1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/zap.h> 34 #include <sys/arc.h> 35 #include <sys/stat.h> 36 #include <sys/resource.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/abd.h> 44 45 /* 46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 47 * calls that change the file system. Each itx has enough information to 48 * be able to replay them after a system crash, power loss, or 49 * equivalent failure mode. These are stored in memory until either: 50 * 51 * 1. they are committed to the pool by the DMU transaction group 52 * (txg), at which point they can be discarded; or 53 * 2. they are committed to the on-disk ZIL for the dataset being 54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 55 * requirement). 56 * 57 * In the event of a crash or power loss, the itxs contained by each 58 * dataset's on-disk ZIL will be replayed when that dataset is first 59 * instantianted (e.g. if the dataset is a normal fileystem, when it is 60 * first mounted). 61 * 62 * As hinted at above, there is one ZIL per dataset (both the in-memory 63 * representation, and the on-disk representation). The on-disk format 64 * consists of 3 parts: 65 * 66 * - a single, per-dataset, ZIL header; which points to a chain of 67 * - zero or more ZIL blocks; each of which contains 68 * - zero or more ZIL records 69 * 70 * A ZIL record holds the information necessary to replay a single 71 * system call transaction. A ZIL block can hold many ZIL records, and 72 * the blocks are chained together, similarly to a singly linked list. 73 * 74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 75 * block in the chain, and the ZIL header points to the first block in 76 * the chain. 77 * 78 * Note, there is not a fixed place in the pool to hold these ZIL 79 * blocks; they are dynamically allocated and freed as needed from the 80 * blocks available on the pool, though they can be preferentially 81 * allocated from a dedicated "log" vdev. 82 */ 83 84 /* 85 * This controls the amount of time that a ZIL block (lwb) will remain 86 * "open" when it isn't "full", and it has a thread waiting for it to be 87 * committed to stable storage. Please refer to the zil_commit_waiter() 88 * function (and the comments within it) for more details. 89 */ 90 int zfs_commit_timeout_pct = 5; 91 92 /* 93 * Disable intent logging replay. This global ZIL switch affects all pools. 94 */ 95 int zil_replay_disable = 0; 96 97 /* 98 * Tunable parameter for debugging or performance analysis. Setting 99 * zfs_nocacheflush will cause corruption on power loss if a volatile 100 * out-of-order write cache is enabled. 101 */ 102 boolean_t zfs_nocacheflush = B_FALSE; 103 104 /* 105 * Limit SLOG write size per commit executed with synchronous priority. 106 * Any writes above that will be executed with lower (asynchronous) priority 107 * to limit potential SLOG device abuse by single active ZIL writer. 108 */ 109 uint64_t zil_slog_bulk = 768 * 1024; 110 111 static kmem_cache_t *zil_lwb_cache; 112 static kmem_cache_t *zil_zcw_cache; 113 114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 115 116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 118 119 static int 120 zil_bp_compare(const void *x1, const void *x2) 121 { 122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 124 125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 126 return (-1); 127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 128 return (1); 129 130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 131 return (-1); 132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 133 return (1); 134 135 return (0); 136 } 137 138 static void 139 zil_bp_tree_init(zilog_t *zilog) 140 { 141 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 143 } 144 145 static void 146 zil_bp_tree_fini(zilog_t *zilog) 147 { 148 avl_tree_t *t = &zilog->zl_bp_tree; 149 zil_bp_node_t *zn; 150 void *cookie = NULL; 151 152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 153 kmem_free(zn, sizeof (zil_bp_node_t)); 154 155 avl_destroy(t); 156 } 157 158 int 159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 160 { 161 avl_tree_t *t = &zilog->zl_bp_tree; 162 const dva_t *dva; 163 zil_bp_node_t *zn; 164 avl_index_t where; 165 166 if (BP_IS_EMBEDDED(bp)) 167 return (0); 168 169 dva = BP_IDENTITY(bp); 170 171 if (avl_find(t, dva, &where) != NULL) 172 return (SET_ERROR(EEXIST)); 173 174 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 175 zn->zn_dva = *dva; 176 avl_insert(t, zn, where); 177 178 return (0); 179 } 180 181 static zil_header_t * 182 zil_header_in_syncing_context(zilog_t *zilog) 183 { 184 return ((zil_header_t *)zilog->zl_header); 185 } 186 187 static void 188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 189 { 190 zio_cksum_t *zc = &bp->blk_cksum; 191 192 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 193 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 194 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 195 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 196 } 197 198 /* 199 * Read a log block and make sure it's valid. 200 */ 201 static int 202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 203 char **end) 204 { 205 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 206 arc_flags_t aflags = ARC_FLAG_WAIT; 207 arc_buf_t *abuf = NULL; 208 zbookmark_phys_t zb; 209 int error; 210 211 if (zilog->zl_header->zh_claim_txg == 0) 212 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 213 214 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 215 zio_flags |= ZIO_FLAG_SPECULATIVE; 216 217 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 218 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 219 220 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 221 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 222 223 if (error == 0) { 224 zio_cksum_t cksum = bp->blk_cksum; 225 226 /* 227 * Validate the checksummed log block. 228 * 229 * Sequence numbers should be... sequential. The checksum 230 * verifier for the next block should be bp's checksum plus 1. 231 * 232 * Also check the log chain linkage and size used. 233 */ 234 cksum.zc_word[ZIL_ZC_SEQ]++; 235 236 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 237 zil_chain_t *zilc = abuf->b_data; 238 char *lr = (char *)(zilc + 1); 239 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 240 241 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 242 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 243 error = SET_ERROR(ECKSUM); 244 } else { 245 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 246 bcopy(lr, dst, len); 247 *end = (char *)dst + len; 248 *nbp = zilc->zc_next_blk; 249 } 250 } else { 251 char *lr = abuf->b_data; 252 uint64_t size = BP_GET_LSIZE(bp); 253 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 254 255 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 256 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 257 (zilc->zc_nused > (size - sizeof (*zilc)))) { 258 error = SET_ERROR(ECKSUM); 259 } else { 260 ASSERT3U(zilc->zc_nused, <=, 261 SPA_OLD_MAXBLOCKSIZE); 262 bcopy(lr, dst, zilc->zc_nused); 263 *end = (char *)dst + zilc->zc_nused; 264 *nbp = zilc->zc_next_blk; 265 } 266 } 267 268 arc_buf_destroy(abuf, &abuf); 269 } 270 271 return (error); 272 } 273 274 /* 275 * Read a TX_WRITE log data block. 276 */ 277 static int 278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 279 { 280 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 281 const blkptr_t *bp = &lr->lr_blkptr; 282 arc_flags_t aflags = ARC_FLAG_WAIT; 283 arc_buf_t *abuf = NULL; 284 zbookmark_phys_t zb; 285 int error; 286 287 if (BP_IS_HOLE(bp)) { 288 if (wbuf != NULL) 289 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 290 return (0); 291 } 292 293 if (zilog->zl_header->zh_claim_txg == 0) 294 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 295 296 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 297 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 298 299 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 300 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 301 302 if (error == 0) { 303 if (wbuf != NULL) 304 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 305 arc_buf_destroy(abuf, &abuf); 306 } 307 308 return (error); 309 } 310 311 /* 312 * Parse the intent log, and call parse_func for each valid record within. 313 */ 314 int 315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 316 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 317 { 318 const zil_header_t *zh = zilog->zl_header; 319 boolean_t claimed = !!zh->zh_claim_txg; 320 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 321 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 322 uint64_t max_blk_seq = 0; 323 uint64_t max_lr_seq = 0; 324 uint64_t blk_count = 0; 325 uint64_t lr_count = 0; 326 blkptr_t blk, next_blk; 327 char *lrbuf, *lrp; 328 int error = 0; 329 330 /* 331 * Old logs didn't record the maximum zh_claim_lr_seq. 332 */ 333 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 334 claim_lr_seq = UINT64_MAX; 335 336 /* 337 * Starting at the block pointed to by zh_log we read the log chain. 338 * For each block in the chain we strongly check that block to 339 * ensure its validity. We stop when an invalid block is found. 340 * For each block pointer in the chain we call parse_blk_func(). 341 * For each record in each valid block we call parse_lr_func(). 342 * If the log has been claimed, stop if we encounter a sequence 343 * number greater than the highest claimed sequence number. 344 */ 345 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 346 zil_bp_tree_init(zilog); 347 348 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 349 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 350 int reclen; 351 char *end; 352 353 if (blk_seq > claim_blk_seq) 354 break; 355 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 356 break; 357 ASSERT3U(max_blk_seq, <, blk_seq); 358 max_blk_seq = blk_seq; 359 blk_count++; 360 361 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 362 break; 363 364 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 365 if (error != 0) 366 break; 367 368 for (lrp = lrbuf; lrp < end; lrp += reclen) { 369 lr_t *lr = (lr_t *)lrp; 370 reclen = lr->lrc_reclen; 371 ASSERT3U(reclen, >=, sizeof (lr_t)); 372 if (lr->lrc_seq > claim_lr_seq) 373 goto done; 374 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 375 goto done; 376 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 377 max_lr_seq = lr->lrc_seq; 378 lr_count++; 379 } 380 } 381 done: 382 zilog->zl_parse_error = error; 383 zilog->zl_parse_blk_seq = max_blk_seq; 384 zilog->zl_parse_lr_seq = max_lr_seq; 385 zilog->zl_parse_blk_count = blk_count; 386 zilog->zl_parse_lr_count = lr_count; 387 388 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 389 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 390 391 zil_bp_tree_fini(zilog); 392 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 393 394 return (error); 395 } 396 397 /* ARGSUSED */ 398 static int 399 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 400 { 401 ASSERT(!BP_IS_HOLE(bp)); 402 403 /* 404 * As we call this function from the context of a rewind to a 405 * checkpoint, each ZIL block whose txg is later than the txg 406 * that we rewind to is invalid. Thus, we return -1 so 407 * zil_parse() doesn't attempt to read it. 408 */ 409 if (bp->blk_birth >= first_txg) 410 return (-1); 411 412 if (zil_bp_tree_add(zilog, bp) != 0) 413 return (0); 414 415 zio_free(zilog->zl_spa, first_txg, bp); 416 return (0); 417 } 418 419 /* ARGSUSED */ 420 static int 421 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 422 { 423 return (0); 424 } 425 426 static int 427 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 428 { 429 /* 430 * Claim log block if not already committed and not already claimed. 431 * If tx == NULL, just verify that the block is claimable. 432 */ 433 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 434 zil_bp_tree_add(zilog, bp) != 0) 435 return (0); 436 437 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 438 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 439 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 440 } 441 442 static int 443 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 444 { 445 lr_write_t *lr = (lr_write_t *)lrc; 446 int error; 447 448 if (lrc->lrc_txtype != TX_WRITE) 449 return (0); 450 451 /* 452 * If the block is not readable, don't claim it. This can happen 453 * in normal operation when a log block is written to disk before 454 * some of the dmu_sync() blocks it points to. In this case, the 455 * transaction cannot have been committed to anyone (we would have 456 * waited for all writes to be stable first), so it is semantically 457 * correct to declare this the end of the log. 458 */ 459 if (lr->lr_blkptr.blk_birth >= first_txg && 460 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 461 return (error); 462 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 463 } 464 465 /* ARGSUSED */ 466 static int 467 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 468 { 469 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 470 471 return (0); 472 } 473 474 static int 475 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 476 { 477 lr_write_t *lr = (lr_write_t *)lrc; 478 blkptr_t *bp = &lr->lr_blkptr; 479 480 /* 481 * If we previously claimed it, we need to free it. 482 */ 483 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 484 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 485 !BP_IS_HOLE(bp)) 486 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 487 488 return (0); 489 } 490 491 static int 492 zil_lwb_vdev_compare(const void *x1, const void *x2) 493 { 494 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 495 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 496 497 if (v1 < v2) 498 return (-1); 499 if (v1 > v2) 500 return (1); 501 502 return (0); 503 } 504 505 static lwb_t * 506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) 507 { 508 lwb_t *lwb; 509 510 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 511 lwb->lwb_zilog = zilog; 512 lwb->lwb_blk = *bp; 513 lwb->lwb_slog = slog; 514 lwb->lwb_state = LWB_STATE_CLOSED; 515 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 516 lwb->lwb_max_txg = txg; 517 lwb->lwb_write_zio = NULL; 518 lwb->lwb_root_zio = NULL; 519 lwb->lwb_tx = NULL; 520 lwb->lwb_issued_timestamp = 0; 521 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 522 lwb->lwb_nused = sizeof (zil_chain_t); 523 lwb->lwb_sz = BP_GET_LSIZE(bp); 524 } else { 525 lwb->lwb_nused = 0; 526 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 527 } 528 529 mutex_enter(&zilog->zl_lock); 530 list_insert_tail(&zilog->zl_lwb_list, lwb); 531 mutex_exit(&zilog->zl_lock); 532 533 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 534 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 535 VERIFY(list_is_empty(&lwb->lwb_waiters)); 536 537 return (lwb); 538 } 539 540 static void 541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 542 { 543 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 545 VERIFY(list_is_empty(&lwb->lwb_waiters)); 546 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 547 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 548 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 549 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 550 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 551 lwb->lwb_state == LWB_STATE_DONE); 552 553 /* 554 * Clear the zilog's field to indicate this lwb is no longer 555 * valid, and prevent use-after-free errors. 556 */ 557 if (zilog->zl_last_lwb_opened == lwb) 558 zilog->zl_last_lwb_opened = NULL; 559 560 kmem_cache_free(zil_lwb_cache, lwb); 561 } 562 563 /* 564 * Called when we create in-memory log transactions so that we know 565 * to cleanup the itxs at the end of spa_sync(). 566 */ 567 void 568 zilog_dirty(zilog_t *zilog, uint64_t txg) 569 { 570 dsl_pool_t *dp = zilog->zl_dmu_pool; 571 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 572 573 ASSERT(spa_writeable(zilog->zl_spa)); 574 575 if (ds->ds_is_snapshot) 576 panic("dirtying snapshot!"); 577 578 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 579 /* up the hold count until we can be written out */ 580 dmu_buf_add_ref(ds->ds_dbuf, zilog); 581 582 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 583 } 584 } 585 586 /* 587 * Determine if the zil is dirty in the specified txg. Callers wanting to 588 * ensure that the dirty state does not change must hold the itxg_lock for 589 * the specified txg. Holding the lock will ensure that the zil cannot be 590 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 591 * state. 592 */ 593 boolean_t 594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 595 { 596 dsl_pool_t *dp = zilog->zl_dmu_pool; 597 598 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 599 return (B_TRUE); 600 return (B_FALSE); 601 } 602 603 /* 604 * Determine if the zil is dirty. The zil is considered dirty if it has 605 * any pending itx records that have not been cleaned by zil_clean(). 606 */ 607 boolean_t 608 zilog_is_dirty(zilog_t *zilog) 609 { 610 dsl_pool_t *dp = zilog->zl_dmu_pool; 611 612 for (int t = 0; t < TXG_SIZE; t++) { 613 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 614 return (B_TRUE); 615 } 616 return (B_FALSE); 617 } 618 619 /* 620 * Create an on-disk intent log. 621 */ 622 static lwb_t * 623 zil_create(zilog_t *zilog) 624 { 625 const zil_header_t *zh = zilog->zl_header; 626 lwb_t *lwb = NULL; 627 uint64_t txg = 0; 628 dmu_tx_t *tx = NULL; 629 blkptr_t blk; 630 int error = 0; 631 boolean_t slog = FALSE; 632 633 /* 634 * Wait for any previous destroy to complete. 635 */ 636 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 637 638 ASSERT(zh->zh_claim_txg == 0); 639 ASSERT(zh->zh_replay_seq == 0); 640 641 blk = zh->zh_log; 642 643 /* 644 * Allocate an initial log block if: 645 * - there isn't one already 646 * - the existing block is the wrong endianess 647 */ 648 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 649 tx = dmu_tx_create(zilog->zl_os); 650 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 651 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 652 txg = dmu_tx_get_txg(tx); 653 654 if (!BP_IS_HOLE(&blk)) { 655 zio_free(zilog->zl_spa, txg, &blk); 656 BP_ZERO(&blk); 657 } 658 659 error = zio_alloc_zil(zilog->zl_spa, 660 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL, 661 ZIL_MIN_BLKSZ, &slog); 662 663 if (error == 0) 664 zil_init_log_chain(zilog, &blk); 665 } 666 667 /* 668 * Allocate a log write block (lwb) for the first log block. 669 */ 670 if (error == 0) 671 lwb = zil_alloc_lwb(zilog, &blk, slog, txg); 672 673 /* 674 * If we just allocated the first log block, commit our transaction 675 * and wait for zil_sync() to stuff the block poiner into zh_log. 676 * (zh is part of the MOS, so we cannot modify it in open context.) 677 */ 678 if (tx != NULL) { 679 dmu_tx_commit(tx); 680 txg_wait_synced(zilog->zl_dmu_pool, txg); 681 } 682 683 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 684 685 return (lwb); 686 } 687 688 /* 689 * In one tx, free all log blocks and clear the log header. If keep_first 690 * is set, then we're replaying a log with no content. We want to keep the 691 * first block, however, so that the first synchronous transaction doesn't 692 * require a txg_wait_synced() in zil_create(). We don't need to 693 * txg_wait_synced() here either when keep_first is set, because both 694 * zil_create() and zil_destroy() will wait for any in-progress destroys 695 * to complete. 696 */ 697 void 698 zil_destroy(zilog_t *zilog, boolean_t keep_first) 699 { 700 const zil_header_t *zh = zilog->zl_header; 701 lwb_t *lwb; 702 dmu_tx_t *tx; 703 uint64_t txg; 704 705 /* 706 * Wait for any previous destroy to complete. 707 */ 708 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 709 710 zilog->zl_old_header = *zh; /* debugging aid */ 711 712 if (BP_IS_HOLE(&zh->zh_log)) 713 return; 714 715 tx = dmu_tx_create(zilog->zl_os); 716 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 717 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 718 txg = dmu_tx_get_txg(tx); 719 720 mutex_enter(&zilog->zl_lock); 721 722 ASSERT3U(zilog->zl_destroy_txg, <, txg); 723 zilog->zl_destroy_txg = txg; 724 zilog->zl_keep_first = keep_first; 725 726 if (!list_is_empty(&zilog->zl_lwb_list)) { 727 ASSERT(zh->zh_claim_txg == 0); 728 VERIFY(!keep_first); 729 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 730 list_remove(&zilog->zl_lwb_list, lwb); 731 if (lwb->lwb_buf != NULL) 732 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 733 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 734 zil_free_lwb(zilog, lwb); 735 } 736 } else if (!keep_first) { 737 zil_destroy_sync(zilog, tx); 738 } 739 mutex_exit(&zilog->zl_lock); 740 741 dmu_tx_commit(tx); 742 } 743 744 void 745 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 746 { 747 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 748 (void) zil_parse(zilog, zil_free_log_block, 749 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 750 } 751 752 int 753 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 754 { 755 dmu_tx_t *tx = txarg; 756 zilog_t *zilog; 757 uint64_t first_txg; 758 zil_header_t *zh; 759 objset_t *os; 760 int error; 761 762 error = dmu_objset_own_obj(dp, ds->ds_object, 763 DMU_OST_ANY, B_FALSE, FTAG, &os); 764 if (error != 0) { 765 /* 766 * EBUSY indicates that the objset is inconsistent, in which 767 * case it can not have a ZIL. 768 */ 769 if (error != EBUSY) { 770 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 771 (unsigned long long)ds->ds_object, error); 772 } 773 return (0); 774 } 775 776 zilog = dmu_objset_zil(os); 777 zh = zil_header_in_syncing_context(zilog); 778 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 779 first_txg = spa_min_claim_txg(zilog->zl_spa); 780 781 /* 782 * If the spa_log_state is not set to be cleared, check whether 783 * the current uberblock is a checkpoint one and if the current 784 * header has been claimed before moving on. 785 * 786 * If the current uberblock is a checkpointed uberblock then 787 * one of the following scenarios took place: 788 * 789 * 1] We are currently rewinding to the checkpoint of the pool. 790 * 2] We crashed in the middle of a checkpoint rewind but we 791 * did manage to write the checkpointed uberblock to the 792 * vdev labels, so when we tried to import the pool again 793 * the checkpointed uberblock was selected from the import 794 * procedure. 795 * 796 * In both cases we want to zero out all the ZIL blocks, except 797 * the ones that have been claimed at the time of the checkpoint 798 * (their zh_claim_txg != 0). The reason is that these blocks 799 * may be corrupted since we may have reused their locations on 800 * disk after we took the checkpoint. 801 * 802 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 803 * when we first figure out whether the current uberblock is 804 * checkpointed or not. Unfortunately, that would discard all 805 * the logs, including the ones that are claimed, and we would 806 * leak space. 807 */ 808 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 809 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 810 zh->zh_claim_txg == 0)) { 811 if (!BP_IS_HOLE(&zh->zh_log)) { 812 (void) zil_parse(zilog, zil_clear_log_block, 813 zil_noop_log_record, tx, first_txg); 814 } 815 BP_ZERO(&zh->zh_log); 816 dsl_dataset_dirty(dmu_objset_ds(os), tx); 817 dmu_objset_disown(os, FTAG); 818 return (0); 819 } 820 821 /* 822 * If we are not rewinding and opening the pool normally, then 823 * the min_claim_txg should be equal to the first txg of the pool. 824 */ 825 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 826 827 /* 828 * Claim all log blocks if we haven't already done so, and remember 829 * the highest claimed sequence number. This ensures that if we can 830 * read only part of the log now (e.g. due to a missing device), 831 * but we can read the entire log later, we will not try to replay 832 * or destroy beyond the last block we successfully claimed. 833 */ 834 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 835 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 836 (void) zil_parse(zilog, zil_claim_log_block, 837 zil_claim_log_record, tx, first_txg); 838 zh->zh_claim_txg = first_txg; 839 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 840 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 841 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 842 zh->zh_flags |= ZIL_REPLAY_NEEDED; 843 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 844 dsl_dataset_dirty(dmu_objset_ds(os), tx); 845 } 846 847 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 848 dmu_objset_disown(os, FTAG); 849 return (0); 850 } 851 852 /* 853 * Check the log by walking the log chain. 854 * Checksum errors are ok as they indicate the end of the chain. 855 * Any other error (no device or read failure) returns an error. 856 */ 857 /* ARGSUSED */ 858 int 859 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 860 { 861 zilog_t *zilog; 862 objset_t *os; 863 blkptr_t *bp; 864 int error; 865 866 ASSERT(tx == NULL); 867 868 error = dmu_objset_from_ds(ds, &os); 869 if (error != 0) { 870 cmn_err(CE_WARN, "can't open objset %llu, error %d", 871 (unsigned long long)ds->ds_object, error); 872 return (0); 873 } 874 875 zilog = dmu_objset_zil(os); 876 bp = (blkptr_t *)&zilog->zl_header->zh_log; 877 878 if (!BP_IS_HOLE(bp)) { 879 vdev_t *vd; 880 boolean_t valid = B_TRUE; 881 882 /* 883 * Check the first block and determine if it's on a log device 884 * which may have been removed or faulted prior to loading this 885 * pool. If so, there's no point in checking the rest of the 886 * log as its content should have already been synced to the 887 * pool. 888 */ 889 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 890 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 891 if (vd->vdev_islog && vdev_is_dead(vd)) 892 valid = vdev_log_state_valid(vd); 893 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 894 895 if (!valid) 896 return (0); 897 898 /* 899 * Check whether the current uberblock is checkpointed (e.g. 900 * we are rewinding) and whether the current header has been 901 * claimed or not. If it hasn't then skip verifying it. We 902 * do this because its ZIL blocks may be part of the pool's 903 * state before the rewind, which is no longer valid. 904 */ 905 zil_header_t *zh = zil_header_in_syncing_context(zilog); 906 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 907 zh->zh_claim_txg == 0) 908 return (0); 909 } 910 911 /* 912 * Because tx == NULL, zil_claim_log_block() will not actually claim 913 * any blocks, but just determine whether it is possible to do so. 914 * In addition to checking the log chain, zil_claim_log_block() 915 * will invoke zio_claim() with a done func of spa_claim_notify(), 916 * which will update spa_max_claim_txg. See spa_load() for details. 917 */ 918 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 919 zilog->zl_header->zh_claim_txg ? -1ULL : 920 spa_min_claim_txg(os->os_spa)); 921 922 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 923 } 924 925 /* 926 * When an itx is "skipped", this function is used to properly mark the 927 * waiter as "done, and signal any thread(s) waiting on it. An itx can 928 * be skipped (and not committed to an lwb) for a variety of reasons, 929 * one of them being that the itx was committed via spa_sync(), prior to 930 * it being committed to an lwb; this can happen if a thread calling 931 * zil_commit() is racing with spa_sync(). 932 */ 933 static void 934 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 935 { 936 mutex_enter(&zcw->zcw_lock); 937 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 938 zcw->zcw_done = B_TRUE; 939 cv_broadcast(&zcw->zcw_cv); 940 mutex_exit(&zcw->zcw_lock); 941 } 942 943 /* 944 * This function is used when the given waiter is to be linked into an 945 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 946 * At this point, the waiter will no longer be referenced by the itx, 947 * and instead, will be referenced by the lwb. 948 */ 949 static void 950 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 951 { 952 /* 953 * The lwb_waiters field of the lwb is protected by the zilog's 954 * zl_lock, thus it must be held when calling this function. 955 */ 956 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 957 958 mutex_enter(&zcw->zcw_lock); 959 ASSERT(!list_link_active(&zcw->zcw_node)); 960 ASSERT3P(zcw->zcw_lwb, ==, NULL); 961 ASSERT3P(lwb, !=, NULL); 962 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 963 lwb->lwb_state == LWB_STATE_ISSUED); 964 965 list_insert_tail(&lwb->lwb_waiters, zcw); 966 zcw->zcw_lwb = lwb; 967 mutex_exit(&zcw->zcw_lock); 968 } 969 970 /* 971 * This function is used when zio_alloc_zil() fails to allocate a ZIL 972 * block, and the given waiter must be linked to the "nolwb waiters" 973 * list inside of zil_process_commit_list(). 974 */ 975 static void 976 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 977 { 978 mutex_enter(&zcw->zcw_lock); 979 ASSERT(!list_link_active(&zcw->zcw_node)); 980 ASSERT3P(zcw->zcw_lwb, ==, NULL); 981 list_insert_tail(nolwb, zcw); 982 mutex_exit(&zcw->zcw_lock); 983 } 984 985 void 986 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 987 { 988 avl_tree_t *t = &lwb->lwb_vdev_tree; 989 avl_index_t where; 990 zil_vdev_node_t *zv, zvsearch; 991 int ndvas = BP_GET_NDVAS(bp); 992 int i; 993 994 if (zfs_nocacheflush) 995 return; 996 997 mutex_enter(&lwb->lwb_vdev_lock); 998 for (i = 0; i < ndvas; i++) { 999 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1000 if (avl_find(t, &zvsearch, &where) == NULL) { 1001 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1002 zv->zv_vdev = zvsearch.zv_vdev; 1003 avl_insert(t, zv, where); 1004 } 1005 } 1006 mutex_exit(&lwb->lwb_vdev_lock); 1007 } 1008 1009 void 1010 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1011 { 1012 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1013 } 1014 1015 /* 1016 * This function is a called after all VDEVs associated with a given lwb 1017 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1018 * as the lwb write completes, if "zfs_nocacheflush" is set. 1019 * 1020 * The intention is for this function to be called as soon as the 1021 * contents of an lwb are considered "stable" on disk, and will survive 1022 * any sudden loss of power. At this point, any threads waiting for the 1023 * lwb to reach this state are signalled, and the "waiter" structures 1024 * are marked "done". 1025 */ 1026 static void 1027 zil_lwb_flush_vdevs_done(zio_t *zio) 1028 { 1029 lwb_t *lwb = zio->io_private; 1030 zilog_t *zilog = lwb->lwb_zilog; 1031 dmu_tx_t *tx = lwb->lwb_tx; 1032 zil_commit_waiter_t *zcw; 1033 1034 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1035 1036 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1037 1038 mutex_enter(&zilog->zl_lock); 1039 1040 /* 1041 * Ensure the lwb buffer pointer is cleared before releasing the 1042 * txg. If we have had an allocation failure and the txg is 1043 * waiting to sync then we want zil_sync() to remove the lwb so 1044 * that it's not picked up as the next new one in 1045 * zil_process_commit_list(). zil_sync() will only remove the 1046 * lwb if lwb_buf is null. 1047 */ 1048 lwb->lwb_buf = NULL; 1049 lwb->lwb_tx = NULL; 1050 1051 ASSERT3U(lwb->lwb_issued_timestamp, >, 0); 1052 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; 1053 1054 lwb->lwb_root_zio = NULL; 1055 lwb->lwb_state = LWB_STATE_DONE; 1056 1057 if (zilog->zl_last_lwb_opened == lwb) { 1058 /* 1059 * Remember the highest committed log sequence number 1060 * for ztest. We only update this value when all the log 1061 * writes succeeded, because ztest wants to ASSERT that 1062 * it got the whole log chain. 1063 */ 1064 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1065 } 1066 1067 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { 1068 mutex_enter(&zcw->zcw_lock); 1069 1070 ASSERT(list_link_active(&zcw->zcw_node)); 1071 list_remove(&lwb->lwb_waiters, zcw); 1072 1073 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1074 zcw->zcw_lwb = NULL; 1075 1076 zcw->zcw_zio_error = zio->io_error; 1077 1078 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1079 zcw->zcw_done = B_TRUE; 1080 cv_broadcast(&zcw->zcw_cv); 1081 1082 mutex_exit(&zcw->zcw_lock); 1083 } 1084 1085 mutex_exit(&zilog->zl_lock); 1086 1087 /* 1088 * Now that we've written this log block, we have a stable pointer 1089 * to the next block in the chain, so it's OK to let the txg in 1090 * which we allocated the next block sync. 1091 */ 1092 dmu_tx_commit(tx); 1093 } 1094 1095 /* 1096 * This is called when an lwb write completes. This means, this specific 1097 * lwb was written to disk, and all dependent lwb have also been 1098 * written to disk. 1099 * 1100 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to 1101 * the VDEVs involved in writing out this specific lwb. The lwb will be 1102 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the 1103 * zio completion callback for the lwb's root zio. 1104 */ 1105 static void 1106 zil_lwb_write_done(zio_t *zio) 1107 { 1108 lwb_t *lwb = zio->io_private; 1109 spa_t *spa = zio->io_spa; 1110 zilog_t *zilog = lwb->lwb_zilog; 1111 avl_tree_t *t = &lwb->lwb_vdev_tree; 1112 void *cookie = NULL; 1113 zil_vdev_node_t *zv; 1114 1115 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1116 1117 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1118 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1119 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1120 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1121 ASSERT(!BP_IS_GANG(zio->io_bp)); 1122 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1123 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1124 1125 abd_put(zio->io_abd); 1126 1127 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1128 1129 mutex_enter(&zilog->zl_lock); 1130 lwb->lwb_write_zio = NULL; 1131 mutex_exit(&zilog->zl_lock); 1132 1133 if (avl_numnodes(t) == 0) 1134 return; 1135 1136 /* 1137 * If there was an IO error, we're not going to call zio_flush() 1138 * on these vdevs, so we simply empty the tree and free the 1139 * nodes. We avoid calling zio_flush() since there isn't any 1140 * good reason for doing so, after the lwb block failed to be 1141 * written out. 1142 */ 1143 if (zio->io_error != 0) { 1144 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1145 kmem_free(zv, sizeof (*zv)); 1146 return; 1147 } 1148 1149 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1150 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1151 if (vd != NULL) 1152 zio_flush(lwb->lwb_root_zio, vd); 1153 kmem_free(zv, sizeof (*zv)); 1154 } 1155 } 1156 1157 /* 1158 * This function's purpose is to "open" an lwb such that it is ready to 1159 * accept new itxs being committed to it. To do this, the lwb's zio 1160 * structures are created, and linked to the lwb. This function is 1161 * idempotent; if the passed in lwb has already been opened, this 1162 * function is essentially a no-op. 1163 */ 1164 static void 1165 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1166 { 1167 zbookmark_phys_t zb; 1168 zio_priority_t prio; 1169 1170 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1171 ASSERT3P(lwb, !=, NULL); 1172 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1173 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1174 1175 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1176 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1177 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1178 1179 if (lwb->lwb_root_zio == NULL) { 1180 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1181 BP_GET_LSIZE(&lwb->lwb_blk)); 1182 1183 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1184 prio = ZIO_PRIORITY_SYNC_WRITE; 1185 else 1186 prio = ZIO_PRIORITY_ASYNC_WRITE; 1187 1188 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1189 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1190 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1191 1192 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1193 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1194 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1195 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 1196 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1197 1198 lwb->lwb_state = LWB_STATE_OPENED; 1199 1200 mutex_enter(&zilog->zl_lock); 1201 1202 /* 1203 * The zilog's "zl_last_lwb_opened" field is used to 1204 * build the lwb/zio dependency chain, which is used to 1205 * preserve the ordering of lwb completions that is 1206 * required by the semantics of the ZIL. Each new lwb 1207 * zio becomes a parent of the "previous" lwb zio, such 1208 * that the new lwb's zio cannot complete until the 1209 * "previous" lwb's zio completes. 1210 * 1211 * This is required by the semantics of zil_commit(); 1212 * the commit waiters attached to the lwbs will be woken 1213 * in the lwb zio's completion callback, so this zio 1214 * dependency graph ensures the waiters are woken in the 1215 * correct order (the same order the lwbs were created). 1216 */ 1217 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1218 if (last_lwb_opened != NULL && 1219 last_lwb_opened->lwb_state != LWB_STATE_DONE) { 1220 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1221 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1222 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1223 zio_add_child(lwb->lwb_root_zio, 1224 last_lwb_opened->lwb_root_zio); 1225 } 1226 zilog->zl_last_lwb_opened = lwb; 1227 1228 mutex_exit(&zilog->zl_lock); 1229 } 1230 1231 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1232 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1233 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1234 } 1235 1236 /* 1237 * Define a limited set of intent log block sizes. 1238 * 1239 * These must be a multiple of 4KB. Note only the amount used (again 1240 * aligned to 4KB) actually gets written. However, we can't always just 1241 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1242 */ 1243 uint64_t zil_block_buckets[] = { 1244 4096, /* non TX_WRITE */ 1245 8192+4096, /* data base */ 1246 32*1024 + 4096, /* NFS writes */ 1247 UINT64_MAX 1248 }; 1249 1250 /* 1251 * Start a log block write and advance to the next log block. 1252 * Calls are serialized. 1253 */ 1254 static lwb_t * 1255 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1256 { 1257 lwb_t *nlwb = NULL; 1258 zil_chain_t *zilc; 1259 spa_t *spa = zilog->zl_spa; 1260 blkptr_t *bp; 1261 dmu_tx_t *tx; 1262 uint64_t txg; 1263 uint64_t zil_blksz, wsz; 1264 int i, error; 1265 boolean_t slog; 1266 1267 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1268 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1269 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1270 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1271 1272 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1273 zilc = (zil_chain_t *)lwb->lwb_buf; 1274 bp = &zilc->zc_next_blk; 1275 } else { 1276 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1277 bp = &zilc->zc_next_blk; 1278 } 1279 1280 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1281 1282 /* 1283 * Allocate the next block and save its address in this block 1284 * before writing it in order to establish the log chain. 1285 * Note that if the allocation of nlwb synced before we wrote 1286 * the block that points at it (lwb), we'd leak it if we crashed. 1287 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 1288 * We dirty the dataset to ensure that zil_sync() will be called 1289 * to clean up in the event of allocation failure or I/O failure. 1290 */ 1291 1292 tx = dmu_tx_create(zilog->zl_os); 1293 1294 /* 1295 * Since we are not going to create any new dirty data, and we 1296 * can even help with clearing the existing dirty data, we 1297 * should not be subject to the dirty data based delays. We 1298 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1299 */ 1300 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1301 1302 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1303 txg = dmu_tx_get_txg(tx); 1304 1305 lwb->lwb_tx = tx; 1306 1307 /* 1308 * Log blocks are pre-allocated. Here we select the size of the next 1309 * block, based on size used in the last block. 1310 * - first find the smallest bucket that will fit the block from a 1311 * limited set of block sizes. This is because it's faster to write 1312 * blocks allocated from the same metaslab as they are adjacent or 1313 * close. 1314 * - next find the maximum from the new suggested size and an array of 1315 * previous sizes. This lessens a picket fence effect of wrongly 1316 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 1317 * requests. 1318 * 1319 * Note we only write what is used, but we can't just allocate 1320 * the maximum block size because we can exhaust the available 1321 * pool log space. 1322 */ 1323 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1324 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 1325 continue; 1326 zil_blksz = zil_block_buckets[i]; 1327 if (zil_blksz == UINT64_MAX) 1328 zil_blksz = SPA_OLD_MAXBLOCKSIZE; 1329 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1330 for (i = 0; i < ZIL_PREV_BLKS; i++) 1331 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1332 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1333 1334 BP_ZERO(bp); 1335 1336 /* pass the old blkptr in order to spread log blocks across devs */ 1337 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object, 1338 txg, bp, &lwb->lwb_blk, zil_blksz, &slog); 1339 if (error == 0) { 1340 ASSERT3U(bp->blk_birth, ==, txg); 1341 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1342 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1343 1344 /* 1345 * Allocate a new log write block (lwb). 1346 */ 1347 nlwb = zil_alloc_lwb(zilog, bp, slog, txg); 1348 } 1349 1350 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1351 /* For Slim ZIL only write what is used. */ 1352 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1353 ASSERT3U(wsz, <=, lwb->lwb_sz); 1354 zio_shrink(lwb->lwb_write_zio, wsz); 1355 1356 } else { 1357 wsz = lwb->lwb_sz; 1358 } 1359 1360 zilc->zc_pad = 0; 1361 zilc->zc_nused = lwb->lwb_nused; 1362 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1363 1364 /* 1365 * clear unused data for security 1366 */ 1367 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1368 1369 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1370 1371 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1372 lwb->lwb_issued_timestamp = gethrtime(); 1373 lwb->lwb_state = LWB_STATE_ISSUED; 1374 1375 zio_nowait(lwb->lwb_root_zio); 1376 zio_nowait(lwb->lwb_write_zio); 1377 1378 /* 1379 * If there was an allocation failure then nlwb will be null which 1380 * forces a txg_wait_synced(). 1381 */ 1382 return (nlwb); 1383 } 1384 1385 static lwb_t * 1386 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1387 { 1388 lr_t *lrcb, *lrc; 1389 lr_write_t *lrwb, *lrw; 1390 char *lr_buf; 1391 uint64_t dlen, dnow, lwb_sp, reclen, txg; 1392 1393 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1394 ASSERT3P(lwb, !=, NULL); 1395 ASSERT3P(lwb->lwb_buf, !=, NULL); 1396 1397 zil_lwb_write_open(zilog, lwb); 1398 1399 lrc = &itx->itx_lr; 1400 lrw = (lr_write_t *)lrc; 1401 1402 /* 1403 * A commit itx doesn't represent any on-disk state; instead 1404 * it's simply used as a place holder on the commit list, and 1405 * provides a mechanism for attaching a "commit waiter" onto the 1406 * correct lwb (such that the waiter can be signalled upon 1407 * completion of that lwb). Thus, we don't process this itx's 1408 * log record if it's a commit itx (these itx's don't have log 1409 * records), and instead link the itx's waiter onto the lwb's 1410 * list of waiters. 1411 * 1412 * For more details, see the comment above zil_commit(). 1413 */ 1414 if (lrc->lrc_txtype == TX_COMMIT) { 1415 mutex_enter(&zilog->zl_lock); 1416 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1417 itx->itx_private = NULL; 1418 mutex_exit(&zilog->zl_lock); 1419 return (lwb); 1420 } 1421 1422 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1423 dlen = P2ROUNDUP_TYPED( 1424 lrw->lr_length, sizeof (uint64_t), uint64_t); 1425 } else { 1426 dlen = 0; 1427 } 1428 reclen = lrc->lrc_reclen; 1429 zilog->zl_cur_used += (reclen + dlen); 1430 txg = lrc->lrc_txg; 1431 1432 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); 1433 1434 cont: 1435 /* 1436 * If this record won't fit in the current log block, start a new one. 1437 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1438 */ 1439 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1440 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1441 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || 1442 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { 1443 lwb = zil_lwb_write_issue(zilog, lwb); 1444 if (lwb == NULL) 1445 return (NULL); 1446 zil_lwb_write_open(zilog, lwb); 1447 ASSERT(LWB_EMPTY(lwb)); 1448 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1449 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1450 } 1451 1452 dnow = MIN(dlen, lwb_sp - reclen); 1453 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1454 bcopy(lrc, lr_buf, reclen); 1455 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1456 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1457 1458 /* 1459 * If it's a write, fetch the data or get its blkptr as appropriate. 1460 */ 1461 if (lrc->lrc_txtype == TX_WRITE) { 1462 if (txg > spa_freeze_txg(zilog->zl_spa)) 1463 txg_wait_synced(zilog->zl_dmu_pool, txg); 1464 if (itx->itx_wr_state != WR_COPIED) { 1465 char *dbuf; 1466 int error; 1467 1468 if (itx->itx_wr_state == WR_NEED_COPY) { 1469 dbuf = lr_buf + reclen; 1470 lrcb->lrc_reclen += dnow; 1471 if (lrwb->lr_length > dnow) 1472 lrwb->lr_length = dnow; 1473 lrw->lr_offset += dnow; 1474 lrw->lr_length -= dnow; 1475 } else { 1476 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1477 dbuf = NULL; 1478 } 1479 1480 /* 1481 * We pass in the "lwb_write_zio" rather than 1482 * "lwb_root_zio" so that the "lwb_write_zio" 1483 * becomes the parent of any zio's created by 1484 * the "zl_get_data" callback. The vdevs are 1485 * flushed after the "lwb_write_zio" completes, 1486 * so we want to make sure that completion 1487 * callback waits for these additional zio's, 1488 * such that the vdevs used by those zio's will 1489 * be included in the lwb's vdev tree, and those 1490 * vdevs will be properly flushed. If we passed 1491 * in "lwb_root_zio" here, then these additional 1492 * vdevs may not be flushed; e.g. if these zio's 1493 * completed after "lwb_write_zio" completed. 1494 */ 1495 error = zilog->zl_get_data(itx->itx_private, 1496 lrwb, dbuf, lwb, lwb->lwb_write_zio); 1497 1498 if (error == EIO) { 1499 txg_wait_synced(zilog->zl_dmu_pool, txg); 1500 return (lwb); 1501 } 1502 if (error != 0) { 1503 ASSERT(error == ENOENT || error == EEXIST || 1504 error == EALREADY); 1505 return (lwb); 1506 } 1507 } 1508 } 1509 1510 /* 1511 * We're actually making an entry, so update lrc_seq to be the 1512 * log record sequence number. Note that this is generally not 1513 * equal to the itx sequence number because not all transactions 1514 * are synchronous, and sometimes spa_sync() gets there first. 1515 */ 1516 lrcb->lrc_seq = ++zilog->zl_lr_seq; 1517 lwb->lwb_nused += reclen + dnow; 1518 1519 zil_lwb_add_txg(lwb, txg); 1520 1521 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1522 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1523 1524 dlen -= dnow; 1525 if (dlen > 0) { 1526 zilog->zl_cur_used += reclen; 1527 goto cont; 1528 } 1529 1530 return (lwb); 1531 } 1532 1533 itx_t * 1534 zil_itx_create(uint64_t txtype, size_t lrsize) 1535 { 1536 itx_t *itx; 1537 1538 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1539 1540 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1541 itx->itx_lr.lrc_txtype = txtype; 1542 itx->itx_lr.lrc_reclen = lrsize; 1543 itx->itx_lr.lrc_seq = 0; /* defensive */ 1544 itx->itx_sync = B_TRUE; /* default is synchronous */ 1545 1546 return (itx); 1547 } 1548 1549 void 1550 zil_itx_destroy(itx_t *itx) 1551 { 1552 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1553 } 1554 1555 /* 1556 * Free up the sync and async itxs. The itxs_t has already been detached 1557 * so no locks are needed. 1558 */ 1559 static void 1560 zil_itxg_clean(itxs_t *itxs) 1561 { 1562 itx_t *itx; 1563 list_t *list; 1564 avl_tree_t *t; 1565 void *cookie; 1566 itx_async_node_t *ian; 1567 1568 list = &itxs->i_sync_list; 1569 while ((itx = list_head(list)) != NULL) { 1570 /* 1571 * In the general case, commit itxs will not be found 1572 * here, as they'll be committed to an lwb via 1573 * zil_lwb_commit(), and free'd in that function. Having 1574 * said that, it is still possible for commit itxs to be 1575 * found here, due to the following race: 1576 * 1577 * - a thread calls zil_commit() which assigns the 1578 * commit itx to a per-txg i_sync_list 1579 * - zil_itxg_clean() is called (e.g. via spa_sync()) 1580 * while the waiter is still on the i_sync_list 1581 * 1582 * There's nothing to prevent syncing the txg while the 1583 * waiter is on the i_sync_list. This normally doesn't 1584 * happen because spa_sync() is slower than zil_commit(), 1585 * but if zil_commit() calls txg_wait_synced() (e.g. 1586 * because zil_create() or zil_commit_writer_stall() is 1587 * called) we will hit this case. 1588 */ 1589 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 1590 zil_commit_waiter_skip(itx->itx_private); 1591 1592 list_remove(list, itx); 1593 zil_itx_destroy(itx); 1594 } 1595 1596 cookie = NULL; 1597 t = &itxs->i_async_tree; 1598 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1599 list = &ian->ia_list; 1600 while ((itx = list_head(list)) != NULL) { 1601 list_remove(list, itx); 1602 /* commit itxs should never be on the async lists. */ 1603 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1604 zil_itx_destroy(itx); 1605 } 1606 list_destroy(list); 1607 kmem_free(ian, sizeof (itx_async_node_t)); 1608 } 1609 avl_destroy(t); 1610 1611 kmem_free(itxs, sizeof (itxs_t)); 1612 } 1613 1614 static int 1615 zil_aitx_compare(const void *x1, const void *x2) 1616 { 1617 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1618 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1619 1620 if (o1 < o2) 1621 return (-1); 1622 if (o1 > o2) 1623 return (1); 1624 1625 return (0); 1626 } 1627 1628 /* 1629 * Remove all async itx with the given oid. 1630 */ 1631 static void 1632 zil_remove_async(zilog_t *zilog, uint64_t oid) 1633 { 1634 uint64_t otxg, txg; 1635 itx_async_node_t *ian; 1636 avl_tree_t *t; 1637 avl_index_t where; 1638 list_t clean_list; 1639 itx_t *itx; 1640 1641 ASSERT(oid != 0); 1642 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1643 1644 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1645 otxg = ZILTEST_TXG; 1646 else 1647 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1648 1649 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1650 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1651 1652 mutex_enter(&itxg->itxg_lock); 1653 if (itxg->itxg_txg != txg) { 1654 mutex_exit(&itxg->itxg_lock); 1655 continue; 1656 } 1657 1658 /* 1659 * Locate the object node and append its list. 1660 */ 1661 t = &itxg->itxg_itxs->i_async_tree; 1662 ian = avl_find(t, &oid, &where); 1663 if (ian != NULL) 1664 list_move_tail(&clean_list, &ian->ia_list); 1665 mutex_exit(&itxg->itxg_lock); 1666 } 1667 while ((itx = list_head(&clean_list)) != NULL) { 1668 list_remove(&clean_list, itx); 1669 /* commit itxs should never be on the async lists. */ 1670 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 1671 zil_itx_destroy(itx); 1672 } 1673 list_destroy(&clean_list); 1674 } 1675 1676 void 1677 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1678 { 1679 uint64_t txg; 1680 itxg_t *itxg; 1681 itxs_t *itxs, *clean = NULL; 1682 1683 /* 1684 * Object ids can be re-instantiated in the next txg so 1685 * remove any async transactions to avoid future leaks. 1686 * This can happen if a fsync occurs on the re-instantiated 1687 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1688 * the new file data and flushes a write record for the old object. 1689 */ 1690 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1691 zil_remove_async(zilog, itx->itx_oid); 1692 1693 /* 1694 * Ensure the data of a renamed file is committed before the rename. 1695 */ 1696 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1697 zil_async_to_sync(zilog, itx->itx_oid); 1698 1699 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1700 txg = ZILTEST_TXG; 1701 else 1702 txg = dmu_tx_get_txg(tx); 1703 1704 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1705 mutex_enter(&itxg->itxg_lock); 1706 itxs = itxg->itxg_itxs; 1707 if (itxg->itxg_txg != txg) { 1708 if (itxs != NULL) { 1709 /* 1710 * The zil_clean callback hasn't got around to cleaning 1711 * this itxg. Save the itxs for release below. 1712 * This should be rare. 1713 */ 1714 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 1715 "txg %llu", itxg->itxg_txg); 1716 clean = itxg->itxg_itxs; 1717 } 1718 itxg->itxg_txg = txg; 1719 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1720 1721 list_create(&itxs->i_sync_list, sizeof (itx_t), 1722 offsetof(itx_t, itx_node)); 1723 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1724 sizeof (itx_async_node_t), 1725 offsetof(itx_async_node_t, ia_node)); 1726 } 1727 if (itx->itx_sync) { 1728 list_insert_tail(&itxs->i_sync_list, itx); 1729 } else { 1730 avl_tree_t *t = &itxs->i_async_tree; 1731 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1732 itx_async_node_t *ian; 1733 avl_index_t where; 1734 1735 ian = avl_find(t, &foid, &where); 1736 if (ian == NULL) { 1737 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1738 list_create(&ian->ia_list, sizeof (itx_t), 1739 offsetof(itx_t, itx_node)); 1740 ian->ia_foid = foid; 1741 avl_insert(t, ian, where); 1742 } 1743 list_insert_tail(&ian->ia_list, itx); 1744 } 1745 1746 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1747 1748 /* 1749 * We don't want to dirty the ZIL using ZILTEST_TXG, because 1750 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 1751 * need to be careful to always dirty the ZIL using the "real" 1752 * TXG (not itxg_txg) even when the SPA is frozen. 1753 */ 1754 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 1755 mutex_exit(&itxg->itxg_lock); 1756 1757 /* Release the old itxs now we've dropped the lock */ 1758 if (clean != NULL) 1759 zil_itxg_clean(clean); 1760 } 1761 1762 /* 1763 * If there are any in-memory intent log transactions which have now been 1764 * synced then start up a taskq to free them. We should only do this after we 1765 * have written out the uberblocks (i.e. txg has been comitted) so that 1766 * don't inadvertently clean out in-memory log records that would be required 1767 * by zil_commit(). 1768 */ 1769 void 1770 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1771 { 1772 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1773 itxs_t *clean_me; 1774 1775 ASSERT3U(synced_txg, <, ZILTEST_TXG); 1776 1777 mutex_enter(&itxg->itxg_lock); 1778 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1779 mutex_exit(&itxg->itxg_lock); 1780 return; 1781 } 1782 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1783 ASSERT3U(itxg->itxg_txg, !=, 0); 1784 clean_me = itxg->itxg_itxs; 1785 itxg->itxg_itxs = NULL; 1786 itxg->itxg_txg = 0; 1787 mutex_exit(&itxg->itxg_lock); 1788 /* 1789 * Preferably start a task queue to free up the old itxs but 1790 * if taskq_dispatch can't allocate resources to do that then 1791 * free it in-line. This should be rare. Note, using TQ_SLEEP 1792 * created a bad performance problem. 1793 */ 1794 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 1795 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 1796 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 1797 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1798 zil_itxg_clean(clean_me); 1799 } 1800 1801 /* 1802 * This function will traverse the queue of itxs that need to be 1803 * committed, and move them onto the ZIL's zl_itx_commit_list. 1804 */ 1805 static void 1806 zil_get_commit_list(zilog_t *zilog) 1807 { 1808 uint64_t otxg, txg; 1809 list_t *commit_list = &zilog->zl_itx_commit_list; 1810 1811 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1812 1813 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1814 otxg = ZILTEST_TXG; 1815 else 1816 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1817 1818 /* 1819 * This is inherently racy, since there is nothing to prevent 1820 * the last synced txg from changing. That's okay since we'll 1821 * only commit things in the future. 1822 */ 1823 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1824 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1825 1826 mutex_enter(&itxg->itxg_lock); 1827 if (itxg->itxg_txg != txg) { 1828 mutex_exit(&itxg->itxg_lock); 1829 continue; 1830 } 1831 1832 /* 1833 * If we're adding itx records to the zl_itx_commit_list, 1834 * then the zil better be dirty in this "txg". We can assert 1835 * that here since we're holding the itxg_lock which will 1836 * prevent spa_sync from cleaning it. Once we add the itxs 1837 * to the zl_itx_commit_list we must commit it to disk even 1838 * if it's unnecessary (i.e. the txg was synced). 1839 */ 1840 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 1841 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1842 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1843 1844 mutex_exit(&itxg->itxg_lock); 1845 } 1846 } 1847 1848 /* 1849 * Move the async itxs for a specified object to commit into sync lists. 1850 */ 1851 static void 1852 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1853 { 1854 uint64_t otxg, txg; 1855 itx_async_node_t *ian; 1856 avl_tree_t *t; 1857 avl_index_t where; 1858 1859 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1860 otxg = ZILTEST_TXG; 1861 else 1862 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1863 1864 /* 1865 * This is inherently racy, since there is nothing to prevent 1866 * the last synced txg from changing. 1867 */ 1868 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1869 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1870 1871 mutex_enter(&itxg->itxg_lock); 1872 if (itxg->itxg_txg != txg) { 1873 mutex_exit(&itxg->itxg_lock); 1874 continue; 1875 } 1876 1877 /* 1878 * If a foid is specified then find that node and append its 1879 * list. Otherwise walk the tree appending all the lists 1880 * to the sync list. We add to the end rather than the 1881 * beginning to ensure the create has happened. 1882 */ 1883 t = &itxg->itxg_itxs->i_async_tree; 1884 if (foid != 0) { 1885 ian = avl_find(t, &foid, &where); 1886 if (ian != NULL) { 1887 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1888 &ian->ia_list); 1889 } 1890 } else { 1891 void *cookie = NULL; 1892 1893 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1894 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1895 &ian->ia_list); 1896 list_destroy(&ian->ia_list); 1897 kmem_free(ian, sizeof (itx_async_node_t)); 1898 } 1899 } 1900 mutex_exit(&itxg->itxg_lock); 1901 } 1902 } 1903 1904 /* 1905 * This function will prune commit itxs that are at the head of the 1906 * commit list (it won't prune past the first non-commit itx), and 1907 * either: a) attach them to the last lwb that's still pending 1908 * completion, or b) skip them altogether. 1909 * 1910 * This is used as a performance optimization to prevent commit itxs 1911 * from generating new lwbs when it's unnecessary to do so. 1912 */ 1913 static void 1914 zil_prune_commit_list(zilog_t *zilog) 1915 { 1916 itx_t *itx; 1917 1918 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1919 1920 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1921 lr_t *lrc = &itx->itx_lr; 1922 if (lrc->lrc_txtype != TX_COMMIT) 1923 break; 1924 1925 mutex_enter(&zilog->zl_lock); 1926 1927 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 1928 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) { 1929 /* 1930 * All of the itxs this waiter was waiting on 1931 * must have already completed (or there were 1932 * never any itx's for it to wait on), so it's 1933 * safe to skip this waiter and mark it done. 1934 */ 1935 zil_commit_waiter_skip(itx->itx_private); 1936 } else { 1937 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 1938 itx->itx_private = NULL; 1939 } 1940 1941 mutex_exit(&zilog->zl_lock); 1942 1943 list_remove(&zilog->zl_itx_commit_list, itx); 1944 zil_itx_destroy(itx); 1945 } 1946 1947 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 1948 } 1949 1950 static void 1951 zil_commit_writer_stall(zilog_t *zilog) 1952 { 1953 /* 1954 * When zio_alloc_zil() fails to allocate the next lwb block on 1955 * disk, we must call txg_wait_synced() to ensure all of the 1956 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 1957 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 1958 * to zil_process_commit_list()) will have to call zil_create(), 1959 * and start a new ZIL chain. 1960 * 1961 * Since zil_alloc_zil() failed, the lwb that was previously 1962 * issued does not have a pointer to the "next" lwb on disk. 1963 * Thus, if another ZIL writer thread was to allocate the "next" 1964 * on-disk lwb, that block could be leaked in the event of a 1965 * crash (because the previous lwb on-disk would not point to 1966 * it). 1967 * 1968 * We must hold the zilog's zl_issuer_lock while we do this, to 1969 * ensure no new threads enter zil_process_commit_list() until 1970 * all lwb's in the zl_lwb_list have been synced and freed 1971 * (which is achieved via the txg_wait_synced() call). 1972 */ 1973 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1974 txg_wait_synced(zilog->zl_dmu_pool, 0); 1975 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 1976 } 1977 1978 /* 1979 * This function will traverse the commit list, creating new lwbs as 1980 * needed, and committing the itxs from the commit list to these newly 1981 * created lwbs. Additionally, as a new lwb is created, the previous 1982 * lwb will be issued to the zio layer to be written to disk. 1983 */ 1984 static void 1985 zil_process_commit_list(zilog_t *zilog) 1986 { 1987 spa_t *spa = zilog->zl_spa; 1988 list_t nolwb_waiters; 1989 lwb_t *lwb; 1990 itx_t *itx; 1991 1992 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1993 1994 /* 1995 * Return if there's nothing to commit before we dirty the fs by 1996 * calling zil_create(). 1997 */ 1998 if (list_head(&zilog->zl_itx_commit_list) == NULL) 1999 return; 2000 2001 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2002 offsetof(zil_commit_waiter_t, zcw_node)); 2003 2004 lwb = list_tail(&zilog->zl_lwb_list); 2005 if (lwb == NULL) { 2006 lwb = zil_create(zilog); 2007 } else { 2008 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2009 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE); 2010 } 2011 2012 while (itx = list_head(&zilog->zl_itx_commit_list)) { 2013 lr_t *lrc = &itx->itx_lr; 2014 uint64_t txg = lrc->lrc_txg; 2015 2016 ASSERT3U(txg, !=, 0); 2017 2018 if (lrc->lrc_txtype == TX_COMMIT) { 2019 DTRACE_PROBE2(zil__process__commit__itx, 2020 zilog_t *, zilog, itx_t *, itx); 2021 } else { 2022 DTRACE_PROBE2(zil__process__normal__itx, 2023 zilog_t *, zilog, itx_t *, itx); 2024 } 2025 2026 boolean_t synced = txg <= spa_last_synced_txg(spa); 2027 boolean_t frozen = txg > spa_freeze_txg(spa); 2028 2029 /* 2030 * If the txg of this itx has already been synced out, then 2031 * we don't need to commit this itx to an lwb. This is 2032 * because the data of this itx will have already been 2033 * written to the main pool. This is inherently racy, and 2034 * it's still ok to commit an itx whose txg has already 2035 * been synced; this will result in a write that's 2036 * unnecessary, but will do no harm. 2037 * 2038 * With that said, we always want to commit TX_COMMIT itxs 2039 * to an lwb, regardless of whether or not that itx's txg 2040 * has been synced out. We do this to ensure any OPENED lwb 2041 * will always have at least one zil_commit_waiter_t linked 2042 * to the lwb. 2043 * 2044 * As a counter-example, if we skipped TX_COMMIT itx's 2045 * whose txg had already been synced, the following 2046 * situation could occur if we happened to be racing with 2047 * spa_sync: 2048 * 2049 * 1. we commit a non-TX_COMMIT itx to an lwb, where the 2050 * itx's txg is 10 and the last synced txg is 9. 2051 * 2. spa_sync finishes syncing out txg 10. 2052 * 3. we move to the next itx in the list, it's a TX_COMMIT 2053 * whose txg is 10, so we skip it rather than committing 2054 * it to the lwb used in (1). 2055 * 2056 * If the itx that is skipped in (3) is the last TX_COMMIT 2057 * itx in the commit list, than it's possible for the lwb 2058 * used in (1) to remain in the OPENED state indefinitely. 2059 * 2060 * To prevent the above scenario from occuring, ensuring 2061 * that once an lwb is OPENED it will transition to ISSUED 2062 * and eventually DONE, we always commit TX_COMMIT itx's to 2063 * an lwb here, even if that itx's txg has already been 2064 * synced. 2065 * 2066 * Finally, if the pool is frozen, we _always_ commit the 2067 * itx. The point of freezing the pool is to prevent data 2068 * from being written to the main pool via spa_sync, and 2069 * instead rely solely on the ZIL to persistently store the 2070 * data; i.e. when the pool is frozen, the last synced txg 2071 * value can't be trusted. 2072 */ 2073 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2074 if (lwb != NULL) { 2075 lwb = zil_lwb_commit(zilog, itx, lwb); 2076 } else if (lrc->lrc_txtype == TX_COMMIT) { 2077 ASSERT3P(lwb, ==, NULL); 2078 zil_commit_waiter_link_nolwb( 2079 itx->itx_private, &nolwb_waiters); 2080 } 2081 } 2082 2083 list_remove(&zilog->zl_itx_commit_list, itx); 2084 zil_itx_destroy(itx); 2085 } 2086 2087 if (lwb == NULL) { 2088 /* 2089 * This indicates zio_alloc_zil() failed to allocate the 2090 * "next" lwb on-disk. When this happens, we must stall 2091 * the ZIL write pipeline; see the comment within 2092 * zil_commit_writer_stall() for more details. 2093 */ 2094 zil_commit_writer_stall(zilog); 2095 2096 /* 2097 * Additionally, we have to signal and mark the "nolwb" 2098 * waiters as "done" here, since without an lwb, we 2099 * can't do this via zil_lwb_flush_vdevs_done() like 2100 * normal. 2101 */ 2102 zil_commit_waiter_t *zcw; 2103 while (zcw = list_head(&nolwb_waiters)) { 2104 zil_commit_waiter_skip(zcw); 2105 list_remove(&nolwb_waiters, zcw); 2106 } 2107 } else { 2108 ASSERT(list_is_empty(&nolwb_waiters)); 2109 ASSERT3P(lwb, !=, NULL); 2110 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2111 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE); 2112 2113 /* 2114 * At this point, the ZIL block pointed at by the "lwb" 2115 * variable is in one of the following states: "closed" 2116 * or "open". 2117 * 2118 * If its "closed", then no itxs have been committed to 2119 * it, so there's no point in issuing its zio (i.e. 2120 * it's "empty"). 2121 * 2122 * If its "open" state, then it contains one or more 2123 * itxs that eventually need to be committed to stable 2124 * storage. In this case we intentionally do not issue 2125 * the lwb's zio to disk yet, and instead rely on one of 2126 * the following two mechanisms for issuing the zio: 2127 * 2128 * 1. Ideally, there will be more ZIL activity occuring 2129 * on the system, such that this function will be 2130 * immediately called again (not necessarily by the same 2131 * thread) and this lwb's zio will be issued via 2132 * zil_lwb_commit(). This way, the lwb is guaranteed to 2133 * be "full" when it is issued to disk, and we'll make 2134 * use of the lwb's size the best we can. 2135 * 2136 * 2. If there isn't sufficient ZIL activity occuring on 2137 * the system, such that this lwb's zio isn't issued via 2138 * zil_lwb_commit(), zil_commit_waiter() will issue the 2139 * lwb's zio. If this occurs, the lwb is not guaranteed 2140 * to be "full" by the time its zio is issued, and means 2141 * the size of the lwb was "too large" given the amount 2142 * of ZIL activity occuring on the system at that time. 2143 * 2144 * We do this for a couple of reasons: 2145 * 2146 * 1. To try and reduce the number of IOPs needed to 2147 * write the same number of itxs. If an lwb has space 2148 * available in it's buffer for more itxs, and more itxs 2149 * will be committed relatively soon (relative to the 2150 * latency of performing a write), then it's beneficial 2151 * to wait for these "next" itxs. This way, more itxs 2152 * can be committed to stable storage with fewer writes. 2153 * 2154 * 2. To try and use the largest lwb block size that the 2155 * incoming rate of itxs can support. Again, this is to 2156 * try and pack as many itxs into as few lwbs as 2157 * possible, without significantly impacting the latency 2158 * of each individual itx. 2159 */ 2160 } 2161 } 2162 2163 /* 2164 * This function is responsible for ensuring the passed in commit waiter 2165 * (and associated commit itx) is committed to an lwb. If the waiter is 2166 * not already committed to an lwb, all itxs in the zilog's queue of 2167 * itxs will be processed. The assumption is the passed in waiter's 2168 * commit itx will found in the queue just like the other non-commit 2169 * itxs, such that when the entire queue is processed, the waiter will 2170 * have been commited to an lwb. 2171 * 2172 * The lwb associated with the passed in waiter is not guaranteed to 2173 * have been issued by the time this function completes. If the lwb is 2174 * not issued, we rely on future calls to zil_commit_writer() to issue 2175 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2176 */ 2177 static void 2178 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2179 { 2180 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2181 ASSERT(spa_writeable(zilog->zl_spa)); 2182 2183 mutex_enter(&zilog->zl_issuer_lock); 2184 2185 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2186 /* 2187 * It's possible that, while we were waiting to acquire 2188 * the "zl_issuer_lock", another thread committed this 2189 * waiter to an lwb. If that occurs, we bail out early, 2190 * without processing any of the zilog's queue of itxs. 2191 * 2192 * On certain workloads and system configurations, the 2193 * "zl_issuer_lock" can become highly contended. In an 2194 * attempt to reduce this contention, we immediately drop 2195 * the lock if the waiter has already been processed. 2196 * 2197 * We've measured this optimization to reduce CPU spent 2198 * contending on this lock by up to 5%, using a system 2199 * with 32 CPUs, low latency storage (~50 usec writes), 2200 * and 1024 threads performing sync writes. 2201 */ 2202 goto out; 2203 } 2204 2205 zil_get_commit_list(zilog); 2206 zil_prune_commit_list(zilog); 2207 zil_process_commit_list(zilog); 2208 2209 out: 2210 mutex_exit(&zilog->zl_issuer_lock); 2211 } 2212 2213 static void 2214 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2215 { 2216 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2217 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2218 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2219 2220 lwb_t *lwb = zcw->zcw_lwb; 2221 ASSERT3P(lwb, !=, NULL); 2222 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2223 2224 /* 2225 * If the lwb has already been issued by another thread, we can 2226 * immediately return since there's no work to be done (the 2227 * point of this function is to issue the lwb). Additionally, we 2228 * do this prior to acquiring the zl_issuer_lock, to avoid 2229 * acquiring it when it's not necessary to do so. 2230 */ 2231 if (lwb->lwb_state == LWB_STATE_ISSUED || 2232 lwb->lwb_state == LWB_STATE_DONE) 2233 return; 2234 2235 /* 2236 * In order to call zil_lwb_write_issue() we must hold the 2237 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2238 * since we're already holding the commit waiter's "zcw_lock", 2239 * and those two locks are aquired in the opposite order 2240 * elsewhere. 2241 */ 2242 mutex_exit(&zcw->zcw_lock); 2243 mutex_enter(&zilog->zl_issuer_lock); 2244 mutex_enter(&zcw->zcw_lock); 2245 2246 /* 2247 * Since we just dropped and re-acquired the commit waiter's 2248 * lock, we have to re-check to see if the waiter was marked 2249 * "done" during that process. If the waiter was marked "done", 2250 * the "lwb" pointer is no longer valid (it can be free'd after 2251 * the waiter is marked "done"), so without this check we could 2252 * wind up with a use-after-free error below. 2253 */ 2254 if (zcw->zcw_done) 2255 goto out; 2256 2257 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2258 2259 /* 2260 * We've already checked this above, but since we hadn't acquired 2261 * the zilog's zl_issuer_lock, we have to perform this check a 2262 * second time while holding the lock. 2263 * 2264 * We don't need to hold the zl_lock since the lwb cannot transition 2265 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2266 * _can_ transition from ISSUED to DONE, but it's OK to race with 2267 * that transition since we treat the lwb the same, whether it's in 2268 * the ISSUED or DONE states. 2269 * 2270 * The important thing, is we treat the lwb differently depending on 2271 * if it's ISSUED or OPENED, and block any other threads that might 2272 * attempt to issue this lwb. For that reason we hold the 2273 * zl_issuer_lock when checking the lwb_state; we must not call 2274 * zil_lwb_write_issue() if the lwb had already been issued. 2275 * 2276 * See the comment above the lwb_state_t structure definition for 2277 * more details on the lwb states, and locking requirements. 2278 */ 2279 if (lwb->lwb_state == LWB_STATE_ISSUED || 2280 lwb->lwb_state == LWB_STATE_DONE) 2281 goto out; 2282 2283 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2284 2285 /* 2286 * As described in the comments above zil_commit_waiter() and 2287 * zil_process_commit_list(), we need to issue this lwb's zio 2288 * since we've reached the commit waiter's timeout and it still 2289 * hasn't been issued. 2290 */ 2291 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2292 2293 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2294 2295 /* 2296 * Since the lwb's zio hadn't been issued by the time this thread 2297 * reached its timeout, we reset the zilog's "zl_cur_used" field 2298 * to influence the zil block size selection algorithm. 2299 * 2300 * By having to issue the lwb's zio here, it means the size of the 2301 * lwb was too large, given the incoming throughput of itxs. By 2302 * setting "zl_cur_used" to zero, we communicate this fact to the 2303 * block size selection algorithm, so it can take this informaiton 2304 * into account, and potentially select a smaller size for the 2305 * next lwb block that is allocated. 2306 */ 2307 zilog->zl_cur_used = 0; 2308 2309 if (nlwb == NULL) { 2310 /* 2311 * When zil_lwb_write_issue() returns NULL, this 2312 * indicates zio_alloc_zil() failed to allocate the 2313 * "next" lwb on-disk. When this occurs, the ZIL write 2314 * pipeline must be stalled; see the comment within the 2315 * zil_commit_writer_stall() function for more details. 2316 * 2317 * We must drop the commit waiter's lock prior to 2318 * calling zil_commit_writer_stall() or else we can wind 2319 * up with the following deadlock: 2320 * 2321 * - This thread is waiting for the txg to sync while 2322 * holding the waiter's lock; txg_wait_synced() is 2323 * used within txg_commit_writer_stall(). 2324 * 2325 * - The txg can't sync because it is waiting for this 2326 * lwb's zio callback to call dmu_tx_commit(). 2327 * 2328 * - The lwb's zio callback can't call dmu_tx_commit() 2329 * because it's blocked trying to acquire the waiter's 2330 * lock, which occurs prior to calling dmu_tx_commit() 2331 */ 2332 mutex_exit(&zcw->zcw_lock); 2333 zil_commit_writer_stall(zilog); 2334 mutex_enter(&zcw->zcw_lock); 2335 } 2336 2337 out: 2338 mutex_exit(&zilog->zl_issuer_lock); 2339 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2340 } 2341 2342 /* 2343 * This function is responsible for performing the following two tasks: 2344 * 2345 * 1. its primary responsibility is to block until the given "commit 2346 * waiter" is considered "done". 2347 * 2348 * 2. its secondary responsibility is to issue the zio for the lwb that 2349 * the given "commit waiter" is waiting on, if this function has 2350 * waited "long enough" and the lwb is still in the "open" state. 2351 * 2352 * Given a sufficient amount of itxs being generated and written using 2353 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2354 * function. If this does not occur, this secondary responsibility will 2355 * ensure the lwb is issued even if there is not other synchronous 2356 * activity on the system. 2357 * 2358 * For more details, see zil_process_commit_list(); more specifically, 2359 * the comment at the bottom of that function. 2360 */ 2361 static void 2362 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2363 { 2364 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2365 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2366 ASSERT(spa_writeable(zilog->zl_spa)); 2367 2368 mutex_enter(&zcw->zcw_lock); 2369 2370 /* 2371 * The timeout is scaled based on the lwb latency to avoid 2372 * significantly impacting the latency of each individual itx. 2373 * For more details, see the comment at the bottom of the 2374 * zil_process_commit_list() function. 2375 */ 2376 int pct = MAX(zfs_commit_timeout_pct, 1); 2377 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 2378 hrtime_t wakeup = gethrtime() + sleep; 2379 boolean_t timedout = B_FALSE; 2380 2381 while (!zcw->zcw_done) { 2382 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2383 2384 lwb_t *lwb = zcw->zcw_lwb; 2385 2386 /* 2387 * Usually, the waiter will have a non-NULL lwb field here, 2388 * but it's possible for it to be NULL as a result of 2389 * zil_commit() racing with spa_sync(). 2390 * 2391 * When zil_clean() is called, it's possible for the itxg 2392 * list (which may be cleaned via a taskq) to contain 2393 * commit itxs. When this occurs, the commit waiters linked 2394 * off of these commit itxs will not be committed to an 2395 * lwb. Additionally, these commit waiters will not be 2396 * marked done until zil_commit_waiter_skip() is called via 2397 * zil_itxg_clean(). 2398 * 2399 * Thus, it's possible for this commit waiter (i.e. the 2400 * "zcw" variable) to be found in this "in between" state; 2401 * where it's "zcw_lwb" field is NULL, and it hasn't yet 2402 * been skipped, so it's "zcw_done" field is still B_FALSE. 2403 */ 2404 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 2405 2406 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 2407 ASSERT3B(timedout, ==, B_FALSE); 2408 2409 /* 2410 * If the lwb hasn't been issued yet, then we 2411 * need to wait with a timeout, in case this 2412 * function needs to issue the lwb after the 2413 * timeout is reached; responsibility (2) from 2414 * the comment above this function. 2415 */ 2416 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, 2417 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 2418 CALLOUT_FLAG_ABSOLUTE); 2419 2420 if (timeleft >= 0 || zcw->zcw_done) 2421 continue; 2422 2423 timedout = B_TRUE; 2424 zil_commit_waiter_timeout(zilog, zcw); 2425 2426 if (!zcw->zcw_done) { 2427 /* 2428 * If the commit waiter has already been 2429 * marked "done", it's possible for the 2430 * waiter's lwb structure to have already 2431 * been freed. Thus, we can only reliably 2432 * make these assertions if the waiter 2433 * isn't done. 2434 */ 2435 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2436 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2437 } 2438 } else { 2439 /* 2440 * If the lwb isn't open, then it must have already 2441 * been issued. In that case, there's no need to 2442 * use a timeout when waiting for the lwb to 2443 * complete. 2444 * 2445 * Additionally, if the lwb is NULL, the waiter 2446 * will soon be signalled and marked done via 2447 * zil_clean() and zil_itxg_clean(), so no timeout 2448 * is required. 2449 */ 2450 2451 IMPLY(lwb != NULL, 2452 lwb->lwb_state == LWB_STATE_ISSUED || 2453 lwb->lwb_state == LWB_STATE_DONE); 2454 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 2455 } 2456 } 2457 2458 mutex_exit(&zcw->zcw_lock); 2459 } 2460 2461 static zil_commit_waiter_t * 2462 zil_alloc_commit_waiter() 2463 { 2464 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 2465 2466 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 2467 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 2468 list_link_init(&zcw->zcw_node); 2469 zcw->zcw_lwb = NULL; 2470 zcw->zcw_done = B_FALSE; 2471 zcw->zcw_zio_error = 0; 2472 2473 return (zcw); 2474 } 2475 2476 static void 2477 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 2478 { 2479 ASSERT(!list_link_active(&zcw->zcw_node)); 2480 ASSERT3P(zcw->zcw_lwb, ==, NULL); 2481 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 2482 mutex_destroy(&zcw->zcw_lock); 2483 cv_destroy(&zcw->zcw_cv); 2484 kmem_cache_free(zil_zcw_cache, zcw); 2485 } 2486 2487 /* 2488 * This function is used to create a TX_COMMIT itx and assign it. This 2489 * way, it will be linked into the ZIL's list of synchronous itxs, and 2490 * then later committed to an lwb (or skipped) when 2491 * zil_process_commit_list() is called. 2492 */ 2493 static void 2494 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 2495 { 2496 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 2497 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 2498 2499 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 2500 itx->itx_sync = B_TRUE; 2501 itx->itx_private = zcw; 2502 2503 zil_itx_assign(zilog, itx, tx); 2504 2505 dmu_tx_commit(tx); 2506 } 2507 2508 /* 2509 * Commit ZFS Intent Log transactions (itxs) to stable storage. 2510 * 2511 * When writing ZIL transactions to the on-disk representation of the 2512 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 2513 * itxs can be committed to a single lwb. Once a lwb is written and 2514 * committed to stable storage (i.e. the lwb is written, and vdevs have 2515 * been flushed), each itx that was committed to that lwb is also 2516 * considered to be committed to stable storage. 2517 * 2518 * When an itx is committed to an lwb, the log record (lr_t) contained 2519 * by the itx is copied into the lwb's zio buffer, and once this buffer 2520 * is written to disk, it becomes an on-disk ZIL block. 2521 * 2522 * As itxs are generated, they're inserted into the ZIL's queue of 2523 * uncommitted itxs. The semantics of zil_commit() are such that it will 2524 * block until all itxs that were in the queue when it was called, are 2525 * committed to stable storage. 2526 * 2527 * If "foid" is zero, this means all "synchronous" and "asynchronous" 2528 * itxs, for all objects in the dataset, will be committed to stable 2529 * storage prior to zil_commit() returning. If "foid" is non-zero, all 2530 * "synchronous" itxs for all objects, but only "asynchronous" itxs 2531 * that correspond to the foid passed in, will be committed to stable 2532 * storage prior to zil_commit() returning. 2533 * 2534 * Generally speaking, when zil_commit() is called, the consumer doesn't 2535 * actually care about _all_ of the uncommitted itxs. Instead, they're 2536 * simply trying to waiting for a specific itx to be committed to disk, 2537 * but the interface(s) for interacting with the ZIL don't allow such 2538 * fine-grained communication. A better interface would allow a consumer 2539 * to create and assign an itx, and then pass a reference to this itx to 2540 * zil_commit(); such that zil_commit() would return as soon as that 2541 * specific itx was committed to disk (instead of waiting for _all_ 2542 * itxs to be committed). 2543 * 2544 * When a thread calls zil_commit() a special "commit itx" will be 2545 * generated, along with a corresponding "waiter" for this commit itx. 2546 * zil_commit() will wait on this waiter's CV, such that when the waiter 2547 * is marked done, and signalled, zil_commit() will return. 2548 * 2549 * This commit itx is inserted into the queue of uncommitted itxs. This 2550 * provides an easy mechanism for determining which itxs were in the 2551 * queue prior to zil_commit() having been called, and which itxs were 2552 * added after zil_commit() was called. 2553 * 2554 * The commit it is special; it doesn't have any on-disk representation. 2555 * When a commit itx is "committed" to an lwb, the waiter associated 2556 * with it is linked onto the lwb's list of waiters. Then, when that lwb 2557 * completes, each waiter on the lwb's list is marked done and signalled 2558 * -- allowing the thread waiting on the waiter to return from zil_commit(). 2559 * 2560 * It's important to point out a few critical factors that allow us 2561 * to make use of the commit itxs, commit waiters, per-lwb lists of 2562 * commit waiters, and zio completion callbacks like we're doing: 2563 * 2564 * 1. The list of waiters for each lwb is traversed, and each commit 2565 * waiter is marked "done" and signalled, in the zio completion 2566 * callback of the lwb's zio[*]. 2567 * 2568 * * Actually, the waiters are signalled in the zio completion 2569 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 2570 * that are sent to the vdevs upon completion of the lwb zio. 2571 * 2572 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 2573 * itxs, the order in which they are inserted is preserved[*]; as 2574 * itxs are added to the queue, they are added to the tail of 2575 * in-memory linked lists. 2576 * 2577 * When committing the itxs to lwbs (to be written to disk), they 2578 * are committed in the same order in which the itxs were added to 2579 * the uncommitted queue's linked list(s); i.e. the linked list of 2580 * itxs to commit is traversed from head to tail, and each itx is 2581 * committed to an lwb in that order. 2582 * 2583 * * To clarify: 2584 * 2585 * - the order of "sync" itxs is preserved w.r.t. other 2586 * "sync" itxs, regardless of the corresponding objects. 2587 * - the order of "async" itxs is preserved w.r.t. other 2588 * "async" itxs corresponding to the same object. 2589 * - the order of "async" itxs is *not* preserved w.r.t. other 2590 * "async" itxs corresponding to different objects. 2591 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 2592 * versa) is *not* preserved, even for itxs that correspond 2593 * to the same object. 2594 * 2595 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 2596 * zil_get_commit_list(), and zil_process_commit_list(). 2597 * 2598 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 2599 * lwb cannot be considered committed to stable storage, until its 2600 * "previous" lwb is also committed to stable storage. This fact, 2601 * coupled with the fact described above, means that itxs are 2602 * committed in (roughly) the order in which they were generated. 2603 * This is essential because itxs are dependent on prior itxs. 2604 * Thus, we *must not* deem an itx as being committed to stable 2605 * storage, until *all* prior itxs have also been committed to 2606 * stable storage. 2607 * 2608 * To enforce this ordering of lwb zio's, while still leveraging as 2609 * much of the underlying storage performance as possible, we rely 2610 * on two fundamental concepts: 2611 * 2612 * 1. The creation and issuance of lwb zio's is protected by 2613 * the zilog's "zl_issuer_lock", which ensures only a single 2614 * thread is creating and/or issuing lwb's at a time 2615 * 2. The "previous" lwb is a child of the "current" lwb 2616 * (leveraging the zio parent-child depenency graph) 2617 * 2618 * By relying on this parent-child zio relationship, we can have 2619 * many lwb zio's concurrently issued to the underlying storage, 2620 * but the order in which they complete will be the same order in 2621 * which they were created. 2622 */ 2623 void 2624 zil_commit(zilog_t *zilog, uint64_t foid) 2625 { 2626 /* 2627 * We should never attempt to call zil_commit on a snapshot for 2628 * a couple of reasons: 2629 * 2630 * 1. A snapshot may never be modified, thus it cannot have any 2631 * in-flight itxs that would have modified the dataset. 2632 * 2633 * 2. By design, when zil_commit() is called, a commit itx will 2634 * be assigned to this zilog; as a result, the zilog will be 2635 * dirtied. We must not dirty the zilog of a snapshot; there's 2636 * checks in the code that enforce this invariant, and will 2637 * cause a panic if it's not upheld. 2638 */ 2639 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 2640 2641 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2642 return; 2643 2644 if (!spa_writeable(zilog->zl_spa)) { 2645 /* 2646 * If the SPA is not writable, there should never be any 2647 * pending itxs waiting to be committed to disk. If that 2648 * weren't true, we'd skip writing those itxs out, and 2649 * would break the sematics of zil_commit(); thus, we're 2650 * verifying that truth before we return to the caller. 2651 */ 2652 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2653 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2654 for (int i = 0; i < TXG_SIZE; i++) 2655 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 2656 return; 2657 } 2658 2659 /* 2660 * If the ZIL is suspended, we don't want to dirty it by calling 2661 * zil_commit_itx_assign() below, nor can we write out 2662 * lwbs like would be done in zil_commit_write(). Thus, we 2663 * simply rely on txg_wait_synced() to maintain the necessary 2664 * semantics, and avoid calling those functions altogether. 2665 */ 2666 if (zilog->zl_suspend > 0) { 2667 txg_wait_synced(zilog->zl_dmu_pool, 0); 2668 return; 2669 } 2670 2671 zil_commit_impl(zilog, foid); 2672 } 2673 2674 void 2675 zil_commit_impl(zilog_t *zilog, uint64_t foid) 2676 { 2677 /* 2678 * Move the "async" itxs for the specified foid to the "sync" 2679 * queues, such that they will be later committed (or skipped) 2680 * to an lwb when zil_process_commit_list() is called. 2681 * 2682 * Since these "async" itxs must be committed prior to this 2683 * call to zil_commit returning, we must perform this operation 2684 * before we call zil_commit_itx_assign(). 2685 */ 2686 zil_async_to_sync(zilog, foid); 2687 2688 /* 2689 * We allocate a new "waiter" structure which will initially be 2690 * linked to the commit itx using the itx's "itx_private" field. 2691 * Since the commit itx doesn't represent any on-disk state, 2692 * when it's committed to an lwb, rather than copying the its 2693 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 2694 * added to the lwb's list of waiters. Then, when the lwb is 2695 * committed to stable storage, each waiter in the lwb's list of 2696 * waiters will be marked "done", and signalled. 2697 * 2698 * We must create the waiter and assign the commit itx prior to 2699 * calling zil_commit_writer(), or else our specific commit itx 2700 * is not guaranteed to be committed to an lwb prior to calling 2701 * zil_commit_waiter(). 2702 */ 2703 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 2704 zil_commit_itx_assign(zilog, zcw); 2705 2706 zil_commit_writer(zilog, zcw); 2707 zil_commit_waiter(zilog, zcw); 2708 2709 if (zcw->zcw_zio_error != 0) { 2710 /* 2711 * If there was an error writing out the ZIL blocks that 2712 * this thread is waiting on, then we fallback to 2713 * relying on spa_sync() to write out the data this 2714 * thread is waiting on. Obviously this has performance 2715 * implications, but the expectation is for this to be 2716 * an exceptional case, and shouldn't occur often. 2717 */ 2718 DTRACE_PROBE2(zil__commit__io__error, 2719 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 2720 txg_wait_synced(zilog->zl_dmu_pool, 0); 2721 } 2722 2723 zil_free_commit_waiter(zcw); 2724 } 2725 2726 /* 2727 * Called in syncing context to free committed log blocks and update log header. 2728 */ 2729 void 2730 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 2731 { 2732 zil_header_t *zh = zil_header_in_syncing_context(zilog); 2733 uint64_t txg = dmu_tx_get_txg(tx); 2734 spa_t *spa = zilog->zl_spa; 2735 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 2736 lwb_t *lwb; 2737 2738 /* 2739 * We don't zero out zl_destroy_txg, so make sure we don't try 2740 * to destroy it twice. 2741 */ 2742 if (spa_sync_pass(spa) != 1) 2743 return; 2744 2745 mutex_enter(&zilog->zl_lock); 2746 2747 ASSERT(zilog->zl_stop_sync == 0); 2748 2749 if (*replayed_seq != 0) { 2750 ASSERT(zh->zh_replay_seq < *replayed_seq); 2751 zh->zh_replay_seq = *replayed_seq; 2752 *replayed_seq = 0; 2753 } 2754 2755 if (zilog->zl_destroy_txg == txg) { 2756 blkptr_t blk = zh->zh_log; 2757 2758 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 2759 2760 bzero(zh, sizeof (zil_header_t)); 2761 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 2762 2763 if (zilog->zl_keep_first) { 2764 /* 2765 * If this block was part of log chain that couldn't 2766 * be claimed because a device was missing during 2767 * zil_claim(), but that device later returns, 2768 * then this block could erroneously appear valid. 2769 * To guard against this, assign a new GUID to the new 2770 * log chain so it doesn't matter what blk points to. 2771 */ 2772 zil_init_log_chain(zilog, &blk); 2773 zh->zh_log = blk; 2774 } 2775 } 2776 2777 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 2778 zh->zh_log = lwb->lwb_blk; 2779 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 2780 break; 2781 list_remove(&zilog->zl_lwb_list, lwb); 2782 zio_free(spa, txg, &lwb->lwb_blk); 2783 zil_free_lwb(zilog, lwb); 2784 2785 /* 2786 * If we don't have anything left in the lwb list then 2787 * we've had an allocation failure and we need to zero 2788 * out the zil_header blkptr so that we don't end 2789 * up freeing the same block twice. 2790 */ 2791 if (list_head(&zilog->zl_lwb_list) == NULL) 2792 BP_ZERO(&zh->zh_log); 2793 } 2794 mutex_exit(&zilog->zl_lock); 2795 } 2796 2797 /* ARGSUSED */ 2798 static int 2799 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 2800 { 2801 lwb_t *lwb = vbuf; 2802 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 2803 offsetof(zil_commit_waiter_t, zcw_node)); 2804 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 2805 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 2806 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 2807 return (0); 2808 } 2809 2810 /* ARGSUSED */ 2811 static void 2812 zil_lwb_dest(void *vbuf, void *unused) 2813 { 2814 lwb_t *lwb = vbuf; 2815 mutex_destroy(&lwb->lwb_vdev_lock); 2816 avl_destroy(&lwb->lwb_vdev_tree); 2817 list_destroy(&lwb->lwb_waiters); 2818 } 2819 2820 void 2821 zil_init(void) 2822 { 2823 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 2824 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 2825 2826 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 2827 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 2828 } 2829 2830 void 2831 zil_fini(void) 2832 { 2833 kmem_cache_destroy(zil_zcw_cache); 2834 kmem_cache_destroy(zil_lwb_cache); 2835 } 2836 2837 void 2838 zil_set_sync(zilog_t *zilog, uint64_t sync) 2839 { 2840 zilog->zl_sync = sync; 2841 } 2842 2843 void 2844 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 2845 { 2846 zilog->zl_logbias = logbias; 2847 } 2848 2849 zilog_t * 2850 zil_alloc(objset_t *os, zil_header_t *zh_phys) 2851 { 2852 zilog_t *zilog; 2853 2854 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 2855 2856 zilog->zl_header = zh_phys; 2857 zilog->zl_os = os; 2858 zilog->zl_spa = dmu_objset_spa(os); 2859 zilog->zl_dmu_pool = dmu_objset_pool(os); 2860 zilog->zl_destroy_txg = TXG_INITIAL - 1; 2861 zilog->zl_logbias = dmu_objset_logbias(os); 2862 zilog->zl_sync = dmu_objset_syncprop(os); 2863 zilog->zl_dirty_max_txg = 0; 2864 zilog->zl_last_lwb_opened = NULL; 2865 zilog->zl_last_lwb_latency = 0; 2866 2867 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 2868 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 2869 2870 for (int i = 0; i < TXG_SIZE; i++) { 2871 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 2872 MUTEX_DEFAULT, NULL); 2873 } 2874 2875 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 2876 offsetof(lwb_t, lwb_node)); 2877 2878 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 2879 offsetof(itx_t, itx_node)); 2880 2881 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 2882 2883 return (zilog); 2884 } 2885 2886 void 2887 zil_free(zilog_t *zilog) 2888 { 2889 zilog->zl_stop_sync = 1; 2890 2891 ASSERT0(zilog->zl_suspend); 2892 ASSERT0(zilog->zl_suspending); 2893 2894 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2895 list_destroy(&zilog->zl_lwb_list); 2896 2897 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 2898 list_destroy(&zilog->zl_itx_commit_list); 2899 2900 for (int i = 0; i < TXG_SIZE; i++) { 2901 /* 2902 * It's possible for an itx to be generated that doesn't dirty 2903 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 2904 * callback to remove the entry. We remove those here. 2905 * 2906 * Also free up the ziltest itxs. 2907 */ 2908 if (zilog->zl_itxg[i].itxg_itxs) 2909 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 2910 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 2911 } 2912 2913 mutex_destroy(&zilog->zl_issuer_lock); 2914 mutex_destroy(&zilog->zl_lock); 2915 2916 cv_destroy(&zilog->zl_cv_suspend); 2917 2918 kmem_free(zilog, sizeof (zilog_t)); 2919 } 2920 2921 /* 2922 * Open an intent log. 2923 */ 2924 zilog_t * 2925 zil_open(objset_t *os, zil_get_data_t *get_data) 2926 { 2927 zilog_t *zilog = dmu_objset_zil(os); 2928 2929 ASSERT3P(zilog->zl_get_data, ==, NULL); 2930 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 2931 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2932 2933 zilog->zl_get_data = get_data; 2934 2935 return (zilog); 2936 } 2937 2938 /* 2939 * Close an intent log. 2940 */ 2941 void 2942 zil_close(zilog_t *zilog) 2943 { 2944 lwb_t *lwb; 2945 uint64_t txg; 2946 2947 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 2948 zil_commit(zilog, 0); 2949 } else { 2950 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); 2951 ASSERT0(zilog->zl_dirty_max_txg); 2952 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 2953 } 2954 2955 mutex_enter(&zilog->zl_lock); 2956 lwb = list_tail(&zilog->zl_lwb_list); 2957 if (lwb == NULL) 2958 txg = zilog->zl_dirty_max_txg; 2959 else 2960 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 2961 mutex_exit(&zilog->zl_lock); 2962 2963 /* 2964 * We need to use txg_wait_synced() to wait long enough for the 2965 * ZIL to be clean, and to wait for all pending lwbs to be 2966 * written out. 2967 */ 2968 if (txg != 0) 2969 txg_wait_synced(zilog->zl_dmu_pool, txg); 2970 2971 if (zilog_is_dirty(zilog)) 2972 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); 2973 VERIFY(!zilog_is_dirty(zilog)); 2974 2975 zilog->zl_get_data = NULL; 2976 2977 /* 2978 * We should have only one lwb left on the list; remove it now. 2979 */ 2980 mutex_enter(&zilog->zl_lock); 2981 lwb = list_head(&zilog->zl_lwb_list); 2982 if (lwb != NULL) { 2983 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); 2984 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2985 list_remove(&zilog->zl_lwb_list, lwb); 2986 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 2987 zil_free_lwb(zilog, lwb); 2988 } 2989 mutex_exit(&zilog->zl_lock); 2990 } 2991 2992 static char *suspend_tag = "zil suspending"; 2993 2994 /* 2995 * Suspend an intent log. While in suspended mode, we still honor 2996 * synchronous semantics, but we rely on txg_wait_synced() to do it. 2997 * On old version pools, we suspend the log briefly when taking a 2998 * snapshot so that it will have an empty intent log. 2999 * 3000 * Long holds are not really intended to be used the way we do here -- 3001 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3002 * could fail. Therefore we take pains to only put a long hold if it is 3003 * actually necessary. Fortunately, it will only be necessary if the 3004 * objset is currently mounted (or the ZVOL equivalent). In that case it 3005 * will already have a long hold, so we are not really making things any worse. 3006 * 3007 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3008 * zvol_state_t), and use their mechanism to prevent their hold from being 3009 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3010 * very little gain. 3011 * 3012 * if cookiep == NULL, this does both the suspend & resume. 3013 * Otherwise, it returns with the dataset "long held", and the cookie 3014 * should be passed into zil_resume(). 3015 */ 3016 int 3017 zil_suspend(const char *osname, void **cookiep) 3018 { 3019 objset_t *os; 3020 zilog_t *zilog; 3021 const zil_header_t *zh; 3022 int error; 3023 3024 error = dmu_objset_hold(osname, suspend_tag, &os); 3025 if (error != 0) 3026 return (error); 3027 zilog = dmu_objset_zil(os); 3028 3029 mutex_enter(&zilog->zl_lock); 3030 zh = zilog->zl_header; 3031 3032 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3033 mutex_exit(&zilog->zl_lock); 3034 dmu_objset_rele(os, suspend_tag); 3035 return (SET_ERROR(EBUSY)); 3036 } 3037 3038 /* 3039 * Don't put a long hold in the cases where we can avoid it. This 3040 * is when there is no cookie so we are doing a suspend & resume 3041 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3042 * for the suspend because it's already suspended, or there's no ZIL. 3043 */ 3044 if (cookiep == NULL && !zilog->zl_suspending && 3045 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3046 mutex_exit(&zilog->zl_lock); 3047 dmu_objset_rele(os, suspend_tag); 3048 return (0); 3049 } 3050 3051 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3052 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3053 3054 zilog->zl_suspend++; 3055 3056 if (zilog->zl_suspend > 1) { 3057 /* 3058 * Someone else is already suspending it. 3059 * Just wait for them to finish. 3060 */ 3061 3062 while (zilog->zl_suspending) 3063 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3064 mutex_exit(&zilog->zl_lock); 3065 3066 if (cookiep == NULL) 3067 zil_resume(os); 3068 else 3069 *cookiep = os; 3070 return (0); 3071 } 3072 3073 /* 3074 * If there is no pointer to an on-disk block, this ZIL must not 3075 * be active (e.g. filesystem not mounted), so there's nothing 3076 * to clean up. 3077 */ 3078 if (BP_IS_HOLE(&zh->zh_log)) { 3079 ASSERT(cookiep != NULL); /* fast path already handled */ 3080 3081 *cookiep = os; 3082 mutex_exit(&zilog->zl_lock); 3083 return (0); 3084 } 3085 3086 zilog->zl_suspending = B_TRUE; 3087 mutex_exit(&zilog->zl_lock); 3088 3089 /* 3090 * We need to use zil_commit_impl to ensure we wait for all 3091 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed 3092 * to disk before proceeding. If we used zil_commit instead, it 3093 * would just call txg_wait_synced(), because zl_suspend is set. 3094 * txg_wait_synced() doesn't wait for these lwb's to be 3095 * LWB_STATE_DONE before returning. 3096 */ 3097 zil_commit_impl(zilog, 0); 3098 3099 /* 3100 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use 3101 * txg_wait_synced() to ensure the data from the zilog has 3102 * migrated to the main pool before calling zil_destroy(). 3103 */ 3104 txg_wait_synced(zilog->zl_dmu_pool, 0); 3105 3106 zil_destroy(zilog, B_FALSE); 3107 3108 mutex_enter(&zilog->zl_lock); 3109 zilog->zl_suspending = B_FALSE; 3110 cv_broadcast(&zilog->zl_cv_suspend); 3111 mutex_exit(&zilog->zl_lock); 3112 3113 if (cookiep == NULL) 3114 zil_resume(os); 3115 else 3116 *cookiep = os; 3117 return (0); 3118 } 3119 3120 void 3121 zil_resume(void *cookie) 3122 { 3123 objset_t *os = cookie; 3124 zilog_t *zilog = dmu_objset_zil(os); 3125 3126 mutex_enter(&zilog->zl_lock); 3127 ASSERT(zilog->zl_suspend != 0); 3128 zilog->zl_suspend--; 3129 mutex_exit(&zilog->zl_lock); 3130 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3131 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3132 } 3133 3134 typedef struct zil_replay_arg { 3135 zil_replay_func_t **zr_replay; 3136 void *zr_arg; 3137 boolean_t zr_byteswap; 3138 char *zr_lr; 3139 } zil_replay_arg_t; 3140 3141 static int 3142 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 3143 { 3144 char name[ZFS_MAX_DATASET_NAME_LEN]; 3145 3146 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3147 3148 dmu_objset_name(zilog->zl_os, name); 3149 3150 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3151 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3152 (u_longlong_t)lr->lrc_seq, 3153 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3154 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3155 3156 return (error); 3157 } 3158 3159 static int 3160 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 3161 { 3162 zil_replay_arg_t *zr = zra; 3163 const zil_header_t *zh = zilog->zl_header; 3164 uint64_t reclen = lr->lrc_reclen; 3165 uint64_t txtype = lr->lrc_txtype; 3166 int error = 0; 3167 3168 zilog->zl_replaying_seq = lr->lrc_seq; 3169 3170 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3171 return (0); 3172 3173 if (lr->lrc_txg < claim_txg) /* already committed */ 3174 return (0); 3175 3176 /* Strip case-insensitive bit, still present in log record */ 3177 txtype &= ~TX_CI; 3178 3179 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3180 return (zil_replay_error(zilog, lr, EINVAL)); 3181 3182 /* 3183 * If this record type can be logged out of order, the object 3184 * (lr_foid) may no longer exist. That's legitimate, not an error. 3185 */ 3186 if (TX_OOO(txtype)) { 3187 error = dmu_object_info(zilog->zl_os, 3188 ((lr_ooo_t *)lr)->lr_foid, NULL); 3189 if (error == ENOENT || error == EEXIST) 3190 return (0); 3191 } 3192 3193 /* 3194 * Make a copy of the data so we can revise and extend it. 3195 */ 3196 bcopy(lr, zr->zr_lr, reclen); 3197 3198 /* 3199 * If this is a TX_WRITE with a blkptr, suck in the data. 3200 */ 3201 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3202 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3203 zr->zr_lr + reclen); 3204 if (error != 0) 3205 return (zil_replay_error(zilog, lr, error)); 3206 } 3207 3208 /* 3209 * The log block containing this lr may have been byteswapped 3210 * so that we can easily examine common fields like lrc_txtype. 3211 * However, the log is a mix of different record types, and only the 3212 * replay vectors know how to byteswap their records. Therefore, if 3213 * the lr was byteswapped, undo it before invoking the replay vector. 3214 */ 3215 if (zr->zr_byteswap) 3216 byteswap_uint64_array(zr->zr_lr, reclen); 3217 3218 /* 3219 * We must now do two things atomically: replay this log record, 3220 * and update the log header sequence number to reflect the fact that 3221 * we did so. At the end of each replay function the sequence number 3222 * is updated if we are in replay mode. 3223 */ 3224 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3225 if (error != 0) { 3226 /* 3227 * The DMU's dnode layer doesn't see removes until the txg 3228 * commits, so a subsequent claim can spuriously fail with 3229 * EEXIST. So if we receive any error we try syncing out 3230 * any removes then retry the transaction. Note that we 3231 * specify B_FALSE for byteswap now, so we don't do it twice. 3232 */ 3233 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3234 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3235 if (error != 0) 3236 return (zil_replay_error(zilog, lr, error)); 3237 } 3238 return (0); 3239 } 3240 3241 /* ARGSUSED */ 3242 static int 3243 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 3244 { 3245 zilog->zl_replay_blks++; 3246 3247 return (0); 3248 } 3249 3250 /* 3251 * If this dataset has a non-empty intent log, replay it and destroy it. 3252 */ 3253 void 3254 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 3255 { 3256 zilog_t *zilog = dmu_objset_zil(os); 3257 const zil_header_t *zh = zilog->zl_header; 3258 zil_replay_arg_t zr; 3259 3260 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3261 zil_destroy(zilog, B_TRUE); 3262 return; 3263 } 3264 3265 zr.zr_replay = replay_func; 3266 zr.zr_arg = arg; 3267 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3268 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3269 3270 /* 3271 * Wait for in-progress removes to sync before starting replay. 3272 */ 3273 txg_wait_synced(zilog->zl_dmu_pool, 0); 3274 3275 zilog->zl_replay = B_TRUE; 3276 zilog->zl_replay_time = ddi_get_lbolt(); 3277 ASSERT(zilog->zl_replay_blks == 0); 3278 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 3279 zh->zh_claim_txg); 3280 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 3281 3282 zil_destroy(zilog, B_FALSE); 3283 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 3284 zilog->zl_replay = B_FALSE; 3285 } 3286 3287 boolean_t 3288 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 3289 { 3290 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3291 return (B_TRUE); 3292 3293 if (zilog->zl_replay) { 3294 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 3295 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 3296 zilog->zl_replaying_seq; 3297 return (B_TRUE); 3298 } 3299 3300 return (B_FALSE); 3301 } 3302 3303 /* ARGSUSED */ 3304 int 3305 zil_reset(const char *osname, void *arg) 3306 { 3307 int error; 3308 3309 error = zil_suspend(osname, NULL); 3310 if (error != 0) 3311 return (SET_ERROR(EEXIST)); 3312 return (0); 3313 } 3314