1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2017, Datto, Inc. All rights reserved. 18 */ 19 20 #include <sys/zio_crypt.h> 21 #include <sys/dmu.h> 22 #include <sys/dmu_objset.h> 23 #include <sys/dnode.h> 24 #include <sys/fs/zfs.h> 25 #include <sys/zio.h> 26 #include <sys/zil.h> 27 #include <sys/sha2.h> 28 #include <sys/hkdf.h> 29 30 /* 31 * This file is responsible for handling all of the details of generating 32 * encryption parameters and performing encryption and authentication. 33 * 34 * BLOCK ENCRYPTION PARAMETERS: 35 * Encryption /Authentication Algorithm Suite (crypt): 36 * The encryption algorithm, mode, and key length we are going to use. We 37 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit 38 * keys. All authentication is currently done with SHA512-HMAC. 39 * 40 * Plaintext: 41 * The unencrypted data that we want to encrypt. 42 * 43 * Initialization Vector (IV): 44 * An initialization vector for the encryption algorithms. This is used to 45 * "tweak" the encryption algorithms so that two blocks of the same data are 46 * encrypted into different ciphertext outputs, thus obfuscating block patterns. 47 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is 48 * never reused with the same encryption key. This value is stored unencrypted 49 * and must simply be provided to the decryption function. We use a 96 bit IV 50 * (as recommended by NIST) for all block encryption. For non-dedup blocks we 51 * derive the IV randomly. The first 64 bits of the IV are stored in the second 52 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of 53 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits 54 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count 55 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of 56 * level 0 blocks is the number of allocated dnodes in that block. The on-disk 57 * format supports at most 2^15 slots per L0 dnode block, because the maximum 58 * block size is 16MB (2^24). In either case, for level 0 blocks this number 59 * will still be smaller than UINT32_MAX so it is safe to store the IV in the 60 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count 61 * for the dnode code. 62 * 63 * Master key: 64 * This is the most important secret data of an encrypted dataset. It is used 65 * along with the salt to generate that actual encryption keys via HKDF. We 66 * do not use the master key to directly encrypt any data because there are 67 * theoretical limits on how much data can actually be safely encrypted with 68 * any encryption mode. The master key is stored encrypted on disk with the 69 * user's wrapping key. Its length is determined by the encryption algorithm. 70 * For details on how this is stored see the block comment in dsl_crypt.c 71 * 72 * Salt: 73 * Used as an input to the HKDF function, along with the master key. We use a 74 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt 75 * can be used for encrypting many blocks, so we cache the current salt and the 76 * associated derived key in zio_crypt_t so we do not need to derive it again 77 * needlessly. 78 * 79 * Encryption Key: 80 * A secret binary key, generated from an HKDF function used to encrypt and 81 * decrypt data. 82 * 83 * Message Authenication Code (MAC) 84 * The MAC is an output of authenticated encryption modes such as AES-GCM and 85 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted 86 * data on disk and return garbage to the application. Effectively, it is a 87 * checksum that can not be reproduced by an attacker. We store the MAC in the 88 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated 89 * regular checksum of the ciphertext which can be used for scrubbing. 90 * 91 * OBJECT AUTHENTICATION: 92 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because 93 * they contain some info that always needs to be readable. To prevent this 94 * data from being altered, we authenticate this data using SHA512-HMAC. This 95 * will produce a MAC (similar to the one produced via encryption) which can 96 * be used to verify the object was not modified. HMACs do not require key 97 * rotation or IVs, so we can keep up to the full 3 copies of authenticated 98 * data. 99 * 100 * ZIL ENCRYPTION: 101 * ZIL blocks have their bp written to disk ahead of the associated data, so we 102 * cannot store the MAC there as we normally do. For these blocks the MAC is 103 * stored in the embedded checksum within the zil_chain_t header. The salt and 104 * IV are generated for the block on bp allocation instead of at encryption 105 * time. In addition, ZIL blocks have some pieces that must be left in plaintext 106 * for claiming even though all of the sensitive user data still needs to be 107 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which 108 * pieces of the block need to be encrypted. All data that is not encrypted is 109 * authenticated using the AAD mechanisms that the supported encryption modes 110 * provide for. In order to preserve the semantics of the ZIL for encrypted 111 * datasets, the ZIL is not protected at the objset level as described below. 112 * 113 * DNODE ENCRYPTION: 114 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left 115 * in plaintext for scrubbing and claiming, but the bonus buffers might contain 116 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing 117 * which pieces of the block need to be encrypted. For more details about 118 * dnode authentication and encryption, see zio_crypt_init_uios_dnode(). 119 * 120 * OBJECT SET AUTHENTICATION: 121 * Up to this point, everything we have encrypted and authenticated has been 122 * at level 0 (or -2 for the ZIL). If we did not do any further work the 123 * on-disk format would be susceptible to attacks that deleted or rearrannged 124 * the order of level 0 blocks. Ideally, the cleanest solution would be to 125 * maintain a tree of authentication MACs going up the bp tree. However, this 126 * presents a problem for raw sends. Send files do not send information about 127 * indirect blocks so there would be no convenient way to transfer the MACs and 128 * they cannot be recalculated on the receive side without the master key which 129 * would defeat one of the purposes of raw sends in the first place. Instead, 130 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs 131 * from the level below. We also include some portable fields from blk_prop such 132 * as the lsize and compression algorithm to prevent the data from being 133 * misinterpretted. 134 * 135 * At the objset level, we maintain 2 seperate 256 bit MACs in the 136 * objset_phys_t. The first one is "portable" and is the logical root of the 137 * MAC tree maintianed in the metadnode's bps. The second, is "local" and is 138 * used as the root MAC for the user accounting objects, which are also not 139 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload 140 * of the send file. The useraccounting code ensures that the useraccounting 141 * info is not present upon a receive, so the local MAC can simply be cleared 142 * out at that time. For more info about objset_phys_t authentication, see 143 * zio_crypt_do_objset_hmacs(). 144 * 145 * CONSIDERATIONS FOR DEDUP: 146 * In order for dedup to work, blocks that we want to dedup with one another 147 * need to use the same IV and encryption key, so that they will have the same 148 * ciphertext. Normally, one should never reuse an IV with the same encryption 149 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both 150 * blocks. In this case, however, since we are using the same plaindata as 151 * well all that we end up with is a duplicate of the original ciphertext we 152 * already had. As a result, an attacker with read access to the raw disk will 153 * be able to tell which blocks are the same but this information is given away 154 * by dedup anyway. In order to get the same IVs and encryption keys for 155 * equivalent blocks of data we use an HMAC of the plaindata. We use an HMAC 156 * here so that a reproducible checksum of the plaindata is never available to 157 * the attacker. The HMAC key is kept alongside the master key, encrypted on 158 * disk. The first 64 bits of the HMAC are used in place of the random salt, and 159 * the next 96 bits are used as the IV. As a result of this mechanism, dedup 160 * will only work within a clone family since encrypted dedup requires use of 161 * the same master and HMAC keys. 162 */ 163 164 /* 165 * After encrypting many blocks with the same key we may start to run up 166 * against the theoretical limits of how much data can securely be encrypted 167 * with a single key using the supported encryption modes. The most obvious 168 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases 169 * the more IVs we generate (which both GCM and CCM modes strictly forbid). 170 * This risk actually grows surprisingly quickly over time according to the 171 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have 172 * generated n IVs with a cryptographically secure RNG, the approximate 173 * probability p(n) of a collision is given as: 174 * 175 * p(n) ~= e^(-n*(n-1)/(2*(2^96))) 176 * 177 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html] 178 * 179 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion 180 * we must not write more than 398,065,730 blocks with the same encryption key. 181 * Therefore, we rotate our keys after 400,000,000 blocks have been written by 182 * generating a new random 64 bit salt for our HKDF encryption key generation 183 * function. 184 */ 185 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000 186 #define ZFS_CURRENT_MAX_SALT_USES \ 187 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT)) 188 unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT; 189 190 /* 191 * Set to a nonzero value to cause zio_do_crypt_uio() to fail 1/this many 192 * calls, to test decryption error handling code paths. 193 */ 194 uint64_t zio_decrypt_fail_fraction = 0; 195 196 typedef struct blkptr_auth_buf { 197 uint64_t bab_prop; /* blk_prop - portable mask */ 198 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */ 199 uint64_t bab_pad; /* reserved for future use */ 200 } blkptr_auth_buf_t; 201 202 zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = { 203 {"", ZC_TYPE_NONE, 0, "inherit"}, 204 {"", ZC_TYPE_NONE, 0, "on"}, 205 {"", ZC_TYPE_NONE, 0, "off"}, 206 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"}, 207 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"}, 208 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"}, 209 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"}, 210 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"}, 211 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"} 212 }; 213 214 void 215 zio_crypt_key_destroy(zio_crypt_key_t *key) 216 { 217 rw_destroy(&key->zk_salt_lock); 218 219 /* free crypto templates */ 220 crypto_destroy_ctx_template(key->zk_current_tmpl); 221 crypto_destroy_ctx_template(key->zk_hmac_tmpl); 222 223 /* zero out sensitive data */ 224 bzero(key, sizeof (zio_crypt_key_t)); 225 } 226 227 int 228 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key) 229 { 230 int ret; 231 crypto_mechanism_t mech; 232 uint_t keydata_len; 233 234 ASSERT(key != NULL); 235 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 236 237 keydata_len = zio_crypt_table[crypt].ci_keylen; 238 bzero(key, sizeof (zio_crypt_key_t)); 239 240 /* fill keydata buffers and salt with random data */ 241 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t)); 242 if (ret != 0) 243 goto error; 244 245 ret = random_get_bytes(key->zk_master_keydata, keydata_len); 246 if (ret != 0) 247 goto error; 248 249 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN); 250 if (ret != 0) 251 goto error; 252 253 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 254 if (ret != 0) 255 goto error; 256 257 /* derive the current key from the master key */ 258 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 259 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 260 keydata_len); 261 if (ret != 0) 262 goto error; 263 264 /* initialize keys for the ICP */ 265 key->zk_current_key.ck_format = CRYPTO_KEY_RAW; 266 key->zk_current_key.ck_data = key->zk_current_keydata; 267 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 268 269 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW; 270 key->zk_hmac_key.ck_data = &key->zk_hmac_key; 271 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 272 273 /* 274 * Initialize the crypto templates. It's ok if this fails because 275 * this is just an optimization. 276 */ 277 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 278 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 279 &key->zk_current_tmpl, KM_SLEEP); 280 if (ret != CRYPTO_SUCCESS) 281 key->zk_current_tmpl = NULL; 282 283 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 284 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 285 &key->zk_hmac_tmpl, KM_SLEEP); 286 if (ret != CRYPTO_SUCCESS) 287 key->zk_hmac_tmpl = NULL; 288 289 key->zk_crypt = crypt; 290 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION; 291 key->zk_salt_count = 0; 292 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 293 294 return (0); 295 296 error: 297 zio_crypt_key_destroy(key); 298 return (ret); 299 } 300 301 static int 302 zio_crypt_key_change_salt(zio_crypt_key_t *key) 303 { 304 int ret = 0; 305 uint8_t salt[ZIO_DATA_SALT_LEN]; 306 crypto_mechanism_t mech; 307 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen; 308 309 /* generate a new salt */ 310 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN); 311 if (ret != 0) 312 goto error; 313 314 rw_enter(&key->zk_salt_lock, RW_WRITER); 315 316 /* someone beat us to the salt rotation, just unlock and return */ 317 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES) 318 goto out_unlock; 319 320 /* derive the current key from the master key and the new salt */ 321 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 322 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len); 323 if (ret != 0) 324 goto out_unlock; 325 326 /* assign the salt and reset the usage count */ 327 bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN); 328 key->zk_salt_count = 0; 329 330 /* destroy the old context template and create the new one */ 331 crypto_destroy_ctx_template(key->zk_current_tmpl); 332 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 333 &key->zk_current_tmpl, KM_SLEEP); 334 if (ret != CRYPTO_SUCCESS) 335 key->zk_current_tmpl = NULL; 336 337 rw_exit(&key->zk_salt_lock); 338 339 return (0); 340 341 out_unlock: 342 rw_exit(&key->zk_salt_lock); 343 error: 344 return (ret); 345 } 346 347 /* See comment above zfs_key_max_salt_uses definition for details */ 348 int 349 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt) 350 { 351 int ret; 352 boolean_t salt_change; 353 354 rw_enter(&key->zk_salt_lock, RW_READER); 355 356 bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN); 357 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >= 358 ZFS_CURRENT_MAX_SALT_USES); 359 360 rw_exit(&key->zk_salt_lock); 361 362 if (salt_change) { 363 ret = zio_crypt_key_change_salt(key); 364 if (ret != 0) 365 goto error; 366 } 367 368 return (0); 369 370 error: 371 return (ret); 372 } 373 374 void *failed_decrypt_buf; 375 int failed_decrypt_size; 376 377 /* 378 * This function handles all encryption and decryption in zfs. When 379 * encrypting it expects puio to reference the plaintext and cuio to 380 * reference the cphertext. cuio must have enough space for the 381 * ciphertext + room for a MAC. datalen should be the length of the 382 * plaintext / ciphertext alone. 383 */ 384 /* ARGSUSED */ 385 static int 386 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key, 387 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen, 388 uio_t *puio, uio_t *cuio, uint8_t *authbuf, uint_t auth_len) 389 { 390 int ret; 391 crypto_data_t plaindata, cipherdata; 392 CK_AES_CCM_PARAMS ccmp; 393 CK_AES_GCM_PARAMS gcmp; 394 crypto_mechanism_t mech; 395 zio_crypt_info_t crypt_info; 396 uint_t plain_full_len, maclen; 397 398 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 399 ASSERT3U(key->ck_format, ==, CRYPTO_KEY_RAW); 400 401 /* lookup the encryption info */ 402 crypt_info = zio_crypt_table[crypt]; 403 404 /* the mac will always be the last iovec_t in the cipher uio */ 405 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len; 406 407 ASSERT(maclen <= ZIO_DATA_MAC_LEN); 408 409 /* setup encryption mechanism (same as crypt) */ 410 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname); 411 412 /* 413 * Strangely, the ICP requires that plain_full_len must include 414 * the MAC length when decrypting, even though the UIO does not 415 * need to have the extra space allocated. 416 */ 417 if (encrypt) { 418 plain_full_len = datalen; 419 } else { 420 plain_full_len = datalen + maclen; 421 } 422 423 /* 424 * setup encryption params (currently only AES CCM and AES GCM 425 * are supported) 426 */ 427 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) { 428 ccmp.ulNonceSize = ZIO_DATA_IV_LEN; 429 ccmp.ulAuthDataSize = auth_len; 430 ccmp.authData = authbuf; 431 ccmp.ulMACSize = maclen; 432 ccmp.nonce = ivbuf; 433 ccmp.ulDataSize = plain_full_len; 434 435 mech.cm_param = (char *)(&ccmp); 436 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 437 } else { 438 gcmp.ulIvLen = ZIO_DATA_IV_LEN; 439 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN); 440 gcmp.ulAADLen = auth_len; 441 gcmp.pAAD = authbuf; 442 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen); 443 gcmp.pIv = ivbuf; 444 445 mech.cm_param = (char *)(&gcmp); 446 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 447 } 448 449 /* populate the cipher and plain data structs. */ 450 plaindata.cd_format = CRYPTO_DATA_UIO; 451 plaindata.cd_offset = 0; 452 plaindata.cd_uio = puio; 453 plaindata.cd_miscdata = NULL; 454 plaindata.cd_length = plain_full_len; 455 456 cipherdata.cd_format = CRYPTO_DATA_UIO; 457 cipherdata.cd_offset = 0; 458 cipherdata.cd_uio = cuio; 459 cipherdata.cd_miscdata = NULL; 460 cipherdata.cd_length = datalen + maclen; 461 462 /* perform the actual encryption */ 463 if (encrypt) { 464 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata, 465 NULL); 466 if (ret != CRYPTO_SUCCESS) { 467 ret = SET_ERROR(EIO); 468 goto error; 469 } 470 } else { 471 if (zio_decrypt_fail_fraction != 0 && 472 spa_get_random(zio_decrypt_fail_fraction) == 0) { 473 ret = CRYPTO_INVALID_MAC; 474 } else { 475 ret = crypto_decrypt(&mech, &cipherdata, 476 key, tmpl, &plaindata, NULL); 477 } 478 if (ret != CRYPTO_SUCCESS) { 479 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC); 480 ret = SET_ERROR(ECKSUM); 481 goto error; 482 } 483 } 484 485 return (0); 486 487 error: 488 return (ret); 489 } 490 491 int 492 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv, 493 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out) 494 { 495 int ret; 496 uio_t puio, cuio; 497 uint64_t aad[3]; 498 iovec_t plain_iovecs[2], cipher_iovecs[3]; 499 uint64_t crypt = key->zk_crypt; 500 uint_t enc_len, keydata_len, aad_len; 501 502 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 503 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW); 504 505 keydata_len = zio_crypt_table[crypt].ci_keylen; 506 507 /* generate iv for wrapping the master and hmac key */ 508 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN); 509 if (ret != 0) 510 goto error; 511 512 /* initialize uio_ts */ 513 plain_iovecs[0].iov_base = (char *)key->zk_master_keydata; 514 plain_iovecs[0].iov_len = keydata_len; 515 plain_iovecs[1].iov_base = (char *)key->zk_hmac_keydata; 516 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 517 518 cipher_iovecs[0].iov_base = (char *)keydata_out; 519 cipher_iovecs[0].iov_len = keydata_len; 520 cipher_iovecs[1].iov_base = (char *)hmac_keydata_out; 521 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 522 cipher_iovecs[2].iov_base = (char *)mac; 523 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 524 525 /* 526 * Although we don't support writing to the old format, we do 527 * support rewrapping the key so that the user can move and 528 * quarantine datasets on the old format. 529 */ 530 if (key->zk_version == 0) { 531 aad_len = sizeof (uint64_t); 532 aad[0] = LE_64(key->zk_guid); 533 } else { 534 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 535 aad_len = sizeof (uint64_t) * 3; 536 aad[0] = LE_64(key->zk_guid); 537 aad[1] = LE_64(crypt); 538 aad[2] = LE_64(key->zk_version); 539 } 540 541 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN; 542 puio.uio_iov = plain_iovecs; 543 puio.uio_iovcnt = 2; 544 puio.uio_segflg = UIO_SYSSPACE; 545 cuio.uio_iov = cipher_iovecs; 546 cuio.uio_iovcnt = 3; 547 cuio.uio_segflg = UIO_SYSSPACE; 548 549 /* encrypt the keys and store the resulting ciphertext and mac */ 550 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len, 551 &puio, &cuio, (uint8_t *)aad, aad_len); 552 if (ret != 0) 553 goto error; 554 555 return (0); 556 557 error: 558 return (ret); 559 } 560 561 int 562 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version, 563 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv, 564 uint8_t *mac, zio_crypt_key_t *key) 565 { 566 int ret; 567 crypto_mechanism_t mech; 568 uio_t puio, cuio; 569 uint64_t aad[3]; 570 iovec_t plain_iovecs[2], cipher_iovecs[3]; 571 uint_t enc_len, keydata_len, aad_len; 572 573 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 574 ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW); 575 576 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 577 keydata_len = zio_crypt_table[crypt].ci_keylen; 578 579 /* initialize uio_ts */ 580 plain_iovecs[0].iov_base = (char *)key->zk_master_keydata; 581 plain_iovecs[0].iov_len = keydata_len; 582 plain_iovecs[1].iov_base = (char *)key->zk_hmac_keydata; 583 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 584 585 cipher_iovecs[0].iov_base = (char *)keydata; 586 cipher_iovecs[0].iov_len = keydata_len; 587 cipher_iovecs[1].iov_base = (char *)hmac_keydata; 588 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 589 cipher_iovecs[2].iov_base = (char *)mac; 590 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 591 592 if (version == 0) { 593 aad_len = sizeof (uint64_t); 594 aad[0] = LE_64(guid); 595 } else { 596 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 597 aad_len = sizeof (uint64_t) * 3; 598 aad[0] = LE_64(guid); 599 aad[1] = LE_64(crypt); 600 aad[2] = LE_64(version); 601 } 602 603 enc_len = keydata_len + SHA512_HMAC_KEYLEN; 604 puio.uio_iov = plain_iovecs; 605 puio.uio_segflg = UIO_SYSSPACE; 606 puio.uio_iovcnt = 2; 607 cuio.uio_iov = cipher_iovecs; 608 cuio.uio_iovcnt = 3; 609 cuio.uio_segflg = UIO_SYSSPACE; 610 611 /* decrypt the keys and store the result in the output buffers */ 612 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len, 613 &puio, &cuio, (uint8_t *)aad, aad_len); 614 if (ret != 0) 615 goto error; 616 617 /* generate a fresh salt */ 618 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 619 if (ret != 0) 620 goto error; 621 622 /* derive the current key from the master key */ 623 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 624 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 625 keydata_len); 626 if (ret != 0) 627 goto error; 628 629 /* initialize keys for ICP */ 630 key->zk_current_key.ck_format = CRYPTO_KEY_RAW; 631 key->zk_current_key.ck_data = key->zk_current_keydata; 632 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 633 634 key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW; 635 key->zk_hmac_key.ck_data = key->zk_hmac_keydata; 636 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 637 638 /* 639 * Initialize the crypto templates. It's ok if this fails because 640 * this is just an optimization. 641 */ 642 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 643 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 644 &key->zk_current_tmpl, KM_SLEEP); 645 if (ret != CRYPTO_SUCCESS) 646 key->zk_current_tmpl = NULL; 647 648 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 649 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 650 &key->zk_hmac_tmpl, KM_SLEEP); 651 if (ret != CRYPTO_SUCCESS) 652 key->zk_hmac_tmpl = NULL; 653 654 key->zk_crypt = crypt; 655 key->zk_version = version; 656 key->zk_guid = guid; 657 key->zk_salt_count = 0; 658 659 return (0); 660 661 error: 662 zio_crypt_key_destroy(key); 663 return (ret); 664 } 665 666 int 667 zio_crypt_generate_iv(uint8_t *ivbuf) 668 { 669 int ret; 670 671 /* randomly generate the IV */ 672 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN); 673 if (ret != 0) 674 goto error; 675 676 return (0); 677 678 error: 679 bzero(ivbuf, ZIO_DATA_IV_LEN); 680 return (ret); 681 } 682 683 int 684 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen, 685 uint8_t *digestbuf, uint_t digestlen) 686 { 687 int ret; 688 crypto_mechanism_t mech; 689 crypto_data_t in_data, digest_data; 690 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH]; 691 692 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH); 693 694 /* initialize sha512-hmac mechanism and crypto data */ 695 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 696 mech.cm_param = NULL; 697 mech.cm_param_len = 0; 698 699 /* initialize the crypto data */ 700 in_data.cd_format = CRYPTO_DATA_RAW; 701 in_data.cd_offset = 0; 702 in_data.cd_length = datalen; 703 in_data.cd_raw.iov_base = (char *)data; 704 in_data.cd_raw.iov_len = in_data.cd_length; 705 706 digest_data.cd_format = CRYPTO_DATA_RAW; 707 digest_data.cd_offset = 0; 708 digest_data.cd_length = SHA512_DIGEST_LENGTH; 709 digest_data.cd_raw.iov_base = (char *)raw_digestbuf; 710 digest_data.cd_raw.iov_len = digest_data.cd_length; 711 712 /* generate the hmac */ 713 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl, 714 &digest_data, NULL); 715 if (ret != CRYPTO_SUCCESS) { 716 ret = SET_ERROR(EIO); 717 goto error; 718 } 719 720 bcopy(raw_digestbuf, digestbuf, digestlen); 721 722 return (0); 723 724 error: 725 bzero(digestbuf, digestlen); 726 return (ret); 727 } 728 729 int 730 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data, 731 uint_t datalen, uint8_t *ivbuf, uint8_t *salt) 732 { 733 int ret; 734 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 735 736 ret = zio_crypt_do_hmac(key, data, datalen, 737 digestbuf, SHA512_DIGEST_LENGTH); 738 if (ret != 0) 739 return (ret); 740 741 bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN); 742 bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN); 743 744 return (0); 745 } 746 747 /* 748 * The following functions are used to encode and decode encryption parameters 749 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as 750 * byte strings, which normally means that these strings would not need to deal 751 * with byteswapping at all. However, both blkptr_t and zil_header_t may be 752 * byteswapped by lower layers and so we must "undo" that byteswap here upon 753 * decoding and encoding in a non-native byteorder. These functions require 754 * that the byteorder bit is correct before being called. 755 */ 756 void 757 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv) 758 { 759 uint64_t val64; 760 uint32_t val32; 761 762 ASSERT(BP_IS_ENCRYPTED(bp)); 763 764 if (!BP_SHOULD_BYTESWAP(bp)) { 765 bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t)); 766 bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t)); 767 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 768 BP_SET_IV2(bp, val32); 769 } else { 770 bcopy(salt, &val64, sizeof (uint64_t)); 771 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64); 772 773 bcopy(iv, &val64, sizeof (uint64_t)); 774 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64); 775 776 bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 777 BP_SET_IV2(bp, BSWAP_32(val32)); 778 } 779 } 780 781 void 782 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv) 783 { 784 uint64_t val64; 785 uint32_t val32; 786 787 ASSERT(BP_IS_PROTECTED(bp)); 788 789 /* for convenience, so callers don't need to check */ 790 if (BP_IS_AUTHENTICATED(bp)) { 791 bzero(salt, ZIO_DATA_SALT_LEN); 792 bzero(iv, ZIO_DATA_IV_LEN); 793 return; 794 } 795 796 if (!BP_SHOULD_BYTESWAP(bp)) { 797 bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t)); 798 bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t)); 799 800 val32 = (uint32_t)BP_GET_IV2(bp); 801 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 802 } else { 803 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]); 804 bcopy(&val64, salt, sizeof (uint64_t)); 805 806 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]); 807 bcopy(&val64, iv, sizeof (uint64_t)); 808 809 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp)); 810 bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 811 } 812 } 813 814 void 815 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac) 816 { 817 uint64_t val64; 818 819 ASSERT(BP_USES_CRYPT(bp)); 820 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET); 821 822 if (!BP_SHOULD_BYTESWAP(bp)) { 823 bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t)); 824 bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3], 825 sizeof (uint64_t)); 826 } else { 827 bcopy(mac, &val64, sizeof (uint64_t)); 828 bp->blk_cksum.zc_word[2] = BSWAP_64(val64); 829 830 bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t)); 831 bp->blk_cksum.zc_word[3] = BSWAP_64(val64); 832 } 833 } 834 835 void 836 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac) 837 { 838 uint64_t val64; 839 840 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp)); 841 842 /* for convenience, so callers don't need to check */ 843 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 844 bzero(mac, ZIO_DATA_MAC_LEN); 845 return; 846 } 847 848 if (!BP_SHOULD_BYTESWAP(bp)) { 849 bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t)); 850 bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t), 851 sizeof (uint64_t)); 852 } else { 853 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]); 854 bcopy(&val64, mac, sizeof (uint64_t)); 855 856 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]); 857 bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t)); 858 } 859 } 860 861 void 862 zio_crypt_encode_mac_zil(void *data, uint8_t *mac) 863 { 864 zil_chain_t *zilc = data; 865 866 bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t)); 867 bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3], 868 sizeof (uint64_t)); 869 } 870 871 void 872 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac) 873 { 874 /* 875 * The ZIL MAC is embedded in the block it protects, which will 876 * not have been byteswapped by the time this function has been called. 877 * As a result, we don't need to worry about byteswapping the MAC. 878 */ 879 const zil_chain_t *zilc = data; 880 881 bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t)); 882 bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t), 883 sizeof (uint64_t)); 884 } 885 886 /* 887 * This routine takes a block of dnodes (src_abd) and copies only the bonus 888 * buffers to the same offsets in the dst buffer. datalen should be the size 889 * of both the src_abd and the dst buffer (not just the length of the bonus 890 * buffers). 891 */ 892 void 893 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen) 894 { 895 uint_t i, max_dnp = datalen >> DNODE_SHIFT; 896 uint8_t *src; 897 dnode_phys_t *dnp, *sdnp, *ddnp; 898 899 src = abd_borrow_buf_copy(src_abd, datalen); 900 901 sdnp = (dnode_phys_t *)src; 902 ddnp = (dnode_phys_t *)dst; 903 904 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 905 dnp = &sdnp[i]; 906 if (dnp->dn_type != DMU_OT_NONE && 907 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 908 dnp->dn_bonuslen != 0) { 909 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), 910 DN_MAX_BONUS_LEN(dnp)); 911 } 912 } 913 914 abd_return_buf(src_abd, src, datalen); 915 } 916 917 /* 918 * This function decides what fields from blk_prop are included in 919 * the on-disk various MAC algorithms. 920 */ 921 static void 922 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version) 923 { 924 /* 925 * Version 0 did not properly zero out all non-portable fields 926 * as it should have done. We maintain this code so that we can 927 * do read-only imports of pools on this version. 928 */ 929 if (version == 0) { 930 BP_SET_DEDUP(bp, 0); 931 BP_SET_CHECKSUM(bp, 0); 932 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 933 return; 934 } 935 936 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 937 938 /* 939 * The hole_birth feature might set these fields even if this bp 940 * is a hole. We zero them out here to guarantee that raw sends 941 * will function with or without the feature. 942 */ 943 if (BP_IS_HOLE(bp)) { 944 bp->blk_prop = 0ULL; 945 return; 946 } 947 948 /* 949 * At L0 we want to verify these fields to ensure that data blocks 950 * can not be reinterpretted. For instance, we do not want an attacker 951 * to trick us into returning raw lz4 compressed data to the user 952 * by modifying the compression bits. At higher levels, we cannot 953 * enforce this policy since raw sends do not convey any information 954 * about indirect blocks, so these values might be different on the 955 * receive side. Fortunately, this does not open any new attack 956 * vectors, since any alterations that can be made to a higher level 957 * bp must still verify the correct order of the layer below it. 958 */ 959 if (BP_GET_LEVEL(bp) != 0) { 960 BP_SET_BYTEORDER(bp, 0); 961 BP_SET_COMPRESS(bp, 0); 962 963 /* 964 * psize cannot be set to zero or it will trigger 965 * asserts, but the value doesn't really matter as 966 * long as it is constant. 967 */ 968 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 969 } 970 971 BP_SET_DEDUP(bp, 0); 972 BP_SET_CHECKSUM(bp, 0); 973 } 974 975 static void 976 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp, 977 blkptr_auth_buf_t *bab, uint_t *bab_len) 978 { 979 blkptr_t tmpbp = *bp; 980 981 if (should_bswap) 982 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t)); 983 984 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp)); 985 ASSERT0(BP_IS_EMBEDDED(&tmpbp)); 986 987 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac); 988 989 /* 990 * We always MAC blk_prop in LE to ensure portability. This 991 * must be done after decoding the mac, since the endianness 992 * will get zero'd out here. 993 */ 994 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version); 995 bab->bab_prop = LE_64(tmpbp.blk_prop); 996 bab->bab_pad = 0ULL; 997 998 /* version 0 did not include the padding */ 999 *bab_len = sizeof (blkptr_auth_buf_t); 1000 if (version == 0) 1001 *bab_len -= sizeof (uint64_t); 1002 } 1003 1004 static int 1005 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version, 1006 boolean_t should_bswap, blkptr_t *bp) 1007 { 1008 int ret; 1009 uint_t bab_len; 1010 blkptr_auth_buf_t bab; 1011 crypto_data_t cd; 1012 1013 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1014 cd.cd_format = CRYPTO_DATA_RAW; 1015 cd.cd_offset = 0; 1016 cd.cd_length = bab_len; 1017 cd.cd_raw.iov_base = (char *)&bab; 1018 cd.cd_raw.iov_len = cd.cd_length; 1019 1020 ret = crypto_mac_update(ctx, &cd, NULL); 1021 if (ret != CRYPTO_SUCCESS) { 1022 ret = SET_ERROR(EIO); 1023 goto error; 1024 } 1025 1026 return (0); 1027 1028 error: 1029 return (ret); 1030 } 1031 1032 static void 1033 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version, 1034 boolean_t should_bswap, blkptr_t *bp) 1035 { 1036 uint_t bab_len; 1037 blkptr_auth_buf_t bab; 1038 1039 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1040 SHA2Update(ctx, &bab, bab_len); 1041 } 1042 1043 static void 1044 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version, 1045 boolean_t should_bswap, blkptr_t *bp) 1046 { 1047 uint_t bab_len; 1048 blkptr_auth_buf_t bab; 1049 1050 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1051 bcopy(&bab, *aadp, bab_len); 1052 *aadp += bab_len; 1053 *aad_len += bab_len; 1054 } 1055 1056 static int 1057 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version, 1058 boolean_t should_bswap, dnode_phys_t *dnp) 1059 { 1060 int ret, i; 1061 dnode_phys_t *adnp; 1062 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1063 crypto_data_t cd; 1064 uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)]; 1065 1066 cd.cd_format = CRYPTO_DATA_RAW; 1067 cd.cd_offset = 0; 1068 1069 /* authenticate the core dnode (masking out non-portable bits) */ 1070 bcopy(dnp, tmp_dncore, sizeof (tmp_dncore)); 1071 adnp = (dnode_phys_t *)tmp_dncore; 1072 if (le_bswap) { 1073 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec); 1074 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen); 1075 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid); 1076 adnp->dn_used = BSWAP_64(adnp->dn_used); 1077 } 1078 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1079 adnp->dn_used = 0; 1080 1081 cd.cd_length = sizeof (tmp_dncore); 1082 cd.cd_raw.iov_base = (char *)adnp; 1083 cd.cd_raw.iov_len = cd.cd_length; 1084 1085 ret = crypto_mac_update(ctx, &cd, NULL); 1086 if (ret != CRYPTO_SUCCESS) { 1087 ret = SET_ERROR(EIO); 1088 goto error; 1089 } 1090 1091 for (i = 0; i < dnp->dn_nblkptr; i++) { 1092 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1093 should_bswap, &dnp->dn_blkptr[i]); 1094 if (ret != 0) 1095 goto error; 1096 } 1097 1098 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1099 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1100 should_bswap, DN_SPILL_BLKPTR(dnp)); 1101 if (ret != 0) 1102 goto error; 1103 } 1104 1105 return (0); 1106 1107 error: 1108 return (ret); 1109 } 1110 1111 /* 1112 * objset_phys_t blocks introduce a number of exceptions to the normal 1113 * authentication process. objset_phys_t's contain 2 seperate HMACS for 1114 * protecting the integrity of their data. The portable_mac protects the 1115 * the metadnode. This MAC can be sent with a raw send and protects against 1116 * reordering of data within the metadnode. The local_mac protects the user 1117 * accounting objects which are not sent from one system to another. 1118 * 1119 * In addition, objset blocks are the only blocks that can be modified and 1120 * written to disk without the key loaded under certain circumstances. During 1121 * zil_claim() we need to be able to update the zil_header_t to complete 1122 * claiming log blocks and during raw receives we need to write out the 1123 * portable_mac from the send file. Both of these actions are possible 1124 * because these fields are not protected by either MAC so neither one will 1125 * need to modify the MACs without the key. However, when the modified blocks 1126 * are written out they will be byteswapped into the host machine's native 1127 * endianness which will modify fields protected by the MAC. As a result, MAC 1128 * calculation for objset blocks works slightly differently from other block 1129 * types. Where other block types MAC the data in whatever endianness is 1130 * written to disk, objset blocks always MAC little endian version of their 1131 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP() 1132 * and le_bswap indicates whether a byteswap is needed to get this block 1133 * into little endian format. 1134 */ 1135 /* ARGSUSED */ 1136 int 1137 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen, 1138 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac) 1139 { 1140 int ret; 1141 crypto_mechanism_t mech; 1142 crypto_context_t ctx; 1143 crypto_data_t cd; 1144 objset_phys_t *osp = data; 1145 uint64_t intval; 1146 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1147 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH]; 1148 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH]; 1149 1150 /* initialize HMAC mechanism */ 1151 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 1152 mech.cm_param = NULL; 1153 mech.cm_param_len = 0; 1154 1155 cd.cd_format = CRYPTO_DATA_RAW; 1156 cd.cd_offset = 0; 1157 1158 /* calculate the portable MAC from the portable fields and metadnode */ 1159 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL); 1160 if (ret != CRYPTO_SUCCESS) { 1161 ret = SET_ERROR(EIO); 1162 goto error; 1163 } 1164 1165 /* add in the os_type */ 1166 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type); 1167 cd.cd_length = sizeof (uint64_t); 1168 cd.cd_raw.iov_base = (char *)&intval; 1169 cd.cd_raw.iov_len = cd.cd_length; 1170 1171 ret = crypto_mac_update(ctx, &cd, NULL); 1172 if (ret != CRYPTO_SUCCESS) { 1173 ret = SET_ERROR(EIO); 1174 goto error; 1175 } 1176 1177 /* add in the portable os_flags */ 1178 intval = osp->os_flags; 1179 if (should_bswap) 1180 intval = BSWAP_64(intval); 1181 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1182 /* CONSTCOND */ 1183 if (!ZFS_HOST_BYTEORDER) 1184 intval = BSWAP_64(intval); 1185 1186 cd.cd_length = sizeof (uint64_t); 1187 cd.cd_raw.iov_base = (char *)&intval; 1188 cd.cd_raw.iov_len = cd.cd_length; 1189 1190 ret = crypto_mac_update(ctx, &cd, NULL); 1191 if (ret != CRYPTO_SUCCESS) { 1192 ret = SET_ERROR(EIO); 1193 goto error; 1194 } 1195 1196 /* add in fields from the metadnode */ 1197 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1198 should_bswap, &osp->os_meta_dnode); 1199 if (ret) 1200 goto error; 1201 1202 /* store the final digest in a temporary buffer and copy what we need */ 1203 cd.cd_length = SHA512_DIGEST_LENGTH; 1204 cd.cd_raw.iov_base = (char *)raw_portable_mac; 1205 cd.cd_raw.iov_len = cd.cd_length; 1206 1207 ret = crypto_mac_final(ctx, &cd, NULL); 1208 if (ret != CRYPTO_SUCCESS) { 1209 ret = SET_ERROR(EIO); 1210 goto error; 1211 } 1212 1213 bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN); 1214 1215 /* 1216 * The local MAC protects the user and group accounting. If these 1217 * objects are not present, the local MAC is zeroed out. 1218 */ 1219 if ((osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1220 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) || 1221 (datalen <= OBJSET_OLD_PHYS_SIZE)) { 1222 bzero(local_mac, ZIO_OBJSET_MAC_LEN); 1223 return (0); 1224 } 1225 1226 /* calculate the local MAC from the userused and groupused dnodes */ 1227 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL); 1228 if (ret != CRYPTO_SUCCESS) { 1229 ret = SET_ERROR(EIO); 1230 goto error; 1231 } 1232 1233 /* add in the non-portable os_flags */ 1234 intval = osp->os_flags; 1235 if (should_bswap) 1236 intval = BSWAP_64(intval); 1237 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1238 /* CONSTCOND */ 1239 if (!ZFS_HOST_BYTEORDER) 1240 intval = BSWAP_64(intval); 1241 1242 cd.cd_length = sizeof (uint64_t); 1243 cd.cd_raw.iov_base = (char *)&intval; 1244 cd.cd_raw.iov_len = cd.cd_length; 1245 1246 ret = crypto_mac_update(ctx, &cd, NULL); 1247 if (ret != CRYPTO_SUCCESS) { 1248 ret = SET_ERROR(EIO); 1249 goto error; 1250 } 1251 1252 /* add in fields from the user accounting dnodes */ 1253 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1254 should_bswap, &osp->os_userused_dnode); 1255 if (ret) 1256 goto error; 1257 1258 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1259 should_bswap, &osp->os_groupused_dnode); 1260 if (ret) 1261 goto error; 1262 1263 /* store the final digest in a temporary buffer and copy what we need */ 1264 cd.cd_length = SHA512_DIGEST_LENGTH; 1265 cd.cd_raw.iov_base = (char *)raw_local_mac; 1266 cd.cd_raw.iov_len = cd.cd_length; 1267 1268 ret = crypto_mac_final(ctx, &cd, NULL); 1269 if (ret != CRYPTO_SUCCESS) { 1270 ret = SET_ERROR(EIO); 1271 goto error; 1272 } 1273 1274 bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN); 1275 1276 return (0); 1277 1278 error: 1279 bzero(portable_mac, ZIO_OBJSET_MAC_LEN); 1280 bzero(local_mac, ZIO_OBJSET_MAC_LEN); 1281 return (ret); 1282 } 1283 1284 static void 1285 zio_crypt_destroy_uio(uio_t *uio) 1286 { 1287 if (uio->uio_iov) 1288 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t)); 1289 } 1290 1291 /* 1292 * This function parses an uncompressed indirect block and returns a checksum 1293 * of all the portable fields from all of the contained bps. The portable 1294 * fields are the MAC and all of the fields from blk_prop except for the dedup, 1295 * checksum, and psize bits. For an explanation of the purpose of this, see 1296 * the comment block on object set authentication. 1297 */ 1298 static int 1299 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf, 1300 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum) 1301 { 1302 blkptr_t *bp; 1303 int i, epb = datalen >> SPA_BLKPTRSHIFT; 1304 SHA2_CTX ctx; 1305 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 1306 1307 /* checksum all of the MACs from the layer below */ 1308 SHA2Init(SHA512, &ctx); 1309 for (i = 0, bp = buf; i < epb; i++, bp++) { 1310 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version, 1311 byteswap, bp); 1312 } 1313 SHA2Final(digestbuf, &ctx); 1314 1315 if (generate) { 1316 bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN); 1317 return (0); 1318 } 1319 1320 if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) 1321 return (SET_ERROR(ECKSUM)); 1322 1323 return (0); 1324 } 1325 1326 int 1327 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf, 1328 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1329 { 1330 int ret; 1331 1332 /* 1333 * Unfortunately, callers of this function will not always have 1334 * easy access to the on-disk format version. This info is 1335 * normally found in the DSL Crypto Key, but the checksum-of-MACs 1336 * is expected to be verifiable even when the key isn't loaded. 1337 * Here, instead of doing a ZAP lookup for the version for each 1338 * zio, we simply try both existing formats. 1339 */ 1340 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf, 1341 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum); 1342 if (ret == ECKSUM) { 1343 ASSERT(!generate); 1344 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, 1345 buf, datalen, 0, byteswap, cksum); 1346 } 1347 1348 return (ret); 1349 } 1350 1351 int 1352 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd, 1353 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1354 { 1355 int ret; 1356 void *buf; 1357 1358 buf = abd_borrow_buf_copy(abd, datalen); 1359 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen, 1360 byteswap, cksum); 1361 abd_return_buf(abd, buf, datalen); 1362 1363 return (ret); 1364 } 1365 1366 /* 1367 * Special case handling routine for encrypting / decrypting ZIL blocks. 1368 * We do not check for the older ZIL chain because the encryption feature 1369 * was not available before the newer ZIL chain was introduced. The goal 1370 * here is to encrypt everything except the blkptr_t of a lr_write_t and 1371 * the zil_chain_t header. Everything that is not encrypted is authenticated. 1372 */ 1373 1374 /* ARGSUSED */ 1375 static int 1376 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf, 1377 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, uio_t *puio, 1378 uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len, 1379 boolean_t *no_crypt) 1380 { 1381 int ret; 1382 uint64_t txtype, lr_len; 1383 uint_t nr_src, nr_dst, crypt_len; 1384 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1385 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1386 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp; 1387 zil_chain_t *zilc; 1388 lr_t *lr; 1389 uint8_t *aadbuf = zio_buf_alloc(datalen); 1390 1391 /* cipherbuf always needs an extra iovec for the MAC */ 1392 if (encrypt) { 1393 src = plainbuf; 1394 dst = cipherbuf; 1395 nr_src = 0; 1396 nr_dst = 1; 1397 } else { 1398 src = cipherbuf; 1399 dst = plainbuf; 1400 nr_src = 1; 1401 nr_dst = 0; 1402 } 1403 1404 /* find the start and end record of the log block */ 1405 zilc = (zil_chain_t *)src; 1406 slrp = src + sizeof (zil_chain_t); 1407 aadp = aadbuf; 1408 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused); 1409 1410 /* calculate the number of encrypted iovecs we will need */ 1411 for (; slrp < blkend; slrp += lr_len) { 1412 lr = (lr_t *)slrp; 1413 1414 if (!byteswap) { 1415 txtype = lr->lrc_txtype; 1416 lr_len = lr->lrc_reclen; 1417 } else { 1418 txtype = BSWAP_64(lr->lrc_txtype); 1419 lr_len = BSWAP_64(lr->lrc_reclen); 1420 } 1421 1422 nr_iovecs++; 1423 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t)) 1424 nr_iovecs++; 1425 } 1426 1427 nr_src += nr_iovecs; 1428 nr_dst += nr_iovecs; 1429 1430 /* allocate the iovec arrays */ 1431 if (nr_src != 0) { 1432 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1433 if (src_iovecs == NULL) { 1434 ret = SET_ERROR(ENOMEM); 1435 goto error; 1436 } 1437 } 1438 1439 if (nr_dst != 0) { 1440 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1441 if (dst_iovecs == NULL) { 1442 ret = SET_ERROR(ENOMEM); 1443 goto error; 1444 } 1445 } 1446 1447 /* 1448 * Copy the plain zil header over and authenticate everything except 1449 * the checksum that will store our MAC. If we are writing the data 1450 * the embedded checksum will not have been calculated yet, so we don't 1451 * authenticate that. 1452 */ 1453 bcopy(src, dst, sizeof (zil_chain_t)); 1454 bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t)); 1455 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1456 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1457 1458 /* loop over records again, filling in iovecs */ 1459 nr_iovecs = 0; 1460 slrp = src + sizeof (zil_chain_t); 1461 dlrp = dst + sizeof (zil_chain_t); 1462 1463 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) { 1464 lr = (lr_t *)slrp; 1465 1466 if (!byteswap) { 1467 txtype = lr->lrc_txtype; 1468 lr_len = lr->lrc_reclen; 1469 } else { 1470 txtype = BSWAP_64(lr->lrc_txtype); 1471 lr_len = BSWAP_64(lr->lrc_reclen); 1472 } 1473 1474 /* copy the common lr_t */ 1475 bcopy(slrp, dlrp, sizeof (lr_t)); 1476 bcopy(slrp, aadp, sizeof (lr_t)); 1477 aadp += sizeof (lr_t); 1478 aad_len += sizeof (lr_t); 1479 1480 ASSERT3P(src_iovecs, !=, NULL); 1481 ASSERT3P(dst_iovecs, !=, NULL); 1482 1483 /* 1484 * If this is a TX_WRITE record we want to encrypt everything 1485 * except the bp if exists. If the bp does exist we want to 1486 * authenticate it. 1487 */ 1488 if (txtype == TX_WRITE) { 1489 crypt_len = sizeof (lr_write_t) - 1490 sizeof (lr_t) - sizeof (blkptr_t); 1491 src_iovecs[nr_iovecs].iov_base = (char *)slrp + 1492 sizeof (lr_t); 1493 src_iovecs[nr_iovecs].iov_len = crypt_len; 1494 dst_iovecs[nr_iovecs].iov_base = (char *)dlrp + 1495 sizeof (lr_t); 1496 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1497 1498 /* copy the bp now since it will not be encrypted */ 1499 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1500 dlrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1501 sizeof (blkptr_t)); 1502 bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1503 aadp, sizeof (blkptr_t)); 1504 aadp += sizeof (blkptr_t); 1505 aad_len += sizeof (blkptr_t); 1506 nr_iovecs++; 1507 total_len += crypt_len; 1508 1509 if (lr_len != sizeof (lr_write_t)) { 1510 crypt_len = lr_len - sizeof (lr_write_t); 1511 src_iovecs[nr_iovecs].iov_base = (char *) 1512 slrp + sizeof (lr_write_t); 1513 src_iovecs[nr_iovecs].iov_len = crypt_len; 1514 dst_iovecs[nr_iovecs].iov_base = (char *) 1515 dlrp + sizeof (lr_write_t); 1516 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1517 nr_iovecs++; 1518 total_len += crypt_len; 1519 } 1520 } else { 1521 crypt_len = lr_len - sizeof (lr_t); 1522 src_iovecs[nr_iovecs].iov_base = (char *)slrp + 1523 sizeof (lr_t); 1524 src_iovecs[nr_iovecs].iov_len = crypt_len; 1525 dst_iovecs[nr_iovecs].iov_base = (char *)dlrp + 1526 sizeof (lr_t); 1527 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1528 nr_iovecs++; 1529 total_len += crypt_len; 1530 } 1531 } 1532 1533 *no_crypt = (nr_iovecs == 0); 1534 *enc_len = total_len; 1535 *authbuf = aadbuf; 1536 *auth_len = aad_len; 1537 1538 if (encrypt) { 1539 puio->uio_iov = src_iovecs; 1540 puio->uio_iovcnt = nr_src; 1541 cuio->uio_iov = dst_iovecs; 1542 cuio->uio_iovcnt = nr_dst; 1543 } else { 1544 puio->uio_iov = dst_iovecs; 1545 puio->uio_iovcnt = nr_dst; 1546 cuio->uio_iov = src_iovecs; 1547 cuio->uio_iovcnt = nr_src; 1548 } 1549 1550 return (0); 1551 1552 error: 1553 zio_buf_free(aadbuf, datalen); 1554 if (src_iovecs != NULL) 1555 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1556 if (dst_iovecs != NULL) 1557 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1558 1559 *enc_len = 0; 1560 *authbuf = NULL; 1561 *auth_len = 0; 1562 *no_crypt = B_FALSE; 1563 puio->uio_iov = NULL; 1564 puio->uio_iovcnt = 0; 1565 cuio->uio_iov = NULL; 1566 cuio->uio_iovcnt = 0; 1567 return (ret); 1568 } 1569 1570 /* 1571 * Special case handling routine for encrypting / decrypting dnode blocks. 1572 */ 1573 static int 1574 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version, 1575 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1576 uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, 1577 uint_t *auth_len, boolean_t *no_crypt) 1578 { 1579 int ret; 1580 uint_t nr_src, nr_dst, crypt_len; 1581 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1582 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT; 1583 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1584 uint8_t *src, *dst, *aadp; 1585 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp; 1586 uint8_t *aadbuf = zio_buf_alloc(datalen); 1587 1588 if (encrypt) { 1589 src = plainbuf; 1590 dst = cipherbuf; 1591 nr_src = 0; 1592 nr_dst = 1; 1593 } else { 1594 src = cipherbuf; 1595 dst = plainbuf; 1596 nr_src = 1; 1597 nr_dst = 0; 1598 } 1599 1600 sdnp = (dnode_phys_t *)src; 1601 ddnp = (dnode_phys_t *)dst; 1602 aadp = aadbuf; 1603 1604 /* 1605 * Count the number of iovecs we will need to do the encryption by 1606 * counting the number of bonus buffers that need to be encrypted. 1607 */ 1608 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1609 /* 1610 * This block may still be byteswapped. However, all of the 1611 * values we use are either uint8_t's (for which byteswapping 1612 * is a noop) or a * != 0 check, which will work regardless 1613 * of whether or not we byteswap. 1614 */ 1615 if (sdnp[i].dn_type != DMU_OT_NONE && 1616 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) && 1617 sdnp[i].dn_bonuslen != 0) { 1618 nr_iovecs++; 1619 } 1620 } 1621 1622 nr_src += nr_iovecs; 1623 nr_dst += nr_iovecs; 1624 1625 if (nr_src != 0) { 1626 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1627 if (src_iovecs == NULL) { 1628 ret = SET_ERROR(ENOMEM); 1629 goto error; 1630 } 1631 } 1632 1633 if (nr_dst != 0) { 1634 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1635 if (dst_iovecs == NULL) { 1636 ret = SET_ERROR(ENOMEM); 1637 goto error; 1638 } 1639 } 1640 1641 nr_iovecs = 0; 1642 1643 /* 1644 * Iterate through the dnodes again, this time filling in the uios 1645 * we allocated earlier. We also concatenate any data we want to 1646 * authenticate onto aadbuf. 1647 */ 1648 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1649 dnp = &sdnp[i]; 1650 /* copy over the core fields and blkptrs (kept as plaintext) */ 1651 bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp); 1652 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1653 bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]), 1654 sizeof (blkptr_t)); 1655 } 1656 1657 /* 1658 * Handle authenticated data. We authenticate everything in 1659 * the dnode that can be brought over when we do a raw send. 1660 * This includes all of the core fields as well as the MACs 1661 * stored in the bp checksums and all of the portable bits 1662 * from blk_prop. We include the dnode padding here in case it 1663 * ever gets used in the future. Some dn_flags and dn_used are 1664 * not portable so we mask those out values out of the 1665 * authenticated data. 1666 */ 1667 crypt_len = offsetof(dnode_phys_t, dn_blkptr); 1668 bcopy(dnp, aadp, crypt_len); 1669 adnp = (dnode_phys_t *)aadp; 1670 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1671 adnp->dn_used = 0; 1672 aadp += crypt_len; 1673 aad_len += crypt_len; 1674 1675 for (j = 0; j < dnp->dn_nblkptr; j++) { 1676 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1677 version, byteswap, &dnp->dn_blkptr[j]); 1678 } 1679 1680 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1681 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1682 version, byteswap, DN_SPILL_BLKPTR(dnp)); 1683 } 1684 1685 /* 1686 * If this bonus buffer needs to be encrypted, we prepare an 1687 * iovec_t. The encryption / decryption functions will fill 1688 * this in for us with the encrypted or decrypted data. 1689 * Otherwise we add the bonus buffer to the authenticated 1690 * data buffer and copy it over to the destination. The 1691 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that 1692 * we can guarantee alignment with the AES block size 1693 * (128 bits). 1694 */ 1695 crypt_len = DN_MAX_BONUS_LEN(dnp); 1696 if (dnp->dn_type != DMU_OT_NONE && 1697 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 1698 dnp->dn_bonuslen != 0) { 1699 ASSERT3U(nr_iovecs, <, nr_src); 1700 ASSERT3U(nr_iovecs, <, nr_dst); 1701 ASSERT3P(src_iovecs, !=, NULL); 1702 ASSERT3P(dst_iovecs, !=, NULL); 1703 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp); 1704 src_iovecs[nr_iovecs].iov_len = crypt_len; 1705 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]); 1706 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1707 1708 nr_iovecs++; 1709 total_len += crypt_len; 1710 } else { 1711 bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len); 1712 bcopy(DN_BONUS(dnp), aadp, crypt_len); 1713 aadp += crypt_len; 1714 aad_len += crypt_len; 1715 } 1716 } 1717 1718 *no_crypt = (nr_iovecs == 0); 1719 *enc_len = total_len; 1720 *authbuf = aadbuf; 1721 *auth_len = aad_len; 1722 1723 if (encrypt) { 1724 puio->uio_iov = src_iovecs; 1725 puio->uio_iovcnt = nr_src; 1726 cuio->uio_iov = dst_iovecs; 1727 cuio->uio_iovcnt = nr_dst; 1728 } else { 1729 puio->uio_iov = dst_iovecs; 1730 puio->uio_iovcnt = nr_dst; 1731 cuio->uio_iov = src_iovecs; 1732 cuio->uio_iovcnt = nr_src; 1733 } 1734 1735 return (0); 1736 1737 error: 1738 zio_buf_free(aadbuf, datalen); 1739 if (src_iovecs != NULL) 1740 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1741 if (dst_iovecs != NULL) 1742 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1743 1744 *enc_len = 0; 1745 *authbuf = NULL; 1746 *auth_len = 0; 1747 *no_crypt = B_FALSE; 1748 puio->uio_iov = NULL; 1749 puio->uio_iovcnt = 0; 1750 cuio->uio_iov = NULL; 1751 cuio->uio_iovcnt = 0; 1752 return (ret); 1753 } 1754 1755 /* ARGSUSED */ 1756 static int 1757 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf, 1758 uint8_t *cipherbuf, uint_t datalen, uio_t *puio, uio_t *cuio, 1759 uint_t *enc_len) 1760 { 1761 int ret; 1762 uint_t nr_plain = 1, nr_cipher = 2; 1763 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL; 1764 1765 /* allocate the iovecs for the plain and cipher data */ 1766 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t), 1767 KM_SLEEP); 1768 if (!plain_iovecs) { 1769 ret = SET_ERROR(ENOMEM); 1770 goto error; 1771 } 1772 1773 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t), 1774 KM_SLEEP); 1775 if (!cipher_iovecs) { 1776 ret = SET_ERROR(ENOMEM); 1777 goto error; 1778 } 1779 1780 plain_iovecs[0].iov_base = (void *)plainbuf; 1781 plain_iovecs[0].iov_len = datalen; 1782 cipher_iovecs[0].iov_base = (void *)cipherbuf; 1783 cipher_iovecs[0].iov_len = datalen; 1784 1785 *enc_len = datalen; 1786 puio->uio_iov = plain_iovecs; 1787 puio->uio_iovcnt = nr_plain; 1788 cuio->uio_iov = cipher_iovecs; 1789 cuio->uio_iovcnt = nr_cipher; 1790 1791 return (0); 1792 1793 error: 1794 if (plain_iovecs != NULL) 1795 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t)); 1796 if (cipher_iovecs != NULL) 1797 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t)); 1798 1799 *enc_len = 0; 1800 puio->uio_iov = NULL; 1801 puio->uio_iovcnt = 0; 1802 cuio->uio_iov = NULL; 1803 cuio->uio_iovcnt = 0; 1804 return (ret); 1805 } 1806 1807 /* 1808 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so 1809 * that they can be used for encryption and decryption by zio_do_crypt_uio(). 1810 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks 1811 * requiring special handling to parse out pieces that are to be encrypted. The 1812 * authbuf is used by these special cases to store additional authenticated 1813 * data (AAD) for the encryption modes. 1814 */ 1815 /* ARGSUSED */ 1816 static int 1817 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot, 1818 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1819 uint8_t *mac, uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, 1820 uint_t *auth_len, boolean_t *no_crypt) 1821 { 1822 int ret; 1823 iovec_t *mac_iov; 1824 1825 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE); 1826 1827 /* route to handler */ 1828 switch (ot) { 1829 case DMU_OT_INTENT_LOG: 1830 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf, 1831 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len, 1832 no_crypt); 1833 break; 1834 case DMU_OT_DNODE: 1835 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf, 1836 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf, 1837 auth_len, no_crypt); 1838 break; 1839 default: 1840 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf, 1841 datalen, puio, cuio, enc_len); 1842 *authbuf = NULL; 1843 *auth_len = 0; 1844 *no_crypt = B_FALSE; 1845 break; 1846 } 1847 1848 if (ret != 0) 1849 goto error; 1850 1851 /* populate the uios */ 1852 puio->uio_segflg = UIO_SYSSPACE; 1853 cuio->uio_segflg = UIO_SYSSPACE; 1854 1855 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]); 1856 mac_iov->iov_base = (void *)mac; 1857 mac_iov->iov_len = ZIO_DATA_MAC_LEN; 1858 1859 return (0); 1860 1861 error: 1862 return (ret); 1863 } 1864 1865 /* 1866 * Primary encryption / decryption entrypoint for zio data. 1867 */ 1868 int 1869 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, 1870 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv, 1871 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf, 1872 boolean_t *no_crypt) 1873 { 1874 int ret; 1875 boolean_t locked = B_FALSE; 1876 uint64_t crypt = key->zk_crypt; 1877 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen; 1878 uint_t enc_len, auth_len; 1879 uio_t puio, cuio; 1880 uint8_t enc_keydata[MASTER_KEY_MAX_LEN]; 1881 crypto_key_t tmp_ckey, *ckey = NULL; 1882 crypto_ctx_template_t tmpl; 1883 uint8_t *authbuf = NULL; 1884 1885 bzero(&puio, sizeof (uio_t)); 1886 bzero(&cuio, sizeof (uio_t)); 1887 1888 /* create uios for encryption */ 1889 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf, 1890 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len, 1891 &authbuf, &auth_len, no_crypt); 1892 if (ret != 0) 1893 return (ret); 1894 1895 /* 1896 * If the needed key is the current one, just use it. Otherwise we 1897 * need to generate a temporary one from the given salt + master key. 1898 * If we are encrypting, we must return a copy of the current salt 1899 * so that it can be stored in the blkptr_t. 1900 */ 1901 rw_enter(&key->zk_salt_lock, RW_READER); 1902 locked = B_TRUE; 1903 1904 if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) { 1905 ckey = &key->zk_current_key; 1906 tmpl = key->zk_current_tmpl; 1907 } else { 1908 rw_exit(&key->zk_salt_lock); 1909 locked = B_FALSE; 1910 1911 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 1912 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len); 1913 if (ret != 0) 1914 goto error; 1915 1916 tmp_ckey.ck_format = CRYPTO_KEY_RAW; 1917 tmp_ckey.ck_data = enc_keydata; 1918 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len); 1919 1920 ckey = &tmp_ckey; 1921 tmpl = NULL; 1922 } 1923 1924 /* perform the encryption / decryption */ 1925 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len, 1926 &puio, &cuio, authbuf, auth_len); 1927 if (ret != 0) 1928 goto error; 1929 1930 if (locked) { 1931 rw_exit(&key->zk_salt_lock); 1932 locked = B_FALSE; 1933 } 1934 1935 if (authbuf != NULL) 1936 zio_buf_free(authbuf, datalen); 1937 if (ckey == &tmp_ckey) 1938 bzero(enc_keydata, keydata_len); 1939 zio_crypt_destroy_uio(&puio); 1940 zio_crypt_destroy_uio(&cuio); 1941 1942 return (0); 1943 1944 error: 1945 if (!encrypt) { 1946 if (failed_decrypt_buf != NULL) 1947 kmem_free(failed_decrypt_buf, failed_decrypt_size); 1948 failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP); 1949 failed_decrypt_size = datalen; 1950 bcopy(cipherbuf, failed_decrypt_buf, datalen); 1951 } 1952 if (locked) 1953 rw_exit(&key->zk_salt_lock); 1954 if (authbuf != NULL) 1955 zio_buf_free(authbuf, datalen); 1956 if (ckey == &tmp_ckey) 1957 bzero(enc_keydata, keydata_len); 1958 zio_crypt_destroy_uio(&puio); 1959 zio_crypt_destroy_uio(&cuio); 1960 1961 return (ret); 1962 } 1963 1964 /* 1965 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of 1966 * linear buffers. 1967 */ 1968 int 1969 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot, 1970 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac, 1971 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt) 1972 { 1973 int ret; 1974 void *ptmp, *ctmp; 1975 1976 if (encrypt) { 1977 ptmp = abd_borrow_buf_copy(pabd, datalen); 1978 ctmp = abd_borrow_buf(cabd, datalen); 1979 } else { 1980 ptmp = abd_borrow_buf(pabd, datalen); 1981 ctmp = abd_borrow_buf_copy(cabd, datalen); 1982 } 1983 1984 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac, 1985 datalen, ptmp, ctmp, no_crypt); 1986 if (ret != 0) 1987 goto error; 1988 1989 if (encrypt) { 1990 abd_return_buf(pabd, ptmp, datalen); 1991 abd_return_buf_copy(cabd, ctmp, datalen); 1992 } else { 1993 abd_return_buf_copy(pabd, ptmp, datalen); 1994 abd_return_buf(cabd, ctmp, datalen); 1995 } 1996 1997 return (0); 1998 1999 error: 2000 if (encrypt) { 2001 abd_return_buf(pabd, ptmp, datalen); 2002 abd_return_buf_copy(cabd, ctmp, datalen); 2003 } else { 2004 abd_return_buf_copy(pabd, ptmp, datalen); 2005 abd_return_buf(cabd, ctmp, datalen); 2006 } 2007 2008 return (ret); 2009 } 2010