 if (capend > mp->b_wptr) { 1781 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1782 "malformed sub-capability too long for mblk"); 1783 return; 1784 } 1785 1786 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1787 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1788 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1789 "unsupported ZEROCOPY sub-capability (version %d, " 1790 "expected %d)", zc_ic->zerocopy_version, 1791 ZEROCOPY_VERSION_1); 1792 return; 1793 } 1794 1795 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1796 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1797 "capability isn't as expected; pass-thru module(s) " 1798 "detected, discarding capability\n")); 1799 return; 1800 } 1801 1802 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1803 if (*ill_zerocopy_capab == NULL) { 1804 *ill_zerocopy_capab = 1805 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1806 KM_NOSLEEP); 1807 1808 if (*ill_zerocopy_capab == NULL) { 1809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1810 "could not enable Zero-copy version %d " 1811 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1812 ill->ill_name); 1813 return; 1814 } 1815 } 1816 1817 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1818 "supports Zero-copy version %d\n", ill->ill_name, 1819 ZEROCOPY_VERSION_1)); 1820 1821 (*ill_zerocopy_capab)->ill_zerocopy_version = 1822 zc_ic->zerocopy_version; 1823 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1824 zc_ic->zerocopy_flags; 1825 1826 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1827 } else { 1828 uint_t size; 1829 uchar_t *rptr; 1830 1831 size = sizeof (dl_capability_req_t) + 1832 sizeof (dl_capability_sub_t) + 1833 sizeof (dl_capab_zerocopy_t); 1834 1835 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1836 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1837 "could not enable zerocopy for %s (ENOMEM)\n", 1838 ill->ill_name); 1839 return; 1840 } 1841 1842 rptr = nmp->b_rptr; 1843 /* initialize dl_capability_req_t */ 1844 oc = (dl_capability_req_t *)rptr; 1845 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1846 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1847 sizeof (dl_capab_zerocopy_t); 1848 rptr += sizeof (dl_capability_req_t); 1849 1850 /* initialize dl_capability_sub_t */ 1851 bcopy(isub, rptr, sizeof (*isub)); 1852 rptr += sizeof (*isub); 1853 1854 /* initialize dl_capab_zerocopy_t */ 1855 zc_oc = (dl_capab_zerocopy_t *)rptr; 1856 *zc_oc = *zc_ic; 1857 1858 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1859 "to enable zero-copy version %d\n", ill->ill_name, 1860 ZEROCOPY_VERSION_1)); 1861 1862 /* set VMSAFE_MEM flag */ 1863 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1864 1865 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1866 ill_capability_send(ill, nmp); 1867 } 1868 } 1869 1870 static void 1871 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1872 { 1873 dl_capab_zerocopy_t *zerocopy_subcap; 1874 dl_capability_sub_t *dl_subcap; 1875 1876 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1877 return; 1878 1879 ASSERT(ill->ill_zerocopy_capab != NULL); 1880 1881 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1882 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1883 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1884 1885 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1886 zerocopy_subcap->zerocopy_version = 1887 ill->ill_zerocopy_capab->ill_zerocopy_version; 1888 zerocopy_subcap->zerocopy_flags = 0; 1889 1890 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1891 } 1892 1893 /* 1894 * DLD capability 1895 * Refer to dld.h for more information regarding the purpose and usage 1896 * of this capability. 1897 */ 1898 static void 1899 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1900 { 1901 dl_capab_dld_t *dld_ic, dld; 1902 uint_t sub_dl_cap = isub->dl_cap; 1903 uint8_t *capend; 1904 ill_dld_capab_t *idc; 1905 1906 ASSERT(IAM_WRITER_ILL(ill)); 1907 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1908 1909 /* 1910 * Note: range checks here are not absolutely sufficient to 1911 * make us robust against malformed messages sent by drivers; 1912 * this is in keeping with the rest of IP's dlpi handling. 1913 * (Remember, it's coming from something else in the kernel 1914 * address space) 1915 */ 1916 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1917 if (capend > mp->b_wptr) { 1918 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1919 "malformed sub-capability too long for mblk"); 1920 return; 1921 } 1922 dld_ic = (dl_capab_dld_t *)(isub + 1); 1923 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1924 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1925 "unsupported DLD sub-capability (version %d, " 1926 "expected %d)", dld_ic->dld_version, 1927 DLD_CURRENT_VERSION); 1928 return; 1929 } 1930 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1931 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1932 "capability isn't as expected; pass-thru module(s) " 1933 "detected, discarding capability\n")); 1934 return; 1935 } 1936 1937 /* 1938 * Copy locally to ensure alignment. 1939 */ 1940 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1941 1942 if ((idc = ill->ill_dld_capab) == NULL) { 1943 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1944 if (idc == NULL) { 1945 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1946 "could not enable DLD version %d " 1947 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1948 ill->ill_name); 1949 return; 1950 } 1951 ill->ill_dld_capab = idc; 1952 } 1953 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1954 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1955 ip1dbg(("ill_capability_dld_ack: interface %s " 1956 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1957 1958 ill_capability_dld_enable(ill); 1959 } 1960 1961 /* 1962 * Typically capability negotiation between IP and the driver happens via 1963 * DLPI message exchange. However GLD also offers a direct function call 1964 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1965 * But arbitrary function calls into IP or GLD are not permitted, since both 1966 * of them are protected by their own perimeter mechanism. The perimeter can 1967 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1968 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1969 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1970 * to enter the mac perimeter and then do the direct function calls into 1971 * GLD to enable squeue polling. The ring related callbacks from the mac into 1972 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1973 * protected by the mac perimeter. 1974 */ 1975 static void 1976 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1977 { 1978 ill_dld_capab_t *idc = ill->ill_dld_capab; 1979 int err; 1980 1981 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1982 DLD_ENABLE); 1983 ASSERT(err == 0); 1984 } 1985 1986 static void 1987 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1988 { 1989 ill_dld_capab_t *idc = ill->ill_dld_capab; 1990 int err; 1991 1992 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1993 DLD_DISABLE); 1994 ASSERT(err == 0); 1995 } 1996 1997 boolean_t 1998 ill_mac_perim_held(ill_t *ill) 1999 { 2000 ill_dld_capab_t *idc = ill->ill_dld_capab; 2001 2002 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2003 DLD_QUERY)); 2004 } 2005 2006 static void 2007 ill_capability_direct_enable(ill_t *ill) 2008 { 2009 ill_dld_capab_t *idc = ill->ill_dld_capab; 2010 ill_dld_direct_t *idd = &idc->idc_direct; 2011 dld_capab_direct_t direct; 2012 int rc; 2013 2014 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2015 2016 bzero(&direct, sizeof (direct)); 2017 direct.di_rx_cf = (uintptr_t)ip_input; 2018 direct.di_rx_ch = ill; 2019 2020 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2021 DLD_ENABLE); 2022 if (rc == 0) { 2023 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2024 idd->idd_tx_dh = direct.di_tx_dh; 2025 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2026 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2027 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2028 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2029 ASSERT(idd->idd_tx_cb_df != NULL); 2030 ASSERT(idd->idd_tx_fctl_df != NULL); 2031 ASSERT(idd->idd_tx_df != NULL); 2032 /* 2033 * One time registration of flow enable callback function 2034 */ 2035 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2036 ill_flow_enable, ill); 2037 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2038 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2039 } else { 2040 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2041 "capability, rc = %d\n", rc); 2042 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2043 } 2044 } 2045 2046 static void 2047 ill_capability_poll_enable(ill_t *ill) 2048 { 2049 ill_dld_capab_t *idc = ill->ill_dld_capab; 2050 dld_capab_poll_t poll; 2051 int rc; 2052 2053 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2054 2055 bzero(&poll, sizeof (poll)); 2056 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2057 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2058 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2059 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2060 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2061 poll.poll_ring_ch = ill; 2062 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2063 DLD_ENABLE); 2064 if (rc == 0) { 2065 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2066 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2067 } else { 2068 ip1dbg(("warning: could not enable POLL " 2069 "capability, rc = %d\n", rc)); 2070 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2071 } 2072 } 2073 2074 /* 2075 * Enable the LSO capability. 2076 */ 2077 static void 2078 ill_capability_lso_enable(ill_t *ill) 2079 { 2080 ill_dld_capab_t *idc = ill->ill_dld_capab; 2081 dld_capab_lso_t lso; 2082 int rc; 2083 2084 ASSERT(IAM_WRITER_ILL(ill)); 2085 2086 if (ill->ill_lso_capab == NULL) { 2087 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2088 KM_NOSLEEP); 2089 if (ill->ill_lso_capab == NULL) { 2090 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2091 "could not enable LSO for %s (ENOMEM)\n", 2092 ill->ill_name); 2093 return; 2094 } 2095 } 2096 2097 bzero(&lso, sizeof (lso)); 2098 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2099 DLD_ENABLE)) == 0) { 2100 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2101 ill->ill_lso_capab->ill_lso_max_tcpv4 = lso.lso_max_tcpv4; 2102 ill->ill_lso_capab->ill_lso_max_tcpv6 = lso.lso_max_tcpv6; 2103 ill->ill_capabilities |= ILL_CAPAB_LSO; 2104 ip1dbg(("ill_capability_lso_enable: interface %s " 2105 "has enabled LSO\n ", ill->ill_name)); 2106 } else { 2107 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2108 ill->ill_lso_capab = NULL; 2109 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2110 } 2111 } 2112 2113 static void 2114 ill_capability_dld_enable(ill_t *ill) 2115 { 2116 mac_perim_handle_t mph; 2117 2118 ASSERT(IAM_WRITER_ILL(ill)); 2119 2120 ill_mac_perim_enter(ill, &mph); 2121 if (!ill->ill_isv6) { 2122 ill_capability_direct_enable(ill); 2123 ill_capability_poll_enable(ill); 2124 } 2125 ill_capability_lso_enable(ill); 2126 ill->ill_capabilities |= ILL_CAPAB_DLD; 2127 ill_mac_perim_exit(ill, mph); 2128 } 2129 2130 static void 2131 ill_capability_dld_disable(ill_t *ill) 2132 { 2133 ill_dld_capab_t *idc; 2134 ill_dld_direct_t *idd; 2135 mac_perim_handle_t mph; 2136 2137 ASSERT(IAM_WRITER_ILL(ill)); 2138 2139 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2140 return; 2141 2142 ill_mac_perim_enter(ill, &mph); 2143 2144 idc = ill->ill_dld_capab; 2145 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2146 /* 2147 * For performance we avoid locks in the transmit data path 2148 * and don't maintain a count of the number of threads using 2149 * direct calls. Thus some threads could be using direct 2150 * transmit calls to GLD, even after the capability mechanism 2151 * turns it off. This is still safe since the handles used in 2152 * the direct calls continue to be valid until the unplumb is 2153 * completed. Remove the callback that was added (1-time) at 2154 * capab enable time. 2155 */ 2156 mutex_enter(&ill->ill_lock); 2157 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2158 mutex_exit(&ill->ill_lock); 2159 if (ill->ill_flownotify_mh != NULL) { 2160 idd = &idc->idc_direct; 2161 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2162 ill->ill_flownotify_mh); 2163 ill->ill_flownotify_mh = NULL; 2164 } 2165 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2166 NULL, DLD_DISABLE); 2167 } 2168 2169 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2170 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2171 ip_squeue_clean_all(ill); 2172 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2173 NULL, DLD_DISABLE); 2174 } 2175 2176 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2177 ASSERT(ill->ill_lso_capab != NULL); 2178 /* 2179 * Clear the capability flag for LSO but retain the 2180 * ill_lso_capab structure since it's possible that another 2181 * thread is still referring to it. The structure only gets 2182 * deallocated when we destroy the ill. 2183 */ 2184 2185 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2186 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2187 NULL, DLD_DISABLE); 2188 } 2189 2190 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2191 ill_mac_perim_exit(ill, mph); 2192 } 2193 2194 /* 2195 * Capability Negotiation protocol 2196 * 2197 * We don't wait for DLPI capability operations to finish during interface 2198 * bringup or teardown. Doing so would introduce more asynchrony and the 2199 * interface up/down operations will need multiple return and restarts. 2200 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2201 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2202 * exclusive operation won't start until the DLPI operations of the previous 2203 * exclusive operation complete. 2204 * 2205 * The capability state machine is shown below. 2206 * 2207 * state next state event, action 2208 * 2209 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2210 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2211 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2212 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2213 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2214 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2215 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2216 * ill_capability_probe. 2217 */ 2218 2219 /* 2220 * Dedicated thread started from ip_stack_init that handles capability 2221 * disable. This thread ensures the taskq dispatch does not fail by waiting 2222 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2223 * that direct calls to DLD are done in a cv_waitable context. 2224 */ 2225 void 2226 ill_taskq_dispatch(ip_stack_t *ipst) 2227 { 2228 callb_cpr_t cprinfo; 2229 char name[64]; 2230 mblk_t *mp; 2231 2232 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2233 ipst->ips_netstack->netstack_stackid); 2234 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2235 name); 2236 mutex_enter(&ipst->ips_capab_taskq_lock); 2237 2238 for (;;) { 2239 mp = ipst->ips_capab_taskq_head; 2240 while (mp != NULL) { 2241 ipst->ips_capab_taskq_head = mp->b_next; 2242 if (ipst->ips_capab_taskq_head == NULL) 2243 ipst->ips_capab_taskq_tail = NULL; 2244 mutex_exit(&ipst->ips_capab_taskq_lock); 2245 mp->b_next = NULL; 2246 2247 VERIFY(taskq_dispatch(system_taskq, 2248 ill_capability_ack_thr, mp, TQ_SLEEP) != 2249 TASKQID_INVALID); 2250 mutex_enter(&ipst->ips_capab_taskq_lock); 2251 mp = ipst->ips_capab_taskq_head; 2252 } 2253 2254 if (ipst->ips_capab_taskq_quit) 2255 break; 2256 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2259 } 2260 VERIFY(ipst->ips_capab_taskq_head == NULL); 2261 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2262 CALLB_CPR_EXIT(&cprinfo); 2263 thread_exit(); 2264 } 2265 2266 /* 2267 * Consume a new-style hardware capabilities negotiation ack. 2268 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2269 */ 2270 static void 2271 ill_capability_ack_thr(void *arg) 2272 { 2273 mblk_t *mp = arg; 2274 dl_capability_ack_t *capp; 2275 dl_capability_sub_t *subp, *endp; 2276 ill_t *ill; 2277 boolean_t reneg; 2278 2279 ill = (ill_t *)mp->b_prev; 2280 mp->b_prev = NULL; 2281 2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2283 2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2285 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2286 /* 2287 * We have received the ack for our DL_CAPAB reset request. 2288 * There isnt' anything in the message that needs processing. 2289 * All message based capabilities have been disabled, now 2290 * do the function call based capability disable. 2291 */ 2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2293 ill_capability_dld_disable(ill); 2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2295 if (reneg) 2296 ill_capability_probe(ill); 2297 goto done; 2298 } 2299 2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2301 ill->ill_dlpi_capab_state = IDCS_OK; 2302 2303 capp = (dl_capability_ack_t *)mp->b_rptr; 2304 2305 if (capp->dl_sub_length == 0) { 2306 /* no new-style capabilities */ 2307 goto done; 2308 } 2309 2310 /* make sure the driver supplied correct dl_sub_length */ 2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2314 goto done; 2315 } 2316 2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2318 /* 2319 * There are sub-capabilities. Process the ones we know about. 2320 * Loop until we don't have room for another sub-cap header.. 2321 */ 2322 for (subp = SC(capp, capp->dl_sub_offset), 2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2324 subp <= endp; 2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2326 2327 switch (subp->dl_cap) { 2328 case DL_CAPAB_ID_WRAPPER: 2329 ill_capability_id_ack(ill, mp, subp); 2330 break; 2331 default: 2332 ill_capability_dispatch(ill, mp, subp); 2333 break; 2334 } 2335 } 2336 #undef SC 2337 done: 2338 inet_freemsg(mp); 2339 ill_capability_done(ill); 2340 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2341 } 2342 2343 /* 2344 * This needs to be started in a taskq thread to provide a cv_waitable 2345 * context. 2346 */ 2347 void 2348 ill_capability_ack(ill_t *ill, mblk_t *mp) 2349 { 2350 ip_stack_t *ipst = ill->ill_ipst; 2351 2352 mp->b_prev = (mblk_t *)ill; 2353 ASSERT(mp->b_next == NULL); 2354 2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2356 TQ_NOSLEEP) != TASKQID_INVALID) 2357 return; 2358 2359 /* 2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2361 * which will do the dispatch using TQ_SLEEP to guarantee success. 2362 */ 2363 mutex_enter(&ipst->ips_capab_taskq_lock); 2364 if (ipst->ips_capab_taskq_head == NULL) { 2365 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2366 ipst->ips_capab_taskq_head = mp; 2367 } else { 2368 ipst->ips_capab_taskq_tail->b_next = mp; 2369 } 2370 ipst->ips_capab_taskq_tail = mp; 2371 2372 cv_signal(&ipst->ips_capab_taskq_cv); 2373 mutex_exit(&ipst->ips_capab_taskq_lock); 2374 } 2375 2376 /* 2377 * This routine is called to scan the fragmentation reassembly table for 2378 * the specified ILL for any packets that are starting to smell. 2379 * dead_interval is the maximum time in seconds that will be tolerated. It 2380 * will either be the value specified in ip_g_frag_timeout, or zero if the 2381 * ILL is shutting down and it is time to blow everything off. 2382 * 2383 * It returns the number of seconds (as a time_t) that the next frag timer 2384 * should be scheduled for, 0 meaning that the timer doesn't need to be 2385 * re-started. Note that the method of calculating next_timeout isn't 2386 * entirely accurate since time will flow between the time we grab 2387 * current_time and the time we schedule the next timeout. This isn't a 2388 * big problem since this is the timer for sending an ICMP reassembly time 2389 * exceeded messages, and it doesn't have to be exactly accurate. 2390 * 2391 * This function is 2392 * sometimes called as writer, although this is not required. 2393 */ 2394 time_t 2395 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2396 { 2397 ipfb_t *ipfb; 2398 ipfb_t *endp; 2399 ipf_t *ipf; 2400 ipf_t *ipfnext; 2401 mblk_t *mp; 2402 time_t current_time = gethrestime_sec(); 2403 time_t next_timeout = 0; 2404 uint32_t hdr_length; 2405 mblk_t *send_icmp_head; 2406 mblk_t *send_icmp_head_v6; 2407 ip_stack_t *ipst = ill->ill_ipst; 2408 ip_recv_attr_t iras; 2409 2410 bzero(&iras, sizeof (iras)); 2411 iras.ira_flags = 0; 2412 iras.ira_ill = iras.ira_rill = ill; 2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2414 iras.ira_rifindex = iras.ira_ruifindex; 2415 2416 ipfb = ill->ill_frag_hash_tbl; 2417 if (ipfb == NULL) 2418 return (B_FALSE); 2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2420 /* Walk the frag hash table. */ 2421 for (; ipfb < endp; ipfb++) { 2422 send_icmp_head = NULL; 2423 send_icmp_head_v6 = NULL; 2424 mutex_enter(&ipfb->ipfb_lock); 2425 while ((ipf = ipfb->ipfb_ipf) != 0) { 2426 time_t frag_time = current_time - ipf->ipf_timestamp; 2427 time_t frag_timeout; 2428 2429 if (frag_time < dead_interval) { 2430 /* 2431 * There are some outstanding fragments 2432 * that will timeout later. Make note of 2433 * the time so that we can reschedule the 2434 * next timeout appropriately. 2435 */ 2436 frag_timeout = dead_interval - frag_time; 2437 if (next_timeout == 0 || 2438 frag_timeout < next_timeout) { 2439 next_timeout = frag_timeout; 2440 } 2441 break; 2442 } 2443 /* Time's up. Get it out of here. */ 2444 hdr_length = ipf->ipf_nf_hdr_len; 2445 ipfnext = ipf->ipf_hash_next; 2446 if (ipfnext) 2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2448 *ipf->ipf_ptphn = ipfnext; 2449 mp = ipf->ipf_mp->b_cont; 2450 for (; mp; mp = mp->b_cont) { 2451 /* Extra points for neatness. */ 2452 IP_REASS_SET_START(mp, 0); 2453 IP_REASS_SET_END(mp, 0); 2454 } 2455 mp = ipf->ipf_mp->b_cont; 2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2458 ipfb->ipfb_count -= ipf->ipf_count; 2459 ASSERT(ipfb->ipfb_frag_pkts > 0); 2460 ipfb->ipfb_frag_pkts--; 2461 /* 2462 * We do not send any icmp message from here because 2463 * we currently are holding the ipfb_lock for this 2464 * hash chain. If we try and send any icmp messages 2465 * from here we may end up via a put back into ip 2466 * trying to get the same lock, causing a recursive 2467 * mutex panic. Instead we build a list and send all 2468 * the icmp messages after we have dropped the lock. 2469 */ 2470 if (ill->ill_isv6) { 2471 if (hdr_length != 0) { 2472 mp->b_next = send_icmp_head_v6; 2473 send_icmp_head_v6 = mp; 2474 } else { 2475 freemsg(mp); 2476 } 2477 } else { 2478 if (hdr_length != 0) { 2479 mp->b_next = send_icmp_head; 2480 send_icmp_head = mp; 2481 } else { 2482 freemsg(mp); 2483 } 2484 } 2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2487 freeb(ipf->ipf_mp); 2488 } 2489 mutex_exit(&ipfb->ipfb_lock); 2490 /* 2491 * Now need to send any icmp messages that we delayed from 2492 * above. 2493 */ 2494 while (send_icmp_head_v6 != NULL) { 2495 ip6_t *ip6h; 2496 2497 mp = send_icmp_head_v6; 2498 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2499 mp->b_next = NULL; 2500 ip6h = (ip6_t *)mp->b_rptr; 2501 iras.ira_flags = 0; 2502 /* 2503 * This will result in an incorrect ALL_ZONES zoneid 2504 * for multicast packets, but we 2505 * don't send ICMP errors for those in any case. 2506 */ 2507 iras.ira_zoneid = 2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2509 ill, ipst); 2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2511 icmp_time_exceeded_v6(mp, 2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2513 &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 while (send_icmp_head != NULL) { 2517 ipaddr_t dst; 2518 2519 mp = send_icmp_head; 2520 send_icmp_head = send_icmp_head->b_next; 2521 mp->b_next = NULL; 2522 2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2524 2525 iras.ira_flags = IRAF_IS_IPV4; 2526 /* 2527 * This will result in an incorrect ALL_ZONES zoneid 2528 * for broadcast and multicast packets, but we 2529 * don't send ICMP errors for those in any case. 2530 */ 2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2532 ill, ipst); 2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2534 icmp_time_exceeded(mp, 2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2537 } 2538 } 2539 /* 2540 * A non-dying ILL will use the return value to decide whether to 2541 * restart the frag timer, and for how long. 2542 */ 2543 return (next_timeout); 2544 } 2545 2546 /* 2547 * This routine is called when the approximate count of mblk memory used 2548 * for the specified ILL has exceeded max_count. 2549 */ 2550 void 2551 ill_frag_prune(ill_t *ill, uint_t max_count) 2552 { 2553 ipfb_t *ipfb; 2554 ipf_t *ipf; 2555 size_t count; 2556 clock_t now; 2557 2558 /* 2559 * If we are here within ip_min_frag_prune_time msecs remove 2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2561 * ill_frag_free_num_pkts. 2562 */ 2563 mutex_enter(&ill->ill_lock); 2564 now = ddi_get_lbolt(); 2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2566 (ip_min_frag_prune_time != 0 ? 2567 ip_min_frag_prune_time : msec_per_tick)) { 2568 2569 ill->ill_frag_free_num_pkts++; 2570 2571 } else { 2572 ill->ill_frag_free_num_pkts = 0; 2573 } 2574 ill->ill_last_frag_clean_time = now; 2575 mutex_exit(&ill->ill_lock); 2576 2577 /* 2578 * free ill_frag_free_num_pkts oldest packets from each bucket. 2579 */ 2580 if (ill->ill_frag_free_num_pkts != 0) { 2581 int ix; 2582 2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2584 ipfb = &ill->ill_frag_hash_tbl[ix]; 2585 mutex_enter(&ipfb->ipfb_lock); 2586 if (ipfb->ipfb_ipf != NULL) { 2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2588 ill->ill_frag_free_num_pkts); 2589 } 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 } 2593 /* 2594 * While the reassembly list for this ILL is too big, prune a fragment 2595 * queue by age, oldest first. 2596 */ 2597 while (ill->ill_frag_count > max_count) { 2598 int ix; 2599 ipfb_t *oipfb = NULL; 2600 uint_t oldest = UINT_MAX; 2601 2602 count = 0; 2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2604 ipfb = &ill->ill_frag_hash_tbl[ix]; 2605 mutex_enter(&ipfb->ipfb_lock); 2606 ipf = ipfb->ipfb_ipf; 2607 if (ipf != NULL && ipf->ipf_gen < oldest) { 2608 oldest = ipf->ipf_gen; 2609 oipfb = ipfb; 2610 } 2611 count += ipfb->ipfb_count; 2612 mutex_exit(&ipfb->ipfb_lock); 2613 } 2614 if (oipfb == NULL) 2615 break; 2616 2617 if (count <= max_count) 2618 return; /* Somebody beat us to it, nothing to do */ 2619 mutex_enter(&oipfb->ipfb_lock); 2620 ipf = oipfb->ipfb_ipf; 2621 if (ipf != NULL) { 2622 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2623 } 2624 mutex_exit(&oipfb->ipfb_lock); 2625 } 2626 } 2627 2628 /* 2629 * free 'free_cnt' fragmented packets starting at ipf. 2630 */ 2631 void 2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2633 { 2634 size_t count; 2635 mblk_t *mp; 2636 mblk_t *tmp; 2637 ipf_t **ipfp = ipf->ipf_ptphn; 2638 2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2640 ASSERT(ipfp != NULL); 2641 ASSERT(ipf != NULL); 2642 2643 while (ipf != NULL && free_cnt-- > 0) { 2644 count = ipf->ipf_count; 2645 mp = ipf->ipf_mp; 2646 ipf = ipf->ipf_hash_next; 2647 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2648 IP_REASS_SET_START(tmp, 0); 2649 IP_REASS_SET_END(tmp, 0); 2650 } 2651 atomic_add_32(&ill->ill_frag_count, -count); 2652 ASSERT(ipfb->ipfb_count >= count); 2653 ipfb->ipfb_count -= count; 2654 ASSERT(ipfb->ipfb_frag_pkts > 0); 2655 ipfb->ipfb_frag_pkts--; 2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2657 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2658 freemsg(mp); 2659 } 2660 2661 if (ipf) 2662 ipf->ipf_ptphn = ipfp; 2663 ipfp[0] = ipf; 2664 } 2665 2666 /* 2667 * Helper function for ill_forward_set(). 2668 */ 2669 static void 2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2671 { 2672 ip_stack_t *ipst = ill->ill_ipst; 2673 2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2675 2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2677 (enable ? "Enabling" : "Disabling"), 2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2679 mutex_enter(&ill->ill_lock); 2680 if (enable) 2681 ill->ill_flags |= ILLF_ROUTER; 2682 else 2683 ill->ill_flags &= ~ILLF_ROUTER; 2684 mutex_exit(&ill->ill_lock); 2685 if (ill->ill_isv6) 2686 ill_set_nce_router_flags(ill, enable); 2687 /* Notify routing socket listeners of this change. */ 2688 if (ill->ill_ipif != NULL) 2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2690 } 2691 2692 /* 2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2694 * socket messages for each interface whose flags we change. 2695 */ 2696 int 2697 ill_forward_set(ill_t *ill, boolean_t enable) 2698 { 2699 ipmp_illgrp_t *illg; 2700 ip_stack_t *ipst = ill->ill_ipst; 2701 2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2703 2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2705 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2706 return (0); 2707 2708 if (IS_LOOPBACK(ill)) 2709 return (EINVAL); 2710 2711 if (enable && ill->ill_allowed_ips_cnt > 0) 2712 return (EPERM); 2713 2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2715 /* 2716 * Update all of the interfaces in the group. 2717 */ 2718 illg = ill->ill_grp; 2719 ill = list_head(&illg->ig_if); 2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2721 ill_forward_set_on_ill(ill, enable); 2722 2723 /* 2724 * Update the IPMP meta-interface. 2725 */ 2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2727 return (0); 2728 } 2729 2730 ill_forward_set_on_ill(ill, enable); 2731 return (0); 2732 } 2733 2734 /* 2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2737 * set or clear. 2738 */ 2739 static void 2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2741 { 2742 ipif_t *ipif; 2743 ncec_t *ncec; 2744 nce_t *nce; 2745 2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2747 /* 2748 * NOTE: we match across the illgrp because nce's for 2749 * addresses on IPMP interfaces have an nce_ill that points to 2750 * the bound underlying ill. 2751 */ 2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2753 if (nce != NULL) { 2754 ncec = nce->nce_common; 2755 mutex_enter(&ncec->ncec_lock); 2756 if (enable) 2757 ncec->ncec_flags |= NCE_F_ISROUTER; 2758 else 2759 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2760 mutex_exit(&ncec->ncec_lock); 2761 nce_refrele(nce); 2762 } 2763 } 2764 } 2765 2766 /* 2767 * Intializes the context structure and returns the first ill in the list 2768 * cuurently start_list and end_list can have values: 2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2770 * IP_V4_G_HEAD Traverse IPV4 list only. 2771 * IP_V6_G_HEAD Traverse IPV6 list only. 2772 */ 2773 2774 /* 2775 * We don't check for CONDEMNED ills here. Caller must do that if 2776 * necessary under the ill lock. 2777 */ 2778 ill_t * 2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2780 ip_stack_t *ipst) 2781 { 2782 ill_if_t *ifp; 2783 ill_t *ill; 2784 avl_tree_t *avl_tree; 2785 2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2788 2789 /* 2790 * setup the lists to search 2791 */ 2792 if (end_list != MAX_G_HEADS) { 2793 ctx->ctx_current_list = start_list; 2794 ctx->ctx_last_list = end_list; 2795 } else { 2796 ctx->ctx_last_list = MAX_G_HEADS - 1; 2797 ctx->ctx_current_list = 0; 2798 } 2799 2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2802 if (ifp != (ill_if_t *) 2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2804 avl_tree = &ifp->illif_avl_by_ppa; 2805 ill = avl_first(avl_tree); 2806 /* 2807 * ill is guaranteed to be non NULL or ifp should have 2808 * not existed. 2809 */ 2810 ASSERT(ill != NULL); 2811 return (ill); 2812 } 2813 ctx->ctx_current_list++; 2814 } 2815 2816 return (NULL); 2817 } 2818 2819 /* 2820 * returns the next ill in the list. ill_first() must have been called 2821 * before calling ill_next() or bad things will happen. 2822 */ 2823 2824 /* 2825 * We don't check for CONDEMNED ills here. Caller must do that if 2826 * necessary under the ill lock. 2827 */ 2828 ill_t * 2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2830 { 2831 ill_if_t *ifp; 2832 ill_t *ill; 2833 ip_stack_t *ipst = lastill->ill_ipst; 2834 2835 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2838 AVL_AFTER)) != NULL) { 2839 return (ill); 2840 } 2841 2842 /* goto next ill_ifp in the list. */ 2843 ifp = lastill->ill_ifptr->illif_next; 2844 2845 /* make sure not at end of circular list */ 2846 while (ifp == 2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2848 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2849 return (NULL); 2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2851 } 2852 2853 return (avl_first(&ifp->illif_avl_by_ppa)); 2854 } 2855 2856 /* 2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2858 * The final number (PPA) must not have any leading zeros. Upon success, a 2859 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2860 */ 2861 static char * 2862 ill_get_ppa_ptr(char *name) 2863 { 2864 int namelen = strlen(name); 2865 int end_ndx = namelen - 1; 2866 int ppa_ndx, i; 2867 2868 /* 2869 * Check that the first character is [a-zA-Z], and that the last 2870 * character is [0-9]. 2871 */ 2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2873 return (NULL); 2874 2875 /* 2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2877 */ 2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2879 if (!isdigit(name[ppa_ndx - 1])) 2880 break; 2881 2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2883 return (NULL); 2884 2885 /* 2886 * Check that the intermediate characters are [a-z0-9.] 2887 */ 2888 for (i = 1; i < ppa_ndx; i++) { 2889 if (!isalpha(name[i]) && !isdigit(name[i]) && 2890 name[i] != '.' && name[i] != '_') { 2891 return (NULL); 2892 } 2893 } 2894 2895 return (name + ppa_ndx); 2896 } 2897 2898 /* 2899 * use avl tree to locate the ill. 2900 */ 2901 static ill_t * 2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2903 { 2904 char *ppa_ptr = NULL; 2905 int len; 2906 uint_t ppa; 2907 ill_t *ill = NULL; 2908 ill_if_t *ifp; 2909 int list; 2910 2911 /* 2912 * get ppa ptr 2913 */ 2914 if (isv6) 2915 list = IP_V6_G_HEAD; 2916 else 2917 list = IP_V4_G_HEAD; 2918 2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2920 return (NULL); 2921 } 2922 2923 len = ppa_ptr - name + 1; 2924 2925 ppa = stoi(&ppa_ptr); 2926 2927 ifp = IP_VX_ILL_G_LIST(list, ipst); 2928 2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2930 /* 2931 * match is done on len - 1 as the name is not null 2932 * terminated it contains ppa in addition to the interface 2933 * name. 2934 */ 2935 if ((ifp->illif_name_len == len) && 2936 bcmp(ifp->illif_name, name, len - 1) == 0) { 2937 break; 2938 } else { 2939 ifp = ifp->illif_next; 2940 } 2941 } 2942 2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2944 /* 2945 * Even the interface type does not exist. 2946 */ 2947 return (NULL); 2948 } 2949 2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2951 if (ill != NULL) { 2952 mutex_enter(&ill->ill_lock); 2953 if (ILL_CAN_LOOKUP(ill)) { 2954 ill_refhold_locked(ill); 2955 mutex_exit(&ill->ill_lock); 2956 return (ill); 2957 } 2958 mutex_exit(&ill->ill_lock); 2959 } 2960 return (NULL); 2961 } 2962 2963 /* 2964 * comparison function for use with avl. 2965 */ 2966 static int 2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2968 { 2969 uint_t ppa; 2970 uint_t ill_ppa; 2971 2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2973 2974 ppa = *((uint_t *)ppa_ptr); 2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2976 /* 2977 * We want the ill with the lowest ppa to be on the 2978 * top. 2979 */ 2980 if (ill_ppa < ppa) 2981 return (1); 2982 if (ill_ppa > ppa) 2983 return (-1); 2984 return (0); 2985 } 2986 2987 /* 2988 * remove an interface type from the global list. 2989 */ 2990 static void 2991 ill_delete_interface_type(ill_if_t *interface) 2992 { 2993 ASSERT(interface != NULL); 2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2995 2996 avl_destroy(&interface->illif_avl_by_ppa); 2997 if (interface->illif_ppa_arena != NULL) 2998 vmem_destroy(interface->illif_ppa_arena); 2999 3000 remque(interface); 3001 3002 mi_free(interface); 3003 } 3004 3005 /* 3006 * remove ill from the global list. 3007 */ 3008 static void 3009 ill_glist_delete(ill_t *ill) 3010 { 3011 ip_stack_t *ipst; 3012 phyint_t *phyi; 3013 3014 if (ill == NULL) 3015 return; 3016 ipst = ill->ill_ipst; 3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3018 3019 /* 3020 * If the ill was never inserted into the AVL tree 3021 * we skip the if branch. 3022 */ 3023 if (ill->ill_ifptr != NULL) { 3024 /* 3025 * remove from AVL tree and free ppa number 3026 */ 3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3028 3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3030 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3032 } 3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3034 ill_delete_interface_type(ill->ill_ifptr); 3035 } 3036 3037 /* 3038 * Indicate ill is no longer in the list. 3039 */ 3040 ill->ill_ifptr = NULL; 3041 ill->ill_name_length = 0; 3042 ill->ill_name[0] = '\0'; 3043 ill->ill_ppa = UINT_MAX; 3044 } 3045 3046 /* Generate one last event for this ill. */ 3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3048 ill->ill_name_length); 3049 3050 ASSERT(ill->ill_phyint != NULL); 3051 phyi = ill->ill_phyint; 3052 ill->ill_phyint = NULL; 3053 3054 /* 3055 * ill_init allocates a phyint always to store the copy 3056 * of flags relevant to phyint. At that point in time, we could 3057 * not assign the name and hence phyint_illv4/v6 could not be 3058 * initialized. Later in ipif_set_values, we assign the name to 3059 * the ill, at which point in time we assign phyint_illv4/v6. 3060 * Thus we don't rely on phyint_illv6 to be initialized always. 3061 */ 3062 if (ill->ill_flags & ILLF_IPV6) 3063 phyi->phyint_illv6 = NULL; 3064 else 3065 phyi->phyint_illv4 = NULL; 3066 3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3068 rw_exit(&ipst->ips_ill_g_lock); 3069 return; 3070 } 3071 3072 /* 3073 * There are no ills left on this phyint; pull it out of the phyint 3074 * avl trees, and free it. 3075 */ 3076 if (phyi->phyint_ifindex > 0) { 3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3078 phyi); 3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3080 phyi); 3081 } 3082 rw_exit(&ipst->ips_ill_g_lock); 3083 3084 phyint_free(phyi); 3085 } 3086 3087 /* 3088 * allocate a ppa, if the number of plumbed interfaces of this type are 3089 * less than ill_no_arena do a linear search to find a unused ppa. 3090 * When the number goes beyond ill_no_arena switch to using an arena. 3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3092 * is the return value for an error condition, so allocation starts at one 3093 * and is decremented by one. 3094 */ 3095 static int 3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3097 { 3098 ill_t *tmp_ill; 3099 uint_t start, end; 3100 int ppa; 3101 3102 if (ifp->illif_ppa_arena == NULL && 3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3104 /* 3105 * Create an arena. 3106 */ 3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3110 /* allocate what has already been assigned */ 3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3113 tmp_ill, AVL_AFTER)) { 3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3115 1, /* size */ 3116 1, /* align/quantum */ 3117 0, /* phase */ 3118 0, /* nocross */ 3119 /* minaddr */ 3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3121 /* maxaddr */ 3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3123 VM_NOSLEEP|VM_FIRSTFIT); 3124 if (ppa == 0) { 3125 ip1dbg(("ill_alloc_ppa: ppa allocation" 3126 " failed while switching")); 3127 vmem_destroy(ifp->illif_ppa_arena); 3128 ifp->illif_ppa_arena = NULL; 3129 break; 3130 } 3131 } 3132 } 3133 3134 if (ifp->illif_ppa_arena != NULL) { 3135 if (ill->ill_ppa == UINT_MAX) { 3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3137 1, VM_NOSLEEP|VM_FIRSTFIT); 3138 if (ppa == 0) 3139 return (EAGAIN); 3140 ill->ill_ppa = --ppa; 3141 } else { 3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3143 1, /* size */ 3144 1, /* align/quantum */ 3145 0, /* phase */ 3146 0, /* nocross */ 3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3149 VM_NOSLEEP|VM_FIRSTFIT); 3150 /* 3151 * Most likely the allocation failed because 3152 * the requested ppa was in use. 3153 */ 3154 if (ppa == 0) 3155 return (EEXIST); 3156 } 3157 return (0); 3158 } 3159 3160 /* 3161 * No arena is in use and not enough (>ill_no_arena) interfaces have 3162 * been plumbed to create one. Do a linear search to get a unused ppa. 3163 */ 3164 if (ill->ill_ppa == UINT_MAX) { 3165 end = UINT_MAX - 1; 3166 start = 0; 3167 } else { 3168 end = start = ill->ill_ppa; 3169 } 3170 3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3173 if (start++ >= end) { 3174 if (ill->ill_ppa == UINT_MAX) 3175 return (EAGAIN); 3176 else 3177 return (EEXIST); 3178 } 3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3180 } 3181 ill->ill_ppa = start; 3182 return (0); 3183 } 3184 3185 /* 3186 * Insert ill into the list of configured ill's. Once this function completes, 3187 * the ill is globally visible and is available through lookups. More precisely 3188 * this happens after the caller drops the ill_g_lock. 3189 */ 3190 static int 3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3192 { 3193 ill_if_t *ill_interface; 3194 avl_index_t where = 0; 3195 int error; 3196 int name_length; 3197 int index; 3198 boolean_t check_length = B_FALSE; 3199 ip_stack_t *ipst = ill->ill_ipst; 3200 3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3202 3203 name_length = mi_strlen(name) + 1; 3204 3205 if (isv6) 3206 index = IP_V6_G_HEAD; 3207 else 3208 index = IP_V4_G_HEAD; 3209 3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3211 /* 3212 * Search for interface type based on name 3213 */ 3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3215 if ((ill_interface->illif_name_len == name_length) && 3216 (strcmp(ill_interface->illif_name, name) == 0)) { 3217 break; 3218 } 3219 ill_interface = ill_interface->illif_next; 3220 } 3221 3222 /* 3223 * Interface type not found, create one. 3224 */ 3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3226 ill_g_head_t ghead; 3227 3228 /* 3229 * allocate ill_if_t structure 3230 */ 3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3232 if (ill_interface == NULL) { 3233 return (ENOMEM); 3234 } 3235 3236 (void) strcpy(ill_interface->illif_name, name); 3237 ill_interface->illif_name_len = name_length; 3238 3239 avl_create(&ill_interface->illif_avl_by_ppa, 3240 ill_compare_ppa, sizeof (ill_t), 3241 offsetof(struct ill_s, ill_avl_byppa)); 3242 3243 /* 3244 * link the structure in the back to maintain order 3245 * of configuration for ifconfig output. 3246 */ 3247 ghead = ipst->ips_ill_g_heads[index]; 3248 insque(ill_interface, ghead.ill_g_list_tail); 3249 } 3250 3251 if (ill->ill_ppa == UINT_MAX) 3252 check_length = B_TRUE; 3253 3254 error = ill_alloc_ppa(ill_interface, ill); 3255 if (error != 0) { 3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3257 ill_delete_interface_type(ill->ill_ifptr); 3258 return (error); 3259 } 3260 3261 /* 3262 * When the ppa is choosen by the system, check that there is 3263 * enough space to insert ppa. if a specific ppa was passed in this 3264 * check is not required as the interface name passed in will have 3265 * the right ppa in it. 3266 */ 3267 if (check_length) { 3268 /* 3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3270 */ 3271 char buf[sizeof (uint_t) * 3]; 3272 3273 /* 3274 * convert ppa to string to calculate the amount of space 3275 * required for it in the name. 3276 */ 3277 numtos(ill->ill_ppa, buf); 3278 3279 /* Do we have enough space to insert ppa ? */ 3280 3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3282 /* Free ppa and interface type struct */ 3283 if (ill_interface->illif_ppa_arena != NULL) { 3284 vmem_free(ill_interface->illif_ppa_arena, 3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3286 } 3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3288 ill_delete_interface_type(ill->ill_ifptr); 3289 3290 return (EINVAL); 3291 } 3292 } 3293 3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3296 3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3298 &where); 3299 ill->ill_ifptr = ill_interface; 3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3301 3302 ill_phyint_reinit(ill); 3303 return (0); 3304 } 3305 3306 /* Initialize the per phyint ipsq used for serialization */ 3307 static boolean_t 3308 ipsq_init(ill_t *ill, boolean_t enter) 3309 { 3310 ipsq_t *ipsq; 3311 ipxop_t *ipx; 3312 3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3314 return (B_FALSE); 3315 3316 ill->ill_phyint->phyint_ipsq = ipsq; 3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3318 ipx->ipx_ipsq = ipsq; 3319 ipsq->ipsq_next = ipsq; 3320 ipsq->ipsq_phyint = ill->ill_phyint; 3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3324 if (enter) { 3325 ipx->ipx_writer = curthread; 3326 ipx->ipx_forced = B_FALSE; 3327 ipx->ipx_reentry_cnt = 1; 3328 #ifdef DEBUG 3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3330 #endif 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * Here we perform initialisation of the ill_t common to both regular 3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3338 */ 3339 static int 3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3341 boolean_t ipsq_enter) 3342 { 3343 int count; 3344 uchar_t *frag_ptr; 3345 3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3348 ill->ill_saved_ire_cnt = 0; 3349 3350 if (is_loopback) { 3351 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3352 ip_loopback_mtuplus; 3353 /* 3354 * No resolver here. 3355 */ 3356 ill->ill_net_type = IRE_LOOPBACK; 3357 } else { 3358 ill->ill_rq = q; 3359 ill->ill_wq = WR(q); 3360 ill->ill_ppa = UINT_MAX; 3361 } 3362 3363 ill->ill_isv6 = isv6; 3364 3365 /* 3366 * Allocate sufficient space to contain our fragment hash table and 3367 * the device name. 3368 */ 3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3370 if (frag_ptr == NULL) 3371 return (ENOMEM); 3372 ill->ill_frag_ptr = frag_ptr; 3373 ill->ill_frag_free_num_pkts = 0; 3374 ill->ill_last_frag_clean_time = 0; 3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3379 NULL, MUTEX_DEFAULT, NULL); 3380 } 3381 3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3383 if (ill->ill_phyint == NULL) { 3384 mi_free(frag_ptr); 3385 return (ENOMEM); 3386 } 3387 3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3389 if (isv6) { 3390 ill->ill_phyint->phyint_illv6 = ill; 3391 } else { 3392 ill->ill_phyint->phyint_illv4 = ill; 3393 } 3394 if (is_loopback) { 3395 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3396 } 3397 3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3399 3400 ill_set_inputfn(ill); 3401 3402 if (!ipsq_init(ill, ipsq_enter)) { 3403 mi_free(frag_ptr); 3404 mi_free(ill->ill_phyint); 3405 return (ENOMEM); 3406 } 3407 3408 /* Frag queue limit stuff */ 3409 ill->ill_frag_count = 0; 3410 ill->ill_ipf_gen = 0; 3411 3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3414 ill->ill_global_timer = INFINITY; 3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3419 3420 /* 3421 * Initialize IPv6 configuration variables. The IP module is always 3422 * opened as an IPv4 module. Instead tracking down the cases where 3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3424 * here for convenience, this has no effect until the ill is set to do 3425 * IPv6. 3426 */ 3427 ill->ill_reachable_time = ND_REACHABLE_TIME; 3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3429 ill->ill_max_buf = ND_MAX_Q; 3430 ill->ill_refcnt = 0; 3431 3432 return (0); 3433 } 3434 3435 /* 3436 * ill_init is called by ip_open when a device control stream is opened. 3437 * It does a few initializations, and shoots a DL_INFO_REQ message down 3438 * to the driver. The response is later picked up in ip_rput_dlpi and 3439 * used to set up default mechanisms for talking to the driver. (Always 3440 * called as writer.) 3441 * 3442 * If this function returns error, ip_open will call ip_close which in 3443 * turn will call ill_delete to clean up any memory allocated here that 3444 * is not yet freed. 3445 * 3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3447 */ 3448 int 3449 ill_init(queue_t *q, ill_t *ill) 3450 { 3451 int ret; 3452 dl_info_req_t *dlir; 3453 mblk_t *info_mp; 3454 3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3456 BPRI_HI); 3457 if (info_mp == NULL) 3458 return (ENOMEM); 3459 3460 /* 3461 * For now pretend this is a v4 ill. We need to set phyint_ill* 3462 * at this point because of the following reason. If we can't 3463 * enter the ipsq at some point and cv_wait, the writer that 3464 * wakes us up tries to locate us using the list of all phyints 3465 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3466 * If we don't set it now, we risk a missed wakeup. 3467 */ 3468 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3469 freemsg(info_mp); 3470 return (ret); 3471 } 3472 3473 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3474 3475 /* Send down the Info Request to the driver. */ 3476 info_mp->b_datap->db_type = M_PCPROTO; 3477 dlir = (dl_info_req_t *)info_mp->b_rptr; 3478 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3479 dlir->dl_primitive = DL_INFO_REQ; 3480 3481 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3482 3483 qprocson(q); 3484 ill_dlpi_send(ill, info_mp); 3485 3486 return (0); 3487 } 3488 3489 /* 3490 * ill_dls_info 3491 * creates datalink socket info from the device. 3492 */ 3493 int 3494 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3495 { 3496 size_t len; 3497 3498 sdl->sdl_family = AF_LINK; 3499 sdl->sdl_index = ill_get_upper_ifindex(ill); 3500 sdl->sdl_type = ill->ill_type; 3501 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3502 len = strlen(sdl->sdl_data); 3503 ASSERT(len < 256); 3504 sdl->sdl_nlen = (uchar_t)len; 3505 sdl->sdl_alen = ill->ill_phys_addr_length; 3506 sdl->sdl_slen = 0; 3507 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3508 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3509 3510 return (sizeof (struct sockaddr_dl)); 3511 } 3512 3513 /* 3514 * ill_xarp_info 3515 * creates xarp info from the device. 3516 */ 3517 static int 3518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3519 { 3520 sdl->sdl_family = AF_LINK; 3521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3522 sdl->sdl_type = ill->ill_type; 3523 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3524 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3525 sdl->sdl_alen = ill->ill_phys_addr_length; 3526 sdl->sdl_slen = 0; 3527 return (sdl->sdl_nlen); 3528 } 3529 3530 static int 3531 loopback_kstat_update(kstat_t *ksp, int rw) 3532 { 3533 kstat_named_t *kn; 3534 netstackid_t stackid; 3535 netstack_t *ns; 3536 ip_stack_t *ipst; 3537 3538 if (ksp == NULL || ksp->ks_data == NULL) 3539 return (EIO); 3540 3541 if (rw == KSTAT_WRITE) 3542 return (EACCES); 3543 3544 kn = KSTAT_NAMED_PTR(ksp); 3545 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3546 3547 ns = netstack_find_by_stackid(stackid); 3548 if (ns == NULL) 3549 return (-1); 3550 3551 ipst = ns->netstack_ip; 3552 if (ipst == NULL) { 3553 netstack_rele(ns); 3554 return (-1); 3555 } 3556 kn[0].value.ui32 = ipst->ips_loopback_packets; 3557 kn[1].value.ui32 = ipst->ips_loopback_packets; 3558 netstack_rele(ns); 3559 return (0); 3560 } 3561 3562 /* 3563 * Has ifindex been plumbed already? 3564 */ 3565 static boolean_t 3566 phyint_exists(uint_t index, ip_stack_t *ipst) 3567 { 3568 ASSERT(index != 0); 3569 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3570 3571 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3572 &index, NULL) != NULL); 3573 } 3574 3575 /* 3576 * Pick a unique ifindex. 3577 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3578 * flag is set so that next time time ip_assign_ifindex() is called, it 3579 * falls through and resets the index counter back to 1, the minimum value 3580 * for the interface index. The logic below assumes that ips_ill_index 3581 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3582 * (i.e. reset back to 0.) 3583 */ 3584 boolean_t 3585 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3586 { 3587 uint_t loops; 3588 3589 if (!ipst->ips_ill_index_wrap) { 3590 *indexp = ipst->ips_ill_index++; 3591 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3592 /* 3593 * Reached the maximum ifindex value, set the wrap 3594 * flag to indicate that it is no longer possible 3595 * to assume that a given index is unallocated. 3596 */ 3597 ipst->ips_ill_index_wrap = B_TRUE; 3598 } 3599 return (B_TRUE); 3600 } 3601 3602 if (ipst->ips_ill_index > IF_INDEX_MAX) 3603 ipst->ips_ill_index = 1; 3604 3605 /* 3606 * Start reusing unused indexes. Note that we hold the ill_g_lock 3607 * at this point and don't want to call any function that attempts 3608 * to get the lock again. 3609 */ 3610 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3611 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3612 /* found unused index - use it */ 3613 *indexp = ipst->ips_ill_index; 3614 return (B_TRUE); 3615 } 3616 3617 ipst->ips_ill_index++; 3618 if (ipst->ips_ill_index > IF_INDEX_MAX) 3619 ipst->ips_ill_index = 1; 3620 } 3621 3622 /* 3623 * all interface indicies are inuse. 3624 */ 3625 return (B_FALSE); 3626 } 3627 3628 /* 3629 * Assign a unique interface index for the phyint. 3630 */ 3631 static boolean_t 3632 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3633 { 3634 ASSERT(phyi->phyint_ifindex == 0); 3635 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3636 } 3637 3638 /* 3639 * Initialize the flags on `phyi' as per the provided mactype. 3640 */ 3641 static void 3642 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3643 { 3644 uint64_t flags = 0; 3645 3646 /* 3647 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3648 * we always presume the underlying hardware is working and set 3649 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3650 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3651 * there are no active interfaces in the group so we set PHYI_FAILED. 3652 */ 3653 if (mactype == SUNW_DL_IPMP) 3654 flags |= PHYI_FAILED; 3655 else 3656 flags |= PHYI_RUNNING; 3657 3658 switch (mactype) { 3659 case SUNW_DL_VNI: 3660 flags |= PHYI_VIRTUAL; 3661 break; 3662 case SUNW_DL_IPMP: 3663 flags |= PHYI_IPMP; 3664 break; 3665 case DL_LOOP: 3666 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3667 break; 3668 } 3669 3670 mutex_enter(&phyi->phyint_lock); 3671 phyi->phyint_flags |= flags; 3672 mutex_exit(&phyi->phyint_lock); 3673 } 3674 3675 /* 3676 * Return a pointer to the ill which matches the supplied name. Note that 3677 * the ill name length includes the null termination character. (May be 3678 * called as writer.) 3679 * If do_alloc and the interface is "lo0" it will be automatically created. 3680 * Cannot bump up reference on condemned ills. So dup detect can't be done 3681 * using this func. 3682 */ 3683 ill_t * 3684 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3685 boolean_t *did_alloc, ip_stack_t *ipst) 3686 { 3687 ill_t *ill; 3688 ipif_t *ipif; 3689 ipsq_t *ipsq; 3690 kstat_named_t *kn; 3691 boolean_t isloopback; 3692 in6_addr_t ov6addr; 3693 3694 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3695 3696 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3697 ill = ill_find_by_name(name, isv6, ipst); 3698 rw_exit(&ipst->ips_ill_g_lock); 3699 if (ill != NULL) 3700 return (ill); 3701 3702 /* 3703 * Couldn't find it. Does this happen to be a lookup for the 3704 * loopback device and are we allowed to allocate it? 3705 */ 3706 if (!isloopback || !do_alloc) 3707 return (NULL); 3708 3709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3710 ill = ill_find_by_name(name, isv6, ipst); 3711 if (ill != NULL) { 3712 rw_exit(&ipst->ips_ill_g_lock); 3713 return (ill); 3714 } 3715 3716 /* Create the loopback device on demand */ 3717 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3718 sizeof (ipif_loopback_name), BPRI_MED)); 3719 if (ill == NULL) 3720 goto done; 3721 3722 bzero(ill, sizeof (*ill)); 3723 ill->ill_ipst = ipst; 3724 netstack_hold(ipst->ips_netstack); 3725 /* 3726 * For exclusive stacks we set the zoneid to zero 3727 * to make IP operate as if in the global zone. 3728 */ 3729 ill->ill_zoneid = GLOBAL_ZONEID; 3730 3731 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3732 goto done; 3733 3734 if (!ill_allocate_mibs(ill)) 3735 goto done; 3736 3737 ill->ill_current_frag = ill->ill_max_frag; 3738 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3739 ill->ill_mc_mtu = ill->ill_mtu; 3740 /* 3741 * ipif_loopback_name can't be pointed at directly because its used 3742 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3743 * from the glist, ill_glist_delete() sets the first character of 3744 * ill_name to '\0'. 3745 */ 3746 ill->ill_name = (char *)ill + sizeof (*ill); 3747 (void) strcpy(ill->ill_name, ipif_loopback_name); 3748 ill->ill_name_length = sizeof (ipif_loopback_name); 3749 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3750 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3751 3752 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3753 if (ipif == NULL) 3754 goto done; 3755 3756 ill->ill_flags = ILLF_MULTICAST; 3757 3758 ov6addr = ipif->ipif_v6lcl_addr; 3759 /* Set up default loopback address and mask. */ 3760 if (!isv6) { 3761 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3762 3763 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3764 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3766 ipif->ipif_v6subnet); 3767 ill->ill_flags |= ILLF_IPV4; 3768 } else { 3769 ipif->ipif_v6lcl_addr = ipv6_loopback; 3770 ipif->ipif_v6net_mask = ipv6_all_ones; 3771 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3772 ipif->ipif_v6subnet); 3773 ill->ill_flags |= ILLF_IPV6; 3774 } 3775 3776 /* 3777 * Chain us in at the end of the ill list. hold the ill 3778 * before we make it globally visible. 1 for the lookup. 3779 */ 3780 ill_refhold(ill); 3781 3782 ipsq = ill->ill_phyint->phyint_ipsq; 3783 3784 if (ill_glist_insert(ill, "lo", isv6) != 0) 3785 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3786 3787 /* Let SCTP know so that it can add this to its list */ 3788 sctp_update_ill(ill, SCTP_ILL_INSERT); 3789 3790 /* 3791 * We have already assigned ipif_v6lcl_addr above, but we need to 3792 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3793 * requires to be after ill_glist_insert() since we need the 3794 * ill_index set. Pass on ipv6_loopback as the old address. 3795 */ 3796 sctp_update_ipif_addr(ipif, ov6addr); 3797 3798 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3799 3800 /* 3801 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3802 * If so, free our original one. 3803 */ 3804 if (ipsq != ill->ill_phyint->phyint_ipsq) 3805 ipsq_delete(ipsq); 3806 3807 if (ipst->ips_loopback_ksp == NULL) { 3808 /* Export loopback interface statistics */ 3809 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3810 ipif_loopback_name, "net", 3811 KSTAT_TYPE_NAMED, 2, 0, 3812 ipst->ips_netstack->netstack_stackid); 3813 if (ipst->ips_loopback_ksp != NULL) { 3814 ipst->ips_loopback_ksp->ks_update = 3815 loopback_kstat_update; 3816 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3817 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3818 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3819 ipst->ips_loopback_ksp->ks_private = 3820 (void *)(uintptr_t)ipst->ips_netstack-> 3821 netstack_stackid; 3822 kstat_install(ipst->ips_loopback_ksp); 3823 } 3824 } 3825 3826 *did_alloc = B_TRUE; 3827 rw_exit(&ipst->ips_ill_g_lock); 3828 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3829 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3830 return (ill); 3831 done: 3832 if (ill != NULL) { 3833 if (ill->ill_phyint != NULL) { 3834 ipsq = ill->ill_phyint->phyint_ipsq; 3835 if (ipsq != NULL) { 3836 ipsq->ipsq_phyint = NULL; 3837 ipsq_delete(ipsq); 3838 } 3839 mi_free(ill->ill_phyint); 3840 } 3841 ill_free_mib(ill); 3842 if (ill->ill_ipst != NULL) 3843 netstack_rele(ill->ill_ipst->ips_netstack); 3844 mi_free(ill); 3845 } 3846 rw_exit(&ipst->ips_ill_g_lock); 3847 return (NULL); 3848 } 3849 3850 /* 3851 * For IPP calls - use the ip_stack_t for global stack. 3852 */ 3853 ill_t * 3854 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3855 { 3856 ip_stack_t *ipst; 3857 ill_t *ill; 3858 netstack_t *ns; 3859 3860 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID); 3861 3862 if ((ipst = ns->netstack_ip) == NULL) { 3863 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3864 netstack_rele(ns); 3865 return (NULL); 3866 } 3867 3868 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3869 netstack_rele(ns); 3870 return (ill); 3871 } 3872 3873 /* 3874 * Return a pointer to the ill which matches the index and IP version type. 3875 */ 3876 ill_t * 3877 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3878 { 3879 ill_t *ill; 3880 phyint_t *phyi; 3881 3882 /* 3883 * Indexes are stored in the phyint - a common structure 3884 * to both IPv4 and IPv6. 3885 */ 3886 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3887 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3888 (void *) &index, NULL); 3889 if (phyi != NULL) { 3890 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3891 if (ill != NULL) { 3892 mutex_enter(&ill->ill_lock); 3893 if (!ILL_IS_CONDEMNED(ill)) { 3894 ill_refhold_locked(ill); 3895 mutex_exit(&ill->ill_lock); 3896 rw_exit(&ipst->ips_ill_g_lock); 3897 return (ill); 3898 } 3899 mutex_exit(&ill->ill_lock); 3900 } 3901 } 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (NULL); 3904 } 3905 3906 /* 3907 * Verify whether or not an interface index is valid for the specified zoneid 3908 * to transmit packets. 3909 * It can be zero (meaning "reset") or an interface index assigned 3910 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3911 */ 3912 boolean_t 3913 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3914 ip_stack_t *ipst) 3915 { 3916 ill_t *ill; 3917 3918 if (ifindex == 0) 3919 return (B_TRUE); 3920 3921 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3922 if (ill == NULL) 3923 return (B_FALSE); 3924 if (IS_VNI(ill)) { 3925 ill_refrele(ill); 3926 return (B_FALSE); 3927 } 3928 ill_refrele(ill); 3929 return (B_TRUE); 3930 } 3931 3932 /* 3933 * Return the ifindex next in sequence after the passed in ifindex. 3934 * If there is no next ifindex for the given protocol, return 0. 3935 */ 3936 uint_t 3937 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3938 { 3939 phyint_t *phyi; 3940 phyint_t *phyi_initial; 3941 uint_t ifindex; 3942 3943 phyi_initial = NULL; 3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3945 3946 if (index == 0) { 3947 phyi = avl_first( 3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3949 } else { 3950 phyi = phyi_initial = avl_find( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3952 (void *) &index, NULL); 3953 } 3954 3955 for (; phyi != NULL; 3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3957 phyi, AVL_AFTER)) { 3958 /* 3959 * If we're not returning the first interface in the tree 3960 * and we still haven't moved past the phyint_t that 3961 * corresponds to index, avl_walk needs to be called again 3962 */ 3963 if (!((index != 0) && (phyi == phyi_initial))) { 3964 if (isv6) { 3965 if ((phyi->phyint_illv6) && 3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3967 (phyi->phyint_illv6->ill_isv6 == 1)) 3968 break; 3969 } else { 3970 if ((phyi->phyint_illv4) && 3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3972 (phyi->phyint_illv4->ill_isv6 == 0)) 3973 break; 3974 } 3975 } 3976 } 3977 3978 rw_exit(&ipst->ips_ill_g_lock); 3979 3980 if (phyi != NULL) 3981 ifindex = phyi->phyint_ifindex; 3982 else 3983 ifindex = 0; 3984 3985 return (ifindex); 3986 } 3987 3988 /* 3989 * Return the ifindex for the named interface. 3990 * If there is no next ifindex for the interface, return 0. 3991 */ 3992 uint_t 3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3994 { 3995 phyint_t *phyi; 3996 avl_index_t where = 0; 3997 uint_t ifindex; 3998 3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4000 4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4002 name, &where)) == NULL) { 4003 rw_exit(&ipst->ips_ill_g_lock); 4004 return (0); 4005 } 4006 4007 ifindex = phyi->phyint_ifindex; 4008 4009 rw_exit(&ipst->ips_ill_g_lock); 4010 4011 return (ifindex); 4012 } 4013 4014 /* 4015 * Return the ifindex to be used by upper layer protocols for instance 4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4017 */ 4018 uint_t 4019 ill_get_upper_ifindex(const ill_t *ill) 4020 { 4021 if (IS_UNDER_IPMP(ill)) 4022 return (ipmp_ill_get_ipmp_ifindex(ill)); 4023 else 4024 return (ill->ill_phyint->phyint_ifindex); 4025 } 4026 4027 4028 /* 4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4030 * that gives a running thread a reference to the ill. This reference must be 4031 * released by the thread when it is done accessing the ill and related 4032 * objects. ill_refcnt can not be used to account for static references 4033 * such as other structures pointing to an ill. Callers must generally 4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4035 * or be sure that the ill is not being deleted or changing state before 4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4037 * ill won't change any of its critical state such as address, netmask etc. 4038 */ 4039 void 4040 ill_refhold(ill_t *ill) 4041 { 4042 mutex_enter(&ill->ill_lock); 4043 ill->ill_refcnt++; 4044 ILL_TRACE_REF(ill); 4045 mutex_exit(&ill->ill_lock); 4046 } 4047 4048 void 4049 ill_refhold_locked(ill_t *ill) 4050 { 4051 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4052 ill->ill_refcnt++; 4053 ILL_TRACE_REF(ill); 4054 } 4055 4056 /* Returns true if we managed to get a refhold */ 4057 boolean_t 4058 ill_check_and_refhold(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 if (!ILL_IS_CONDEMNED(ill)) { 4062 ill_refhold_locked(ill); 4063 mutex_exit(&ill->ill_lock); 4064 return (B_TRUE); 4065 } 4066 mutex_exit(&ill->ill_lock); 4067 return (B_FALSE); 4068 } 4069 4070 /* 4071 * Must not be called while holding any locks. Otherwise if this is 4072 * the last reference to be released, there is a chance of recursive mutex 4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4074 * to restart an ioctl. 4075 */ 4076 void 4077 ill_refrele(ill_t *ill) 4078 { 4079 mutex_enter(&ill->ill_lock); 4080 ASSERT(ill->ill_refcnt != 0); 4081 ill->ill_refcnt--; 4082 ILL_UNTRACE_REF(ill); 4083 if (ill->ill_refcnt != 0) { 4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4085 mutex_exit(&ill->ill_lock); 4086 return; 4087 } 4088 4089 /* Drops the ill_lock */ 4090 ipif_ill_refrele_tail(ill); 4091 } 4092 4093 /* 4094 * Obtain a weak reference count on the ill. This reference ensures the 4095 * ill won't be freed, but the ill may change any of its critical state 4096 * such as netmask, address etc. Returns an error if the ill has started 4097 * closing. 4098 */ 4099 boolean_t 4100 ill_waiter_inc(ill_t *ill) 4101 { 4102 mutex_enter(&ill->ill_lock); 4103 if (ill->ill_state_flags & ILL_CONDEMNED) { 4104 mutex_exit(&ill->ill_lock); 4105 return (B_FALSE); 4106 } 4107 ill->ill_waiters++; 4108 mutex_exit(&ill->ill_lock); 4109 return (B_TRUE); 4110 } 4111 4112 void 4113 ill_waiter_dcr(ill_t *ill) 4114 { 4115 mutex_enter(&ill->ill_lock); 4116 ill->ill_waiters--; 4117 if (ill->ill_waiters == 0) 4118 cv_broadcast(&ill->ill_cv); 4119 mutex_exit(&ill->ill_lock); 4120 } 4121 4122 /* 4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4124 * driver. We construct best guess defaults for lower level information that 4125 * we need. If an interface is brought up without injection of any overriding 4126 * information from outside, we have to be ready to go with these defaults. 4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4128 * we primarely want the dl_provider_style. 4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4130 * at which point we assume the other part of the information is valid. 4131 */ 4132 void 4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4134 { 4135 uchar_t *brdcst_addr; 4136 uint_t brdcst_addr_length, phys_addr_length; 4137 t_scalar_t sap_length; 4138 dl_info_ack_t *dlia; 4139 ip_m_t *ipm; 4140 dl_qos_cl_sel1_t *sel1; 4141 int min_mtu; 4142 4143 ASSERT(IAM_WRITER_ILL(ill)); 4144 4145 /* 4146 * Till the ill is fully up the ill is not globally visible. 4147 * So no need for a lock. 4148 */ 4149 dlia = (dl_info_ack_t *)mp->b_rptr; 4150 ill->ill_mactype = dlia->dl_mac_type; 4151 4152 ipm = ip_m_lookup(dlia->dl_mac_type); 4153 if (ipm == NULL) { 4154 ipm = ip_m_lookup(DL_OTHER); 4155 ASSERT(ipm != NULL); 4156 } 4157 ill->ill_media = ipm; 4158 4159 /* 4160 * When the new DLPI stuff is ready we'll pull lengths 4161 * from dlia. 4162 */ 4163 if (dlia->dl_version == DL_VERSION_2) { 4164 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4166 brdcst_addr_length); 4167 if (brdcst_addr == NULL) { 4168 brdcst_addr_length = 0; 4169 } 4170 sap_length = dlia->dl_sap_length; 4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4173 brdcst_addr_length, sap_length, phys_addr_length)); 4174 } else { 4175 brdcst_addr_length = 6; 4176 brdcst_addr = ip_six_byte_all_ones; 4177 sap_length = -2; 4178 phys_addr_length = brdcst_addr_length; 4179 } 4180 4181 ill->ill_bcast_addr_length = brdcst_addr_length; 4182 ill->ill_phys_addr_length = phys_addr_length; 4183 ill->ill_sap_length = sap_length; 4184 4185 /* 4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4187 * but we must ensure a minimum IP MTU is used since other bits of 4188 * IP will fly apart otherwise. 4189 */ 4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4192 ill->ill_current_frag = ill->ill_max_frag; 4193 ill->ill_mtu = ill->ill_max_frag; 4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4195 4196 ill->ill_type = ipm->ip_m_type; 4197 4198 if (!ill->ill_dlpi_style_set) { 4199 if (dlia->dl_provider_style == DL_STYLE2) 4200 ill->ill_needs_attach = 1; 4201 4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4203 4204 /* 4205 * Allocate the first ipif on this ill. We don't delay it 4206 * further as ioctl handling assumes at least one ipif exists. 4207 * 4208 * At this point we don't know whether the ill is v4 or v6. 4209 * We will know this whan the SIOCSLIFNAME happens and 4210 * the correct value for ill_isv6 will be assigned in 4211 * ipif_set_values(). We need to hold the ill lock and 4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4213 * the wakeup. 4214 */ 4215 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4217 mutex_enter(&ill->ill_lock); 4218 ASSERT(ill->ill_dlpi_style_set == 0); 4219 ill->ill_dlpi_style_set = 1; 4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4221 cv_broadcast(&ill->ill_cv); 4222 mutex_exit(&ill->ill_lock); 4223 freemsg(mp); 4224 return; 4225 } 4226 ASSERT(ill->ill_ipif != NULL); 4227 /* 4228 * We know whether it is IPv4 or IPv6 now, as this is the 4229 * second DL_INFO_ACK we are recieving in response to the 4230 * DL_INFO_REQ sent in ipif_set_values. 4231 */ 4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4233 /* 4234 * Clear all the flags that were set based on ill_bcast_addr_length 4235 * and ill_phys_addr_length (in ipif_set_values) as these could have 4236 * changed now and we need to re-evaluate. 4237 */ 4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4240 4241 /* 4242 * Free ill_bcast_mp as things could have changed now. 4243 * 4244 * NOTE: The IPMP meta-interface is special-cased because it starts 4245 * with no underlying interfaces (and thus an unknown broadcast 4246 * address length), but we enforce that an interface is broadcast- 4247 * capable as part of allowing it to join a group. 4248 */ 4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4250 if (ill->ill_bcast_mp != NULL) 4251 freemsg(ill->ill_bcast_mp); 4252 ill->ill_net_type = IRE_IF_NORESOLVER; 4253 4254 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4255 ill->ill_phys_addr_length, 4256 ill->ill_sap, 4257 ill->ill_sap_length); 4258 4259 if (ill->ill_isv6) 4260 /* 4261 * Note: xresolv interfaces will eventually need NOARP 4262 * set here as well, but that will require those 4263 * external resolvers to have some knowledge of 4264 * that flag and act appropriately. Not to be changed 4265 * at present. 4266 */ 4267 ill->ill_flags |= ILLF_NONUD; 4268 else 4269 ill->ill_flags |= ILLF_NOARP; 4270 4271 if (ill->ill_mactype == SUNW_DL_VNI) { 4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4273 } else if (ill->ill_phys_addr_length == 0 || 4274 ill->ill_mactype == DL_IPV4 || 4275 ill->ill_mactype == DL_IPV6) { 4276 /* 4277 * The underying link is point-to-point, so mark the 4278 * interface as such. We can do IP multicast over 4279 * such a link since it transmits all network-layer 4280 * packets to the remote side the same way. 4281 */ 4282 ill->ill_flags |= ILLF_MULTICAST; 4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4284 } 4285 } else { 4286 ill->ill_net_type = IRE_IF_RESOLVER; 4287 if (ill->ill_bcast_mp != NULL) 4288 freemsg(ill->ill_bcast_mp); 4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4290 ill->ill_bcast_addr_length, ill->ill_sap, 4291 ill->ill_sap_length); 4292 /* 4293 * Later detect lack of DLPI driver multicast 4294 * capability by catching DL_ENABMULTI errors in 4295 * ip_rput_dlpi. 4296 */ 4297 ill->ill_flags |= ILLF_MULTICAST; 4298 if (!ill->ill_isv6) 4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4300 } 4301 4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4303 if (ill->ill_mactype == SUNW_DL_IPMP) 4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4305 4306 /* By default an interface does not support any CoS marking */ 4307 ill->ill_flags &= ~ILLF_COS_ENABLED; 4308 4309 /* 4310 * If we get QoS information in DL_INFO_ACK, the device supports 4311 * some form of CoS marking, set ILLF_COS_ENABLED. 4312 */ 4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4314 dlia->dl_qos_length); 4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4316 ill->ill_flags |= ILLF_COS_ENABLED; 4317 } 4318 4319 /* Clear any previous error indication. */ 4320 ill->ill_error = 0; 4321 freemsg(mp); 4322 } 4323 4324 /* 4325 * Perform various checks to verify that an address would make sense as a 4326 * local, remote, or subnet interface address. 4327 */ 4328 static boolean_t 4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4330 { 4331 ipaddr_t net_mask; 4332 4333 /* 4334 * Don't allow all zeroes, or all ones, but allow 4335 * all ones netmask. 4336 */ 4337 if ((net_mask = ip_net_mask(addr)) == 0) 4338 return (B_FALSE); 4339 /* A given netmask overrides the "guess" netmask */ 4340 if (subnet_mask != 0) 4341 net_mask = subnet_mask; 4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4343 (addr == (addr | ~net_mask)))) { 4344 return (B_FALSE); 4345 } 4346 4347 /* 4348 * Even if the netmask is all ones, we do not allow address to be 4349 * 255.255.255.255 4350 */ 4351 if (addr == INADDR_BROADCAST) 4352 return (B_FALSE); 4353 4354 if (CLASSD(addr)) 4355 return (B_FALSE); 4356 4357 return (B_TRUE); 4358 } 4359 4360 #define V6_IPIF_LINKLOCAL(p) \ 4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4362 4363 /* 4364 * Compare two given ipifs and check if the second one is better than 4365 * the first one using the order of preference (not taking deprecated 4366 * into acount) specified in ipif_lookup_multicast(). 4367 */ 4368 static boolean_t 4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4370 { 4371 /* Check the least preferred first. */ 4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4373 /* If both ipifs are the same, use the first one. */ 4374 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4375 return (B_FALSE); 4376 else 4377 return (B_TRUE); 4378 } 4379 4380 /* For IPv6, check for link local address. */ 4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4382 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4383 V6_IPIF_LINKLOCAL(new_ipif)) { 4384 /* The second one is equal or less preferred. */ 4385 return (B_FALSE); 4386 } else { 4387 return (B_TRUE); 4388 } 4389 } 4390 4391 /* Then check for point to point interface. */ 4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4393 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4396 return (B_FALSE); 4397 } else { 4398 return (B_TRUE); 4399 } 4400 } 4401 4402 /* old_ipif is a normal interface, so no need to use the new one. */ 4403 return (B_FALSE); 4404 } 4405 4406 /* 4407 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4408 * The ipif must be up, and its ill must multicast-capable, not 4409 * condemned, not an underlying interface in an IPMP group, and 4410 * not a VNI interface. Order of preference: 4411 * 4412 * 1a. normal 4413 * 1b. normal, but deprecated 4414 * 2a. point to point 4415 * 2b. point to point, but deprecated 4416 * 3a. link local 4417 * 3b. link local, but deprecated 4418 * 4. loopback. 4419 */ 4420 static ipif_t * 4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4422 { 4423 ill_t *ill; 4424 ill_walk_context_t ctx; 4425 ipif_t *ipif; 4426 ipif_t *saved_ipif = NULL; 4427 ipif_t *dep_ipif = NULL; 4428 4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4430 if (isv6) 4431 ill = ILL_START_WALK_V6(&ctx, ipst); 4432 else 4433 ill = ILL_START_WALK_V4(&ctx, ipst); 4434 4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4436 mutex_enter(&ill->ill_lock); 4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4438 ILL_IS_CONDEMNED(ill) || 4439 !(ill->ill_flags & ILLF_MULTICAST)) { 4440 mutex_exit(&ill->ill_lock); 4441 continue; 4442 } 4443 for (ipif = ill->ill_ipif; ipif != NULL; 4444 ipif = ipif->ipif_next) { 4445 if (zoneid != ipif->ipif_zoneid && 4446 zoneid != ALL_ZONES && 4447 ipif->ipif_zoneid != ALL_ZONES) { 4448 continue; 4449 } 4450 if (!(ipif->ipif_flags & IPIF_UP) || 4451 IPIF_IS_CONDEMNED(ipif)) { 4452 continue; 4453 } 4454 4455 /* 4456 * Found one candidate. If it is deprecated, 4457 * remember it in dep_ipif. If it is not deprecated, 4458 * remember it in saved_ipif. 4459 */ 4460 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4461 if (dep_ipif == NULL) { 4462 dep_ipif = ipif; 4463 } else if (ipif_comp_multi(dep_ipif, ipif, 4464 isv6)) { 4465 /* 4466 * If the previous dep_ipif does not 4467 * belong to the same ill, we've done 4468 * a ipif_refhold() on it. So we need 4469 * to release it. 4470 */ 4471 if (dep_ipif->ipif_ill != ill) 4472 ipif_refrele(dep_ipif); 4473 dep_ipif = ipif; 4474 } 4475 continue; 4476 } 4477 if (saved_ipif == NULL) { 4478 saved_ipif = ipif; 4479 } else { 4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4481 if (saved_ipif->ipif_ill != ill) 4482 ipif_refrele(saved_ipif); 4483 saved_ipif = ipif; 4484 } 4485 } 4486 } 4487 /* 4488 * Before going to the next ill, do a ipif_refhold() on the 4489 * saved ones. 4490 */ 4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4492 ipif_refhold_locked(saved_ipif); 4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(dep_ipif); 4495 mutex_exit(&ill->ill_lock); 4496 } 4497 rw_exit(&ipst->ips_ill_g_lock); 4498 4499 /* 4500 * If we have only the saved_ipif, return it. But if we have both 4501 * saved_ipif and dep_ipif, check to see which one is better. 4502 */ 4503 if (saved_ipif != NULL) { 4504 if (dep_ipif != NULL) { 4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4506 ipif_refrele(saved_ipif); 4507 return (dep_ipif); 4508 } else { 4509 ipif_refrele(dep_ipif); 4510 return (saved_ipif); 4511 } 4512 } 4513 return (saved_ipif); 4514 } else { 4515 return (dep_ipif); 4516 } 4517 } 4518 4519 ill_t * 4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4521 { 4522 ipif_t *ipif; 4523 ill_t *ill; 4524 4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4526 if (ipif == NULL) 4527 return (NULL); 4528 4529 ill = ipif->ipif_ill; 4530 ill_refhold(ill); 4531 ipif_refrele(ipif); 4532 return (ill); 4533 } 4534 4535 /* 4536 * This function is called when an application does not specify an interface 4537 * to be used for multicast traffic (joining a group/sending data). It 4538 * calls ire_lookup_multi() to look for an interface route for the 4539 * specified multicast group. Doing this allows the administrator to add 4540 * prefix routes for multicast to indicate which interface to be used for 4541 * multicast traffic in the above scenario. The route could be for all 4542 * multicast (224.0/4), for a single multicast group (a /32 route) or 4543 * anything in between. If there is no such multicast route, we just find 4544 * any multicast capable interface and return it. The returned ipif 4545 * is refhold'ed. 4546 * 4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4548 * unicast table. This is used by CGTP. 4549 */ 4550 ill_t * 4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4552 boolean_t *multirtp, ipaddr_t *setsrcp) 4553 { 4554 ill_t *ill; 4555 4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4557 if (ill != NULL) 4558 return (ill); 4559 4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4561 } 4562 4563 /* 4564 * Look for an ipif with the specified interface address and destination. 4565 * The destination address is used only for matching point-to-point interfaces. 4566 */ 4567 ipif_t * 4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4569 { 4570 ipif_t *ipif; 4571 ill_t *ill; 4572 ill_walk_context_t ctx; 4573 4574 /* 4575 * First match all the point-to-point interfaces 4576 * before looking at non-point-to-point interfaces. 4577 * This is done to avoid returning non-point-to-point 4578 * ipif instead of unnumbered point-to-point ipif. 4579 */ 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 ill = ILL_START_WALK_V4(&ctx, ipst); 4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 /* Allow the ipif to be down */ 4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4588 (ipif->ipif_lcl_addr == if_addr) && 4589 (ipif->ipif_pp_dst_addr == dst)) { 4590 if (!IPIF_IS_CONDEMNED(ipif)) { 4591 ipif_refhold_locked(ipif); 4592 mutex_exit(&ill->ill_lock); 4593 rw_exit(&ipst->ips_ill_g_lock); 4594 return (ipif); 4595 } 4596 } 4597 } 4598 mutex_exit(&ill->ill_lock); 4599 } 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 4602 /* lookup the ipif based on interface address */ 4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4604 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4605 return (ipif); 4606 } 4607 4608 /* 4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4610 */ 4611 static ipif_t * 4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4613 zoneid_t zoneid, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 boolean_t ptp = B_FALSE; 4618 ill_walk_context_t ctx; 4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4621 4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4623 /* 4624 * Repeat twice, first based on local addresses and 4625 * next time for pointopoint. 4626 */ 4627 repeat: 4628 ill = ILL_START_WALK_V4(&ctx, ipst); 4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4630 if (match_ill != NULL && ill != match_ill && 4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4632 continue; 4633 } 4634 mutex_enter(&ill->ill_lock); 4635 for (ipif = ill->ill_ipif; ipif != NULL; 4636 ipif = ipif->ipif_next) { 4637 if (zoneid != ALL_ZONES && 4638 zoneid != ipif->ipif_zoneid && 4639 ipif->ipif_zoneid != ALL_ZONES) 4640 continue; 4641 4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4643 continue; 4644 4645 /* Allow the ipif to be down */ 4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_pp_dst_addr == addr))) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 4661 /* If we already did the ptp case, then we are done */ 4662 if (ptp) { 4663 rw_exit(&ipst->ips_ill_g_lock); 4664 return (NULL); 4665 } 4666 ptp = B_TRUE; 4667 goto repeat; 4668 } 4669 4670 /* 4671 * Lookup an ipif with the specified address. For point-to-point links we 4672 * look for matches on either the destination address or the local address, 4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4675 * (or illgrp if `match_ill' is in an IPMP group). 4676 */ 4677 ipif_t * 4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4679 ip_stack_t *ipst) 4680 { 4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4682 zoneid, ipst)); 4683 } 4684 4685 /* 4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4687 * except that we will only return an address if it is not marked as 4688 * IPIF_DUPLICATE 4689 */ 4690 ipif_t * 4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4692 ip_stack_t *ipst) 4693 { 4694 return (ipif_lookup_addr_common(addr, match_ill, 4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4696 zoneid, ipst)); 4697 } 4698 4699 /* 4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4701 * `match_ill' across the IPMP group. This function is only needed in some 4702 * corner-cases; almost everything should use ipif_lookup_addr(). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4706 { 4707 ASSERT(match_ill != NULL); 4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4709 ipst)); 4710 } 4711 4712 /* 4713 * Look for an ipif with the specified address. For point-point links 4714 * we look for matches on either the destination address and the local 4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4716 * is set. 4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4718 * ill (or illgrp if `match_ill' is in an IPMP group). 4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4720 */ 4721 zoneid_t 4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4723 { 4724 zoneid_t zoneid; 4725 ipif_t *ipif; 4726 ill_t *ill; 4727 boolean_t ptp = B_FALSE; 4728 ill_walk_context_t ctx; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 /* 4732 * Repeat twice, first based on local addresses and 4733 * next time for pointopoint. 4734 */ 4735 repeat: 4736 ill = ILL_START_WALK_V4(&ctx, ipst); 4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4738 if (match_ill != NULL && ill != match_ill && 4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4740 continue; 4741 } 4742 mutex_enter(&ill->ill_lock); 4743 for (ipif = ill->ill_ipif; ipif != NULL; 4744 ipif = ipif->ipif_next) { 4745 /* Allow the ipif to be down */ 4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4749 (ipif->ipif_pp_dst_addr == addr)) && 4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4751 zoneid = ipif->ipif_zoneid; 4752 mutex_exit(&ill->ill_lock); 4753 rw_exit(&ipst->ips_ill_g_lock); 4754 /* 4755 * If ipif_zoneid was ALL_ZONES then we have 4756 * a trusted extensions shared IP address. 4757 * In that case GLOBAL_ZONEID works to send. 4758 */ 4759 if (zoneid == ALL_ZONES) 4760 zoneid = GLOBAL_ZONEID; 4761 return (zoneid); 4762 } 4763 } 4764 mutex_exit(&ill->ill_lock); 4765 } 4766 4767 /* If we already did the ptp case, then we are done */ 4768 if (ptp) { 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 return (ALL_ZONES); 4771 } 4772 ptp = B_TRUE; 4773 goto repeat; 4774 } 4775 4776 /* 4777 * Look for an ipif that matches the specified remote address i.e. the 4778 * ipif that would receive the specified packet. 4779 * First look for directly connected interfaces and then do a recursive 4780 * IRE lookup and pick the first ipif corresponding to the source address in the 4781 * ire. 4782 * Returns: held ipif 4783 * 4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4785 */ 4786 ipif_t * 4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4788 { 4789 ipif_t *ipif; 4790 4791 ASSERT(!ill->ill_isv6); 4792 4793 /* 4794 * Someone could be changing this ipif currently or change it 4795 * after we return this. Thus a few packets could use the old 4796 * old values. However structure updates/creates (ire, ilg, ilm etc) 4797 * will atomically be updated or cleaned up with the new value 4798 * Thus we don't need a lock to check the flags or other attrs below. 4799 */ 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (IPIF_IS_CONDEMNED(ipif)) 4803 continue; 4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4805 ipif->ipif_zoneid != ALL_ZONES) 4806 continue; 4807 /* Allow the ipif to be down */ 4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4809 if ((ipif->ipif_pp_dst_addr == addr) || 4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4811 ipif->ipif_lcl_addr == addr)) { 4812 ipif_refhold_locked(ipif); 4813 mutex_exit(&ill->ill_lock); 4814 return (ipif); 4815 } 4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4817 ipif_refhold_locked(ipif); 4818 mutex_exit(&ill->ill_lock); 4819 return (ipif); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 /* 4824 * For a remote destination it isn't possible to nail down a particular 4825 * ipif. 4826 */ 4827 4828 /* Pick the first interface */ 4829 ipif = ipif_get_next_ipif(NULL, ill); 4830 return (ipif); 4831 } 4832 4833 /* 4834 * This func does not prevent refcnt from increasing. But if 4835 * the caller has taken steps to that effect, then this func 4836 * can be used to determine whether the ill has become quiescent 4837 */ 4838 static boolean_t 4839 ill_is_quiescent(ill_t *ill) 4840 { 4841 ipif_t *ipif; 4842 4843 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4844 4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4846 if (ipif->ipif_refcnt != 0) 4847 return (B_FALSE); 4848 } 4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4850 return (B_FALSE); 4851 } 4852 return (B_TRUE); 4853 } 4854 4855 boolean_t 4856 ill_is_freeable(ill_t *ill) 4857 { 4858 ipif_t *ipif; 4859 4860 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4861 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (ipif->ipif_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 } 4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4868 return (B_FALSE); 4869 } 4870 return (B_TRUE); 4871 } 4872 4873 /* 4874 * This func does not prevent refcnt from increasing. But if 4875 * the caller has taken steps to that effect, then this func 4876 * can be used to determine whether the ipif has become quiescent 4877 */ 4878 static boolean_t 4879 ipif_is_quiescent(ipif_t *ipif) 4880 { 4881 ill_t *ill; 4882 4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4884 4885 if (ipif->ipif_refcnt != 0) 4886 return (B_FALSE); 4887 4888 ill = ipif->ipif_ill; 4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4890 ill->ill_logical_down) { 4891 return (B_TRUE); 4892 } 4893 4894 /* This is the last ipif going down or being deleted on this ill */ 4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4896 return (B_FALSE); 4897 } 4898 4899 return (B_TRUE); 4900 } 4901 4902 /* 4903 * return true if the ipif can be destroyed: the ipif has to be quiescent 4904 * with zero references from ire/ilm to it. 4905 */ 4906 static boolean_t 4907 ipif_is_freeable(ipif_t *ipif) 4908 { 4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4910 ASSERT(ipif->ipif_id != 0); 4911 return (ipif->ipif_refcnt == 0); 4912 } 4913 4914 /* 4915 * The ipif/ill/ire has been refreled. Do the tail processing. 4916 * Determine if the ipif or ill in question has become quiescent and if so 4917 * wakeup close and/or restart any queued pending ioctl that is waiting 4918 * for the ipif_down (or ill_down) 4919 */ 4920 void 4921 ipif_ill_refrele_tail(ill_t *ill) 4922 { 4923 mblk_t *mp; 4924 conn_t *connp; 4925 ipsq_t *ipsq; 4926 ipxop_t *ipx; 4927 ipif_t *ipif; 4928 dl_notify_ind_t *dlindp; 4929 4930 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4931 4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4933 /* ip_modclose() may be waiting */ 4934 cv_broadcast(&ill->ill_cv); 4935 } 4936 4937 ipsq = ill->ill_phyint->phyint_ipsq; 4938 mutex_enter(&ipsq->ipsq_lock); 4939 ipx = ipsq->ipsq_xop; 4940 mutex_enter(&ipx->ipx_lock); 4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4942 goto unlock; 4943 4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4945 4946 ipif = ipx->ipx_pending_ipif; 4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4948 goto unlock; 4949 4950 switch (ipx->ipx_waitfor) { 4951 case IPIF_DOWN: 4952 if (!ipif_is_quiescent(ipif)) 4953 goto unlock; 4954 break; 4955 case IPIF_FREE: 4956 if (!ipif_is_freeable(ipif)) 4957 goto unlock; 4958 break; 4959 case ILL_DOWN: 4960 if (!ill_is_quiescent(ill)) 4961 goto unlock; 4962 break; 4963 case ILL_FREE: 4964 /* 4965 * ILL_FREE is only for loopback; normal ill teardown waits 4966 * synchronously in ip_modclose() without using ipx_waitfor, 4967 * handled by the cv_broadcast() at the top of this function. 4968 */ 4969 if (!ill_is_freeable(ill)) 4970 goto unlock; 4971 break; 4972 default: 4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4974 (void *)ipsq, ipx->ipx_waitfor); 4975 } 4976 4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4978 mutex_exit(&ipx->ipx_lock); 4979 mp = ipsq_pending_mp_get(ipsq, &connp); 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ill->ill_lock); 4982 4983 ASSERT(mp != NULL); 4984 /* 4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4986 * we can only get here when the current operation decides it 4987 * it needs to quiesce via ipsq_pending_mp_add(). 4988 */ 4989 switch (mp->b_datap->db_type) { 4990 case M_PCPROTO: 4991 case M_PROTO: 4992 /* 4993 * For now, only DL_NOTIFY_IND messages can use this facility. 4994 */ 4995 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4997 4998 switch (dlindp->dl_notification) { 4999 case DL_NOTE_PHYS_ADDR: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5002 return; 5003 case DL_NOTE_REPLUMB: 5004 qwriter_ip(ill, ill->ill_rq, mp, 5005 ill_replumb_tail, CUR_OP, B_TRUE); 5006 return; 5007 default: 5008 ASSERT(0); 5009 ill_refrele(ill); 5010 } 5011 break; 5012 5013 case M_ERROR: 5014 case M_HANGUP: 5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5016 B_TRUE); 5017 return; 5018 5019 case M_IOCTL: 5020 case M_IOCDATA: 5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5023 return; 5024 5025 default: 5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5028 } 5029 return; 5030 unlock: 5031 mutex_exit(&ipsq->ipsq_lock); 5032 mutex_exit(&ipx->ipx_lock); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 5036 #ifdef DEBUG 5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5038 static void 5039 th_trace_rrecord(th_trace_t *th_trace) 5040 { 5041 tr_buf_t *tr_buf; 5042 uint_t lastref; 5043 5044 lastref = th_trace->th_trace_lastref; 5045 lastref++; 5046 if (lastref == TR_BUF_MAX) 5047 lastref = 0; 5048 th_trace->th_trace_lastref = lastref; 5049 tr_buf = &th_trace->th_trbuf[lastref]; 5050 tr_buf->tr_time = ddi_get_lbolt(); 5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5052 } 5053 5054 static void 5055 th_trace_free(void *value) 5056 { 5057 th_trace_t *th_trace = value; 5058 5059 ASSERT(th_trace->th_refcnt == 0); 5060 kmem_free(th_trace, sizeof (*th_trace)); 5061 } 5062 5063 /* 5064 * Find or create the per-thread hash table used to track object references. 5065 * The ipst argument is NULL if we shouldn't allocate. 5066 * 5067 * Accesses per-thread data, so there's no need to lock here. 5068 */ 5069 static mod_hash_t * 5070 th_trace_gethash(ip_stack_t *ipst) 5071 { 5072 th_hash_t *thh; 5073 5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5075 mod_hash_t *mh; 5076 char name[256]; 5077 size_t objsize, rshift; 5078 int retv; 5079 5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5081 return (NULL); 5082 (void) snprintf(name, sizeof (name), "th_trace_%p", 5083 (void *)curthread); 5084 5085 /* 5086 * We use mod_hash_create_extended here rather than the more 5087 * obvious mod_hash_create_ptrhash because the latter has a 5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5089 * block. 5090 */ 5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5092 MAX(sizeof (ire_t), sizeof (ncec_t))); 5093 rshift = highbit(objsize); 5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5095 th_trace_free, mod_hash_byptr, (void *)rshift, 5096 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5097 if (mh == NULL) { 5098 kmem_free(thh, sizeof (*thh)); 5099 return (NULL); 5100 } 5101 thh->thh_hash = mh; 5102 thh->thh_ipst = ipst; 5103 /* 5104 * We trace ills, ipifs, ires, and nces. All of these are 5105 * per-IP-stack, so the lock on the thread list is as well. 5106 */ 5107 rw_enter(&ip_thread_rwlock, RW_WRITER); 5108 list_insert_tail(&ip_thread_list, thh); 5109 rw_exit(&ip_thread_rwlock); 5110 retv = tsd_set(ip_thread_data, thh); 5111 ASSERT(retv == 0); 5112 } 5113 return (thh != NULL ? thh->thh_hash : NULL); 5114 } 5115 5116 boolean_t 5117 th_trace_ref(const void *obj, ip_stack_t *ipst) 5118 { 5119 th_trace_t *th_trace; 5120 mod_hash_t *mh; 5121 mod_hash_val_t val; 5122 5123 if ((mh = th_trace_gethash(ipst)) == NULL) 5124 return (B_FALSE); 5125 5126 /* 5127 * Attempt to locate the trace buffer for this obj and thread. 5128 * If it does not exist, then allocate a new trace buffer and 5129 * insert into the hash. 5130 */ 5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5133 if (th_trace == NULL) 5134 return (B_FALSE); 5135 5136 th_trace->th_id = curthread; 5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5138 (mod_hash_val_t)th_trace) != 0) { 5139 kmem_free(th_trace, sizeof (th_trace_t)); 5140 return (B_FALSE); 5141 } 5142 } else { 5143 th_trace = (th_trace_t *)val; 5144 } 5145 5146 ASSERT(th_trace->th_refcnt >= 0 && 5147 th_trace->th_refcnt < TR_BUF_MAX - 1); 5148 5149 th_trace->th_refcnt++; 5150 th_trace_rrecord(th_trace); 5151 return (B_TRUE); 5152 } 5153 5154 /* 5155 * For the purpose of tracing a reference release, we assume that global 5156 * tracing is always on and that the same thread initiated the reference hold 5157 * is releasing. 5158 */ 5159 void 5160 th_trace_unref(const void *obj) 5161 { 5162 int retv; 5163 mod_hash_t *mh; 5164 th_trace_t *th_trace; 5165 mod_hash_val_t val; 5166 5167 mh = th_trace_gethash(NULL); 5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5169 ASSERT(retv == 0); 5170 th_trace = (th_trace_t *)val; 5171 5172 ASSERT(th_trace->th_refcnt > 0); 5173 th_trace->th_refcnt--; 5174 th_trace_rrecord(th_trace); 5175 } 5176 5177 /* 5178 * If tracing has been disabled, then we assume that the reference counts are 5179 * now useless, and we clear them out before destroying the entries. 5180 */ 5181 void 5182 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5183 { 5184 th_hash_t *thh; 5185 mod_hash_t *mh; 5186 mod_hash_val_t val; 5187 th_trace_t *th_trace; 5188 int retv; 5189 5190 rw_enter(&ip_thread_rwlock, RW_READER); 5191 for (thh = list_head(&ip_thread_list); thh != NULL; 5192 thh = list_next(&ip_thread_list, thh)) { 5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5194 &val) == 0) { 5195 th_trace = (th_trace_t *)val; 5196 if (trace_disable) 5197 th_trace->th_refcnt = 0; 5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5199 ASSERT(retv == 0); 5200 } 5201 } 5202 rw_exit(&ip_thread_rwlock); 5203 } 5204 5205 void 5206 ipif_trace_ref(ipif_t *ipif) 5207 { 5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5209 5210 if (ipif->ipif_trace_disable) 5211 return; 5212 5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5214 ipif->ipif_trace_disable = B_TRUE; 5215 ipif_trace_cleanup(ipif); 5216 } 5217 } 5218 5219 void 5220 ipif_untrace_ref(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 5224 if (!ipif->ipif_trace_disable) 5225 th_trace_unref(ipif); 5226 } 5227 5228 void 5229 ill_trace_ref(ill_t *ill) 5230 { 5231 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5232 5233 if (ill->ill_trace_disable) 5234 return; 5235 5236 if (!th_trace_ref(ill, ill->ill_ipst)) { 5237 ill->ill_trace_disable = B_TRUE; 5238 ill_trace_cleanup(ill); 5239 } 5240 } 5241 5242 void 5243 ill_untrace_ref(ill_t *ill) 5244 { 5245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5246 5247 if (!ill->ill_trace_disable) 5248 th_trace_unref(ill); 5249 } 5250 5251 /* 5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5253 * failure, ipif_trace_disable is set. 5254 */ 5255 static void 5256 ipif_trace_cleanup(const ipif_t *ipif) 5257 { 5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5259 } 5260 5261 /* 5262 * Called when ill is unplumbed or when memory alloc fails. Note that on 5263 * failure, ill_trace_disable is set. 5264 */ 5265 static void 5266 ill_trace_cleanup(const ill_t *ill) 5267 { 5268 th_trace_cleanup(ill, ill->ill_trace_disable); 5269 } 5270 #endif /* DEBUG */ 5271 5272 void 5273 ipif_refhold_locked(ipif_t *ipif) 5274 { 5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5276 ipif->ipif_refcnt++; 5277 IPIF_TRACE_REF(ipif); 5278 } 5279 5280 void 5281 ipif_refhold(ipif_t *ipif) 5282 { 5283 ill_t *ill; 5284 5285 ill = ipif->ipif_ill; 5286 mutex_enter(&ill->ill_lock); 5287 ipif->ipif_refcnt++; 5288 IPIF_TRACE_REF(ipif); 5289 mutex_exit(&ill->ill_lock); 5290 } 5291 5292 /* 5293 * Must not be called while holding any locks. Otherwise if this is 5294 * the last reference to be released there is a chance of recursive mutex 5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5296 * to restart an ioctl. 5297 */ 5298 void 5299 ipif_refrele(ipif_t *ipif) 5300 { 5301 ill_t *ill; 5302 5303 ill = ipif->ipif_ill; 5304 5305 mutex_enter(&ill->ill_lock); 5306 ASSERT(ipif->ipif_refcnt != 0); 5307 ipif->ipif_refcnt--; 5308 IPIF_UNTRACE_REF(ipif); 5309 if (ipif->ipif_refcnt != 0) { 5310 mutex_exit(&ill->ill_lock); 5311 return; 5312 } 5313 5314 /* Drops the ill_lock */ 5315 ipif_ill_refrele_tail(ill); 5316 } 5317 5318 ipif_t * 5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5320 { 5321 ipif_t *ipif; 5322 5323 mutex_enter(&ill->ill_lock); 5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5325 ipif != NULL; ipif = ipif->ipif_next) { 5326 if (IPIF_IS_CONDEMNED(ipif)) 5327 continue; 5328 ipif_refhold_locked(ipif); 5329 mutex_exit(&ill->ill_lock); 5330 return (ipif); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (NULL); 5334 } 5335 5336 /* 5337 * TODO: make this table extendible at run time 5338 * Return a pointer to the mac type info for 'mac_type' 5339 */ 5340 static ip_m_t * 5341 ip_m_lookup(t_uscalar_t mac_type) 5342 { 5343 ip_m_t *ipm; 5344 5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5346 if (ipm->ip_m_mac_type == mac_type) 5347 return (ipm); 5348 return (NULL); 5349 } 5350 5351 /* 5352 * Make a link layer address from the multicast IP address *addr. 5353 * To form the link layer address, invoke the ip_m_v*mapping function 5354 * associated with the link-layer type. 5355 */ 5356 void 5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5358 { 5359 ip_m_t *ipm; 5360 5361 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5362 return; 5363 5364 ASSERT(addr != NULL); 5365 5366 ipm = ip_m_lookup(ill->ill_mactype); 5367 if (ipm == NULL || 5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5371 ill->ill_name, ill->ill_mactype)); 5372 return; 5373 } 5374 if (ill->ill_isv6) 5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5376 else 5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5378 } 5379 5380 /* 5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5382 * Otherwise returns B_TRUE. 5383 * 5384 * The netmask can be verified to be contiguous with 32 shifts and or 5385 * operations. Take the contiguous mask (in host byte order) and compute 5386 * mask | mask << 1 | mask << 2 | ... | mask << 31 5387 * the result will be the same as the 'mask' for contiguous mask. 5388 */ 5389 static boolean_t 5390 ip_contiguous_mask(uint32_t mask) 5391 { 5392 uint32_t m = mask; 5393 int i; 5394 5395 for (i = 1; i < 32; i++) 5396 m |= (mask << i); 5397 5398 return (m == mask); 5399 } 5400 5401 /* 5402 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5403 * ill is passed in to associate it with the correct interface. 5404 * If ire_arg is set, then we return the held IRE in that location. 5405 */ 5406 int 5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5410 { 5411 ire_t *ire, *nire; 5412 ire_t *gw_ire = NULL; 5413 ipif_t *ipif = NULL; 5414 uint_t type; 5415 int match_flags = MATCH_IRE_TYPE; 5416 tsol_gc_t *gc = NULL; 5417 tsol_gcgrp_t *gcgrp = NULL; 5418 boolean_t gcgrp_xtraref = B_FALSE; 5419 boolean_t cgtp_broadcast; 5420 boolean_t unbound = B_FALSE; 5421 5422 ip1dbg(("ip_rt_add:")); 5423 5424 if (ire_arg != NULL) 5425 *ire_arg = NULL; 5426 5427 /* disallow non-contiguous netmasks */ 5428 if (!ip_contiguous_mask(ntohl(mask))) 5429 return (ENOTSUP); 5430 5431 /* 5432 * If this is the case of RTF_HOST being set, then we set the netmask 5433 * to all ones (regardless if one was supplied). 5434 */ 5435 if (flags & RTF_HOST) 5436 mask = IP_HOST_MASK; 5437 5438 /* 5439 * Prevent routes with a zero gateway from being created (since 5440 * interfaces can currently be plumbed and brought up no assigned 5441 * address). 5442 */ 5443 if (gw_addr == 0) 5444 return (ENETUNREACH); 5445 /* 5446 * Get the ipif, if any, corresponding to the gw_addr 5447 * If -ifp was specified we restrict ourselves to the ill, otherwise 5448 * we match on the gatway and destination to handle unnumbered pt-pt 5449 * interfaces. 5450 */ 5451 if (ill != NULL) 5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5453 else 5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5455 if (ipif != NULL) { 5456 if (IS_VNI(ipif->ipif_ill)) { 5457 ipif_refrele(ipif); 5458 return (EINVAL); 5459 } 5460 } 5461 5462 /* 5463 * GateD will attempt to create routes with a loopback interface 5464 * address as the gateway and with RTF_GATEWAY set. We allow 5465 * these routes to be added, but create them as interface routes 5466 * since the gateway is an interface address. 5467 */ 5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5469 flags &= ~RTF_GATEWAY; 5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5471 mask == IP_HOST_MASK) { 5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5474 NULL); 5475 if (ire != NULL) { 5476 ire_refrele(ire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5481 "for 0x%x\n", (void *)ipif, 5482 ipif->ipif_ire_type, 5483 ntohl(ipif->ipif_lcl_addr))); 5484 ire = ire_create( 5485 (uchar_t *)&dst_addr, /* dest address */ 5486 (uchar_t *)&mask, /* mask */ 5487 NULL, /* no gateway */ 5488 ipif->ipif_ire_type, /* LOOPBACK */ 5489 ipif->ipif_ill, 5490 zoneid, 5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5492 NULL, 5493 ipst); 5494 5495 if (ire == NULL) { 5496 ipif_refrele(ipif); 5497 return (ENOMEM); 5498 } 5499 /* src address assigned by the caller? */ 5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5501 ire->ire_setsrc_addr = src_addr; 5502 5503 nire = ire_add(ire); 5504 if (nire == NULL) { 5505 /* 5506 * In the result of failure, ire_add() will have 5507 * already deleted the ire in question, so there 5508 * is no need to do that here. 5509 */ 5510 ipif_refrele(ipif); 5511 return (ENOMEM); 5512 } 5513 /* 5514 * Check if it was a duplicate entry. This handles 5515 * the case of two racing route adds for the same route 5516 */ 5517 if (nire != ire) { 5518 ASSERT(nire->ire_identical_ref > 1); 5519 ire_delete(nire); 5520 ire_refrele(nire); 5521 ipif_refrele(ipif); 5522 return (EEXIST); 5523 } 5524 ire = nire; 5525 goto save_ire; 5526 } 5527 } 5528 5529 /* 5530 * The routes for multicast with CGTP are quite special in that 5531 * the gateway is the local interface address, yet RTF_GATEWAY 5532 * is set. We turn off RTF_GATEWAY to provide compatibility with 5533 * this undocumented and unusual use of multicast routes. 5534 */ 5535 if ((flags & RTF_MULTIRT) && ipif != NULL) 5536 flags &= ~RTF_GATEWAY; 5537 5538 /* 5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5540 * and the gateway address provided is one of the system's interface 5541 * addresses. By using the routing socket interface and supplying an 5542 * RTA_IFP sockaddr with an interface index, an alternate method of 5543 * specifying an interface route to be created is available which uses 5544 * the interface index that specifies the outgoing interface rather than 5545 * the address of an outgoing interface (which may not be able to 5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5547 * flag, routes can be specified which not only specify the next-hop to 5548 * be used when routing to a certain prefix, but also which outgoing 5549 * interface should be used. 5550 * 5551 * Previously, interfaces would have unique addresses assigned to them 5552 * and so the address assigned to a particular interface could be used 5553 * to identify a particular interface. One exception to this was the 5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5555 * 5556 * With the advent of IPv6 and its link-local addresses, this 5557 * restriction was relaxed and interfaces could share addresses between 5558 * themselves. In fact, typically all of the link-local interfaces on 5559 * an IPv6 node or router will have the same link-local address. In 5560 * order to differentiate between these interfaces, the use of an 5561 * interface index is necessary and this index can be carried inside a 5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5563 * of using the interface index, however, is that all of the ipif's that 5564 * are part of an ill have the same index and so the RTA_IFP sockaddr 5565 * cannot be used to differentiate between ipif's (or logical 5566 * interfaces) that belong to the same ill (physical interface). 5567 * 5568 * For example, in the following case involving IPv4 interfaces and 5569 * logical interfaces 5570 * 5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5574 * 5575 * the ipif's corresponding to each of these interface routes can be 5576 * uniquely identified by the "gateway" (actually interface address). 5577 * 5578 * In this case involving multiple IPv6 default routes to a particular 5579 * link-local gateway, the use of RTA_IFP is necessary to specify which 5580 * default route is of interest: 5581 * 5582 * default fe80::123:4567:89ab:cdef U if0 5583 * default fe80::123:4567:89ab:cdef U if1 5584 */ 5585 5586 /* RTF_GATEWAY not set */ 5587 if (!(flags & RTF_GATEWAY)) { 5588 if (sp != NULL) { 5589 ip2dbg(("ip_rt_add: gateway security attributes " 5590 "cannot be set with interface route\n")); 5591 if (ipif != NULL) 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * Whether or not ill (RTA_IFP) is set, we require that 5598 * the gateway is one of our local addresses. 5599 */ 5600 if (ipif == NULL) 5601 return (ENETUNREACH); 5602 5603 /* 5604 * We use MATCH_IRE_ILL here. If the caller specified an 5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5606 * we use the ill derived from the gateway address. 5607 * We can always match the gateway address since we record it 5608 * in ire_gateway_addr. 5609 * We don't allow RTA_IFP to specify a different ill than the 5610 * one matching the ipif to make sure we can delete the route. 5611 */ 5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5613 if (ill == NULL) { 5614 ill = ipif->ipif_ill; 5615 } else if (ill != ipif->ipif_ill) { 5616 ipif_refrele(ipif); 5617 return (EINVAL); 5618 } 5619 5620 /* 5621 * We check for an existing entry at this point. 5622 * 5623 * Since a netmask isn't passed in via the ioctl interface 5624 * (SIOCADDRT), we don't check for a matching netmask in that 5625 * case. 5626 */ 5627 if (!ioctl_msg) 5628 match_flags |= MATCH_IRE_MASK; 5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5631 NULL); 5632 if (ire != NULL) { 5633 ire_refrele(ire); 5634 ipif_refrele(ipif); 5635 return (EEXIST); 5636 } 5637 5638 /* 5639 * Some software (for example, GateD and Sun Cluster) attempts 5640 * to create (what amount to) IRE_PREFIX routes with the 5641 * loopback address as the gateway. This is primarily done to 5642 * set up prefixes with the RTF_REJECT flag set (for example, 5643 * when generating aggregate routes.) 5644 * 5645 * If the IRE type (as defined by ill->ill_net_type) would be 5646 * IRE_LOOPBACK, then we map the request into a 5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5648 * these interface routes, by definition, can only be that. 5649 * 5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5651 * routine, but rather using ire_create() directly. 5652 * 5653 */ 5654 type = ill->ill_net_type; 5655 if (type == IRE_LOOPBACK) { 5656 type = IRE_IF_NORESOLVER; 5657 flags |= RTF_BLACKHOLE; 5658 } 5659 5660 /* 5661 * Create a copy of the IRE_IF_NORESOLVER or 5662 * IRE_IF_RESOLVER with the modified address, netmask, and 5663 * gateway. 5664 */ 5665 ire = ire_create( 5666 (uchar_t *)&dst_addr, 5667 (uint8_t *)&mask, 5668 (uint8_t *)&gw_addr, 5669 type, 5670 ill, 5671 zoneid, 5672 flags, 5673 NULL, 5674 ipst); 5675 if (ire == NULL) { 5676 ipif_refrele(ipif); 5677 return (ENOMEM); 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5751 unbound = B_TRUE; 5752 if (ipst->ips_ip_strict_src_multihoming > 0) 5753 ill = gw_ire->ire_ill; 5754 } 5755 5756 /* 5757 * We create one of three types of IREs as a result of this request 5758 * based on the netmask. A netmask of all ones (which is automatically 5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5761 * created. Otherwise, an IRE_PREFIX route is created for the 5762 * destination prefix. 5763 */ 5764 if (mask == IP_HOST_MASK) 5765 type = IRE_HOST; 5766 else if (mask == 0) 5767 type = IRE_DEFAULT; 5768 else 5769 type = IRE_PREFIX; 5770 5771 /* check for a duplicate entry */ 5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5774 0, ipst, NULL); 5775 if (ire != NULL) { 5776 if (ipif != NULL) 5777 ipif_refrele(ipif); 5778 ire_refrele(gw_ire); 5779 ire_refrele(ire); 5780 return (EEXIST); 5781 } 5782 5783 /* Security attribute exists */ 5784 if (sp != NULL) { 5785 tsol_gcgrp_addr_t ga; 5786 5787 /* find or create the gateway credentials group */ 5788 ga.ga_af = AF_INET; 5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5790 5791 /* we hold reference to it upon success */ 5792 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5793 if (gcgrp == NULL) { 5794 if (ipif != NULL) 5795 ipif_refrele(ipif); 5796 ire_refrele(gw_ire); 5797 return (ENOMEM); 5798 } 5799 5800 /* 5801 * Create and add the security attribute to the group; a 5802 * reference to the group is made upon allocating a new 5803 * entry successfully. If it finds an already-existing 5804 * entry for the security attribute in the group, it simply 5805 * returns it and no new reference is made to the group. 5806 */ 5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5808 if (gc == NULL) { 5809 if (ipif != NULL) 5810 ipif_refrele(ipif); 5811 /* release reference held by gcgrp_lookup */ 5812 GCGRP_REFRELE(gcgrp); 5813 ire_refrele(gw_ire); 5814 return (ENOMEM); 5815 } 5816 } 5817 5818 /* Create the IRE. */ 5819 ire = ire_create( 5820 (uchar_t *)&dst_addr, /* dest address */ 5821 (uchar_t *)&mask, /* mask */ 5822 (uchar_t *)&gw_addr, /* gateway address */ 5823 (ushort_t)type, /* IRE type */ 5824 ill, 5825 zoneid, 5826 flags, 5827 gc, /* security attribute */ 5828 ipst); 5829 5830 /* 5831 * The ire holds a reference to the 'gc' and the 'gc' holds a 5832 * reference to the 'gcgrp'. We can now release the extra reference 5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5834 */ 5835 if (gcgrp_xtraref) 5836 GCGRP_REFRELE(gcgrp); 5837 if (ire == NULL) { 5838 if (gc != NULL) 5839 GC_REFRELE(gc); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (ENOMEM); 5844 } 5845 5846 /* Before we add, check if an extra CGTP broadcast is needed */ 5847 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5849 5850 /* src address assigned by the caller? */ 5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5852 ire->ire_setsrc_addr = src_addr; 5853 5854 ire->ire_unbound = unbound; 5855 5856 /* 5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5859 */ 5860 5861 /* Add the new IRE. */ 5862 nire = ire_add(ire); 5863 if (nire == NULL) { 5864 /* 5865 * In the result of failure, ire_add() will have 5866 * already deleted the ire in question, so there 5867 * is no need to do that here. 5868 */ 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 ire_refrele(gw_ire); 5872 return (ENOMEM); 5873 } 5874 /* 5875 * Check if it was a duplicate entry. This handles 5876 * the case of two racing route adds for the same route 5877 */ 5878 if (nire != ire) { 5879 ire_delete(nire); 5880 ire_refrele(nire); 5881 if (ipif != NULL) 5882 ipif_refrele(ipif); 5883 ire_refrele(gw_ire); 5884 return (EEXIST); 5885 } 5886 ire = nire; 5887 5888 if (flags & RTF_MULTIRT) { 5889 /* 5890 * Invoke the CGTP (multirouting) filtering module 5891 * to add the dst address in the filtering database. 5892 * Replicated inbound packets coming from that address 5893 * will be filtered to discard the duplicates. 5894 * It is not necessary to call the CGTP filter hook 5895 * when the dst address is a broadcast or multicast, 5896 * because an IP source address cannot be a broadcast 5897 * or a multicast. 5898 */ 5899 if (cgtp_broadcast) { 5900 ip_cgtp_bcast_add(ire, ipst); 5901 goto save_ire; 5902 } 5903 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5904 !CLASSD(ire->ire_addr)) { 5905 int res; 5906 ipif_t *src_ipif; 5907 5908 /* Find the source address corresponding to gw_ire */ 5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5910 NULL, zoneid, ipst); 5911 if (src_ipif != NULL) { 5912 res = ipst->ips_ip_cgtp_filter_ops-> 5913 cfo_add_dest_v4( 5914 ipst->ips_netstack->netstack_stackid, 5915 ire->ire_addr, 5916 ire->ire_gateway_addr, 5917 ire->ire_setsrc_addr, 5918 src_ipif->ipif_lcl_addr); 5919 ipif_refrele(src_ipif); 5920 } else { 5921 res = EADDRNOTAVAIL; 5922 } 5923 if (res != 0) { 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 ire_refrele(gw_ire); 5927 ire_delete(ire); 5928 ire_refrele(ire); /* Held in ire_add */ 5929 return (res); 5930 } 5931 } 5932 } 5933 5934 save_ire: 5935 if (gw_ire != NULL) { 5936 ire_refrele(gw_ire); 5937 gw_ire = NULL; 5938 } 5939 if (ill != NULL) { 5940 /* 5941 * Save enough information so that we can recreate the IRE if 5942 * the interface goes down and then up. The metrics associated 5943 * with the route will be saved as well when rts_setmetrics() is 5944 * called after the IRE has been created. In the case where 5945 * memory cannot be allocated, none of this information will be 5946 * saved. 5947 */ 5948 ill_save_ire(ill, ire); 5949 } 5950 if (ioctl_msg) 5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5952 if (ire_arg != NULL) { 5953 /* 5954 * Store the ire that was successfully added into where ire_arg 5955 * points to so that callers don't have to look it up 5956 * themselves (but they are responsible for ire_refrele()ing 5957 * the ire when they are finished with it). 5958 */ 5959 *ire_arg = ire; 5960 } else { 5961 ire_refrele(ire); /* Held in ire_add */ 5962 } 5963 if (ipif != NULL) 5964 ipif_refrele(ipif); 5965 return (0); 5966 } 5967 5968 /* 5969 * ip_rt_delete is called to delete an IPv4 route. 5970 * ill is passed in to associate it with the correct interface. 5971 */ 5972 /* ARGSUSED4 */ 5973 int 5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5976 ip_stack_t *ipst, zoneid_t zoneid) 5977 { 5978 ire_t *ire = NULL; 5979 ipif_t *ipif; 5980 uint_t type; 5981 uint_t match_flags = MATCH_IRE_TYPE; 5982 int err = 0; 5983 5984 ip1dbg(("ip_rt_delete:")); 5985 /* 5986 * If this is the case of RTF_HOST being set, then we set the netmask 5987 * to all ones. Otherwise, we use the netmask if one was supplied. 5988 */ 5989 if (flags & RTF_HOST) { 5990 mask = IP_HOST_MASK; 5991 match_flags |= MATCH_IRE_MASK; 5992 } else if (rtm_addrs & RTA_NETMASK) { 5993 match_flags |= MATCH_IRE_MASK; 5994 } 5995 5996 /* 5997 * Note that RTF_GATEWAY is never set on a delete, therefore 5998 * we check if the gateway address is one of our interfaces first, 5999 * and fall back on RTF_GATEWAY routes. 6000 * 6001 * This makes it possible to delete an original 6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6003 * However, we have RTF_KERNEL set on the ones created by ipif_up 6004 * and those can not be deleted here. 6005 * 6006 * We use MATCH_IRE_ILL if we know the interface. If the caller 6007 * specified an interface (from the RTA_IFP sockaddr) we use it, 6008 * otherwise we use the ill derived from the gateway address. 6009 * We can always match the gateway address since we record it 6010 * in ire_gateway_addr. 6011 * 6012 * For more detail on specifying routes by gateway address and by 6013 * interface index, see the comments in ip_rt_add(). 6014 */ 6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6016 if (ipif != NULL) { 6017 ill_t *ill_match; 6018 6019 if (ill != NULL) 6020 ill_match = ill; 6021 else 6022 ill_match = ipif->ipif_ill; 6023 6024 match_flags |= MATCH_IRE_ILL; 6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6028 match_flags, 0, ipst, NULL); 6029 } 6030 if (ire == NULL) { 6031 match_flags |= MATCH_IRE_GW; 6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6034 match_flags, 0, ipst, NULL); 6035 } 6036 /* Avoid deleting routes created by kernel from an ipif */ 6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6038 ire_refrele(ire); 6039 ire = NULL; 6040 } 6041 6042 /* Restore in case we didn't find a match */ 6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6044 } 6045 6046 if (ire == NULL) { 6047 /* 6048 * At this point, the gateway address is not one of our own 6049 * addresses or a matching interface route was not found. We 6050 * set the IRE type to lookup based on whether 6051 * this is a host route, a default route or just a prefix. 6052 * 6053 * If an ill was passed in, then the lookup is based on an 6054 * interface index so MATCH_IRE_ILL is added to match_flags. 6055 */ 6056 match_flags |= MATCH_IRE_GW; 6057 if (ill != NULL) 6058 match_flags |= MATCH_IRE_ILL; 6059 if (mask == IP_HOST_MASK) 6060 type = IRE_HOST; 6061 else if (mask == 0) 6062 type = IRE_DEFAULT; 6063 else 6064 type = IRE_PREFIX; 6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6067 } 6068 6069 if (ipif != NULL) { 6070 ipif_refrele(ipif); 6071 ipif = NULL; 6072 } 6073 6074 if (ire == NULL) 6075 return (ESRCH); 6076 6077 if (ire->ire_flags & RTF_MULTIRT) { 6078 /* 6079 * Invoke the CGTP (multirouting) filtering module 6080 * to remove the dst address from the filtering database. 6081 * Packets coming from that address will no longer be 6082 * filtered to remove duplicates. 6083 */ 6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6086 ipst->ips_netstack->netstack_stackid, 6087 ire->ire_addr, ire->ire_gateway_addr); 6088 } 6089 ip_cgtp_bcast_delete(ire, ipst); 6090 } 6091 6092 ill = ire->ire_ill; 6093 if (ill != NULL) 6094 ill_remove_saved_ire(ill, ire); 6095 if (ioctl_msg) 6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6097 ire_delete(ire); 6098 ire_refrele(ire); 6099 return (err); 6100 } 6101 6102 /* 6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6104 */ 6105 /* ARGSUSED */ 6106 int 6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6109 { 6110 ipaddr_t dst_addr; 6111 ipaddr_t gw_addr; 6112 ipaddr_t mask; 6113 int error = 0; 6114 mblk_t *mp1; 6115 struct rtentry *rt; 6116 ipif_t *ipif = NULL; 6117 ip_stack_t *ipst; 6118 6119 ASSERT(q->q_next == NULL); 6120 ipst = CONNQ_TO_IPST(q); 6121 6122 ip1dbg(("ip_siocaddrt:")); 6123 /* Existence of mp1 verified in ip_wput_nondata */ 6124 mp1 = mp->b_cont->b_cont; 6125 rt = (struct rtentry *)mp1->b_rptr; 6126 6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6129 6130 /* 6131 * If the RTF_HOST flag is on, this is a request to assign a gateway 6132 * to a particular host address. In this case, we set the netmask to 6133 * all ones for the particular destination address. Otherwise, 6134 * determine the netmask to be used based on dst_addr and the interfaces 6135 * in use. 6136 */ 6137 if (rt->rt_flags & RTF_HOST) { 6138 mask = IP_HOST_MASK; 6139 } else { 6140 /* 6141 * Note that ip_subnet_mask returns a zero mask in the case of 6142 * default (an all-zeroes address). 6143 */ 6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6145 } 6146 6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6148 B_TRUE, NULL, ipst, ALL_ZONES); 6149 if (ipif != NULL) 6150 ipif_refrele(ipif); 6151 return (error); 6152 } 6153 6154 /* 6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6156 */ 6157 /* ARGSUSED */ 6158 int 6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6161 { 6162 ipaddr_t dst_addr; 6163 ipaddr_t gw_addr; 6164 ipaddr_t mask; 6165 int error; 6166 mblk_t *mp1; 6167 struct rtentry *rt; 6168 ipif_t *ipif = NULL; 6169 ip_stack_t *ipst; 6170 6171 ASSERT(q->q_next == NULL); 6172 ipst = CONNQ_TO_IPST(q); 6173 6174 ip1dbg(("ip_siocdelrt:")); 6175 /* Existence of mp1 verified in ip_wput_nondata */ 6176 mp1 = mp->b_cont->b_cont; 6177 rt = (struct rtentry *)mp1->b_rptr; 6178 6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6181 6182 /* 6183 * If the RTF_HOST flag is on, this is a request to delete a gateway 6184 * to a particular host address. In this case, we set the netmask to 6185 * all ones for the particular destination address. Otherwise, 6186 * determine the netmask to be used based on dst_addr and the interfaces 6187 * in use. 6188 */ 6189 if (rt->rt_flags & RTF_HOST) { 6190 mask = IP_HOST_MASK; 6191 } else { 6192 /* 6193 * Note that ip_subnet_mask returns a zero mask in the case of 6194 * default (an all-zeroes address). 6195 */ 6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6197 } 6198 6199 error = ip_rt_delete(dst_addr, mask, gw_addr, 6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6201 ipst, ALL_ZONES); 6202 if (ipif != NULL) 6203 ipif_refrele(ipif); 6204 return (error); 6205 } 6206 6207 /* 6208 * Enqueue the mp onto the ipsq, chained by b_next. 6209 * b_prev stores the function to be executed later, and b_queue the queue 6210 * where this mp originated. 6211 */ 6212 void 6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6214 ill_t *pending_ill) 6215 { 6216 conn_t *connp; 6217 ipxop_t *ipx = ipsq->ipsq_xop; 6218 6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6221 ASSERT(func != NULL); 6222 6223 mp->b_queue = q; 6224 mp->b_prev = (void *)func; 6225 mp->b_next = NULL; 6226 6227 switch (type) { 6228 case CUR_OP: 6229 if (ipx->ipx_mptail != NULL) { 6230 ASSERT(ipx->ipx_mphead != NULL); 6231 ipx->ipx_mptail->b_next = mp; 6232 } else { 6233 ASSERT(ipx->ipx_mphead == NULL); 6234 ipx->ipx_mphead = mp; 6235 } 6236 ipx->ipx_mptail = mp; 6237 break; 6238 6239 case NEW_OP: 6240 if (ipsq->ipsq_xopq_mptail != NULL) { 6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6242 ipsq->ipsq_xopq_mptail->b_next = mp; 6243 } else { 6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6245 ipsq->ipsq_xopq_mphead = mp; 6246 } 6247 ipsq->ipsq_xopq_mptail = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 6251 case SWITCH_OP: 6252 ASSERT(ipsq->ipsq_swxop != NULL); 6253 /* only one switch operation is currently allowed */ 6254 ASSERT(ipsq->ipsq_switch_mp == NULL); 6255 ipsq->ipsq_switch_mp = mp; 6256 ipx->ipx_ipsq_queued = B_TRUE; 6257 break; 6258 default: 6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6260 } 6261 6262 if (CONN_Q(q) && pending_ill != NULL) { 6263 connp = Q_TO_CONN(q); 6264 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6265 connp->conn_oper_pending_ill = pending_ill; 6266 } 6267 } 6268 6269 /* 6270 * Dequeue the next message that requested exclusive access to this IPSQ's 6271 * xop. Specifically: 6272 * 6273 * 1. If we're still processing the current operation on `ipsq', then 6274 * dequeue the next message for the operation (from ipx_mphead), or 6275 * return NULL if there are no queued messages for the operation. 6276 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6277 * 6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6279 * not set) see if the ipsq has requested an xop switch. If so, switch 6280 * `ipsq' to a different xop. Xop switches only happen when joining or 6281 * leaving IPMP groups and require a careful dance -- see the comments 6282 * in-line below for details. If we're leaving a group xop or if we're 6283 * joining a group xop and become writer on it, then we proceed to (3). 6284 * Otherwise, we return NULL and exit the xop. 6285 * 6286 * 3. For each IPSQ in the xop, return any switch operation stored on 6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6292 * each phyint in the group, including the IPMP meta-interface phyint. 6293 */ 6294 static mblk_t * 6295 ipsq_dq(ipsq_t *ipsq) 6296 { 6297 ill_t *illv4, *illv6; 6298 mblk_t *mp; 6299 ipsq_t *xopipsq; 6300 ipsq_t *leftipsq = NULL; 6301 ipxop_t *ipx; 6302 phyint_t *phyi = ipsq->ipsq_phyint; 6303 ip_stack_t *ipst = ipsq->ipsq_ipst; 6304 boolean_t emptied = B_FALSE; 6305 6306 /* 6307 * Grab all the locks we need in the defined order (ill_g_lock -> 6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6309 */ 6310 rw_enter(&ipst->ips_ill_g_lock, 6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6312 mutex_enter(&ipsq->ipsq_lock); 6313 ipx = ipsq->ipsq_xop; 6314 mutex_enter(&ipx->ipx_lock); 6315 6316 /* 6317 * Dequeue the next message associated with the current exclusive 6318 * operation, if any. 6319 */ 6320 if ((mp = ipx->ipx_mphead) != NULL) { 6321 ipx->ipx_mphead = mp->b_next; 6322 if (ipx->ipx_mphead == NULL) 6323 ipx->ipx_mptail = NULL; 6324 mp->b_next = (void *)ipsq; 6325 goto out; 6326 } 6327 6328 if (ipx->ipx_current_ipif != NULL) 6329 goto empty; 6330 6331 if (ipsq->ipsq_swxop != NULL) { 6332 /* 6333 * The exclusive operation that is now being completed has 6334 * requested a switch to a different xop. This happens 6335 * when an interface joins or leaves an IPMP group. Joins 6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6338 * (phyint_free()), or interface plumb for an ill type 6339 * not in the IPMP group (ip_rput_dlpi_writer()). 6340 * 6341 * Xop switches are not allowed on the IPMP meta-interface. 6342 */ 6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6346 6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6348 /* 6349 * We're switching back to our own xop, so we have two 6350 * xop's to drain/exit: our own, and the group xop 6351 * that we are leaving. 6352 * 6353 * First, pull ourselves out of the group ipsq list. 6354 * This is safe since we're writer on ill_g_lock. 6355 */ 6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6357 6358 xopipsq = ipx->ipx_ipsq; 6359 while (xopipsq->ipsq_next != ipsq) 6360 xopipsq = xopipsq->ipsq_next; 6361 6362 xopipsq->ipsq_next = ipsq->ipsq_next; 6363 ipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6365 ipsq->ipsq_swxop = NULL; 6366 6367 /* 6368 * Second, prepare to exit the group xop. The actual 6369 * ipsq_exit() is done at the end of this function 6370 * since we cannot hold any locks across ipsq_exit(). 6371 * Note that although we drop the group's ipx_lock, no 6372 * threads can proceed since we're still ipx_writer. 6373 */ 6374 leftipsq = xopipsq; 6375 mutex_exit(&ipx->ipx_lock); 6376 6377 /* 6378 * Third, set ipx to point to our own xop (which was 6379 * inactive and therefore can be entered). 6380 */ 6381 ipx = ipsq->ipsq_xop; 6382 mutex_enter(&ipx->ipx_lock); 6383 ASSERT(ipx->ipx_writer == NULL); 6384 ASSERT(ipx->ipx_current_ipif == NULL); 6385 } else { 6386 /* 6387 * We're switching from our own xop to a group xop. 6388 * The requestor of the switch must ensure that the 6389 * group xop cannot go away (e.g. by ensuring the 6390 * phyint associated with the xop cannot go away). 6391 * 6392 * If we can become writer on our new xop, then we'll 6393 * do the drain. Otherwise, the current writer of our 6394 * new xop will do the drain when it exits. 6395 * 6396 * First, splice ourselves into the group IPSQ list. 6397 * This is safe since we're writer on ill_g_lock. 6398 */ 6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6400 6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6403 xopipsq = xopipsq->ipsq_next; 6404 6405 xopipsq->ipsq_next = ipsq; 6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6407 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6408 ipsq->ipsq_swxop = NULL; 6409 6410 /* 6411 * Second, exit our own xop, since it's now unused. 6412 * This is safe since we've got the only reference. 6413 */ 6414 ASSERT(ipx->ipx_writer == curthread); 6415 ipx->ipx_writer = NULL; 6416 VERIFY(--ipx->ipx_reentry_cnt == 0); 6417 ipx->ipx_ipsq_queued = B_FALSE; 6418 mutex_exit(&ipx->ipx_lock); 6419 6420 /* 6421 * Third, set ipx to point to our new xop, and check 6422 * if we can become writer on it. If we cannot, then 6423 * the current writer will drain the IPSQ group when 6424 * it exits. Our ipsq_xop is guaranteed to be stable 6425 * because we're still holding ipsq_lock. 6426 */ 6427 ipx = ipsq->ipsq_xop; 6428 mutex_enter(&ipx->ipx_lock); 6429 if (ipx->ipx_writer != NULL || 6430 ipx->ipx_current_ipif != NULL) { 6431 goto out; 6432 } 6433 } 6434 6435 /* 6436 * Fourth, become writer on our new ipx before we continue 6437 * with the drain. Note that we never dropped ipsq_lock 6438 * above, so no other thread could've raced with us to 6439 * become writer first. Also, we're holding ipx_lock, so 6440 * no other thread can examine the ipx right now. 6441 */ 6442 ASSERT(ipx->ipx_current_ipif == NULL); 6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6444 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6445 ipx->ipx_writer = curthread; 6446 ipx->ipx_forced = B_FALSE; 6447 #ifdef DEBUG 6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6449 #endif 6450 } 6451 6452 xopipsq = ipsq; 6453 do { 6454 /* 6455 * So that other operations operate on a consistent and 6456 * complete phyint, a switch message on an IPSQ must be 6457 * handled prior to any other operations on that IPSQ. 6458 */ 6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6460 xopipsq->ipsq_switch_mp = NULL; 6461 ASSERT(mp->b_next == NULL); 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6467 xopipsq->ipsq_xopq_mphead = mp->b_next; 6468 if (xopipsq->ipsq_xopq_mphead == NULL) 6469 xopipsq->ipsq_xopq_mptail = NULL; 6470 mp->b_next = (void *)xopipsq; 6471 goto out; 6472 } 6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6474 empty: 6475 /* 6476 * There are no messages. Further, we are holding ipx_lock, hence no 6477 * new messages can end up on any IPSQ in the xop. 6478 */ 6479 ipx->ipx_writer = NULL; 6480 ipx->ipx_forced = B_FALSE; 6481 VERIFY(--ipx->ipx_reentry_cnt == 0); 6482 ipx->ipx_ipsq_queued = B_FALSE; 6483 emptied = B_TRUE; 6484 #ifdef DEBUG 6485 ipx->ipx_depth = 0; 6486 #endif 6487 out: 6488 mutex_exit(&ipx->ipx_lock); 6489 mutex_exit(&ipsq->ipsq_lock); 6490 6491 /* 6492 * If we completely emptied the xop, then wake up any threads waiting 6493 * to enter any of the IPSQ's associated with it. 6494 */ 6495 if (emptied) { 6496 xopipsq = ipsq; 6497 do { 6498 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6499 continue; 6500 6501 illv4 = phyi->phyint_illv4; 6502 illv6 = phyi->phyint_illv6; 6503 6504 GRAB_ILL_LOCKS(illv4, illv6); 6505 if (illv4 != NULL) 6506 cv_broadcast(&illv4->ill_cv); 6507 if (illv6 != NULL) 6508 cv_broadcast(&illv6->ill_cv); 6509 RELEASE_ILL_LOCKS(illv4, illv6); 6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6511 } 6512 rw_exit(&ipst->ips_ill_g_lock); 6513 6514 /* 6515 * Now that all locks are dropped, exit the IPSQ we left. 6516 */ 6517 if (leftipsq != NULL) 6518 ipsq_exit(leftipsq); 6519 6520 return (mp); 6521 } 6522 6523 /* 6524 * Return completion status of previously initiated DLPI operations on 6525 * ills in the purview of an ipsq. 6526 */ 6527 static boolean_t 6528 ipsq_dlpi_done(ipsq_t *ipsq) 6529 { 6530 ipsq_t *ipsq_start; 6531 phyint_t *phyi; 6532 ill_t *ill; 6533 6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6535 ipsq_start = ipsq; 6536 6537 do { 6538 /* 6539 * The only current users of this function are ipsq_try_enter 6540 * and ipsq_enter which have made sure that ipsq_writer is 6541 * NULL before we reach here. ill_dlpi_pending is modified 6542 * only by an ipsq writer 6543 */ 6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6545 phyi = ipsq->ipsq_phyint; 6546 /* 6547 * phyi could be NULL if a phyint that is part of an 6548 * IPMP group is being unplumbed. A more detailed 6549 * comment is in ipmp_grp_update_kstats() 6550 */ 6551 if (phyi != NULL) { 6552 ill = phyi->phyint_illv4; 6553 if (ill != NULL && 6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6555 ill->ill_arl_dlpi_pending)) 6556 return (B_FALSE); 6557 6558 ill = phyi->phyint_illv6; 6559 if (ill != NULL && 6560 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6561 return (B_FALSE); 6562 } 6563 6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6565 6566 return (B_TRUE); 6567 } 6568 6569 /* 6570 * Enter the ipsq corresponding to ill, by waiting synchronously till 6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6572 * will have to drain completely before ipsq_enter returns success. 6573 * ipx_current_ipif will be set if some exclusive op is in progress, 6574 * and the ipsq_exit logic will start the next enqueued op after 6575 * completion of the current op. If 'force' is used, we don't wait 6576 * for the enqueued ops. This is needed when a conn_close wants to 6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6578 * of an ill can also use this option. But we dont' use it currently. 6579 */ 6580 #define ENTER_SQ_WAIT_TICKS 100 6581 boolean_t 6582 ipsq_enter(ill_t *ill, boolean_t force, int type) 6583 { 6584 ipsq_t *ipsq; 6585 ipxop_t *ipx; 6586 boolean_t waited_enough = B_FALSE; 6587 ip_stack_t *ipst = ill->ill_ipst; 6588 6589 /* 6590 * Note that the relationship between ill and ipsq is fixed as long as 6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6592 * relationship between the IPSQ and xop cannot change. However, 6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6595 * waking up all ills in the xop when it becomes available. 6596 */ 6597 for (;;) { 6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6599 mutex_enter(&ill->ill_lock); 6600 if (ill->ill_state_flags & ILL_CONDEMNED) { 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 return (B_FALSE); 6604 } 6605 6606 ipsq = ill->ill_phyint->phyint_ipsq; 6607 mutex_enter(&ipsq->ipsq_lock); 6608 ipx = ipsq->ipsq_xop; 6609 mutex_enter(&ipx->ipx_lock); 6610 6611 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6613 waited_enough)) 6614 break; 6615 6616 rw_exit(&ipst->ips_ill_g_lock); 6617 6618 if (!force || ipx->ipx_writer != NULL) { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 cv_wait(&ill->ill_cv, &ill->ill_lock); 6622 } else { 6623 mutex_exit(&ipx->ipx_lock); 6624 mutex_exit(&ipsq->ipsq_lock); 6625 (void) cv_reltimedwait(&ill->ill_cv, 6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6627 waited_enough = B_TRUE; 6628 } 6629 mutex_exit(&ill->ill_lock); 6630 } 6631 6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6633 ASSERT(ipx->ipx_reentry_cnt == 0); 6634 ipx->ipx_writer = curthread; 6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6636 ipx->ipx_reentry_cnt++; 6637 #ifdef DEBUG 6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6639 #endif 6640 mutex_exit(&ipx->ipx_lock); 6641 mutex_exit(&ipsq->ipsq_lock); 6642 mutex_exit(&ill->ill_lock); 6643 rw_exit(&ipst->ips_ill_g_lock); 6644 6645 return (B_TRUE); 6646 } 6647 6648 /* 6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6650 * across the call to the core interface ipsq_try_enter() and hence calls this 6651 * function directly. This is explained more fully in ipif_set_values(). 6652 * In order to support the above constraint, ipsq_try_enter is implemented as 6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6654 */ 6655 static ipsq_t * 6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6657 int type, boolean_t reentry_ok) 6658 { 6659 ipsq_t *ipsq; 6660 ipxop_t *ipx; 6661 ip_stack_t *ipst = ill->ill_ipst; 6662 6663 /* 6664 * lock ordering: 6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6666 * 6667 * ipx of an ipsq can't change when ipsq_lock is held. 6668 */ 6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6670 GRAB_CONN_LOCK(q); 6671 mutex_enter(&ill->ill_lock); 6672 ipsq = ill->ill_phyint->phyint_ipsq; 6673 mutex_enter(&ipsq->ipsq_lock); 6674 ipx = ipsq->ipsq_xop; 6675 mutex_enter(&ipx->ipx_lock); 6676 6677 /* 6678 * 1. Enter the ipsq if we are already writer and reentry is ok. 6679 * (Note: If the caller does not specify reentry_ok then neither 6680 * 'func' nor any of its callees must ever attempt to enter the ipsq 6681 * again. Otherwise it can lead to an infinite loop 6682 * 2. Enter the ipsq if there is no current writer and this attempted 6683 * entry is part of the current operation 6684 * 3. Enter the ipsq if there is no current writer and this is a new 6685 * operation and the operation queue is empty and there is no 6686 * operation currently in progress and if all previously initiated 6687 * DLPI operations have completed. 6688 */ 6689 if ((ipx->ipx_writer == curthread && reentry_ok) || 6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6692 ipsq_dlpi_done(ipsq))))) { 6693 /* Success. */ 6694 ipx->ipx_reentry_cnt++; 6695 ipx->ipx_writer = curthread; 6696 ipx->ipx_forced = B_FALSE; 6697 mutex_exit(&ipx->ipx_lock); 6698 mutex_exit(&ipsq->ipsq_lock); 6699 mutex_exit(&ill->ill_lock); 6700 RELEASE_CONN_LOCK(q); 6701 #ifdef DEBUG 6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6703 #endif 6704 return (ipsq); 6705 } 6706 6707 if (func != NULL) 6708 ipsq_enq(ipsq, q, mp, func, type, ill); 6709 6710 mutex_exit(&ipx->ipx_lock); 6711 mutex_exit(&ipsq->ipsq_lock); 6712 mutex_exit(&ill->ill_lock); 6713 RELEASE_CONN_LOCK(q); 6714 return (NULL); 6715 } 6716 6717 /* 6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6719 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6720 * There is one ipsq per phyint. The ipsq 6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6725 * up the interface) and are enqueued in ipx_mphead. 6726 * 6727 * If a thread does not want to reenter the ipsq when it is already writer, 6728 * it must make sure that the specified reentry point to be called later 6729 * when the ipsq is empty, nor any code path starting from the specified reentry 6730 * point must never ever try to enter the ipsq again. Otherwise it can lead 6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6732 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6736 * ioctl if the current ioctl has completed. If the current ioctl is still 6737 * in progress it simply returns. The current ioctl could be waiting for 6738 * a response from another module (the driver or could be waiting for 6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6743 * all associated DLPI operations have completed. 6744 */ 6745 6746 /* 6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6753 */ 6754 ipsq_t * 6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6756 ipsq_func_t func, int type, boolean_t reentry_ok) 6757 { 6758 ip_stack_t *ipst; 6759 ipsq_t *ipsq; 6760 6761 /* Only 1 of ipif or ill can be specified */ 6762 ASSERT((ipif != NULL) ^ (ill != NULL)); 6763 6764 if (ipif != NULL) 6765 ill = ipif->ipif_ill; 6766 ipst = ill->ill_ipst; 6767 6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6770 rw_exit(&ipst->ips_ill_g_lock); 6771 6772 return (ipsq); 6773 } 6774 6775 /* 6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6778 * cannot be entered, the mp is queued for completion. 6779 */ 6780 void 6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6782 boolean_t reentry_ok) 6783 { 6784 ipsq_t *ipsq; 6785 6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6787 6788 /* 6789 * Drop the caller's refhold on the ill. This is safe since we either 6790 * entered the IPSQ (and thus are exclusive), or failed to enter the 6791 * IPSQ, in which case we return without accessing ill anymore. This 6792 * is needed because func needs to see the correct refcount. 6793 * e.g. removeif can work only then. 6794 */ 6795 ill_refrele(ill); 6796 if (ipsq != NULL) { 6797 (*func)(ipsq, q, mp, NULL); 6798 ipsq_exit(ipsq); 6799 } 6800 } 6801 6802 /* 6803 * Exit the specified IPSQ. If this is the final exit on it then drain it 6804 * prior to exiting. Caller must be writer on the specified IPSQ. 6805 */ 6806 void 6807 ipsq_exit(ipsq_t *ipsq) 6808 { 6809 mblk_t *mp; 6810 ipsq_t *mp_ipsq; 6811 queue_t *q; 6812 phyint_t *phyi; 6813 ipsq_func_t func; 6814 6815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6816 6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6819 ipsq->ipsq_xop->ipx_reentry_cnt--; 6820 return; 6821 } 6822 6823 for (;;) { 6824 phyi = ipsq->ipsq_phyint; 6825 mp = ipsq_dq(ipsq); 6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6827 6828 /* 6829 * If we've changed to a new IPSQ, and the phyint associated 6830 * with the old one has gone away, free the old IPSQ. Note 6831 * that this cannot happen while the IPSQ is in a group. 6832 */ 6833 if (mp_ipsq != ipsq && phyi == NULL) { 6834 ASSERT(ipsq->ipsq_next == ipsq); 6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6836 ipsq_delete(ipsq); 6837 } 6838 6839 if (mp == NULL) 6840 break; 6841 6842 q = mp->b_queue; 6843 func = (ipsq_func_t)mp->b_prev; 6844 ipsq = mp_ipsq; 6845 mp->b_next = mp->b_prev = NULL; 6846 mp->b_queue = NULL; 6847 6848 /* 6849 * If 'q' is an conn queue, it is valid, since we did a 6850 * a refhold on the conn at the start of the ioctl. 6851 * If 'q' is an ill queue, it is valid, since close of an 6852 * ill will clean up its IPSQ. 6853 */ 6854 (*func)(ipsq, q, mp, NULL); 6855 } 6856 } 6857 6858 /* 6859 * Used to start any igmp or mld timers that could not be started 6860 * while holding ill_mcast_lock. The timers can't be started while holding 6861 * the lock, since mld/igmp_start_timers may need to call untimeout() 6862 * which can't be done while holding the lock which the timeout handler 6863 * acquires. Otherwise 6864 * there could be a deadlock since the timeout handlers 6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6866 * ill_mcast_lock. 6867 */ 6868 void 6869 ill_mcast_timer_start(ip_stack_t *ipst) 6870 { 6871 int next; 6872 6873 mutex_enter(&ipst->ips_igmp_timer_lock); 6874 next = ipst->ips_igmp_deferred_next; 6875 ipst->ips_igmp_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_igmp_timer_lock); 6877 6878 if (next != INFINITY) 6879 igmp_start_timers(next, ipst); 6880 6881 mutex_enter(&ipst->ips_mld_timer_lock); 6882 next = ipst->ips_mld_deferred_next; 6883 ipst->ips_mld_deferred_next = INFINITY; 6884 mutex_exit(&ipst->ips_mld_timer_lock); 6885 6886 if (next != INFINITY) 6887 mld_start_timers(next, ipst); 6888 } 6889 6890 /* 6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6892 * and `ioccmd'. 6893 */ 6894 void 6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6896 { 6897 ill_t *ill = ipif->ipif_ill; 6898 ipxop_t *ipx = ipsq->ipsq_xop; 6899 6900 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6901 ASSERT(ipx->ipx_current_ipif == NULL); 6902 ASSERT(ipx->ipx_current_ioctl == 0); 6903 6904 ipx->ipx_current_done = B_FALSE; 6905 ipx->ipx_current_ioctl = ioccmd; 6906 mutex_enter(&ipx->ipx_lock); 6907 ipx->ipx_current_ipif = ipif; 6908 mutex_exit(&ipx->ipx_lock); 6909 6910 /* 6911 * Set IPIF_CHANGING on one or more ipifs associated with the 6912 * current exclusive operation. IPIF_CHANGING prevents any new 6913 * references to the ipif (so that the references will eventually 6914 * drop to zero) and also prevents any "get" operations (e.g., 6915 * SIOCGLIFFLAGS) from being able to access the ipif until the 6916 * operation has completed and the ipif is again in a stable state. 6917 * 6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6920 * on the ill are marked with IPIF_CHANGING since it's unclear which 6921 * ipifs will be affected. 6922 * 6923 * Note that SIOCLIFREMOVEIF is a special case as it sets 6924 * IPIF_CONDEMNED internally after identifying the right ipif to 6925 * operate on. 6926 */ 6927 switch (ioccmd) { 6928 case SIOCLIFREMOVEIF: 6929 break; 6930 case 0: 6931 mutex_enter(&ill->ill_lock); 6932 ipif = ipif->ipif_ill->ill_ipif; 6933 for (; ipif != NULL; ipif = ipif->ipif_next) 6934 ipif->ipif_state_flags |= IPIF_CHANGING; 6935 mutex_exit(&ill->ill_lock); 6936 break; 6937 default: 6938 mutex_enter(&ill->ill_lock); 6939 ipif->ipif_state_flags |= IPIF_CHANGING; 6940 mutex_exit(&ill->ill_lock); 6941 } 6942 } 6943 6944 /* 6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6946 * the next exclusive operation to begin once we ipsq_exit(). However, if 6947 * pending DLPI operations remain, then we will wait for the queue to drain 6948 * before allowing the next exclusive operation to begin. This ensures that 6949 * DLPI operations from one exclusive operation are never improperly processed 6950 * as part of a subsequent exclusive operation. 6951 */ 6952 void 6953 ipsq_current_finish(ipsq_t *ipsq) 6954 { 6955 ipxop_t *ipx = ipsq->ipsq_xop; 6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6957 ipif_t *ipif = ipx->ipx_current_ipif; 6958 6959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6960 6961 /* 6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6963 * (but in that case, IPIF_CHANGING will already be clear and no 6964 * pending DLPI messages can remain). 6965 */ 6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6967 ill_t *ill = ipif->ipif_ill; 6968 6969 mutex_enter(&ill->ill_lock); 6970 dlpi_pending = ill->ill_dlpi_pending; 6971 if (ipx->ipx_current_ioctl == 0) { 6972 ipif = ill->ill_ipif; 6973 for (; ipif != NULL; ipif = ipif->ipif_next) 6974 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6975 } else { 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } 6978 mutex_exit(&ill->ill_lock); 6979 } 6980 6981 ASSERT(!ipx->ipx_current_done); 6982 ipx->ipx_current_done = B_TRUE; 6983 ipx->ipx_current_ioctl = 0; 6984 if (dlpi_pending == DL_PRIM_INVAL) { 6985 mutex_enter(&ipx->ipx_lock); 6986 ipx->ipx_current_ipif = NULL; 6987 mutex_exit(&ipx->ipx_lock); 6988 } 6989 } 6990 6991 /* 6992 * The ill is closing. Flush all messages on the ipsq that originated 6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6994 * for this ill since ipsq_enter could not have entered until then. 6995 * New messages can't be queued since the CONDEMNED flag is set. 6996 */ 6997 static void 6998 ipsq_flush(ill_t *ill) 6999 { 7000 queue_t *q; 7001 mblk_t *prev; 7002 mblk_t *mp; 7003 mblk_t *mp_next; 7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7005 7006 ASSERT(IAM_WRITER_ILL(ill)); 7007 7008 /* 7009 * Flush any messages sent up by the driver. 7010 */ 7011 mutex_enter(&ipx->ipx_lock); 7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7013 mp_next = mp->b_next; 7014 q = mp->b_queue; 7015 if (q == ill->ill_rq || q == ill->ill_wq) { 7016 /* dequeue mp */ 7017 if (prev == NULL) 7018 ipx->ipx_mphead = mp->b_next; 7019 else 7020 prev->b_next = mp->b_next; 7021 if (ipx->ipx_mptail == mp) { 7022 ASSERT(mp_next == NULL); 7023 ipx->ipx_mptail = prev; 7024 } 7025 inet_freemsg(mp); 7026 } else { 7027 prev = mp; 7028 } 7029 } 7030 mutex_exit(&ipx->ipx_lock); 7031 (void) ipsq_pending_mp_cleanup(ill, NULL); 7032 ipsq_xopq_mp_cleanup(ill, NULL); 7033 } 7034 7035 /* 7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7037 * and return the associated ipif. 7038 * Return value: 7039 * Non zero: An error has occurred. ci may not be filled out. 7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7041 * a held ipif in ci.ci_ipif. 7042 */ 7043 int 7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7045 cmd_info_t *ci) 7046 { 7047 char *name; 7048 struct ifreq *ifr; 7049 struct lifreq *lifr; 7050 ipif_t *ipif = NULL; 7051 ill_t *ill; 7052 conn_t *connp; 7053 boolean_t isv6; 7054 int err; 7055 mblk_t *mp1; 7056 zoneid_t zoneid; 7057 ip_stack_t *ipst; 7058 7059 if (q->q_next != NULL) { 7060 ill = (ill_t *)q->q_ptr; 7061 isv6 = ill->ill_isv6; 7062 connp = NULL; 7063 zoneid = ALL_ZONES; 7064 ipst = ill->ill_ipst; 7065 } else { 7066 ill = NULL; 7067 connp = Q_TO_CONN(q); 7068 isv6 = (connp->conn_family == AF_INET6); 7069 zoneid = connp->conn_zoneid; 7070 if (zoneid == GLOBAL_ZONEID) { 7071 /* global zone can access ipifs in all zones */ 7072 zoneid = ALL_ZONES; 7073 } 7074 ipst = connp->conn_netstack->netstack_ip; 7075 } 7076 7077 /* Has been checked in ip_wput_nondata */ 7078 mp1 = mp->b_cont->b_cont; 7079 7080 if (ipip->ipi_cmd_type == IF_CMD) { 7081 /* This a old style SIOC[GS]IF* command */ 7082 ifr = (struct ifreq *)mp1->b_rptr; 7083 /* 7084 * Null terminate the string to protect against buffer 7085 * overrun. String was generated by user code and may not 7086 * be trusted. 7087 */ 7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7089 name = ifr->ifr_name; 7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7091 ci->ci_sin6 = NULL; 7092 ci->ci_lifr = (struct lifreq *)ifr; 7093 } else { 7094 /* This a new style SIOC[GS]LIF* command */ 7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7096 lifr = (struct lifreq *)mp1->b_rptr; 7097 /* 7098 * Null terminate the string to protect against buffer 7099 * overrun. String was generated by user code and may not 7100 * be trusted. 7101 */ 7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7103 name = lifr->lifr_name; 7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7106 ci->ci_lifr = lifr; 7107 } 7108 7109 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7110 /* 7111 * The ioctl will be failed if the ioctl comes down 7112 * an conn stream 7113 */ 7114 if (ill == NULL) { 7115 /* 7116 * Not an ill queue, return EINVAL same as the 7117 * old error code. 7118 */ 7119 return (ENXIO); 7120 } 7121 ipif = ill->ill_ipif; 7122 ipif_refhold(ipif); 7123 } else { 7124 /* 7125 * Ensure that ioctls don't see any internal state changes 7126 * caused by set ioctls by deferring them if IPIF_CHANGING is 7127 * set. 7128 */ 7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7131 if (ipif == NULL) { 7132 if (err == EINPROGRESS) 7133 return (err); 7134 err = 0; /* Ensure we don't use it below */ 7135 } 7136 } 7137 7138 /* 7139 * Old style [GS]IFCMD does not admit IPv6 ipif 7140 */ 7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7142 ipif_refrele(ipif); 7143 return (ENXIO); 7144 } 7145 7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7147 name[0] == '\0') { 7148 /* 7149 * Handle a or a SIOC?IF* with a null name 7150 * during plumb (on the ill queue before the I_PLINK). 7151 */ 7152 ipif = ill->ill_ipif; 7153 ipif_refhold(ipif); 7154 } 7155 7156 if (ipif == NULL) 7157 return (ENXIO); 7158 7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7161 7162 ci->ci_ipif = ipif; 7163 return (0); 7164 } 7165 7166 /* 7167 * Return the total number of ipifs. 7168 */ 7169 static uint_t 7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7171 { 7172 uint_t numifs = 0; 7173 ill_t *ill; 7174 ill_walk_context_t ctx; 7175 ipif_t *ipif; 7176 7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7178 ill = ILL_START_WALK_V4(&ctx, ipst); 7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7180 if (IS_UNDER_IPMP(ill)) 7181 continue; 7182 for (ipif = ill->ill_ipif; ipif != NULL; 7183 ipif = ipif->ipif_next) { 7184 if (ipif->ipif_zoneid == zoneid || 7185 ipif->ipif_zoneid == ALL_ZONES) 7186 numifs++; 7187 } 7188 } 7189 rw_exit(&ipst->ips_ill_g_lock); 7190 return (numifs); 7191 } 7192 7193 /* 7194 * Return the total number of ipifs. 7195 */ 7196 static uint_t 7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7198 { 7199 uint_t numifs = 0; 7200 ill_t *ill; 7201 ipif_t *ipif; 7202 ill_walk_context_t ctx; 7203 7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7205 7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7207 if (family == AF_INET) 7208 ill = ILL_START_WALK_V4(&ctx, ipst); 7209 else if (family == AF_INET6) 7210 ill = ILL_START_WALK_V6(&ctx, ipst); 7211 else 7212 ill = ILL_START_WALK_ALL(&ctx, ipst); 7213 7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7216 continue; 7217 7218 for (ipif = ill->ill_ipif; ipif != NULL; 7219 ipif = ipif->ipif_next) { 7220 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7221 !(lifn_flags & LIFC_NOXMIT)) 7222 continue; 7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7224 !(lifn_flags & LIFC_TEMPORARY)) 7225 continue; 7226 if (((ipif->ipif_flags & 7227 (IPIF_NOXMIT|IPIF_NOLOCAL| 7228 IPIF_DEPRECATED)) || 7229 IS_LOOPBACK(ill) || 7230 !(ipif->ipif_flags & IPIF_UP)) && 7231 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7232 continue; 7233 7234 if (zoneid != ipif->ipif_zoneid && 7235 ipif->ipif_zoneid != ALL_ZONES && 7236 (zoneid != GLOBAL_ZONEID || 7237 !(lifn_flags & LIFC_ALLZONES))) 7238 continue; 7239 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 uint_t 7248 ip_get_lifsrcofnum(ill_t *ill) 7249 { 7250 uint_t numifs = 0; 7251 ill_t *ill_head = ill; 7252 ip_stack_t *ipst = ill->ill_ipst; 7253 7254 /* 7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7256 * other thread may be trying to relink the ILLs in this usesrc group 7257 * and adjusting the ill_usesrc_grp_next pointers 7258 */ 7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7260 if ((ill->ill_usesrc_ifindex == 0) && 7261 (ill->ill_usesrc_grp_next != NULL)) { 7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7263 ill = ill->ill_usesrc_grp_next) 7264 numifs++; 7265 } 7266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7267 7268 return (numifs); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 int *nump; 7278 conn_t *connp = Q_TO_CONN(q); 7279 7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7281 7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7283 nump = (int *)mp->b_cont->b_cont->b_rptr; 7284 7285 *nump = ip_get_numifs(connp->conn_zoneid, 7286 connp->conn_netstack->netstack_ip); 7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7288 return (0); 7289 } 7290 7291 /* Null values are passed in for ipif, sin, and ifreq */ 7292 /* ARGSUSED */ 7293 int 7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7296 { 7297 struct lifnum *lifn; 7298 mblk_t *mp1; 7299 conn_t *connp = Q_TO_CONN(q); 7300 7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7302 7303 /* Existence checked in ip_wput_nondata */ 7304 mp1 = mp->b_cont->b_cont; 7305 7306 lifn = (struct lifnum *)mp1->b_rptr; 7307 switch (lifn->lifn_family) { 7308 case AF_UNSPEC: 7309 case AF_INET: 7310 case AF_INET6: 7311 break; 7312 default: 7313 return (EAFNOSUPPORT); 7314 } 7315 7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7319 return (0); 7320 } 7321 7322 /* ARGSUSED */ 7323 int 7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7326 { 7327 STRUCT_HANDLE(ifconf, ifc); 7328 mblk_t *mp1; 7329 struct iocblk *iocp; 7330 struct ifreq *ifr; 7331 ill_walk_context_t ctx; 7332 ill_t *ill; 7333 ipif_t *ipif; 7334 struct sockaddr_in *sin; 7335 int32_t ifclen; 7336 zoneid_t zoneid; 7337 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7338 7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7340 7341 ip1dbg(("ip_sioctl_get_ifconf")); 7342 /* Existence verified in ip_wput_nondata */ 7343 mp1 = mp->b_cont->b_cont; 7344 iocp = (struct iocblk *)mp->b_rptr; 7345 zoneid = Q_TO_CONN(q)->conn_zoneid; 7346 7347 /* 7348 * The original SIOCGIFCONF passed in a struct ifconf which specified 7349 * the user buffer address and length into which the list of struct 7350 * ifreqs was to be copied. Since AT&T Streams does not seem to 7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7352 * the SIOCGIFCONF operation was redefined to simply provide 7353 * a large output buffer into which we are supposed to jam the ifreq 7354 * array. The same ioctl command code was used, despite the fact that 7355 * both the applications and the kernel code had to change, thus making 7356 * it impossible to support both interfaces. 7357 * 7358 * For reasons not good enough to try to explain, the following 7359 * algorithm is used for deciding what to do with one of these: 7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7361 * form with the output buffer coming down as the continuation message. 7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7363 * and we have to copy in the ifconf structure to find out how big the 7364 * output buffer is and where to copy out to. Sure no problem... 7365 * 7366 */ 7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7369 int numifs = 0; 7370 size_t ifc_bufsize; 7371 7372 /* 7373 * Must be (better be!) continuation of a TRANSPARENT 7374 * IOCTL. We just copied in the ifconf structure. 7375 */ 7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7377 (struct ifconf *)mp1->b_rptr); 7378 7379 /* 7380 * Allocate a buffer to hold requested information. 7381 * 7382 * If ifc_len is larger than what is needed, we only 7383 * allocate what we will use. 7384 * 7385 * If ifc_len is smaller than what is needed, return 7386 * EINVAL. 7387 * 7388 * XXX: the ill_t structure can hava 2 counters, for 7389 * v4 and v6 (not just ill_ipif_up_count) to store the 7390 * number of interfaces for a device, so we don't need 7391 * to count them here... 7392 */ 7393 numifs = ip_get_numifs(zoneid, ipst); 7394 7395 ifclen = STRUCT_FGET(ifc, ifc_len); 7396 ifc_bufsize = numifs * sizeof (struct ifreq); 7397 if (ifc_bufsize > ifclen) { 7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7399 /* old behaviour */ 7400 return (EINVAL); 7401 } else { 7402 ifc_bufsize = ifclen; 7403 } 7404 } 7405 7406 mp1 = mi_copyout_alloc(q, mp, 7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7408 if (mp1 == NULL) 7409 return (ENOMEM); 7410 7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7412 } 7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7414 /* 7415 * the SIOCGIFCONF ioctl only knows about 7416 * IPv4 addresses, so don't try to tell 7417 * it about interfaces with IPv6-only 7418 * addresses. (Last parm 'isv6' is B_FALSE) 7419 */ 7420 7421 ifr = (struct ifreq *)mp1->b_rptr; 7422 7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7424 ill = ILL_START_WALK_V4(&ctx, ipst); 7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7426 if (IS_UNDER_IPMP(ill)) 7427 continue; 7428 for (ipif = ill->ill_ipif; ipif != NULL; 7429 ipif = ipif->ipif_next) { 7430 if (zoneid != ipif->ipif_zoneid && 7431 ipif->ipif_zoneid != ALL_ZONES) 7432 continue; 7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7435 /* old behaviour */ 7436 rw_exit(&ipst->ips_ill_g_lock); 7437 return (EINVAL); 7438 } else { 7439 goto if_copydone; 7440 } 7441 } 7442 ipif_get_name(ipif, ifr->ifr_name, 7443 sizeof (ifr->ifr_name)); 7444 sin = (sin_t *)&ifr->ifr_addr; 7445 *sin = sin_null; 7446 sin->sin_family = AF_INET; 7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7448 ifr++; 7449 } 7450 } 7451 if_copydone: 7452 rw_exit(&ipst->ips_ill_g_lock); 7453 mp1->b_wptr = (uchar_t *)ifr; 7454 7455 if (STRUCT_BUF(ifc) != NULL) { 7456 STRUCT_FSET(ifc, ifc_len, 7457 (int)((uchar_t *)ifr - mp1->b_rptr)); 7458 } 7459 return (0); 7460 } 7461 7462 /* 7463 * Get the interfaces using the address hosted on the interface passed in, 7464 * as a source adddress 7465 */ 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 mblk_t *mp1; 7472 ill_t *ill, *ill_head; 7473 ipif_t *ipif, *orig_ipif; 7474 int numlifs = 0; 7475 size_t lifs_bufsize, lifsmaxlen; 7476 struct lifreq *lifr; 7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7478 uint_t ifindex; 7479 zoneid_t zoneid; 7480 boolean_t isv6 = B_FALSE; 7481 struct sockaddr_in *sin; 7482 struct sockaddr_in6 *sin6; 7483 STRUCT_HANDLE(lifsrcof, lifs); 7484 ip_stack_t *ipst; 7485 7486 ipst = CONNQ_TO_IPST(q); 7487 7488 ASSERT(q->q_next == NULL); 7489 7490 zoneid = Q_TO_CONN(q)->conn_zoneid; 7491 7492 /* Existence verified in ip_wput_nondata */ 7493 mp1 = mp->b_cont->b_cont; 7494 7495 /* 7496 * Must be (better be!) continuation of a TRANSPARENT 7497 * IOCTL. We just copied in the lifsrcof structure. 7498 */ 7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7500 (struct lifsrcof *)mp1->b_rptr); 7501 7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7503 return (EINVAL); 7504 7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7508 if (ipif == NULL) { 7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7510 ifindex)); 7511 return (ENXIO); 7512 } 7513 7514 /* Allocate a buffer to hold requested information */ 7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7516 lifs_bufsize = numlifs * sizeof (struct lifreq); 7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7518 /* The actual size needed is always returned in lifs_len */ 7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7520 7521 /* If the amount we need is more than what is passed in, abort */ 7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7523 ipif_refrele(ipif); 7524 return (0); 7525 } 7526 7527 mp1 = mi_copyout_alloc(q, mp, 7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7529 if (mp1 == NULL) { 7530 ipif_refrele(ipif); 7531 return (ENOMEM); 7532 } 7533 7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7535 bzero(mp1->b_rptr, lifs_bufsize); 7536 7537 lifr = (struct lifreq *)mp1->b_rptr; 7538 7539 ill = ill_head = ipif->ipif_ill; 7540 orig_ipif = ipif; 7541 7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7545 7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7547 for (; (ill != NULL) && (ill != ill_head); 7548 ill = ill->ill_usesrc_grp_next) { 7549 7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7551 break; 7552 7553 ipif = ill->ill_ipif; 7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7555 if (ipif->ipif_isv6) { 7556 sin6 = (sin6_t *)&lifr->lifr_addr; 7557 *sin6 = sin6_null; 7558 sin6->sin6_family = AF_INET6; 7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7560 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7561 &ipif->ipif_v6net_mask); 7562 } else { 7563 sin = (sin_t *)&lifr->lifr_addr; 7564 *sin = sin_null; 7565 sin->sin_family = AF_INET; 7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7567 lifr->lifr_addrlen = ip_mask_to_plen( 7568 ipif->ipif_net_mask); 7569 } 7570 lifr++; 7571 } 7572 rw_exit(&ipst->ips_ill_g_lock); 7573 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7574 ipif_refrele(orig_ipif); 7575 mp1->b_wptr = (uchar_t *)lifr; 7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7577 7578 return (0); 7579 } 7580 7581 /* ARGSUSED */ 7582 int 7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7585 { 7586 mblk_t *mp1; 7587 int list; 7588 ill_t *ill; 7589 ipif_t *ipif; 7590 int flags; 7591 int numlifs = 0; 7592 size_t lifc_bufsize; 7593 struct lifreq *lifr; 7594 sa_family_t family; 7595 struct sockaddr_in *sin; 7596 struct sockaddr_in6 *sin6; 7597 ill_walk_context_t ctx; 7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7599 int32_t lifclen; 7600 zoneid_t zoneid; 7601 STRUCT_HANDLE(lifconf, lifc); 7602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7603 7604 ip1dbg(("ip_sioctl_get_lifconf")); 7605 7606 ASSERT(q->q_next == NULL); 7607 7608 zoneid = Q_TO_CONN(q)->conn_zoneid; 7609 7610 /* Existence verified in ip_wput_nondata */ 7611 mp1 = mp->b_cont->b_cont; 7612 7613 /* 7614 * An extended version of SIOCGIFCONF that takes an 7615 * additional address family and flags field. 7616 * AF_UNSPEC retrieve both IPv4 and IPv6. 7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7618 * interfaces are omitted. 7619 * Similarly, IPIF_TEMPORARY interfaces are omitted 7620 * unless LIFC_TEMPORARY is specified. 7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7624 * has priority over LIFC_NOXMIT. 7625 */ 7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7627 7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7629 return (EINVAL); 7630 7631 /* 7632 * Must be (better be!) continuation of a TRANSPARENT 7633 * IOCTL. We just copied in the lifconf structure. 7634 */ 7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7636 7637 family = STRUCT_FGET(lifc, lifc_family); 7638 flags = STRUCT_FGET(lifc, lifc_flags); 7639 7640 switch (family) { 7641 case AF_UNSPEC: 7642 /* 7643 * walk all ILL's. 7644 */ 7645 list = MAX_G_HEADS; 7646 break; 7647 case AF_INET: 7648 /* 7649 * walk only IPV4 ILL's. 7650 */ 7651 list = IP_V4_G_HEAD; 7652 break; 7653 case AF_INET6: 7654 /* 7655 * walk only IPV6 ILL's. 7656 */ 7657 list = IP_V6_G_HEAD; 7658 break; 7659 default: 7660 return (EAFNOSUPPORT); 7661 } 7662 7663 /* 7664 * Allocate a buffer to hold requested information. 7665 * 7666 * If lifc_len is larger than what is needed, we only 7667 * allocate what we will use. 7668 * 7669 * If lifc_len is smaller than what is needed, return 7670 * EINVAL. 7671 */ 7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7673 lifc_bufsize = numlifs * sizeof (struct lifreq); 7674 lifclen = STRUCT_FGET(lifc, lifc_len); 7675 if (lifc_bufsize > lifclen) { 7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7677 return (EINVAL); 7678 else 7679 lifc_bufsize = lifclen; 7680 } 7681 7682 mp1 = mi_copyout_alloc(q, mp, 7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7684 if (mp1 == NULL) 7685 return (ENOMEM); 7686 7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7689 7690 lifr = (struct lifreq *)mp1->b_rptr; 7691 7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7693 ill = ill_first(list, list, &ctx, ipst); 7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7696 continue; 7697 7698 for (ipif = ill->ill_ipif; ipif != NULL; 7699 ipif = ipif->ipif_next) { 7700 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7701 !(flags & LIFC_NOXMIT)) 7702 continue; 7703 7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7705 !(flags & LIFC_TEMPORARY)) 7706 continue; 7707 7708 if (((ipif->ipif_flags & 7709 (IPIF_NOXMIT|IPIF_NOLOCAL| 7710 IPIF_DEPRECATED)) || 7711 IS_LOOPBACK(ill) || 7712 !(ipif->ipif_flags & IPIF_UP)) && 7713 (flags & LIFC_EXTERNAL_SOURCE)) 7714 continue; 7715 7716 if (zoneid != ipif->ipif_zoneid && 7717 ipif->ipif_zoneid != ALL_ZONES && 7718 (zoneid != GLOBAL_ZONEID || 7719 !(flags & LIFC_ALLZONES))) 7720 continue; 7721 7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7724 rw_exit(&ipst->ips_ill_g_lock); 7725 return (EINVAL); 7726 } else { 7727 goto lif_copydone; 7728 } 7729 } 7730 7731 ipif_get_name(ipif, lifr->lifr_name, 7732 sizeof (lifr->lifr_name)); 7733 lifr->lifr_type = ill->ill_type; 7734 if (ipif->ipif_isv6) { 7735 sin6 = (sin6_t *)&lifr->lifr_addr; 7736 *sin6 = sin6_null; 7737 sin6->sin6_family = AF_INET6; 7738 sin6->sin6_addr = 7739 ipif->ipif_v6lcl_addr; 7740 lifr->lifr_addrlen = 7741 ip_mask_to_plen_v6( 7742 &ipif->ipif_v6net_mask); 7743 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 7744 sin6->sin6_scope_id = 7745 ill->ill_phyint->phyint_ifindex; 7746 } 7747 } else { 7748 sin = (sin_t *)&lifr->lifr_addr; 7749 *sin = sin_null; 7750 sin->sin_family = AF_INET; 7751 sin->sin_addr.s_addr = 7752 ipif->ipif_lcl_addr; 7753 lifr->lifr_addrlen = 7754 ip_mask_to_plen( 7755 ipif->ipif_net_mask); 7756 } 7757 lifr++; 7758 } 7759 } 7760 lif_copydone: 7761 rw_exit(&ipst->ips_ill_g_lock); 7762 7763 mp1->b_wptr = (uchar_t *)lifr; 7764 if (STRUCT_BUF(lifc) != NULL) { 7765 STRUCT_FSET(lifc, lifc_len, 7766 (int)((uchar_t *)lifr - mp1->b_rptr)); 7767 } 7768 return (0); 7769 } 7770 7771 static void 7772 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7773 { 7774 ip6_asp_t *table; 7775 size_t table_size; 7776 mblk_t *data_mp; 7777 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7778 ip_stack_t *ipst; 7779 7780 if (q->q_next == NULL) 7781 ipst = CONNQ_TO_IPST(q); 7782 else 7783 ipst = ILLQ_TO_IPST(q); 7784 7785 /* These two ioctls are I_STR only */ 7786 if (iocp->ioc_count == TRANSPARENT) { 7787 miocnak(q, mp, 0, EINVAL); 7788 return; 7789 } 7790 7791 data_mp = mp->b_cont; 7792 if (data_mp == NULL) { 7793 /* The user passed us a NULL argument */ 7794 table = NULL; 7795 table_size = iocp->ioc_count; 7796 } else { 7797 /* 7798 * The user provided a table. The stream head 7799 * may have copied in the user data in chunks, 7800 * so make sure everything is pulled up 7801 * properly. 7802 */ 7803 if (MBLKL(data_mp) < iocp->ioc_count) { 7804 mblk_t *new_data_mp; 7805 if ((new_data_mp = msgpullup(data_mp, -1)) == 7806 NULL) { 7807 miocnak(q, mp, 0, ENOMEM); 7808 return; 7809 } 7810 freemsg(data_mp); 7811 data_mp = new_data_mp; 7812 mp->b_cont = data_mp; 7813 } 7814 table = (ip6_asp_t *)data_mp->b_rptr; 7815 table_size = iocp->ioc_count; 7816 } 7817 7818 switch (iocp->ioc_cmd) { 7819 case SIOCGIP6ADDRPOLICY: 7820 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7821 if (iocp->ioc_rval == -1) 7822 iocp->ioc_error = EINVAL; 7823 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7824 else if (table != NULL && 7825 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7826 ip6_asp_t *src = table; 7827 ip6_asp32_t *dst = (void *)table; 7828 int count = table_size / sizeof (ip6_asp_t); 7829 int i; 7830 7831 /* 7832 * We need to do an in-place shrink of the array 7833 * to match the alignment attributes of the 7834 * 32-bit ABI looking at it. 7835 */ 7836 /* LINTED: logical expression always true: op "||" */ 7837 ASSERT(sizeof (*src) > sizeof (*dst)); 7838 for (i = 1; i < count; i++) 7839 bcopy(src + i, dst + i, sizeof (*dst)); 7840 } 7841 #endif 7842 break; 7843 7844 case SIOCSIP6ADDRPOLICY: 7845 ASSERT(mp->b_prev == NULL); 7846 mp->b_prev = (void *)q; 7847 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7848 /* 7849 * We pass in the datamodel here so that the ip6_asp_replace() 7850 * routine can handle converting from 32-bit to native formats 7851 * where necessary. 7852 * 7853 * A better way to handle this might be to convert the inbound 7854 * data structure here, and hang it off a new 'mp'; thus the 7855 * ip6_asp_replace() logic would always be dealing with native 7856 * format data structures.. 7857 * 7858 * (An even simpler way to handle these ioctls is to just 7859 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7860 * and just recompile everything that depends on it.) 7861 */ 7862 #endif 7863 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7864 iocp->ioc_flag & IOC_MODELS); 7865 return; 7866 } 7867 7868 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7869 qreply(q, mp); 7870 } 7871 7872 static void 7873 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7874 { 7875 mblk_t *data_mp; 7876 struct dstinforeq *dir; 7877 uint8_t *end, *cur; 7878 in6_addr_t *daddr, *saddr; 7879 ipaddr_t v4daddr; 7880 ire_t *ire; 7881 ipaddr_t v4setsrc; 7882 in6_addr_t v6setsrc; 7883 char *slabel, *dlabel; 7884 boolean_t isipv4; 7885 int match_ire; 7886 ill_t *dst_ill; 7887 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7888 conn_t *connp = Q_TO_CONN(q); 7889 zoneid_t zoneid = IPCL_ZONEID(connp); 7890 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7891 uint64_t ipif_flags; 7892 7893 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7894 7895 /* 7896 * This ioctl is I_STR only, and must have a 7897 * data mblk following the M_IOCTL mblk. 7898 */ 7899 data_mp = mp->b_cont; 7900 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7901 miocnak(q, mp, 0, EINVAL); 7902 return; 7903 } 7904 7905 if (MBLKL(data_mp) < iocp->ioc_count) { 7906 mblk_t *new_data_mp; 7907 7908 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7909 miocnak(q, mp, 0, ENOMEM); 7910 return; 7911 } 7912 freemsg(data_mp); 7913 data_mp = new_data_mp; 7914 mp->b_cont = data_mp; 7915 } 7916 match_ire = MATCH_IRE_DSTONLY; 7917 7918 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7919 end - cur >= sizeof (struct dstinforeq); 7920 cur += sizeof (struct dstinforeq)) { 7921 dir = (struct dstinforeq *)cur; 7922 daddr = &dir->dir_daddr; 7923 saddr = &dir->dir_saddr; 7924 7925 /* 7926 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7927 * v4 mapped addresses; ire_ftable_lookup_v6() 7928 * and ip_select_source_v6() do not. 7929 */ 7930 dir->dir_dscope = ip_addr_scope_v6(daddr); 7931 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7932 7933 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7934 if (isipv4) { 7935 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7936 v4setsrc = INADDR_ANY; 7937 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7938 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7939 NULL, NULL); 7940 } else { 7941 v6setsrc = ipv6_all_zeros; 7942 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7943 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7944 NULL, NULL); 7945 } 7946 ASSERT(ire != NULL); 7947 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7948 ire_refrele(ire); 7949 dir->dir_dreachable = 0; 7950 7951 /* move on to next dst addr */ 7952 continue; 7953 } 7954 dir->dir_dreachable = 1; 7955 7956 dst_ill = ire_nexthop_ill(ire); 7957 if (dst_ill == NULL) { 7958 ire_refrele(ire); 7959 continue; 7960 } 7961 7962 /* With ipmp we most likely look at the ipmp ill here */ 7963 dir->dir_dmactype = dst_ill->ill_mactype; 7964 7965 if (isipv4) { 7966 ipaddr_t v4saddr; 7967 7968 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7969 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7970 &v4saddr, NULL, &ipif_flags) != 0) { 7971 v4saddr = INADDR_ANY; 7972 ipif_flags = 0; 7973 } 7974 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7975 } else { 7976 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7977 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7978 saddr, NULL, &ipif_flags) != 0) { 7979 *saddr = ipv6_all_zeros; 7980 ipif_flags = 0; 7981 } 7982 } 7983 7984 dir->dir_sscope = ip_addr_scope_v6(saddr); 7985 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7986 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7987 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7988 ire_refrele(ire); 7989 ill_refrele(dst_ill); 7990 } 7991 miocack(q, mp, iocp->ioc_count, 0); 7992 } 7993 7994 /* 7995 * Check if this is an address assigned to this machine. 7996 * Skips interfaces that are down by using ire checks. 7997 * Translates mapped addresses to v4 addresses and then 7998 * treats them as such, returning true if the v4 address 7999 * associated with this mapped address is configured. 8000 * Note: Applications will have to be careful what they do 8001 * with the response; use of mapped addresses limits 8002 * what can be done with the socket, especially with 8003 * respect to socket options and ioctls - neither IPv4 8004 * options nor IPv6 sticky options/ancillary data options 8005 * may be used. 8006 */ 8007 /* ARGSUSED */ 8008 int 8009 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8010 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8011 { 8012 struct sioc_addrreq *sia; 8013 sin_t *sin; 8014 ire_t *ire; 8015 mblk_t *mp1; 8016 zoneid_t zoneid; 8017 ip_stack_t *ipst; 8018 8019 ip1dbg(("ip_sioctl_tmyaddr")); 8020 8021 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8022 zoneid = Q_TO_CONN(q)->conn_zoneid; 8023 ipst = CONNQ_TO_IPST(q); 8024 8025 /* Existence verified in ip_wput_nondata */ 8026 mp1 = mp->b_cont->b_cont; 8027 sia = (struct sioc_addrreq *)mp1->b_rptr; 8028 sin = (sin_t *)&sia->sa_addr; 8029 switch (sin->sin_family) { 8030 case AF_INET6: { 8031 sin6_t *sin6 = (sin6_t *)sin; 8032 8033 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8034 ipaddr_t v4_addr; 8035 8036 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8037 v4_addr); 8038 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8039 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8040 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8041 } else { 8042 in6_addr_t v6addr; 8043 8044 v6addr = sin6->sin6_addr; 8045 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8046 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8047 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8048 } 8049 break; 8050 } 8051 case AF_INET: { 8052 ipaddr_t v4addr; 8053 8054 v4addr = sin->sin_addr.s_addr; 8055 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8056 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8057 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8058 break; 8059 } 8060 default: 8061 return (EAFNOSUPPORT); 8062 } 8063 if (ire != NULL) { 8064 sia->sa_res = 1; 8065 ire_refrele(ire); 8066 } else { 8067 sia->sa_res = 0; 8068 } 8069 return (0); 8070 } 8071 8072 /* 8073 * Check if this is an address assigned on-link i.e. neighbor, 8074 * and makes sure it's reachable from the current zone. 8075 * Returns true for my addresses as well. 8076 * Translates mapped addresses to v4 addresses and then 8077 * treats them as such, returning true if the v4 address 8078 * associated with this mapped address is configured. 8079 * Note: Applications will have to be careful what they do 8080 * with the response; use of mapped addresses limits 8081 * what can be done with the socket, especially with 8082 * respect to socket options and ioctls - neither IPv4 8083 * options nor IPv6 sticky options/ancillary data options 8084 * may be used. 8085 */ 8086 /* ARGSUSED */ 8087 int 8088 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8089 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8090 { 8091 struct sioc_addrreq *sia; 8092 sin_t *sin; 8093 mblk_t *mp1; 8094 ire_t *ire = NULL; 8095 zoneid_t zoneid; 8096 ip_stack_t *ipst; 8097 8098 ip1dbg(("ip_sioctl_tonlink")); 8099 8100 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8101 zoneid = Q_TO_CONN(q)->conn_zoneid; 8102 ipst = CONNQ_TO_IPST(q); 8103 8104 /* Existence verified in ip_wput_nondata */ 8105 mp1 = mp->b_cont->b_cont; 8106 sia = (struct sioc_addrreq *)mp1->b_rptr; 8107 sin = (sin_t *)&sia->sa_addr; 8108 8109 /* 8110 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8111 * to make sure we only look at on-link unicast address. 8112 */ 8113 switch (sin->sin_family) { 8114 case AF_INET6: { 8115 sin6_t *sin6 = (sin6_t *)sin; 8116 8117 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8118 ipaddr_t v4_addr; 8119 8120 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8121 v4_addr); 8122 if (!CLASSD(v4_addr)) { 8123 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8124 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8125 0, ipst, NULL); 8126 } 8127 } else { 8128 in6_addr_t v6addr; 8129 8130 v6addr = sin6->sin6_addr; 8131 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8132 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8133 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8134 ipst, NULL); 8135 } 8136 } 8137 break; 8138 } 8139 case AF_INET: { 8140 ipaddr_t v4addr; 8141 8142 v4addr = sin->sin_addr.s_addr; 8143 if (!CLASSD(v4addr)) { 8144 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8145 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8146 } 8147 break; 8148 } 8149 default: 8150 return (EAFNOSUPPORT); 8151 } 8152 sia->sa_res = 0; 8153 if (ire != NULL) { 8154 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8155 8156 if ((ire->ire_type & IRE_ONLINK) && 8157 !(ire->ire_type & IRE_BROADCAST)) 8158 sia->sa_res = 1; 8159 ire_refrele(ire); 8160 } 8161 return (0); 8162 } 8163 8164 /* 8165 * TBD: implement when kernel maintaines a list of site prefixes. 8166 */ 8167 /* ARGSUSED */ 8168 int 8169 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8170 ip_ioctl_cmd_t *ipip, void *ifreq) 8171 { 8172 return (ENXIO); 8173 } 8174 8175 /* ARP IOCTLs. */ 8176 /* ARGSUSED */ 8177 int 8178 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8179 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8180 { 8181 int err; 8182 ipaddr_t ipaddr; 8183 struct iocblk *iocp; 8184 conn_t *connp; 8185 struct arpreq *ar; 8186 struct xarpreq *xar; 8187 int arp_flags, flags, alength; 8188 uchar_t *lladdr; 8189 ip_stack_t *ipst; 8190 ill_t *ill = ipif->ipif_ill; 8191 ill_t *proxy_ill = NULL; 8192 ipmp_arpent_t *entp = NULL; 8193 boolean_t proxyarp = B_FALSE; 8194 boolean_t if_arp_ioctl = B_FALSE; 8195 ncec_t *ncec = NULL; 8196 nce_t *nce; 8197 8198 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8199 connp = Q_TO_CONN(q); 8200 ipst = connp->conn_netstack->netstack_ip; 8201 iocp = (struct iocblk *)mp->b_rptr; 8202 8203 if (ipip->ipi_cmd_type == XARP_CMD) { 8204 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8205 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8206 ar = NULL; 8207 8208 arp_flags = xar->xarp_flags; 8209 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8210 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8211 /* 8212 * Validate against user's link layer address length 8213 * input and name and addr length limits. 8214 */ 8215 alength = ill->ill_phys_addr_length; 8216 if (ipip->ipi_cmd == SIOCSXARP) { 8217 if (alength != xar->xarp_ha.sdl_alen || 8218 (alength + xar->xarp_ha.sdl_nlen > 8219 sizeof (xar->xarp_ha.sdl_data))) 8220 return (EINVAL); 8221 } 8222 } else { 8223 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8224 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8225 xar = NULL; 8226 8227 arp_flags = ar->arp_flags; 8228 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8229 /* 8230 * Theoretically, the sa_family could tell us what link 8231 * layer type this operation is trying to deal with. By 8232 * common usage AF_UNSPEC means ethernet. We'll assume 8233 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8234 * for now. Our new SIOC*XARP ioctls can be used more 8235 * generally. 8236 * 8237 * If the underlying media happens to have a non 6 byte 8238 * address, arp module will fail set/get, but the del 8239 * operation will succeed. 8240 */ 8241 alength = 6; 8242 if ((ipip->ipi_cmd != SIOCDARP) && 8243 (alength != ill->ill_phys_addr_length)) { 8244 return (EINVAL); 8245 } 8246 } 8247 8248 /* Translate ATF* flags to NCE* flags */ 8249 flags = 0; 8250 if (arp_flags & ATF_AUTHORITY) 8251 flags |= NCE_F_AUTHORITY; 8252 if (arp_flags & ATF_PERM) 8253 flags |= NCE_F_NONUD; /* not subject to aging */ 8254 if (arp_flags & ATF_PUBL) 8255 flags |= NCE_F_PUBLISH; 8256 8257 /* 8258 * IPMP ARP special handling: 8259 * 8260 * 1. Since ARP mappings must appear consistent across the group, 8261 * prohibit changing ARP mappings on the underlying interfaces. 8262 * 8263 * 2. Since ARP mappings for IPMP data addresses are maintained by 8264 * IP itself, prohibit changing them. 8265 * 8266 * 3. For proxy ARP, use a functioning hardware address in the group, 8267 * provided one exists. If one doesn't, just add the entry as-is; 8268 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8269 */ 8270 if (IS_UNDER_IPMP(ill)) { 8271 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8272 return (EPERM); 8273 } 8274 if (IS_IPMP(ill)) { 8275 ipmp_illgrp_t *illg = ill->ill_grp; 8276 8277 switch (ipip->ipi_cmd) { 8278 case SIOCSARP: 8279 case SIOCSXARP: 8280 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8281 if (proxy_ill != NULL) { 8282 proxyarp = B_TRUE; 8283 if (!ipmp_ill_is_active(proxy_ill)) 8284 proxy_ill = ipmp_illgrp_next_ill(illg); 8285 if (proxy_ill != NULL) 8286 lladdr = proxy_ill->ill_phys_addr; 8287 } 8288 /* FALLTHRU */ 8289 } 8290 } 8291 8292 ipaddr = sin->sin_addr.s_addr; 8293 /* 8294 * don't match across illgrp per case (1) and (2). 8295 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8296 */ 8297 nce = nce_lookup_v4(ill, &ipaddr); 8298 if (nce != NULL) 8299 ncec = nce->nce_common; 8300 8301 switch (iocp->ioc_cmd) { 8302 case SIOCDARP: 8303 case SIOCDXARP: { 8304 /* 8305 * Delete the NCE if any. 8306 */ 8307 if (ncec == NULL) { 8308 iocp->ioc_error = ENXIO; 8309 break; 8310 } 8311 /* Don't allow changes to arp mappings of local addresses. */ 8312 if (NCE_MYADDR(ncec)) { 8313 nce_refrele(nce); 8314 return (ENOTSUP); 8315 } 8316 iocp->ioc_error = 0; 8317 8318 /* 8319 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8320 * This will delete all the nce entries on the under_ills. 8321 */ 8322 ncec_delete(ncec); 8323 /* 8324 * Once the NCE has been deleted, then the ire_dep* consistency 8325 * mechanism will find any IRE which depended on the now 8326 * condemned NCE (as part of sending packets). 8327 * That mechanism handles redirects by deleting redirects 8328 * that refer to UNREACHABLE nces. 8329 */ 8330 break; 8331 } 8332 case SIOCGARP: 8333 case SIOCGXARP: 8334 if (ncec != NULL) { 8335 lladdr = ncec->ncec_lladdr; 8336 flags = ncec->ncec_flags; 8337 iocp->ioc_error = 0; 8338 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8339 } else { 8340 iocp->ioc_error = ENXIO; 8341 } 8342 break; 8343 case SIOCSARP: 8344 case SIOCSXARP: 8345 /* Don't allow changes to arp mappings of local addresses. */ 8346 if (ncec != NULL && NCE_MYADDR(ncec)) { 8347 nce_refrele(nce); 8348 return (ENOTSUP); 8349 } 8350 8351 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8352 flags |= NCE_F_STATIC; 8353 if (!if_arp_ioctl) { 8354 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8355 lladdr, alength, flags); 8356 } else { 8357 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8358 if (ipif != NULL) { 8359 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8360 lladdr, alength, flags); 8361 ipif_refrele(ipif); 8362 } 8363 } 8364 if (nce != NULL) { 8365 nce_refrele(nce); 8366 nce = NULL; 8367 } 8368 /* 8369 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8370 * by nce_add_common() 8371 */ 8372 err = nce_lookup_then_add_v4(ill, lladdr, 8373 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8374 &nce); 8375 if (err == EEXIST) { 8376 ncec = nce->nce_common; 8377 mutex_enter(&ncec->ncec_lock); 8378 ncec->ncec_state = ND_REACHABLE; 8379 ncec->ncec_flags = flags; 8380 nce_update(ncec, ND_UNCHANGED, lladdr); 8381 mutex_exit(&ncec->ncec_lock); 8382 err = 0; 8383 } 8384 if (nce != NULL) { 8385 nce_refrele(nce); 8386 nce = NULL; 8387 } 8388 if (IS_IPMP(ill) && err == 0) { 8389 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8390 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8391 flags); 8392 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8393 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8394 break; 8395 } 8396 } 8397 iocp->ioc_error = err; 8398 } 8399 8400 if (nce != NULL) { 8401 nce_refrele(nce); 8402 } 8403 8404 /* 8405 * If we created an IPMP ARP entry, mark that we've notified ARP. 8406 */ 8407 if (entp != NULL) 8408 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8409 8410 return (iocp->ioc_error); 8411 } 8412 8413 /* 8414 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8415 * the associated sin and refhold and return the associated ipif via `ci'. 8416 */ 8417 int 8418 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8419 cmd_info_t *ci) 8420 { 8421 mblk_t *mp1; 8422 sin_t *sin; 8423 conn_t *connp; 8424 ipif_t *ipif; 8425 ire_t *ire = NULL; 8426 ill_t *ill = NULL; 8427 boolean_t exists; 8428 ip_stack_t *ipst; 8429 struct arpreq *ar; 8430 struct xarpreq *xar; 8431 struct sockaddr_dl *sdl; 8432 8433 /* ioctl comes down on a conn */ 8434 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8435 connp = Q_TO_CONN(q); 8436 if (connp->conn_family == AF_INET6) 8437 return (ENXIO); 8438 8439 ipst = connp->conn_netstack->netstack_ip; 8440 8441 /* Verified in ip_wput_nondata */ 8442 mp1 = mp->b_cont->b_cont; 8443 8444 if (ipip->ipi_cmd_type == XARP_CMD) { 8445 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8446 xar = (struct xarpreq *)mp1->b_rptr; 8447 sin = (sin_t *)&xar->xarp_pa; 8448 sdl = &xar->xarp_ha; 8449 8450 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8451 return (ENXIO); 8452 if (sdl->sdl_nlen >= LIFNAMSIZ) 8453 return (EINVAL); 8454 } else { 8455 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8456 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8457 ar = (struct arpreq *)mp1->b_rptr; 8458 sin = (sin_t *)&ar->arp_pa; 8459 } 8460 8461 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8462 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8463 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8464 if (ipif == NULL) 8465 return (ENXIO); 8466 if (ipif->ipif_id != 0) { 8467 ipif_refrele(ipif); 8468 return (ENXIO); 8469 } 8470 } else { 8471 /* 8472 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8473 * of 0: use the IP address to find the ipif. If the IP 8474 * address is an IPMP test address, ire_ftable_lookup() will 8475 * find the wrong ill, so we first do an ipif_lookup_addr(). 8476 */ 8477 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8478 ipst); 8479 if (ipif == NULL) { 8480 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8481 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8482 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8483 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8484 if (ire != NULL) 8485 ire_refrele(ire); 8486 return (ENXIO); 8487 } 8488 ASSERT(ire != NULL && ill != NULL); 8489 ipif = ill->ill_ipif; 8490 ipif_refhold(ipif); 8491 ire_refrele(ire); 8492 } 8493 } 8494 8495 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8496 ipif_refrele(ipif); 8497 return (ENXIO); 8498 } 8499 8500 ci->ci_sin = sin; 8501 ci->ci_ipif = ipif; 8502 return (0); 8503 } 8504 8505 /* 8506 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8507 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8508 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8509 * up and thus an ill can join that illgrp. 8510 * 8511 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8512 * open()/close() primarily because close() is not allowed to fail or block 8513 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8514 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8515 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8516 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8517 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8518 * state if I_UNLINK didn't occur. 8519 * 8520 * Note that for each plumb/unplumb operation, we may end up here more than 8521 * once because of the way ifconfig works. However, it's OK to link the same 8522 * illgrp more than once, or unlink an illgrp that's already unlinked. 8523 */ 8524 static int 8525 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8526 { 8527 int err; 8528 ip_stack_t *ipst = ill->ill_ipst; 8529 8530 ASSERT(IS_IPMP(ill)); 8531 ASSERT(IAM_WRITER_ILL(ill)); 8532 8533 switch (ioccmd) { 8534 case I_LINK: 8535 return (ENOTSUP); 8536 8537 case I_PLINK: 8538 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8539 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8540 rw_exit(&ipst->ips_ipmp_lock); 8541 break; 8542 8543 case I_PUNLINK: 8544 /* 8545 * Require all UP ipifs be brought down prior to unlinking the 8546 * illgrp so any associated IREs (and other state) is torched. 8547 */ 8548 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8549 return (EBUSY); 8550 8551 /* 8552 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8553 * with an SIOCSLIFGROUPNAME request from an ill trying to 8554 * join this group. Specifically: ills trying to join grab 8555 * ipmp_lock and bump a "pending join" counter checked by 8556 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8557 * joins can occur (since we have ipmp_lock). Once we drop 8558 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8559 * find the illgrp (since we unlinked it) and will return 8560 * EAFNOSUPPORT. This will then take them back through the 8561 * IPMP meta-interface plumbing logic in ifconfig, and thus 8562 * back through I_PLINK above. 8563 */ 8564 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8565 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8566 rw_exit(&ipst->ips_ipmp_lock); 8567 return (err); 8568 default: 8569 break; 8570 } 8571 return (0); 8572 } 8573 8574 /* 8575 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8576 * atomically set/clear the muxids. Also complete the ioctl by acking or 8577 * naking it. Note that the code is structured such that the link type, 8578 * whether it's persistent or not, is treated equally. ifconfig(8) and 8579 * its clones use the persistent link, while pppd(8) and perhaps many 8580 * other daemons may use non-persistent link. When combined with some 8581 * ill_t states, linking and unlinking lower streams may be used as 8582 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8583 */ 8584 /* ARGSUSED */ 8585 void 8586 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8587 { 8588 mblk_t *mp1; 8589 struct linkblk *li; 8590 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8591 int err = 0; 8592 8593 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8594 ioccmd == I_LINK || ioccmd == I_UNLINK); 8595 8596 mp1 = mp->b_cont; /* This is the linkblk info */ 8597 li = (struct linkblk *)mp1->b_rptr; 8598 8599 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8600 if (err == EINPROGRESS) 8601 return; 8602 if (err == 0) 8603 miocack(q, mp, 0, 0); 8604 else 8605 miocnak(q, mp, 0, err); 8606 8607 /* Conn was refheld in ip_sioctl_copyin_setup */ 8608 if (CONN_Q(q)) { 8609 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8610 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8611 } 8612 } 8613 8614 /* 8615 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8616 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8617 * module stream). 8618 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8619 * an error code on failure. 8620 */ 8621 static int 8622 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8623 struct linkblk *li) 8624 { 8625 int err = 0; 8626 ill_t *ill; 8627 queue_t *ipwq, *dwq; 8628 const char *name; 8629 struct qinit *qinfo; 8630 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8631 boolean_t entered_ipsq = B_FALSE; 8632 boolean_t is_ip = B_FALSE; 8633 arl_t *arl; 8634 8635 /* 8636 * Walk the lower stream to verify it's the IP module stream. 8637 * The IP module is identified by its name, wput function, 8638 * and non-NULL q_next. STREAMS ensures that the lower stream 8639 * (li->l_qbot) will not vanish until this ioctl completes. 8640 */ 8641 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8642 qinfo = ipwq->q_qinfo; 8643 name = qinfo->qi_minfo->mi_idname; 8644 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8645 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8646 is_ip = B_TRUE; 8647 break; 8648 } 8649 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8650 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8651 break; 8652 } 8653 } 8654 8655 /* 8656 * If this isn't an IP module stream, bail. 8657 */ 8658 if (ipwq == NULL) 8659 return (0); 8660 8661 if (!is_ip) { 8662 arl = (arl_t *)ipwq->q_ptr; 8663 ill = arl_to_ill(arl); 8664 if (ill == NULL) 8665 return (0); 8666 } else { 8667 ill = ipwq->q_ptr; 8668 } 8669 ASSERT(ill != NULL); 8670 8671 if (ipsq == NULL) { 8672 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8673 NEW_OP, B_FALSE); 8674 if (ipsq == NULL) { 8675 if (!is_ip) 8676 ill_refrele(ill); 8677 return (EINPROGRESS); 8678 } 8679 entered_ipsq = B_TRUE; 8680 } 8681 ASSERT(IAM_WRITER_ILL(ill)); 8682 mutex_enter(&ill->ill_lock); 8683 if (!is_ip) { 8684 if (islink && ill->ill_muxid == 0) { 8685 /* 8686 * Plumbing has to be done with IP plumbed first, arp 8687 * second, but here we have arp being plumbed first. 8688 */ 8689 mutex_exit(&ill->ill_lock); 8690 if (entered_ipsq) 8691 ipsq_exit(ipsq); 8692 ill_refrele(ill); 8693 return (EINVAL); 8694 } 8695 } 8696 mutex_exit(&ill->ill_lock); 8697 if (!is_ip) { 8698 arl->arl_muxid = islink ? li->l_index : 0; 8699 ill_refrele(ill); 8700 goto done; 8701 } 8702 8703 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8704 goto done; 8705 8706 /* 8707 * As part of I_{P}LINKing, stash the number of downstream modules and 8708 * the read queue of the module immediately below IP in the ill. 8709 * These are used during the capability negotiation below. 8710 */ 8711 ill->ill_lmod_rq = NULL; 8712 ill->ill_lmod_cnt = 0; 8713 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8714 ill->ill_lmod_rq = RD(dwq); 8715 for (; dwq != NULL; dwq = dwq->q_next) 8716 ill->ill_lmod_cnt++; 8717 } 8718 8719 ill->ill_muxid = islink ? li->l_index : 0; 8720 8721 /* 8722 * Mark the ipsq busy until the capability operations initiated below 8723 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8724 * returns, but the capability operation may complete asynchronously 8725 * much later. 8726 */ 8727 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8728 /* 8729 * If there's at least one up ipif on this ill, then we're bound to 8730 * the underlying driver via DLPI. In that case, renegotiate 8731 * capabilities to account for any possible change in modules 8732 * interposed between IP and the driver. 8733 */ 8734 if (ill->ill_ipif_up_count > 0) { 8735 if (islink) 8736 ill_capability_probe(ill); 8737 else 8738 ill_capability_reset(ill, B_FALSE); 8739 } 8740 ipsq_current_finish(ipsq); 8741 done: 8742 if (entered_ipsq) 8743 ipsq_exit(ipsq); 8744 8745 return (err); 8746 } 8747 8748 /* 8749 * Search the ioctl command in the ioctl tables and return a pointer 8750 * to the ioctl command information. The ioctl command tables are 8751 * static and fully populated at compile time. 8752 */ 8753 ip_ioctl_cmd_t * 8754 ip_sioctl_lookup(int ioc_cmd) 8755 { 8756 int index; 8757 ip_ioctl_cmd_t *ipip; 8758 ip_ioctl_cmd_t *ipip_end; 8759 8760 if (ioc_cmd == IPI_DONTCARE) 8761 return (NULL); 8762 8763 /* 8764 * Do a 2 step search. First search the indexed table 8765 * based on the least significant byte of the ioctl cmd. 8766 * If we don't find a match, then search the misc table 8767 * serially. 8768 */ 8769 index = ioc_cmd & 0xFF; 8770 if (index < ip_ndx_ioctl_count) { 8771 ipip = &ip_ndx_ioctl_table[index]; 8772 if (ipip->ipi_cmd == ioc_cmd) { 8773 /* Found a match in the ndx table */ 8774 return (ipip); 8775 } 8776 } 8777 8778 /* Search the misc table */ 8779 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8780 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8781 if (ipip->ipi_cmd == ioc_cmd) 8782 /* Found a match in the misc table */ 8783 return (ipip); 8784 } 8785 8786 return (NULL); 8787 } 8788 8789 /* 8790 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8791 */ 8792 static boolean_t 8793 getset_ioctl_checks(mblk_t *mp) 8794 { 8795 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8796 mblk_t *mp1 = mp->b_cont; 8797 mod_ioc_prop_t *pioc; 8798 uint_t flags; 8799 uint_t pioc_size; 8800 8801 /* do sanity checks on various arguments */ 8802 if (mp1 == NULL || iocp->ioc_count == 0 || 8803 iocp->ioc_count == TRANSPARENT) { 8804 return (B_FALSE); 8805 } 8806 if (msgdsize(mp1) < iocp->ioc_count) { 8807 if (!pullupmsg(mp1, iocp->ioc_count)) 8808 return (B_FALSE); 8809 } 8810 8811 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8812 8813 /* sanity checks on mpr_valsize */ 8814 pioc_size = sizeof (mod_ioc_prop_t); 8815 if (pioc->mpr_valsize != 0) 8816 pioc_size += pioc->mpr_valsize - 1; 8817 8818 if (iocp->ioc_count != pioc_size) 8819 return (B_FALSE); 8820 8821 flags = pioc->mpr_flags; 8822 if (iocp->ioc_cmd == SIOCSETPROP) { 8823 /* 8824 * One can either reset the value to it's default value or 8825 * change the current value or append/remove the value from 8826 * a multi-valued properties. 8827 */ 8828 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8829 flags != MOD_PROP_ACTIVE && 8830 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8831 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8832 return (B_FALSE); 8833 } else { 8834 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8835 8836 /* 8837 * One can retrieve only one kind of property information 8838 * at a time. 8839 */ 8840 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8841 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8842 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8843 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8844 return (B_FALSE); 8845 } 8846 8847 return (B_TRUE); 8848 } 8849 8850 /* 8851 * process the SIOC{SET|GET}PROP ioctl's 8852 */ 8853 /* ARGSUSED */ 8854 static void 8855 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8856 { 8857 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8858 mblk_t *mp1 = mp->b_cont; 8859 mod_ioc_prop_t *pioc; 8860 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8861 ip_stack_t *ipst; 8862 netstack_t *stack; 8863 cred_t *cr; 8864 boolean_t set; 8865 int err; 8866 8867 ASSERT(q->q_next == NULL); 8868 ASSERT(CONN_Q(q)); 8869 8870 if (!getset_ioctl_checks(mp)) { 8871 miocnak(q, mp, 0, EINVAL); 8872 return; 8873 } 8874 ipst = CONNQ_TO_IPST(q); 8875 stack = ipst->ips_netstack; 8876 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8877 8878 switch (pioc->mpr_proto) { 8879 case MOD_PROTO_IP: 8880 case MOD_PROTO_IPV4: 8881 case MOD_PROTO_IPV6: 8882 ptbl = ipst->ips_propinfo_tbl; 8883 break; 8884 case MOD_PROTO_RAWIP: 8885 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8886 break; 8887 case MOD_PROTO_TCP: 8888 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8889 break; 8890 case MOD_PROTO_UDP: 8891 ptbl = stack->netstack_udp->us_propinfo_tbl; 8892 break; 8893 case MOD_PROTO_SCTP: 8894 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8895 break; 8896 default: 8897 miocnak(q, mp, 0, EINVAL); 8898 return; 8899 } 8900 8901 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8902 if (pinfo == NULL) { 8903 miocnak(q, mp, 0, ENOENT); 8904 return; 8905 } 8906 8907 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8908 if (set && pinfo->mpi_setf != NULL) { 8909 cr = msg_getcred(mp, NULL); 8910 if (cr == NULL) 8911 cr = iocp->ioc_cr; 8912 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8913 pioc->mpr_val, pioc->mpr_flags); 8914 } else if (!set && pinfo->mpi_getf != NULL) { 8915 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8916 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8917 } else { 8918 err = EPERM; 8919 } 8920 8921 if (err != 0) { 8922 miocnak(q, mp, 0, err); 8923 } else { 8924 if (set) 8925 miocack(q, mp, 0, 0); 8926 else /* For get, we need to return back the data */ 8927 miocack(q, mp, iocp->ioc_count, 0); 8928 } 8929 } 8930 8931 /* 8932 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8933 * as several routing daemons have unfortunately used this 'unpublished' 8934 * but well-known ioctls. 8935 */ 8936 /* ARGSUSED */ 8937 static void 8938 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8939 { 8940 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8941 mblk_t *mp1 = mp->b_cont; 8942 char *pname, *pval, *buf; 8943 uint_t bufsize, proto; 8944 mod_prop_info_t *pinfo = NULL; 8945 ip_stack_t *ipst; 8946 int err = 0; 8947 8948 ASSERT(CONN_Q(q)); 8949 ipst = CONNQ_TO_IPST(q); 8950 8951 if (iocp->ioc_count == 0 || mp1 == NULL) { 8952 miocnak(q, mp, 0, EINVAL); 8953 return; 8954 } 8955 8956 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8957 pval = buf = pname = (char *)mp1->b_rptr; 8958 bufsize = MBLKL(mp1); 8959 8960 if (strcmp(pname, "ip_forwarding") == 0) { 8961 pname = "forwarding"; 8962 proto = MOD_PROTO_IPV4; 8963 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8964 pname = "forwarding"; 8965 proto = MOD_PROTO_IPV6; 8966 } else { 8967 miocnak(q, mp, 0, EINVAL); 8968 return; 8969 } 8970 8971 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8972 8973 switch (iocp->ioc_cmd) { 8974 case ND_GET: 8975 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8976 bufsize, 0)) == 0) { 8977 miocack(q, mp, iocp->ioc_count, 0); 8978 return; 8979 } 8980 break; 8981 case ND_SET: 8982 /* 8983 * buffer will have property name and value in the following 8984 * format, 8985 * <property name>'\0'<property value>'\0', extract them; 8986 */ 8987 while (*pval++) 8988 noop; 8989 8990 if (!*pval || pval >= (char *)mp1->b_wptr) { 8991 err = EINVAL; 8992 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8993 pinfo, NULL, pval, 0)) == 0) { 8994 miocack(q, mp, 0, 0); 8995 return; 8996 } 8997 break; 8998 default: 8999 err = EINVAL; 9000 break; 9001 } 9002 miocnak(q, mp, 0, err); 9003 } 9004 9005 /* 9006 * Wrapper function for resuming deferred ioctl processing 9007 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9008 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9009 */ 9010 /* ARGSUSED */ 9011 void 9012 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9013 void *dummy_arg) 9014 { 9015 ip_sioctl_copyin_setup(q, mp); 9016 } 9017 9018 /* 9019 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9020 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9021 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9022 * We establish here the size of the block to be copied in. mi_copyin 9023 * arranges for this to happen, an processing continues in ip_wput_nondata with 9024 * an M_IOCDATA message. 9025 */ 9026 void 9027 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9028 { 9029 int copyin_size; 9030 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9031 ip_ioctl_cmd_t *ipip; 9032 cred_t *cr; 9033 ip_stack_t *ipst; 9034 9035 if (CONN_Q(q)) 9036 ipst = CONNQ_TO_IPST(q); 9037 else 9038 ipst = ILLQ_TO_IPST(q); 9039 9040 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9041 if (ipip == NULL) { 9042 /* 9043 * The ioctl is not one we understand or own. 9044 * Pass it along to be processed down stream, 9045 * if this is a module instance of IP, else nak 9046 * the ioctl. 9047 */ 9048 if (q->q_next == NULL) { 9049 goto nak; 9050 } else { 9051 putnext(q, mp); 9052 return; 9053 } 9054 } 9055 9056 /* 9057 * If this is deferred, then we will do all the checks when we 9058 * come back. 9059 */ 9060 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9061 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9062 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9063 return; 9064 } 9065 9066 /* 9067 * Only allow a very small subset of IP ioctls on this stream if 9068 * IP is a module and not a driver. Allowing ioctls to be processed 9069 * in this case may cause assert failures or data corruption. 9070 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9071 * ioctls allowed on an IP module stream, after which this stream 9072 * normally becomes a multiplexor (at which time the stream head 9073 * will fail all ioctls). 9074 */ 9075 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9076 goto nak; 9077 } 9078 9079 /* Make sure we have ioctl data to process. */ 9080 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9081 goto nak; 9082 9083 /* 9084 * Prefer dblk credential over ioctl credential; some synthesized 9085 * ioctls have kcred set because there's no way to crhold() 9086 * a credential in some contexts. (ioc_cr is not crfree() by 9087 * the framework; the caller of ioctl needs to hold the reference 9088 * for the duration of the call). 9089 */ 9090 cr = msg_getcred(mp, NULL); 9091 if (cr == NULL) 9092 cr = iocp->ioc_cr; 9093 9094 /* Make sure normal users don't send down privileged ioctls */ 9095 if ((ipip->ipi_flags & IPI_PRIV) && 9096 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9097 /* We checked the privilege earlier but log it here */ 9098 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9099 return; 9100 } 9101 9102 /* 9103 * The ioctl command tables can only encode fixed length 9104 * ioctl data. If the length is variable, the table will 9105 * encode the length as zero. Such special cases are handled 9106 * below in the switch. 9107 */ 9108 if (ipip->ipi_copyin_size != 0) { 9109 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9110 return; 9111 } 9112 9113 switch (iocp->ioc_cmd) { 9114 case O_SIOCGIFCONF: 9115 case SIOCGIFCONF: 9116 /* 9117 * This IOCTL is hilarious. See comments in 9118 * ip_sioctl_get_ifconf for the story. 9119 */ 9120 if (iocp->ioc_count == TRANSPARENT) 9121 copyin_size = SIZEOF_STRUCT(ifconf, 9122 iocp->ioc_flag); 9123 else 9124 copyin_size = iocp->ioc_count; 9125 mi_copyin(q, mp, NULL, copyin_size); 9126 return; 9127 9128 case O_SIOCGLIFCONF: 9129 case SIOCGLIFCONF: 9130 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9131 mi_copyin(q, mp, NULL, copyin_size); 9132 return; 9133 9134 case SIOCGLIFSRCOF: 9135 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9136 mi_copyin(q, mp, NULL, copyin_size); 9137 return; 9138 9139 case SIOCGIP6ADDRPOLICY: 9140 ip_sioctl_ip6addrpolicy(q, mp); 9141 ip6_asp_table_refrele(ipst); 9142 return; 9143 9144 case SIOCSIP6ADDRPOLICY: 9145 ip_sioctl_ip6addrpolicy(q, mp); 9146 return; 9147 9148 case SIOCGDSTINFO: 9149 ip_sioctl_dstinfo(q, mp); 9150 ip6_asp_table_refrele(ipst); 9151 return; 9152 9153 case ND_SET: 9154 case ND_GET: 9155 ip_process_legacy_nddprop(q, mp); 9156 return; 9157 9158 case SIOCSETPROP: 9159 case SIOCGETPROP: 9160 ip_sioctl_getsetprop(q, mp); 9161 return; 9162 9163 case I_PLINK: 9164 case I_PUNLINK: 9165 case I_LINK: 9166 case I_UNLINK: 9167 /* 9168 * We treat non-persistent link similarly as the persistent 9169 * link case, in terms of plumbing/unplumbing, as well as 9170 * dynamic re-plumbing events indicator. See comments 9171 * in ip_sioctl_plink() for more. 9172 * 9173 * Request can be enqueued in the 'ipsq' while waiting 9174 * to become exclusive. So bump up the conn ref. 9175 */ 9176 if (CONN_Q(q)) { 9177 CONN_INC_REF(Q_TO_CONN(q)); 9178 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9179 } 9180 ip_sioctl_plink(NULL, q, mp, NULL); 9181 return; 9182 9183 case IP_IOCTL: 9184 ip_wput_ioctl(q, mp); 9185 return; 9186 9187 case SIOCILB: 9188 /* The ioctl length varies depending on the ILB command. */ 9189 copyin_size = iocp->ioc_count; 9190 if (copyin_size < sizeof (ilb_cmd_t)) 9191 goto nak; 9192 mi_copyin(q, mp, NULL, copyin_size); 9193 return; 9194 9195 default: 9196 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9197 iocp->ioc_cmd, iocp->ioc_cmd); 9198 /* FALLTHRU */ 9199 } 9200 nak: 9201 if (mp->b_cont != NULL) { 9202 freemsg(mp->b_cont); 9203 mp->b_cont = NULL; 9204 } 9205 iocp->ioc_error = EINVAL; 9206 mp->b_datap->db_type = M_IOCNAK; 9207 iocp->ioc_count = 0; 9208 qreply(q, mp); 9209 } 9210 9211 static void 9212 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9213 { 9214 struct arpreq *ar; 9215 struct xarpreq *xar; 9216 mblk_t *tmp; 9217 struct iocblk *iocp; 9218 int x_arp_ioctl = B_FALSE; 9219 int *flagsp; 9220 char *storage = NULL; 9221 9222 ASSERT(ill != NULL); 9223 9224 iocp = (struct iocblk *)mp->b_rptr; 9225 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9226 9227 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9228 if ((iocp->ioc_cmd == SIOCGXARP) || 9229 (iocp->ioc_cmd == SIOCSXARP)) { 9230 x_arp_ioctl = B_TRUE; 9231 xar = (struct xarpreq *)tmp->b_rptr; 9232 flagsp = &xar->xarp_flags; 9233 storage = xar->xarp_ha.sdl_data; 9234 } else { 9235 ar = (struct arpreq *)tmp->b_rptr; 9236 flagsp = &ar->arp_flags; 9237 storage = ar->arp_ha.sa_data; 9238 } 9239 9240 /* 9241 * We're done if this is not an SIOCG{X}ARP 9242 */ 9243 if (x_arp_ioctl) { 9244 storage += ill_xarp_info(&xar->xarp_ha, ill); 9245 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9246 sizeof (xar->xarp_ha.sdl_data)) { 9247 iocp->ioc_error = EINVAL; 9248 return; 9249 } 9250 } 9251 *flagsp = ATF_INUSE; 9252 /* 9253 * If /sbin/arp told us we are the authority using the "permanent" 9254 * flag, or if this is one of my addresses print "permanent" 9255 * in the /sbin/arp output. 9256 */ 9257 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9258 *flagsp |= ATF_AUTHORITY; 9259 if (flags & NCE_F_NONUD) 9260 *flagsp |= ATF_PERM; /* not subject to aging */ 9261 if (flags & NCE_F_PUBLISH) 9262 *flagsp |= ATF_PUBL; 9263 if (hwaddr != NULL) { 9264 *flagsp |= ATF_COM; 9265 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9266 } 9267 } 9268 9269 /* 9270 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9271 * interface) create the next available logical interface for this 9272 * physical interface. 9273 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9274 * ipif with the specified name. 9275 * 9276 * If the address family is not AF_UNSPEC then set the address as well. 9277 * 9278 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9279 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9280 * 9281 * Executed as a writer on the ill. 9282 * So no lock is needed to traverse the ipif chain, or examine the 9283 * phyint flags. 9284 */ 9285 /* ARGSUSED */ 9286 int 9287 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9288 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9289 { 9290 mblk_t *mp1; 9291 struct lifreq *lifr; 9292 boolean_t isv6; 9293 boolean_t exists; 9294 char *name; 9295 char *endp; 9296 char *cp; 9297 int namelen; 9298 ipif_t *ipif; 9299 long id; 9300 ipsq_t *ipsq; 9301 ill_t *ill; 9302 sin_t *sin; 9303 int err = 0; 9304 boolean_t found_sep = B_FALSE; 9305 conn_t *connp; 9306 zoneid_t zoneid; 9307 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9308 9309 ASSERT(q->q_next == NULL); 9310 ip1dbg(("ip_sioctl_addif\n")); 9311 /* Existence of mp1 has been checked in ip_wput_nondata */ 9312 mp1 = mp->b_cont->b_cont; 9313 /* 9314 * Null terminate the string to protect against buffer 9315 * overrun. String was generated by user code and may not 9316 * be trusted. 9317 */ 9318 lifr = (struct lifreq *)mp1->b_rptr; 9319 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9320 name = lifr->lifr_name; 9321 ASSERT(CONN_Q(q)); 9322 connp = Q_TO_CONN(q); 9323 isv6 = (connp->conn_family == AF_INET6); 9324 zoneid = connp->conn_zoneid; 9325 namelen = mi_strlen(name); 9326 if (namelen == 0) 9327 return (EINVAL); 9328 9329 exists = B_FALSE; 9330 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9331 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9332 /* 9333 * Allow creating lo0 using SIOCLIFADDIF. 9334 * can't be any other writer thread. So can pass null below 9335 * for the last 4 args to ipif_lookup_name. 9336 */ 9337 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9338 &exists, isv6, zoneid, ipst); 9339 /* Prevent any further action */ 9340 if (ipif == NULL) { 9341 return (ENOBUFS); 9342 } else if (!exists) { 9343 /* We created the ipif now and as writer */ 9344 ipif_refrele(ipif); 9345 return (0); 9346 } else { 9347 ill = ipif->ipif_ill; 9348 ill_refhold(ill); 9349 ipif_refrele(ipif); 9350 } 9351 } else { 9352 /* Look for a colon in the name. */ 9353 endp = &name[namelen]; 9354 for (cp = endp; --cp > name; ) { 9355 if (*cp == IPIF_SEPARATOR_CHAR) { 9356 found_sep = B_TRUE; 9357 /* 9358 * Reject any non-decimal aliases for plumbing 9359 * of logical interfaces. Aliases with leading 9360 * zeroes are also rejected as they introduce 9361 * ambiguity in the naming of the interfaces. 9362 * Comparing with "0" takes care of all such 9363 * cases. 9364 */ 9365 if ((strncmp("0", cp+1, 1)) == 0) 9366 return (EINVAL); 9367 9368 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9369 id <= 0 || *endp != '\0') { 9370 return (EINVAL); 9371 } 9372 *cp = '\0'; 9373 break; 9374 } 9375 } 9376 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9377 if (found_sep) 9378 *cp = IPIF_SEPARATOR_CHAR; 9379 if (ill == NULL) 9380 return (ENXIO); 9381 } 9382 9383 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9384 B_TRUE); 9385 9386 /* 9387 * Release the refhold due to the lookup, now that we are excl 9388 * or we are just returning 9389 */ 9390 ill_refrele(ill); 9391 9392 if (ipsq == NULL) 9393 return (EINPROGRESS); 9394 9395 /* We are now exclusive on the IPSQ */ 9396 ASSERT(IAM_WRITER_ILL(ill)); 9397 9398 if (found_sep) { 9399 /* Now see if there is an IPIF with this unit number. */ 9400 for (ipif = ill->ill_ipif; ipif != NULL; 9401 ipif = ipif->ipif_next) { 9402 if (ipif->ipif_id == id) { 9403 err = EEXIST; 9404 goto done; 9405 } 9406 } 9407 } 9408 9409 /* 9410 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9411 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9412 * instead. 9413 */ 9414 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9415 B_TRUE, B_TRUE, &err)) == NULL) { 9416 goto done; 9417 } 9418 9419 /* Return created name with ioctl */ 9420 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9421 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9422 ip1dbg(("created %s\n", lifr->lifr_name)); 9423 9424 /* Set address */ 9425 sin = (sin_t *)&lifr->lifr_addr; 9426 if (sin->sin_family != AF_UNSPEC) { 9427 err = ip_sioctl_addr(ipif, sin, q, mp, 9428 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9429 } 9430 9431 done: 9432 ipsq_exit(ipsq); 9433 return (err); 9434 } 9435 9436 /* 9437 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9438 * interface) delete it based on the IP address (on this physical interface). 9439 * Otherwise delete it based on the ipif_id. 9440 * Also, special handling to allow a removeif of lo0. 9441 */ 9442 /* ARGSUSED */ 9443 int 9444 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9445 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9446 { 9447 conn_t *connp; 9448 ill_t *ill = ipif->ipif_ill; 9449 boolean_t success; 9450 ip_stack_t *ipst; 9451 9452 ipst = CONNQ_TO_IPST(q); 9453 9454 ASSERT(q->q_next == NULL); 9455 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9456 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9457 ASSERT(IAM_WRITER_IPIF(ipif)); 9458 9459 connp = Q_TO_CONN(q); 9460 /* 9461 * Special case for unplumbing lo0 (the loopback physical interface). 9462 * If unplumbing lo0, the incoming address structure has been 9463 * initialized to all zeros. When unplumbing lo0, all its logical 9464 * interfaces must be removed too. 9465 * 9466 * Note that this interface may be called to remove a specific 9467 * loopback logical interface (eg, lo0:1). But in that case 9468 * ipif->ipif_id != 0 so that the code path for that case is the 9469 * same as any other interface (meaning it skips the code directly 9470 * below). 9471 */ 9472 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9473 if (sin->sin_family == AF_UNSPEC && 9474 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9475 /* 9476 * Mark it condemned. No new ref. will be made to ill. 9477 */ 9478 mutex_enter(&ill->ill_lock); 9479 ill->ill_state_flags |= ILL_CONDEMNED; 9480 for (ipif = ill->ill_ipif; ipif != NULL; 9481 ipif = ipif->ipif_next) { 9482 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9483 } 9484 mutex_exit(&ill->ill_lock); 9485 9486 ipif = ill->ill_ipif; 9487 /* unplumb the loopback interface */ 9488 ill_delete(ill); 9489 mutex_enter(&connp->conn_lock); 9490 mutex_enter(&ill->ill_lock); 9491 9492 /* Are any references to this ill active */ 9493 if (ill_is_freeable(ill)) { 9494 mutex_exit(&ill->ill_lock); 9495 mutex_exit(&connp->conn_lock); 9496 ill_delete_tail(ill); 9497 mi_free(ill); 9498 return (0); 9499 } 9500 success = ipsq_pending_mp_add(connp, ipif, 9501 CONNP_TO_WQ(connp), mp, ILL_FREE); 9502 mutex_exit(&connp->conn_lock); 9503 mutex_exit(&ill->ill_lock); 9504 if (success) 9505 return (EINPROGRESS); 9506 else 9507 return (EINTR); 9508 } 9509 } 9510 9511 if (ipif->ipif_id == 0) { 9512 ipsq_t *ipsq; 9513 9514 /* Find based on address */ 9515 if (ipif->ipif_isv6) { 9516 sin6_t *sin6; 9517 9518 if (sin->sin_family != AF_INET6) 9519 return (EAFNOSUPPORT); 9520 9521 sin6 = (sin6_t *)sin; 9522 /* We are a writer, so we should be able to lookup */ 9523 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9524 ipst); 9525 } else { 9526 if (sin->sin_family != AF_INET) 9527 return (EAFNOSUPPORT); 9528 9529 /* We are a writer, so we should be able to lookup */ 9530 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9531 ipst); 9532 } 9533 if (ipif == NULL) { 9534 return (EADDRNOTAVAIL); 9535 } 9536 9537 /* 9538 * It is possible for a user to send an SIOCLIFREMOVEIF with 9539 * lifr_name of the physical interface but with an ip address 9540 * lifr_addr of a logical interface plumbed over it. 9541 * So update ipx_current_ipif now that ipif points to the 9542 * correct one. 9543 */ 9544 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9545 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9546 9547 /* This is a writer */ 9548 ipif_refrele(ipif); 9549 } 9550 9551 /* 9552 * Can not delete instance zero since it is tied to the ill. 9553 */ 9554 if (ipif->ipif_id == 0) 9555 return (EBUSY); 9556 9557 mutex_enter(&ill->ill_lock); 9558 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9559 mutex_exit(&ill->ill_lock); 9560 9561 ipif_free(ipif); 9562 9563 mutex_enter(&connp->conn_lock); 9564 mutex_enter(&ill->ill_lock); 9565 9566 /* Are any references to this ipif active */ 9567 if (ipif_is_freeable(ipif)) { 9568 mutex_exit(&ill->ill_lock); 9569 mutex_exit(&connp->conn_lock); 9570 ipif_non_duplicate(ipif); 9571 (void) ipif_down_tail(ipif); 9572 ipif_free_tail(ipif); /* frees ipif */ 9573 return (0); 9574 } 9575 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9576 IPIF_FREE); 9577 mutex_exit(&ill->ill_lock); 9578 mutex_exit(&connp->conn_lock); 9579 if (success) 9580 return (EINPROGRESS); 9581 else 9582 return (EINTR); 9583 } 9584 9585 /* 9586 * Restart the removeif ioctl. The refcnt has gone down to 0. 9587 * The ipif is already condemned. So can't find it thru lookups. 9588 */ 9589 /* ARGSUSED */ 9590 int 9591 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9592 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9593 { 9594 ill_t *ill = ipif->ipif_ill; 9595 9596 ASSERT(IAM_WRITER_IPIF(ipif)); 9597 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9598 9599 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9600 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9601 9602 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9603 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9604 ill_delete_tail(ill); 9605 mi_free(ill); 9606 return (0); 9607 } 9608 9609 ipif_non_duplicate(ipif); 9610 (void) ipif_down_tail(ipif); 9611 ipif_free_tail(ipif); 9612 9613 return (0); 9614 } 9615 9616 /* 9617 * Set the local interface address using the given prefix and ill_token. 9618 */ 9619 /* ARGSUSED */ 9620 int 9621 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9622 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9623 { 9624 int err; 9625 in6_addr_t v6addr; 9626 sin6_t *sin6; 9627 ill_t *ill; 9628 int i; 9629 9630 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9632 9633 ASSERT(IAM_WRITER_IPIF(ipif)); 9634 9635 if (!ipif->ipif_isv6) 9636 return (EINVAL); 9637 9638 if (sin->sin_family != AF_INET6) 9639 return (EAFNOSUPPORT); 9640 9641 sin6 = (sin6_t *)sin; 9642 v6addr = sin6->sin6_addr; 9643 ill = ipif->ipif_ill; 9644 9645 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9646 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9647 return (EADDRNOTAVAIL); 9648 9649 for (i = 0; i < 4; i++) 9650 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9651 9652 err = ip_sioctl_addr(ipif, sin, q, mp, 9653 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9654 return (err); 9655 } 9656 9657 /* 9658 * Restart entry point to restart the address set operation after the 9659 * refcounts have dropped to zero. 9660 */ 9661 /* ARGSUSED */ 9662 int 9663 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9664 ip_ioctl_cmd_t *ipip, void *ifreq) 9665 { 9666 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9668 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9669 } 9670 9671 /* 9672 * Set the local interface address. 9673 * Allow an address of all zero when the interface is down. 9674 */ 9675 /* ARGSUSED */ 9676 int 9677 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9678 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9679 { 9680 int err = 0; 9681 in6_addr_t v6addr; 9682 boolean_t need_up = B_FALSE; 9683 ill_t *ill; 9684 int i; 9685 9686 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9688 9689 ASSERT(IAM_WRITER_IPIF(ipif)); 9690 9691 ill = ipif->ipif_ill; 9692 if (ipif->ipif_isv6) { 9693 sin6_t *sin6; 9694 phyint_t *phyi; 9695 9696 if (sin->sin_family != AF_INET6) 9697 return (EAFNOSUPPORT); 9698 9699 sin6 = (sin6_t *)sin; 9700 v6addr = sin6->sin6_addr; 9701 phyi = ill->ill_phyint; 9702 9703 /* 9704 * Enforce that true multicast interfaces have a link-local 9705 * address for logical unit 0. 9706 * 9707 * However for those ipif's for which link-local address was 9708 * not created by default, also allow setting :: as the address. 9709 * This scenario would arise, when we delete an address on ipif 9710 * with logical unit 0, we would want to set :: as the address. 9711 */ 9712 if (ipif->ipif_id == 0 && 9713 (ill->ill_flags & ILLF_MULTICAST) && 9714 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9715 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9716 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9717 9718 /* 9719 * if default link-local was not created by kernel for 9720 * this ill, allow setting :: as the address on ipif:0. 9721 */ 9722 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9723 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9724 return (EADDRNOTAVAIL); 9725 } else { 9726 return (EADDRNOTAVAIL); 9727 } 9728 } 9729 9730 /* 9731 * up interfaces shouldn't have the unspecified address 9732 * unless they also have the IPIF_NOLOCAL flags set and 9733 * have a subnet assigned. 9734 */ 9735 if ((ipif->ipif_flags & IPIF_UP) && 9736 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9737 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9738 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9739 return (EADDRNOTAVAIL); 9740 } 9741 9742 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9743 return (EADDRNOTAVAIL); 9744 } else { 9745 ipaddr_t addr; 9746 9747 if (sin->sin_family != AF_INET) 9748 return (EAFNOSUPPORT); 9749 9750 addr = sin->sin_addr.s_addr; 9751 9752 /* Allow INADDR_ANY as the local address. */ 9753 if (addr != INADDR_ANY && 9754 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9755 return (EADDRNOTAVAIL); 9756 9757 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9758 } 9759 /* 9760 * verify that the address being configured is permitted by the 9761 * ill_allowed_ips[] for the interface. 9762 */ 9763 if (ill->ill_allowed_ips_cnt > 0) { 9764 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9765 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9766 &v6addr)) 9767 break; 9768 } 9769 if (i == ill->ill_allowed_ips_cnt) { 9770 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9771 return (EPERM); 9772 } 9773 } 9774 /* 9775 * Even if there is no change we redo things just to rerun 9776 * ipif_set_default. 9777 */ 9778 if (ipif->ipif_flags & IPIF_UP) { 9779 /* 9780 * Setting a new local address, make sure 9781 * we have net and subnet bcast ire's for 9782 * the old address if we need them. 9783 */ 9784 /* 9785 * If the interface is already marked up, 9786 * we call ipif_down which will take care 9787 * of ditching any IREs that have been set 9788 * up based on the old interface address. 9789 */ 9790 err = ipif_logical_down(ipif, q, mp); 9791 if (err == EINPROGRESS) 9792 return (err); 9793 (void) ipif_down_tail(ipif); 9794 need_up = 1; 9795 } 9796 9797 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9798 return (err); 9799 } 9800 9801 int 9802 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9803 boolean_t need_up) 9804 { 9805 in6_addr_t v6addr; 9806 in6_addr_t ov6addr; 9807 ipaddr_t addr; 9808 sin6_t *sin6; 9809 int sinlen; 9810 int err = 0; 9811 ill_t *ill = ipif->ipif_ill; 9812 boolean_t need_dl_down; 9813 boolean_t need_arp_down; 9814 struct iocblk *iocp; 9815 9816 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9817 9818 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9819 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9820 ASSERT(IAM_WRITER_IPIF(ipif)); 9821 9822 /* Must cancel any pending timer before taking the ill_lock */ 9823 if (ipif->ipif_recovery_id != 0) 9824 (void) untimeout(ipif->ipif_recovery_id); 9825 ipif->ipif_recovery_id = 0; 9826 9827 if (ipif->ipif_isv6) { 9828 sin6 = (sin6_t *)sin; 9829 v6addr = sin6->sin6_addr; 9830 sinlen = sizeof (struct sockaddr_in6); 9831 } else { 9832 addr = sin->sin_addr.s_addr; 9833 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9834 sinlen = sizeof (struct sockaddr_in); 9835 } 9836 mutex_enter(&ill->ill_lock); 9837 ov6addr = ipif->ipif_v6lcl_addr; 9838 ipif->ipif_v6lcl_addr = v6addr; 9839 sctp_update_ipif_addr(ipif, ov6addr); 9840 ipif->ipif_addr_ready = 0; 9841 9842 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9843 9844 /* 9845 * If the interface was previously marked as a duplicate, then since 9846 * we've now got a "new" address, it should no longer be considered a 9847 * duplicate -- even if the "new" address is the same as the old one. 9848 * Note that if all ipifs are down, we may have a pending ARP down 9849 * event to handle. This is because we want to recover from duplicates 9850 * and thus delay tearing down ARP until the duplicates have been 9851 * removed or disabled. 9852 */ 9853 need_dl_down = need_arp_down = B_FALSE; 9854 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9855 need_arp_down = !need_up; 9856 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9857 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9858 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9859 need_dl_down = B_TRUE; 9860 } 9861 } 9862 9863 ipif_set_default(ipif); 9864 9865 /* 9866 * If we've just manually set the IPv6 link-local address (0th ipif), 9867 * tag the ill so that future updates to the interface ID don't result 9868 * in this address getting automatically reconfigured from under the 9869 * administrator. 9870 */ 9871 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9872 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9873 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9874 ill->ill_manual_linklocal = 1; 9875 } 9876 9877 /* 9878 * When publishing an interface address change event, we only notify 9879 * the event listeners of the new address. It is assumed that if they 9880 * actively care about the addresses assigned that they will have 9881 * already discovered the previous address assigned (if there was one.) 9882 * 9883 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9884 */ 9885 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9886 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9887 NE_ADDRESS_CHANGE, sin, sinlen); 9888 } 9889 9890 mutex_exit(&ill->ill_lock); 9891 9892 if (need_up) { 9893 /* 9894 * Now bring the interface back up. If this 9895 * is the only IPIF for the ILL, ipif_up 9896 * will have to re-bind to the device, so 9897 * we may get back EINPROGRESS, in which 9898 * case, this IOCTL will get completed in 9899 * ip_rput_dlpi when we see the DL_BIND_ACK. 9900 */ 9901 err = ipif_up(ipif, q, mp); 9902 } else { 9903 /* Perhaps ilgs should use this ill */ 9904 update_conn_ill(NULL, ill->ill_ipst); 9905 } 9906 9907 if (need_dl_down) 9908 ill_dl_down(ill); 9909 9910 if (need_arp_down && !ill->ill_isv6) 9911 (void) ipif_arp_down(ipif); 9912 9913 /* 9914 * The default multicast interface might have changed (for 9915 * instance if the IPv6 scope of the address changed) 9916 */ 9917 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9918 9919 return (err); 9920 } 9921 9922 /* 9923 * Restart entry point to restart the address set operation after the 9924 * refcounts have dropped to zero. 9925 */ 9926 /* ARGSUSED */ 9927 int 9928 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9929 ip_ioctl_cmd_t *ipip, void *ifreq) 9930 { 9931 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9932 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9933 ASSERT(IAM_WRITER_IPIF(ipif)); 9934 (void) ipif_down_tail(ipif); 9935 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9936 } 9937 9938 /* ARGSUSED */ 9939 int 9940 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9941 ip_ioctl_cmd_t *ipip, void *if_req) 9942 { 9943 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9944 struct lifreq *lifr = (struct lifreq *)if_req; 9945 9946 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9947 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9948 /* 9949 * The net mask and address can't change since we have a 9950 * reference to the ipif. So no lock is necessary. 9951 */ 9952 if (ipif->ipif_isv6) { 9953 *sin6 = sin6_null; 9954 sin6->sin6_family = AF_INET6; 9955 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9956 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9957 sin6->sin6_scope_id = 9958 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9959 } 9960 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9961 lifr->lifr_addrlen = 9962 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9963 } else { 9964 *sin = sin_null; 9965 sin->sin_family = AF_INET; 9966 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9967 if (ipip->ipi_cmd_type == LIF_CMD) { 9968 lifr->lifr_addrlen = 9969 ip_mask_to_plen(ipif->ipif_net_mask); 9970 } 9971 } 9972 return (0); 9973 } 9974 9975 /* 9976 * Set the destination address for a pt-pt interface. 9977 */ 9978 /* ARGSUSED */ 9979 int 9980 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9981 ip_ioctl_cmd_t *ipip, void *if_req) 9982 { 9983 int err = 0; 9984 in6_addr_t v6addr; 9985 boolean_t need_up = B_FALSE; 9986 9987 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9988 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9989 ASSERT(IAM_WRITER_IPIF(ipif)); 9990 9991 if (ipif->ipif_isv6) { 9992 sin6_t *sin6; 9993 9994 if (sin->sin_family != AF_INET6) 9995 return (EAFNOSUPPORT); 9996 9997 sin6 = (sin6_t *)sin; 9998 v6addr = sin6->sin6_addr; 9999 10000 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10001 return (EADDRNOTAVAIL); 10002 } else { 10003 ipaddr_t addr; 10004 10005 if (sin->sin_family != AF_INET) 10006 return (EAFNOSUPPORT); 10007 10008 addr = sin->sin_addr.s_addr; 10009 if (addr != INADDR_ANY && 10010 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10011 return (EADDRNOTAVAIL); 10012 } 10013 10014 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10015 } 10016 10017 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10018 return (0); /* No change */ 10019 10020 if (ipif->ipif_flags & IPIF_UP) { 10021 /* 10022 * If the interface is already marked up, 10023 * we call ipif_down which will take care 10024 * of ditching any IREs that have been set 10025 * up based on the old pp dst address. 10026 */ 10027 err = ipif_logical_down(ipif, q, mp); 10028 if (err == EINPROGRESS) 10029 return (err); 10030 (void) ipif_down_tail(ipif); 10031 need_up = B_TRUE; 10032 } 10033 /* 10034 * could return EINPROGRESS. If so ioctl will complete in 10035 * ip_rput_dlpi_writer 10036 */ 10037 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10038 return (err); 10039 } 10040 10041 static int 10042 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10043 boolean_t need_up) 10044 { 10045 in6_addr_t v6addr; 10046 ill_t *ill = ipif->ipif_ill; 10047 int err = 0; 10048 boolean_t need_dl_down; 10049 boolean_t need_arp_down; 10050 10051 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10052 ipif->ipif_id, (void *)ipif)); 10053 10054 /* Must cancel any pending timer before taking the ill_lock */ 10055 if (ipif->ipif_recovery_id != 0) 10056 (void) untimeout(ipif->ipif_recovery_id); 10057 ipif->ipif_recovery_id = 0; 10058 10059 if (ipif->ipif_isv6) { 10060 sin6_t *sin6; 10061 10062 sin6 = (sin6_t *)sin; 10063 v6addr = sin6->sin6_addr; 10064 } else { 10065 ipaddr_t addr; 10066 10067 addr = sin->sin_addr.s_addr; 10068 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10069 } 10070 mutex_enter(&ill->ill_lock); 10071 /* Set point to point destination address. */ 10072 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10073 /* 10074 * Allow this as a means of creating logical 10075 * pt-pt interfaces on top of e.g. an Ethernet. 10076 * XXX Undocumented HACK for testing. 10077 * pt-pt interfaces are created with NUD disabled. 10078 */ 10079 ipif->ipif_flags |= IPIF_POINTOPOINT; 10080 ipif->ipif_flags &= ~IPIF_BROADCAST; 10081 if (ipif->ipif_isv6) 10082 ill->ill_flags |= ILLF_NONUD; 10083 } 10084 10085 /* 10086 * If the interface was previously marked as a duplicate, then since 10087 * we've now got a "new" address, it should no longer be considered a 10088 * duplicate -- even if the "new" address is the same as the old one. 10089 * Note that if all ipifs are down, we may have a pending ARP down 10090 * event to handle. 10091 */ 10092 need_dl_down = need_arp_down = B_FALSE; 10093 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10094 need_arp_down = !need_up; 10095 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10096 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10097 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10098 need_dl_down = B_TRUE; 10099 } 10100 } 10101 10102 /* 10103 * If we've just manually set the IPv6 destination link-local address 10104 * (0th ipif), tag the ill so that future updates to the destination 10105 * interface ID (as can happen with interfaces over IP tunnels) don't 10106 * result in this address getting automatically reconfigured from 10107 * under the administrator. 10108 */ 10109 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10110 ill->ill_manual_dst_linklocal = 1; 10111 10112 /* Set the new address. */ 10113 ipif->ipif_v6pp_dst_addr = v6addr; 10114 /* Make sure subnet tracks pp_dst */ 10115 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10116 mutex_exit(&ill->ill_lock); 10117 10118 if (need_up) { 10119 /* 10120 * Now bring the interface back up. If this 10121 * is the only IPIF for the ILL, ipif_up 10122 * will have to re-bind to the device, so 10123 * we may get back EINPROGRESS, in which 10124 * case, this IOCTL will get completed in 10125 * ip_rput_dlpi when we see the DL_BIND_ACK. 10126 */ 10127 err = ipif_up(ipif, q, mp); 10128 } 10129 10130 if (need_dl_down) 10131 ill_dl_down(ill); 10132 if (need_arp_down && !ipif->ipif_isv6) 10133 (void) ipif_arp_down(ipif); 10134 10135 return (err); 10136 } 10137 10138 /* 10139 * Restart entry point to restart the dstaddress set operation after the 10140 * refcounts have dropped to zero. 10141 */ 10142 /* ARGSUSED */ 10143 int 10144 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10145 ip_ioctl_cmd_t *ipip, void *ifreq) 10146 { 10147 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10148 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10149 (void) ipif_down_tail(ipif); 10150 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10151 } 10152 10153 /* ARGSUSED */ 10154 int 10155 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10156 ip_ioctl_cmd_t *ipip, void *if_req) 10157 { 10158 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10159 10160 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10161 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10162 /* 10163 * Get point to point destination address. The addresses can't 10164 * change since we hold a reference to the ipif. 10165 */ 10166 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10167 return (EADDRNOTAVAIL); 10168 10169 if (ipif->ipif_isv6) { 10170 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10171 *sin6 = sin6_null; 10172 sin6->sin6_family = AF_INET6; 10173 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10174 } else { 10175 *sin = sin_null; 10176 sin->sin_family = AF_INET; 10177 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10178 } 10179 return (0); 10180 } 10181 10182 /* 10183 * Check which flags will change by the given flags being set 10184 * silently ignore flags which userland is not allowed to control. 10185 * (Because these flags may change between SIOCGLIFFLAGS and 10186 * SIOCSLIFFLAGS, and that's outside of userland's control, 10187 * we need to silently ignore them rather than fail.) 10188 */ 10189 static void 10190 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10191 uint64_t *offp) 10192 { 10193 ill_t *ill = ipif->ipif_ill; 10194 phyint_t *phyi = ill->ill_phyint; 10195 uint64_t cantchange_flags, intf_flags; 10196 uint64_t turn_on, turn_off; 10197 10198 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10199 cantchange_flags = IFF_CANTCHANGE; 10200 if (IS_IPMP(ill)) 10201 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10202 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10203 turn_off = intf_flags & turn_on; 10204 turn_on ^= turn_off; 10205 *onp = turn_on; 10206 *offp = turn_off; 10207 } 10208 10209 /* 10210 * Set interface flags. Many flags require special handling (e.g., 10211 * bringing the interface down); see below for details. 10212 * 10213 * NOTE : We really don't enforce that ipif_id zero should be used 10214 * for setting any flags other than IFF_LOGINT_FLAGS. This 10215 * is because applications generally does SICGLIFFLAGS and 10216 * ORs in the new flags (that affects the logical) and does a 10217 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10218 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10219 * flags that will be turned on is correct with respect to 10220 * ipif_id 0. For backward compatibility reasons, it is not done. 10221 */ 10222 /* ARGSUSED */ 10223 int 10224 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10225 ip_ioctl_cmd_t *ipip, void *if_req) 10226 { 10227 uint64_t turn_on; 10228 uint64_t turn_off; 10229 int err = 0; 10230 phyint_t *phyi; 10231 ill_t *ill; 10232 conn_t *connp; 10233 uint64_t intf_flags; 10234 boolean_t phyint_flags_modified = B_FALSE; 10235 uint64_t flags; 10236 struct ifreq *ifr; 10237 struct lifreq *lifr; 10238 boolean_t set_linklocal = B_FALSE; 10239 10240 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10242 10243 ASSERT(IAM_WRITER_IPIF(ipif)); 10244 10245 ill = ipif->ipif_ill; 10246 phyi = ill->ill_phyint; 10247 10248 if (ipip->ipi_cmd_type == IF_CMD) { 10249 ifr = (struct ifreq *)if_req; 10250 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10251 } else { 10252 lifr = (struct lifreq *)if_req; 10253 flags = lifr->lifr_flags; 10254 } 10255 10256 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10257 10258 /* 10259 * Have the flags been set correctly until now? 10260 */ 10261 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10262 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10263 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10264 /* 10265 * Compare the new flags to the old, and partition 10266 * into those coming on and those going off. 10267 * For the 16 bit command keep the bits above bit 16 unchanged. 10268 */ 10269 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10270 flags |= intf_flags & ~0xFFFF; 10271 10272 /* 10273 * Explicitly fail attempts to change flags that are always invalid on 10274 * an IPMP meta-interface. 10275 */ 10276 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10277 return (EINVAL); 10278 10279 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10280 if ((turn_on|turn_off) == 0) 10281 return (0); /* No change */ 10282 10283 /* 10284 * All test addresses must be IFF_DEPRECATED (to ensure source address 10285 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10286 * allow it to be turned off. 10287 */ 10288 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10289 (turn_on|intf_flags) & IFF_NOFAILOVER) 10290 return (EINVAL); 10291 10292 if ((connp = Q_TO_CONN(q)) == NULL) 10293 return (EINVAL); 10294 10295 /* 10296 * Only vrrp control socket is allowed to change IFF_UP and 10297 * IFF_NOACCEPT flags when IFF_VRRP is set. 10298 */ 10299 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10300 if (!connp->conn_isvrrp) 10301 return (EINVAL); 10302 } 10303 10304 /* 10305 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10306 * VRRP control socket. 10307 */ 10308 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10309 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10310 return (EINVAL); 10311 } 10312 10313 if (turn_on & IFF_NOFAILOVER) { 10314 turn_on |= IFF_DEPRECATED; 10315 flags |= IFF_DEPRECATED; 10316 } 10317 10318 /* 10319 * On underlying interfaces, only allow applications to manage test 10320 * addresses -- otherwise, they may get confused when the address 10321 * moves as part of being brought up. Likewise, prevent an 10322 * application-managed test address from being converted to a data 10323 * address. To prevent migration of administratively up addresses in 10324 * the kernel, we don't allow them to be converted either. 10325 */ 10326 if (IS_UNDER_IPMP(ill)) { 10327 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10328 10329 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10330 return (EINVAL); 10331 10332 if ((turn_off & IFF_NOFAILOVER) && 10333 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10334 return (EINVAL); 10335 } 10336 10337 /* 10338 * Only allow IFF_TEMPORARY flag to be set on 10339 * IPv6 interfaces. 10340 */ 10341 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10342 return (EINVAL); 10343 10344 /* 10345 * cannot turn off IFF_NOXMIT on VNI interfaces. 10346 */ 10347 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10348 return (EINVAL); 10349 10350 /* 10351 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10352 * interfaces. It makes no sense in that context. 10353 */ 10354 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10355 return (EINVAL); 10356 10357 /* 10358 * For IPv6 ipif_id 0, don't allow the interface to be up without 10359 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10360 * If the link local address isn't set, and can be set, it will get 10361 * set later on in this function. 10362 */ 10363 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10364 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10365 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10366 if (ipif_cant_setlinklocal(ipif)) 10367 return (EINVAL); 10368 set_linklocal = B_TRUE; 10369 } 10370 10371 /* 10372 * If we modify physical interface flags, we'll potentially need to 10373 * send up two routing socket messages for the changes (one for the 10374 * IPv4 ill, and another for the IPv6 ill). Note that here. 10375 */ 10376 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10377 phyint_flags_modified = B_TRUE; 10378 10379 /* 10380 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10381 * (otherwise, we'd immediately use them, defeating standby). Also, 10382 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10383 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10384 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10385 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10386 * will not be honored. 10387 */ 10388 if (turn_on & PHYI_STANDBY) { 10389 /* 10390 * No need to grab ill_g_usesrc_lock here; see the 10391 * synchronization notes in ip.c. 10392 */ 10393 if (ill->ill_usesrc_grp_next != NULL || 10394 intf_flags & PHYI_INACTIVE) 10395 return (EINVAL); 10396 if (!(flags & PHYI_FAILED)) { 10397 flags |= PHYI_INACTIVE; 10398 turn_on |= PHYI_INACTIVE; 10399 } 10400 } 10401 10402 if (turn_off & PHYI_STANDBY) { 10403 flags &= ~PHYI_INACTIVE; 10404 turn_off |= PHYI_INACTIVE; 10405 } 10406 10407 /* 10408 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10409 * would end up on. 10410 */ 10411 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10412 (PHYI_FAILED | PHYI_INACTIVE)) 10413 return (EINVAL); 10414 10415 /* 10416 * If ILLF_ROUTER changes, we need to change the ip forwarding 10417 * status of the interface. 10418 */ 10419 if ((turn_on | turn_off) & ILLF_ROUTER) { 10420 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10421 if (err != 0) 10422 return (err); 10423 } 10424 10425 /* 10426 * If the interface is not UP and we are not going to 10427 * bring it UP, record the flags and return. When the 10428 * interface comes UP later, the right actions will be 10429 * taken. 10430 */ 10431 if (!(ipif->ipif_flags & IPIF_UP) && 10432 !(turn_on & IPIF_UP)) { 10433 /* Record new flags in their respective places. */ 10434 mutex_enter(&ill->ill_lock); 10435 mutex_enter(&ill->ill_phyint->phyint_lock); 10436 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10437 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10438 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10439 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10440 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10441 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10442 mutex_exit(&ill->ill_lock); 10443 mutex_exit(&ill->ill_phyint->phyint_lock); 10444 10445 /* 10446 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10447 * same to the kernel: if any of them has been set by 10448 * userland, the interface cannot be used for data traffic. 10449 */ 10450 if ((turn_on|turn_off) & 10451 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10452 ASSERT(!IS_IPMP(ill)); 10453 /* 10454 * It's possible the ill is part of an "anonymous" 10455 * IPMP group rather than a real group. In that case, 10456 * there are no other interfaces in the group and thus 10457 * no need to call ipmp_phyint_refresh_active(). 10458 */ 10459 if (IS_UNDER_IPMP(ill)) 10460 ipmp_phyint_refresh_active(phyi); 10461 } 10462 10463 if (phyint_flags_modified) { 10464 if (phyi->phyint_illv4 != NULL) { 10465 ip_rts_ifmsg(phyi->phyint_illv4-> 10466 ill_ipif, RTSQ_DEFAULT); 10467 } 10468 if (phyi->phyint_illv6 != NULL) { 10469 ip_rts_ifmsg(phyi->phyint_illv6-> 10470 ill_ipif, RTSQ_DEFAULT); 10471 } 10472 } 10473 /* The default multicast interface might have changed */ 10474 ire_increment_multicast_generation(ill->ill_ipst, 10475 ill->ill_isv6); 10476 10477 return (0); 10478 } else if (set_linklocal) { 10479 mutex_enter(&ill->ill_lock); 10480 if (set_linklocal) 10481 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10482 mutex_exit(&ill->ill_lock); 10483 } 10484 10485 /* 10486 * Disallow IPv6 interfaces coming up that have the unspecified address, 10487 * or point-to-point interfaces with an unspecified destination. We do 10488 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10489 * have a subnet assigned, which is how in.ndpd currently manages its 10490 * onlink prefix list when no addresses are configured with those 10491 * prefixes. 10492 */ 10493 if (ipif->ipif_isv6 && 10494 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10495 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10496 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10497 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10498 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10499 return (EINVAL); 10500 } 10501 10502 /* 10503 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10504 * from being brought up. 10505 */ 10506 if (!ipif->ipif_isv6 && 10507 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10508 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10509 return (EINVAL); 10510 } 10511 10512 /* 10513 * If we are going to change one or more of the flags that are 10514 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10515 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10516 * IPIF_NOFAILOVER, we will take special action. This is 10517 * done by bring the ipif down, changing the flags and bringing 10518 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10519 * back up will trigger the address to be moved. 10520 * 10521 * If we are going to change IFF_NOACCEPT, we need to bring 10522 * all the ipifs down then bring them up again. The act of 10523 * bringing all the ipifs back up will trigger the local 10524 * ires being recreated with "no_accept" set/cleared. 10525 * 10526 * Note that ILLF_NOACCEPT is always set separately from the 10527 * other flags. 10528 */ 10529 if ((turn_on|turn_off) & 10530 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10531 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10532 IPIF_NOFAILOVER)) { 10533 /* 10534 * ipif_down() will ire_delete bcast ire's for the subnet, 10535 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10536 * entries shared between multiple ipifs on the same subnet. 10537 */ 10538 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10539 !(turn_off & IPIF_UP)) { 10540 if (ipif->ipif_flags & IPIF_UP) 10541 ill->ill_logical_down = 1; 10542 turn_on &= ~IPIF_UP; 10543 } 10544 err = ipif_down(ipif, q, mp); 10545 ip1dbg(("ipif_down returns %d err ", err)); 10546 if (err == EINPROGRESS) 10547 return (err); 10548 (void) ipif_down_tail(ipif); 10549 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10550 /* 10551 * If we can quiesce the ill, then continue. If not, then 10552 * ip_sioctl_flags_tail() will be called from 10553 * ipif_ill_refrele_tail(). 10554 */ 10555 ill_down_ipifs(ill, B_TRUE); 10556 10557 mutex_enter(&connp->conn_lock); 10558 mutex_enter(&ill->ill_lock); 10559 if (!ill_is_quiescent(ill)) { 10560 boolean_t success; 10561 10562 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10563 q, mp, ILL_DOWN); 10564 mutex_exit(&ill->ill_lock); 10565 mutex_exit(&connp->conn_lock); 10566 return (success ? EINPROGRESS : EINTR); 10567 } 10568 mutex_exit(&ill->ill_lock); 10569 mutex_exit(&connp->conn_lock); 10570 } 10571 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10572 } 10573 10574 static int 10575 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10576 { 10577 ill_t *ill; 10578 phyint_t *phyi; 10579 uint64_t turn_on, turn_off; 10580 boolean_t phyint_flags_modified = B_FALSE; 10581 int err = 0; 10582 boolean_t set_linklocal = B_FALSE; 10583 10584 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10585 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10586 10587 ASSERT(IAM_WRITER_IPIF(ipif)); 10588 10589 ill = ipif->ipif_ill; 10590 phyi = ill->ill_phyint; 10591 10592 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10593 10594 /* 10595 * IFF_UP is handled separately. 10596 */ 10597 turn_on &= ~IFF_UP; 10598 turn_off &= ~IFF_UP; 10599 10600 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10601 phyint_flags_modified = B_TRUE; 10602 10603 /* 10604 * Now we change the flags. Track current value of 10605 * other flags in their respective places. 10606 */ 10607 mutex_enter(&ill->ill_lock); 10608 mutex_enter(&phyi->phyint_lock); 10609 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10610 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10611 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10612 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10613 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10614 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10615 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10616 set_linklocal = B_TRUE; 10617 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10618 } 10619 10620 mutex_exit(&ill->ill_lock); 10621 mutex_exit(&phyi->phyint_lock); 10622 10623 if (set_linklocal) 10624 (void) ipif_setlinklocal(ipif); 10625 10626 /* 10627 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10628 * the kernel: if any of them has been set by userland, the interface 10629 * cannot be used for data traffic. 10630 */ 10631 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10632 ASSERT(!IS_IPMP(ill)); 10633 /* 10634 * It's possible the ill is part of an "anonymous" IPMP group 10635 * rather than a real group. In that case, there are no other 10636 * interfaces in the group and thus no need for us to call 10637 * ipmp_phyint_refresh_active(). 10638 */ 10639 if (IS_UNDER_IPMP(ill)) 10640 ipmp_phyint_refresh_active(phyi); 10641 } 10642 10643 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10644 /* 10645 * If the ILLF_NOACCEPT flag is changed, bring up all the 10646 * ipifs that were brought down. 10647 * 10648 * The routing sockets messages are sent as the result 10649 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10650 * as well. 10651 */ 10652 err = ill_up_ipifs(ill, q, mp); 10653 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10654 /* 10655 * XXX ipif_up really does not know whether a phyint flags 10656 * was modified or not. So, it sends up information on 10657 * only one routing sockets message. As we don't bring up 10658 * the interface and also set PHYI_ flags simultaneously 10659 * it should be okay. 10660 */ 10661 err = ipif_up(ipif, q, mp); 10662 } else { 10663 /* 10664 * Make sure routing socket sees all changes to the flags. 10665 * ipif_up_done* handles this when we use ipif_up. 10666 */ 10667 if (phyint_flags_modified) { 10668 if (phyi->phyint_illv4 != NULL) { 10669 ip_rts_ifmsg(phyi->phyint_illv4-> 10670 ill_ipif, RTSQ_DEFAULT); 10671 } 10672 if (phyi->phyint_illv6 != NULL) { 10673 ip_rts_ifmsg(phyi->phyint_illv6-> 10674 ill_ipif, RTSQ_DEFAULT); 10675 } 10676 } else { 10677 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10678 } 10679 /* 10680 * Update the flags in SCTP's IPIF list, ipif_up() will do 10681 * this in need_up case. 10682 */ 10683 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10684 } 10685 10686 /* The default multicast interface might have changed */ 10687 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10688 return (err); 10689 } 10690 10691 /* 10692 * Restart the flags operation now that the refcounts have dropped to zero. 10693 */ 10694 /* ARGSUSED */ 10695 int 10696 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10697 ip_ioctl_cmd_t *ipip, void *if_req) 10698 { 10699 uint64_t flags; 10700 struct ifreq *ifr = if_req; 10701 struct lifreq *lifr = if_req; 10702 uint64_t turn_on, turn_off; 10703 10704 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10705 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10706 10707 if (ipip->ipi_cmd_type == IF_CMD) { 10708 /* cast to uint16_t prevents unwanted sign extension */ 10709 flags = (uint16_t)ifr->ifr_flags; 10710 } else { 10711 flags = lifr->lifr_flags; 10712 } 10713 10714 /* 10715 * If this function call is a result of the ILLF_NOACCEPT flag 10716 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10717 */ 10718 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10719 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10720 (void) ipif_down_tail(ipif); 10721 10722 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10723 } 10724 10725 /* 10726 * Can operate on either a module or a driver queue. 10727 */ 10728 /* ARGSUSED */ 10729 int 10730 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10731 ip_ioctl_cmd_t *ipip, void *if_req) 10732 { 10733 /* 10734 * Has the flags been set correctly till now ? 10735 */ 10736 ill_t *ill = ipif->ipif_ill; 10737 phyint_t *phyi = ill->ill_phyint; 10738 10739 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10740 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10741 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10742 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10743 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10744 10745 /* 10746 * Need a lock since some flags can be set even when there are 10747 * references to the ipif. 10748 */ 10749 mutex_enter(&ill->ill_lock); 10750 if (ipip->ipi_cmd_type == IF_CMD) { 10751 struct ifreq *ifr = (struct ifreq *)if_req; 10752 10753 /* Get interface flags (low 16 only). */ 10754 ifr->ifr_flags = ((ipif->ipif_flags | 10755 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10756 } else { 10757 struct lifreq *lifr = (struct lifreq *)if_req; 10758 10759 /* Get interface flags. */ 10760 lifr->lifr_flags = ipif->ipif_flags | 10761 ill->ill_flags | phyi->phyint_flags; 10762 } 10763 mutex_exit(&ill->ill_lock); 10764 return (0); 10765 } 10766 10767 /* 10768 * We allow the MTU to be set on an ILL, but not have it be different 10769 * for different IPIFs since we don't actually send packets on IPIFs. 10770 */ 10771 /* ARGSUSED */ 10772 int 10773 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10774 ip_ioctl_cmd_t *ipip, void *if_req) 10775 { 10776 int mtu; 10777 int ip_min_mtu; 10778 struct ifreq *ifr; 10779 struct lifreq *lifr; 10780 ill_t *ill; 10781 10782 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10783 ipif->ipif_id, (void *)ipif)); 10784 if (ipip->ipi_cmd_type == IF_CMD) { 10785 ifr = (struct ifreq *)if_req; 10786 mtu = ifr->ifr_metric; 10787 } else { 10788 lifr = (struct lifreq *)if_req; 10789 mtu = lifr->lifr_mtu; 10790 } 10791 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10792 if (ipif->ipif_id != 0) 10793 return (EINVAL); 10794 10795 ill = ipif->ipif_ill; 10796 if (ipif->ipif_isv6) 10797 ip_min_mtu = IPV6_MIN_MTU; 10798 else 10799 ip_min_mtu = IP_MIN_MTU; 10800 10801 mutex_enter(&ill->ill_lock); 10802 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10803 mutex_exit(&ill->ill_lock); 10804 return (EINVAL); 10805 } 10806 /* Avoid increasing ill_mc_mtu */ 10807 if (ill->ill_mc_mtu > mtu) 10808 ill->ill_mc_mtu = mtu; 10809 10810 /* 10811 * The dce and fragmentation code can handle changes to ill_mtu 10812 * concurrent with sending/fragmenting packets. 10813 */ 10814 ill->ill_mtu = mtu; 10815 ill->ill_flags |= ILLF_FIXEDMTU; 10816 mutex_exit(&ill->ill_lock); 10817 10818 /* 10819 * Make sure all dce_generation checks find out 10820 * that ill_mtu/ill_mc_mtu has changed. 10821 */ 10822 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10823 10824 /* 10825 * Refresh IPMP meta-interface MTU if necessary. 10826 */ 10827 if (IS_UNDER_IPMP(ill)) 10828 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10829 10830 /* Update the MTU in SCTP's list */ 10831 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10832 return (0); 10833 } 10834 10835 /* Get interface MTU. */ 10836 /* ARGSUSED */ 10837 int 10838 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10839 ip_ioctl_cmd_t *ipip, void *if_req) 10840 { 10841 struct ifreq *ifr; 10842 struct lifreq *lifr; 10843 10844 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10845 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10846 10847 /* 10848 * We allow a get on any logical interface even though the set 10849 * can only be done on logical unit 0. 10850 */ 10851 if (ipip->ipi_cmd_type == IF_CMD) { 10852 ifr = (struct ifreq *)if_req; 10853 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10854 } else { 10855 lifr = (struct lifreq *)if_req; 10856 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10857 } 10858 return (0); 10859 } 10860 10861 /* Set interface broadcast address. */ 10862 /* ARGSUSED2 */ 10863 int 10864 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10865 ip_ioctl_cmd_t *ipip, void *if_req) 10866 { 10867 ipaddr_t addr; 10868 ire_t *ire; 10869 ill_t *ill = ipif->ipif_ill; 10870 ip_stack_t *ipst = ill->ill_ipst; 10871 10872 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10873 ipif->ipif_id)); 10874 10875 ASSERT(IAM_WRITER_IPIF(ipif)); 10876 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10877 return (EADDRNOTAVAIL); 10878 10879 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10880 10881 if (sin->sin_family != AF_INET) 10882 return (EAFNOSUPPORT); 10883 10884 addr = sin->sin_addr.s_addr; 10885 10886 if (ipif->ipif_flags & IPIF_UP) { 10887 /* 10888 * If we are already up, make sure the new 10889 * broadcast address makes sense. If it does, 10890 * there should be an IRE for it already. 10891 */ 10892 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10893 ill, ipif->ipif_zoneid, NULL, 10894 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10895 if (ire == NULL) { 10896 return (EINVAL); 10897 } else { 10898 ire_refrele(ire); 10899 } 10900 } 10901 /* 10902 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10903 * needs to already exist we never need to change the set of 10904 * IRE_BROADCASTs when we are UP. 10905 */ 10906 if (addr != ipif->ipif_brd_addr) 10907 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10908 10909 return (0); 10910 } 10911 10912 /* Get interface broadcast address. */ 10913 /* ARGSUSED */ 10914 int 10915 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10916 ip_ioctl_cmd_t *ipip, void *if_req) 10917 { 10918 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10920 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10921 return (EADDRNOTAVAIL); 10922 10923 /* IPIF_BROADCAST not possible with IPv6 */ 10924 ASSERT(!ipif->ipif_isv6); 10925 *sin = sin_null; 10926 sin->sin_family = AF_INET; 10927 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10928 return (0); 10929 } 10930 10931 /* 10932 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10933 */ 10934 /* ARGSUSED */ 10935 int 10936 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10937 ip_ioctl_cmd_t *ipip, void *if_req) 10938 { 10939 int err = 0; 10940 in6_addr_t v6mask; 10941 10942 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10944 10945 ASSERT(IAM_WRITER_IPIF(ipif)); 10946 10947 if (ipif->ipif_isv6) { 10948 sin6_t *sin6; 10949 10950 if (sin->sin_family != AF_INET6) 10951 return (EAFNOSUPPORT); 10952 10953 sin6 = (sin6_t *)sin; 10954 v6mask = sin6->sin6_addr; 10955 } else { 10956 ipaddr_t mask; 10957 10958 if (sin->sin_family != AF_INET) 10959 return (EAFNOSUPPORT); 10960 10961 mask = sin->sin_addr.s_addr; 10962 if (!ip_contiguous_mask(ntohl(mask))) 10963 return (ENOTSUP); 10964 V4MASK_TO_V6(mask, v6mask); 10965 } 10966 10967 /* 10968 * No big deal if the interface isn't already up, or the mask 10969 * isn't really changing, or this is pt-pt. 10970 */ 10971 if (!(ipif->ipif_flags & IPIF_UP) || 10972 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10973 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10974 ipif->ipif_v6net_mask = v6mask; 10975 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10976 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10977 ipif->ipif_v6net_mask, 10978 ipif->ipif_v6subnet); 10979 } 10980 return (0); 10981 } 10982 /* 10983 * Make sure we have valid net and subnet broadcast ire's 10984 * for the old netmask, if needed by other logical interfaces. 10985 */ 10986 err = ipif_logical_down(ipif, q, mp); 10987 if (err == EINPROGRESS) 10988 return (err); 10989 (void) ipif_down_tail(ipif); 10990 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10991 return (err); 10992 } 10993 10994 static int 10995 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10996 { 10997 in6_addr_t v6mask; 10998 int err = 0; 10999 11000 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11002 11003 if (ipif->ipif_isv6) { 11004 sin6_t *sin6; 11005 11006 sin6 = (sin6_t *)sin; 11007 v6mask = sin6->sin6_addr; 11008 } else { 11009 ipaddr_t mask; 11010 11011 mask = sin->sin_addr.s_addr; 11012 V4MASK_TO_V6(mask, v6mask); 11013 } 11014 11015 ipif->ipif_v6net_mask = v6mask; 11016 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11017 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11018 ipif->ipif_v6subnet); 11019 } 11020 err = ipif_up(ipif, q, mp); 11021 11022 if (err == 0 || err == EINPROGRESS) { 11023 /* 11024 * The interface must be DL_BOUND if this packet has to 11025 * go out on the wire. Since we only go through a logical 11026 * down and are bound with the driver during an internal 11027 * down/up that is satisfied. 11028 */ 11029 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11030 /* Potentially broadcast an address mask reply. */ 11031 ipif_mask_reply(ipif); 11032 } 11033 } 11034 return (err); 11035 } 11036 11037 /* ARGSUSED */ 11038 int 11039 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11040 ip_ioctl_cmd_t *ipip, void *if_req) 11041 { 11042 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11044 (void) ipif_down_tail(ipif); 11045 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11046 } 11047 11048 /* Get interface net mask. */ 11049 /* ARGSUSED */ 11050 int 11051 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11052 ip_ioctl_cmd_t *ipip, void *if_req) 11053 { 11054 struct lifreq *lifr = (struct lifreq *)if_req; 11055 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11056 11057 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11058 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11059 11060 /* 11061 * net mask can't change since we have a reference to the ipif. 11062 */ 11063 if (ipif->ipif_isv6) { 11064 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11065 *sin6 = sin6_null; 11066 sin6->sin6_family = AF_INET6; 11067 sin6->sin6_addr = ipif->ipif_v6net_mask; 11068 lifr->lifr_addrlen = 11069 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11070 } else { 11071 *sin = sin_null; 11072 sin->sin_family = AF_INET; 11073 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11074 if (ipip->ipi_cmd_type == LIF_CMD) { 11075 lifr->lifr_addrlen = 11076 ip_mask_to_plen(ipif->ipif_net_mask); 11077 } 11078 } 11079 return (0); 11080 } 11081 11082 /* ARGSUSED */ 11083 int 11084 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11085 ip_ioctl_cmd_t *ipip, void *if_req) 11086 { 11087 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11088 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11089 11090 /* 11091 * Since no applications should ever be setting metrics on underlying 11092 * interfaces, we explicitly fail to smoke 'em out. 11093 */ 11094 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11095 return (EINVAL); 11096 11097 /* 11098 * Set interface metric. We don't use this for 11099 * anything but we keep track of it in case it is 11100 * important to routing applications or such. 11101 */ 11102 if (ipip->ipi_cmd_type == IF_CMD) { 11103 struct ifreq *ifr; 11104 11105 ifr = (struct ifreq *)if_req; 11106 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11107 } else { 11108 struct lifreq *lifr; 11109 11110 lifr = (struct lifreq *)if_req; 11111 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11112 } 11113 return (0); 11114 } 11115 11116 /* ARGSUSED */ 11117 int 11118 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11119 ip_ioctl_cmd_t *ipip, void *if_req) 11120 { 11121 /* Get interface metric. */ 11122 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11123 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11124 11125 if (ipip->ipi_cmd_type == IF_CMD) { 11126 struct ifreq *ifr; 11127 11128 ifr = (struct ifreq *)if_req; 11129 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11130 } else { 11131 struct lifreq *lifr; 11132 11133 lifr = (struct lifreq *)if_req; 11134 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11135 } 11136 11137 return (0); 11138 } 11139 11140 /* ARGSUSED */ 11141 int 11142 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11143 ip_ioctl_cmd_t *ipip, void *if_req) 11144 { 11145 int arp_muxid; 11146 11147 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11148 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11149 /* 11150 * Set the muxid returned from I_PLINK. 11151 */ 11152 if (ipip->ipi_cmd_type == IF_CMD) { 11153 struct ifreq *ifr = (struct ifreq *)if_req; 11154 11155 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11156 arp_muxid = ifr->ifr_arp_muxid; 11157 } else { 11158 struct lifreq *lifr = (struct lifreq *)if_req; 11159 11160 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11161 arp_muxid = lifr->lifr_arp_muxid; 11162 } 11163 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11164 return (0); 11165 } 11166 11167 /* ARGSUSED */ 11168 int 11169 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11170 ip_ioctl_cmd_t *ipip, void *if_req) 11171 { 11172 int arp_muxid = 0; 11173 11174 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11176 /* 11177 * Get the muxid saved in ill for I_PUNLINK. 11178 */ 11179 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11180 if (ipip->ipi_cmd_type == IF_CMD) { 11181 struct ifreq *ifr = (struct ifreq *)if_req; 11182 11183 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11184 ifr->ifr_arp_muxid = arp_muxid; 11185 } else { 11186 struct lifreq *lifr = (struct lifreq *)if_req; 11187 11188 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11189 lifr->lifr_arp_muxid = arp_muxid; 11190 } 11191 return (0); 11192 } 11193 11194 /* 11195 * Set the subnet prefix. Does not modify the broadcast address. 11196 */ 11197 /* ARGSUSED */ 11198 int 11199 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11200 ip_ioctl_cmd_t *ipip, void *if_req) 11201 { 11202 int err = 0; 11203 in6_addr_t v6addr; 11204 in6_addr_t v6mask; 11205 boolean_t need_up = B_FALSE; 11206 int addrlen; 11207 11208 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11209 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11210 11211 ASSERT(IAM_WRITER_IPIF(ipif)); 11212 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11213 11214 if (ipif->ipif_isv6) { 11215 sin6_t *sin6; 11216 11217 if (sin->sin_family != AF_INET6) 11218 return (EAFNOSUPPORT); 11219 11220 sin6 = (sin6_t *)sin; 11221 v6addr = sin6->sin6_addr; 11222 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11223 return (EADDRNOTAVAIL); 11224 } else { 11225 ipaddr_t addr; 11226 11227 if (sin->sin_family != AF_INET) 11228 return (EAFNOSUPPORT); 11229 11230 addr = sin->sin_addr.s_addr; 11231 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11232 return (EADDRNOTAVAIL); 11233 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11234 /* Add 96 bits */ 11235 addrlen += IPV6_ABITS - IP_ABITS; 11236 } 11237 11238 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11239 return (EINVAL); 11240 11241 /* Check if bits in the address is set past the mask */ 11242 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11243 return (EINVAL); 11244 11245 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11246 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11247 return (0); /* No change */ 11248 11249 if (ipif->ipif_flags & IPIF_UP) { 11250 /* 11251 * If the interface is already marked up, 11252 * we call ipif_down which will take care 11253 * of ditching any IREs that have been set 11254 * up based on the old interface address. 11255 */ 11256 err = ipif_logical_down(ipif, q, mp); 11257 if (err == EINPROGRESS) 11258 return (err); 11259 (void) ipif_down_tail(ipif); 11260 need_up = B_TRUE; 11261 } 11262 11263 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11264 return (err); 11265 } 11266 11267 static int 11268 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11269 queue_t *q, mblk_t *mp, boolean_t need_up) 11270 { 11271 ill_t *ill = ipif->ipif_ill; 11272 int err = 0; 11273 11274 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11276 11277 /* Set the new address. */ 11278 mutex_enter(&ill->ill_lock); 11279 ipif->ipif_v6net_mask = v6mask; 11280 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11281 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11282 ipif->ipif_v6subnet); 11283 } 11284 mutex_exit(&ill->ill_lock); 11285 11286 if (need_up) { 11287 /* 11288 * Now bring the interface back up. If this 11289 * is the only IPIF for the ILL, ipif_up 11290 * will have to re-bind to the device, so 11291 * we may get back EINPROGRESS, in which 11292 * case, this IOCTL will get completed in 11293 * ip_rput_dlpi when we see the DL_BIND_ACK. 11294 */ 11295 err = ipif_up(ipif, q, mp); 11296 if (err == EINPROGRESS) 11297 return (err); 11298 } 11299 return (err); 11300 } 11301 11302 /* ARGSUSED */ 11303 int 11304 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11305 ip_ioctl_cmd_t *ipip, void *if_req) 11306 { 11307 int addrlen; 11308 in6_addr_t v6addr; 11309 in6_addr_t v6mask; 11310 struct lifreq *lifr = (struct lifreq *)if_req; 11311 11312 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11314 (void) ipif_down_tail(ipif); 11315 11316 addrlen = lifr->lifr_addrlen; 11317 if (ipif->ipif_isv6) { 11318 sin6_t *sin6; 11319 11320 sin6 = (sin6_t *)sin; 11321 v6addr = sin6->sin6_addr; 11322 } else { 11323 ipaddr_t addr; 11324 11325 addr = sin->sin_addr.s_addr; 11326 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11327 addrlen += IPV6_ABITS - IP_ABITS; 11328 } 11329 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11330 11331 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11332 } 11333 11334 /* ARGSUSED */ 11335 int 11336 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11337 ip_ioctl_cmd_t *ipip, void *if_req) 11338 { 11339 struct lifreq *lifr = (struct lifreq *)if_req; 11340 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11341 11342 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11343 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11344 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11345 11346 if (ipif->ipif_isv6) { 11347 *sin6 = sin6_null; 11348 sin6->sin6_family = AF_INET6; 11349 sin6->sin6_addr = ipif->ipif_v6subnet; 11350 lifr->lifr_addrlen = 11351 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11352 } else { 11353 *sin = sin_null; 11354 sin->sin_family = AF_INET; 11355 sin->sin_addr.s_addr = ipif->ipif_subnet; 11356 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11357 } 11358 return (0); 11359 } 11360 11361 /* 11362 * Set the IPv6 address token. 11363 */ 11364 /* ARGSUSED */ 11365 int 11366 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11367 ip_ioctl_cmd_t *ipi, void *if_req) 11368 { 11369 ill_t *ill = ipif->ipif_ill; 11370 int err; 11371 in6_addr_t v6addr; 11372 in6_addr_t v6mask; 11373 boolean_t need_up = B_FALSE; 11374 int i; 11375 sin6_t *sin6 = (sin6_t *)sin; 11376 struct lifreq *lifr = (struct lifreq *)if_req; 11377 int addrlen; 11378 11379 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11381 ASSERT(IAM_WRITER_IPIF(ipif)); 11382 11383 addrlen = lifr->lifr_addrlen; 11384 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11385 if (ipif->ipif_id != 0) 11386 return (EINVAL); 11387 11388 if (!ipif->ipif_isv6) 11389 return (EINVAL); 11390 11391 if (addrlen > IPV6_ABITS) 11392 return (EINVAL); 11393 11394 v6addr = sin6->sin6_addr; 11395 11396 /* 11397 * The length of the token is the length from the end. To get 11398 * the proper mask for this, compute the mask of the bits not 11399 * in the token; ie. the prefix, and then xor to get the mask. 11400 */ 11401 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11402 return (EINVAL); 11403 for (i = 0; i < 4; i++) { 11404 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11405 } 11406 11407 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11408 ill->ill_token_length == addrlen) 11409 return (0); /* No change */ 11410 11411 if (ipif->ipif_flags & IPIF_UP) { 11412 err = ipif_logical_down(ipif, q, mp); 11413 if (err == EINPROGRESS) 11414 return (err); 11415 (void) ipif_down_tail(ipif); 11416 need_up = B_TRUE; 11417 } 11418 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11419 return (err); 11420 } 11421 11422 static int 11423 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11424 mblk_t *mp, boolean_t need_up) 11425 { 11426 in6_addr_t v6addr; 11427 in6_addr_t v6mask; 11428 ill_t *ill = ipif->ipif_ill; 11429 int i; 11430 int err = 0; 11431 11432 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11434 v6addr = sin6->sin6_addr; 11435 /* 11436 * The length of the token is the length from the end. To get 11437 * the proper mask for this, compute the mask of the bits not 11438 * in the token; ie. the prefix, and then xor to get the mask. 11439 */ 11440 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11441 for (i = 0; i < 4; i++) 11442 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11443 11444 mutex_enter(&ill->ill_lock); 11445 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11446 ill->ill_token_length = addrlen; 11447 ill->ill_manual_token = 1; 11448 11449 /* Reconfigure the link-local address based on this new token */ 11450 ipif_setlinklocal(ill->ill_ipif); 11451 11452 mutex_exit(&ill->ill_lock); 11453 11454 if (need_up) { 11455 /* 11456 * Now bring the interface back up. If this 11457 * is the only IPIF for the ILL, ipif_up 11458 * will have to re-bind to the device, so 11459 * we may get back EINPROGRESS, in which 11460 * case, this IOCTL will get completed in 11461 * ip_rput_dlpi when we see the DL_BIND_ACK. 11462 */ 11463 err = ipif_up(ipif, q, mp); 11464 if (err == EINPROGRESS) 11465 return (err); 11466 } 11467 return (err); 11468 } 11469 11470 /* ARGSUSED */ 11471 int 11472 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11473 ip_ioctl_cmd_t *ipi, void *if_req) 11474 { 11475 ill_t *ill; 11476 sin6_t *sin6 = (sin6_t *)sin; 11477 struct lifreq *lifr = (struct lifreq *)if_req; 11478 11479 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11481 if (ipif->ipif_id != 0) 11482 return (EINVAL); 11483 11484 ill = ipif->ipif_ill; 11485 if (!ill->ill_isv6) 11486 return (ENXIO); 11487 11488 *sin6 = sin6_null; 11489 sin6->sin6_family = AF_INET6; 11490 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11491 sin6->sin6_addr = ill->ill_token; 11492 lifr->lifr_addrlen = ill->ill_token_length; 11493 return (0); 11494 } 11495 11496 /* 11497 * Set (hardware) link specific information that might override 11498 * what was acquired through the DL_INFO_ACK. 11499 */ 11500 /* ARGSUSED */ 11501 int 11502 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11503 ip_ioctl_cmd_t *ipi, void *if_req) 11504 { 11505 ill_t *ill = ipif->ipif_ill; 11506 int ip_min_mtu; 11507 struct lifreq *lifr = (struct lifreq *)if_req; 11508 lif_ifinfo_req_t *lir; 11509 11510 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11511 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11512 lir = &lifr->lifr_ifinfo; 11513 ASSERT(IAM_WRITER_IPIF(ipif)); 11514 11515 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11516 if (ipif->ipif_id != 0) 11517 return (EINVAL); 11518 11519 /* Set interface MTU. */ 11520 if (ipif->ipif_isv6) 11521 ip_min_mtu = IPV6_MIN_MTU; 11522 else 11523 ip_min_mtu = IP_MIN_MTU; 11524 11525 /* 11526 * Verify values before we set anything. Allow zero to 11527 * mean unspecified. 11528 * 11529 * XXX We should be able to set the user-defined lir_mtu to some value 11530 * that is greater than ill_current_frag but less than ill_max_frag- the 11531 * ill_max_frag value tells us the max MTU that can be handled by the 11532 * datalink, whereas the ill_current_frag is dynamically computed for 11533 * some link-types like tunnels, based on the tunnel PMTU. However, 11534 * since there is currently no way of distinguishing between 11535 * administratively fixed link mtu values (e.g., those set via 11536 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11537 * for tunnels) we conservatively choose the ill_current_frag as the 11538 * upper-bound. 11539 */ 11540 if (lir->lir_maxmtu != 0 && 11541 (lir->lir_maxmtu > ill->ill_current_frag || 11542 lir->lir_maxmtu < ip_min_mtu)) 11543 return (EINVAL); 11544 if (lir->lir_reachtime != 0 && 11545 lir->lir_reachtime > ND_MAX_REACHTIME) 11546 return (EINVAL); 11547 if (lir->lir_reachretrans != 0 && 11548 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11549 return (EINVAL); 11550 11551 mutex_enter(&ill->ill_lock); 11552 /* 11553 * The dce and fragmentation code can handle changes to ill_mtu 11554 * concurrent with sending/fragmenting packets. 11555 */ 11556 if (lir->lir_maxmtu != 0) 11557 ill->ill_user_mtu = lir->lir_maxmtu; 11558 11559 if (lir->lir_reachtime != 0) 11560 ill->ill_reachable_time = lir->lir_reachtime; 11561 11562 if (lir->lir_reachretrans != 0) 11563 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11564 11565 ill->ill_max_hops = lir->lir_maxhops; 11566 ill->ill_max_buf = ND_MAX_Q; 11567 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11568 /* 11569 * ill_mtu is the actual interface MTU, obtained as the min 11570 * of user-configured mtu and the value announced by the 11571 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11572 * we have already made the choice of requiring 11573 * ill_user_mtu < ill_current_frag by the time we get here, 11574 * the ill_mtu effectively gets assigned to the ill_user_mtu 11575 * here. 11576 */ 11577 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11578 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11579 } 11580 mutex_exit(&ill->ill_lock); 11581 11582 /* 11583 * Make sure all dce_generation checks find out 11584 * that ill_mtu/ill_mc_mtu has changed. 11585 */ 11586 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11587 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11588 11589 /* 11590 * Refresh IPMP meta-interface MTU if necessary. 11591 */ 11592 if (IS_UNDER_IPMP(ill)) 11593 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11594 11595 return (0); 11596 } 11597 11598 /* ARGSUSED */ 11599 int 11600 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11601 ip_ioctl_cmd_t *ipi, void *if_req) 11602 { 11603 struct lif_ifinfo_req *lir; 11604 ill_t *ill = ipif->ipif_ill; 11605 11606 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11607 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11608 if (ipif->ipif_id != 0) 11609 return (EINVAL); 11610 11611 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11612 lir->lir_maxhops = ill->ill_max_hops; 11613 lir->lir_reachtime = ill->ill_reachable_time; 11614 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11615 lir->lir_maxmtu = ill->ill_mtu; 11616 11617 return (0); 11618 } 11619 11620 /* 11621 * Return best guess as to the subnet mask for the specified address. 11622 * Based on the subnet masks for all the configured interfaces. 11623 * 11624 * We end up returning a zero mask in the case of default, multicast or 11625 * experimental. 11626 */ 11627 static ipaddr_t 11628 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11629 { 11630 ipaddr_t net_mask; 11631 ill_t *ill; 11632 ipif_t *ipif; 11633 ill_walk_context_t ctx; 11634 ipif_t *fallback_ipif = NULL; 11635 11636 net_mask = ip_net_mask(addr); 11637 if (net_mask == 0) { 11638 *ipifp = NULL; 11639 return (0); 11640 } 11641 11642 /* Let's check to see if this is maybe a local subnet route. */ 11643 /* this function only applies to IPv4 interfaces */ 11644 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11645 ill = ILL_START_WALK_V4(&ctx, ipst); 11646 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11647 mutex_enter(&ill->ill_lock); 11648 for (ipif = ill->ill_ipif; ipif != NULL; 11649 ipif = ipif->ipif_next) { 11650 if (IPIF_IS_CONDEMNED(ipif)) 11651 continue; 11652 if (!(ipif->ipif_flags & IPIF_UP)) 11653 continue; 11654 if ((ipif->ipif_subnet & net_mask) == 11655 (addr & net_mask)) { 11656 /* 11657 * Don't trust pt-pt interfaces if there are 11658 * other interfaces. 11659 */ 11660 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11661 if (fallback_ipif == NULL) { 11662 ipif_refhold_locked(ipif); 11663 fallback_ipif = ipif; 11664 } 11665 continue; 11666 } 11667 11668 /* 11669 * Fine. Just assume the same net mask as the 11670 * directly attached subnet interface is using. 11671 */ 11672 ipif_refhold_locked(ipif); 11673 mutex_exit(&ill->ill_lock); 11674 rw_exit(&ipst->ips_ill_g_lock); 11675 if (fallback_ipif != NULL) 11676 ipif_refrele(fallback_ipif); 11677 *ipifp = ipif; 11678 return (ipif->ipif_net_mask); 11679 } 11680 } 11681 mutex_exit(&ill->ill_lock); 11682 } 11683 rw_exit(&ipst->ips_ill_g_lock); 11684 11685 *ipifp = fallback_ipif; 11686 return ((fallback_ipif != NULL) ? 11687 fallback_ipif->ipif_net_mask : net_mask); 11688 } 11689 11690 /* 11691 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11692 */ 11693 static void 11694 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11695 { 11696 IOCP iocp; 11697 ipft_t *ipft; 11698 ipllc_t *ipllc; 11699 mblk_t *mp1; 11700 cred_t *cr; 11701 int error = 0; 11702 conn_t *connp; 11703 11704 ip1dbg(("ip_wput_ioctl")); 11705 iocp = (IOCP)mp->b_rptr; 11706 mp1 = mp->b_cont; 11707 if (mp1 == NULL) { 11708 iocp->ioc_error = EINVAL; 11709 mp->b_datap->db_type = M_IOCNAK; 11710 iocp->ioc_count = 0; 11711 qreply(q, mp); 11712 return; 11713 } 11714 11715 /* 11716 * These IOCTLs provide various control capabilities to 11717 * upstream agents such as ULPs and processes. There 11718 * are currently two such IOCTLs implemented. They 11719 * are used by TCP to provide update information for 11720 * existing IREs and to forcibly delete an IRE for a 11721 * host that is not responding, thereby forcing an 11722 * attempt at a new route. 11723 */ 11724 iocp->ioc_error = EINVAL; 11725 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11726 goto done; 11727 11728 ipllc = (ipllc_t *)mp1->b_rptr; 11729 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11730 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11731 break; 11732 } 11733 /* 11734 * prefer credential from mblk over ioctl; 11735 * see ip_sioctl_copyin_setup 11736 */ 11737 cr = msg_getcred(mp, NULL); 11738 if (cr == NULL) 11739 cr = iocp->ioc_cr; 11740 11741 /* 11742 * Refhold the conn in case the request gets queued up in some lookup 11743 */ 11744 ASSERT(CONN_Q(q)); 11745 connp = Q_TO_CONN(q); 11746 CONN_INC_REF(connp); 11747 CONN_INC_IOCTLREF(connp); 11748 if (ipft->ipft_pfi && 11749 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11750 pullupmsg(mp1, ipft->ipft_min_size))) { 11751 error = (*ipft->ipft_pfi)(q, 11752 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11753 } 11754 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11755 /* 11756 * CONN_OPER_PENDING_DONE happens in the function called 11757 * through ipft_pfi above. 11758 */ 11759 return; 11760 } 11761 11762 CONN_DEC_IOCTLREF(connp); 11763 CONN_OPER_PENDING_DONE(connp); 11764 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11765 freemsg(mp); 11766 return; 11767 } 11768 iocp->ioc_error = error; 11769 11770 done: 11771 mp->b_datap->db_type = M_IOCACK; 11772 if (iocp->ioc_error) 11773 iocp->ioc_count = 0; 11774 qreply(q, mp); 11775 } 11776 11777 /* 11778 * Assign a unique id for the ipif. This is used by sctp_addr.c 11779 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11780 */ 11781 static void 11782 ipif_assign_seqid(ipif_t *ipif) 11783 { 11784 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11785 11786 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11787 } 11788 11789 /* 11790 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11791 * administratively down (i.e., no DAD), of the same type, and locked. Note 11792 * that the clone is complete -- including the seqid -- and the expectation is 11793 * that the caller will either free or overwrite `sipif' before it's unlocked. 11794 */ 11795 static void 11796 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11797 { 11798 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11799 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11800 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11801 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11802 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11803 11804 dipif->ipif_flags = sipif->ipif_flags; 11805 dipif->ipif_zoneid = sipif->ipif_zoneid; 11806 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11807 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11808 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11809 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11810 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11811 11812 /* 11813 * As per the comment atop the function, we assume that these sipif 11814 * fields will be changed before sipif is unlocked. 11815 */ 11816 dipif->ipif_seqid = sipif->ipif_seqid; 11817 dipif->ipif_state_flags = sipif->ipif_state_flags; 11818 } 11819 11820 /* 11821 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11822 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11823 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11824 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11825 * down (i.e., no DAD), of the same type, and unlocked. 11826 */ 11827 static void 11828 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11829 { 11830 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11831 ipxop_t *ipx = ipsq->ipsq_xop; 11832 11833 ASSERT(sipif != dipif); 11834 ASSERT(sipif != virgipif); 11835 11836 /* 11837 * Grab all of the locks that protect the ipif in a defined order. 11838 */ 11839 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11840 11841 ipif_clone(sipif, dipif); 11842 if (virgipif != NULL) { 11843 ipif_clone(virgipif, sipif); 11844 mi_free(virgipif); 11845 } 11846 11847 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11848 11849 /* 11850 * Transfer ownership of the current xop, if necessary. 11851 */ 11852 if (ipx->ipx_current_ipif == sipif) { 11853 ASSERT(ipx->ipx_pending_ipif == NULL); 11854 mutex_enter(&ipx->ipx_lock); 11855 ipx->ipx_current_ipif = dipif; 11856 mutex_exit(&ipx->ipx_lock); 11857 } 11858 11859 if (virgipif == NULL) 11860 mi_free(sipif); 11861 } 11862 11863 /* 11864 * checks if: 11865 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11866 * - logical interface is within the allowed range 11867 */ 11868 static int 11869 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11870 { 11871 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11872 return (ENAMETOOLONG); 11873 11874 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11875 return (ERANGE); 11876 return (0); 11877 } 11878 11879 /* 11880 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11881 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11882 * be inserted into the first space available in the list. The value of 11883 * ipif_id will then be set to the appropriate value for its position. 11884 */ 11885 static int 11886 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11887 { 11888 ill_t *ill; 11889 ipif_t *tipif; 11890 ipif_t **tipifp; 11891 int id, err; 11892 ip_stack_t *ipst; 11893 11894 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11895 IAM_WRITER_IPIF(ipif)); 11896 11897 ill = ipif->ipif_ill; 11898 ASSERT(ill != NULL); 11899 ipst = ill->ill_ipst; 11900 11901 /* 11902 * In the case of lo0:0 we already hold the ill_g_lock. 11903 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11904 * ipif_insert. 11905 */ 11906 if (acquire_g_lock) 11907 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11908 mutex_enter(&ill->ill_lock); 11909 id = ipif->ipif_id; 11910 tipifp = &(ill->ill_ipif); 11911 if (id == -1) { /* need to find a real id */ 11912 id = 0; 11913 while ((tipif = *tipifp) != NULL) { 11914 ASSERT(tipif->ipif_id >= id); 11915 if (tipif->ipif_id != id) 11916 break; /* non-consecutive id */ 11917 id++; 11918 tipifp = &(tipif->ipif_next); 11919 } 11920 if ((err = is_lifname_valid(ill, id)) != 0) { 11921 mutex_exit(&ill->ill_lock); 11922 if (acquire_g_lock) 11923 rw_exit(&ipst->ips_ill_g_lock); 11924 return (err); 11925 } 11926 ipif->ipif_id = id; /* assign new id */ 11927 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11928 /* we have a real id; insert ipif in the right place */ 11929 while ((tipif = *tipifp) != NULL) { 11930 ASSERT(tipif->ipif_id != id); 11931 if (tipif->ipif_id > id) 11932 break; /* found correct location */ 11933 tipifp = &(tipif->ipif_next); 11934 } 11935 } else { 11936 mutex_exit(&ill->ill_lock); 11937 if (acquire_g_lock) 11938 rw_exit(&ipst->ips_ill_g_lock); 11939 return (err); 11940 } 11941 11942 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11943 11944 ipif->ipif_next = tipif; 11945 *tipifp = ipif; 11946 mutex_exit(&ill->ill_lock); 11947 if (acquire_g_lock) 11948 rw_exit(&ipst->ips_ill_g_lock); 11949 11950 return (0); 11951 } 11952 11953 static void 11954 ipif_remove(ipif_t *ipif) 11955 { 11956 ipif_t **ipifp; 11957 ill_t *ill = ipif->ipif_ill; 11958 11959 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11960 11961 mutex_enter(&ill->ill_lock); 11962 ipifp = &ill->ill_ipif; 11963 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11964 if (*ipifp == ipif) { 11965 *ipifp = ipif->ipif_next; 11966 break; 11967 } 11968 } 11969 mutex_exit(&ill->ill_lock); 11970 } 11971 11972 /* 11973 * Allocate and initialize a new interface control structure. (Always 11974 * called as writer.) 11975 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11976 * is not part of the global linked list of ills. ipif_seqid is unique 11977 * in the system and to preserve the uniqueness, it is assigned only 11978 * when ill becomes part of the global list. At that point ill will 11979 * have a name. If it doesn't get assigned here, it will get assigned 11980 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11981 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11982 * the interface flags or any other information from the DL_INFO_ACK for 11983 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11984 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11985 * second DL_INFO_ACK comes in from the driver. 11986 */ 11987 static ipif_t * 11988 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11989 boolean_t insert, int *errorp) 11990 { 11991 int err; 11992 ipif_t *ipif; 11993 ip_stack_t *ipst = ill->ill_ipst; 11994 11995 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11996 ill->ill_name, id, (void *)ill)); 11997 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11998 11999 if (errorp != NULL) 12000 *errorp = 0; 12001 12002 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12003 if (errorp != NULL) 12004 *errorp = ENOMEM; 12005 return (NULL); 12006 } 12007 *ipif = ipif_zero; /* start clean */ 12008 12009 ipif->ipif_ill = ill; 12010 ipif->ipif_id = id; /* could be -1 */ 12011 /* 12012 * Inherit the zoneid from the ill; for the shared stack instance 12013 * this is always the global zone 12014 */ 12015 ipif->ipif_zoneid = ill->ill_zoneid; 12016 12017 ipif->ipif_refcnt = 0; 12018 12019 if (insert) { 12020 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12021 mi_free(ipif); 12022 if (errorp != NULL) 12023 *errorp = err; 12024 return (NULL); 12025 } 12026 /* -1 id should have been replaced by real id */ 12027 id = ipif->ipif_id; 12028 ASSERT(id >= 0); 12029 } 12030 12031 if (ill->ill_name[0] != '\0') 12032 ipif_assign_seqid(ipif); 12033 12034 /* 12035 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12036 * (which must not exist yet because the zeroth ipif is created once 12037 * per ill). However, do not not link it to the ipmp_grp_t until 12038 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12039 */ 12040 if (id == 0 && IS_IPMP(ill)) { 12041 if (ipmp_illgrp_create(ill) == NULL) { 12042 if (insert) { 12043 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12044 ipif_remove(ipif); 12045 rw_exit(&ipst->ips_ill_g_lock); 12046 } 12047 mi_free(ipif); 12048 if (errorp != NULL) 12049 *errorp = ENOMEM; 12050 return (NULL); 12051 } 12052 } 12053 12054 /* 12055 * We grab ill_lock to protect the flag changes. The ipif is still 12056 * not up and can't be looked up until the ioctl completes and the 12057 * IPIF_CHANGING flag is cleared. 12058 */ 12059 mutex_enter(&ill->ill_lock); 12060 12061 ipif->ipif_ire_type = ire_type; 12062 12063 if (ipif->ipif_isv6) { 12064 ill->ill_flags |= ILLF_IPV6; 12065 } else { 12066 ipaddr_t inaddr_any = INADDR_ANY; 12067 12068 ill->ill_flags |= ILLF_IPV4; 12069 12070 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12071 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12072 &ipif->ipif_v6lcl_addr); 12073 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12074 &ipif->ipif_v6subnet); 12075 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12076 &ipif->ipif_v6net_mask); 12077 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12078 &ipif->ipif_v6brd_addr); 12079 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12080 &ipif->ipif_v6pp_dst_addr); 12081 } 12082 12083 /* 12084 * Don't set the interface flags etc. now, will do it in 12085 * ip_ll_subnet_defaults. 12086 */ 12087 if (!initialize) 12088 goto out; 12089 12090 /* 12091 * NOTE: The IPMP meta-interface is special-cased because it starts 12092 * with no underlying interfaces (and thus an unknown broadcast 12093 * address length), but all interfaces that can be placed into an IPMP 12094 * group are required to be broadcast-capable. 12095 */ 12096 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12097 /* 12098 * Later detect lack of DLPI driver multicast capability by 12099 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12100 */ 12101 ill->ill_flags |= ILLF_MULTICAST; 12102 if (!ipif->ipif_isv6) 12103 ipif->ipif_flags |= IPIF_BROADCAST; 12104 } else { 12105 if (ill->ill_net_type != IRE_LOOPBACK) { 12106 if (ipif->ipif_isv6) 12107 /* 12108 * Note: xresolv interfaces will eventually need 12109 * NOARP set here as well, but that will require 12110 * those external resolvers to have some 12111 * knowledge of that flag and act appropriately. 12112 * Not to be changed at present. 12113 */ 12114 ill->ill_flags |= ILLF_NONUD; 12115 else 12116 ill->ill_flags |= ILLF_NOARP; 12117 } 12118 if (ill->ill_phys_addr_length == 0) { 12119 if (IS_VNI(ill)) { 12120 ipif->ipif_flags |= IPIF_NOXMIT; 12121 } else { 12122 /* pt-pt supports multicast. */ 12123 ill->ill_flags |= ILLF_MULTICAST; 12124 if (ill->ill_net_type != IRE_LOOPBACK) 12125 ipif->ipif_flags |= IPIF_POINTOPOINT; 12126 } 12127 } 12128 } 12129 out: 12130 mutex_exit(&ill->ill_lock); 12131 return (ipif); 12132 } 12133 12134 /* 12135 * Remove the neighbor cache entries associated with this logical 12136 * interface. 12137 */ 12138 int 12139 ipif_arp_down(ipif_t *ipif) 12140 { 12141 ill_t *ill = ipif->ipif_ill; 12142 int err = 0; 12143 12144 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12145 ASSERT(IAM_WRITER_IPIF(ipif)); 12146 12147 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12148 ill_t *, ill, ipif_t *, ipif); 12149 ipif_nce_down(ipif); 12150 12151 /* 12152 * If this is the last ipif that is going down and there are no 12153 * duplicate addresses we may yet attempt to re-probe, then we need to 12154 * clean up ARP completely. 12155 */ 12156 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12157 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12158 /* 12159 * If this was the last ipif on an IPMP interface, purge any 12160 * static ARP entries associated with it. 12161 */ 12162 if (IS_IPMP(ill)) 12163 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12164 12165 /* UNBIND, DETACH */ 12166 err = arp_ll_down(ill); 12167 } 12168 12169 return (err); 12170 } 12171 12172 /* 12173 * Get the resolver set up for a new IP address. (Always called as writer.) 12174 * Called both for IPv4 and IPv6 interfaces, though it only does some 12175 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12176 * 12177 * The enumerated value res_act tunes the behavior: 12178 * * Res_act_initial: set up all the resolver structures for a new 12179 * IP address. 12180 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12181 * ARP message in defense of the address. 12182 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12183 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12184 * 12185 * Returns zero on success, or an errno upon failure. 12186 */ 12187 int 12188 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12189 { 12190 ill_t *ill = ipif->ipif_ill; 12191 int err; 12192 boolean_t was_dup; 12193 12194 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12195 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12196 ASSERT(IAM_WRITER_IPIF(ipif)); 12197 12198 was_dup = B_FALSE; 12199 if (res_act == Res_act_initial) { 12200 ipif->ipif_addr_ready = 0; 12201 /* 12202 * We're bringing an interface up here. There's no way that we 12203 * should need to shut down ARP now. 12204 */ 12205 mutex_enter(&ill->ill_lock); 12206 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12207 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12208 ill->ill_ipif_dup_count--; 12209 was_dup = B_TRUE; 12210 } 12211 mutex_exit(&ill->ill_lock); 12212 } 12213 if (ipif->ipif_recovery_id != 0) 12214 (void) untimeout(ipif->ipif_recovery_id); 12215 ipif->ipif_recovery_id = 0; 12216 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12217 ipif->ipif_addr_ready = 1; 12218 return (0); 12219 } 12220 /* NDP will set the ipif_addr_ready flag when it's ready */ 12221 if (ill->ill_isv6) 12222 return (0); 12223 12224 err = ipif_arp_up(ipif, res_act, was_dup); 12225 return (err); 12226 } 12227 12228 /* 12229 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12230 * when a link has just gone back up. 12231 */ 12232 static void 12233 ipif_nce_start_dad(ipif_t *ipif) 12234 { 12235 ncec_t *ncec; 12236 ill_t *ill = ipif->ipif_ill; 12237 boolean_t isv6 = ill->ill_isv6; 12238 12239 if (isv6) { 12240 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12241 &ipif->ipif_v6lcl_addr); 12242 } else { 12243 ipaddr_t v4addr; 12244 12245 if (ill->ill_net_type != IRE_IF_RESOLVER || 12246 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12247 ipif->ipif_lcl_addr == INADDR_ANY) { 12248 /* 12249 * If we can't contact ARP for some reason, 12250 * that's not really a problem. Just send 12251 * out the routing socket notification that 12252 * DAD completion would have done, and continue. 12253 */ 12254 ipif_mask_reply(ipif); 12255 ipif_up_notify(ipif); 12256 ipif->ipif_addr_ready = 1; 12257 return; 12258 } 12259 12260 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12261 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12262 } 12263 12264 if (ncec == NULL) { 12265 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12266 (void *)ipif)); 12267 return; 12268 } 12269 if (!nce_restart_dad(ncec)) { 12270 /* 12271 * If we can't restart DAD for some reason, that's not really a 12272 * problem. Just send out the routing socket notification that 12273 * DAD completion would have done, and continue. 12274 */ 12275 ipif_up_notify(ipif); 12276 ipif->ipif_addr_ready = 1; 12277 } 12278 ncec_refrele(ncec); 12279 } 12280 12281 /* 12282 * Restart duplicate address detection on all interfaces on the given ill. 12283 * 12284 * This is called when an interface transitions from down to up 12285 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12286 * 12287 * Note that since the underlying physical link has transitioned, we must cause 12288 * at least one routing socket message to be sent here, either via DAD 12289 * completion or just by default on the first ipif. (If we don't do this, then 12290 * in.mpathd will see long delays when doing link-based failure recovery.) 12291 */ 12292 void 12293 ill_restart_dad(ill_t *ill, boolean_t went_up) 12294 { 12295 ipif_t *ipif; 12296 12297 if (ill == NULL) 12298 return; 12299 12300 /* 12301 * If layer two doesn't support duplicate address detection, then just 12302 * send the routing socket message now and be done with it. 12303 */ 12304 if (!ill->ill_isv6 && arp_no_defense) { 12305 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12306 return; 12307 } 12308 12309 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12310 if (went_up) { 12311 12312 if (ipif->ipif_flags & IPIF_UP) { 12313 ipif_nce_start_dad(ipif); 12314 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12315 /* 12316 * kick off the bring-up process now. 12317 */ 12318 ipif_do_recovery(ipif); 12319 } else { 12320 /* 12321 * Unfortunately, the first ipif is "special" 12322 * and represents the underlying ill in the 12323 * routing socket messages. Thus, when this 12324 * one ipif is down, we must still notify so 12325 * that the user knows the IFF_RUNNING status 12326 * change. (If the first ipif is up, then 12327 * we'll handle eventual routing socket 12328 * notification via DAD completion.) 12329 */ 12330 if (ipif == ill->ill_ipif) { 12331 ip_rts_ifmsg(ill->ill_ipif, 12332 RTSQ_DEFAULT); 12333 } 12334 } 12335 } else { 12336 /* 12337 * After link down, we'll need to send a new routing 12338 * message when the link comes back, so clear 12339 * ipif_addr_ready. 12340 */ 12341 ipif->ipif_addr_ready = 0; 12342 } 12343 } 12344 12345 /* 12346 * If we've torn down links, then notify the user right away. 12347 */ 12348 if (!went_up) 12349 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12350 } 12351 12352 static void 12353 ipsq_delete(ipsq_t *ipsq) 12354 { 12355 ipxop_t *ipx = ipsq->ipsq_xop; 12356 12357 ipsq->ipsq_ipst = NULL; 12358 ASSERT(ipsq->ipsq_phyint == NULL); 12359 ASSERT(ipsq->ipsq_xop != NULL); 12360 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12361 ASSERT(ipx->ipx_pending_mp == NULL); 12362 kmem_free(ipsq, sizeof (ipsq_t)); 12363 } 12364 12365 static int 12366 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12367 { 12368 int err = 0; 12369 ipif_t *ipif; 12370 12371 if (ill == NULL) 12372 return (0); 12373 12374 ASSERT(IAM_WRITER_ILL(ill)); 12375 ill->ill_up_ipifs = B_TRUE; 12376 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12377 if (ipif->ipif_was_up) { 12378 if (!(ipif->ipif_flags & IPIF_UP)) 12379 err = ipif_up(ipif, q, mp); 12380 ipif->ipif_was_up = B_FALSE; 12381 if (err != 0) { 12382 ASSERT(err == EINPROGRESS); 12383 return (err); 12384 } 12385 } 12386 } 12387 ill->ill_up_ipifs = B_FALSE; 12388 return (0); 12389 } 12390 12391 /* 12392 * This function is called to bring up all the ipifs that were up before 12393 * bringing the ill down via ill_down_ipifs(). 12394 */ 12395 int 12396 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12397 { 12398 int err; 12399 12400 ASSERT(IAM_WRITER_ILL(ill)); 12401 12402 if (ill->ill_replumbing) { 12403 ill->ill_replumbing = 0; 12404 /* 12405 * Send down REPLUMB_DONE notification followed by the 12406 * BIND_REQ on the arp stream. 12407 */ 12408 if (!ill->ill_isv6) 12409 arp_send_replumb_conf(ill); 12410 } 12411 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12412 if (err != 0) 12413 return (err); 12414 12415 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12416 } 12417 12418 /* 12419 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12420 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12421 */ 12422 static void 12423 ill_down_ipifs(ill_t *ill, boolean_t logical) 12424 { 12425 ipif_t *ipif; 12426 12427 ASSERT(IAM_WRITER_ILL(ill)); 12428 12429 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12430 /* 12431 * We go through the ipif_down logic even if the ipif 12432 * is already down, since routes can be added based 12433 * on down ipifs. Going through ipif_down once again 12434 * will delete any IREs created based on these routes. 12435 */ 12436 if (ipif->ipif_flags & IPIF_UP) 12437 ipif->ipif_was_up = B_TRUE; 12438 12439 if (logical) { 12440 (void) ipif_logical_down(ipif, NULL, NULL); 12441 ipif_non_duplicate(ipif); 12442 (void) ipif_down_tail(ipif); 12443 } else { 12444 (void) ipif_down(ipif, NULL, NULL); 12445 } 12446 } 12447 } 12448 12449 /* 12450 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12451 * a look again at valid source addresses. 12452 * This should be called each time after the set of source addresses has been 12453 * changed. 12454 */ 12455 void 12456 ip_update_source_selection(ip_stack_t *ipst) 12457 { 12458 /* We skip past SRC_GENERATION_VERIFY */ 12459 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12460 SRC_GENERATION_VERIFY) 12461 atomic_inc_32(&ipst->ips_src_generation); 12462 } 12463 12464 /* 12465 * Finish the group join started in ip_sioctl_groupname(). 12466 */ 12467 /* ARGSUSED */ 12468 static void 12469 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12470 { 12471 ill_t *ill = q->q_ptr; 12472 phyint_t *phyi = ill->ill_phyint; 12473 ipmp_grp_t *grp = phyi->phyint_grp; 12474 ip_stack_t *ipst = ill->ill_ipst; 12475 12476 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12477 ASSERT(!IS_IPMP(ill) && grp != NULL); 12478 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12479 12480 if (phyi->phyint_illv4 != NULL) { 12481 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12482 VERIFY(grp->gr_pendv4-- > 0); 12483 rw_exit(&ipst->ips_ipmp_lock); 12484 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12485 } 12486 if (phyi->phyint_illv6 != NULL) { 12487 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12488 VERIFY(grp->gr_pendv6-- > 0); 12489 rw_exit(&ipst->ips_ipmp_lock); 12490 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12491 } 12492 freemsg(mp); 12493 } 12494 12495 /* 12496 * Process an SIOCSLIFGROUPNAME request. 12497 */ 12498 /* ARGSUSED */ 12499 int 12500 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12501 ip_ioctl_cmd_t *ipip, void *ifreq) 12502 { 12503 struct lifreq *lifr = ifreq; 12504 ill_t *ill = ipif->ipif_ill; 12505 ip_stack_t *ipst = ill->ill_ipst; 12506 phyint_t *phyi = ill->ill_phyint; 12507 ipmp_grp_t *grp = phyi->phyint_grp; 12508 mblk_t *ipsq_mp; 12509 int err = 0; 12510 12511 /* 12512 * Note that phyint_grp can only change here, where we're exclusive. 12513 */ 12514 ASSERT(IAM_WRITER_ILL(ill)); 12515 12516 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12517 (phyi->phyint_flags & PHYI_VIRTUAL)) 12518 return (EINVAL); 12519 12520 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12521 12522 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12523 12524 /* 12525 * If the name hasn't changed, there's nothing to do. 12526 */ 12527 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12528 goto unlock; 12529 12530 /* 12531 * Handle requests to rename an IPMP meta-interface. 12532 * 12533 * Note that creation of the IPMP meta-interface is handled in 12534 * userland through the standard plumbing sequence. As part of the 12535 * plumbing the IPMP meta-interface, its initial groupname is set to 12536 * the name of the interface (see ipif_set_values_tail()). 12537 */ 12538 if (IS_IPMP(ill)) { 12539 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12540 goto unlock; 12541 } 12542 12543 /* 12544 * Handle requests to add or remove an IP interface from a group. 12545 */ 12546 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12547 /* 12548 * Moves are handled by first removing the interface from 12549 * its existing group, and then adding it to another group. 12550 * So, fail if it's already in a group. 12551 */ 12552 if (IS_UNDER_IPMP(ill)) { 12553 err = EALREADY; 12554 goto unlock; 12555 } 12556 12557 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12558 if (grp == NULL) { 12559 err = ENOENT; 12560 goto unlock; 12561 } 12562 12563 /* 12564 * Check if the phyint and its ills are suitable for 12565 * inclusion into the group. 12566 */ 12567 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12568 goto unlock; 12569 12570 /* 12571 * Checks pass; join the group, and enqueue the remaining 12572 * illgrp joins for when we've become part of the group xop 12573 * and are exclusive across its IPSQs. Since qwriter_ip() 12574 * requires an mblk_t to scribble on, and since `mp' will be 12575 * freed as part of completing the ioctl, allocate another. 12576 */ 12577 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12578 err = ENOMEM; 12579 goto unlock; 12580 } 12581 12582 /* 12583 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12584 * IPMP meta-interface ills needed by `phyi' cannot go away 12585 * before ip_join_illgrps() is called back. See the comments 12586 * in ip_sioctl_plink_ipmp() for more. 12587 */ 12588 if (phyi->phyint_illv4 != NULL) 12589 grp->gr_pendv4++; 12590 if (phyi->phyint_illv6 != NULL) 12591 grp->gr_pendv6++; 12592 12593 rw_exit(&ipst->ips_ipmp_lock); 12594 12595 ipmp_phyint_join_grp(phyi, grp); 12596 ill_refhold(ill); 12597 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12598 SWITCH_OP, B_FALSE); 12599 return (0); 12600 } else { 12601 /* 12602 * Request to remove the interface from a group. If the 12603 * interface is not in a group, this trivially succeeds. 12604 */ 12605 rw_exit(&ipst->ips_ipmp_lock); 12606 if (IS_UNDER_IPMP(ill)) 12607 ipmp_phyint_leave_grp(phyi); 12608 return (0); 12609 } 12610 unlock: 12611 rw_exit(&ipst->ips_ipmp_lock); 12612 return (err); 12613 } 12614 12615 /* 12616 * Process an SIOCGLIFBINDING request. 12617 */ 12618 /* ARGSUSED */ 12619 int 12620 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12621 ip_ioctl_cmd_t *ipip, void *ifreq) 12622 { 12623 ill_t *ill; 12624 struct lifreq *lifr = ifreq; 12625 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12626 12627 if (!IS_IPMP(ipif->ipif_ill)) 12628 return (EINVAL); 12629 12630 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12631 if ((ill = ipif->ipif_bound_ill) == NULL) 12632 lifr->lifr_binding[0] = '\0'; 12633 else 12634 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12635 rw_exit(&ipst->ips_ipmp_lock); 12636 return (0); 12637 } 12638 12639 /* 12640 * Process an SIOCGLIFGROUPNAME request. 12641 */ 12642 /* ARGSUSED */ 12643 int 12644 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12645 ip_ioctl_cmd_t *ipip, void *ifreq) 12646 { 12647 ipmp_grp_t *grp; 12648 struct lifreq *lifr = ifreq; 12649 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12650 12651 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12652 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12653 lifr->lifr_groupname[0] = '\0'; 12654 else 12655 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12656 rw_exit(&ipst->ips_ipmp_lock); 12657 return (0); 12658 } 12659 12660 /* 12661 * Process an SIOCGLIFGROUPINFO request. 12662 */ 12663 /* ARGSUSED */ 12664 int 12665 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12666 ip_ioctl_cmd_t *ipip, void *dummy) 12667 { 12668 ipmp_grp_t *grp; 12669 lifgroupinfo_t *lifgr; 12670 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12671 12672 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12673 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12674 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12675 12676 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12677 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12678 rw_exit(&ipst->ips_ipmp_lock); 12679 return (ENOENT); 12680 } 12681 ipmp_grp_info(grp, lifgr); 12682 rw_exit(&ipst->ips_ipmp_lock); 12683 return (0); 12684 } 12685 12686 static void 12687 ill_dl_down(ill_t *ill) 12688 { 12689 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12690 12691 /* 12692 * The ill is down; unbind but stay attached since we're still 12693 * associated with a PPA. If we have negotiated DLPI capabilites 12694 * with the data link service provider (IDS_OK) then reset them. 12695 * The interval between unbinding and rebinding is potentially 12696 * unbounded hence we cannot assume things will be the same. 12697 * The DLPI capabilities will be probed again when the data link 12698 * is brought up. 12699 */ 12700 mblk_t *mp = ill->ill_unbind_mp; 12701 12702 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12703 12704 if (!ill->ill_replumbing) { 12705 /* Free all ilms for this ill */ 12706 update_conn_ill(ill, ill->ill_ipst); 12707 } else { 12708 ill_leave_multicast(ill); 12709 } 12710 12711 ill->ill_unbind_mp = NULL; 12712 if (mp != NULL) { 12713 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12714 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12715 ill->ill_name)); 12716 mutex_enter(&ill->ill_lock); 12717 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12718 mutex_exit(&ill->ill_lock); 12719 /* 12720 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12721 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12722 * ill_capability_dld_disable disable rightaway. If this is not 12723 * an unplumb operation then the disable happens on receipt of 12724 * the capab ack via ip_rput_dlpi_writer -> 12725 * ill_capability_ack_thr. In both cases the order of 12726 * the operations seen by DLD is capability disable followed 12727 * by DL_UNBIND. Also the DLD capability disable needs a 12728 * cv_wait'able context. 12729 */ 12730 if (ill->ill_state_flags & ILL_CONDEMNED) 12731 ill_capability_dld_disable(ill); 12732 ill_capability_reset(ill, B_FALSE); 12733 ill_dlpi_send(ill, mp); 12734 } 12735 mutex_enter(&ill->ill_lock); 12736 ill->ill_dl_up = 0; 12737 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12738 mutex_exit(&ill->ill_lock); 12739 } 12740 12741 void 12742 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12743 { 12744 union DL_primitives *dlp; 12745 t_uscalar_t prim; 12746 boolean_t waitack = B_FALSE; 12747 12748 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12749 12750 dlp = (union DL_primitives *)mp->b_rptr; 12751 prim = dlp->dl_primitive; 12752 12753 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12754 dl_primstr(prim), prim, ill->ill_name)); 12755 12756 switch (prim) { 12757 case DL_PHYS_ADDR_REQ: 12758 { 12759 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12760 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12761 break; 12762 } 12763 case DL_BIND_REQ: 12764 mutex_enter(&ill->ill_lock); 12765 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12766 mutex_exit(&ill->ill_lock); 12767 break; 12768 } 12769 12770 /* 12771 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12772 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12773 * we only wait for the ACK of the DL_UNBIND_REQ. 12774 */ 12775 mutex_enter(&ill->ill_lock); 12776 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12777 (prim == DL_UNBIND_REQ)) { 12778 ill->ill_dlpi_pending = prim; 12779 waitack = B_TRUE; 12780 } 12781 12782 mutex_exit(&ill->ill_lock); 12783 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12784 char *, dl_primstr(prim), ill_t *, ill); 12785 putnext(ill->ill_wq, mp); 12786 12787 /* 12788 * There is no ack for DL_NOTIFY_CONF messages 12789 */ 12790 if (waitack && prim == DL_NOTIFY_CONF) 12791 ill_dlpi_done(ill, prim); 12792 } 12793 12794 /* 12795 * Helper function for ill_dlpi_send(). 12796 */ 12797 /* ARGSUSED */ 12798 static void 12799 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12800 { 12801 ill_dlpi_send(q->q_ptr, mp); 12802 } 12803 12804 /* 12805 * Send a DLPI control message to the driver but make sure there 12806 * is only one outstanding message. Uses ill_dlpi_pending to tell 12807 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12808 * when an ACK or a NAK is received to process the next queued message. 12809 */ 12810 void 12811 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12812 { 12813 mblk_t **mpp; 12814 12815 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12816 12817 /* 12818 * To ensure that any DLPI requests for current exclusive operation 12819 * are always completely sent before any DLPI messages for other 12820 * operations, require writer access before enqueuing. 12821 */ 12822 if (!IAM_WRITER_ILL(ill)) { 12823 ill_refhold(ill); 12824 /* qwriter_ip() does the ill_refrele() */ 12825 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12826 NEW_OP, B_TRUE); 12827 return; 12828 } 12829 12830 mutex_enter(&ill->ill_lock); 12831 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12832 /* Must queue message. Tail insertion */ 12833 mpp = &ill->ill_dlpi_deferred; 12834 while (*mpp != NULL) 12835 mpp = &((*mpp)->b_next); 12836 12837 ip1dbg(("ill_dlpi_send: deferring request for %s " 12838 "while %s pending\n", ill->ill_name, 12839 dl_primstr(ill->ill_dlpi_pending))); 12840 12841 *mpp = mp; 12842 mutex_exit(&ill->ill_lock); 12843 return; 12844 } 12845 mutex_exit(&ill->ill_lock); 12846 ill_dlpi_dispatch(ill, mp); 12847 } 12848 12849 void 12850 ill_capability_send(ill_t *ill, mblk_t *mp) 12851 { 12852 ill->ill_capab_pending_cnt++; 12853 ill_dlpi_send(ill, mp); 12854 } 12855 12856 void 12857 ill_capability_done(ill_t *ill) 12858 { 12859 ASSERT(ill->ill_capab_pending_cnt != 0); 12860 12861 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12862 12863 ill->ill_capab_pending_cnt--; 12864 if (ill->ill_capab_pending_cnt == 0 && 12865 ill->ill_dlpi_capab_state == IDCS_OK) 12866 ill_capability_reset_alloc(ill); 12867 } 12868 12869 /* 12870 * Send all deferred DLPI messages without waiting for their ACKs. 12871 */ 12872 void 12873 ill_dlpi_send_deferred(ill_t *ill) 12874 { 12875 mblk_t *mp, *nextmp; 12876 12877 /* 12878 * Clear ill_dlpi_pending so that the message is not queued in 12879 * ill_dlpi_send(). 12880 */ 12881 mutex_enter(&ill->ill_lock); 12882 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12883 mp = ill->ill_dlpi_deferred; 12884 ill->ill_dlpi_deferred = NULL; 12885 mutex_exit(&ill->ill_lock); 12886 12887 for (; mp != NULL; mp = nextmp) { 12888 nextmp = mp->b_next; 12889 mp->b_next = NULL; 12890 ill_dlpi_send(ill, mp); 12891 } 12892 } 12893 12894 /* 12895 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12896 * or M_HANGUP 12897 */ 12898 static void 12899 ill_dlpi_clear_deferred(ill_t *ill) 12900 { 12901 mblk_t *mp, *nextmp; 12902 12903 mutex_enter(&ill->ill_lock); 12904 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12905 mp = ill->ill_dlpi_deferred; 12906 ill->ill_dlpi_deferred = NULL; 12907 mutex_exit(&ill->ill_lock); 12908 12909 for (; mp != NULL; mp = nextmp) { 12910 nextmp = mp->b_next; 12911 inet_freemsg(mp); 12912 } 12913 } 12914 12915 /* 12916 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12917 */ 12918 boolean_t 12919 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12920 { 12921 t_uscalar_t pending; 12922 12923 mutex_enter(&ill->ill_lock); 12924 if (ill->ill_dlpi_pending == prim) { 12925 mutex_exit(&ill->ill_lock); 12926 return (B_TRUE); 12927 } 12928 12929 /* 12930 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12931 * without waiting, so don't print any warnings in that case. 12932 */ 12933 if (ill->ill_state_flags & ILL_CONDEMNED) { 12934 mutex_exit(&ill->ill_lock); 12935 return (B_FALSE); 12936 } 12937 pending = ill->ill_dlpi_pending; 12938 mutex_exit(&ill->ill_lock); 12939 12940 if (pending == DL_PRIM_INVAL) { 12941 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12942 "received unsolicited ack for %s on %s\n", 12943 dl_primstr(prim), ill->ill_name); 12944 } else { 12945 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12946 "received unexpected ack for %s on %s (expecting %s)\n", 12947 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12948 } 12949 return (B_FALSE); 12950 } 12951 12952 /* 12953 * Complete the current DLPI operation associated with `prim' on `ill' and 12954 * start the next queued DLPI operation (if any). If there are no queued DLPI 12955 * operations and the ill's current exclusive IPSQ operation has finished 12956 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12957 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12958 * the comments above ipsq_current_finish() for details. 12959 */ 12960 void 12961 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12962 { 12963 mblk_t *mp; 12964 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12965 ipxop_t *ipx = ipsq->ipsq_xop; 12966 12967 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12968 mutex_enter(&ill->ill_lock); 12969 12970 ASSERT(prim != DL_PRIM_INVAL); 12971 ASSERT(ill->ill_dlpi_pending == prim); 12972 12973 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12974 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12975 12976 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12977 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12978 if (ipx->ipx_current_done) { 12979 mutex_enter(&ipx->ipx_lock); 12980 ipx->ipx_current_ipif = NULL; 12981 mutex_exit(&ipx->ipx_lock); 12982 } 12983 cv_signal(&ill->ill_cv); 12984 mutex_exit(&ill->ill_lock); 12985 return; 12986 } 12987 12988 ill->ill_dlpi_deferred = mp->b_next; 12989 mp->b_next = NULL; 12990 mutex_exit(&ill->ill_lock); 12991 12992 ill_dlpi_dispatch(ill, mp); 12993 } 12994 12995 /* 12996 * Queue a (multicast) DLPI control message to be sent to the driver by 12997 * later calling ill_dlpi_send_queued. 12998 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12999 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 13000 * for the same group to race. 13001 * We send DLPI control messages in order using ill_lock. 13002 * For IPMP we should be called on the cast_ill. 13003 */ 13004 void 13005 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13006 { 13007 mblk_t **mpp; 13008 13009 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13010 13011 mutex_enter(&ill->ill_lock); 13012 /* Must queue message. Tail insertion */ 13013 mpp = &ill->ill_dlpi_deferred; 13014 while (*mpp != NULL) 13015 mpp = &((*mpp)->b_next); 13016 13017 *mpp = mp; 13018 mutex_exit(&ill->ill_lock); 13019 } 13020 13021 /* 13022 * Send the messages that were queued. Make sure there is only 13023 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13024 * when an ACK or a NAK is received to process the next queued message. 13025 * For IPMP we are called on the upper ill, but when send what is queued 13026 * on the cast_ill. 13027 */ 13028 void 13029 ill_dlpi_send_queued(ill_t *ill) 13030 { 13031 mblk_t *mp; 13032 union DL_primitives *dlp; 13033 t_uscalar_t prim; 13034 ill_t *release_ill = NULL; 13035 13036 if (IS_IPMP(ill)) { 13037 /* On the upper IPMP ill. */ 13038 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13039 if (release_ill == NULL) { 13040 /* Avoid ever sending anything down to the ipmpstub */ 13041 return; 13042 } 13043 ill = release_ill; 13044 } 13045 mutex_enter(&ill->ill_lock); 13046 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13047 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13048 /* Can't send. Somebody else will send it */ 13049 mutex_exit(&ill->ill_lock); 13050 goto done; 13051 } 13052 ill->ill_dlpi_deferred = mp->b_next; 13053 mp->b_next = NULL; 13054 if (!ill->ill_dl_up) { 13055 /* 13056 * Nobody there. All multicast addresses will be 13057 * re-joined when we get the DL_BIND_ACK bringing the 13058 * interface up. 13059 */ 13060 freemsg(mp); 13061 continue; 13062 } 13063 dlp = (union DL_primitives *)mp->b_rptr; 13064 prim = dlp->dl_primitive; 13065 13066 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13067 (prim == DL_UNBIND_REQ)) { 13068 ill->ill_dlpi_pending = prim; 13069 } 13070 mutex_exit(&ill->ill_lock); 13071 13072 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13073 char *, dl_primstr(prim), ill_t *, ill); 13074 putnext(ill->ill_wq, mp); 13075 mutex_enter(&ill->ill_lock); 13076 } 13077 mutex_exit(&ill->ill_lock); 13078 done: 13079 if (release_ill != NULL) 13080 ill_refrele(release_ill); 13081 } 13082 13083 /* 13084 * Queue an IP (IGMP/MLD) message to be sent by IP from 13085 * ill_mcast_send_queued 13086 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13087 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13088 * group to race. 13089 * We send them in order using ill_lock. 13090 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13091 */ 13092 void 13093 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13094 { 13095 mblk_t **mpp; 13096 ill_t *release_ill = NULL; 13097 13098 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13099 13100 if (IS_IPMP(ill)) { 13101 /* On the upper IPMP ill. */ 13102 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13103 if (release_ill == NULL) { 13104 /* Discard instead of queuing for the ipmp interface */ 13105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13106 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13107 mp, ill); 13108 freemsg(mp); 13109 return; 13110 } 13111 ill = release_ill; 13112 } 13113 13114 mutex_enter(&ill->ill_lock); 13115 /* Must queue message. Tail insertion */ 13116 mpp = &ill->ill_mcast_deferred; 13117 while (*mpp != NULL) 13118 mpp = &((*mpp)->b_next); 13119 13120 *mpp = mp; 13121 mutex_exit(&ill->ill_lock); 13122 if (release_ill != NULL) 13123 ill_refrele(release_ill); 13124 } 13125 13126 /* 13127 * Send the IP packets that were queued by ill_mcast_queue. 13128 * These are IGMP/MLD packets. 13129 * 13130 * For IPMP we are called on the upper ill, but when send what is queued 13131 * on the cast_ill. 13132 * 13133 * Request loopback of the report if we are acting as a multicast 13134 * router, so that the process-level routing demon can hear it. 13135 * This will run multiple times for the same group if there are members 13136 * on the same group for multiple ipif's on the same ill. The 13137 * igmp_input/mld_input code will suppress this due to the loopback thus we 13138 * always loopback membership report. 13139 * 13140 * We also need to make sure that this does not get load balanced 13141 * by IPMP. We do this by passing an ill to ip_output_simple. 13142 */ 13143 void 13144 ill_mcast_send_queued(ill_t *ill) 13145 { 13146 mblk_t *mp; 13147 ip_xmit_attr_t ixas; 13148 ill_t *release_ill = NULL; 13149 13150 if (IS_IPMP(ill)) { 13151 /* On the upper IPMP ill. */ 13152 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13153 if (release_ill == NULL) { 13154 /* 13155 * We should have no messages on the ipmp interface 13156 * but no point in trying to send them. 13157 */ 13158 return; 13159 } 13160 ill = release_ill; 13161 } 13162 bzero(&ixas, sizeof (ixas)); 13163 ixas.ixa_zoneid = ALL_ZONES; 13164 ixas.ixa_cred = kcred; 13165 ixas.ixa_cpid = NOPID; 13166 ixas.ixa_tsl = NULL; 13167 /* 13168 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13169 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13170 * That is necessary to handle IGMP/MLD snooping switches. 13171 */ 13172 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13173 ixas.ixa_ipst = ill->ill_ipst; 13174 13175 mutex_enter(&ill->ill_lock); 13176 while ((mp = ill->ill_mcast_deferred) != NULL) { 13177 ill->ill_mcast_deferred = mp->b_next; 13178 mp->b_next = NULL; 13179 if (!ill->ill_dl_up) { 13180 /* 13181 * Nobody there. Just drop the ip packets. 13182 * IGMP/MLD will resend later, if this is a replumb. 13183 */ 13184 freemsg(mp); 13185 continue; 13186 } 13187 mutex_enter(&ill->ill_phyint->phyint_lock); 13188 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13189 /* 13190 * When the ill is getting deactivated, we only want to 13191 * send the DLPI messages, so drop IGMP/MLD packets. 13192 * DLPI messages are handled by ill_dlpi_send_queued() 13193 */ 13194 mutex_exit(&ill->ill_phyint->phyint_lock); 13195 freemsg(mp); 13196 continue; 13197 } 13198 mutex_exit(&ill->ill_phyint->phyint_lock); 13199 mutex_exit(&ill->ill_lock); 13200 13201 /* Check whether we are sending IPv4 or IPv6. */ 13202 if (ill->ill_isv6) { 13203 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13204 13205 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13206 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13207 } else { 13208 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13209 13210 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13211 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13212 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13213 } 13214 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13215 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13216 (void) ip_output_simple(mp, &ixas); 13217 ixa_cleanup(&ixas); 13218 13219 mutex_enter(&ill->ill_lock); 13220 } 13221 mutex_exit(&ill->ill_lock); 13222 13223 done: 13224 if (release_ill != NULL) 13225 ill_refrele(release_ill); 13226 } 13227 13228 /* 13229 * Take down a specific interface, but don't lose any information about it. 13230 * (Always called as writer.) 13231 * This function goes through the down sequence even if the interface is 13232 * already down. There are 2 reasons. 13233 * a. Currently we permit interface routes that depend on down interfaces 13234 * to be added. This behaviour itself is questionable. However it appears 13235 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13236 * time. We go thru the cleanup in order to remove these routes. 13237 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13238 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13239 * down, but we need to cleanup i.e. do ill_dl_down and 13240 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13241 * 13242 * IP-MT notes: 13243 * 13244 * Model of reference to interfaces. 13245 * 13246 * The following members in ipif_t track references to the ipif. 13247 * int ipif_refcnt; Active reference count 13248 * 13249 * The following members in ill_t track references to the ill. 13250 * int ill_refcnt; active refcnt 13251 * uint_t ill_ire_cnt; Number of ires referencing ill 13252 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13253 * uint_t ill_nce_cnt; Number of nces referencing ill 13254 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13255 * 13256 * Reference to an ipif or ill can be obtained in any of the following ways. 13257 * 13258 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13259 * Pointers to ipif / ill from other data structures viz ire and conn. 13260 * Implicit reference to the ipif / ill by holding a reference to the ire. 13261 * 13262 * The ipif/ill lookup functions return a reference held ipif / ill. 13263 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13264 * This is a purely dynamic reference count associated with threads holding 13265 * references to the ipif / ill. Pointers from other structures do not 13266 * count towards this reference count. 13267 * 13268 * ill_ire_cnt is the number of ire's associated with the 13269 * ill. This is incremented whenever a new ire is created referencing the 13270 * ill. This is done atomically inside ire_add_v[46] where the ire is 13271 * actually added to the ire hash table. The count is decremented in 13272 * ire_inactive where the ire is destroyed. 13273 * 13274 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13275 * This is incremented atomically in 13276 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13277 * table. Similarly it is decremented in ncec_inactive() where the ncec 13278 * is destroyed. 13279 * 13280 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13281 * incremented atomically in nce_add() where the nce is actually added to the 13282 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13283 * is destroyed. 13284 * 13285 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13286 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13287 * 13288 * Flow of ioctls involving interface down/up 13289 * 13290 * The following is the sequence of an attempt to set some critical flags on an 13291 * up interface. 13292 * ip_sioctl_flags 13293 * ipif_down 13294 * wait for ipif to be quiescent 13295 * ipif_down_tail 13296 * ip_sioctl_flags_tail 13297 * 13298 * All set ioctls that involve down/up sequence would have a skeleton similar 13299 * to the above. All the *tail functions are called after the refcounts have 13300 * dropped to the appropriate values. 13301 * 13302 * SIOC ioctls during the IPIF_CHANGING interval. 13303 * 13304 * Threads handling SIOC set ioctls serialize on the squeue, but this 13305 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13306 * steps of internal changes to the state, some of which are visible in 13307 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13308 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13309 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13310 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13311 * the current exclusive operation completes. The IPIF_CHANGING check 13312 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13313 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13314 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13315 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13316 * until we release the ipsq_lock, even though the ill/ipif state flags 13317 * can change after we drop the ill_lock. 13318 */ 13319 int 13320 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13321 { 13322 ill_t *ill = ipif->ipif_ill; 13323 conn_t *connp; 13324 boolean_t success; 13325 boolean_t ipif_was_up = B_FALSE; 13326 ip_stack_t *ipst = ill->ill_ipst; 13327 13328 ASSERT(IAM_WRITER_IPIF(ipif)); 13329 13330 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13331 13332 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13333 ill_t *, ill, ipif_t *, ipif); 13334 13335 if (ipif->ipif_flags & IPIF_UP) { 13336 mutex_enter(&ill->ill_lock); 13337 ipif->ipif_flags &= ~IPIF_UP; 13338 ASSERT(ill->ill_ipif_up_count > 0); 13339 --ill->ill_ipif_up_count; 13340 mutex_exit(&ill->ill_lock); 13341 ipif_was_up = B_TRUE; 13342 /* Update status in SCTP's list */ 13343 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13344 ill_nic_event_dispatch(ipif->ipif_ill, 13345 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13346 } 13347 13348 /* 13349 * Removal of the last ipif from an ill may result in a DL_UNBIND 13350 * being sent to the driver, and we must not send any data packets to 13351 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13352 * ire and nce entries used in the data path will be cleaned 13353 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13354 * sure on new entries will be added until the ill is bound 13355 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13356 * receipt of a DL_BIND_ACK. 13357 */ 13358 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13359 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13360 ill->ill_dl_up) { 13361 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13362 } 13363 13364 /* 13365 * Blow away memberships we established in ipif_multicast_up(). 13366 */ 13367 ipif_multicast_down(ipif); 13368 13369 /* 13370 * Remove from the mapping for __sin6_src_id. We insert only 13371 * when the address is not INADDR_ANY. As IPv4 addresses are 13372 * stored as mapped addresses, we need to check for mapped 13373 * INADDR_ANY also. 13374 */ 13375 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13376 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13377 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13378 int err; 13379 13380 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13381 ipif->ipif_zoneid, ipst); 13382 if (err != 0) { 13383 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13384 } 13385 } 13386 13387 if (ipif_was_up) { 13388 /* only delete if we'd added ire's before */ 13389 if (ipif->ipif_isv6) 13390 ipif_delete_ires_v6(ipif); 13391 else 13392 ipif_delete_ires_v4(ipif); 13393 } 13394 13395 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13396 /* 13397 * Since the interface is now down, it may have just become 13398 * inactive. Note that this needs to be done even for a 13399 * lll_logical_down(), or ARP entries will not get correctly 13400 * restored when the interface comes back up. 13401 */ 13402 if (IS_UNDER_IPMP(ill)) 13403 ipmp_ill_refresh_active(ill); 13404 } 13405 13406 /* 13407 * neighbor-discovery or arp entries for this interface. The ipif 13408 * has to be quiesced, so we walk all the nce's and delete those 13409 * that point at the ipif->ipif_ill. At the same time, we also 13410 * update IPMP so that ipifs for data addresses are unbound. We dont 13411 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13412 * that for ipif_down_tail() 13413 */ 13414 ipif_nce_down(ipif); 13415 13416 /* 13417 * If this is the last ipif on the ill, we also need to remove 13418 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13419 * never succeed. 13420 */ 13421 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13422 ire_walk_ill(0, 0, ill_downi, ill, ill); 13423 13424 /* 13425 * Walk all CONNs that can have a reference on an ire for this 13426 * ipif (we actually walk all that now have stale references). 13427 */ 13428 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13429 13430 /* 13431 * If mp is NULL the caller will wait for the appropriate refcnt. 13432 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13433 * and ill_delete -> ipif_free -> ipif_down 13434 */ 13435 if (mp == NULL) { 13436 ASSERT(q == NULL); 13437 return (0); 13438 } 13439 13440 if (CONN_Q(q)) { 13441 connp = Q_TO_CONN(q); 13442 mutex_enter(&connp->conn_lock); 13443 } else { 13444 connp = NULL; 13445 } 13446 mutex_enter(&ill->ill_lock); 13447 /* 13448 * Are there any ire's pointing to this ipif that are still active ? 13449 * If this is the last ipif going down, are there any ire's pointing 13450 * to this ill that are still active ? 13451 */ 13452 if (ipif_is_quiescent(ipif)) { 13453 mutex_exit(&ill->ill_lock); 13454 if (connp != NULL) 13455 mutex_exit(&connp->conn_lock); 13456 return (0); 13457 } 13458 13459 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13460 ill->ill_name, (void *)ill)); 13461 /* 13462 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13463 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13464 * which in turn is called by the last refrele on the ipif/ill/ire. 13465 */ 13466 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13467 if (!success) { 13468 /* The conn is closing. So just return */ 13469 ASSERT(connp != NULL); 13470 mutex_exit(&ill->ill_lock); 13471 mutex_exit(&connp->conn_lock); 13472 return (EINTR); 13473 } 13474 13475 mutex_exit(&ill->ill_lock); 13476 if (connp != NULL) 13477 mutex_exit(&connp->conn_lock); 13478 return (EINPROGRESS); 13479 } 13480 13481 int 13482 ipif_down_tail(ipif_t *ipif) 13483 { 13484 ill_t *ill = ipif->ipif_ill; 13485 int err = 0; 13486 13487 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13488 ill_t *, ill, ipif_t *, ipif); 13489 13490 /* 13491 * Skip any loopback interface (null wq). 13492 * If this is the last logical interface on the ill 13493 * have ill_dl_down tell the driver we are gone (unbind) 13494 * Note that lun 0 can ipif_down even though 13495 * there are other logical units that are up. 13496 * This occurs e.g. when we change a "significant" IFF_ flag. 13497 */ 13498 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13499 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13500 ill->ill_dl_up) { 13501 ill_dl_down(ill); 13502 } 13503 if (!ipif->ipif_isv6) 13504 err = ipif_arp_down(ipif); 13505 13506 ill->ill_logical_down = 0; 13507 13508 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13509 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13510 return (err); 13511 } 13512 13513 /* 13514 * Bring interface logically down without bringing the physical interface 13515 * down e.g. when the netmask is changed. This avoids long lasting link 13516 * negotiations between an ethernet interface and a certain switches. 13517 */ 13518 static int 13519 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13520 { 13521 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13522 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13523 13524 /* 13525 * The ill_logical_down flag is a transient flag. It is set here 13526 * and is cleared once the down has completed in ipif_down_tail. 13527 * This flag does not indicate whether the ill stream is in the 13528 * DL_BOUND state with the driver. Instead this flag is used by 13529 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13530 * the driver. The state of the ill stream i.e. whether it is 13531 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13532 */ 13533 ipif->ipif_ill->ill_logical_down = 1; 13534 return (ipif_down(ipif, q, mp)); 13535 } 13536 13537 /* 13538 * Initiate deallocate of an IPIF. Always called as writer. Called by 13539 * ill_delete or ip_sioctl_removeif. 13540 */ 13541 static void 13542 ipif_free(ipif_t *ipif) 13543 { 13544 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13545 13546 ASSERT(IAM_WRITER_IPIF(ipif)); 13547 13548 if (ipif->ipif_recovery_id != 0) 13549 (void) untimeout(ipif->ipif_recovery_id); 13550 ipif->ipif_recovery_id = 0; 13551 13552 /* 13553 * Take down the interface. We can be called either from ill_delete 13554 * or from ip_sioctl_removeif. 13555 */ 13556 (void) ipif_down(ipif, NULL, NULL); 13557 13558 /* 13559 * Now that the interface is down, there's no chance it can still 13560 * become a duplicate. Cancel any timer that may have been set while 13561 * tearing down. 13562 */ 13563 if (ipif->ipif_recovery_id != 0) 13564 (void) untimeout(ipif->ipif_recovery_id); 13565 ipif->ipif_recovery_id = 0; 13566 13567 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13568 /* Remove pointers to this ill in the multicast routing tables */ 13569 reset_mrt_vif_ipif(ipif); 13570 /* If necessary, clear the cached source ipif rotor. */ 13571 if (ipif->ipif_ill->ill_src_ipif == ipif) 13572 ipif->ipif_ill->ill_src_ipif = NULL; 13573 rw_exit(&ipst->ips_ill_g_lock); 13574 } 13575 13576 static void 13577 ipif_free_tail(ipif_t *ipif) 13578 { 13579 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13580 13581 /* 13582 * Need to hold both ill_g_lock and ill_lock while 13583 * inserting or removing an ipif from the linked list 13584 * of ipifs hanging off the ill. 13585 */ 13586 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13587 13588 #ifdef DEBUG 13589 ipif_trace_cleanup(ipif); 13590 #endif 13591 13592 /* Ask SCTP to take it out of it list */ 13593 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13594 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13595 13596 /* Get it out of the ILL interface list. */ 13597 ipif_remove(ipif); 13598 rw_exit(&ipst->ips_ill_g_lock); 13599 13600 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13601 ASSERT(ipif->ipif_recovery_id == 0); 13602 ASSERT(ipif->ipif_ire_local == NULL); 13603 ASSERT(ipif->ipif_ire_if == NULL); 13604 13605 /* Free the memory. */ 13606 mi_free(ipif); 13607 } 13608 13609 /* 13610 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13611 * is zero. 13612 */ 13613 void 13614 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13615 { 13616 char lbuf[LIFNAMSIZ]; 13617 char *name; 13618 size_t name_len; 13619 13620 buf[0] = '\0'; 13621 name = ipif->ipif_ill->ill_name; 13622 name_len = ipif->ipif_ill->ill_name_length; 13623 if (ipif->ipif_id != 0) { 13624 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13625 ipif->ipif_id); 13626 name = lbuf; 13627 name_len = mi_strlen(name) + 1; 13628 } 13629 len -= 1; 13630 buf[len] = '\0'; 13631 len = MIN(len, name_len); 13632 bcopy(name, buf, len); 13633 } 13634 13635 /* 13636 * Sets `buf' to an ill name. 13637 */ 13638 void 13639 ill_get_name(const ill_t *ill, char *buf, int len) 13640 { 13641 char *name; 13642 size_t name_len; 13643 13644 name = ill->ill_name; 13645 name_len = ill->ill_name_length; 13646 len -= 1; 13647 buf[len] = '\0'; 13648 len = MIN(len, name_len); 13649 bcopy(name, buf, len); 13650 } 13651 13652 /* 13653 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13654 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13655 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13656 * (May be called as writer.) 13657 */ 13658 static ipif_t * 13659 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13660 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13661 { 13662 char *cp; 13663 char *endp; 13664 long id; 13665 ill_t *ill; 13666 ipif_t *ipif; 13667 uint_t ire_type; 13668 boolean_t did_alloc = B_FALSE; 13669 char last; 13670 13671 /* 13672 * If the caller wants to us to create the ipif, make sure we have a 13673 * valid zoneid 13674 */ 13675 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13676 13677 if (namelen == 0) { 13678 return (NULL); 13679 } 13680 13681 *exists = B_FALSE; 13682 /* Look for a colon in the name. */ 13683 endp = &name[namelen]; 13684 for (cp = endp; --cp > name; ) { 13685 if (*cp == IPIF_SEPARATOR_CHAR) 13686 break; 13687 } 13688 13689 if (*cp == IPIF_SEPARATOR_CHAR) { 13690 /* 13691 * Reject any non-decimal aliases for logical 13692 * interfaces. Aliases with leading zeroes 13693 * are also rejected as they introduce ambiguity 13694 * in the naming of the interfaces. 13695 * In order to confirm with existing semantics, 13696 * and to not break any programs/script relying 13697 * on that behaviour, if<0>:0 is considered to be 13698 * a valid interface. 13699 * 13700 * If alias has two or more digits and the first 13701 * is zero, fail. 13702 */ 13703 if (&cp[2] < endp && cp[1] == '0') { 13704 return (NULL); 13705 } 13706 } 13707 13708 if (cp <= name) { 13709 cp = endp; 13710 } 13711 last = *cp; 13712 *cp = '\0'; 13713 13714 /* 13715 * Look up the ILL, based on the portion of the name 13716 * before the slash. ill_lookup_on_name returns a held ill. 13717 * Temporary to check whether ill exists already. If so 13718 * ill_lookup_on_name will clear it. 13719 */ 13720 ill = ill_lookup_on_name(name, do_alloc, isv6, 13721 &did_alloc, ipst); 13722 *cp = last; 13723 if (ill == NULL) 13724 return (NULL); 13725 13726 /* Establish the unit number in the name. */ 13727 id = 0; 13728 if (cp < endp && *endp == '\0') { 13729 /* If there was a colon, the unit number follows. */ 13730 cp++; 13731 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13732 ill_refrele(ill); 13733 return (NULL); 13734 } 13735 } 13736 13737 mutex_enter(&ill->ill_lock); 13738 /* Now see if there is an IPIF with this unit number. */ 13739 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13740 if (ipif->ipif_id == id) { 13741 if (zoneid != ALL_ZONES && 13742 zoneid != ipif->ipif_zoneid && 13743 ipif->ipif_zoneid != ALL_ZONES) { 13744 mutex_exit(&ill->ill_lock); 13745 ill_refrele(ill); 13746 return (NULL); 13747 } 13748 if (IPIF_CAN_LOOKUP(ipif)) { 13749 ipif_refhold_locked(ipif); 13750 mutex_exit(&ill->ill_lock); 13751 if (!did_alloc) 13752 *exists = B_TRUE; 13753 /* 13754 * Drop locks before calling ill_refrele 13755 * since it can potentially call into 13756 * ipif_ill_refrele_tail which can end up 13757 * in trying to acquire any lock. 13758 */ 13759 ill_refrele(ill); 13760 return (ipif); 13761 } 13762 } 13763 } 13764 13765 if (!do_alloc) { 13766 mutex_exit(&ill->ill_lock); 13767 ill_refrele(ill); 13768 return (NULL); 13769 } 13770 13771 /* 13772 * If none found, atomically allocate and return a new one. 13773 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13774 * to support "receive only" use of lo0:1 etc. as is still done 13775 * below as an initial guess. 13776 * However, this is now likely to be overriden later in ipif_up_done() 13777 * when we know for sure what address has been configured on the 13778 * interface, since we might have more than one loopback interface 13779 * with a loopback address, e.g. in the case of zones, and all the 13780 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13781 */ 13782 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13783 ire_type = IRE_LOOPBACK; 13784 else 13785 ire_type = IRE_LOCAL; 13786 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13787 if (ipif != NULL) 13788 ipif_refhold_locked(ipif); 13789 mutex_exit(&ill->ill_lock); 13790 ill_refrele(ill); 13791 return (ipif); 13792 } 13793 13794 /* 13795 * Variant of the above that queues the request on the ipsq when 13796 * IPIF_CHANGING is set. 13797 */ 13798 static ipif_t * 13799 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13800 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13801 ip_stack_t *ipst) 13802 { 13803 char *cp; 13804 char *endp; 13805 long id; 13806 ill_t *ill; 13807 ipif_t *ipif; 13808 boolean_t did_alloc = B_FALSE; 13809 ipsq_t *ipsq; 13810 13811 if (error != NULL) 13812 *error = 0; 13813 13814 if (namelen == 0) { 13815 if (error != NULL) 13816 *error = ENXIO; 13817 return (NULL); 13818 } 13819 13820 /* Look for a colon in the name. */ 13821 endp = &name[namelen]; 13822 for (cp = endp; --cp > name; ) { 13823 if (*cp == IPIF_SEPARATOR_CHAR) 13824 break; 13825 } 13826 13827 if (*cp == IPIF_SEPARATOR_CHAR) { 13828 /* 13829 * Reject any non-decimal aliases for logical 13830 * interfaces. Aliases with leading zeroes 13831 * are also rejected as they introduce ambiguity 13832 * in the naming of the interfaces. 13833 * In order to confirm with existing semantics, 13834 * and to not break any programs/script relying 13835 * on that behaviour, if<0>:0 is considered to be 13836 * a valid interface. 13837 * 13838 * If alias has two or more digits and the first 13839 * is zero, fail. 13840 */ 13841 if (&cp[2] < endp && cp[1] == '0') { 13842 if (error != NULL) 13843 *error = EINVAL; 13844 return (NULL); 13845 } 13846 } 13847 13848 if (cp <= name) { 13849 cp = endp; 13850 } else { 13851 *cp = '\0'; 13852 } 13853 13854 /* 13855 * Look up the ILL, based on the portion of the name 13856 * before the slash. ill_lookup_on_name returns a held ill. 13857 * Temporary to check whether ill exists already. If so 13858 * ill_lookup_on_name will clear it. 13859 */ 13860 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13861 if (cp != endp) 13862 *cp = IPIF_SEPARATOR_CHAR; 13863 if (ill == NULL) 13864 return (NULL); 13865 13866 /* Establish the unit number in the name. */ 13867 id = 0; 13868 if (cp < endp && *endp == '\0') { 13869 /* If there was a colon, the unit number follows. */ 13870 cp++; 13871 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13872 ill_refrele(ill); 13873 if (error != NULL) 13874 *error = ENXIO; 13875 return (NULL); 13876 } 13877 } 13878 13879 GRAB_CONN_LOCK(q); 13880 mutex_enter(&ill->ill_lock); 13881 /* Now see if there is an IPIF with this unit number. */ 13882 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13883 if (ipif->ipif_id == id) { 13884 if (zoneid != ALL_ZONES && 13885 zoneid != ipif->ipif_zoneid && 13886 ipif->ipif_zoneid != ALL_ZONES) { 13887 mutex_exit(&ill->ill_lock); 13888 RELEASE_CONN_LOCK(q); 13889 ill_refrele(ill); 13890 if (error != NULL) 13891 *error = ENXIO; 13892 return (NULL); 13893 } 13894 13895 if (!(IPIF_IS_CHANGING(ipif) || 13896 IPIF_IS_CONDEMNED(ipif)) || 13897 IAM_WRITER_IPIF(ipif)) { 13898 ipif_refhold_locked(ipif); 13899 mutex_exit(&ill->ill_lock); 13900 /* 13901 * Drop locks before calling ill_refrele 13902 * since it can potentially call into 13903 * ipif_ill_refrele_tail which can end up 13904 * in trying to acquire any lock. 13905 */ 13906 RELEASE_CONN_LOCK(q); 13907 ill_refrele(ill); 13908 return (ipif); 13909 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13910 ipsq = ill->ill_phyint->phyint_ipsq; 13911 mutex_enter(&ipsq->ipsq_lock); 13912 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13913 mutex_exit(&ill->ill_lock); 13914 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13915 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13916 mutex_exit(&ipsq->ipsq_lock); 13917 RELEASE_CONN_LOCK(q); 13918 ill_refrele(ill); 13919 if (error != NULL) 13920 *error = EINPROGRESS; 13921 return (NULL); 13922 } 13923 } 13924 } 13925 RELEASE_CONN_LOCK(q); 13926 mutex_exit(&ill->ill_lock); 13927 ill_refrele(ill); 13928 if (error != NULL) 13929 *error = ENXIO; 13930 return (NULL); 13931 } 13932 13933 /* 13934 * This routine is called whenever a new address comes up on an ipif. If 13935 * we are configured to respond to address mask requests, then we are supposed 13936 * to broadcast an address mask reply at this time. This routine is also 13937 * called if we are already up, but a netmask change is made. This is legal 13938 * but might not make the system manager very popular. (May be called 13939 * as writer.) 13940 */ 13941 void 13942 ipif_mask_reply(ipif_t *ipif) 13943 { 13944 icmph_t *icmph; 13945 ipha_t *ipha; 13946 mblk_t *mp; 13947 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13948 ip_xmit_attr_t ixas; 13949 13950 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13951 13952 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13953 return; 13954 13955 /* ICMP mask reply is IPv4 only */ 13956 ASSERT(!ipif->ipif_isv6); 13957 /* ICMP mask reply is not for a loopback interface */ 13958 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13959 13960 if (ipif->ipif_lcl_addr == INADDR_ANY) 13961 return; 13962 13963 mp = allocb(REPLY_LEN, BPRI_HI); 13964 if (mp == NULL) 13965 return; 13966 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13967 13968 ipha = (ipha_t *)mp->b_rptr; 13969 bzero(ipha, REPLY_LEN); 13970 *ipha = icmp_ipha; 13971 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13972 ipha->ipha_src = ipif->ipif_lcl_addr; 13973 ipha->ipha_dst = ipif->ipif_brd_addr; 13974 ipha->ipha_length = htons(REPLY_LEN); 13975 ipha->ipha_ident = 0; 13976 13977 icmph = (icmph_t *)&ipha[1]; 13978 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13979 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13980 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13981 13982 bzero(&ixas, sizeof (ixas)); 13983 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13984 ixas.ixa_zoneid = ALL_ZONES; 13985 ixas.ixa_ifindex = 0; 13986 ixas.ixa_ipst = ipst; 13987 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13988 (void) ip_output_simple(mp, &ixas); 13989 ixa_cleanup(&ixas); 13990 #undef REPLY_LEN 13991 } 13992 13993 /* 13994 * Join the ipif specific multicast groups. 13995 * Must be called after a mapping has been set up in the resolver. (Always 13996 * called as writer.) 13997 */ 13998 void 13999 ipif_multicast_up(ipif_t *ipif) 14000 { 14001 int err; 14002 ill_t *ill; 14003 ilm_t *ilm; 14004 14005 ASSERT(IAM_WRITER_IPIF(ipif)); 14006 14007 ill = ipif->ipif_ill; 14008 14009 ip1dbg(("ipif_multicast_up\n")); 14010 if (!(ill->ill_flags & ILLF_MULTICAST) || 14011 ipif->ipif_allhosts_ilm != NULL) 14012 return; 14013 14014 if (ipif->ipif_isv6) { 14015 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14016 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14017 14018 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14019 14020 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14021 return; 14022 14023 ip1dbg(("ipif_multicast_up - addmulti\n")); 14024 14025 /* 14026 * Join the all hosts multicast address. We skip this for 14027 * underlying IPMP interfaces since they should be invisible. 14028 */ 14029 if (!IS_UNDER_IPMP(ill)) { 14030 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14031 &err); 14032 if (ilm == NULL) { 14033 ASSERT(err != 0); 14034 ip0dbg(("ipif_multicast_up: " 14035 "all_hosts_mcast failed %d\n", err)); 14036 return; 14037 } 14038 ipif->ipif_allhosts_ilm = ilm; 14039 } 14040 14041 /* 14042 * Enable multicast for the solicited node multicast address. 14043 * If IPMP we need to put the membership on the upper ill. 14044 */ 14045 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14046 ill_t *mcast_ill = NULL; 14047 boolean_t need_refrele; 14048 14049 if (IS_UNDER_IPMP(ill) && 14050 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14051 need_refrele = B_TRUE; 14052 } else { 14053 mcast_ill = ill; 14054 need_refrele = B_FALSE; 14055 } 14056 14057 ilm = ip_addmulti(&v6solmc, mcast_ill, 14058 ipif->ipif_zoneid, &err); 14059 if (need_refrele) 14060 ill_refrele(mcast_ill); 14061 14062 if (ilm == NULL) { 14063 ASSERT(err != 0); 14064 ip0dbg(("ipif_multicast_up: solicited MC" 14065 " failed %d\n", err)); 14066 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14067 ipif->ipif_allhosts_ilm = NULL; 14068 (void) ip_delmulti(ilm); 14069 } 14070 return; 14071 } 14072 ipif->ipif_solmulti_ilm = ilm; 14073 } 14074 } else { 14075 in6_addr_t v6group; 14076 14077 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14078 return; 14079 14080 /* Join the all hosts multicast address */ 14081 ip1dbg(("ipif_multicast_up - addmulti\n")); 14082 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14083 14084 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14085 if (ilm == NULL) { 14086 ASSERT(err != 0); 14087 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14088 return; 14089 } 14090 ipif->ipif_allhosts_ilm = ilm; 14091 } 14092 } 14093 14094 /* 14095 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14096 * (ilms from explicit memberships are handled in conn_update_ill.) 14097 */ 14098 void 14099 ipif_multicast_down(ipif_t *ipif) 14100 { 14101 ASSERT(IAM_WRITER_IPIF(ipif)); 14102 14103 ip1dbg(("ipif_multicast_down\n")); 14104 14105 if (ipif->ipif_allhosts_ilm != NULL) { 14106 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14107 ipif->ipif_allhosts_ilm = NULL; 14108 } 14109 if (ipif->ipif_solmulti_ilm != NULL) { 14110 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14111 ipif->ipif_solmulti_ilm = NULL; 14112 } 14113 } 14114 14115 /* 14116 * Used when an interface comes up to recreate any extra routes on this 14117 * interface. 14118 */ 14119 int 14120 ill_recover_saved_ire(ill_t *ill) 14121 { 14122 mblk_t *mp; 14123 ip_stack_t *ipst = ill->ill_ipst; 14124 14125 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14126 14127 mutex_enter(&ill->ill_saved_ire_lock); 14128 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14129 ire_t *ire, *nire; 14130 ifrt_t *ifrt; 14131 14132 ifrt = (ifrt_t *)mp->b_rptr; 14133 /* 14134 * Create a copy of the IRE with the saved address and netmask. 14135 */ 14136 if (ill->ill_isv6) { 14137 ire = ire_create_v6( 14138 &ifrt->ifrt_v6addr, 14139 &ifrt->ifrt_v6mask, 14140 &ifrt->ifrt_v6gateway_addr, 14141 ifrt->ifrt_type, 14142 ill, 14143 ifrt->ifrt_zoneid, 14144 ifrt->ifrt_flags, 14145 NULL, 14146 ipst); 14147 } else { 14148 ire = ire_create( 14149 (uint8_t *)&ifrt->ifrt_addr, 14150 (uint8_t *)&ifrt->ifrt_mask, 14151 (uint8_t *)&ifrt->ifrt_gateway_addr, 14152 ifrt->ifrt_type, 14153 ill, 14154 ifrt->ifrt_zoneid, 14155 ifrt->ifrt_flags, 14156 NULL, 14157 ipst); 14158 } 14159 if (ire == NULL) { 14160 mutex_exit(&ill->ill_saved_ire_lock); 14161 return (ENOMEM); 14162 } 14163 14164 if (ifrt->ifrt_flags & RTF_SETSRC) { 14165 if (ill->ill_isv6) { 14166 ire->ire_setsrc_addr_v6 = 14167 ifrt->ifrt_v6setsrc_addr; 14168 } else { 14169 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14170 } 14171 } 14172 14173 /* 14174 * Some software (for example, GateD and Sun Cluster) attempts 14175 * to create (what amount to) IRE_PREFIX routes with the 14176 * loopback address as the gateway. This is primarily done to 14177 * set up prefixes with the RTF_REJECT flag set (for example, 14178 * when generating aggregate routes.) 14179 * 14180 * If the IRE type (as defined by ill->ill_net_type) is 14181 * IRE_LOOPBACK, then we map the request into a 14182 * IRE_IF_NORESOLVER. 14183 */ 14184 if (ill->ill_net_type == IRE_LOOPBACK) 14185 ire->ire_type = IRE_IF_NORESOLVER; 14186 14187 /* 14188 * ire held by ire_add, will be refreled' towards the 14189 * the end of ipif_up_done 14190 */ 14191 nire = ire_add(ire); 14192 /* 14193 * Check if it was a duplicate entry. This handles 14194 * the case of two racing route adds for the same route 14195 */ 14196 if (nire == NULL) { 14197 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14198 } else if (nire != ire) { 14199 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14200 (void *)nire)); 14201 ire_delete(nire); 14202 } else { 14203 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14204 (void *)nire)); 14205 } 14206 if (nire != NULL) 14207 ire_refrele(nire); 14208 } 14209 mutex_exit(&ill->ill_saved_ire_lock); 14210 return (0); 14211 } 14212 14213 /* 14214 * Used to set the netmask and broadcast address to default values when the 14215 * interface is brought up. (Always called as writer.) 14216 */ 14217 static void 14218 ipif_set_default(ipif_t *ipif) 14219 { 14220 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14221 14222 if (!ipif->ipif_isv6) { 14223 /* 14224 * Interface holds an IPv4 address. Default 14225 * mask is the natural netmask. 14226 */ 14227 if (!ipif->ipif_net_mask) { 14228 ipaddr_t v4mask; 14229 14230 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14231 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14232 } 14233 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14234 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14235 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14236 } else { 14237 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14238 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14239 } 14240 /* 14241 * NOTE: SunOS 4.X does this even if the broadcast address 14242 * has been already set thus we do the same here. 14243 */ 14244 if (ipif->ipif_flags & IPIF_BROADCAST) { 14245 ipaddr_t v4addr; 14246 14247 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14248 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14249 } 14250 } else { 14251 /* 14252 * Interface holds an IPv6-only address. Default 14253 * mask is all-ones. 14254 */ 14255 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14256 ipif->ipif_v6net_mask = ipv6_all_ones; 14257 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14258 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14259 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14260 } else { 14261 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14262 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14263 } 14264 } 14265 } 14266 14267 /* 14268 * Return 0 if this address can be used as local address without causing 14269 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14270 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14271 * Note that the same IPv6 link-local address is allowed as long as the ills 14272 * are not on the same link. 14273 */ 14274 int 14275 ip_addr_availability_check(ipif_t *new_ipif) 14276 { 14277 in6_addr_t our_v6addr; 14278 ill_t *ill; 14279 ipif_t *ipif; 14280 ill_walk_context_t ctx; 14281 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14282 14283 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14284 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14285 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14286 14287 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14288 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14289 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14290 return (0); 14291 14292 our_v6addr = new_ipif->ipif_v6lcl_addr; 14293 14294 if (new_ipif->ipif_isv6) 14295 ill = ILL_START_WALK_V6(&ctx, ipst); 14296 else 14297 ill = ILL_START_WALK_V4(&ctx, ipst); 14298 14299 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14300 for (ipif = ill->ill_ipif; ipif != NULL; 14301 ipif = ipif->ipif_next) { 14302 if ((ipif == new_ipif) || 14303 !(ipif->ipif_flags & IPIF_UP) || 14304 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14305 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14306 &our_v6addr)) 14307 continue; 14308 14309 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14310 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14311 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14312 ipif->ipif_flags |= IPIF_UNNUMBERED; 14313 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14314 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14315 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14316 continue; 14317 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14318 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14319 continue; 14320 else if (new_ipif->ipif_ill == ill) 14321 return (EADDRINUSE); 14322 else 14323 return (EADDRNOTAVAIL); 14324 } 14325 } 14326 14327 return (0); 14328 } 14329 14330 /* 14331 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14332 * IREs for the ipif. 14333 * When the routine returns EINPROGRESS then mp has been consumed and 14334 * the ioctl will be acked from ip_rput_dlpi. 14335 */ 14336 int 14337 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14338 { 14339 ill_t *ill = ipif->ipif_ill; 14340 boolean_t isv6 = ipif->ipif_isv6; 14341 int err = 0; 14342 boolean_t success; 14343 uint_t ipif_orig_id; 14344 ip_stack_t *ipst = ill->ill_ipst; 14345 14346 ASSERT(IAM_WRITER_IPIF(ipif)); 14347 14348 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14349 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14350 ill_t *, ill, ipif_t *, ipif); 14351 14352 /* Shouldn't get here if it is already up. */ 14353 if (ipif->ipif_flags & IPIF_UP) 14354 return (EALREADY); 14355 14356 /* 14357 * If this is a request to bring up a data address on an interface 14358 * under IPMP, then move the address to its IPMP meta-interface and 14359 * try to bring it up. One complication is that the zeroth ipif for 14360 * an ill is special, in that every ill always has one, and that code 14361 * throughout IP deferences ill->ill_ipif without holding any locks. 14362 */ 14363 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14364 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14365 ipif_t *stubipif = NULL, *moveipif = NULL; 14366 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14367 14368 /* 14369 * The ipif being brought up should be quiesced. If it's not, 14370 * something has gone amiss and we need to bail out. (If it's 14371 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14372 */ 14373 mutex_enter(&ill->ill_lock); 14374 if (!ipif_is_quiescent(ipif)) { 14375 mutex_exit(&ill->ill_lock); 14376 return (EINVAL); 14377 } 14378 mutex_exit(&ill->ill_lock); 14379 14380 /* 14381 * If we're going to need to allocate ipifs, do it prior 14382 * to starting the move (and grabbing locks). 14383 */ 14384 if (ipif->ipif_id == 0) { 14385 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14386 B_FALSE, &err)) == NULL) { 14387 return (err); 14388 } 14389 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14390 B_FALSE, &err)) == NULL) { 14391 mi_free(moveipif); 14392 return (err); 14393 } 14394 } 14395 14396 /* 14397 * Grab or transfer the ipif to move. During the move, keep 14398 * ill_g_lock held to prevent any ill walker threads from 14399 * seeing things in an inconsistent state. 14400 */ 14401 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14402 if (ipif->ipif_id != 0) { 14403 ipif_remove(ipif); 14404 } else { 14405 ipif_transfer(ipif, moveipif, stubipif); 14406 ipif = moveipif; 14407 } 14408 14409 /* 14410 * Place the ipif on the IPMP ill. If the zeroth ipif on 14411 * the IPMP ill is a stub (0.0.0.0 down address) then we 14412 * replace that one. Otherwise, pick the next available slot. 14413 */ 14414 ipif->ipif_ill = ipmp_ill; 14415 ipif_orig_id = ipif->ipif_id; 14416 14417 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14418 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14419 ipif = ipmp_ill->ill_ipif; 14420 } else { 14421 ipif->ipif_id = -1; 14422 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14423 /* 14424 * No more available ipif_id's -- put it back 14425 * on the original ill and fail the operation. 14426 * Since we're writer on the ill, we can be 14427 * sure our old slot is still available. 14428 */ 14429 ipif->ipif_id = ipif_orig_id; 14430 ipif->ipif_ill = ill; 14431 if (ipif_orig_id == 0) { 14432 ipif_transfer(ipif, ill->ill_ipif, 14433 NULL); 14434 } else { 14435 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14436 } 14437 rw_exit(&ipst->ips_ill_g_lock); 14438 return (err); 14439 } 14440 } 14441 rw_exit(&ipst->ips_ill_g_lock); 14442 14443 /* 14444 * Tell SCTP that the ipif has moved. Note that even if we 14445 * had to allocate a new ipif, the original sequence id was 14446 * preserved and therefore SCTP won't know. 14447 */ 14448 sctp_move_ipif(ipif, ill, ipmp_ill); 14449 14450 /* 14451 * If the ipif being brought up was on slot zero, then we 14452 * first need to bring up the placeholder we stuck there. In 14453 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14454 * call to ipif_up() itself, if we successfully bring up the 14455 * placeholder, we'll check ill_move_ipif and bring it up too. 14456 */ 14457 if (ipif_orig_id == 0) { 14458 ASSERT(ill->ill_move_ipif == NULL); 14459 ill->ill_move_ipif = ipif; 14460 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14461 ASSERT(ill->ill_move_ipif == NULL); 14462 if (err != EINPROGRESS) 14463 ill->ill_move_ipif = NULL; 14464 return (err); 14465 } 14466 14467 /* 14468 * Bring it up on the IPMP ill. 14469 */ 14470 return (ipif_up(ipif, q, mp)); 14471 } 14472 14473 /* Skip arp/ndp for any loopback interface. */ 14474 if (ill->ill_wq != NULL) { 14475 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14476 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14477 14478 if (!ill->ill_dl_up) { 14479 /* 14480 * ill_dl_up is not yet set. i.e. we are yet to 14481 * DL_BIND with the driver and this is the first 14482 * logical interface on the ill to become "up". 14483 * Tell the driver to get going (via DL_BIND_REQ). 14484 * Note that changing "significant" IFF_ flags 14485 * address/netmask etc cause a down/up dance, but 14486 * does not cause an unbind (DL_UNBIND) with the driver 14487 */ 14488 return (ill_dl_up(ill, ipif, mp, q)); 14489 } 14490 14491 /* 14492 * ipif_resolver_up may end up needeing to bind/attach 14493 * the ARP stream, which in turn necessitates a 14494 * DLPI message exchange with the driver. ioctls are 14495 * serialized and so we cannot send more than one 14496 * interface up message at a time. If ipif_resolver_up 14497 * does need to wait for the DLPI handshake for the ARP stream, 14498 * we get EINPROGRESS and we will complete in arp_bringup_done. 14499 */ 14500 14501 ASSERT(connp != NULL || !CONN_Q(q)); 14502 if (connp != NULL) 14503 mutex_enter(&connp->conn_lock); 14504 mutex_enter(&ill->ill_lock); 14505 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14506 mutex_exit(&ill->ill_lock); 14507 if (connp != NULL) 14508 mutex_exit(&connp->conn_lock); 14509 if (!success) 14510 return (EINTR); 14511 14512 /* 14513 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14514 * complete when ipif_ndp_up returns. 14515 */ 14516 err = ipif_resolver_up(ipif, Res_act_initial); 14517 if (err == EINPROGRESS) { 14518 /* We will complete it in arp_bringup_done() */ 14519 return (err); 14520 } 14521 14522 if (isv6 && err == 0) 14523 err = ipif_ndp_up(ipif, B_TRUE); 14524 14525 ASSERT(err != EINPROGRESS); 14526 mp = ipsq_pending_mp_get(ipsq, &connp); 14527 ASSERT(mp != NULL); 14528 if (err != 0) 14529 return (err); 14530 } else { 14531 /* 14532 * Interfaces without underlying hardware don't do duplicate 14533 * address detection. 14534 */ 14535 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14536 ipif->ipif_addr_ready = 1; 14537 err = ill_add_ires(ill); 14538 /* allocation failure? */ 14539 if (err != 0) 14540 return (err); 14541 } 14542 14543 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14544 if (err == 0 && ill->ill_move_ipif != NULL) { 14545 ipif = ill->ill_move_ipif; 14546 ill->ill_move_ipif = NULL; 14547 return (ipif_up(ipif, q, mp)); 14548 } 14549 return (err); 14550 } 14551 14552 /* 14553 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14554 * The identical set of IREs need to be removed in ill_delete_ires(). 14555 */ 14556 int 14557 ill_add_ires(ill_t *ill) 14558 { 14559 ire_t *ire; 14560 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14561 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14562 14563 if (ill->ill_ire_multicast != NULL) 14564 return (0); 14565 14566 /* 14567 * provide some dummy ire_addr for creating the ire. 14568 */ 14569 if (ill->ill_isv6) { 14570 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14571 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14572 } else { 14573 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14574 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14575 } 14576 if (ire == NULL) 14577 return (ENOMEM); 14578 14579 ill->ill_ire_multicast = ire; 14580 return (0); 14581 } 14582 14583 void 14584 ill_delete_ires(ill_t *ill) 14585 { 14586 if (ill->ill_ire_multicast != NULL) { 14587 /* 14588 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14589 * which was taken without any th_tracing enabled. 14590 * We also mark it as condemned (note that it was never added) 14591 * so that caching conn's can move off of it. 14592 */ 14593 ire_make_condemned(ill->ill_ire_multicast); 14594 ire_refrele_notr(ill->ill_ire_multicast); 14595 ill->ill_ire_multicast = NULL; 14596 } 14597 } 14598 14599 /* 14600 * Perform a bind for the physical device. 14601 * When the routine returns EINPROGRESS then mp has been consumed and 14602 * the ioctl will be acked from ip_rput_dlpi. 14603 * Allocate an unbind message and save it until ipif_down. 14604 */ 14605 static int 14606 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14607 { 14608 mblk_t *bind_mp = NULL; 14609 mblk_t *unbind_mp = NULL; 14610 conn_t *connp; 14611 boolean_t success; 14612 int err; 14613 14614 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14615 14616 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14617 ASSERT(IAM_WRITER_ILL(ill)); 14618 ASSERT(mp != NULL); 14619 14620 /* 14621 * Make sure we have an IRE_MULTICAST in case we immediately 14622 * start receiving packets. 14623 */ 14624 err = ill_add_ires(ill); 14625 if (err != 0) 14626 goto bad; 14627 14628 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14629 DL_BIND_REQ); 14630 if (bind_mp == NULL) 14631 goto bad; 14632 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14633 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14634 14635 /* 14636 * ill_unbind_mp would be non-null if the following sequence had 14637 * happened: 14638 * - send DL_BIND_REQ to driver, wait for response 14639 * - multiple ioctls that need to bring the ipif up are encountered, 14640 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14641 * These ioctls will then be enqueued on the ipsq 14642 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14643 * At this point, the pending ioctls in the ipsq will be drained, and 14644 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14645 * a non-null ill->ill_unbind_mp 14646 */ 14647 if (ill->ill_unbind_mp == NULL) { 14648 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14649 DL_UNBIND_REQ); 14650 if (unbind_mp == NULL) 14651 goto bad; 14652 } 14653 /* 14654 * Record state needed to complete this operation when the 14655 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14656 */ 14657 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14658 ASSERT(connp != NULL || !CONN_Q(q)); 14659 GRAB_CONN_LOCK(q); 14660 mutex_enter(&ipif->ipif_ill->ill_lock); 14661 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14662 mutex_exit(&ipif->ipif_ill->ill_lock); 14663 RELEASE_CONN_LOCK(q); 14664 if (!success) 14665 goto bad; 14666 14667 /* 14668 * Save the unbind message for ill_dl_down(); it will be consumed when 14669 * the interface goes down. 14670 */ 14671 if (ill->ill_unbind_mp == NULL) 14672 ill->ill_unbind_mp = unbind_mp; 14673 14674 ill_dlpi_send(ill, bind_mp); 14675 /* Send down link-layer capabilities probe if not already done. */ 14676 ill_capability_probe(ill); 14677 14678 /* 14679 * Sysid used to rely on the fact that netboots set domainname 14680 * and the like. Now that miniroot boots aren't strictly netboots 14681 * and miniroot network configuration is driven from userland 14682 * these things still need to be set. This situation can be detected 14683 * by comparing the interface being configured here to the one 14684 * dhcifname was set to reference by the boot loader. Once sysid is 14685 * converted to use dhcp_ipc_getinfo() this call can go away. 14686 */ 14687 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14688 (strcmp(ill->ill_name, dhcifname) == 0) && 14689 (strlen(srpc_domain) == 0)) { 14690 if (dhcpinit() != 0) 14691 cmn_err(CE_WARN, "no cached dhcp response"); 14692 } 14693 14694 /* 14695 * This operation will complete in ip_rput_dlpi with either 14696 * a DL_BIND_ACK or DL_ERROR_ACK. 14697 */ 14698 return (EINPROGRESS); 14699 bad: 14700 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14701 14702 freemsg(bind_mp); 14703 freemsg(unbind_mp); 14704 return (ENOMEM); 14705 } 14706 14707 /* Add room for tcp+ip headers */ 14708 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14709 14710 /* 14711 * DLPI and ARP is up. 14712 * Create all the IREs associated with an interface. Bring up multicast. 14713 * Set the interface flag and finish other initialization 14714 * that potentially had to be deferred to after DL_BIND_ACK. 14715 */ 14716 int 14717 ipif_up_done(ipif_t *ipif) 14718 { 14719 ill_t *ill = ipif->ipif_ill; 14720 int err = 0; 14721 boolean_t loopback = B_FALSE; 14722 boolean_t update_src_selection = B_TRUE; 14723 ipif_t *tmp_ipif; 14724 14725 ip1dbg(("ipif_up_done(%s:%u)\n", 14726 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14727 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14728 ill_t *, ill, ipif_t *, ipif); 14729 14730 /* Check if this is a loopback interface */ 14731 if (ipif->ipif_ill->ill_wq == NULL) 14732 loopback = B_TRUE; 14733 14734 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14735 14736 /* 14737 * If all other interfaces for this ill are down or DEPRECATED, 14738 * or otherwise unsuitable for source address selection, 14739 * reset the src generation numbers to make sure source 14740 * address selection gets to take this new ipif into account. 14741 * No need to hold ill_lock while traversing the ipif list since 14742 * we are writer 14743 */ 14744 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14745 tmp_ipif = tmp_ipif->ipif_next) { 14746 if (((tmp_ipif->ipif_flags & 14747 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14748 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14749 (tmp_ipif == ipif)) 14750 continue; 14751 /* first useable pre-existing interface */ 14752 update_src_selection = B_FALSE; 14753 break; 14754 } 14755 if (update_src_selection) 14756 ip_update_source_selection(ill->ill_ipst); 14757 14758 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14759 nce_t *loop_nce = NULL; 14760 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14761 14762 /* 14763 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14764 * ipif_lookup_on_name(), but in the case of zones we can have 14765 * several loopback addresses on lo0. So all the interfaces with 14766 * loopback addresses need to be marked IRE_LOOPBACK. 14767 */ 14768 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14769 htonl(INADDR_LOOPBACK)) 14770 ipif->ipif_ire_type = IRE_LOOPBACK; 14771 else 14772 ipif->ipif_ire_type = IRE_LOCAL; 14773 if (ill->ill_net_type != IRE_LOOPBACK) 14774 flags |= NCE_F_PUBLISH; 14775 14776 /* add unicast nce for the local addr */ 14777 err = nce_lookup_then_add_v4(ill, NULL, 14778 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14779 ND_REACHABLE, &loop_nce); 14780 /* A shared-IP zone sees EEXIST for lo0:N */ 14781 if (err == 0 || err == EEXIST) { 14782 ipif->ipif_added_nce = 1; 14783 loop_nce->nce_ipif_cnt++; 14784 nce_refrele(loop_nce); 14785 err = 0; 14786 } else { 14787 ASSERT(loop_nce == NULL); 14788 return (err); 14789 } 14790 } 14791 14792 /* Create all the IREs associated with this interface */ 14793 err = ipif_add_ires_v4(ipif, loopback); 14794 if (err != 0) { 14795 /* 14796 * see comments about return value from 14797 * ip_addr_availability_check() in ipif_add_ires_v4(). 14798 */ 14799 if (err != EADDRINUSE) { 14800 (void) ipif_arp_down(ipif); 14801 } else { 14802 /* 14803 * Make IPMP aware of the deleted ipif so that 14804 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14805 * can be completed. Note that we do not want to 14806 * destroy the nce that was created on the ipmp_ill 14807 * for the active copy of the duplicate address in 14808 * use. 14809 */ 14810 if (IS_IPMP(ill)) 14811 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14812 err = EADDRNOTAVAIL; 14813 } 14814 return (err); 14815 } 14816 14817 if (ill->ill_ipif_up_count == 1 && !loopback) { 14818 /* Recover any additional IREs entries for this ill */ 14819 (void) ill_recover_saved_ire(ill); 14820 } 14821 14822 if (ill->ill_need_recover_multicast) { 14823 /* 14824 * Need to recover all multicast memberships in the driver. 14825 * This had to be deferred until we had attached. The same 14826 * code exists in ipif_up_done_v6() to recover IPv6 14827 * memberships. 14828 * 14829 * Note that it would be preferable to unconditionally do the 14830 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14831 * that since ill_join_allmulti() depends on ill_dl_up being 14832 * set, and it is not set until we receive a DL_BIND_ACK after 14833 * having called ill_dl_up(). 14834 */ 14835 ill_recover_multicast(ill); 14836 } 14837 14838 if (ill->ill_ipif_up_count == 1) { 14839 /* 14840 * Since the interface is now up, it may now be active. 14841 */ 14842 if (IS_UNDER_IPMP(ill)) 14843 ipmp_ill_refresh_active(ill); 14844 14845 /* 14846 * If this is an IPMP interface, we may now be able to 14847 * establish ARP entries. 14848 */ 14849 if (IS_IPMP(ill)) 14850 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14851 } 14852 14853 /* Join the allhosts multicast address */ 14854 ipif_multicast_up(ipif); 14855 14856 if (!loopback && !update_src_selection && 14857 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14858 ip_update_source_selection(ill->ill_ipst); 14859 14860 if (!loopback && ipif->ipif_addr_ready) { 14861 /* Broadcast an address mask reply. */ 14862 ipif_mask_reply(ipif); 14863 } 14864 /* Perhaps ilgs should use this ill */ 14865 update_conn_ill(NULL, ill->ill_ipst); 14866 14867 /* 14868 * This had to be deferred until we had bound. Tell routing sockets and 14869 * others that this interface is up if it looks like the address has 14870 * been validated. Otherwise, if it isn't ready yet, wait for 14871 * duplicate address detection to do its thing. 14872 */ 14873 if (ipif->ipif_addr_ready) 14874 ipif_up_notify(ipif); 14875 return (0); 14876 } 14877 14878 /* 14879 * Add the IREs associated with the ipif. 14880 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14881 */ 14882 static int 14883 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14884 { 14885 ill_t *ill = ipif->ipif_ill; 14886 ip_stack_t *ipst = ill->ill_ipst; 14887 ire_t *ire_array[20]; 14888 ire_t **irep = ire_array; 14889 ire_t **irep1; 14890 ipaddr_t net_mask = 0; 14891 ipaddr_t subnet_mask, route_mask; 14892 int err; 14893 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14894 ire_t *ire_if = NULL; 14895 uchar_t *gw; 14896 14897 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14898 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14899 /* 14900 * If we're on a labeled system then make sure that zone- 14901 * private addresses have proper remote host database entries. 14902 */ 14903 if (is_system_labeled() && 14904 ipif->ipif_ire_type != IRE_LOOPBACK && 14905 !tsol_check_interface_address(ipif)) 14906 return (EINVAL); 14907 14908 /* Register the source address for __sin6_src_id */ 14909 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14910 ipif->ipif_zoneid, ipst); 14911 if (err != 0) { 14912 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14913 return (err); 14914 } 14915 14916 if (loopback) 14917 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14918 else 14919 gw = NULL; 14920 14921 /* If the interface address is set, create the local IRE. */ 14922 ire_local = ire_create( 14923 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14924 (uchar_t *)&ip_g_all_ones, /* mask */ 14925 gw, /* gateway */ 14926 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14927 ipif->ipif_ill, 14928 ipif->ipif_zoneid, 14929 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14930 RTF_PRIVATE : 0) | RTF_KERNEL, 14931 NULL, 14932 ipst); 14933 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14934 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14935 ipif->ipif_ire_type, 14936 ntohl(ipif->ipif_lcl_addr))); 14937 if (ire_local == NULL) { 14938 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14939 err = ENOMEM; 14940 goto bad; 14941 } 14942 } else { 14943 ip1dbg(( 14944 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14945 ipif->ipif_ire_type, 14946 ntohl(ipif->ipif_lcl_addr), 14947 (uint_t)ipif->ipif_flags)); 14948 } 14949 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14950 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14951 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14952 } else { 14953 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14954 } 14955 14956 subnet_mask = ipif->ipif_net_mask; 14957 14958 /* 14959 * If mask was not specified, use natural netmask of 14960 * interface address. Also, store this mask back into the 14961 * ipif struct. 14962 */ 14963 if (subnet_mask == 0) { 14964 subnet_mask = net_mask; 14965 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14966 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14967 ipif->ipif_v6subnet); 14968 } 14969 14970 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14971 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14972 ipif->ipif_subnet != INADDR_ANY) { 14973 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14974 14975 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14976 route_mask = IP_HOST_MASK; 14977 } else { 14978 route_mask = subnet_mask; 14979 } 14980 14981 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14982 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14983 (void *)ipif, (void *)ill, ill->ill_net_type, 14984 ntohl(ipif->ipif_subnet))); 14985 ire_if = ire_create( 14986 (uchar_t *)&ipif->ipif_subnet, 14987 (uchar_t *)&route_mask, 14988 (uchar_t *)&ipif->ipif_lcl_addr, 14989 ill->ill_net_type, 14990 ill, 14991 ipif->ipif_zoneid, 14992 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14993 RTF_PRIVATE: 0) | RTF_KERNEL, 14994 NULL, 14995 ipst); 14996 if (ire_if == NULL) { 14997 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14998 err = ENOMEM; 14999 goto bad; 15000 } 15001 } 15002 15003 /* 15004 * Create any necessary broadcast IREs. 15005 */ 15006 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15007 !(ipif->ipif_flags & IPIF_NOXMIT)) 15008 irep = ipif_create_bcast_ires(ipif, irep); 15009 15010 /* If an earlier ire_create failed, get out now */ 15011 for (irep1 = irep; irep1 > ire_array; ) { 15012 irep1--; 15013 if (*irep1 == NULL) { 15014 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15015 err = ENOMEM; 15016 goto bad; 15017 } 15018 } 15019 15020 /* 15021 * Need to atomically check for IP address availability under 15022 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15023 * ills or new ipifs can be added while we are checking availability. 15024 */ 15025 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15026 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15027 /* Mark it up, and increment counters. */ 15028 ipif->ipif_flags |= IPIF_UP; 15029 ill->ill_ipif_up_count++; 15030 err = ip_addr_availability_check(ipif); 15031 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15032 rw_exit(&ipst->ips_ill_g_lock); 15033 15034 if (err != 0) { 15035 /* 15036 * Our address may already be up on the same ill. In this case, 15037 * the ARP entry for our ipif replaced the one for the other 15038 * ipif. So we don't want to delete it (otherwise the other ipif 15039 * would be unable to send packets). 15040 * ip_addr_availability_check() identifies this case for us and 15041 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15042 * which is the expected error code. 15043 */ 15044 ill->ill_ipif_up_count--; 15045 ipif->ipif_flags &= ~IPIF_UP; 15046 goto bad; 15047 } 15048 15049 /* 15050 * Add in all newly created IREs. ire_create_bcast() has 15051 * already checked for duplicates of the IRE_BROADCAST type. 15052 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15053 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15054 * a /32 route. 15055 */ 15056 if (ire_if != NULL) { 15057 ire_if = ire_add(ire_if); 15058 if (ire_if == NULL) { 15059 err = ENOMEM; 15060 goto bad2; 15061 } 15062 #ifdef DEBUG 15063 ire_refhold_notr(ire_if); 15064 ire_refrele(ire_if); 15065 #endif 15066 } 15067 if (ire_local != NULL) { 15068 ire_local = ire_add(ire_local); 15069 if (ire_local == NULL) { 15070 err = ENOMEM; 15071 goto bad2; 15072 } 15073 #ifdef DEBUG 15074 ire_refhold_notr(ire_local); 15075 ire_refrele(ire_local); 15076 #endif 15077 } 15078 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15079 if (ire_local != NULL) 15080 ipif->ipif_ire_local = ire_local; 15081 if (ire_if != NULL) 15082 ipif->ipif_ire_if = ire_if; 15083 rw_exit(&ipst->ips_ill_g_lock); 15084 ire_local = NULL; 15085 ire_if = NULL; 15086 15087 /* 15088 * We first add all of them, and if that succeeds we refrele the 15089 * bunch. That enables us to delete all of them should any of the 15090 * ire_adds fail. 15091 */ 15092 for (irep1 = irep; irep1 > ire_array; ) { 15093 irep1--; 15094 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15095 *irep1 = ire_add(*irep1); 15096 if (*irep1 == NULL) { 15097 err = ENOMEM; 15098 goto bad2; 15099 } 15100 } 15101 15102 for (irep1 = irep; irep1 > ire_array; ) { 15103 irep1--; 15104 /* refheld by ire_add. */ 15105 if (*irep1 != NULL) { 15106 ire_refrele(*irep1); 15107 *irep1 = NULL; 15108 } 15109 } 15110 15111 if (!loopback) { 15112 /* 15113 * If the broadcast address has been set, make sure it makes 15114 * sense based on the interface address. 15115 * Only match on ill since we are sharing broadcast addresses. 15116 */ 15117 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15118 (ipif->ipif_flags & IPIF_BROADCAST)) { 15119 ire_t *ire; 15120 15121 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15122 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15123 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15124 15125 if (ire == NULL) { 15126 /* 15127 * If there isn't a matching broadcast IRE, 15128 * revert to the default for this netmask. 15129 */ 15130 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15131 mutex_enter(&ipif->ipif_ill->ill_lock); 15132 ipif_set_default(ipif); 15133 mutex_exit(&ipif->ipif_ill->ill_lock); 15134 } else { 15135 ire_refrele(ire); 15136 } 15137 } 15138 15139 } 15140 return (0); 15141 15142 bad2: 15143 ill->ill_ipif_up_count--; 15144 ipif->ipif_flags &= ~IPIF_UP; 15145 15146 bad: 15147 ip1dbg(("ipif_add_ires: FAILED \n")); 15148 if (ire_local != NULL) 15149 ire_delete(ire_local); 15150 if (ire_if != NULL) 15151 ire_delete(ire_if); 15152 15153 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15154 ire_local = ipif->ipif_ire_local; 15155 ipif->ipif_ire_local = NULL; 15156 ire_if = ipif->ipif_ire_if; 15157 ipif->ipif_ire_if = NULL; 15158 rw_exit(&ipst->ips_ill_g_lock); 15159 if (ire_local != NULL) { 15160 ire_delete(ire_local); 15161 ire_refrele_notr(ire_local); 15162 } 15163 if (ire_if != NULL) { 15164 ire_delete(ire_if); 15165 ire_refrele_notr(ire_if); 15166 } 15167 15168 while (irep > ire_array) { 15169 irep--; 15170 if (*irep != NULL) { 15171 ire_delete(*irep); 15172 } 15173 } 15174 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15175 15176 return (err); 15177 } 15178 15179 /* Remove all the IREs created by ipif_add_ires_v4 */ 15180 void 15181 ipif_delete_ires_v4(ipif_t *ipif) 15182 { 15183 ill_t *ill = ipif->ipif_ill; 15184 ip_stack_t *ipst = ill->ill_ipst; 15185 ire_t *ire; 15186 15187 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15188 ire = ipif->ipif_ire_local; 15189 ipif->ipif_ire_local = NULL; 15190 rw_exit(&ipst->ips_ill_g_lock); 15191 if (ire != NULL) { 15192 /* 15193 * Move count to ipif so we don't loose the count due to 15194 * a down/up dance. 15195 */ 15196 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15197 15198 ire_delete(ire); 15199 ire_refrele_notr(ire); 15200 } 15201 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15202 ire = ipif->ipif_ire_if; 15203 ipif->ipif_ire_if = NULL; 15204 rw_exit(&ipst->ips_ill_g_lock); 15205 if (ire != NULL) { 15206 ire_delete(ire); 15207 ire_refrele_notr(ire); 15208 } 15209 15210 /* 15211 * Delete the broadcast IREs. 15212 */ 15213 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15214 !(ipif->ipif_flags & IPIF_NOXMIT)) 15215 ipif_delete_bcast_ires(ipif); 15216 } 15217 15218 /* 15219 * Checks for availbility of a usable source address (if there is one) when the 15220 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15221 * this selection is done regardless of the destination. 15222 */ 15223 boolean_t 15224 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15225 ip_stack_t *ipst) 15226 { 15227 ipif_t *ipif = NULL; 15228 ill_t *uill; 15229 15230 ASSERT(ifindex != 0); 15231 15232 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15233 if (uill == NULL) 15234 return (B_FALSE); 15235 15236 mutex_enter(&uill->ill_lock); 15237 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15238 if (IPIF_IS_CONDEMNED(ipif)) 15239 continue; 15240 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15241 continue; 15242 if (!(ipif->ipif_flags & IPIF_UP)) 15243 continue; 15244 if (ipif->ipif_zoneid != zoneid) 15245 continue; 15246 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15247 ipif->ipif_lcl_addr == INADDR_ANY) 15248 continue; 15249 mutex_exit(&uill->ill_lock); 15250 ill_refrele(uill); 15251 return (B_TRUE); 15252 } 15253 mutex_exit(&uill->ill_lock); 15254 ill_refrele(uill); 15255 return (B_FALSE); 15256 } 15257 15258 /* 15259 * Find an ipif with a good local address on the ill+zoneid. 15260 */ 15261 ipif_t * 15262 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15263 { 15264 ipif_t *ipif; 15265 15266 mutex_enter(&ill->ill_lock); 15267 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15268 if (IPIF_IS_CONDEMNED(ipif)) 15269 continue; 15270 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15271 continue; 15272 if (!(ipif->ipif_flags & IPIF_UP)) 15273 continue; 15274 if (ipif->ipif_zoneid != zoneid && 15275 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15276 continue; 15277 if (ill->ill_isv6 ? 15278 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15279 ipif->ipif_lcl_addr == INADDR_ANY) 15280 continue; 15281 ipif_refhold_locked(ipif); 15282 mutex_exit(&ill->ill_lock); 15283 return (ipif); 15284 } 15285 mutex_exit(&ill->ill_lock); 15286 return (NULL); 15287 } 15288 15289 /* 15290 * IP source address type, sorted from worst to best. For a given type, 15291 * always prefer IP addresses on the same subnet. All-zones addresses are 15292 * suboptimal because they pose problems with unlabeled destinations. 15293 */ 15294 typedef enum { 15295 IPIF_NONE, 15296 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15297 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15298 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15299 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15300 IPIF_DIFFNET, /* normal and different subnet */ 15301 IPIF_SAMENET, /* normal and same subnet */ 15302 IPIF_LOCALADDR /* local loopback */ 15303 } ipif_type_t; 15304 15305 /* 15306 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15307 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15308 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15309 * the first one, unless IPMP is used in which case we round-robin among them; 15310 * see below for more. 15311 * 15312 * Returns NULL if there is no suitable source address for the ill. 15313 * This only occurs when there is no valid source address for the ill. 15314 */ 15315 ipif_t * 15316 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15317 boolean_t allow_usesrc, boolean_t *notreadyp) 15318 { 15319 ill_t *usill = NULL; 15320 ill_t *ipmp_ill = NULL; 15321 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15322 ipif_type_t type, best_type; 15323 tsol_tpc_t *src_rhtp, *dst_rhtp; 15324 ip_stack_t *ipst = ill->ill_ipst; 15325 boolean_t samenet; 15326 15327 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15328 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15329 B_FALSE, ipst); 15330 if (usill != NULL) 15331 ill = usill; /* Select source from usesrc ILL */ 15332 else 15333 return (NULL); 15334 } 15335 15336 /* 15337 * Test addresses should never be used for source address selection, 15338 * so if we were passed one, switch to the IPMP meta-interface. 15339 */ 15340 if (IS_UNDER_IPMP(ill)) { 15341 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15342 ill = ipmp_ill; /* Select source from IPMP ill */ 15343 else 15344 return (NULL); 15345 } 15346 15347 /* 15348 * If we're dealing with an unlabeled destination on a labeled system, 15349 * make sure that we ignore source addresses that are incompatible with 15350 * the destination's default label. That destination's default label 15351 * must dominate the minimum label on the source address. 15352 */ 15353 dst_rhtp = NULL; 15354 if (is_system_labeled()) { 15355 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15356 if (dst_rhtp == NULL) 15357 return (NULL); 15358 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15359 TPC_RELE(dst_rhtp); 15360 dst_rhtp = NULL; 15361 } 15362 } 15363 15364 /* 15365 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15366 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15367 * After selecting the right ipif, under ill_lock make sure ipif is 15368 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15369 * we retry. Inside the loop we still need to check for CONDEMNED, 15370 * but not under a lock. 15371 */ 15372 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15373 retry: 15374 /* 15375 * For source address selection, we treat the ipif list as circular 15376 * and continue until we get back to where we started. This allows 15377 * IPMP to vary source address selection (which improves inbound load 15378 * spreading) by caching its last ending point and starting from 15379 * there. NOTE: we don't have to worry about ill_src_ipif changing 15380 * ills since that can't happen on the IPMP ill. 15381 */ 15382 start_ipif = ill->ill_ipif; 15383 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15384 start_ipif = ill->ill_src_ipif; 15385 15386 ipif = start_ipif; 15387 best_ipif = NULL; 15388 best_type = IPIF_NONE; 15389 do { 15390 if ((next_ipif = ipif->ipif_next) == NULL) 15391 next_ipif = ill->ill_ipif; 15392 15393 if (IPIF_IS_CONDEMNED(ipif)) 15394 continue; 15395 /* Always skip NOLOCAL and ANYCAST interfaces */ 15396 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15397 continue; 15398 /* Always skip NOACCEPT interfaces */ 15399 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15400 continue; 15401 if (!(ipif->ipif_flags & IPIF_UP)) 15402 continue; 15403 15404 if (!ipif->ipif_addr_ready) { 15405 if (notreadyp != NULL) 15406 *notreadyp = B_TRUE; 15407 continue; 15408 } 15409 15410 if (zoneid != ALL_ZONES && 15411 ipif->ipif_zoneid != zoneid && 15412 ipif->ipif_zoneid != ALL_ZONES) 15413 continue; 15414 15415 /* 15416 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15417 * are not valid as source addresses. 15418 */ 15419 if (ipif->ipif_lcl_addr == INADDR_ANY) 15420 continue; 15421 15422 /* 15423 * Check compatibility of local address for destination's 15424 * default label if we're on a labeled system. Incompatible 15425 * addresses can't be used at all. 15426 */ 15427 if (dst_rhtp != NULL) { 15428 boolean_t incompat; 15429 15430 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15431 IPV4_VERSION, B_FALSE); 15432 if (src_rhtp == NULL) 15433 continue; 15434 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15435 src_rhtp->tpc_tp.tp_doi != 15436 dst_rhtp->tpc_tp.tp_doi || 15437 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15438 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15439 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15440 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15441 TPC_RELE(src_rhtp); 15442 if (incompat) 15443 continue; 15444 } 15445 15446 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15447 15448 if (ipif->ipif_lcl_addr == dst) { 15449 type = IPIF_LOCALADDR; 15450 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15451 type = samenet ? IPIF_SAMENET_DEPRECATED : 15452 IPIF_DIFFNET_DEPRECATED; 15453 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15454 type = samenet ? IPIF_SAMENET_ALLZONES : 15455 IPIF_DIFFNET_ALLZONES; 15456 } else { 15457 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15458 } 15459 15460 if (type > best_type) { 15461 best_type = type; 15462 best_ipif = ipif; 15463 if (best_type == IPIF_LOCALADDR) 15464 break; /* can't get better */ 15465 } 15466 } while ((ipif = next_ipif) != start_ipif); 15467 15468 if ((ipif = best_ipif) != NULL) { 15469 mutex_enter(&ipif->ipif_ill->ill_lock); 15470 if (IPIF_IS_CONDEMNED(ipif)) { 15471 mutex_exit(&ipif->ipif_ill->ill_lock); 15472 goto retry; 15473 } 15474 ipif_refhold_locked(ipif); 15475 15476 /* 15477 * For IPMP, update the source ipif rotor to the next ipif, 15478 * provided we can look it up. (We must not use it if it's 15479 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15480 * ipif_free() checked ill_src_ipif.) 15481 */ 15482 if (IS_IPMP(ill) && ipif != NULL) { 15483 next_ipif = ipif->ipif_next; 15484 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15485 ill->ill_src_ipif = next_ipif; 15486 else 15487 ill->ill_src_ipif = NULL; 15488 } 15489 mutex_exit(&ipif->ipif_ill->ill_lock); 15490 } 15491 15492 rw_exit(&ipst->ips_ill_g_lock); 15493 if (usill != NULL) 15494 ill_refrele(usill); 15495 if (ipmp_ill != NULL) 15496 ill_refrele(ipmp_ill); 15497 if (dst_rhtp != NULL) 15498 TPC_RELE(dst_rhtp); 15499 15500 #ifdef DEBUG 15501 if (ipif == NULL) { 15502 char buf1[INET6_ADDRSTRLEN]; 15503 15504 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15505 ill->ill_name, 15506 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15507 } else { 15508 char buf1[INET6_ADDRSTRLEN]; 15509 char buf2[INET6_ADDRSTRLEN]; 15510 15511 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15512 ipif->ipif_ill->ill_name, 15513 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15514 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15515 buf2, sizeof (buf2)))); 15516 } 15517 #endif /* DEBUG */ 15518 return (ipif); 15519 } 15520 15521 /* 15522 * Pick a source address based on the destination ill and an optional setsrc 15523 * address. 15524 * The result is stored in srcp. If generation is set, then put the source 15525 * generation number there before we look for the source address (to avoid 15526 * missing changes in the set of source addresses. 15527 * If flagsp is set, then us it to pass back ipif_flags. 15528 * 15529 * If the caller wants to cache the returned source address and detect when 15530 * that might be stale, the caller should pass in a generation argument, 15531 * which the caller can later compare against ips_src_generation 15532 * 15533 * The precedence order for selecting an IPv4 source address is: 15534 * - RTF_SETSRC on the offlink ire always wins. 15535 * - If usrsrc is set, swap the ill to be the usesrc one. 15536 * - If IPMP is used on the ill, select a random address from the most 15537 * preferred ones below: 15538 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15539 * 2. Not deprecated, not ALL_ZONES 15540 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15541 * 4. Not deprecated, ALL_ZONES 15542 * 5. If onlink destination, same subnet and deprecated 15543 * 6. Deprecated. 15544 * 15545 * We have lower preference for ALL_ZONES IP addresses, 15546 * as they pose problems with unlabeled destinations. 15547 * 15548 * Note that when multiple IP addresses match e.g., #1 we pick 15549 * the first one if IPMP is not in use. With IPMP we randomize. 15550 */ 15551 int 15552 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15553 ipaddr_t multicast_ifaddr, 15554 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15555 uint32_t *generation, uint64_t *flagsp) 15556 { 15557 ipif_t *ipif; 15558 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15559 15560 if (flagsp != NULL) 15561 *flagsp = 0; 15562 15563 /* 15564 * Need to grab the generation number before we check to 15565 * avoid a race with a change to the set of local addresses. 15566 * No lock needed since the thread which updates the set of local 15567 * addresses use ipif/ill locks and exit those (hence a store memory 15568 * barrier) before doing the atomic increase of ips_src_generation. 15569 */ 15570 if (generation != NULL) { 15571 *generation = ipst->ips_src_generation; 15572 } 15573 15574 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15575 *srcp = multicast_ifaddr; 15576 return (0); 15577 } 15578 15579 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15580 if (setsrc != INADDR_ANY) { 15581 *srcp = setsrc; 15582 return (0); 15583 } 15584 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15585 if (ipif == NULL) { 15586 if (notready) 15587 return (ENETDOWN); 15588 else 15589 return (EADDRNOTAVAIL); 15590 } 15591 *srcp = ipif->ipif_lcl_addr; 15592 if (flagsp != NULL) 15593 *flagsp = ipif->ipif_flags; 15594 ipif_refrele(ipif); 15595 return (0); 15596 } 15597 15598 /* ARGSUSED */ 15599 int 15600 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15601 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15602 { 15603 /* 15604 * ill_phyint_reinit merged the v4 and v6 into a single 15605 * ipsq. We might not have been able to complete the 15606 * operation in ipif_set_values, if we could not become 15607 * exclusive. If so restart it here. 15608 */ 15609 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15610 } 15611 15612 /* 15613 * Can operate on either a module or a driver queue. 15614 * Returns an error if not a module queue. 15615 */ 15616 /* ARGSUSED */ 15617 int 15618 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15619 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15620 { 15621 queue_t *q1 = q; 15622 char *cp; 15623 char interf_name[LIFNAMSIZ]; 15624 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15625 15626 if (q->q_next == NULL) { 15627 ip1dbg(( 15628 "if_unitsel: IF_UNITSEL: no q_next\n")); 15629 return (EINVAL); 15630 } 15631 15632 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15633 return (EALREADY); 15634 15635 do { 15636 q1 = q1->q_next; 15637 } while (q1->q_next); 15638 cp = q1->q_qinfo->qi_minfo->mi_idname; 15639 (void) sprintf(interf_name, "%s%d", cp, ppa); 15640 15641 /* 15642 * Here we are not going to delay the ioack until after 15643 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15644 * original ioctl message before sending the requests. 15645 */ 15646 return (ipif_set_values(q, mp, interf_name, &ppa)); 15647 } 15648 15649 /* ARGSUSED */ 15650 int 15651 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15652 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15653 { 15654 return (ENXIO); 15655 } 15656 15657 /* 15658 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15659 * `irep'. Returns a pointer to the next free `irep' entry 15660 * A mirror exists in ipif_delete_bcast_ires(). 15661 * 15662 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15663 * done in ire_add. 15664 */ 15665 static ire_t ** 15666 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15667 { 15668 ipaddr_t addr; 15669 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15670 ipaddr_t subnetmask = ipif->ipif_net_mask; 15671 ill_t *ill = ipif->ipif_ill; 15672 zoneid_t zoneid = ipif->ipif_zoneid; 15673 15674 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15675 15676 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15677 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15678 15679 if (ipif->ipif_lcl_addr == INADDR_ANY || 15680 (ipif->ipif_flags & IPIF_NOLOCAL)) 15681 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15682 15683 irep = ire_create_bcast(ill, 0, zoneid, irep); 15684 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15685 15686 /* 15687 * For backward compatibility, we create net broadcast IREs based on 15688 * the old "IP address class system", since some old machines only 15689 * respond to these class derived net broadcast. However, we must not 15690 * create these net broadcast IREs if the subnetmask is shorter than 15691 * the IP address class based derived netmask. Otherwise, we may 15692 * create a net broadcast address which is the same as an IP address 15693 * on the subnet -- and then TCP will refuse to talk to that address. 15694 */ 15695 if (netmask < subnetmask) { 15696 addr = netmask & ipif->ipif_subnet; 15697 irep = ire_create_bcast(ill, addr, zoneid, irep); 15698 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15699 } 15700 15701 /* 15702 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15703 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15704 * created. Creating these broadcast IREs will only create confusion 15705 * as `addr' will be the same as the IP address. 15706 */ 15707 if (subnetmask != 0xFFFFFFFF) { 15708 addr = ipif->ipif_subnet; 15709 irep = ire_create_bcast(ill, addr, zoneid, irep); 15710 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15711 } 15712 15713 return (irep); 15714 } 15715 15716 /* 15717 * Mirror of ipif_create_bcast_ires() 15718 */ 15719 static void 15720 ipif_delete_bcast_ires(ipif_t *ipif) 15721 { 15722 ipaddr_t addr; 15723 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15724 ipaddr_t subnetmask = ipif->ipif_net_mask; 15725 ill_t *ill = ipif->ipif_ill; 15726 zoneid_t zoneid = ipif->ipif_zoneid; 15727 ire_t *ire; 15728 15729 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15730 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15731 15732 if (ipif->ipif_lcl_addr == INADDR_ANY || 15733 (ipif->ipif_flags & IPIF_NOLOCAL)) 15734 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15735 15736 ire = ire_lookup_bcast(ill, 0, zoneid); 15737 ASSERT(ire != NULL); 15738 ire_delete(ire); ire_refrele(ire); 15739 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15740 ASSERT(ire != NULL); 15741 ire_delete(ire); ire_refrele(ire); 15742 15743 /* 15744 * For backward compatibility, we create net broadcast IREs based on 15745 * the old "IP address class system", since some old machines only 15746 * respond to these class derived net broadcast. However, we must not 15747 * create these net broadcast IREs if the subnetmask is shorter than 15748 * the IP address class based derived netmask. Otherwise, we may 15749 * create a net broadcast address which is the same as an IP address 15750 * on the subnet -- and then TCP will refuse to talk to that address. 15751 */ 15752 if (netmask < subnetmask) { 15753 addr = netmask & ipif->ipif_subnet; 15754 ire = ire_lookup_bcast(ill, addr, zoneid); 15755 ASSERT(ire != NULL); 15756 ire_delete(ire); ire_refrele(ire); 15757 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15758 ASSERT(ire != NULL); 15759 ire_delete(ire); ire_refrele(ire); 15760 } 15761 15762 /* 15763 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15764 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15765 * created. Creating these broadcast IREs will only create confusion 15766 * as `addr' will be the same as the IP address. 15767 */ 15768 if (subnetmask != 0xFFFFFFFF) { 15769 addr = ipif->ipif_subnet; 15770 ire = ire_lookup_bcast(ill, addr, zoneid); 15771 ASSERT(ire != NULL); 15772 ire_delete(ire); ire_refrele(ire); 15773 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15774 ASSERT(ire != NULL); 15775 ire_delete(ire); ire_refrele(ire); 15776 } 15777 } 15778 15779 /* 15780 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15781 * from lifr_flags and the name from lifr_name. 15782 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15783 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15784 * Returns EINPROGRESS when mp has been consumed by queueing it on 15785 * ipx_pending_mp and the ioctl will complete in ip_rput. 15786 * 15787 * Can operate on either a module or a driver queue. 15788 * Returns an error if not a module queue. 15789 */ 15790 /* ARGSUSED */ 15791 int 15792 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15793 ip_ioctl_cmd_t *ipip, void *if_req) 15794 { 15795 ill_t *ill = q->q_ptr; 15796 phyint_t *phyi; 15797 ip_stack_t *ipst; 15798 struct lifreq *lifr = if_req; 15799 uint64_t new_flags; 15800 15801 ASSERT(ipif != NULL); 15802 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15803 15804 if (q->q_next == NULL) { 15805 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15806 return (EINVAL); 15807 } 15808 15809 /* 15810 * If we are not writer on 'q' then this interface exists already 15811 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15812 * so return EALREADY. 15813 */ 15814 if (ill != ipif->ipif_ill) 15815 return (EALREADY); 15816 15817 if (ill->ill_name[0] != '\0') 15818 return (EALREADY); 15819 15820 /* 15821 * If there's another ill already with the requested name, ensure 15822 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15823 * fuse together two unrelated ills, which will cause chaos. 15824 */ 15825 ipst = ill->ill_ipst; 15826 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15827 lifr->lifr_name, NULL); 15828 if (phyi != NULL) { 15829 ill_t *ill_mate = phyi->phyint_illv4; 15830 15831 if (ill_mate == NULL) 15832 ill_mate = phyi->phyint_illv6; 15833 ASSERT(ill_mate != NULL); 15834 15835 if (ill_mate->ill_media->ip_m_mac_type != 15836 ill->ill_media->ip_m_mac_type) { 15837 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15838 "use the same ill name on differing media\n")); 15839 return (EINVAL); 15840 } 15841 } 15842 15843 /* 15844 * We start off as IFF_IPV4 in ipif_allocate and become 15845 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15846 * The only flags that we read from user space are IFF_IPV4, 15847 * IFF_IPV6, and IFF_BROADCAST. 15848 * 15849 * This ill has not been inserted into the global list. 15850 * So we are still single threaded and don't need any lock 15851 * 15852 * Saniy check the flags. 15853 */ 15854 15855 if ((lifr->lifr_flags & IFF_BROADCAST) && 15856 ((lifr->lifr_flags & IFF_IPV6) || 15857 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15858 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15859 "or IPv6 i.e., no broadcast \n")); 15860 return (EINVAL); 15861 } 15862 15863 new_flags = 15864 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15865 15866 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15867 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15868 "IFF_IPV4 or IFF_IPV6\n")); 15869 return (EINVAL); 15870 } 15871 15872 /* 15873 * We always start off as IPv4, so only need to check for IPv6. 15874 */ 15875 if ((new_flags & IFF_IPV6) != 0) { 15876 ill->ill_flags |= ILLF_IPV6; 15877 ill->ill_flags &= ~ILLF_IPV4; 15878 15879 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15880 ill->ill_flags |= ILLF_NOLINKLOCAL; 15881 } 15882 15883 if ((new_flags & IFF_BROADCAST) != 0) 15884 ipif->ipif_flags |= IPIF_BROADCAST; 15885 else 15886 ipif->ipif_flags &= ~IPIF_BROADCAST; 15887 15888 /* We started off as V4. */ 15889 if (ill->ill_flags & ILLF_IPV6) { 15890 ill->ill_phyint->phyint_illv6 = ill; 15891 ill->ill_phyint->phyint_illv4 = NULL; 15892 } 15893 15894 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15895 } 15896 15897 /* ARGSUSED */ 15898 int 15899 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15900 ip_ioctl_cmd_t *ipip, void *if_req) 15901 { 15902 /* 15903 * ill_phyint_reinit merged the v4 and v6 into a single 15904 * ipsq. We might not have been able to complete the 15905 * slifname in ipif_set_values, if we could not become 15906 * exclusive. If so restart it here 15907 */ 15908 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15909 } 15910 15911 /* 15912 * Return a pointer to the ipif which matches the index, IP version type and 15913 * zoneid. 15914 */ 15915 ipif_t * 15916 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15917 ip_stack_t *ipst) 15918 { 15919 ill_t *ill; 15920 ipif_t *ipif = NULL; 15921 15922 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15923 if (ill != NULL) { 15924 mutex_enter(&ill->ill_lock); 15925 for (ipif = ill->ill_ipif; ipif != NULL; 15926 ipif = ipif->ipif_next) { 15927 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15928 zoneid == ipif->ipif_zoneid || 15929 ipif->ipif_zoneid == ALL_ZONES)) { 15930 ipif_refhold_locked(ipif); 15931 break; 15932 } 15933 } 15934 mutex_exit(&ill->ill_lock); 15935 ill_refrele(ill); 15936 } 15937 return (ipif); 15938 } 15939 15940 /* 15941 * Change an existing physical interface's index. If the new index 15942 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15943 * Finally, we update other systems which may have a dependence on the 15944 * index value. 15945 */ 15946 /* ARGSUSED */ 15947 int 15948 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15949 ip_ioctl_cmd_t *ipip, void *ifreq) 15950 { 15951 ill_t *ill; 15952 phyint_t *phyi; 15953 struct ifreq *ifr = (struct ifreq *)ifreq; 15954 struct lifreq *lifr = (struct lifreq *)ifreq; 15955 uint_t old_index, index; 15956 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15957 avl_index_t where; 15958 15959 if (ipip->ipi_cmd_type == IF_CMD) 15960 index = ifr->ifr_index; 15961 else 15962 index = lifr->lifr_index; 15963 15964 /* 15965 * Only allow on physical interface. Also, index zero is illegal. 15966 */ 15967 ill = ipif->ipif_ill; 15968 phyi = ill->ill_phyint; 15969 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15970 return (EINVAL); 15971 } 15972 15973 /* If the index is not changing, no work to do */ 15974 if (phyi->phyint_ifindex == index) 15975 return (0); 15976 15977 /* 15978 * Use phyint_exists() to determine if the new interface index 15979 * is already in use. If the index is unused then we need to 15980 * change the phyint's position in the phyint_list_avl_by_index 15981 * tree. If we do not do this, subsequent lookups (using the new 15982 * index value) will not find the phyint. 15983 */ 15984 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15985 if (phyint_exists(index, ipst)) { 15986 rw_exit(&ipst->ips_ill_g_lock); 15987 return (EEXIST); 15988 } 15989 15990 /* 15991 * The new index is unused. Set it in the phyint. However we must not 15992 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15993 * changes. The event must be bound to old ifindex value. 15994 */ 15995 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15996 &index, sizeof (index)); 15997 15998 old_index = phyi->phyint_ifindex; 15999 phyi->phyint_ifindex = index; 16000 16001 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 16002 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16003 &index, &where); 16004 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16005 phyi, where); 16006 rw_exit(&ipst->ips_ill_g_lock); 16007 16008 /* Update SCTP's ILL list */ 16009 sctp_ill_reindex(ill, old_index); 16010 16011 /* Send the routing sockets message */ 16012 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16013 if (ILL_OTHER(ill)) 16014 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16015 16016 /* Perhaps ilgs should use this ill */ 16017 update_conn_ill(NULL, ill->ill_ipst); 16018 return (0); 16019 } 16020 16021 /* ARGSUSED */ 16022 int 16023 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16024 ip_ioctl_cmd_t *ipip, void *ifreq) 16025 { 16026 struct ifreq *ifr = (struct ifreq *)ifreq; 16027 struct lifreq *lifr = (struct lifreq *)ifreq; 16028 16029 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16030 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16031 /* Get the interface index */ 16032 if (ipip->ipi_cmd_type == IF_CMD) { 16033 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16034 } else { 16035 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16036 } 16037 return (0); 16038 } 16039 16040 /* ARGSUSED */ 16041 int 16042 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16043 ip_ioctl_cmd_t *ipip, void *ifreq) 16044 { 16045 struct lifreq *lifr = (struct lifreq *)ifreq; 16046 16047 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16049 /* Get the interface zone */ 16050 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16051 lifr->lifr_zoneid = ipif->ipif_zoneid; 16052 return (0); 16053 } 16054 16055 /* 16056 * Set the zoneid of an interface. 16057 */ 16058 /* ARGSUSED */ 16059 int 16060 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16061 ip_ioctl_cmd_t *ipip, void *ifreq) 16062 { 16063 struct lifreq *lifr = (struct lifreq *)ifreq; 16064 int err = 0; 16065 boolean_t need_up = B_FALSE; 16066 zone_t *zptr; 16067 zone_status_t status; 16068 zoneid_t zoneid; 16069 16070 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16071 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16072 if (!is_system_labeled()) 16073 return (ENOTSUP); 16074 zoneid = GLOBAL_ZONEID; 16075 } 16076 16077 /* cannot assign instance zero to a non-global zone */ 16078 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16079 return (ENOTSUP); 16080 16081 /* 16082 * Cannot assign to a zone that doesn't exist or is shutting down. In 16083 * the event of a race with the zone shutdown processing, since IP 16084 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16085 * interface will be cleaned up even if the zone is shut down 16086 * immediately after the status check. If the interface can't be brought 16087 * down right away, and the zone is shut down before the restart 16088 * function is called, we resolve the possible races by rechecking the 16089 * zone status in the restart function. 16090 */ 16091 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16092 return (EINVAL); 16093 status = zone_status_get(zptr); 16094 zone_rele(zptr); 16095 16096 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16097 return (EINVAL); 16098 16099 if (ipif->ipif_flags & IPIF_UP) { 16100 /* 16101 * If the interface is already marked up, 16102 * we call ipif_down which will take care 16103 * of ditching any IREs that have been set 16104 * up based on the old interface address. 16105 */ 16106 err = ipif_logical_down(ipif, q, mp); 16107 if (err == EINPROGRESS) 16108 return (err); 16109 (void) ipif_down_tail(ipif); 16110 need_up = B_TRUE; 16111 } 16112 16113 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16114 return (err); 16115 } 16116 16117 static int 16118 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16119 queue_t *q, mblk_t *mp, boolean_t need_up) 16120 { 16121 int err = 0; 16122 ip_stack_t *ipst; 16123 16124 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16126 16127 if (CONN_Q(q)) 16128 ipst = CONNQ_TO_IPST(q); 16129 else 16130 ipst = ILLQ_TO_IPST(q); 16131 16132 /* 16133 * For exclusive stacks we don't allow a different zoneid than 16134 * global. 16135 */ 16136 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16137 zoneid != GLOBAL_ZONEID) 16138 return (EINVAL); 16139 16140 /* Set the new zone id. */ 16141 ipif->ipif_zoneid = zoneid; 16142 16143 /* Update sctp list */ 16144 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16145 16146 /* The default multicast interface might have changed */ 16147 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16148 16149 if (need_up) { 16150 /* 16151 * Now bring the interface back up. If this 16152 * is the only IPIF for the ILL, ipif_up 16153 * will have to re-bind to the device, so 16154 * we may get back EINPROGRESS, in which 16155 * case, this IOCTL will get completed in 16156 * ip_rput_dlpi when we see the DL_BIND_ACK. 16157 */ 16158 err = ipif_up(ipif, q, mp); 16159 } 16160 return (err); 16161 } 16162 16163 /* ARGSUSED */ 16164 int 16165 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16166 ip_ioctl_cmd_t *ipip, void *if_req) 16167 { 16168 struct lifreq *lifr = (struct lifreq *)if_req; 16169 zoneid_t zoneid; 16170 zone_t *zptr; 16171 zone_status_t status; 16172 16173 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16174 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16175 zoneid = GLOBAL_ZONEID; 16176 16177 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16178 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16179 16180 /* 16181 * We recheck the zone status to resolve the following race condition: 16182 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16183 * 2) hme0:1 is up and can't be brought down right away; 16184 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16185 * 3) zone "myzone" is halted; the zone status switches to 16186 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16187 * the interfaces to remove - hme0:1 is not returned because it's not 16188 * yet in "myzone", so it won't be removed; 16189 * 4) the restart function for SIOCSLIFZONE is called; without the 16190 * status check here, we would have hme0:1 in "myzone" after it's been 16191 * destroyed. 16192 * Note that if the status check fails, we need to bring the interface 16193 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16194 * ipif_up_done[_v6](). 16195 */ 16196 status = ZONE_IS_UNINITIALIZED; 16197 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16198 status = zone_status_get(zptr); 16199 zone_rele(zptr); 16200 } 16201 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16202 if (ipif->ipif_isv6) { 16203 (void) ipif_up_done_v6(ipif); 16204 } else { 16205 (void) ipif_up_done(ipif); 16206 } 16207 return (EINVAL); 16208 } 16209 16210 (void) ipif_down_tail(ipif); 16211 16212 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16213 B_TRUE)); 16214 } 16215 16216 /* 16217 * Return the number of addresses on `ill' with one or more of the values 16218 * in `set' set and all of the values in `clear' clear. 16219 */ 16220 static uint_t 16221 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16222 { 16223 ipif_t *ipif; 16224 uint_t cnt = 0; 16225 16226 ASSERT(IAM_WRITER_ILL(ill)); 16227 16228 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16229 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16230 cnt++; 16231 16232 return (cnt); 16233 } 16234 16235 /* 16236 * Return the number of migratable addresses on `ill' that are under 16237 * application control. 16238 */ 16239 uint_t 16240 ill_appaddr_cnt(const ill_t *ill) 16241 { 16242 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16243 IPIF_NOFAILOVER)); 16244 } 16245 16246 /* 16247 * Return the number of point-to-point addresses on `ill'. 16248 */ 16249 uint_t 16250 ill_ptpaddr_cnt(const ill_t *ill) 16251 { 16252 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16253 } 16254 16255 /* ARGSUSED */ 16256 int 16257 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16258 ip_ioctl_cmd_t *ipip, void *ifreq) 16259 { 16260 struct lifreq *lifr = ifreq; 16261 16262 ASSERT(q->q_next == NULL); 16263 ASSERT(CONN_Q(q)); 16264 16265 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16266 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16267 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16268 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16269 16270 return (0); 16271 } 16272 16273 /* Find the previous ILL in this usesrc group */ 16274 static ill_t * 16275 ill_prev_usesrc(ill_t *uill) 16276 { 16277 ill_t *ill; 16278 16279 for (ill = uill->ill_usesrc_grp_next; 16280 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16281 ill = ill->ill_usesrc_grp_next) 16282 /* do nothing */; 16283 return (ill); 16284 } 16285 16286 /* 16287 * Release all members of the usesrc group. This routine is called 16288 * from ill_delete when the interface being unplumbed is the 16289 * group head. 16290 * 16291 * This silently clears the usesrc that ifconfig setup. 16292 * An alternative would be to keep that ifindex, and drop packets on the floor 16293 * since no source address can be selected. 16294 * Even if we keep the current semantics, don't need a lock and a linked list. 16295 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16296 * the one that is being removed. Issue is how we return the usesrc users 16297 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16298 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16299 * ill walk, but the walker would need to insert in the ioctl response. 16300 */ 16301 static void 16302 ill_disband_usesrc_group(ill_t *uill) 16303 { 16304 ill_t *next_ill, *tmp_ill; 16305 ip_stack_t *ipst = uill->ill_ipst; 16306 16307 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16308 next_ill = uill->ill_usesrc_grp_next; 16309 16310 do { 16311 ASSERT(next_ill != NULL); 16312 tmp_ill = next_ill->ill_usesrc_grp_next; 16313 ASSERT(tmp_ill != NULL); 16314 next_ill->ill_usesrc_grp_next = NULL; 16315 next_ill->ill_usesrc_ifindex = 0; 16316 next_ill = tmp_ill; 16317 } while (next_ill->ill_usesrc_ifindex != 0); 16318 uill->ill_usesrc_grp_next = NULL; 16319 } 16320 16321 /* 16322 * Remove the client usesrc ILL from the list and relink to a new list 16323 */ 16324 int 16325 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16326 { 16327 ill_t *ill, *tmp_ill; 16328 ip_stack_t *ipst = ucill->ill_ipst; 16329 16330 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16331 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16332 16333 /* 16334 * Check if the usesrc client ILL passed in is not already 16335 * in use as a usesrc ILL i.e one whose source address is 16336 * in use OR a usesrc ILL is not already in use as a usesrc 16337 * client ILL 16338 */ 16339 if ((ucill->ill_usesrc_ifindex == 0) || 16340 (uill->ill_usesrc_ifindex != 0)) { 16341 return (-1); 16342 } 16343 16344 ill = ill_prev_usesrc(ucill); 16345 ASSERT(ill->ill_usesrc_grp_next != NULL); 16346 16347 /* Remove from the current list */ 16348 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16349 /* Only two elements in the list */ 16350 ASSERT(ill->ill_usesrc_ifindex == 0); 16351 ill->ill_usesrc_grp_next = NULL; 16352 } else { 16353 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16354 } 16355 16356 if (ifindex == 0) { 16357 ucill->ill_usesrc_ifindex = 0; 16358 ucill->ill_usesrc_grp_next = NULL; 16359 return (0); 16360 } 16361 16362 ucill->ill_usesrc_ifindex = ifindex; 16363 tmp_ill = uill->ill_usesrc_grp_next; 16364 uill->ill_usesrc_grp_next = ucill; 16365 ucill->ill_usesrc_grp_next = 16366 (tmp_ill != NULL) ? tmp_ill : uill; 16367 return (0); 16368 } 16369 16370 /* 16371 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16372 * ip.c for locking details. 16373 */ 16374 /* ARGSUSED */ 16375 int 16376 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16377 ip_ioctl_cmd_t *ipip, void *ifreq) 16378 { 16379 struct lifreq *lifr = (struct lifreq *)ifreq; 16380 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16381 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16382 int err = 0, ret; 16383 uint_t ifindex; 16384 ipsq_t *ipsq = NULL; 16385 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16386 16387 ASSERT(IAM_WRITER_IPIF(ipif)); 16388 ASSERT(q->q_next == NULL); 16389 ASSERT(CONN_Q(q)); 16390 16391 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16392 16393 ifindex = lifr->lifr_index; 16394 if (ifindex == 0) { 16395 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16396 /* non usesrc group interface, nothing to reset */ 16397 return (0); 16398 } 16399 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16400 /* valid reset request */ 16401 reset_flg = B_TRUE; 16402 } 16403 16404 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16405 if (usesrc_ill == NULL) 16406 return (ENXIO); 16407 if (usesrc_ill == ipif->ipif_ill) { 16408 ill_refrele(usesrc_ill); 16409 return (EINVAL); 16410 } 16411 16412 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16413 NEW_OP, B_TRUE); 16414 if (ipsq == NULL) { 16415 err = EINPROGRESS; 16416 /* Operation enqueued on the ipsq of the usesrc ILL */ 16417 goto done; 16418 } 16419 16420 /* USESRC isn't currently supported with IPMP */ 16421 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16422 err = ENOTSUP; 16423 goto done; 16424 } 16425 16426 /* 16427 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16428 * used by IPMP underlying interfaces, but someone might think it's 16429 * more general and try to use it independently with VNI.) 16430 */ 16431 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16432 err = ENOTSUP; 16433 goto done; 16434 } 16435 16436 /* 16437 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16438 * already a client then return EINVAL 16439 */ 16440 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16441 err = EINVAL; 16442 goto done; 16443 } 16444 16445 /* 16446 * If the ill_usesrc_ifindex field is already set to what it needs to 16447 * be then this is a duplicate operation. 16448 */ 16449 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16450 err = 0; 16451 goto done; 16452 } 16453 16454 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16455 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16456 usesrc_ill->ill_isv6)); 16457 16458 /* 16459 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16460 * and the ill_usesrc_ifindex fields 16461 */ 16462 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16463 16464 if (reset_flg) { 16465 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16466 if (ret != 0) { 16467 err = EINVAL; 16468 } 16469 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16470 goto done; 16471 } 16472 16473 /* 16474 * Four possibilities to consider: 16475 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16476 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16477 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16478 * 4. Both are part of their respective usesrc groups 16479 */ 16480 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16481 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16482 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16483 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16484 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16485 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16486 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16487 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16488 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16489 /* Insert at head of list */ 16490 usesrc_cli_ill->ill_usesrc_grp_next = 16491 usesrc_ill->ill_usesrc_grp_next; 16492 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16493 } else { 16494 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16495 ifindex); 16496 if (ret != 0) 16497 err = EINVAL; 16498 } 16499 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16500 16501 done: 16502 if (ipsq != NULL) 16503 ipsq_exit(ipsq); 16504 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16505 ill_refrele(usesrc_ill); 16506 16507 /* Let conn_ixa caching know that source address selection changed */ 16508 ip_update_source_selection(ipst); 16509 16510 return (err); 16511 } 16512 16513 /* ARGSUSED */ 16514 int 16515 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16516 ip_ioctl_cmd_t *ipip, void *if_req) 16517 { 16518 struct lifreq *lifr = (struct lifreq *)if_req; 16519 ill_t *ill = ipif->ipif_ill; 16520 16521 /* 16522 * Need a lock since IFF_UP can be set even when there are 16523 * references to the ipif. 16524 */ 16525 mutex_enter(&ill->ill_lock); 16526 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16527 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16528 else 16529 lifr->lifr_dadstate = DAD_DONE; 16530 mutex_exit(&ill->ill_lock); 16531 return (0); 16532 } 16533 16534 /* 16535 * comparison function used by avl. 16536 */ 16537 static int 16538 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16539 { 16540 16541 uint_t index; 16542 16543 ASSERT(phyip != NULL && index_ptr != NULL); 16544 16545 index = *((uint_t *)index_ptr); 16546 /* 16547 * let the phyint with the lowest index be on top. 16548 */ 16549 if (((phyint_t *)phyip)->phyint_ifindex < index) 16550 return (1); 16551 if (((phyint_t *)phyip)->phyint_ifindex > index) 16552 return (-1); 16553 return (0); 16554 } 16555 16556 /* 16557 * comparison function used by avl. 16558 */ 16559 static int 16560 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16561 { 16562 ill_t *ill; 16563 int res = 0; 16564 16565 ASSERT(phyip != NULL && name_ptr != NULL); 16566 16567 if (((phyint_t *)phyip)->phyint_illv4) 16568 ill = ((phyint_t *)phyip)->phyint_illv4; 16569 else 16570 ill = ((phyint_t *)phyip)->phyint_illv6; 16571 ASSERT(ill != NULL); 16572 16573 res = strcmp(ill->ill_name, (char *)name_ptr); 16574 if (res > 0) 16575 return (1); 16576 else if (res < 0) 16577 return (-1); 16578 return (0); 16579 } 16580 16581 /* 16582 * This function is called on the unplumb path via ill_glist_delete() when 16583 * there are no ills left on the phyint and thus the phyint can be freed. 16584 */ 16585 static void 16586 phyint_free(phyint_t *phyi) 16587 { 16588 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16589 16590 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16591 16592 /* 16593 * If this phyint was an IPMP meta-interface, blow away the group. 16594 * This is safe to do because all of the illgrps have already been 16595 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16596 * If we're cleaning up as a result of failed initialization, 16597 * phyint_grp may be NULL. 16598 */ 16599 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16600 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16601 ipmp_grp_destroy(phyi->phyint_grp); 16602 phyi->phyint_grp = NULL; 16603 rw_exit(&ipst->ips_ipmp_lock); 16604 } 16605 16606 /* 16607 * If this interface was under IPMP, take it out of the group. 16608 */ 16609 if (phyi->phyint_grp != NULL) 16610 ipmp_phyint_leave_grp(phyi); 16611 16612 /* 16613 * Delete the phyint and disassociate its ipsq. The ipsq itself 16614 * will be freed in ipsq_exit(). 16615 */ 16616 phyi->phyint_ipsq->ipsq_phyint = NULL; 16617 phyi->phyint_name[0] = '\0'; 16618 16619 mi_free(phyi); 16620 } 16621 16622 /* 16623 * Attach the ill to the phyint structure which can be shared by both 16624 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16625 * function is called from ipif_set_values and ill_lookup_on_name (for 16626 * loopback) where we know the name of the ill. We lookup the ill and if 16627 * there is one present already with the name use that phyint. Otherwise 16628 * reuse the one allocated by ill_init. 16629 */ 16630 static void 16631 ill_phyint_reinit(ill_t *ill) 16632 { 16633 boolean_t isv6 = ill->ill_isv6; 16634 phyint_t *phyi_old; 16635 phyint_t *phyi; 16636 avl_index_t where = 0; 16637 ill_t *ill_other = NULL; 16638 ip_stack_t *ipst = ill->ill_ipst; 16639 16640 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16641 16642 phyi_old = ill->ill_phyint; 16643 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16644 phyi_old->phyint_illv6 == NULL)); 16645 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16646 phyi_old->phyint_illv4 == NULL)); 16647 ASSERT(phyi_old->phyint_ifindex == 0); 16648 16649 /* 16650 * Now that our ill has a name, set it in the phyint. 16651 */ 16652 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16653 16654 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16655 ill->ill_name, &where); 16656 16657 /* 16658 * 1. We grabbed the ill_g_lock before inserting this ill into 16659 * the global list of ills. So no other thread could have located 16660 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16661 * 2. Now locate the other protocol instance of this ill. 16662 * 3. Now grab both ill locks in the right order, and the phyint lock of 16663 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16664 * of neither ill can change. 16665 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16666 * other ill. 16667 * 5. Release all locks. 16668 */ 16669 16670 /* 16671 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16672 * we are initializing IPv4. 16673 */ 16674 if (phyi != NULL) { 16675 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16676 ASSERT(ill_other->ill_phyint != NULL); 16677 ASSERT((isv6 && !ill_other->ill_isv6) || 16678 (!isv6 && ill_other->ill_isv6)); 16679 GRAB_ILL_LOCKS(ill, ill_other); 16680 /* 16681 * We are potentially throwing away phyint_flags which 16682 * could be different from the one that we obtain from 16683 * ill_other->ill_phyint. But it is okay as we are assuming 16684 * that the state maintained within IP is correct. 16685 */ 16686 mutex_enter(&phyi->phyint_lock); 16687 if (isv6) { 16688 ASSERT(phyi->phyint_illv6 == NULL); 16689 phyi->phyint_illv6 = ill; 16690 } else { 16691 ASSERT(phyi->phyint_illv4 == NULL); 16692 phyi->phyint_illv4 = ill; 16693 } 16694 16695 /* 16696 * Delete the old phyint and make its ipsq eligible 16697 * to be freed in ipsq_exit(). 16698 */ 16699 phyi_old->phyint_illv4 = NULL; 16700 phyi_old->phyint_illv6 = NULL; 16701 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16702 phyi_old->phyint_name[0] = '\0'; 16703 mi_free(phyi_old); 16704 } else { 16705 mutex_enter(&ill->ill_lock); 16706 /* 16707 * We don't need to acquire any lock, since 16708 * the ill is not yet visible globally and we 16709 * have not yet released the ill_g_lock. 16710 */ 16711 phyi = phyi_old; 16712 mutex_enter(&phyi->phyint_lock); 16713 /* XXX We need a recovery strategy here. */ 16714 if (!phyint_assign_ifindex(phyi, ipst)) 16715 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16716 16717 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16718 (void *)phyi, where); 16719 16720 (void) avl_find(&ipst->ips_phyint_g_list-> 16721 phyint_list_avl_by_index, 16722 &phyi->phyint_ifindex, &where); 16723 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16724 (void *)phyi, where); 16725 } 16726 16727 /* 16728 * Reassigning ill_phyint automatically reassigns the ipsq also. 16729 * pending mp is not affected because that is per ill basis. 16730 */ 16731 ill->ill_phyint = phyi; 16732 16733 /* 16734 * Now that the phyint's ifindex has been assigned, complete the 16735 * remaining 16736 */ 16737 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16738 if (ill->ill_isv6) { 16739 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16740 ill->ill_phyint->phyint_ifindex; 16741 ill->ill_mcast_type = ipst->ips_mld_max_version; 16742 } else { 16743 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16744 } 16745 16746 /* 16747 * Generate an event within the hooks framework to indicate that 16748 * a new interface has just been added to IP. For this event to 16749 * be generated, the network interface must, at least, have an 16750 * ifindex assigned to it. (We don't generate the event for 16751 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16752 * 16753 * This needs to be run inside the ill_g_lock perimeter to ensure 16754 * that the ordering of delivered events to listeners matches the 16755 * order of them in the kernel. 16756 */ 16757 if (!IS_LOOPBACK(ill)) { 16758 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16759 ill->ill_name_length); 16760 } 16761 RELEASE_ILL_LOCKS(ill, ill_other); 16762 mutex_exit(&phyi->phyint_lock); 16763 } 16764 16765 /* 16766 * Notify any downstream modules of the name of this interface. 16767 * An M_IOCTL is used even though we don't expect a successful reply. 16768 * Any reply message from the driver (presumably an M_IOCNAK) will 16769 * eventually get discarded somewhere upstream. The message format is 16770 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16771 * to IP. 16772 */ 16773 static void 16774 ip_ifname_notify(ill_t *ill, queue_t *q) 16775 { 16776 mblk_t *mp1, *mp2; 16777 struct iocblk *iocp; 16778 struct lifreq *lifr; 16779 16780 mp1 = mkiocb(SIOCSLIFNAME); 16781 if (mp1 == NULL) 16782 return; 16783 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16784 if (mp2 == NULL) { 16785 freeb(mp1); 16786 return; 16787 } 16788 16789 mp1->b_cont = mp2; 16790 iocp = (struct iocblk *)mp1->b_rptr; 16791 iocp->ioc_count = sizeof (struct lifreq); 16792 16793 lifr = (struct lifreq *)mp2->b_rptr; 16794 mp2->b_wptr += sizeof (struct lifreq); 16795 bzero(lifr, sizeof (struct lifreq)); 16796 16797 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16798 lifr->lifr_ppa = ill->ill_ppa; 16799 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16800 16801 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16802 char *, "SIOCSLIFNAME", ill_t *, ill); 16803 putnext(q, mp1); 16804 } 16805 16806 static int 16807 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16808 { 16809 int err; 16810 ip_stack_t *ipst = ill->ill_ipst; 16811 phyint_t *phyi = ill->ill_phyint; 16812 16813 /* 16814 * Now that ill_name is set, the configuration for the IPMP 16815 * meta-interface can be performed. 16816 */ 16817 if (IS_IPMP(ill)) { 16818 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16819 /* 16820 * If phyi->phyint_grp is NULL, then this is the first IPMP 16821 * meta-interface and we need to create the IPMP group. 16822 */ 16823 if (phyi->phyint_grp == NULL) { 16824 /* 16825 * If someone has renamed another IPMP group to have 16826 * the same name as our interface, bail. 16827 */ 16828 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16829 rw_exit(&ipst->ips_ipmp_lock); 16830 return (EEXIST); 16831 } 16832 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16833 if (phyi->phyint_grp == NULL) { 16834 rw_exit(&ipst->ips_ipmp_lock); 16835 return (ENOMEM); 16836 } 16837 } 16838 rw_exit(&ipst->ips_ipmp_lock); 16839 } 16840 16841 /* Tell downstream modules where they are. */ 16842 ip_ifname_notify(ill, q); 16843 16844 /* 16845 * ill_dl_phys returns EINPROGRESS in the usual case. 16846 * Error cases are ENOMEM ... 16847 */ 16848 err = ill_dl_phys(ill, ipif, mp, q); 16849 16850 if (ill->ill_isv6) { 16851 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16852 if (ipst->ips_mld_slowtimeout_id == 0) { 16853 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16854 (void *)ipst, 16855 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16856 } 16857 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16858 } else { 16859 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16860 if (ipst->ips_igmp_slowtimeout_id == 0) { 16861 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16862 (void *)ipst, 16863 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16864 } 16865 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16866 } 16867 16868 return (err); 16869 } 16870 16871 /* 16872 * Common routine for ppa and ifname setting. Should be called exclusive. 16873 * 16874 * Returns EINPROGRESS when mp has been consumed by queueing it on 16875 * ipx_pending_mp and the ioctl will complete in ip_rput. 16876 * 16877 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16878 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16879 * For SLIFNAME, we pass these values back to the userland. 16880 */ 16881 static int 16882 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16883 { 16884 ill_t *ill; 16885 ipif_t *ipif; 16886 ipsq_t *ipsq; 16887 char *ppa_ptr; 16888 char *old_ptr; 16889 char old_char; 16890 int error; 16891 ip_stack_t *ipst; 16892 16893 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16894 ASSERT(q->q_next != NULL); 16895 ASSERT(interf_name != NULL); 16896 16897 ill = (ill_t *)q->q_ptr; 16898 ipst = ill->ill_ipst; 16899 16900 ASSERT(ill->ill_ipst != NULL); 16901 ASSERT(ill->ill_name[0] == '\0'); 16902 ASSERT(IAM_WRITER_ILL(ill)); 16903 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16904 ASSERT(ill->ill_ppa == UINT_MAX); 16905 16906 ill->ill_defend_start = ill->ill_defend_count = 0; 16907 /* The ppa is sent down by ifconfig or is chosen */ 16908 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16909 return (EINVAL); 16910 } 16911 16912 /* 16913 * make sure ppa passed in is same as ppa in the name. 16914 * This check is not made when ppa == UINT_MAX in that case ppa 16915 * in the name could be anything. System will choose a ppa and 16916 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16917 */ 16918 if (*new_ppa_ptr != UINT_MAX) { 16919 /* stoi changes the pointer */ 16920 old_ptr = ppa_ptr; 16921 /* 16922 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16923 * (they don't have an externally visible ppa). We assign one 16924 * here so that we can manage the interface. Note that in 16925 * the past this value was always 0 for DLPI 1 drivers. 16926 */ 16927 if (*new_ppa_ptr == 0) 16928 *new_ppa_ptr = stoi(&old_ptr); 16929 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16930 return (EINVAL); 16931 } 16932 /* 16933 * terminate string before ppa 16934 * save char at that location. 16935 */ 16936 old_char = ppa_ptr[0]; 16937 ppa_ptr[0] = '\0'; 16938 16939 ill->ill_ppa = *new_ppa_ptr; 16940 /* 16941 * Finish as much work now as possible before calling ill_glist_insert 16942 * which makes the ill globally visible and also merges it with the 16943 * other protocol instance of this phyint. The remaining work is 16944 * done after entering the ipsq which may happen sometime later. 16945 */ 16946 ipif = ill->ill_ipif; 16947 16948 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16949 ipif_assign_seqid(ipif); 16950 16951 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16952 ill->ill_flags |= ILLF_IPV4; 16953 16954 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16955 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16956 16957 if (ill->ill_flags & ILLF_IPV6) { 16958 16959 ill->ill_isv6 = B_TRUE; 16960 ill_set_inputfn(ill); 16961 if (ill->ill_rq != NULL) { 16962 ill->ill_rq->q_qinfo = &iprinitv6; 16963 } 16964 16965 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16966 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16967 ipif->ipif_v6subnet = ipv6_all_zeros; 16968 ipif->ipif_v6net_mask = ipv6_all_zeros; 16969 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16970 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16971 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16972 /* 16973 * point-to-point or Non-mulicast capable 16974 * interfaces won't do NUD unless explicitly 16975 * configured to do so. 16976 */ 16977 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16978 !(ill->ill_flags & ILLF_MULTICAST)) { 16979 ill->ill_flags |= ILLF_NONUD; 16980 } 16981 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16982 if (ill->ill_flags & ILLF_NOARP) { 16983 /* 16984 * Note: xresolv interfaces will eventually need 16985 * NOARP set here as well, but that will require 16986 * those external resolvers to have some 16987 * knowledge of that flag and act appropriately. 16988 * Not to be changed at present. 16989 */ 16990 ill->ill_flags &= ~ILLF_NOARP; 16991 } 16992 /* 16993 * Set the ILLF_ROUTER flag according to the global 16994 * IPv6 forwarding policy. 16995 */ 16996 if (ipst->ips_ipv6_forwarding != 0) 16997 ill->ill_flags |= ILLF_ROUTER; 16998 } else if (ill->ill_flags & ILLF_IPV4) { 16999 ill->ill_isv6 = B_FALSE; 17000 ill_set_inputfn(ill); 17001 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 17002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17005 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17006 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17007 /* 17008 * Set the ILLF_ROUTER flag according to the global 17009 * IPv4 forwarding policy. 17010 */ 17011 if (ipst->ips_ip_forwarding != 0) 17012 ill->ill_flags |= ILLF_ROUTER; 17013 } 17014 17015 ASSERT(ill->ill_phyint != NULL); 17016 17017 /* 17018 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17019 * be completed in ill_glist_insert -> ill_phyint_reinit 17020 */ 17021 if (!ill_allocate_mibs(ill)) 17022 return (ENOMEM); 17023 17024 /* 17025 * Pick a default sap until we get the DL_INFO_ACK back from 17026 * the driver. 17027 */ 17028 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17029 ill->ill_media->ip_m_ipv4sap; 17030 17031 ill->ill_ifname_pending = 1; 17032 ill->ill_ifname_pending_err = 0; 17033 17034 /* 17035 * When the first ipif comes up in ipif_up_done(), multicast groups 17036 * that were joined while this ill was not bound to the DLPI link need 17037 * to be recovered by ill_recover_multicast(). 17038 */ 17039 ill->ill_need_recover_multicast = 1; 17040 17041 ill_refhold(ill); 17042 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17043 if ((error = ill_glist_insert(ill, interf_name, 17044 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17045 ill->ill_ppa = UINT_MAX; 17046 ill->ill_name[0] = '\0'; 17047 /* 17048 * undo null termination done above. 17049 */ 17050 ppa_ptr[0] = old_char; 17051 rw_exit(&ipst->ips_ill_g_lock); 17052 ill_refrele(ill); 17053 return (error); 17054 } 17055 17056 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17057 17058 /* 17059 * When we return the buffer pointed to by interf_name should contain 17060 * the same name as in ill_name. 17061 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17062 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17063 * so copy full name and update the ppa ptr. 17064 * When ppa passed in != UINT_MAX all values are correct just undo 17065 * null termination, this saves a bcopy. 17066 */ 17067 if (*new_ppa_ptr == UINT_MAX) { 17068 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17069 *new_ppa_ptr = ill->ill_ppa; 17070 } else { 17071 /* 17072 * undo null termination done above. 17073 */ 17074 ppa_ptr[0] = old_char; 17075 } 17076 17077 /* Let SCTP know about this ILL */ 17078 sctp_update_ill(ill, SCTP_ILL_INSERT); 17079 17080 /* 17081 * ill_glist_insert has made the ill visible globally, and 17082 * ill_phyint_reinit could have changed the ipsq. At this point, 17083 * we need to hold the ips_ill_g_lock across the call to enter the 17084 * ipsq to enforce atomicity and prevent reordering. In the event 17085 * the ipsq has changed, and if the new ipsq is currently busy, 17086 * we need to make sure that this half-completed ioctl is ahead of 17087 * any subsequent ioctl. We achieve this by not dropping the 17088 * ips_ill_g_lock which prevents any ill lookup itself thereby 17089 * ensuring that new ioctls can't start. 17090 */ 17091 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17092 B_TRUE); 17093 17094 rw_exit(&ipst->ips_ill_g_lock); 17095 ill_refrele(ill); 17096 if (ipsq == NULL) 17097 return (EINPROGRESS); 17098 17099 /* 17100 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17101 */ 17102 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17103 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17104 else 17105 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17106 17107 error = ipif_set_values_tail(ill, ipif, mp, q); 17108 ipsq_exit(ipsq); 17109 if (error != 0 && error != EINPROGRESS) { 17110 /* 17111 * restore previous values 17112 */ 17113 ill->ill_isv6 = B_FALSE; 17114 ill_set_inputfn(ill); 17115 } 17116 return (error); 17117 } 17118 17119 void 17120 ipif_init(ip_stack_t *ipst) 17121 { 17122 int i; 17123 17124 for (i = 0; i < MAX_G_HEADS; i++) { 17125 ipst->ips_ill_g_heads[i].ill_g_list_head = 17126 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17127 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17128 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17129 } 17130 17131 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17132 ill_phyint_compare_index, 17133 sizeof (phyint_t), 17134 offsetof(struct phyint, phyint_avl_by_index)); 17135 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17136 ill_phyint_compare_name, 17137 sizeof (phyint_t), 17138 offsetof(struct phyint, phyint_avl_by_name)); 17139 } 17140 17141 /* 17142 * Save enough information so that we can recreate the IRE if 17143 * the interface goes down and then up. 17144 */ 17145 void 17146 ill_save_ire(ill_t *ill, ire_t *ire) 17147 { 17148 mblk_t *save_mp; 17149 17150 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17151 if (save_mp != NULL) { 17152 ifrt_t *ifrt; 17153 17154 save_mp->b_wptr += sizeof (ifrt_t); 17155 ifrt = (ifrt_t *)save_mp->b_rptr; 17156 bzero(ifrt, sizeof (ifrt_t)); 17157 ifrt->ifrt_type = ire->ire_type; 17158 if (ire->ire_ipversion == IPV4_VERSION) { 17159 ASSERT(!ill->ill_isv6); 17160 ifrt->ifrt_addr = ire->ire_addr; 17161 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17162 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17163 ifrt->ifrt_mask = ire->ire_mask; 17164 } else { 17165 ASSERT(ill->ill_isv6); 17166 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17167 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17168 mutex_enter(&ire->ire_lock); 17169 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17170 mutex_exit(&ire->ire_lock); 17171 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17172 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17173 } 17174 ifrt->ifrt_flags = ire->ire_flags; 17175 ifrt->ifrt_zoneid = ire->ire_zoneid; 17176 mutex_enter(&ill->ill_saved_ire_lock); 17177 save_mp->b_cont = ill->ill_saved_ire_mp; 17178 ill->ill_saved_ire_mp = save_mp; 17179 ill->ill_saved_ire_cnt++; 17180 mutex_exit(&ill->ill_saved_ire_lock); 17181 } 17182 } 17183 17184 /* 17185 * Remove one entry from ill_saved_ire_mp. 17186 */ 17187 void 17188 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17189 { 17190 mblk_t **mpp; 17191 mblk_t *mp; 17192 ifrt_t *ifrt; 17193 17194 /* Remove from ill_saved_ire_mp list if it is there */ 17195 mutex_enter(&ill->ill_saved_ire_lock); 17196 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17197 mpp = &(*mpp)->b_cont) { 17198 in6_addr_t gw_addr_v6; 17199 17200 /* 17201 * On a given ill, the tuple of address, gateway, mask, 17202 * ire_type, and zoneid is unique for each saved IRE. 17203 */ 17204 mp = *mpp; 17205 ifrt = (ifrt_t *)mp->b_rptr; 17206 /* ire_gateway_addr_v6 can change - need lock */ 17207 mutex_enter(&ire->ire_lock); 17208 gw_addr_v6 = ire->ire_gateway_addr_v6; 17209 mutex_exit(&ire->ire_lock); 17210 17211 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17212 ifrt->ifrt_type != ire->ire_type) 17213 continue; 17214 17215 if (ill->ill_isv6 ? 17216 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17217 &ire->ire_addr_v6) && 17218 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17219 &gw_addr_v6) && 17220 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17221 &ire->ire_mask_v6)) : 17222 (ifrt->ifrt_addr == ire->ire_addr && 17223 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17224 ifrt->ifrt_mask == ire->ire_mask)) { 17225 *mpp = mp->b_cont; 17226 ill->ill_saved_ire_cnt--; 17227 freeb(mp); 17228 break; 17229 } 17230 } 17231 mutex_exit(&ill->ill_saved_ire_lock); 17232 } 17233 17234 /* 17235 * IP multirouting broadcast routes handling 17236 * Append CGTP broadcast IREs to regular ones created 17237 * at ifconfig time. 17238 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17239 * the destination and the gateway are broadcast addresses. 17240 * The caller has verified that the destination is an IRE_BROADCAST and that 17241 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17242 * we create a MULTIRT IRE_BROADCAST. 17243 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17244 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17245 */ 17246 static void 17247 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17248 { 17249 ire_t *ire_prim; 17250 17251 ASSERT(ire != NULL); 17252 17253 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17254 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17255 NULL); 17256 if (ire_prim != NULL) { 17257 /* 17258 * We are in the special case of broadcasts for 17259 * CGTP. We add an IRE_BROADCAST that holds 17260 * the RTF_MULTIRT flag, the destination 17261 * address and the low level 17262 * info of ire_prim. In other words, CGTP 17263 * broadcast is added to the redundant ipif. 17264 */ 17265 ill_t *ill_prim; 17266 ire_t *bcast_ire; 17267 17268 ill_prim = ire_prim->ire_ill; 17269 17270 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17271 (void *)ire_prim, (void *)ill_prim)); 17272 17273 bcast_ire = ire_create( 17274 (uchar_t *)&ire->ire_addr, 17275 (uchar_t *)&ip_g_all_ones, 17276 (uchar_t *)&ire->ire_gateway_addr, 17277 IRE_BROADCAST, 17278 ill_prim, 17279 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17280 ire->ire_flags | RTF_KERNEL, 17281 NULL, 17282 ipst); 17283 17284 /* 17285 * Here we assume that ire_add does head insertion so that 17286 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17287 */ 17288 if (bcast_ire != NULL) { 17289 if (ire->ire_flags & RTF_SETSRC) { 17290 bcast_ire->ire_setsrc_addr = 17291 ire->ire_setsrc_addr; 17292 } 17293 bcast_ire = ire_add(bcast_ire); 17294 if (bcast_ire != NULL) { 17295 ip2dbg(("ip_cgtp_filter_bcast_add: " 17296 "added bcast_ire %p\n", 17297 (void *)bcast_ire)); 17298 17299 ill_save_ire(ill_prim, bcast_ire); 17300 ire_refrele(bcast_ire); 17301 } 17302 } 17303 ire_refrele(ire_prim); 17304 } 17305 } 17306 17307 /* 17308 * IP multirouting broadcast routes handling 17309 * Remove the broadcast ire. 17310 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17311 * the destination and the gateway are broadcast addresses. 17312 * The caller has only verified that RTF_MULTIRT was set. We check 17313 * that the destination is broadcast and that the gateway is a broadcast 17314 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17315 */ 17316 static void 17317 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17318 { 17319 ASSERT(ire != NULL); 17320 17321 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17322 ire_t *ire_prim; 17323 17324 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17325 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17326 ipst, NULL); 17327 if (ire_prim != NULL) { 17328 ill_t *ill_prim; 17329 ire_t *bcast_ire; 17330 17331 ill_prim = ire_prim->ire_ill; 17332 17333 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17334 "ire_prim %p, ill_prim %p\n", 17335 (void *)ire_prim, (void *)ill_prim)); 17336 17337 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17338 ire->ire_gateway_addr, IRE_BROADCAST, 17339 ill_prim, ALL_ZONES, NULL, 17340 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17341 MATCH_IRE_MASK, 0, ipst, NULL); 17342 17343 if (bcast_ire != NULL) { 17344 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17345 "looked up bcast_ire %p\n", 17346 (void *)bcast_ire)); 17347 ill_remove_saved_ire(bcast_ire->ire_ill, 17348 bcast_ire); 17349 ire_delete(bcast_ire); 17350 ire_refrele(bcast_ire); 17351 } 17352 ire_refrele(ire_prim); 17353 } 17354 } 17355 } 17356 17357 /* 17358 * Derive an interface id from the link layer address. 17359 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17360 */ 17361 static void 17362 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17363 { 17364 char *addr; 17365 17366 /* 17367 * Note that some IPv6 interfaces get plumbed over links that claim to 17368 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17369 * PPP links). The ETHERADDRL check here ensures that we only set the 17370 * interface ID on IPv6 interfaces above links that actually have real 17371 * Ethernet addresses. 17372 */ 17373 if (ill->ill_phys_addr_length == ETHERADDRL) { 17374 /* Form EUI-64 like address */ 17375 addr = (char *)&v6addr->s6_addr32[2]; 17376 bcopy(ill->ill_phys_addr, addr, 3); 17377 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17378 addr[3] = (char)0xff; 17379 addr[4] = (char)0xfe; 17380 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17381 } 17382 } 17383 17384 /* ARGSUSED */ 17385 static void 17386 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17387 { 17388 } 17389 17390 typedef struct ipmp_ifcookie { 17391 uint32_t ic_hostid; 17392 char ic_ifname[LIFNAMSIZ]; 17393 char ic_zonename[ZONENAME_MAX]; 17394 } ipmp_ifcookie_t; 17395 17396 /* 17397 * Construct a pseudo-random interface ID for the IPMP interface that's both 17398 * predictable and (almost) guaranteed to be unique. 17399 */ 17400 static void 17401 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17402 { 17403 zone_t *zp; 17404 uint8_t *addr; 17405 uchar_t hash[16]; 17406 ulong_t hostid; 17407 MD5_CTX ctx; 17408 ipmp_ifcookie_t ic = { 0 }; 17409 17410 ASSERT(IS_IPMP(ill)); 17411 17412 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17413 ic.ic_hostid = htonl((uint32_t)hostid); 17414 17415 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17416 17417 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17418 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17419 zone_rele(zp); 17420 } 17421 17422 MD5Init(&ctx); 17423 MD5Update(&ctx, &ic, sizeof (ic)); 17424 MD5Final(hash, &ctx); 17425 17426 /* 17427 * Map the hash to an interface ID per the basic approach in RFC3041. 17428 */ 17429 addr = &v6addr->s6_addr8[8]; 17430 bcopy(hash + 8, addr, sizeof (uint64_t)); 17431 addr[0] &= ~0x2; /* set local bit */ 17432 } 17433 17434 /* 17435 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17436 */ 17437 static void 17438 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17439 { 17440 phyint_t *phyi = ill->ill_phyint; 17441 17442 /* 17443 * Check PHYI_MULTI_BCAST and length of physical 17444 * address to determine if we use the mapping or the 17445 * broadcast address. 17446 */ 17447 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17448 ill->ill_phys_addr_length != ETHERADDRL) { 17449 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17450 return; 17451 } 17452 m_physaddr[0] = 0x33; 17453 m_physaddr[1] = 0x33; 17454 m_physaddr[2] = m_ip6addr[12]; 17455 m_physaddr[3] = m_ip6addr[13]; 17456 m_physaddr[4] = m_ip6addr[14]; 17457 m_physaddr[5] = m_ip6addr[15]; 17458 } 17459 17460 /* 17461 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17462 */ 17463 static void 17464 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17465 { 17466 phyint_t *phyi = ill->ill_phyint; 17467 17468 /* 17469 * Check PHYI_MULTI_BCAST and length of physical 17470 * address to determine if we use the mapping or the 17471 * broadcast address. 17472 */ 17473 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17474 ill->ill_phys_addr_length != ETHERADDRL) { 17475 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17476 return; 17477 } 17478 m_physaddr[0] = 0x01; 17479 m_physaddr[1] = 0x00; 17480 m_physaddr[2] = 0x5e; 17481 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17482 m_physaddr[4] = m_ipaddr[2]; 17483 m_physaddr[5] = m_ipaddr[3]; 17484 } 17485 17486 /* ARGSUSED */ 17487 static void 17488 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17489 { 17490 /* 17491 * for the MULTI_BCAST case and other cases when we want to 17492 * use the link-layer broadcast address for multicast. 17493 */ 17494 uint8_t *bphys_addr; 17495 dl_unitdata_req_t *dlur; 17496 17497 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17498 if (ill->ill_sap_length < 0) { 17499 bphys_addr = (uchar_t *)dlur + 17500 dlur->dl_dest_addr_offset; 17501 } else { 17502 bphys_addr = (uchar_t *)dlur + 17503 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17504 } 17505 17506 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17507 } 17508 17509 /* 17510 * Derive IPoIB interface id from the link layer address. 17511 */ 17512 static void 17513 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17514 { 17515 char *addr; 17516 17517 ASSERT(ill->ill_phys_addr_length == 20); 17518 addr = (char *)&v6addr->s6_addr32[2]; 17519 bcopy(ill->ill_phys_addr + 12, addr, 8); 17520 /* 17521 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17522 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17523 * rules. In these cases, the IBA considers these GUIDs to be in 17524 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17525 * required; vendors are required not to assign global EUI-64's 17526 * that differ only in u/l bit values, thus guaranteeing uniqueness 17527 * of the interface identifier. Whether the GUID is in modified 17528 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17529 * bit set to 1. 17530 */ 17531 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17532 } 17533 17534 /* 17535 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17536 * Note on mapping from multicast IP addresses to IPoIB multicast link 17537 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17538 * The format of an IPoIB multicast address is: 17539 * 17540 * 4 byte QPN Scope Sign. Pkey 17541 * +--------------------------------------------+ 17542 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17543 * +--------------------------------------------+ 17544 * 17545 * The Scope and Pkey components are properties of the IBA port and 17546 * network interface. They can be ascertained from the broadcast address. 17547 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17548 */ 17549 static void 17550 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17551 { 17552 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17553 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17555 uint8_t *bphys_addr; 17556 dl_unitdata_req_t *dlur; 17557 17558 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17559 17560 /* 17561 * RFC 4391: IPv4 MGID is 28-bit long. 17562 */ 17563 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17564 m_physaddr[17] = m_ipaddr[1]; 17565 m_physaddr[18] = m_ipaddr[2]; 17566 m_physaddr[19] = m_ipaddr[3]; 17567 17568 17569 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17570 if (ill->ill_sap_length < 0) { 17571 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17572 } else { 17573 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17574 ill->ill_sap_length; 17575 } 17576 /* 17577 * Now fill in the IBA scope/Pkey values from the broadcast address. 17578 */ 17579 m_physaddr[5] = bphys_addr[5]; 17580 m_physaddr[8] = bphys_addr[8]; 17581 m_physaddr[9] = bphys_addr[9]; 17582 } 17583 17584 static void 17585 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17586 { 17587 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17588 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17589 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17590 uint8_t *bphys_addr; 17591 dl_unitdata_req_t *dlur; 17592 17593 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17594 17595 /* 17596 * RFC 4391: IPv4 MGID is 80-bit long. 17597 */ 17598 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17599 17600 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17601 if (ill->ill_sap_length < 0) { 17602 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17603 } else { 17604 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17605 ill->ill_sap_length; 17606 } 17607 /* 17608 * Now fill in the IBA scope/Pkey values from the broadcast address. 17609 */ 17610 m_physaddr[5] = bphys_addr[5]; 17611 m_physaddr[8] = bphys_addr[8]; 17612 m_physaddr[9] = bphys_addr[9]; 17613 } 17614 17615 /* 17616 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17617 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17618 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17619 * of RFC4213. 17620 */ 17621 static void 17622 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17623 { 17624 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17625 v6addr->s6_addr32[2] = 0; 17626 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17627 } 17628 17629 /* 17630 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17631 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17632 * id. 17633 */ 17634 static void 17635 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17636 { 17637 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17638 17639 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17640 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17641 } 17642 17643 static void 17644 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17645 { 17646 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17647 } 17648 17649 static void 17650 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17651 { 17652 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17653 } 17654 17655 static void 17656 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17657 { 17658 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17659 } 17660 17661 static void 17662 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17663 { 17664 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17665 } 17666 17667 /* 17668 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17669 * Returns an held ill, or NULL. 17670 */ 17671 ill_t * 17672 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17673 ip_stack_t *ipst) 17674 { 17675 ill_t *ill; 17676 ipif_t *ipif; 17677 17678 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17679 if (ill == NULL) 17680 return (NULL); 17681 17682 mutex_enter(&ill->ill_lock); 17683 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17684 if (IPIF_IS_CONDEMNED(ipif)) 17685 continue; 17686 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17687 ipif->ipif_zoneid != ALL_ZONES) 17688 continue; 17689 17690 mutex_exit(&ill->ill_lock); 17691 return (ill); 17692 } 17693 mutex_exit(&ill->ill_lock); 17694 ill_refrele(ill); 17695 return (NULL); 17696 } 17697 17698 /* 17699 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17700 * If a pointer to an ipif_t is returned then the caller will need to do 17701 * an ill_refrele(). 17702 */ 17703 ipif_t * 17704 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17705 ip_stack_t *ipst) 17706 { 17707 ipif_t *ipif; 17708 ill_t *ill; 17709 17710 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17711 if (ill == NULL) 17712 return (NULL); 17713 17714 mutex_enter(&ill->ill_lock); 17715 if (ill->ill_state_flags & ILL_CONDEMNED) { 17716 mutex_exit(&ill->ill_lock); 17717 ill_refrele(ill); 17718 return (NULL); 17719 } 17720 17721 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17722 if (!IPIF_CAN_LOOKUP(ipif)) 17723 continue; 17724 if (lifidx == ipif->ipif_id) { 17725 ipif_refhold_locked(ipif); 17726 break; 17727 } 17728 } 17729 17730 mutex_exit(&ill->ill_lock); 17731 ill_refrele(ill); 17732 return (ipif); 17733 } 17734 17735 /* 17736 * Set ill_inputfn based on the current know state. 17737 * This needs to be called when any of the factors taken into 17738 * account changes. 17739 */ 17740 void 17741 ill_set_inputfn(ill_t *ill) 17742 { 17743 ip_stack_t *ipst = ill->ill_ipst; 17744 17745 if (ill->ill_isv6) { 17746 if (is_system_labeled()) 17747 ill->ill_inputfn = ill_input_full_v6; 17748 else 17749 ill->ill_inputfn = ill_input_short_v6; 17750 } else { 17751 if (is_system_labeled()) 17752 ill->ill_inputfn = ill_input_full_v4; 17753 else if (ill->ill_dhcpinit != 0) 17754 ill->ill_inputfn = ill_input_full_v4; 17755 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17756 != NULL) 17757 ill->ill_inputfn = ill_input_full_v4; 17758 else if (ipst->ips_ip_cgtp_filter && 17759 ipst->ips_ip_cgtp_filter_ops != NULL) 17760 ill->ill_inputfn = ill_input_full_v4; 17761 else 17762 ill->ill_inputfn = ill_input_short_v4; 17763 } 17764 } 17765 17766 /* 17767 * Re-evaluate ill_inputfn for all the IPv4 ills. 17768 * Used when RSVP and CGTP comes and goes. 17769 */ 17770 void 17771 ill_set_inputfn_all(ip_stack_t *ipst) 17772 { 17773 ill_walk_context_t ctx; 17774 ill_t *ill; 17775 17776 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17777 ill = ILL_START_WALK_V4(&ctx, ipst); 17778 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17779 ill_set_inputfn(ill); 17780 17781 rw_exit(&ipst->ips_ill_g_lock); 17782 } 17783 17784 /* 17785 * Set the physical address information for `ill' to the contents of the 17786 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17787 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17788 * EINPROGRESS will be returned. 17789 */ 17790 int 17791 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17792 { 17793 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17794 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17795 17796 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17797 17798 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17799 dlindp->dl_data != DL_CURR_DEST_ADDR && 17800 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17801 /* Changing DL_IPV6_TOKEN is not yet supported */ 17802 return (0); 17803 } 17804 17805 /* 17806 * We need to store up to two copies of `mp' in `ill'. Due to the 17807 * design of ipsq_pending_mp_add(), we can't pass them as separate 17808 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17809 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17810 */ 17811 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17812 freemsg(mp); 17813 return (ENOMEM); 17814 } 17815 17816 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17817 17818 /* 17819 * Since we'll only do a logical down, we can't rely on ipif_down 17820 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17821 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17822 * case, to quiesce ire's and nce's for ill_is_quiescent. 17823 */ 17824 mutex_enter(&ill->ill_lock); 17825 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17826 /* no more ire/nce addition allowed */ 17827 mutex_exit(&ill->ill_lock); 17828 17829 /* 17830 * If we can quiesce the ill, then set the address. If not, then 17831 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17832 */ 17833 ill_down_ipifs(ill, B_TRUE); 17834 mutex_enter(&ill->ill_lock); 17835 if (!ill_is_quiescent(ill)) { 17836 /* call cannot fail since `conn_t *' argument is NULL */ 17837 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17838 mp, ILL_DOWN); 17839 mutex_exit(&ill->ill_lock); 17840 return (EINPROGRESS); 17841 } 17842 mutex_exit(&ill->ill_lock); 17843 17844 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17845 return (0); 17846 } 17847 17848 /* 17849 * When the allowed-ips link property is set on the datalink, IP receives a 17850 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17851 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17852 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17853 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17854 * array. 17855 */ 17856 void 17857 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17858 { 17859 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17860 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17861 mac_protect_t *mrp; 17862 int i; 17863 17864 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17865 mrp = (mac_protect_t *)&dlip[1]; 17866 17867 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17868 kmem_free(ill->ill_allowed_ips, 17869 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17870 ill->ill_allowed_ips_cnt = 0; 17871 ill->ill_allowed_ips = NULL; 17872 mutex_enter(&ill->ill_phyint->phyint_lock); 17873 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17874 mutex_exit(&ill->ill_phyint->phyint_lock); 17875 return; 17876 } 17877 17878 if (ill->ill_allowed_ips != NULL) { 17879 kmem_free(ill->ill_allowed_ips, 17880 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17881 } 17882 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17883 ill->ill_allowed_ips = kmem_alloc( 17884 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17885 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17886 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17887 17888 mutex_enter(&ill->ill_phyint->phyint_lock); 17889 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17890 mutex_exit(&ill->ill_phyint->phyint_lock); 17891 } 17892 17893 /* 17894 * Once the ill associated with `q' has quiesced, set its physical address 17895 * information to the values in `addrmp'. Note that two copies of `addrmp' 17896 * are passed (linked by b_cont), since we sometimes need to save two distinct 17897 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17898 * failure (we'll free the other copy if it's not needed). Since the ill_t 17899 * is quiesced, we know any stale nce's with the old address information have 17900 * already been removed, so we don't need to call nce_flush(). 17901 */ 17902 /* ARGSUSED */ 17903 static void 17904 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17905 { 17906 ill_t *ill = q->q_ptr; 17907 mblk_t *addrmp2 = unlinkb(addrmp); 17908 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17909 uint_t addrlen, addroff; 17910 int status; 17911 17912 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17913 17914 addroff = dlindp->dl_addr_offset; 17915 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17916 17917 switch (dlindp->dl_data) { 17918 case DL_IPV6_LINK_LAYER_ADDR: 17919 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17920 freemsg(addrmp2); 17921 break; 17922 17923 case DL_CURR_DEST_ADDR: 17924 freemsg(ill->ill_dest_addr_mp); 17925 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17926 ill->ill_dest_addr_mp = addrmp; 17927 if (ill->ill_isv6) { 17928 ill_setdesttoken(ill); 17929 ipif_setdestlinklocal(ill->ill_ipif); 17930 } 17931 freemsg(addrmp2); 17932 break; 17933 17934 case DL_CURR_PHYS_ADDR: 17935 freemsg(ill->ill_phys_addr_mp); 17936 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17937 ill->ill_phys_addr_mp = addrmp; 17938 ill->ill_phys_addr_length = addrlen; 17939 if (ill->ill_isv6) 17940 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17941 else 17942 freemsg(addrmp2); 17943 if (ill->ill_isv6) { 17944 ill_setdefaulttoken(ill); 17945 ipif_setlinklocal(ill->ill_ipif); 17946 } 17947 break; 17948 default: 17949 ASSERT(0); 17950 } 17951 17952 /* 17953 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17954 * as we bring the ipifs up again. 17955 */ 17956 mutex_enter(&ill->ill_lock); 17957 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17958 mutex_exit(&ill->ill_lock); 17959 /* 17960 * If there are ipifs to bring up, ill_up_ipifs() will return 17961 * EINPROGRESS, and ipsq_current_finish() will be called by 17962 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17963 * brought up. 17964 */ 17965 status = ill_up_ipifs(ill, q, addrmp); 17966 if (status != EINPROGRESS) 17967 ipsq_current_finish(ipsq); 17968 } 17969 17970 /* 17971 * Helper routine for setting the ill_nd_lla fields. 17972 */ 17973 void 17974 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17975 { 17976 freemsg(ill->ill_nd_lla_mp); 17977 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17978 ill->ill_nd_lla_mp = ndmp; 17979 ill->ill_nd_lla_len = addrlen; 17980 } 17981 17982 /* 17983 * Replumb the ill. 17984 */ 17985 int 17986 ill_replumb(ill_t *ill, mblk_t *mp) 17987 { 17988 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17989 17990 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17991 17992 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17993 17994 /* 17995 * If we can quiesce the ill, then continue. If not, then 17996 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17997 */ 17998 ill_down_ipifs(ill, B_FALSE); 17999 18000 mutex_enter(&ill->ill_lock); 18001 if (!ill_is_quiescent(ill)) { 18002 /* call cannot fail since `conn_t *' argument is NULL */ 18003 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18004 mp, ILL_DOWN); 18005 mutex_exit(&ill->ill_lock); 18006 return (EINPROGRESS); 18007 } 18008 mutex_exit(&ill->ill_lock); 18009 18010 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18011 return (0); 18012 } 18013 18014 /* ARGSUSED */ 18015 static void 18016 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18017 { 18018 ill_t *ill = q->q_ptr; 18019 int err; 18020 conn_t *connp = NULL; 18021 18022 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18023 freemsg(ill->ill_replumb_mp); 18024 ill->ill_replumb_mp = copyb(mp); 18025 18026 if (ill->ill_replumb_mp == NULL) { 18027 /* out of memory */ 18028 ipsq_current_finish(ipsq); 18029 return; 18030 } 18031 18032 mutex_enter(&ill->ill_lock); 18033 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18034 ill->ill_rq, ill->ill_replumb_mp, 0); 18035 mutex_exit(&ill->ill_lock); 18036 18037 if (!ill->ill_up_ipifs) { 18038 /* already closing */ 18039 ipsq_current_finish(ipsq); 18040 return; 18041 } 18042 ill->ill_replumbing = 1; 18043 err = ill_down_ipifs_tail(ill); 18044 18045 /* 18046 * Successfully quiesced and brought down the interface, now we send 18047 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18048 * DL_NOTE_REPLUMB message. 18049 */ 18050 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18051 DL_NOTIFY_CONF); 18052 ASSERT(mp != NULL); 18053 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18054 DL_NOTE_REPLUMB_DONE; 18055 ill_dlpi_send(ill, mp); 18056 18057 /* 18058 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18059 * streams have to be unbound. When all the DLPI exchanges are done, 18060 * ipsq_current_finish() will be called by arp_bringup_done(). The 18061 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18062 * arp_bringup_done(). 18063 */ 18064 ASSERT(ill->ill_replumb_mp != NULL); 18065 if (err == EINPROGRESS) 18066 return; 18067 else 18068 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18069 ASSERT(connp == NULL); 18070 if (err == 0 && ill->ill_replumb_mp != NULL && 18071 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18072 return; 18073 } 18074 ipsq_current_finish(ipsq); 18075 } 18076 18077 /* 18078 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18079 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18080 * as per the ioctl. On failure, an errno is returned. 18081 */ 18082 static int 18083 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18084 { 18085 int rval; 18086 struct strioctl iocb; 18087 18088 iocb.ic_cmd = cmd; 18089 iocb.ic_timout = 15; 18090 iocb.ic_len = bufsize; 18091 iocb.ic_dp = buf; 18092 18093 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18094 } 18095 18096 /* 18097 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18098 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18099 */ 18100 static int 18101 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18102 uint_t *bufsizep, cred_t *cr) 18103 { 18104 int err; 18105 struct lifnum lifn; 18106 18107 bzero(&lifn, sizeof (lifn)); 18108 lifn.lifn_family = af; 18109 lifn.lifn_flags = LIFC_UNDER_IPMP; 18110 18111 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18112 return (err); 18113 18114 /* 18115 * Pad the interface count to account for additional interfaces that 18116 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18117 */ 18118 lifn.lifn_count += 4; 18119 bzero(lifcp, sizeof (*lifcp)); 18120 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18121 lifcp->lifc_family = af; 18122 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18123 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18124 18125 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18126 if (err != 0) { 18127 kmem_free(lifcp->lifc_buf, *bufsizep); 18128 return (err); 18129 } 18130 18131 return (0); 18132 } 18133 18134 /* 18135 * Helper for ip_interface_cleanup() that removes the loopback interface. 18136 */ 18137 static void 18138 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18139 { 18140 int err; 18141 struct lifreq lifr; 18142 18143 bzero(&lifr, sizeof (lifr)); 18144 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18145 18146 /* 18147 * Attempt to remove the interface. It may legitimately not exist 18148 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18149 */ 18150 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18151 if (err != 0 && err != ENXIO) { 18152 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18153 "error %d\n", isv6 ? "v6" : "v4", err)); 18154 } 18155 } 18156 18157 /* 18158 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18159 * groups and that IPMP data addresses are down. These conditions must be met 18160 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18161 */ 18162 static void 18163 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18164 { 18165 int af = isv6 ? AF_INET6 : AF_INET; 18166 int i, nifs; 18167 int err; 18168 uint_t bufsize; 18169 uint_t lifrsize = sizeof (struct lifreq); 18170 struct lifconf lifc; 18171 struct lifreq *lifrp; 18172 18173 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18174 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18175 "(error %d); any IPMP interfaces cannot be shutdown", err); 18176 return; 18177 } 18178 18179 nifs = lifc.lifc_len / lifrsize; 18180 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18181 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18182 if (err != 0) { 18183 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18184 "flags: error %d", lifrp->lifr_name, err); 18185 continue; 18186 } 18187 18188 if (lifrp->lifr_flags & IFF_IPMP) { 18189 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18190 continue; 18191 18192 lifrp->lifr_flags &= ~IFF_UP; 18193 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18194 if (err != 0) { 18195 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18196 "bring down (error %d); IPMP interface may " 18197 "not be shutdown", lifrp->lifr_name, err); 18198 } 18199 18200 /* 18201 * Check if IFF_DUPLICATE is still set -- and if so, 18202 * reset the address to clear it. 18203 */ 18204 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18205 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18206 continue; 18207 18208 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18209 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18210 lifrp, lifrsize, cr)) != 0) { 18211 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18212 "reset DAD (error %d); IPMP interface may " 18213 "not be shutdown", lifrp->lifr_name, err); 18214 } 18215 continue; 18216 } 18217 18218 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18219 lifrp->lifr_groupname[0] = '\0'; 18220 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18221 lifrsize, cr)) != 0) { 18222 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18223 "leave IPMP group (error %d); associated " 18224 "IPMP interface may not be shutdown", 18225 lifrp->lifr_name, err); 18226 continue; 18227 } 18228 } 18229 } 18230 18231 kmem_free(lifc.lifc_buf, bufsize); 18232 } 18233 18234 #define UDPDEV "/devices/pseudo/udp@0:udp" 18235 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18236 18237 /* 18238 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18239 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18240 * when the user-level processes in the zone are killed and the latter are 18241 * cleaned up by str_stack_shutdown(). 18242 */ 18243 void 18244 ip_interface_cleanup(ip_stack_t *ipst) 18245 { 18246 ldi_handle_t lh; 18247 ldi_ident_t li; 18248 cred_t *cr; 18249 int err; 18250 int i; 18251 char *devs[] = { UDP6DEV, UDPDEV }; 18252 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18253 18254 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18255 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18256 " error %d", err); 18257 return; 18258 } 18259 18260 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18261 ASSERT(cr != NULL); 18262 18263 /* 18264 * NOTE: loop executes exactly twice and is hardcoded to know that the 18265 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18266 * the loop.) 18267 */ 18268 for (i = 0; i < 2; i++) { 18269 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18270 if (err != 0) { 18271 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18272 " error %d", devs[i], err); 18273 continue; 18274 } 18275 18276 ip_loopback_removeif(lh, i == 0, cr); 18277 ip_ipmp_cleanup(lh, i == 0, cr); 18278 18279 (void) ldi_close(lh, FREAD|FWRITE, cr); 18280 } 18281 18282 ldi_ident_release(li); 18283 crfree(cr); 18284 } 18285 18286 /* 18287 * This needs to be in-sync with nic_event_t definition 18288 */ 18289 static const char * 18290 ill_hook_event2str(nic_event_t event) 18291 { 18292 switch (event) { 18293 case NE_PLUMB: 18294 return ("PLUMB"); 18295 case NE_UNPLUMB: 18296 return ("UNPLUMB"); 18297 case NE_UP: 18298 return ("UP"); 18299 case NE_DOWN: 18300 return ("DOWN"); 18301 case NE_ADDRESS_CHANGE: 18302 return ("ADDRESS_CHANGE"); 18303 case NE_LIF_UP: 18304 return ("LIF_UP"); 18305 case NE_LIF_DOWN: 18306 return ("LIF_DOWN"); 18307 case NE_IFINDEX_CHANGE: 18308 return ("IFINDEX_CHANGE"); 18309 default: 18310 return ("UNKNOWN"); 18311 } 18312 } 18313 18314 void 18315 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18316 nic_event_data_t data, size_t datalen) 18317 { 18318 ip_stack_t *ipst = ill->ill_ipst; 18319 hook_nic_event_int_t *info; 18320 const char *str = NULL; 18321 18322 /* create a new nic event info */ 18323 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18324 goto fail; 18325 18326 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18327 info->hnei_event.hne_lif = lif; 18328 info->hnei_event.hne_event = event; 18329 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18330 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18331 info->hnei_event.hne_data = NULL; 18332 info->hnei_event.hne_datalen = 0; 18333 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18334 18335 if (data != NULL && datalen != 0) { 18336 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18337 if (info->hnei_event.hne_data == NULL) 18338 goto fail; 18339 bcopy(data, info->hnei_event.hne_data, datalen); 18340 info->hnei_event.hne_datalen = datalen; 18341 } 18342 18343 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18344 DDI_NOSLEEP) == DDI_SUCCESS) 18345 return; 18346 18347 fail: 18348 if (info != NULL) { 18349 if (info->hnei_event.hne_data != NULL) { 18350 kmem_free(info->hnei_event.hne_data, 18351 info->hnei_event.hne_datalen); 18352 } 18353 kmem_free(info, sizeof (hook_nic_event_t)); 18354 } 18355 str = ill_hook_event2str(event); 18356 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18357 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18358 } 18359 18360 static int 18361 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18362 { 18363 int err = 0; 18364 const in_addr_t *addr = NULL; 18365 nce_t *nce = NULL; 18366 ill_t *ill = ipif->ipif_ill; 18367 ill_t *bound_ill; 18368 boolean_t added_ipif = B_FALSE; 18369 uint16_t state; 18370 uint16_t flags; 18371 18372 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18373 ill_t *, ill, ipif_t *, ipif); 18374 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18375 addr = &ipif->ipif_lcl_addr; 18376 } 18377 18378 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18379 if (res_act != Res_act_initial) 18380 return (EINVAL); 18381 } 18382 18383 if (addr != NULL) { 18384 ipmp_illgrp_t *illg = ill->ill_grp; 18385 18386 /* add unicast nce for the local addr */ 18387 18388 if (IS_IPMP(ill)) { 18389 /* 18390 * If we're here via ipif_up(), then the ipif 18391 * won't be bound yet -- add it to the group, 18392 * which will bind it if possible. (We would 18393 * add it in ipif_up(), but deleting on failure 18394 * there is gruesome.) If we're here via 18395 * ipmp_ill_bind_ipif(), then the ipif has 18396 * already been added to the group and we 18397 * just need to use the binding. 18398 */ 18399 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18400 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18401 if (bound_ill == NULL) { 18402 /* 18403 * We couldn't bind the ipif to an ill 18404 * yet, so we have nothing to publish. 18405 * Mark the address as ready and return. 18406 */ 18407 ipif->ipif_addr_ready = 1; 18408 return (0); 18409 } 18410 added_ipif = B_TRUE; 18411 } 18412 } else { 18413 bound_ill = ill; 18414 } 18415 18416 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18417 NCE_F_NONUD); 18418 /* 18419 * If this is an initial bring-up (or the ipif was never 18420 * completely brought up), do DAD. Otherwise, we're here 18421 * because IPMP has rebound an address to this ill: send 18422 * unsolicited advertisements (ARP announcements) to 18423 * inform others. 18424 */ 18425 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18426 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18427 } else { 18428 state = ND_REACHABLE; 18429 flags |= NCE_F_UNSOL_ADV; 18430 } 18431 18432 retry: 18433 err = nce_lookup_then_add_v4(ill, 18434 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18435 addr, flags, state, &nce); 18436 18437 /* 18438 * note that we may encounter EEXIST if we are moving 18439 * the nce as a result of a rebind operation. 18440 */ 18441 switch (err) { 18442 case 0: 18443 ipif->ipif_added_nce = 1; 18444 nce->nce_ipif_cnt++; 18445 break; 18446 case EEXIST: 18447 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18448 ill->ill_name)); 18449 if (!NCE_MYADDR(nce->nce_common)) { 18450 /* 18451 * A leftover nce from before this address 18452 * existed 18453 */ 18454 ncec_delete(nce->nce_common); 18455 nce_refrele(nce); 18456 nce = NULL; 18457 goto retry; 18458 } 18459 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18460 nce_refrele(nce); 18461 nce = NULL; 18462 ip1dbg(("ipif_arp_up: NCE already exists " 18463 "for %s:%u\n", ill->ill_name, 18464 ipif->ipif_id)); 18465 goto arp_up_done; 18466 } 18467 /* 18468 * Duplicate local addresses are permissible for 18469 * IPIF_POINTOPOINT interfaces which will get marked 18470 * IPIF_UNNUMBERED later in 18471 * ip_addr_availability_check(). 18472 * 18473 * The nce_ipif_cnt field tracks the number of 18474 * ipifs that have nce_addr as their local address. 18475 */ 18476 ipif->ipif_addr_ready = 1; 18477 ipif->ipif_added_nce = 1; 18478 nce->nce_ipif_cnt++; 18479 err = 0; 18480 break; 18481 default: 18482 ASSERT(nce == NULL); 18483 goto arp_up_done; 18484 } 18485 if (arp_no_defense) { 18486 if ((ipif->ipif_flags & IPIF_UP) && 18487 !ipif->ipif_addr_ready) 18488 ipif_up_notify(ipif); 18489 ipif->ipif_addr_ready = 1; 18490 } 18491 } else { 18492 /* zero address. nothing to publish */ 18493 ipif->ipif_addr_ready = 1; 18494 } 18495 if (nce != NULL) 18496 nce_refrele(nce); 18497 arp_up_done: 18498 if (added_ipif && err != 0) 18499 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18500 return (err); 18501 } 18502 18503 int 18504 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18505 { 18506 int err = 0; 18507 ill_t *ill = ipif->ipif_ill; 18508 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18509 18510 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18511 ill_t *, ill, ipif_t *, ipif); 18512 18513 /* 18514 * need to bring up ARP or setup mcast mapping only 18515 * when the first interface is coming UP. 18516 */ 18517 first_interface = (ill->ill_ipif_up_count == 0 && 18518 ill->ill_ipif_dup_count == 0 && !was_dup); 18519 18520 if (res_act == Res_act_initial && first_interface) { 18521 /* 18522 * Send ATTACH + BIND 18523 */ 18524 err = arp_ll_up(ill); 18525 if (err != EINPROGRESS && err != 0) 18526 return (err); 18527 18528 /* 18529 * Add NCE for local address. Start DAD. 18530 * we'll wait to hear that DAD has finished 18531 * before using the interface. 18532 */ 18533 if (err == EINPROGRESS) 18534 wait_for_dlpi = B_TRUE; 18535 } 18536 18537 if (!wait_for_dlpi) 18538 (void) ipif_arp_up_done_tail(ipif, res_act); 18539 18540 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18541 } 18542 18543 /* 18544 * Finish processing of "arp_up" after all the DLPI message 18545 * exchanges have completed between arp and the driver. 18546 */ 18547 void 18548 arp_bringup_done(ill_t *ill, int err) 18549 { 18550 mblk_t *mp1; 18551 ipif_t *ipif; 18552 conn_t *connp = NULL; 18553 ipsq_t *ipsq; 18554 queue_t *q; 18555 18556 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18557 18558 ASSERT(IAM_WRITER_ILL(ill)); 18559 18560 ipsq = ill->ill_phyint->phyint_ipsq; 18561 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18562 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18563 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18564 if (mp1 == NULL) /* bringup was aborted by the user */ 18565 return; 18566 18567 /* 18568 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18569 * must have an associated conn_t. Otherwise, we're bringing this 18570 * interface back up as part of handling an asynchronous event (e.g., 18571 * physical address change). 18572 */ 18573 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18574 ASSERT(connp != NULL); 18575 q = CONNP_TO_WQ(connp); 18576 } else { 18577 ASSERT(connp == NULL); 18578 q = ill->ill_rq; 18579 } 18580 if (err == 0) { 18581 if (ipif->ipif_isv6) { 18582 if ((err = ipif_up_done_v6(ipif)) != 0) 18583 ip0dbg(("arp_bringup_done: init failed\n")); 18584 } else { 18585 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18586 if (err != 0 || 18587 (err = ipif_up_done(ipif)) != 0) { 18588 ip0dbg(("arp_bringup_done: " 18589 "init failed err %x\n", err)); 18590 (void) ipif_arp_down(ipif); 18591 } 18592 18593 } 18594 } else { 18595 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18596 } 18597 18598 if ((err == 0) && (ill->ill_up_ipifs)) { 18599 err = ill_up_ipifs(ill, q, mp1); 18600 if (err == EINPROGRESS) 18601 return; 18602 } 18603 18604 /* 18605 * If we have a moved ipif to bring up, and everything has succeeded 18606 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18607 * down -- the admin can try to bring it up by hand if need be. 18608 */ 18609 if (ill->ill_move_ipif != NULL) { 18610 ipif = ill->ill_move_ipif; 18611 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18612 ipif->ipif_ill->ill_name)); 18613 ill->ill_move_ipif = NULL; 18614 if (err == 0) { 18615 err = ipif_up(ipif, q, mp1); 18616 if (err == EINPROGRESS) 18617 return; 18618 } 18619 } 18620 18621 /* 18622 * The operation must complete without EINPROGRESS since 18623 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18624 * Otherwise, the operation will be stuck forever in the ipsq. 18625 */ 18626 ASSERT(err != EINPROGRESS); 18627 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18628 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18629 int, ipsq->ipsq_xop->ipx_current_ioctl, 18630 ill_t *, ill, ipif_t *, ipif); 18631 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18632 } else { 18633 ipsq_current_finish(ipsq); 18634 } 18635 } 18636 18637 /* 18638 * Finish processing of arp replumb after all the DLPI message 18639 * exchanges have completed between arp and the driver. 18640 */ 18641 void 18642 arp_replumb_done(ill_t *ill, int err) 18643 { 18644 mblk_t *mp1; 18645 ipif_t *ipif; 18646 conn_t *connp = NULL; 18647 ipsq_t *ipsq; 18648 queue_t *q; 18649 18650 ASSERT(IAM_WRITER_ILL(ill)); 18651 18652 ipsq = ill->ill_phyint->phyint_ipsq; 18653 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18654 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18655 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18656 if (mp1 == NULL) { 18657 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18658 ipsq->ipsq_xop->ipx_current_ioctl)); 18659 /* bringup was aborted by the user */ 18660 return; 18661 } 18662 /* 18663 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18664 * must have an associated conn_t. Otherwise, we're bringing this 18665 * interface back up as part of handling an asynchronous event (e.g., 18666 * physical address change). 18667 */ 18668 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18669 ASSERT(connp != NULL); 18670 q = CONNP_TO_WQ(connp); 18671 } else { 18672 ASSERT(connp == NULL); 18673 q = ill->ill_rq; 18674 } 18675 if ((err == 0) && (ill->ill_up_ipifs)) { 18676 err = ill_up_ipifs(ill, q, mp1); 18677 if (err == EINPROGRESS) 18678 return; 18679 } 18680 /* 18681 * The operation must complete without EINPROGRESS since 18682 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18683 * Otherwise, the operation will be stuck forever in the ipsq. 18684 */ 18685 ASSERT(err != EINPROGRESS); 18686 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18687 DTRACE_PROBE4(ipif__ioctl, char *, 18688 "arp_replumb_done finish", 18689 int, ipsq->ipsq_xop->ipx_current_ioctl, 18690 ill_t *, ill, ipif_t *, ipif); 18691 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18692 } else { 18693 ipsq_current_finish(ipsq); 18694 } 18695 } 18696 18697 void 18698 ipif_up_notify(ipif_t *ipif) 18699 { 18700 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18701 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18702 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18703 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18704 NE_LIF_UP, NULL, 0); 18705 } 18706 18707 /* 18708 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18709 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18710 * TPI end points with STREAMS modules pushed above. This is assured by not 18711 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18712 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18713 * while unwinding from the ispq and that could be a thread from the bottom. 18714 */ 18715 /* ARGSUSED */ 18716 int 18717 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18718 ip_ioctl_cmd_t *ipip, void *arg) 18719 { 18720 mblk_t *cmd_mp = mp->b_cont->b_cont; 18721 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18722 int ret = 0; 18723 int i; 18724 size_t size; 18725 ip_stack_t *ipst; 18726 zoneid_t zoneid; 18727 ilb_stack_t *ilbs; 18728 18729 ipst = CONNQ_TO_IPST(q); 18730 ilbs = ipst->ips_netstack->netstack_ilb; 18731 zoneid = Q_TO_CONN(q)->conn_zoneid; 18732 18733 switch (command) { 18734 case ILB_CREATE_RULE: { 18735 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18736 18737 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18738 ret = EINVAL; 18739 break; 18740 } 18741 18742 ret = ilb_rule_add(ilbs, zoneid, cmd); 18743 break; 18744 } 18745 case ILB_DESTROY_RULE: 18746 case ILB_ENABLE_RULE: 18747 case ILB_DISABLE_RULE: { 18748 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18749 18750 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18751 ret = EINVAL; 18752 break; 18753 } 18754 18755 if (cmd->flags & ILB_RULE_ALLRULES) { 18756 if (command == ILB_DESTROY_RULE) { 18757 ilb_rule_del_all(ilbs, zoneid); 18758 break; 18759 } else if (command == ILB_ENABLE_RULE) { 18760 ilb_rule_enable_all(ilbs, zoneid); 18761 break; 18762 } else if (command == ILB_DISABLE_RULE) { 18763 ilb_rule_disable_all(ilbs, zoneid); 18764 break; 18765 } 18766 } else { 18767 if (command == ILB_DESTROY_RULE) { 18768 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18769 } else if (command == ILB_ENABLE_RULE) { 18770 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18771 NULL); 18772 } else if (command == ILB_DISABLE_RULE) { 18773 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18774 NULL); 18775 } 18776 } 18777 break; 18778 } 18779 case ILB_NUM_RULES: { 18780 ilb_num_rules_cmd_t *cmd; 18781 18782 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18783 ret = EINVAL; 18784 break; 18785 } 18786 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18787 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18788 break; 18789 } 18790 case ILB_RULE_NAMES: { 18791 ilb_rule_names_cmd_t *cmd; 18792 18793 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18794 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18795 cmd->num_names == 0) { 18796 ret = EINVAL; 18797 break; 18798 } 18799 size = cmd->num_names * ILB_RULE_NAMESZ; 18800 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18801 size != cmd_mp->b_wptr) { 18802 ret = EINVAL; 18803 break; 18804 } 18805 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18806 break; 18807 } 18808 case ILB_NUM_SERVERS: { 18809 ilb_num_servers_cmd_t *cmd; 18810 18811 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18812 ret = EINVAL; 18813 break; 18814 } 18815 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18816 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18817 &(cmd->num)); 18818 break; 18819 } 18820 case ILB_LIST_RULE: { 18821 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18822 18823 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18824 ret = EINVAL; 18825 break; 18826 } 18827 ret = ilb_rule_list(ilbs, zoneid, cmd); 18828 break; 18829 } 18830 case ILB_LIST_SERVERS: { 18831 ilb_servers_info_cmd_t *cmd; 18832 18833 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18834 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18835 cmd->num_servers == 0) { 18836 ret = EINVAL; 18837 break; 18838 } 18839 size = cmd->num_servers * sizeof (ilb_server_info_t); 18840 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18841 size != cmd_mp->b_wptr) { 18842 ret = EINVAL; 18843 break; 18844 } 18845 18846 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18847 &cmd->num_servers); 18848 break; 18849 } 18850 case ILB_ADD_SERVERS: { 18851 ilb_servers_info_cmd_t *cmd; 18852 ilb_rule_t *rule; 18853 18854 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18855 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18856 ret = EINVAL; 18857 break; 18858 } 18859 size = cmd->num_servers * sizeof (ilb_server_info_t); 18860 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18861 size != cmd_mp->b_wptr) { 18862 ret = EINVAL; 18863 break; 18864 } 18865 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18866 if (rule == NULL) { 18867 ASSERT(ret != 0); 18868 break; 18869 } 18870 for (i = 0; i < cmd->num_servers; i++) { 18871 ilb_server_info_t *s; 18872 18873 s = &cmd->servers[i]; 18874 s->err = ilb_server_add(ilbs, rule, s); 18875 } 18876 ILB_RULE_REFRELE(rule); 18877 break; 18878 } 18879 case ILB_DEL_SERVERS: 18880 case ILB_ENABLE_SERVERS: 18881 case ILB_DISABLE_SERVERS: { 18882 ilb_servers_cmd_t *cmd; 18883 ilb_rule_t *rule; 18884 int (*f)(); 18885 18886 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18887 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18888 ret = EINVAL; 18889 break; 18890 } 18891 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18892 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18893 size != cmd_mp->b_wptr) { 18894 ret = EINVAL; 18895 break; 18896 } 18897 18898 if (command == ILB_DEL_SERVERS) 18899 f = ilb_server_del; 18900 else if (command == ILB_ENABLE_SERVERS) 18901 f = ilb_server_enable; 18902 else if (command == ILB_DISABLE_SERVERS) 18903 f = ilb_server_disable; 18904 18905 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18906 if (rule == NULL) { 18907 ASSERT(ret != 0); 18908 break; 18909 } 18910 18911 for (i = 0; i < cmd->num_servers; i++) { 18912 ilb_server_arg_t *s; 18913 18914 s = &cmd->servers[i]; 18915 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18916 } 18917 ILB_RULE_REFRELE(rule); 18918 break; 18919 } 18920 case ILB_LIST_NAT_TABLE: { 18921 ilb_list_nat_cmd_t *cmd; 18922 18923 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18924 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18925 ret = EINVAL; 18926 break; 18927 } 18928 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18929 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18930 size != cmd_mp->b_wptr) { 18931 ret = EINVAL; 18932 break; 18933 } 18934 18935 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18936 &cmd->flags); 18937 break; 18938 } 18939 case ILB_LIST_STICKY_TABLE: { 18940 ilb_list_sticky_cmd_t *cmd; 18941 18942 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18943 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18944 ret = EINVAL; 18945 break; 18946 } 18947 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18948 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18949 size != cmd_mp->b_wptr) { 18950 ret = EINVAL; 18951 break; 18952 } 18953 18954 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18955 &cmd->num_sticky, &cmd->flags); 18956 break; 18957 } 18958 default: 18959 ret = EINVAL; 18960 break; 18961 } 18962 done: 18963 return (ret); 18964 } 18965 18966 /* Remove all cache entries for this logical interface */ 18967 void 18968 ipif_nce_down(ipif_t *ipif) 18969 { 18970 ill_t *ill = ipif->ipif_ill; 18971 nce_t *nce; 18972 18973 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18974 ill_t *, ill, ipif_t *, ipif); 18975 if (ipif->ipif_added_nce) { 18976 if (ipif->ipif_isv6) 18977 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18978 else 18979 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18980 if (nce != NULL) { 18981 if (--nce->nce_ipif_cnt == 0) 18982 ncec_delete(nce->nce_common); 18983 ipif->ipif_added_nce = 0; 18984 nce_refrele(nce); 18985 } else { 18986 /* 18987 * nce may already be NULL because it was already 18988 * flushed, e.g., due to a call to nce_flush 18989 */ 18990 ipif->ipif_added_nce = 0; 18991 } 18992 } 18993 /* 18994 * Make IPMP aware of the deleted data address. 18995 */ 18996 if (IS_IPMP(ill)) 18997 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18998 18999 /* 19000 * Remove all other nces dependent on this ill when the last ipif 19001 * is going away. 19002 */ 19003 if (ill->ill_ipif_up_count == 0) { 19004 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst); 19005 if (IS_UNDER_IPMP(ill)) 19006 nce_flush(ill, B_TRUE); 19007 } 19008 } 19009 19010 /* 19011 * find the first interface that uses usill for its source address. 19012 */ 19013 ill_t * 19014 ill_lookup_usesrc(ill_t *usill) 19015 { 19016 ip_stack_t *ipst = usill->ill_ipst; 19017 ill_t *ill; 19018 19019 ASSERT(usill != NULL); 19020 19021 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19022 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19023 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19024 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19025 ill = ill->ill_usesrc_grp_next) { 19026 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19027 !ILL_IS_CONDEMNED(ill)) { 19028 ill_refhold(ill); 19029 break; 19030 } 19031 } 19032 rw_exit(&ipst->ips_ill_g_lock); 19033 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19034 return (ill); 19035 } 19036 19037 /* 19038 * This comment applies to both ip_sioctl_get_ifhwaddr and 19039 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19040 * is the same. 19041 * 19042 * The goal here is to find an IP interface that corresponds to the name 19043 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19044 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19045 * mac address. 19046 * 19047 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19048 * of different reasons: 19049 * ENXIO - the device name is not known to IP. 19050 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19051 * by ill_phys_addr not pointing to an actual address. 19052 * EPFNOSUPPORT - this will indicate that a request is being made for a 19053 * mac address that will not fit in the data structure supplier (struct 19054 * sockaddr). 19055 * 19056 */ 19057 /* ARGSUSED */ 19058 int 19059 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19060 ip_ioctl_cmd_t *ipip, void *if_req) 19061 { 19062 struct sockaddr *sock; 19063 struct ifreq *ifr; 19064 mblk_t *mp1; 19065 ill_t *ill; 19066 19067 ASSERT(ipif != NULL); 19068 ill = ipif->ipif_ill; 19069 19070 if (ill->ill_phys_addr == NULL) { 19071 return (EADDRNOTAVAIL); 19072 } 19073 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19074 return (EPFNOSUPPORT); 19075 } 19076 19077 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19078 19079 /* Existence of mp1 has been checked in ip_wput_nondata */ 19080 mp1 = mp->b_cont->b_cont; 19081 ifr = (struct ifreq *)mp1->b_rptr; 19082 19083 sock = &ifr->ifr_addr; 19084 /* 19085 * The "family" field in the returned structure is set to a value 19086 * that represents the type of device to which the address belongs. 19087 * The value returned may differ to that on Linux but it will still 19088 * represent the correct symbol on Solaris. 19089 */ 19090 sock->sa_family = arp_hw_type(ill->ill_mactype); 19091 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19092 19093 return (0); 19094 } 19095 19096 /* 19097 * The expection of applications using SIOCGIFHWADDR is that data will 19098 * be returned in the sa_data field of the sockaddr structure. With 19099 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19100 * equivalent. In light of this, struct sockaddr_dl is used as it 19101 * offers more space for address storage in sll_data. 19102 */ 19103 /* ARGSUSED */ 19104 int 19105 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19106 ip_ioctl_cmd_t *ipip, void *if_req) 19107 { 19108 struct sockaddr_dl *sock; 19109 struct lifreq *lifr; 19110 mblk_t *mp1; 19111 ill_t *ill; 19112 19113 ASSERT(ipif != NULL); 19114 ill = ipif->ipif_ill; 19115 19116 if (ill->ill_phys_addr == NULL) { 19117 return (EADDRNOTAVAIL); 19118 } 19119 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19120 return (EPFNOSUPPORT); 19121 } 19122 19123 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19124 19125 /* Existence of mp1 has been checked in ip_wput_nondata */ 19126 mp1 = mp->b_cont->b_cont; 19127 lifr = (struct lifreq *)mp1->b_rptr; 19128 19129 /* 19130 * sockaddr_ll is used here because it is also the structure used in 19131 * responding to the same ioctl in sockpfp. The only other choice is 19132 * sockaddr_dl which contains fields that are not required here 19133 * because its purpose is different. 19134 */ 19135 lifr->lifr_type = ill->ill_type; 19136 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19137 sock->sdl_family = AF_LINK; 19138 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19139 sock->sdl_type = ill->ill_mactype; 19140 sock->sdl_nlen = 0; 19141 sock->sdl_slen = 0; 19142 sock->sdl_alen = ill->ill_phys_addr_length; 19143 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19144 19145 return (0); 19146 } 19147