1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 xuio_t *xuio = NULL; 451 452 ZFS_ENTER(zfsvfs); 453 ZFS_VERIFY_ZP(zp); 454 os = zfsvfs->z_os; 455 456 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 457 ZFS_EXIT(zfsvfs); 458 return (EACCES); 459 } 460 461 /* 462 * Validate file offset 463 */ 464 if (uio->uio_loffset < (offset_t)0) { 465 ZFS_EXIT(zfsvfs); 466 return (EINVAL); 467 } 468 469 /* 470 * Fasttrack empty reads 471 */ 472 if (uio->uio_resid == 0) { 473 ZFS_EXIT(zfsvfs); 474 return (0); 475 } 476 477 /* 478 * Check for mandatory locks 479 */ 480 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 481 if (error = chklock(vp, FREAD, 482 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 483 ZFS_EXIT(zfsvfs); 484 return (error); 485 } 486 } 487 488 /* 489 * If we're in FRSYNC mode, sync out this znode before reading it. 490 */ 491 if (ioflag & FRSYNC) 492 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 493 494 /* 495 * Lock the range against changes. 496 */ 497 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 498 499 /* 500 * If we are reading past end-of-file we can skip 501 * to the end; but we might still need to set atime. 502 */ 503 if (uio->uio_loffset >= zp->z_phys->zp_size) { 504 error = 0; 505 goto out; 506 } 507 508 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 509 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 510 511 if ((uio->uio_extflg == UIO_XUIO) && 512 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 513 int nblk; 514 int blksz = zp->z_blksz; 515 uint64_t offset = uio->uio_loffset; 516 517 xuio = (xuio_t *)uio; 518 if ((ISP2(blksz))) { 519 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 520 blksz)) / blksz; 521 } else { 522 ASSERT(offset + n <= blksz); 523 nblk = 1; 524 } 525 (void) dmu_xuio_init(xuio, nblk); 526 527 if (vn_has_cached_data(vp)) { 528 /* 529 * For simplicity, we always allocate a full buffer 530 * even if we only expect to read a portion of a block. 531 */ 532 while (--nblk >= 0) { 533 (void) dmu_xuio_add(xuio, 534 dmu_request_arcbuf(zp->z_dbuf, blksz), 535 0, blksz); 536 } 537 } 538 } 539 540 while (n > 0) { 541 nbytes = MIN(n, zfs_read_chunk_size - 542 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 543 544 if (vn_has_cached_data(vp)) 545 error = mappedread(vp, nbytes, uio); 546 else 547 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 548 if (error) { 549 /* convert checksum errors into IO errors */ 550 if (error == ECKSUM) 551 error = EIO; 552 break; 553 } 554 555 n -= nbytes; 556 } 557 out: 558 zfs_range_unlock(rl); 559 560 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 561 ZFS_EXIT(zfsvfs); 562 return (error); 563 } 564 565 /* 566 * Write the bytes to a file. 567 * 568 * IN: vp - vnode of file to be written to. 569 * uio - structure supplying write location, range info, 570 * and data buffer. 571 * ioflag - FAPPEND flag set if in append mode. 572 * cr - credentials of caller. 573 * ct - caller context (NFS/CIFS fem monitor only) 574 * 575 * OUT: uio - updated offset and range. 576 * 577 * RETURN: 0 if success 578 * error code if failure 579 * 580 * Timestamps: 581 * vp - ctime|mtime updated if byte count > 0 582 */ 583 /* ARGSUSED */ 584 static int 585 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 586 { 587 znode_t *zp = VTOZ(vp); 588 rlim64_t limit = uio->uio_llimit; 589 ssize_t start_resid = uio->uio_resid; 590 ssize_t tx_bytes; 591 uint64_t end_size; 592 dmu_tx_t *tx; 593 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 594 zilog_t *zilog; 595 offset_t woff; 596 ssize_t n, nbytes; 597 rl_t *rl; 598 int max_blksz = zfsvfs->z_max_blksz; 599 uint64_t pflags; 600 int error; 601 arc_buf_t *abuf; 602 iovec_t *aiov; 603 xuio_t *xuio = NULL; 604 int i_iov = 0; 605 int iovcnt = uio->uio_iovcnt; 606 iovec_t *iovp = uio->uio_iov; 607 int write_eof; 608 609 /* 610 * Fasttrack empty write 611 */ 612 n = start_resid; 613 if (n == 0) 614 return (0); 615 616 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 617 limit = MAXOFFSET_T; 618 619 ZFS_ENTER(zfsvfs); 620 ZFS_VERIFY_ZP(zp); 621 622 /* 623 * If immutable or not appending then return EPERM 624 */ 625 pflags = zp->z_phys->zp_flags; 626 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 627 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 628 (uio->uio_loffset < zp->z_phys->zp_size))) { 629 ZFS_EXIT(zfsvfs); 630 return (EPERM); 631 } 632 633 zilog = zfsvfs->z_log; 634 635 /* 636 * Validate file offset 637 */ 638 woff = ioflag & FAPPEND ? zp->z_phys->zp_size : uio->uio_loffset; 639 if (woff < 0) { 640 ZFS_EXIT(zfsvfs); 641 return (EINVAL); 642 } 643 644 /* 645 * Check for mandatory locks before calling zfs_range_lock() 646 * in order to prevent a deadlock with locks set via fcntl(). 647 */ 648 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 649 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 650 ZFS_EXIT(zfsvfs); 651 return (error); 652 } 653 654 /* 655 * Pre-fault the pages to ensure slow (eg NFS) pages 656 * don't hold up txg. 657 * Skip this if uio contains loaned arc_buf. 658 */ 659 if ((uio->uio_extflg == UIO_XUIO) && 660 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 661 xuio = (xuio_t *)uio; 662 else 663 uio_prefaultpages(n, uio); 664 665 /* 666 * If in append mode, set the io offset pointer to eof. 667 */ 668 if (ioflag & FAPPEND) { 669 /* 670 * Obtain an appending range lock to guarantee file append 671 * semantics. We reset the write offset once we have the lock. 672 */ 673 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 674 woff = rl->r_off; 675 if (rl->r_len == UINT64_MAX) { 676 /* 677 * We overlocked the file because this write will cause 678 * the file block size to increase. 679 * Note that zp_size cannot change with this lock held. 680 */ 681 woff = zp->z_phys->zp_size; 682 } 683 uio->uio_loffset = woff; 684 } else { 685 /* 686 * Note that if the file block size will change as a result of 687 * this write, then this range lock will lock the entire file 688 * so that we can re-write the block safely. 689 */ 690 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 691 } 692 693 if (woff >= limit) { 694 zfs_range_unlock(rl); 695 ZFS_EXIT(zfsvfs); 696 return (EFBIG); 697 } 698 699 if ((woff + n) > limit || woff > (limit - n)) 700 n = limit - woff; 701 702 /* Will this write extend the file length? */ 703 write_eof = (woff + n > zp->z_phys->zp_size); 704 705 end_size = MAX(zp->z_phys->zp_size, woff + n); 706 707 /* 708 * Write the file in reasonable size chunks. Each chunk is written 709 * in a separate transaction; this keeps the intent log records small 710 * and allows us to do more fine-grained space accounting. 711 */ 712 while (n > 0) { 713 abuf = NULL; 714 woff = uio->uio_loffset; 715 again: 716 if (zfs_usergroup_overquota(zfsvfs, 717 B_FALSE, zp->z_phys->zp_uid) || 718 zfs_usergroup_overquota(zfsvfs, 719 B_TRUE, zp->z_phys->zp_gid)) { 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 error = EDQUOT; 723 break; 724 } 725 726 if (xuio && abuf == NULL) { 727 ASSERT(i_iov < iovcnt); 728 aiov = &iovp[i_iov]; 729 abuf = dmu_xuio_arcbuf(xuio, i_iov); 730 dmu_xuio_clear(xuio, i_iov); 731 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 732 iovec_t *, aiov, arc_buf_t *, abuf); 733 ASSERT((aiov->iov_base == abuf->b_data) || 734 ((char *)aiov->iov_base - (char *)abuf->b_data + 735 aiov->iov_len == arc_buf_size(abuf))); 736 i_iov++; 737 } else if (abuf == NULL && n >= max_blksz && 738 woff >= zp->z_phys->zp_size && 739 P2PHASE(woff, max_blksz) == 0 && 740 zp->z_blksz == max_blksz) { 741 /* 742 * This write covers a full block. "Borrow" a buffer 743 * from the dmu so that we can fill it before we enter 744 * a transaction. This avoids the possibility of 745 * holding up the transaction if the data copy hangs 746 * up on a pagefault (e.g., from an NFS server mapping). 747 */ 748 size_t cbytes; 749 750 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 751 ASSERT(abuf != NULL); 752 ASSERT(arc_buf_size(abuf) == max_blksz); 753 if (error = uiocopy(abuf->b_data, max_blksz, 754 UIO_WRITE, uio, &cbytes)) { 755 dmu_return_arcbuf(abuf); 756 break; 757 } 758 ASSERT(cbytes == max_blksz); 759 } 760 761 /* 762 * Start a transaction. 763 */ 764 tx = dmu_tx_create(zfsvfs->z_os); 765 dmu_tx_hold_bonus(tx, zp->z_id); 766 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 767 error = dmu_tx_assign(tx, TXG_NOWAIT); 768 if (error) { 769 if (error == ERESTART) { 770 dmu_tx_wait(tx); 771 dmu_tx_abort(tx); 772 goto again; 773 } 774 dmu_tx_abort(tx); 775 if (abuf != NULL) 776 dmu_return_arcbuf(abuf); 777 break; 778 } 779 780 /* 781 * If zfs_range_lock() over-locked we grow the blocksize 782 * and then reduce the lock range. This will only happen 783 * on the first iteration since zfs_range_reduce() will 784 * shrink down r_len to the appropriate size. 785 */ 786 if (rl->r_len == UINT64_MAX) { 787 uint64_t new_blksz; 788 789 if (zp->z_blksz > max_blksz) { 790 ASSERT(!ISP2(zp->z_blksz)); 791 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 792 } else { 793 new_blksz = MIN(end_size, max_blksz); 794 } 795 zfs_grow_blocksize(zp, new_blksz, tx); 796 zfs_range_reduce(rl, woff, n); 797 } 798 799 /* 800 * XXX - should we really limit each write to z_max_blksz? 801 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 802 */ 803 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 804 805 if (abuf == NULL) { 806 tx_bytes = uio->uio_resid; 807 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 808 nbytes, tx); 809 tx_bytes -= uio->uio_resid; 810 } else { 811 tx_bytes = nbytes; 812 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 813 /* 814 * If this is not a full block write, but we are 815 * extending the file past EOF and this data starts 816 * block-aligned, use assign_arcbuf(). Otherwise, 817 * write via dmu_write(). 818 */ 819 if (tx_bytes < max_blksz && (!write_eof || 820 aiov->iov_base != abuf->b_data)) { 821 ASSERT(xuio); 822 dmu_write(zfsvfs->z_os, zp->z_id, woff, 823 aiov->iov_len, aiov->iov_base, tx); 824 dmu_return_arcbuf(abuf); 825 xuio_stat_wbuf_copied(); 826 } else { 827 ASSERT(xuio || tx_bytes == max_blksz); 828 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 829 } 830 ASSERT(tx_bytes <= uio->uio_resid); 831 uioskip(uio, tx_bytes); 832 } 833 if (tx_bytes && vn_has_cached_data(vp)) { 834 update_pages(vp, woff, 835 tx_bytes, zfsvfs->z_os, zp->z_id); 836 } 837 838 /* 839 * If we made no progress, we're done. If we made even 840 * partial progress, update the znode and ZIL accordingly. 841 */ 842 if (tx_bytes == 0) { 843 dmu_tx_commit(tx); 844 ASSERT(error != 0); 845 break; 846 } 847 848 /* 849 * Clear Set-UID/Set-GID bits on successful write if not 850 * privileged and at least one of the excute bits is set. 851 * 852 * It would be nice to to this after all writes have 853 * been done, but that would still expose the ISUID/ISGID 854 * to another app after the partial write is committed. 855 * 856 * Note: we don't call zfs_fuid_map_id() here because 857 * user 0 is not an ephemeral uid. 858 */ 859 mutex_enter(&zp->z_acl_lock); 860 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 861 (S_IXUSR >> 6))) != 0 && 862 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 863 secpolicy_vnode_setid_retain(cr, 864 (zp->z_phys->zp_mode & S_ISUID) != 0 && 865 zp->z_phys->zp_uid == 0) != 0) { 866 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 867 } 868 mutex_exit(&zp->z_acl_lock); 869 870 /* 871 * Update time stamp. NOTE: This marks the bonus buffer as 872 * dirty, so we don't have to do it again for zp_size. 873 */ 874 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 875 876 /* 877 * Update the file size (zp_size) if it has changed; 878 * account for possible concurrent updates. 879 */ 880 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 881 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 882 uio->uio_loffset); 883 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 884 dmu_tx_commit(tx); 885 886 if (error != 0) 887 break; 888 ASSERT(tx_bytes == nbytes); 889 n -= nbytes; 890 } 891 892 zfs_range_unlock(rl); 893 894 /* 895 * If we're in replay mode, or we made no progress, return error. 896 * Otherwise, it's at least a partial write, so it's successful. 897 */ 898 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 899 ZFS_EXIT(zfsvfs); 900 return (error); 901 } 902 903 if (ioflag & (FSYNC | FDSYNC)) 904 zil_commit(zilog, zp->z_last_itx, zp->z_id); 905 906 ZFS_EXIT(zfsvfs); 907 return (0); 908 } 909 910 void 911 zfs_get_done(zgd_t *zgd, int error) 912 { 913 znode_t *zp = zgd->zgd_private; 914 objset_t *os = zp->z_zfsvfs->z_os; 915 916 if (zgd->zgd_db) 917 dmu_buf_rele(zgd->zgd_db, zgd); 918 919 zfs_range_unlock(zgd->zgd_rl); 920 921 /* 922 * Release the vnode asynchronously as we currently have the 923 * txg stopped from syncing. 924 */ 925 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 926 927 if (error == 0 && zgd->zgd_bp) 928 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 929 930 kmem_free(zgd, sizeof (zgd_t)); 931 } 932 933 #ifdef DEBUG 934 static int zil_fault_io = 0; 935 #endif 936 937 /* 938 * Get data to generate a TX_WRITE intent log record. 939 */ 940 int 941 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 942 { 943 zfsvfs_t *zfsvfs = arg; 944 objset_t *os = zfsvfs->z_os; 945 znode_t *zp; 946 uint64_t object = lr->lr_foid; 947 uint64_t offset = lr->lr_offset; 948 uint64_t size = lr->lr_length; 949 blkptr_t *bp = &lr->lr_blkptr; 950 dmu_buf_t *db; 951 zgd_t *zgd; 952 int error = 0; 953 954 ASSERT(zio != NULL); 955 ASSERT(size != 0); 956 957 /* 958 * Nothing to do if the file has been removed 959 */ 960 if (zfs_zget(zfsvfs, object, &zp) != 0) 961 return (ENOENT); 962 if (zp->z_unlinked) { 963 /* 964 * Release the vnode asynchronously as we currently have the 965 * txg stopped from syncing. 966 */ 967 VN_RELE_ASYNC(ZTOV(zp), 968 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 969 return (ENOENT); 970 } 971 972 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 973 zgd->zgd_zilog = zfsvfs->z_log; 974 zgd->zgd_private = zp; 975 976 /* 977 * Write records come in two flavors: immediate and indirect. 978 * For small writes it's cheaper to store the data with the 979 * log record (immediate); for large writes it's cheaper to 980 * sync the data and get a pointer to it (indirect) so that 981 * we don't have to write the data twice. 982 */ 983 if (buf != NULL) { /* immediate write */ 984 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 985 /* test for truncation needs to be done while range locked */ 986 if (offset >= zp->z_phys->zp_size) { 987 error = ENOENT; 988 } else { 989 error = dmu_read(os, object, offset, size, buf, 990 DMU_READ_NO_PREFETCH); 991 } 992 ASSERT(error == 0 || error == ENOENT); 993 } else { /* indirect write */ 994 /* 995 * Have to lock the whole block to ensure when it's 996 * written out and it's checksum is being calculated 997 * that no one can change the data. We need to re-check 998 * blocksize after we get the lock in case it's changed! 999 */ 1000 for (;;) { 1001 uint64_t blkoff; 1002 size = zp->z_blksz; 1003 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1004 offset -= blkoff; 1005 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1006 RL_READER); 1007 if (zp->z_blksz == size) 1008 break; 1009 offset += blkoff; 1010 zfs_range_unlock(zgd->zgd_rl); 1011 } 1012 /* test for truncation needs to be done while range locked */ 1013 if (lr->lr_offset >= zp->z_phys->zp_size) 1014 error = ENOENT; 1015 #ifdef DEBUG 1016 if (zil_fault_io) { 1017 error = EIO; 1018 zil_fault_io = 0; 1019 } 1020 #endif 1021 if (error == 0) 1022 error = dmu_buf_hold(os, object, offset, zgd, &db); 1023 1024 if (error == 0) { 1025 zgd->zgd_db = db; 1026 zgd->zgd_bp = bp; 1027 1028 ASSERT(db->db_offset == offset); 1029 ASSERT(db->db_size == size); 1030 1031 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1032 zfs_get_done, zgd); 1033 ASSERT(error || lr->lr_length <= zp->z_blksz); 1034 1035 /* 1036 * On success, we need to wait for the write I/O 1037 * initiated by dmu_sync() to complete before we can 1038 * release this dbuf. We will finish everything up 1039 * in the zfs_get_done() callback. 1040 */ 1041 if (error == 0) 1042 return (0); 1043 1044 if (error == EALREADY) { 1045 lr->lr_common.lrc_txtype = TX_WRITE2; 1046 error = 0; 1047 } 1048 } 1049 } 1050 1051 zfs_get_done(zgd, error); 1052 1053 return (error); 1054 } 1055 1056 /*ARGSUSED*/ 1057 static int 1058 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1059 caller_context_t *ct) 1060 { 1061 znode_t *zp = VTOZ(vp); 1062 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1063 int error; 1064 1065 ZFS_ENTER(zfsvfs); 1066 ZFS_VERIFY_ZP(zp); 1067 1068 if (flag & V_ACE_MASK) 1069 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1070 else 1071 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1072 1073 ZFS_EXIT(zfsvfs); 1074 return (error); 1075 } 1076 1077 /* 1078 * If vnode is for a device return a specfs vnode instead. 1079 */ 1080 static int 1081 specvp_check(vnode_t **vpp, cred_t *cr) 1082 { 1083 int error = 0; 1084 1085 if (IS_DEVVP(*vpp)) { 1086 struct vnode *svp; 1087 1088 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1089 VN_RELE(*vpp); 1090 if (svp == NULL) 1091 error = ENOSYS; 1092 *vpp = svp; 1093 } 1094 return (error); 1095 } 1096 1097 1098 /* 1099 * Lookup an entry in a directory, or an extended attribute directory. 1100 * If it exists, return a held vnode reference for it. 1101 * 1102 * IN: dvp - vnode of directory to search. 1103 * nm - name of entry to lookup. 1104 * pnp - full pathname to lookup [UNUSED]. 1105 * flags - LOOKUP_XATTR set if looking for an attribute. 1106 * rdir - root directory vnode [UNUSED]. 1107 * cr - credentials of caller. 1108 * ct - caller context 1109 * direntflags - directory lookup flags 1110 * realpnp - returned pathname. 1111 * 1112 * OUT: vpp - vnode of located entry, NULL if not found. 1113 * 1114 * RETURN: 0 if success 1115 * error code if failure 1116 * 1117 * Timestamps: 1118 * NA 1119 */ 1120 /* ARGSUSED */ 1121 static int 1122 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1123 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1124 int *direntflags, pathname_t *realpnp) 1125 { 1126 znode_t *zdp = VTOZ(dvp); 1127 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1128 int error = 0; 1129 1130 /* fast path */ 1131 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1132 1133 if (dvp->v_type != VDIR) { 1134 return (ENOTDIR); 1135 } else if (zdp->z_dbuf == NULL) { 1136 return (EIO); 1137 } 1138 1139 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1140 error = zfs_fastaccesschk_execute(zdp, cr); 1141 if (!error) { 1142 *vpp = dvp; 1143 VN_HOLD(*vpp); 1144 return (0); 1145 } 1146 return (error); 1147 } else { 1148 vnode_t *tvp = dnlc_lookup(dvp, nm); 1149 1150 if (tvp) { 1151 error = zfs_fastaccesschk_execute(zdp, cr); 1152 if (error) { 1153 VN_RELE(tvp); 1154 return (error); 1155 } 1156 if (tvp == DNLC_NO_VNODE) { 1157 VN_RELE(tvp); 1158 return (ENOENT); 1159 } else { 1160 *vpp = tvp; 1161 return (specvp_check(vpp, cr)); 1162 } 1163 } 1164 } 1165 } 1166 1167 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1168 1169 ZFS_ENTER(zfsvfs); 1170 ZFS_VERIFY_ZP(zdp); 1171 1172 *vpp = NULL; 1173 1174 if (flags & LOOKUP_XATTR) { 1175 /* 1176 * If the xattr property is off, refuse the lookup request. 1177 */ 1178 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1179 ZFS_EXIT(zfsvfs); 1180 return (EINVAL); 1181 } 1182 1183 /* 1184 * We don't allow recursive attributes.. 1185 * Maybe someday we will. 1186 */ 1187 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1188 ZFS_EXIT(zfsvfs); 1189 return (EINVAL); 1190 } 1191 1192 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1193 ZFS_EXIT(zfsvfs); 1194 return (error); 1195 } 1196 1197 /* 1198 * Do we have permission to get into attribute directory? 1199 */ 1200 1201 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1202 B_FALSE, cr)) { 1203 VN_RELE(*vpp); 1204 *vpp = NULL; 1205 } 1206 1207 ZFS_EXIT(zfsvfs); 1208 return (error); 1209 } 1210 1211 if (dvp->v_type != VDIR) { 1212 ZFS_EXIT(zfsvfs); 1213 return (ENOTDIR); 1214 } 1215 1216 /* 1217 * Check accessibility of directory. 1218 */ 1219 1220 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1221 ZFS_EXIT(zfsvfs); 1222 return (error); 1223 } 1224 1225 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1226 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1227 ZFS_EXIT(zfsvfs); 1228 return (EILSEQ); 1229 } 1230 1231 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1232 if (error == 0) 1233 error = specvp_check(vpp, cr); 1234 1235 ZFS_EXIT(zfsvfs); 1236 return (error); 1237 } 1238 1239 /* 1240 * Attempt to create a new entry in a directory. If the entry 1241 * already exists, truncate the file if permissible, else return 1242 * an error. Return the vp of the created or trunc'd file. 1243 * 1244 * IN: dvp - vnode of directory to put new file entry in. 1245 * name - name of new file entry. 1246 * vap - attributes of new file. 1247 * excl - flag indicating exclusive or non-exclusive mode. 1248 * mode - mode to open file with. 1249 * cr - credentials of caller. 1250 * flag - large file flag [UNUSED]. 1251 * ct - caller context 1252 * vsecp - ACL to be set 1253 * 1254 * OUT: vpp - vnode of created or trunc'd entry. 1255 * 1256 * RETURN: 0 if success 1257 * error code if failure 1258 * 1259 * Timestamps: 1260 * dvp - ctime|mtime updated if new entry created 1261 * vp - ctime|mtime always, atime if new 1262 */ 1263 1264 /* ARGSUSED */ 1265 static int 1266 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1267 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1268 vsecattr_t *vsecp) 1269 { 1270 znode_t *zp, *dzp = VTOZ(dvp); 1271 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1272 zilog_t *zilog; 1273 objset_t *os; 1274 zfs_dirlock_t *dl; 1275 dmu_tx_t *tx; 1276 int error; 1277 ksid_t *ksid; 1278 uid_t uid; 1279 gid_t gid = crgetgid(cr); 1280 zfs_acl_ids_t acl_ids; 1281 boolean_t fuid_dirtied; 1282 1283 /* 1284 * If we have an ephemeral id, ACL, or XVATTR then 1285 * make sure file system is at proper version 1286 */ 1287 1288 ksid = crgetsid(cr, KSID_OWNER); 1289 if (ksid) 1290 uid = ksid_getid(ksid); 1291 else 1292 uid = crgetuid(cr); 1293 1294 if (zfsvfs->z_use_fuids == B_FALSE && 1295 (vsecp || (vap->va_mask & AT_XVATTR) || 1296 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1297 return (EINVAL); 1298 1299 ZFS_ENTER(zfsvfs); 1300 ZFS_VERIFY_ZP(dzp); 1301 os = zfsvfs->z_os; 1302 zilog = zfsvfs->z_log; 1303 1304 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1305 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1306 ZFS_EXIT(zfsvfs); 1307 return (EILSEQ); 1308 } 1309 1310 if (vap->va_mask & AT_XVATTR) { 1311 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1312 crgetuid(cr), cr, vap->va_type)) != 0) { 1313 ZFS_EXIT(zfsvfs); 1314 return (error); 1315 } 1316 } 1317 top: 1318 *vpp = NULL; 1319 1320 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1321 vap->va_mode &= ~VSVTX; 1322 1323 if (*name == '\0') { 1324 /* 1325 * Null component name refers to the directory itself. 1326 */ 1327 VN_HOLD(dvp); 1328 zp = dzp; 1329 dl = NULL; 1330 error = 0; 1331 } else { 1332 /* possible VN_HOLD(zp) */ 1333 int zflg = 0; 1334 1335 if (flag & FIGNORECASE) 1336 zflg |= ZCILOOK; 1337 1338 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1339 NULL, NULL); 1340 if (error) { 1341 if (strcmp(name, "..") == 0) 1342 error = EISDIR; 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 } 1347 if (zp == NULL) { 1348 uint64_t txtype; 1349 1350 /* 1351 * Create a new file object and update the directory 1352 * to reference it. 1353 */ 1354 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1355 goto out; 1356 } 1357 1358 /* 1359 * We only support the creation of regular files in 1360 * extended attribute directories. 1361 */ 1362 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1363 (vap->va_type != VREG)) { 1364 error = EINVAL; 1365 goto out; 1366 } 1367 1368 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1369 &acl_ids)) != 0) 1370 goto out; 1371 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1372 zfs_acl_ids_free(&acl_ids); 1373 error = EDQUOT; 1374 goto out; 1375 } 1376 1377 tx = dmu_tx_create(os); 1378 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1379 fuid_dirtied = zfsvfs->z_fuid_dirty; 1380 if (fuid_dirtied) 1381 zfs_fuid_txhold(zfsvfs, tx); 1382 dmu_tx_hold_bonus(tx, dzp->z_id); 1383 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1384 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1385 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1386 0, SPA_MAXBLOCKSIZE); 1387 } 1388 error = dmu_tx_assign(tx, TXG_NOWAIT); 1389 if (error) { 1390 zfs_acl_ids_free(&acl_ids); 1391 zfs_dirent_unlock(dl); 1392 if (error == ERESTART) { 1393 dmu_tx_wait(tx); 1394 dmu_tx_abort(tx); 1395 goto top; 1396 } 1397 dmu_tx_abort(tx); 1398 ZFS_EXIT(zfsvfs); 1399 return (error); 1400 } 1401 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1402 1403 if (fuid_dirtied) 1404 zfs_fuid_sync(zfsvfs, tx); 1405 1406 (void) zfs_link_create(dl, zp, tx, ZNEW); 1407 1408 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1409 if (flag & FIGNORECASE) 1410 txtype |= TX_CI; 1411 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1412 vsecp, acl_ids.z_fuidp, vap); 1413 zfs_acl_ids_free(&acl_ids); 1414 dmu_tx_commit(tx); 1415 } else { 1416 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1417 1418 /* 1419 * A directory entry already exists for this name. 1420 */ 1421 /* 1422 * Can't truncate an existing file if in exclusive mode. 1423 */ 1424 if (excl == EXCL) { 1425 error = EEXIST; 1426 goto out; 1427 } 1428 /* 1429 * Can't open a directory for writing. 1430 */ 1431 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1432 error = EISDIR; 1433 goto out; 1434 } 1435 /* 1436 * Verify requested access to file. 1437 */ 1438 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1439 goto out; 1440 } 1441 1442 mutex_enter(&dzp->z_lock); 1443 dzp->z_seq++; 1444 mutex_exit(&dzp->z_lock); 1445 1446 /* 1447 * Truncate regular files if requested. 1448 */ 1449 if ((ZTOV(zp)->v_type == VREG) && 1450 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1451 /* we can't hold any locks when calling zfs_freesp() */ 1452 zfs_dirent_unlock(dl); 1453 dl = NULL; 1454 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1455 if (error == 0) { 1456 vnevent_create(ZTOV(zp), ct); 1457 } 1458 } 1459 } 1460 out: 1461 1462 if (dl) 1463 zfs_dirent_unlock(dl); 1464 1465 if (error) { 1466 if (zp) 1467 VN_RELE(ZTOV(zp)); 1468 } else { 1469 *vpp = ZTOV(zp); 1470 error = specvp_check(vpp, cr); 1471 } 1472 1473 ZFS_EXIT(zfsvfs); 1474 return (error); 1475 } 1476 1477 /* 1478 * Remove an entry from a directory. 1479 * 1480 * IN: dvp - vnode of directory to remove entry from. 1481 * name - name of entry to remove. 1482 * cr - credentials of caller. 1483 * ct - caller context 1484 * flags - case flags 1485 * 1486 * RETURN: 0 if success 1487 * error code if failure 1488 * 1489 * Timestamps: 1490 * dvp - ctime|mtime 1491 * vp - ctime (if nlink > 0) 1492 */ 1493 /*ARGSUSED*/ 1494 static int 1495 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1496 int flags) 1497 { 1498 znode_t *zp, *dzp = VTOZ(dvp); 1499 znode_t *xzp = NULL; 1500 vnode_t *vp; 1501 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1502 zilog_t *zilog; 1503 uint64_t acl_obj, xattr_obj; 1504 zfs_dirlock_t *dl; 1505 dmu_tx_t *tx; 1506 boolean_t may_delete_now, delete_now = FALSE; 1507 boolean_t unlinked, toobig = FALSE; 1508 uint64_t txtype; 1509 pathname_t *realnmp = NULL; 1510 pathname_t realnm; 1511 int error; 1512 int zflg = ZEXISTS; 1513 1514 ZFS_ENTER(zfsvfs); 1515 ZFS_VERIFY_ZP(dzp); 1516 zilog = zfsvfs->z_log; 1517 1518 if (flags & FIGNORECASE) { 1519 zflg |= ZCILOOK; 1520 pn_alloc(&realnm); 1521 realnmp = &realnm; 1522 } 1523 1524 top: 1525 /* 1526 * Attempt to lock directory; fail if entry doesn't exist. 1527 */ 1528 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1529 NULL, realnmp)) { 1530 if (realnmp) 1531 pn_free(realnmp); 1532 ZFS_EXIT(zfsvfs); 1533 return (error); 1534 } 1535 1536 vp = ZTOV(zp); 1537 1538 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1539 goto out; 1540 } 1541 1542 /* 1543 * Need to use rmdir for removing directories. 1544 */ 1545 if (vp->v_type == VDIR) { 1546 error = EPERM; 1547 goto out; 1548 } 1549 1550 vnevent_remove(vp, dvp, name, ct); 1551 1552 if (realnmp) 1553 dnlc_remove(dvp, realnmp->pn_buf); 1554 else 1555 dnlc_remove(dvp, name); 1556 1557 mutex_enter(&vp->v_lock); 1558 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1559 mutex_exit(&vp->v_lock); 1560 1561 /* 1562 * We may delete the znode now, or we may put it in the unlinked set; 1563 * it depends on whether we're the last link, and on whether there are 1564 * other holds on the vnode. So we dmu_tx_hold() the right things to 1565 * allow for either case. 1566 */ 1567 tx = dmu_tx_create(zfsvfs->z_os); 1568 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1569 dmu_tx_hold_bonus(tx, zp->z_id); 1570 if (may_delete_now) { 1571 toobig = 1572 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1573 /* if the file is too big, only hold_free a token amount */ 1574 dmu_tx_hold_free(tx, zp->z_id, 0, 1575 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1576 } 1577 1578 /* are there any extended attributes? */ 1579 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1580 /* XXX - do we need this if we are deleting? */ 1581 dmu_tx_hold_bonus(tx, xattr_obj); 1582 } 1583 1584 /* are there any additional acls */ 1585 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1586 may_delete_now) 1587 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1588 1589 /* charge as an update -- would be nice not to charge at all */ 1590 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1591 1592 error = dmu_tx_assign(tx, TXG_NOWAIT); 1593 if (error) { 1594 zfs_dirent_unlock(dl); 1595 VN_RELE(vp); 1596 if (error == ERESTART) { 1597 dmu_tx_wait(tx); 1598 dmu_tx_abort(tx); 1599 goto top; 1600 } 1601 if (realnmp) 1602 pn_free(realnmp); 1603 dmu_tx_abort(tx); 1604 ZFS_EXIT(zfsvfs); 1605 return (error); 1606 } 1607 1608 /* 1609 * Remove the directory entry. 1610 */ 1611 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1612 1613 if (error) { 1614 dmu_tx_commit(tx); 1615 goto out; 1616 } 1617 1618 if (unlinked) { 1619 mutex_enter(&vp->v_lock); 1620 delete_now = may_delete_now && !toobig && 1621 vp->v_count == 1 && !vn_has_cached_data(vp) && 1622 zp->z_phys->zp_xattr == xattr_obj && 1623 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1624 mutex_exit(&vp->v_lock); 1625 } 1626 1627 if (delete_now) { 1628 if (zp->z_phys->zp_xattr) { 1629 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1630 ASSERT3U(error, ==, 0); 1631 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1632 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1633 mutex_enter(&xzp->z_lock); 1634 xzp->z_unlinked = 1; 1635 xzp->z_phys->zp_links = 0; 1636 mutex_exit(&xzp->z_lock); 1637 zfs_unlinked_add(xzp, tx); 1638 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1639 } 1640 mutex_enter(&zp->z_lock); 1641 mutex_enter(&vp->v_lock); 1642 vp->v_count--; 1643 ASSERT3U(vp->v_count, ==, 0); 1644 mutex_exit(&vp->v_lock); 1645 mutex_exit(&zp->z_lock); 1646 zfs_znode_delete(zp, tx); 1647 } else if (unlinked) { 1648 zfs_unlinked_add(zp, tx); 1649 } 1650 1651 txtype = TX_REMOVE; 1652 if (flags & FIGNORECASE) 1653 txtype |= TX_CI; 1654 zfs_log_remove(zilog, tx, txtype, dzp, name); 1655 1656 dmu_tx_commit(tx); 1657 out: 1658 if (realnmp) 1659 pn_free(realnmp); 1660 1661 zfs_dirent_unlock(dl); 1662 1663 if (!delete_now) { 1664 VN_RELE(vp); 1665 } else if (xzp) { 1666 /* this rele is delayed to prevent nesting transactions */ 1667 VN_RELE(ZTOV(xzp)); 1668 } 1669 1670 ZFS_EXIT(zfsvfs); 1671 return (error); 1672 } 1673 1674 /* 1675 * Create a new directory and insert it into dvp using the name 1676 * provided. Return a pointer to the inserted directory. 1677 * 1678 * IN: dvp - vnode of directory to add subdir to. 1679 * dirname - name of new directory. 1680 * vap - attributes of new directory. 1681 * cr - credentials of caller. 1682 * ct - caller context 1683 * vsecp - ACL to be set 1684 * 1685 * OUT: vpp - vnode of created directory. 1686 * 1687 * RETURN: 0 if success 1688 * error code if failure 1689 * 1690 * Timestamps: 1691 * dvp - ctime|mtime updated 1692 * vp - ctime|mtime|atime updated 1693 */ 1694 /*ARGSUSED*/ 1695 static int 1696 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1697 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1698 { 1699 znode_t *zp, *dzp = VTOZ(dvp); 1700 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1701 zilog_t *zilog; 1702 zfs_dirlock_t *dl; 1703 uint64_t txtype; 1704 dmu_tx_t *tx; 1705 int error; 1706 int zf = ZNEW; 1707 ksid_t *ksid; 1708 uid_t uid; 1709 gid_t gid = crgetgid(cr); 1710 zfs_acl_ids_t acl_ids; 1711 boolean_t fuid_dirtied; 1712 1713 ASSERT(vap->va_type == VDIR); 1714 1715 /* 1716 * If we have an ephemeral id, ACL, or XVATTR then 1717 * make sure file system is at proper version 1718 */ 1719 1720 ksid = crgetsid(cr, KSID_OWNER); 1721 if (ksid) 1722 uid = ksid_getid(ksid); 1723 else 1724 uid = crgetuid(cr); 1725 if (zfsvfs->z_use_fuids == B_FALSE && 1726 (vsecp || (vap->va_mask & AT_XVATTR) || 1727 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1728 return (EINVAL); 1729 1730 ZFS_ENTER(zfsvfs); 1731 ZFS_VERIFY_ZP(dzp); 1732 zilog = zfsvfs->z_log; 1733 1734 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1735 ZFS_EXIT(zfsvfs); 1736 return (EINVAL); 1737 } 1738 1739 if (zfsvfs->z_utf8 && u8_validate(dirname, 1740 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1741 ZFS_EXIT(zfsvfs); 1742 return (EILSEQ); 1743 } 1744 if (flags & FIGNORECASE) 1745 zf |= ZCILOOK; 1746 1747 if (vap->va_mask & AT_XVATTR) 1748 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1749 crgetuid(cr), cr, vap->va_type)) != 0) { 1750 ZFS_EXIT(zfsvfs); 1751 return (error); 1752 } 1753 1754 /* 1755 * First make sure the new directory doesn't exist. 1756 */ 1757 top: 1758 *vpp = NULL; 1759 1760 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1761 NULL, NULL)) { 1762 ZFS_EXIT(zfsvfs); 1763 return (error); 1764 } 1765 1766 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1767 zfs_dirent_unlock(dl); 1768 ZFS_EXIT(zfsvfs); 1769 return (error); 1770 } 1771 1772 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1773 &acl_ids)) != 0) { 1774 zfs_dirent_unlock(dl); 1775 ZFS_EXIT(zfsvfs); 1776 return (error); 1777 } 1778 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1779 zfs_acl_ids_free(&acl_ids); 1780 zfs_dirent_unlock(dl); 1781 ZFS_EXIT(zfsvfs); 1782 return (EDQUOT); 1783 } 1784 1785 /* 1786 * Add a new entry to the directory. 1787 */ 1788 tx = dmu_tx_create(zfsvfs->z_os); 1789 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1790 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1791 fuid_dirtied = zfsvfs->z_fuid_dirty; 1792 if (fuid_dirtied) 1793 zfs_fuid_txhold(zfsvfs, tx); 1794 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1795 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1796 0, SPA_MAXBLOCKSIZE); 1797 error = dmu_tx_assign(tx, TXG_NOWAIT); 1798 if (error) { 1799 zfs_acl_ids_free(&acl_ids); 1800 zfs_dirent_unlock(dl); 1801 if (error == ERESTART) { 1802 dmu_tx_wait(tx); 1803 dmu_tx_abort(tx); 1804 goto top; 1805 } 1806 dmu_tx_abort(tx); 1807 ZFS_EXIT(zfsvfs); 1808 return (error); 1809 } 1810 1811 /* 1812 * Create new node. 1813 */ 1814 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1815 1816 if (fuid_dirtied) 1817 zfs_fuid_sync(zfsvfs, tx); 1818 /* 1819 * Now put new name in parent dir. 1820 */ 1821 (void) zfs_link_create(dl, zp, tx, ZNEW); 1822 1823 *vpp = ZTOV(zp); 1824 1825 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1826 if (flags & FIGNORECASE) 1827 txtype |= TX_CI; 1828 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1829 acl_ids.z_fuidp, vap); 1830 1831 zfs_acl_ids_free(&acl_ids); 1832 dmu_tx_commit(tx); 1833 1834 zfs_dirent_unlock(dl); 1835 1836 ZFS_EXIT(zfsvfs); 1837 return (0); 1838 } 1839 1840 /* 1841 * Remove a directory subdir entry. If the current working 1842 * directory is the same as the subdir to be removed, the 1843 * remove will fail. 1844 * 1845 * IN: dvp - vnode of directory to remove from. 1846 * name - name of directory to be removed. 1847 * cwd - vnode of current working directory. 1848 * cr - credentials of caller. 1849 * ct - caller context 1850 * flags - case flags 1851 * 1852 * RETURN: 0 if success 1853 * error code if failure 1854 * 1855 * Timestamps: 1856 * dvp - ctime|mtime updated 1857 */ 1858 /*ARGSUSED*/ 1859 static int 1860 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1861 caller_context_t *ct, int flags) 1862 { 1863 znode_t *dzp = VTOZ(dvp); 1864 znode_t *zp; 1865 vnode_t *vp; 1866 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1867 zilog_t *zilog; 1868 zfs_dirlock_t *dl; 1869 dmu_tx_t *tx; 1870 int error; 1871 int zflg = ZEXISTS; 1872 1873 ZFS_ENTER(zfsvfs); 1874 ZFS_VERIFY_ZP(dzp); 1875 zilog = zfsvfs->z_log; 1876 1877 if (flags & FIGNORECASE) 1878 zflg |= ZCILOOK; 1879 top: 1880 zp = NULL; 1881 1882 /* 1883 * Attempt to lock directory; fail if entry doesn't exist. 1884 */ 1885 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1886 NULL, NULL)) { 1887 ZFS_EXIT(zfsvfs); 1888 return (error); 1889 } 1890 1891 vp = ZTOV(zp); 1892 1893 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1894 goto out; 1895 } 1896 1897 if (vp->v_type != VDIR) { 1898 error = ENOTDIR; 1899 goto out; 1900 } 1901 1902 if (vp == cwd) { 1903 error = EINVAL; 1904 goto out; 1905 } 1906 1907 vnevent_rmdir(vp, dvp, name, ct); 1908 1909 /* 1910 * Grab a lock on the directory to make sure that noone is 1911 * trying to add (or lookup) entries while we are removing it. 1912 */ 1913 rw_enter(&zp->z_name_lock, RW_WRITER); 1914 1915 /* 1916 * Grab a lock on the parent pointer to make sure we play well 1917 * with the treewalk and directory rename code. 1918 */ 1919 rw_enter(&zp->z_parent_lock, RW_WRITER); 1920 1921 tx = dmu_tx_create(zfsvfs->z_os); 1922 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1923 dmu_tx_hold_bonus(tx, zp->z_id); 1924 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1925 error = dmu_tx_assign(tx, TXG_NOWAIT); 1926 if (error) { 1927 rw_exit(&zp->z_parent_lock); 1928 rw_exit(&zp->z_name_lock); 1929 zfs_dirent_unlock(dl); 1930 VN_RELE(vp); 1931 if (error == ERESTART) { 1932 dmu_tx_wait(tx); 1933 dmu_tx_abort(tx); 1934 goto top; 1935 } 1936 dmu_tx_abort(tx); 1937 ZFS_EXIT(zfsvfs); 1938 return (error); 1939 } 1940 1941 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1942 1943 if (error == 0) { 1944 uint64_t txtype = TX_RMDIR; 1945 if (flags & FIGNORECASE) 1946 txtype |= TX_CI; 1947 zfs_log_remove(zilog, tx, txtype, dzp, name); 1948 } 1949 1950 dmu_tx_commit(tx); 1951 1952 rw_exit(&zp->z_parent_lock); 1953 rw_exit(&zp->z_name_lock); 1954 out: 1955 zfs_dirent_unlock(dl); 1956 1957 VN_RELE(vp); 1958 1959 ZFS_EXIT(zfsvfs); 1960 return (error); 1961 } 1962 1963 /* 1964 * Read as many directory entries as will fit into the provided 1965 * buffer from the given directory cursor position (specified in 1966 * the uio structure. 1967 * 1968 * IN: vp - vnode of directory to read. 1969 * uio - structure supplying read location, range info, 1970 * and return buffer. 1971 * cr - credentials of caller. 1972 * ct - caller context 1973 * flags - case flags 1974 * 1975 * OUT: uio - updated offset and range, buffer filled. 1976 * eofp - set to true if end-of-file detected. 1977 * 1978 * RETURN: 0 if success 1979 * error code if failure 1980 * 1981 * Timestamps: 1982 * vp - atime updated 1983 * 1984 * Note that the low 4 bits of the cookie returned by zap is always zero. 1985 * This allows us to use the low range for "special" directory entries: 1986 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1987 * we use the offset 2 for the '.zfs' directory. 1988 */ 1989 /* ARGSUSED */ 1990 static int 1991 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1992 caller_context_t *ct, int flags) 1993 { 1994 znode_t *zp = VTOZ(vp); 1995 iovec_t *iovp; 1996 edirent_t *eodp; 1997 dirent64_t *odp; 1998 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1999 objset_t *os; 2000 caddr_t outbuf; 2001 size_t bufsize; 2002 zap_cursor_t zc; 2003 zap_attribute_t zap; 2004 uint_t bytes_wanted; 2005 uint64_t offset; /* must be unsigned; checks for < 1 */ 2006 int local_eof; 2007 int outcount; 2008 int error; 2009 uint8_t prefetch; 2010 boolean_t check_sysattrs; 2011 2012 ZFS_ENTER(zfsvfs); 2013 ZFS_VERIFY_ZP(zp); 2014 2015 /* 2016 * If we are not given an eof variable, 2017 * use a local one. 2018 */ 2019 if (eofp == NULL) 2020 eofp = &local_eof; 2021 2022 /* 2023 * Check for valid iov_len. 2024 */ 2025 if (uio->uio_iov->iov_len <= 0) { 2026 ZFS_EXIT(zfsvfs); 2027 return (EINVAL); 2028 } 2029 2030 /* 2031 * Quit if directory has been removed (posix) 2032 */ 2033 if ((*eofp = zp->z_unlinked) != 0) { 2034 ZFS_EXIT(zfsvfs); 2035 return (0); 2036 } 2037 2038 error = 0; 2039 os = zfsvfs->z_os; 2040 offset = uio->uio_loffset; 2041 prefetch = zp->z_zn_prefetch; 2042 2043 /* 2044 * Initialize the iterator cursor. 2045 */ 2046 if (offset <= 3) { 2047 /* 2048 * Start iteration from the beginning of the directory. 2049 */ 2050 zap_cursor_init(&zc, os, zp->z_id); 2051 } else { 2052 /* 2053 * The offset is a serialized cursor. 2054 */ 2055 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2056 } 2057 2058 /* 2059 * Get space to change directory entries into fs independent format. 2060 */ 2061 iovp = uio->uio_iov; 2062 bytes_wanted = iovp->iov_len; 2063 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2064 bufsize = bytes_wanted; 2065 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2066 odp = (struct dirent64 *)outbuf; 2067 } else { 2068 bufsize = bytes_wanted; 2069 odp = (struct dirent64 *)iovp->iov_base; 2070 } 2071 eodp = (struct edirent *)odp; 2072 2073 /* 2074 * If this VFS supports the system attribute view interface; and 2075 * we're looking at an extended attribute directory; and we care 2076 * about normalization conflicts on this vfs; then we must check 2077 * for normalization conflicts with the sysattr name space. 2078 */ 2079 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2080 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2081 (flags & V_RDDIR_ENTFLAGS); 2082 2083 /* 2084 * Transform to file-system independent format 2085 */ 2086 outcount = 0; 2087 while (outcount < bytes_wanted) { 2088 ino64_t objnum; 2089 ushort_t reclen; 2090 off64_t *next; 2091 2092 /* 2093 * Special case `.', `..', and `.zfs'. 2094 */ 2095 if (offset == 0) { 2096 (void) strcpy(zap.za_name, "."); 2097 zap.za_normalization_conflict = 0; 2098 objnum = zp->z_id; 2099 } else if (offset == 1) { 2100 (void) strcpy(zap.za_name, ".."); 2101 zap.za_normalization_conflict = 0; 2102 objnum = zp->z_phys->zp_parent; 2103 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2104 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2105 zap.za_normalization_conflict = 0; 2106 objnum = ZFSCTL_INO_ROOT; 2107 } else { 2108 /* 2109 * Grab next entry. 2110 */ 2111 if (error = zap_cursor_retrieve(&zc, &zap)) { 2112 if ((*eofp = (error == ENOENT)) != 0) 2113 break; 2114 else 2115 goto update; 2116 } 2117 2118 if (zap.za_integer_length != 8 || 2119 zap.za_num_integers != 1) { 2120 cmn_err(CE_WARN, "zap_readdir: bad directory " 2121 "entry, obj = %lld, offset = %lld\n", 2122 (u_longlong_t)zp->z_id, 2123 (u_longlong_t)offset); 2124 error = ENXIO; 2125 goto update; 2126 } 2127 2128 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2129 /* 2130 * MacOS X can extract the object type here such as: 2131 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2132 */ 2133 2134 if (check_sysattrs && !zap.za_normalization_conflict) { 2135 zap.za_normalization_conflict = 2136 xattr_sysattr_casechk(zap.za_name); 2137 } 2138 } 2139 2140 if (flags & V_RDDIR_ACCFILTER) { 2141 /* 2142 * If we have no access at all, don't include 2143 * this entry in the returned information 2144 */ 2145 znode_t *ezp; 2146 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2147 goto skip_entry; 2148 if (!zfs_has_access(ezp, cr)) { 2149 VN_RELE(ZTOV(ezp)); 2150 goto skip_entry; 2151 } 2152 VN_RELE(ZTOV(ezp)); 2153 } 2154 2155 if (flags & V_RDDIR_ENTFLAGS) 2156 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2157 else 2158 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2159 2160 /* 2161 * Will this entry fit in the buffer? 2162 */ 2163 if (outcount + reclen > bufsize) { 2164 /* 2165 * Did we manage to fit anything in the buffer? 2166 */ 2167 if (!outcount) { 2168 error = EINVAL; 2169 goto update; 2170 } 2171 break; 2172 } 2173 if (flags & V_RDDIR_ENTFLAGS) { 2174 /* 2175 * Add extended flag entry: 2176 */ 2177 eodp->ed_ino = objnum; 2178 eodp->ed_reclen = reclen; 2179 /* NOTE: ed_off is the offset for the *next* entry */ 2180 next = &(eodp->ed_off); 2181 eodp->ed_eflags = zap.za_normalization_conflict ? 2182 ED_CASE_CONFLICT : 0; 2183 (void) strncpy(eodp->ed_name, zap.za_name, 2184 EDIRENT_NAMELEN(reclen)); 2185 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2186 } else { 2187 /* 2188 * Add normal entry: 2189 */ 2190 odp->d_ino = objnum; 2191 odp->d_reclen = reclen; 2192 /* NOTE: d_off is the offset for the *next* entry */ 2193 next = &(odp->d_off); 2194 (void) strncpy(odp->d_name, zap.za_name, 2195 DIRENT64_NAMELEN(reclen)); 2196 odp = (dirent64_t *)((intptr_t)odp + reclen); 2197 } 2198 outcount += reclen; 2199 2200 ASSERT(outcount <= bufsize); 2201 2202 /* Prefetch znode */ 2203 if (prefetch) 2204 dmu_prefetch(os, objnum, 0, 0); 2205 2206 skip_entry: 2207 /* 2208 * Move to the next entry, fill in the previous offset. 2209 */ 2210 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2211 zap_cursor_advance(&zc); 2212 offset = zap_cursor_serialize(&zc); 2213 } else { 2214 offset += 1; 2215 } 2216 *next = offset; 2217 } 2218 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2219 2220 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2221 iovp->iov_base += outcount; 2222 iovp->iov_len -= outcount; 2223 uio->uio_resid -= outcount; 2224 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2225 /* 2226 * Reset the pointer. 2227 */ 2228 offset = uio->uio_loffset; 2229 } 2230 2231 update: 2232 zap_cursor_fini(&zc); 2233 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2234 kmem_free(outbuf, bufsize); 2235 2236 if (error == ENOENT) 2237 error = 0; 2238 2239 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2240 2241 uio->uio_loffset = offset; 2242 ZFS_EXIT(zfsvfs); 2243 return (error); 2244 } 2245 2246 ulong_t zfs_fsync_sync_cnt = 4; 2247 2248 static int 2249 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2250 { 2251 znode_t *zp = VTOZ(vp); 2252 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2253 2254 /* 2255 * Regardless of whether this is required for standards conformance, 2256 * this is the logical behavior when fsync() is called on a file with 2257 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2258 * going to be pushed out as part of the zil_commit(). 2259 */ 2260 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2261 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2262 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2263 2264 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2265 2266 ZFS_ENTER(zfsvfs); 2267 ZFS_VERIFY_ZP(zp); 2268 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2269 ZFS_EXIT(zfsvfs); 2270 return (0); 2271 } 2272 2273 2274 /* 2275 * Get the requested file attributes and place them in the provided 2276 * vattr structure. 2277 * 2278 * IN: vp - vnode of file. 2279 * vap - va_mask identifies requested attributes. 2280 * If AT_XVATTR set, then optional attrs are requested 2281 * flags - ATTR_NOACLCHECK (CIFS server context) 2282 * cr - credentials of caller. 2283 * ct - caller context 2284 * 2285 * OUT: vap - attribute values. 2286 * 2287 * RETURN: 0 (always succeeds) 2288 */ 2289 /* ARGSUSED */ 2290 static int 2291 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2292 caller_context_t *ct) 2293 { 2294 znode_t *zp = VTOZ(vp); 2295 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2296 znode_phys_t *pzp; 2297 int error = 0; 2298 uint64_t links; 2299 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2300 xoptattr_t *xoap = NULL; 2301 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2302 2303 ZFS_ENTER(zfsvfs); 2304 ZFS_VERIFY_ZP(zp); 2305 pzp = zp->z_phys; 2306 2307 /* 2308 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2309 * Also, if we are the owner don't bother, since owner should 2310 * always be allowed to read basic attributes of file. 2311 */ 2312 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2313 (pzp->zp_uid != crgetuid(cr))) { 2314 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2315 skipaclchk, cr)) { 2316 ZFS_EXIT(zfsvfs); 2317 return (error); 2318 } 2319 } 2320 2321 /* 2322 * Return all attributes. It's cheaper to provide the answer 2323 * than to determine whether we were asked the question. 2324 */ 2325 2326 mutex_enter(&zp->z_lock); 2327 vap->va_type = vp->v_type; 2328 vap->va_mode = pzp->zp_mode & MODEMASK; 2329 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2330 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2331 vap->va_nodeid = zp->z_id; 2332 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2333 links = pzp->zp_links + 1; 2334 else 2335 links = pzp->zp_links; 2336 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2337 vap->va_size = pzp->zp_size; 2338 vap->va_rdev = vp->v_rdev; 2339 vap->va_seq = zp->z_seq; 2340 2341 /* 2342 * Add in any requested optional attributes and the create time. 2343 * Also set the corresponding bits in the returned attribute bitmap. 2344 */ 2345 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2346 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2347 xoap->xoa_archive = 2348 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2349 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2350 } 2351 2352 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2353 xoap->xoa_readonly = 2354 ((pzp->zp_flags & ZFS_READONLY) != 0); 2355 XVA_SET_RTN(xvap, XAT_READONLY); 2356 } 2357 2358 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2359 xoap->xoa_system = 2360 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2361 XVA_SET_RTN(xvap, XAT_SYSTEM); 2362 } 2363 2364 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2365 xoap->xoa_hidden = 2366 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2367 XVA_SET_RTN(xvap, XAT_HIDDEN); 2368 } 2369 2370 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2371 xoap->xoa_nounlink = 2372 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2373 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2374 } 2375 2376 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2377 xoap->xoa_immutable = 2378 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2379 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2380 } 2381 2382 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2383 xoap->xoa_appendonly = 2384 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2385 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2386 } 2387 2388 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2389 xoap->xoa_nodump = 2390 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2391 XVA_SET_RTN(xvap, XAT_NODUMP); 2392 } 2393 2394 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2395 xoap->xoa_opaque = 2396 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2397 XVA_SET_RTN(xvap, XAT_OPAQUE); 2398 } 2399 2400 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2401 xoap->xoa_av_quarantined = 2402 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2403 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2404 } 2405 2406 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2407 xoap->xoa_av_modified = 2408 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2409 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2410 } 2411 2412 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2413 vp->v_type == VREG && 2414 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2415 size_t len; 2416 dmu_object_info_t doi; 2417 2418 /* 2419 * Only VREG files have anti-virus scanstamps, so we 2420 * won't conflict with symlinks in the bonus buffer. 2421 */ 2422 dmu_object_info_from_db(zp->z_dbuf, &doi); 2423 len = sizeof (xoap->xoa_av_scanstamp) + 2424 sizeof (znode_phys_t); 2425 if (len <= doi.doi_bonus_size) { 2426 /* 2427 * pzp points to the start of the 2428 * znode_phys_t. pzp + 1 points to the 2429 * first byte after the znode_phys_t. 2430 */ 2431 (void) memcpy(xoap->xoa_av_scanstamp, 2432 pzp + 1, 2433 sizeof (xoap->xoa_av_scanstamp)); 2434 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2435 } 2436 } 2437 2438 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2439 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2440 XVA_SET_RTN(xvap, XAT_CREATETIME); 2441 } 2442 2443 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2444 xoap->xoa_reparse = 2445 ((pzp->zp_flags & ZFS_REPARSE) != 0); 2446 XVA_SET_RTN(xvap, XAT_REPARSE); 2447 } 2448 } 2449 2450 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2451 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2452 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2453 2454 mutex_exit(&zp->z_lock); 2455 2456 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2457 2458 if (zp->z_blksz == 0) { 2459 /* 2460 * Block size hasn't been set; suggest maximal I/O transfers. 2461 */ 2462 vap->va_blksize = zfsvfs->z_max_blksz; 2463 } 2464 2465 ZFS_EXIT(zfsvfs); 2466 return (0); 2467 } 2468 2469 /* 2470 * Set the file attributes to the values contained in the 2471 * vattr structure. 2472 * 2473 * IN: vp - vnode of file to be modified. 2474 * vap - new attribute values. 2475 * If AT_XVATTR set, then optional attrs are being set 2476 * flags - ATTR_UTIME set if non-default time values provided. 2477 * - ATTR_NOACLCHECK (CIFS context only). 2478 * cr - credentials of caller. 2479 * ct - caller context 2480 * 2481 * RETURN: 0 if success 2482 * error code if failure 2483 * 2484 * Timestamps: 2485 * vp - ctime updated, mtime updated if size changed. 2486 */ 2487 /* ARGSUSED */ 2488 static int 2489 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2490 caller_context_t *ct) 2491 { 2492 znode_t *zp = VTOZ(vp); 2493 znode_phys_t *pzp; 2494 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2495 zilog_t *zilog; 2496 dmu_tx_t *tx; 2497 vattr_t oldva; 2498 xvattr_t tmpxvattr; 2499 uint_t mask = vap->va_mask; 2500 uint_t saved_mask; 2501 int trim_mask = 0; 2502 uint64_t new_mode; 2503 uint64_t new_uid, new_gid; 2504 znode_t *attrzp; 2505 int need_policy = FALSE; 2506 int err; 2507 zfs_fuid_info_t *fuidp = NULL; 2508 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2509 xoptattr_t *xoap; 2510 zfs_acl_t *aclp = NULL; 2511 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2512 boolean_t fuid_dirtied = B_FALSE; 2513 2514 if (mask == 0) 2515 return (0); 2516 2517 if (mask & AT_NOSET) 2518 return (EINVAL); 2519 2520 ZFS_ENTER(zfsvfs); 2521 ZFS_VERIFY_ZP(zp); 2522 2523 pzp = zp->z_phys; 2524 zilog = zfsvfs->z_log; 2525 2526 /* 2527 * Make sure that if we have ephemeral uid/gid or xvattr specified 2528 * that file system is at proper version level 2529 */ 2530 2531 if (zfsvfs->z_use_fuids == B_FALSE && 2532 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2533 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2534 (mask & AT_XVATTR))) { 2535 ZFS_EXIT(zfsvfs); 2536 return (EINVAL); 2537 } 2538 2539 if (mask & AT_SIZE && vp->v_type == VDIR) { 2540 ZFS_EXIT(zfsvfs); 2541 return (EISDIR); 2542 } 2543 2544 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2545 ZFS_EXIT(zfsvfs); 2546 return (EINVAL); 2547 } 2548 2549 /* 2550 * If this is an xvattr_t, then get a pointer to the structure of 2551 * optional attributes. If this is NULL, then we have a vattr_t. 2552 */ 2553 xoap = xva_getxoptattr(xvap); 2554 2555 xva_init(&tmpxvattr); 2556 2557 /* 2558 * Immutable files can only alter immutable bit and atime 2559 */ 2560 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2561 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2562 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2563 ZFS_EXIT(zfsvfs); 2564 return (EPERM); 2565 } 2566 2567 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2568 ZFS_EXIT(zfsvfs); 2569 return (EPERM); 2570 } 2571 2572 /* 2573 * Verify timestamps doesn't overflow 32 bits. 2574 * ZFS can handle large timestamps, but 32bit syscalls can't 2575 * handle times greater than 2039. This check should be removed 2576 * once large timestamps are fully supported. 2577 */ 2578 if (mask & (AT_ATIME | AT_MTIME)) { 2579 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2580 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2581 ZFS_EXIT(zfsvfs); 2582 return (EOVERFLOW); 2583 } 2584 } 2585 2586 top: 2587 attrzp = NULL; 2588 2589 /* Can this be moved to before the top label? */ 2590 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2591 ZFS_EXIT(zfsvfs); 2592 return (EROFS); 2593 } 2594 2595 /* 2596 * First validate permissions 2597 */ 2598 2599 if (mask & AT_SIZE) { 2600 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2601 if (err) { 2602 ZFS_EXIT(zfsvfs); 2603 return (err); 2604 } 2605 /* 2606 * XXX - Note, we are not providing any open 2607 * mode flags here (like FNDELAY), so we may 2608 * block if there are locks present... this 2609 * should be addressed in openat(). 2610 */ 2611 /* XXX - would it be OK to generate a log record here? */ 2612 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2613 if (err) { 2614 ZFS_EXIT(zfsvfs); 2615 return (err); 2616 } 2617 } 2618 2619 if (mask & (AT_ATIME|AT_MTIME) || 2620 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2621 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2622 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2623 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2624 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2625 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2626 skipaclchk, cr); 2627 2628 if (mask & (AT_UID|AT_GID)) { 2629 int idmask = (mask & (AT_UID|AT_GID)); 2630 int take_owner; 2631 int take_group; 2632 2633 /* 2634 * NOTE: even if a new mode is being set, 2635 * we may clear S_ISUID/S_ISGID bits. 2636 */ 2637 2638 if (!(mask & AT_MODE)) 2639 vap->va_mode = pzp->zp_mode; 2640 2641 /* 2642 * Take ownership or chgrp to group we are a member of 2643 */ 2644 2645 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2646 take_group = (mask & AT_GID) && 2647 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2648 2649 /* 2650 * If both AT_UID and AT_GID are set then take_owner and 2651 * take_group must both be set in order to allow taking 2652 * ownership. 2653 * 2654 * Otherwise, send the check through secpolicy_vnode_setattr() 2655 * 2656 */ 2657 2658 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2659 ((idmask == AT_UID) && take_owner) || 2660 ((idmask == AT_GID) && take_group)) { 2661 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2662 skipaclchk, cr) == 0) { 2663 /* 2664 * Remove setuid/setgid for non-privileged users 2665 */ 2666 secpolicy_setid_clear(vap, cr); 2667 trim_mask = (mask & (AT_UID|AT_GID)); 2668 } else { 2669 need_policy = TRUE; 2670 } 2671 } else { 2672 need_policy = TRUE; 2673 } 2674 } 2675 2676 mutex_enter(&zp->z_lock); 2677 oldva.va_mode = pzp->zp_mode; 2678 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2679 if (mask & AT_XVATTR) { 2680 /* 2681 * Update xvattr mask to include only those attributes 2682 * that are actually changing. 2683 * 2684 * the bits will be restored prior to actually setting 2685 * the attributes so the caller thinks they were set. 2686 */ 2687 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2688 if (xoap->xoa_appendonly != 2689 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2690 need_policy = TRUE; 2691 } else { 2692 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2693 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2694 } 2695 } 2696 2697 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2698 if (xoap->xoa_nounlink != 2699 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2700 need_policy = TRUE; 2701 } else { 2702 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2703 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2704 } 2705 } 2706 2707 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2708 if (xoap->xoa_immutable != 2709 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2710 need_policy = TRUE; 2711 } else { 2712 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2713 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2714 } 2715 } 2716 2717 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2718 if (xoap->xoa_nodump != 2719 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2720 need_policy = TRUE; 2721 } else { 2722 XVA_CLR_REQ(xvap, XAT_NODUMP); 2723 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2724 } 2725 } 2726 2727 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2728 if (xoap->xoa_av_modified != 2729 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2730 need_policy = TRUE; 2731 } else { 2732 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2733 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2734 } 2735 } 2736 2737 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2738 if ((vp->v_type != VREG && 2739 xoap->xoa_av_quarantined) || 2740 xoap->xoa_av_quarantined != 2741 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2742 need_policy = TRUE; 2743 } else { 2744 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2745 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2746 } 2747 } 2748 2749 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2750 mutex_exit(&zp->z_lock); 2751 ZFS_EXIT(zfsvfs); 2752 return (EPERM); 2753 } 2754 2755 if (need_policy == FALSE && 2756 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2757 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2758 need_policy = TRUE; 2759 } 2760 } 2761 2762 mutex_exit(&zp->z_lock); 2763 2764 if (mask & AT_MODE) { 2765 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2766 err = secpolicy_setid_setsticky_clear(vp, vap, 2767 &oldva, cr); 2768 if (err) { 2769 ZFS_EXIT(zfsvfs); 2770 return (err); 2771 } 2772 trim_mask |= AT_MODE; 2773 } else { 2774 need_policy = TRUE; 2775 } 2776 } 2777 2778 if (need_policy) { 2779 /* 2780 * If trim_mask is set then take ownership 2781 * has been granted or write_acl is present and user 2782 * has the ability to modify mode. In that case remove 2783 * UID|GID and or MODE from mask so that 2784 * secpolicy_vnode_setattr() doesn't revoke it. 2785 */ 2786 2787 if (trim_mask) { 2788 saved_mask = vap->va_mask; 2789 vap->va_mask &= ~trim_mask; 2790 } 2791 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2792 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2793 if (err) { 2794 ZFS_EXIT(zfsvfs); 2795 return (err); 2796 } 2797 2798 if (trim_mask) 2799 vap->va_mask |= saved_mask; 2800 } 2801 2802 /* 2803 * secpolicy_vnode_setattr, or take ownership may have 2804 * changed va_mask 2805 */ 2806 mask = vap->va_mask; 2807 2808 tx = dmu_tx_create(zfsvfs->z_os); 2809 dmu_tx_hold_bonus(tx, zp->z_id); 2810 2811 if (mask & AT_MODE) { 2812 uint64_t pmode = pzp->zp_mode; 2813 2814 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2815 2816 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2817 goto out; 2818 if (pzp->zp_acl.z_acl_extern_obj) { 2819 /* Are we upgrading ACL from old V0 format to new V1 */ 2820 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2821 pzp->zp_acl.z_acl_version == 2822 ZFS_ACL_VERSION_INITIAL) { 2823 dmu_tx_hold_free(tx, 2824 pzp->zp_acl.z_acl_extern_obj, 0, 2825 DMU_OBJECT_END); 2826 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2827 0, aclp->z_acl_bytes); 2828 } else { 2829 dmu_tx_hold_write(tx, 2830 pzp->zp_acl.z_acl_extern_obj, 0, 2831 aclp->z_acl_bytes); 2832 } 2833 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2834 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2835 0, aclp->z_acl_bytes); 2836 } 2837 } 2838 2839 if (mask & (AT_UID | AT_GID)) { 2840 if (pzp->zp_xattr) { 2841 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2842 if (err) 2843 goto out; 2844 dmu_tx_hold_bonus(tx, attrzp->z_id); 2845 } 2846 if (mask & AT_UID) { 2847 new_uid = zfs_fuid_create(zfsvfs, 2848 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2849 if (new_uid != pzp->zp_uid && 2850 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2851 err = EDQUOT; 2852 goto out; 2853 } 2854 } 2855 2856 if (mask & AT_GID) { 2857 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2858 cr, ZFS_GROUP, &fuidp); 2859 if (new_gid != pzp->zp_gid && 2860 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2861 err = EDQUOT; 2862 goto out; 2863 } 2864 } 2865 fuid_dirtied = zfsvfs->z_fuid_dirty; 2866 if (fuid_dirtied) { 2867 if (zfsvfs->z_fuid_obj == 0) { 2868 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2869 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2870 FUID_SIZE_ESTIMATE(zfsvfs)); 2871 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2872 FALSE, NULL); 2873 } else { 2874 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2875 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2876 FUID_SIZE_ESTIMATE(zfsvfs)); 2877 } 2878 } 2879 } 2880 2881 err = dmu_tx_assign(tx, TXG_NOWAIT); 2882 if (err) { 2883 if (err == ERESTART) 2884 dmu_tx_wait(tx); 2885 goto out; 2886 } 2887 2888 dmu_buf_will_dirty(zp->z_dbuf, tx); 2889 2890 /* 2891 * Set each attribute requested. 2892 * We group settings according to the locks they need to acquire. 2893 * 2894 * Note: you cannot set ctime directly, although it will be 2895 * updated as a side-effect of calling this function. 2896 */ 2897 2898 mutex_enter(&zp->z_lock); 2899 2900 if (mask & AT_MODE) { 2901 mutex_enter(&zp->z_acl_lock); 2902 zp->z_phys->zp_mode = new_mode; 2903 err = zfs_aclset_common(zp, aclp, cr, tx); 2904 ASSERT3U(err, ==, 0); 2905 zp->z_acl_cached = aclp; 2906 aclp = NULL; 2907 mutex_exit(&zp->z_acl_lock); 2908 } 2909 2910 if (attrzp) 2911 mutex_enter(&attrzp->z_lock); 2912 2913 if (mask & AT_UID) { 2914 pzp->zp_uid = new_uid; 2915 if (attrzp) 2916 attrzp->z_phys->zp_uid = new_uid; 2917 } 2918 2919 if (mask & AT_GID) { 2920 pzp->zp_gid = new_gid; 2921 if (attrzp) 2922 attrzp->z_phys->zp_gid = new_gid; 2923 } 2924 2925 if (attrzp) 2926 mutex_exit(&attrzp->z_lock); 2927 2928 if (mask & AT_ATIME) 2929 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2930 2931 if (mask & AT_MTIME) 2932 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2933 2934 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2935 if (mask & AT_SIZE) 2936 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2937 else if (mask != 0) 2938 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2939 /* 2940 * Do this after setting timestamps to prevent timestamp 2941 * update from toggling bit 2942 */ 2943 2944 if (xoap && (mask & AT_XVATTR)) { 2945 2946 /* 2947 * restore trimmed off masks 2948 * so that return masks can be set for caller. 2949 */ 2950 2951 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2952 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2953 } 2954 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2955 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2956 } 2957 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2958 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2959 } 2960 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2961 XVA_SET_REQ(xvap, XAT_NODUMP); 2962 } 2963 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2964 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2965 } 2966 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2967 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2968 } 2969 2970 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2971 size_t len; 2972 dmu_object_info_t doi; 2973 2974 ASSERT(vp->v_type == VREG); 2975 2976 /* Grow the bonus buffer if necessary. */ 2977 dmu_object_info_from_db(zp->z_dbuf, &doi); 2978 len = sizeof (xoap->xoa_av_scanstamp) + 2979 sizeof (znode_phys_t); 2980 if (len > doi.doi_bonus_size) 2981 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2982 } 2983 zfs_xvattr_set(zp, xvap); 2984 } 2985 2986 if (fuid_dirtied) 2987 zfs_fuid_sync(zfsvfs, tx); 2988 2989 if (mask != 0) 2990 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2991 2992 mutex_exit(&zp->z_lock); 2993 2994 out: 2995 if (attrzp) 2996 VN_RELE(ZTOV(attrzp)); 2997 2998 if (aclp) 2999 zfs_acl_free(aclp); 3000 3001 if (fuidp) { 3002 zfs_fuid_info_free(fuidp); 3003 fuidp = NULL; 3004 } 3005 3006 if (err) 3007 dmu_tx_abort(tx); 3008 else 3009 dmu_tx_commit(tx); 3010 3011 if (err == ERESTART) 3012 goto top; 3013 3014 ZFS_EXIT(zfsvfs); 3015 return (err); 3016 } 3017 3018 typedef struct zfs_zlock { 3019 krwlock_t *zl_rwlock; /* lock we acquired */ 3020 znode_t *zl_znode; /* znode we held */ 3021 struct zfs_zlock *zl_next; /* next in list */ 3022 } zfs_zlock_t; 3023 3024 /* 3025 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3026 */ 3027 static void 3028 zfs_rename_unlock(zfs_zlock_t **zlpp) 3029 { 3030 zfs_zlock_t *zl; 3031 3032 while ((zl = *zlpp) != NULL) { 3033 if (zl->zl_znode != NULL) 3034 VN_RELE(ZTOV(zl->zl_znode)); 3035 rw_exit(zl->zl_rwlock); 3036 *zlpp = zl->zl_next; 3037 kmem_free(zl, sizeof (*zl)); 3038 } 3039 } 3040 3041 /* 3042 * Search back through the directory tree, using the ".." entries. 3043 * Lock each directory in the chain to prevent concurrent renames. 3044 * Fail any attempt to move a directory into one of its own descendants. 3045 * XXX - z_parent_lock can overlap with map or grow locks 3046 */ 3047 static int 3048 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3049 { 3050 zfs_zlock_t *zl; 3051 znode_t *zp = tdzp; 3052 uint64_t rootid = zp->z_zfsvfs->z_root; 3053 uint64_t *oidp = &zp->z_id; 3054 krwlock_t *rwlp = &szp->z_parent_lock; 3055 krw_t rw = RW_WRITER; 3056 3057 /* 3058 * First pass write-locks szp and compares to zp->z_id. 3059 * Later passes read-lock zp and compare to zp->z_parent. 3060 */ 3061 do { 3062 if (!rw_tryenter(rwlp, rw)) { 3063 /* 3064 * Another thread is renaming in this path. 3065 * Note that if we are a WRITER, we don't have any 3066 * parent_locks held yet. 3067 */ 3068 if (rw == RW_READER && zp->z_id > szp->z_id) { 3069 /* 3070 * Drop our locks and restart 3071 */ 3072 zfs_rename_unlock(&zl); 3073 *zlpp = NULL; 3074 zp = tdzp; 3075 oidp = &zp->z_id; 3076 rwlp = &szp->z_parent_lock; 3077 rw = RW_WRITER; 3078 continue; 3079 } else { 3080 /* 3081 * Wait for other thread to drop its locks 3082 */ 3083 rw_enter(rwlp, rw); 3084 } 3085 } 3086 3087 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3088 zl->zl_rwlock = rwlp; 3089 zl->zl_znode = NULL; 3090 zl->zl_next = *zlpp; 3091 *zlpp = zl; 3092 3093 if (*oidp == szp->z_id) /* We're a descendant of szp */ 3094 return (EINVAL); 3095 3096 if (*oidp == rootid) /* We've hit the top */ 3097 return (0); 3098 3099 if (rw == RW_READER) { /* i.e. not the first pass */ 3100 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 3101 if (error) 3102 return (error); 3103 zl->zl_znode = zp; 3104 } 3105 oidp = &zp->z_phys->zp_parent; 3106 rwlp = &zp->z_parent_lock; 3107 rw = RW_READER; 3108 3109 } while (zp->z_id != sdzp->z_id); 3110 3111 return (0); 3112 } 3113 3114 /* 3115 * Move an entry from the provided source directory to the target 3116 * directory. Change the entry name as indicated. 3117 * 3118 * IN: sdvp - Source directory containing the "old entry". 3119 * snm - Old entry name. 3120 * tdvp - Target directory to contain the "new entry". 3121 * tnm - New entry name. 3122 * cr - credentials of caller. 3123 * ct - caller context 3124 * flags - case flags 3125 * 3126 * RETURN: 0 if success 3127 * error code if failure 3128 * 3129 * Timestamps: 3130 * sdvp,tdvp - ctime|mtime updated 3131 */ 3132 /*ARGSUSED*/ 3133 static int 3134 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3135 caller_context_t *ct, int flags) 3136 { 3137 znode_t *tdzp, *szp, *tzp; 3138 znode_t *sdzp = VTOZ(sdvp); 3139 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3140 zilog_t *zilog; 3141 vnode_t *realvp; 3142 zfs_dirlock_t *sdl, *tdl; 3143 dmu_tx_t *tx; 3144 zfs_zlock_t *zl; 3145 int cmp, serr, terr; 3146 int error = 0; 3147 int zflg = 0; 3148 3149 ZFS_ENTER(zfsvfs); 3150 ZFS_VERIFY_ZP(sdzp); 3151 zilog = zfsvfs->z_log; 3152 3153 /* 3154 * Make sure we have the real vp for the target directory. 3155 */ 3156 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3157 tdvp = realvp; 3158 3159 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3160 ZFS_EXIT(zfsvfs); 3161 return (EXDEV); 3162 } 3163 3164 tdzp = VTOZ(tdvp); 3165 ZFS_VERIFY_ZP(tdzp); 3166 if (zfsvfs->z_utf8 && u8_validate(tnm, 3167 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3168 ZFS_EXIT(zfsvfs); 3169 return (EILSEQ); 3170 } 3171 3172 if (flags & FIGNORECASE) 3173 zflg |= ZCILOOK; 3174 3175 top: 3176 szp = NULL; 3177 tzp = NULL; 3178 zl = NULL; 3179 3180 /* 3181 * This is to prevent the creation of links into attribute space 3182 * by renaming a linked file into/outof an attribute directory. 3183 * See the comment in zfs_link() for why this is considered bad. 3184 */ 3185 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3186 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3187 ZFS_EXIT(zfsvfs); 3188 return (EINVAL); 3189 } 3190 3191 /* 3192 * Lock source and target directory entries. To prevent deadlock, 3193 * a lock ordering must be defined. We lock the directory with 3194 * the smallest object id first, or if it's a tie, the one with 3195 * the lexically first name. 3196 */ 3197 if (sdzp->z_id < tdzp->z_id) { 3198 cmp = -1; 3199 } else if (sdzp->z_id > tdzp->z_id) { 3200 cmp = 1; 3201 } else { 3202 /* 3203 * First compare the two name arguments without 3204 * considering any case folding. 3205 */ 3206 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3207 3208 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3209 ASSERT(error == 0 || !zfsvfs->z_utf8); 3210 if (cmp == 0) { 3211 /* 3212 * POSIX: "If the old argument and the new argument 3213 * both refer to links to the same existing file, 3214 * the rename() function shall return successfully 3215 * and perform no other action." 3216 */ 3217 ZFS_EXIT(zfsvfs); 3218 return (0); 3219 } 3220 /* 3221 * If the file system is case-folding, then we may 3222 * have some more checking to do. A case-folding file 3223 * system is either supporting mixed case sensitivity 3224 * access or is completely case-insensitive. Note 3225 * that the file system is always case preserving. 3226 * 3227 * In mixed sensitivity mode case sensitive behavior 3228 * is the default. FIGNORECASE must be used to 3229 * explicitly request case insensitive behavior. 3230 * 3231 * If the source and target names provided differ only 3232 * by case (e.g., a request to rename 'tim' to 'Tim'), 3233 * we will treat this as a special case in the 3234 * case-insensitive mode: as long as the source name 3235 * is an exact match, we will allow this to proceed as 3236 * a name-change request. 3237 */ 3238 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3239 (zfsvfs->z_case == ZFS_CASE_MIXED && 3240 flags & FIGNORECASE)) && 3241 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3242 &error) == 0) { 3243 /* 3244 * case preserving rename request, require exact 3245 * name matches 3246 */ 3247 zflg |= ZCIEXACT; 3248 zflg &= ~ZCILOOK; 3249 } 3250 } 3251 3252 /* 3253 * If the source and destination directories are the same, we should 3254 * grab the z_name_lock of that directory only once. 3255 */ 3256 if (sdzp == tdzp) { 3257 zflg |= ZHAVELOCK; 3258 rw_enter(&sdzp->z_name_lock, RW_READER); 3259 } 3260 3261 if (cmp < 0) { 3262 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3263 ZEXISTS | zflg, NULL, NULL); 3264 terr = zfs_dirent_lock(&tdl, 3265 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3266 } else { 3267 terr = zfs_dirent_lock(&tdl, 3268 tdzp, tnm, &tzp, zflg, NULL, NULL); 3269 serr = zfs_dirent_lock(&sdl, 3270 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3271 NULL, NULL); 3272 } 3273 3274 if (serr) { 3275 /* 3276 * Source entry invalid or not there. 3277 */ 3278 if (!terr) { 3279 zfs_dirent_unlock(tdl); 3280 if (tzp) 3281 VN_RELE(ZTOV(tzp)); 3282 } 3283 3284 if (sdzp == tdzp) 3285 rw_exit(&sdzp->z_name_lock); 3286 3287 if (strcmp(snm, "..") == 0) 3288 serr = EINVAL; 3289 ZFS_EXIT(zfsvfs); 3290 return (serr); 3291 } 3292 if (terr) { 3293 zfs_dirent_unlock(sdl); 3294 VN_RELE(ZTOV(szp)); 3295 3296 if (sdzp == tdzp) 3297 rw_exit(&sdzp->z_name_lock); 3298 3299 if (strcmp(tnm, "..") == 0) 3300 terr = EINVAL; 3301 ZFS_EXIT(zfsvfs); 3302 return (terr); 3303 } 3304 3305 /* 3306 * Must have write access at the source to remove the old entry 3307 * and write access at the target to create the new entry. 3308 * Note that if target and source are the same, this can be 3309 * done in a single check. 3310 */ 3311 3312 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3313 goto out; 3314 3315 if (ZTOV(szp)->v_type == VDIR) { 3316 /* 3317 * Check to make sure rename is valid. 3318 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3319 */ 3320 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3321 goto out; 3322 } 3323 3324 /* 3325 * Does target exist? 3326 */ 3327 if (tzp) { 3328 /* 3329 * Source and target must be the same type. 3330 */ 3331 if (ZTOV(szp)->v_type == VDIR) { 3332 if (ZTOV(tzp)->v_type != VDIR) { 3333 error = ENOTDIR; 3334 goto out; 3335 } 3336 } else { 3337 if (ZTOV(tzp)->v_type == VDIR) { 3338 error = EISDIR; 3339 goto out; 3340 } 3341 } 3342 /* 3343 * POSIX dictates that when the source and target 3344 * entries refer to the same file object, rename 3345 * must do nothing and exit without error. 3346 */ 3347 if (szp->z_id == tzp->z_id) { 3348 error = 0; 3349 goto out; 3350 } 3351 } 3352 3353 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3354 if (tzp) 3355 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3356 3357 /* 3358 * notify the target directory if it is not the same 3359 * as source directory. 3360 */ 3361 if (tdvp != sdvp) { 3362 vnevent_rename_dest_dir(tdvp, ct); 3363 } 3364 3365 tx = dmu_tx_create(zfsvfs->z_os); 3366 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3367 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3368 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3369 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3370 if (sdzp != tdzp) 3371 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3372 if (tzp) 3373 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3374 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3375 error = dmu_tx_assign(tx, TXG_NOWAIT); 3376 if (error) { 3377 if (zl != NULL) 3378 zfs_rename_unlock(&zl); 3379 zfs_dirent_unlock(sdl); 3380 zfs_dirent_unlock(tdl); 3381 3382 if (sdzp == tdzp) 3383 rw_exit(&sdzp->z_name_lock); 3384 3385 VN_RELE(ZTOV(szp)); 3386 if (tzp) 3387 VN_RELE(ZTOV(tzp)); 3388 if (error == ERESTART) { 3389 dmu_tx_wait(tx); 3390 dmu_tx_abort(tx); 3391 goto top; 3392 } 3393 dmu_tx_abort(tx); 3394 ZFS_EXIT(zfsvfs); 3395 return (error); 3396 } 3397 3398 if (tzp) /* Attempt to remove the existing target */ 3399 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3400 3401 if (error == 0) { 3402 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3403 if (error == 0) { 3404 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3405 3406 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3407 ASSERT(error == 0); 3408 3409 zfs_log_rename(zilog, tx, 3410 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3411 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3412 3413 /* Update path information for the target vnode */ 3414 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3415 } 3416 } 3417 3418 dmu_tx_commit(tx); 3419 out: 3420 if (zl != NULL) 3421 zfs_rename_unlock(&zl); 3422 3423 zfs_dirent_unlock(sdl); 3424 zfs_dirent_unlock(tdl); 3425 3426 if (sdzp == tdzp) 3427 rw_exit(&sdzp->z_name_lock); 3428 3429 3430 VN_RELE(ZTOV(szp)); 3431 if (tzp) 3432 VN_RELE(ZTOV(tzp)); 3433 3434 ZFS_EXIT(zfsvfs); 3435 return (error); 3436 } 3437 3438 /* 3439 * Insert the indicated symbolic reference entry into the directory. 3440 * 3441 * IN: dvp - Directory to contain new symbolic link. 3442 * link - Name for new symlink entry. 3443 * vap - Attributes of new entry. 3444 * target - Target path of new symlink. 3445 * cr - credentials of caller. 3446 * ct - caller context 3447 * flags - case flags 3448 * 3449 * RETURN: 0 if success 3450 * error code if failure 3451 * 3452 * Timestamps: 3453 * dvp - ctime|mtime updated 3454 */ 3455 /*ARGSUSED*/ 3456 static int 3457 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3458 caller_context_t *ct, int flags) 3459 { 3460 znode_t *zp, *dzp = VTOZ(dvp); 3461 zfs_dirlock_t *dl; 3462 dmu_tx_t *tx; 3463 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3464 zilog_t *zilog; 3465 int len = strlen(link); 3466 int error; 3467 int zflg = ZNEW; 3468 zfs_acl_ids_t acl_ids; 3469 boolean_t fuid_dirtied; 3470 3471 ASSERT(vap->va_type == VLNK); 3472 3473 ZFS_ENTER(zfsvfs); 3474 ZFS_VERIFY_ZP(dzp); 3475 zilog = zfsvfs->z_log; 3476 3477 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3478 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3479 ZFS_EXIT(zfsvfs); 3480 return (EILSEQ); 3481 } 3482 if (flags & FIGNORECASE) 3483 zflg |= ZCILOOK; 3484 top: 3485 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3486 ZFS_EXIT(zfsvfs); 3487 return (error); 3488 } 3489 3490 if (len > MAXPATHLEN) { 3491 ZFS_EXIT(zfsvfs); 3492 return (ENAMETOOLONG); 3493 } 3494 3495 /* 3496 * Attempt to lock directory; fail if entry already exists. 3497 */ 3498 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3499 if (error) { 3500 ZFS_EXIT(zfsvfs); 3501 return (error); 3502 } 3503 3504 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3505 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3506 zfs_acl_ids_free(&acl_ids); 3507 zfs_dirent_unlock(dl); 3508 ZFS_EXIT(zfsvfs); 3509 return (EDQUOT); 3510 } 3511 tx = dmu_tx_create(zfsvfs->z_os); 3512 fuid_dirtied = zfsvfs->z_fuid_dirty; 3513 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3514 dmu_tx_hold_bonus(tx, dzp->z_id); 3515 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3516 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3517 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3518 if (fuid_dirtied) 3519 zfs_fuid_txhold(zfsvfs, tx); 3520 error = dmu_tx_assign(tx, TXG_NOWAIT); 3521 if (error) { 3522 zfs_acl_ids_free(&acl_ids); 3523 zfs_dirent_unlock(dl); 3524 if (error == ERESTART) { 3525 dmu_tx_wait(tx); 3526 dmu_tx_abort(tx); 3527 goto top; 3528 } 3529 dmu_tx_abort(tx); 3530 ZFS_EXIT(zfsvfs); 3531 return (error); 3532 } 3533 3534 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3535 3536 /* 3537 * Create a new object for the symlink. 3538 * Put the link content into bonus buffer if it will fit; 3539 * otherwise, store it just like any other file data. 3540 */ 3541 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3542 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3543 if (len != 0) 3544 bcopy(link, zp->z_phys + 1, len); 3545 } else { 3546 dmu_buf_t *dbp; 3547 3548 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3549 3550 if (fuid_dirtied) 3551 zfs_fuid_sync(zfsvfs, tx); 3552 /* 3553 * Nothing can access the znode yet so no locking needed 3554 * for growing the znode's blocksize. 3555 */ 3556 zfs_grow_blocksize(zp, len, tx); 3557 3558 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3559 zp->z_id, 0, FTAG, &dbp)); 3560 dmu_buf_will_dirty(dbp, tx); 3561 3562 ASSERT3U(len, <=, dbp->db_size); 3563 bcopy(link, dbp->db_data, len); 3564 dmu_buf_rele(dbp, FTAG); 3565 } 3566 zp->z_phys->zp_size = len; 3567 3568 /* 3569 * Insert the new object into the directory. 3570 */ 3571 (void) zfs_link_create(dl, zp, tx, ZNEW); 3572 if (error == 0) { 3573 uint64_t txtype = TX_SYMLINK; 3574 if (flags & FIGNORECASE) 3575 txtype |= TX_CI; 3576 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3577 } 3578 3579 zfs_acl_ids_free(&acl_ids); 3580 3581 dmu_tx_commit(tx); 3582 3583 zfs_dirent_unlock(dl); 3584 3585 VN_RELE(ZTOV(zp)); 3586 3587 ZFS_EXIT(zfsvfs); 3588 return (error); 3589 } 3590 3591 /* 3592 * Return, in the buffer contained in the provided uio structure, 3593 * the symbolic path referred to by vp. 3594 * 3595 * IN: vp - vnode of symbolic link. 3596 * uoip - structure to contain the link path. 3597 * cr - credentials of caller. 3598 * ct - caller context 3599 * 3600 * OUT: uio - structure to contain the link path. 3601 * 3602 * RETURN: 0 if success 3603 * error code if failure 3604 * 3605 * Timestamps: 3606 * vp - atime updated 3607 */ 3608 /* ARGSUSED */ 3609 static int 3610 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3611 { 3612 znode_t *zp = VTOZ(vp); 3613 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3614 size_t bufsz; 3615 int error; 3616 3617 ZFS_ENTER(zfsvfs); 3618 ZFS_VERIFY_ZP(zp); 3619 3620 bufsz = (size_t)zp->z_phys->zp_size; 3621 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3622 error = uiomove(zp->z_phys + 1, 3623 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3624 } else { 3625 dmu_buf_t *dbp; 3626 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3627 if (error) { 3628 ZFS_EXIT(zfsvfs); 3629 return (error); 3630 } 3631 error = uiomove(dbp->db_data, 3632 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3633 dmu_buf_rele(dbp, FTAG); 3634 } 3635 3636 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3637 ZFS_EXIT(zfsvfs); 3638 return (error); 3639 } 3640 3641 /* 3642 * Insert a new entry into directory tdvp referencing svp. 3643 * 3644 * IN: tdvp - Directory to contain new entry. 3645 * svp - vnode of new entry. 3646 * name - name of new entry. 3647 * cr - credentials of caller. 3648 * ct - caller context 3649 * 3650 * RETURN: 0 if success 3651 * error code if failure 3652 * 3653 * Timestamps: 3654 * tdvp - ctime|mtime updated 3655 * svp - ctime updated 3656 */ 3657 /* ARGSUSED */ 3658 static int 3659 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3660 caller_context_t *ct, int flags) 3661 { 3662 znode_t *dzp = VTOZ(tdvp); 3663 znode_t *tzp, *szp; 3664 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3665 zilog_t *zilog; 3666 zfs_dirlock_t *dl; 3667 dmu_tx_t *tx; 3668 vnode_t *realvp; 3669 int error; 3670 int zf = ZNEW; 3671 uid_t owner; 3672 3673 ASSERT(tdvp->v_type == VDIR); 3674 3675 ZFS_ENTER(zfsvfs); 3676 ZFS_VERIFY_ZP(dzp); 3677 zilog = zfsvfs->z_log; 3678 3679 if (VOP_REALVP(svp, &realvp, ct) == 0) 3680 svp = realvp; 3681 3682 if (svp->v_vfsp != tdvp->v_vfsp) { 3683 ZFS_EXIT(zfsvfs); 3684 return (EXDEV); 3685 } 3686 szp = VTOZ(svp); 3687 ZFS_VERIFY_ZP(szp); 3688 3689 if (zfsvfs->z_utf8 && u8_validate(name, 3690 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3691 ZFS_EXIT(zfsvfs); 3692 return (EILSEQ); 3693 } 3694 if (flags & FIGNORECASE) 3695 zf |= ZCILOOK; 3696 3697 top: 3698 /* 3699 * We do not support links between attributes and non-attributes 3700 * because of the potential security risk of creating links 3701 * into "normal" file space in order to circumvent restrictions 3702 * imposed in attribute space. 3703 */ 3704 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3705 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3706 ZFS_EXIT(zfsvfs); 3707 return (EINVAL); 3708 } 3709 3710 /* 3711 * POSIX dictates that we return EPERM here. 3712 * Better choices include ENOTSUP or EISDIR. 3713 */ 3714 if (svp->v_type == VDIR) { 3715 ZFS_EXIT(zfsvfs); 3716 return (EPERM); 3717 } 3718 3719 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3720 if (owner != crgetuid(cr) && 3721 secpolicy_basic_link(cr) != 0) { 3722 ZFS_EXIT(zfsvfs); 3723 return (EPERM); 3724 } 3725 3726 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3727 ZFS_EXIT(zfsvfs); 3728 return (error); 3729 } 3730 3731 /* 3732 * Attempt to lock directory; fail if entry already exists. 3733 */ 3734 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3735 if (error) { 3736 ZFS_EXIT(zfsvfs); 3737 return (error); 3738 } 3739 3740 tx = dmu_tx_create(zfsvfs->z_os); 3741 dmu_tx_hold_bonus(tx, szp->z_id); 3742 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3743 error = dmu_tx_assign(tx, TXG_NOWAIT); 3744 if (error) { 3745 zfs_dirent_unlock(dl); 3746 if (error == ERESTART) { 3747 dmu_tx_wait(tx); 3748 dmu_tx_abort(tx); 3749 goto top; 3750 } 3751 dmu_tx_abort(tx); 3752 ZFS_EXIT(zfsvfs); 3753 return (error); 3754 } 3755 3756 error = zfs_link_create(dl, szp, tx, 0); 3757 3758 if (error == 0) { 3759 uint64_t txtype = TX_LINK; 3760 if (flags & FIGNORECASE) 3761 txtype |= TX_CI; 3762 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3763 } 3764 3765 dmu_tx_commit(tx); 3766 3767 zfs_dirent_unlock(dl); 3768 3769 if (error == 0) { 3770 vnevent_link(svp, ct); 3771 } 3772 3773 ZFS_EXIT(zfsvfs); 3774 return (error); 3775 } 3776 3777 /* 3778 * zfs_null_putapage() is used when the file system has been force 3779 * unmounted. It just drops the pages. 3780 */ 3781 /* ARGSUSED */ 3782 static int 3783 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3784 size_t *lenp, int flags, cred_t *cr) 3785 { 3786 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3787 return (0); 3788 } 3789 3790 /* 3791 * Push a page out to disk, klustering if possible. 3792 * 3793 * IN: vp - file to push page to. 3794 * pp - page to push. 3795 * flags - additional flags. 3796 * cr - credentials of caller. 3797 * 3798 * OUT: offp - start of range pushed. 3799 * lenp - len of range pushed. 3800 * 3801 * RETURN: 0 if success 3802 * error code if failure 3803 * 3804 * NOTE: callers must have locked the page to be pushed. On 3805 * exit, the page (and all other pages in the kluster) must be 3806 * unlocked. 3807 */ 3808 /* ARGSUSED */ 3809 static int 3810 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3811 size_t *lenp, int flags, cred_t *cr) 3812 { 3813 znode_t *zp = VTOZ(vp); 3814 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3815 dmu_tx_t *tx; 3816 u_offset_t off, koff; 3817 size_t len, klen; 3818 uint64_t filesz; 3819 int err; 3820 3821 filesz = zp->z_phys->zp_size; 3822 off = pp->p_offset; 3823 len = PAGESIZE; 3824 /* 3825 * If our blocksize is bigger than the page size, try to kluster 3826 * multiple pages so that we write a full block (thus avoiding 3827 * a read-modify-write). 3828 */ 3829 if (off < filesz && zp->z_blksz > PAGESIZE) { 3830 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3831 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3832 ASSERT(koff <= filesz); 3833 if (koff + klen > filesz) 3834 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3835 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3836 } 3837 ASSERT3U(btop(len), ==, btopr(len)); 3838 3839 /* 3840 * Can't push pages past end-of-file. 3841 */ 3842 if (off >= filesz) { 3843 /* ignore all pages */ 3844 err = 0; 3845 goto out; 3846 } else if (off + len > filesz) { 3847 int npages = btopr(filesz - off); 3848 page_t *trunc; 3849 3850 page_list_break(&pp, &trunc, npages); 3851 /* ignore pages past end of file */ 3852 if (trunc) 3853 pvn_write_done(trunc, flags); 3854 len = filesz - off; 3855 } 3856 3857 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3858 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3859 err = EDQUOT; 3860 goto out; 3861 } 3862 top: 3863 tx = dmu_tx_create(zfsvfs->z_os); 3864 dmu_tx_hold_write(tx, zp->z_id, off, len); 3865 dmu_tx_hold_bonus(tx, zp->z_id); 3866 err = dmu_tx_assign(tx, TXG_NOWAIT); 3867 if (err != 0) { 3868 if (err == ERESTART) { 3869 dmu_tx_wait(tx); 3870 dmu_tx_abort(tx); 3871 goto top; 3872 } 3873 dmu_tx_abort(tx); 3874 goto out; 3875 } 3876 3877 if (zp->z_blksz <= PAGESIZE) { 3878 caddr_t va = zfs_map_page(pp, S_READ); 3879 ASSERT3U(len, <=, PAGESIZE); 3880 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3881 zfs_unmap_page(pp, va); 3882 } else { 3883 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3884 } 3885 3886 if (err == 0) { 3887 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3888 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3889 } 3890 dmu_tx_commit(tx); 3891 3892 out: 3893 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3894 if (offp) 3895 *offp = off; 3896 if (lenp) 3897 *lenp = len; 3898 3899 return (err); 3900 } 3901 3902 /* 3903 * Copy the portion of the file indicated from pages into the file. 3904 * The pages are stored in a page list attached to the files vnode. 3905 * 3906 * IN: vp - vnode of file to push page data to. 3907 * off - position in file to put data. 3908 * len - amount of data to write. 3909 * flags - flags to control the operation. 3910 * cr - credentials of caller. 3911 * ct - caller context. 3912 * 3913 * RETURN: 0 if success 3914 * error code if failure 3915 * 3916 * Timestamps: 3917 * vp - ctime|mtime updated 3918 */ 3919 /*ARGSUSED*/ 3920 static int 3921 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3922 caller_context_t *ct) 3923 { 3924 znode_t *zp = VTOZ(vp); 3925 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3926 page_t *pp; 3927 size_t io_len; 3928 u_offset_t io_off; 3929 uint_t blksz; 3930 rl_t *rl; 3931 int error = 0; 3932 3933 ZFS_ENTER(zfsvfs); 3934 ZFS_VERIFY_ZP(zp); 3935 3936 /* 3937 * Align this request to the file block size in case we kluster. 3938 * XXX - this can result in pretty aggresive locking, which can 3939 * impact simultanious read/write access. One option might be 3940 * to break up long requests (len == 0) into block-by-block 3941 * operations to get narrower locking. 3942 */ 3943 blksz = zp->z_blksz; 3944 if (ISP2(blksz)) 3945 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3946 else 3947 io_off = 0; 3948 if (len > 0 && ISP2(blksz)) 3949 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3950 else 3951 io_len = 0; 3952 3953 if (io_len == 0) { 3954 /* 3955 * Search the entire vp list for pages >= io_off. 3956 */ 3957 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3958 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3959 goto out; 3960 } 3961 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3962 3963 if (off > zp->z_phys->zp_size) { 3964 /* past end of file */ 3965 zfs_range_unlock(rl); 3966 ZFS_EXIT(zfsvfs); 3967 return (0); 3968 } 3969 3970 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3971 3972 for (off = io_off; io_off < off + len; io_off += io_len) { 3973 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3974 pp = page_lookup(vp, io_off, 3975 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3976 } else { 3977 pp = page_lookup_nowait(vp, io_off, 3978 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3979 } 3980 3981 if (pp != NULL && pvn_getdirty(pp, flags)) { 3982 int err; 3983 3984 /* 3985 * Found a dirty page to push 3986 */ 3987 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3988 if (err) 3989 error = err; 3990 } else { 3991 io_len = PAGESIZE; 3992 } 3993 } 3994 out: 3995 zfs_range_unlock(rl); 3996 if ((flags & B_ASYNC) == 0) 3997 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3998 ZFS_EXIT(zfsvfs); 3999 return (error); 4000 } 4001 4002 /*ARGSUSED*/ 4003 void 4004 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4005 { 4006 znode_t *zp = VTOZ(vp); 4007 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4008 int error; 4009 4010 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4011 if (zp->z_dbuf == NULL) { 4012 /* 4013 * The fs has been unmounted, or we did a 4014 * suspend/resume and this file no longer exists. 4015 */ 4016 if (vn_has_cached_data(vp)) { 4017 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4018 B_INVAL, cr); 4019 } 4020 4021 mutex_enter(&zp->z_lock); 4022 mutex_enter(&vp->v_lock); 4023 ASSERT(vp->v_count == 1); 4024 vp->v_count = 0; 4025 mutex_exit(&vp->v_lock); 4026 mutex_exit(&zp->z_lock); 4027 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4028 zfs_znode_free(zp); 4029 return; 4030 } 4031 4032 /* 4033 * Attempt to push any data in the page cache. If this fails 4034 * we will get kicked out later in zfs_zinactive(). 4035 */ 4036 if (vn_has_cached_data(vp)) { 4037 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4038 cr); 4039 } 4040 4041 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4042 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4043 4044 dmu_tx_hold_bonus(tx, zp->z_id); 4045 error = dmu_tx_assign(tx, TXG_WAIT); 4046 if (error) { 4047 dmu_tx_abort(tx); 4048 } else { 4049 dmu_buf_will_dirty(zp->z_dbuf, tx); 4050 mutex_enter(&zp->z_lock); 4051 zp->z_atime_dirty = 0; 4052 mutex_exit(&zp->z_lock); 4053 dmu_tx_commit(tx); 4054 } 4055 } 4056 4057 zfs_zinactive(zp); 4058 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4059 } 4060 4061 /* 4062 * Bounds-check the seek operation. 4063 * 4064 * IN: vp - vnode seeking within 4065 * ooff - old file offset 4066 * noffp - pointer to new file offset 4067 * ct - caller context 4068 * 4069 * RETURN: 0 if success 4070 * EINVAL if new offset invalid 4071 */ 4072 /* ARGSUSED */ 4073 static int 4074 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4075 caller_context_t *ct) 4076 { 4077 if (vp->v_type == VDIR) 4078 return (0); 4079 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4080 } 4081 4082 /* 4083 * Pre-filter the generic locking function to trap attempts to place 4084 * a mandatory lock on a memory mapped file. 4085 */ 4086 static int 4087 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4088 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4089 { 4090 znode_t *zp = VTOZ(vp); 4091 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4092 4093 ZFS_ENTER(zfsvfs); 4094 ZFS_VERIFY_ZP(zp); 4095 4096 /* 4097 * We are following the UFS semantics with respect to mapcnt 4098 * here: If we see that the file is mapped already, then we will 4099 * return an error, but we don't worry about races between this 4100 * function and zfs_map(). 4101 */ 4102 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 4103 ZFS_EXIT(zfsvfs); 4104 return (EAGAIN); 4105 } 4106 ZFS_EXIT(zfsvfs); 4107 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4108 } 4109 4110 /* 4111 * If we can't find a page in the cache, we will create a new page 4112 * and fill it with file data. For efficiency, we may try to fill 4113 * multiple pages at once (klustering) to fill up the supplied page 4114 * list. Note that the pages to be filled are held with an exclusive 4115 * lock to prevent access by other threads while they are being filled. 4116 */ 4117 static int 4118 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4119 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4120 { 4121 znode_t *zp = VTOZ(vp); 4122 page_t *pp, *cur_pp; 4123 objset_t *os = zp->z_zfsvfs->z_os; 4124 u_offset_t io_off, total; 4125 size_t io_len; 4126 int err; 4127 4128 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4129 /* 4130 * We only have a single page, don't bother klustering 4131 */ 4132 io_off = off; 4133 io_len = PAGESIZE; 4134 pp = page_create_va(vp, io_off, io_len, 4135 PG_EXCL | PG_WAIT, seg, addr); 4136 } else { 4137 /* 4138 * Try to find enough pages to fill the page list 4139 */ 4140 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4141 &io_len, off, plsz, 0); 4142 } 4143 if (pp == NULL) { 4144 /* 4145 * The page already exists, nothing to do here. 4146 */ 4147 *pl = NULL; 4148 return (0); 4149 } 4150 4151 /* 4152 * Fill the pages in the kluster. 4153 */ 4154 cur_pp = pp; 4155 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4156 caddr_t va; 4157 4158 ASSERT3U(io_off, ==, cur_pp->p_offset); 4159 va = zfs_map_page(cur_pp, S_WRITE); 4160 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4161 DMU_READ_PREFETCH); 4162 zfs_unmap_page(cur_pp, va); 4163 if (err) { 4164 /* On error, toss the entire kluster */ 4165 pvn_read_done(pp, B_ERROR); 4166 /* convert checksum errors into IO errors */ 4167 if (err == ECKSUM) 4168 err = EIO; 4169 return (err); 4170 } 4171 cur_pp = cur_pp->p_next; 4172 } 4173 4174 /* 4175 * Fill in the page list array from the kluster starting 4176 * from the desired offset `off'. 4177 * NOTE: the page list will always be null terminated. 4178 */ 4179 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4180 ASSERT(pl == NULL || (*pl)->p_offset == off); 4181 4182 return (0); 4183 } 4184 4185 /* 4186 * Return pointers to the pages for the file region [off, off + len] 4187 * in the pl array. If plsz is greater than len, this function may 4188 * also return page pointers from after the specified region 4189 * (i.e. the region [off, off + plsz]). These additional pages are 4190 * only returned if they are already in the cache, or were created as 4191 * part of a klustered read. 4192 * 4193 * IN: vp - vnode of file to get data from. 4194 * off - position in file to get data from. 4195 * len - amount of data to retrieve. 4196 * plsz - length of provided page list. 4197 * seg - segment to obtain pages for. 4198 * addr - virtual address of fault. 4199 * rw - mode of created pages. 4200 * cr - credentials of caller. 4201 * ct - caller context. 4202 * 4203 * OUT: protp - protection mode of created pages. 4204 * pl - list of pages created. 4205 * 4206 * RETURN: 0 if success 4207 * error code if failure 4208 * 4209 * Timestamps: 4210 * vp - atime updated 4211 */ 4212 /* ARGSUSED */ 4213 static int 4214 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4215 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4216 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4217 { 4218 znode_t *zp = VTOZ(vp); 4219 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4220 page_t **pl0 = pl; 4221 int err = 0; 4222 4223 /* we do our own caching, faultahead is unnecessary */ 4224 if (pl == NULL) 4225 return (0); 4226 else if (len > plsz) 4227 len = plsz; 4228 else 4229 len = P2ROUNDUP(len, PAGESIZE); 4230 ASSERT(plsz >= len); 4231 4232 ZFS_ENTER(zfsvfs); 4233 ZFS_VERIFY_ZP(zp); 4234 4235 if (protp) 4236 *protp = PROT_ALL; 4237 4238 /* 4239 * Loop through the requested range [off, off + len) looking 4240 * for pages. If we don't find a page, we will need to create 4241 * a new page and fill it with data from the file. 4242 */ 4243 while (len > 0) { 4244 if (*pl = page_lookup(vp, off, SE_SHARED)) 4245 *(pl+1) = NULL; 4246 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4247 goto out; 4248 while (*pl) { 4249 ASSERT3U((*pl)->p_offset, ==, off); 4250 off += PAGESIZE; 4251 addr += PAGESIZE; 4252 if (len > 0) { 4253 ASSERT3U(len, >=, PAGESIZE); 4254 len -= PAGESIZE; 4255 } 4256 ASSERT3U(plsz, >=, PAGESIZE); 4257 plsz -= PAGESIZE; 4258 pl++; 4259 } 4260 } 4261 4262 /* 4263 * Fill out the page array with any pages already in the cache. 4264 */ 4265 while (plsz > 0 && 4266 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4267 off += PAGESIZE; 4268 plsz -= PAGESIZE; 4269 } 4270 out: 4271 if (err) { 4272 /* 4273 * Release any pages we have previously locked. 4274 */ 4275 while (pl > pl0) 4276 page_unlock(*--pl); 4277 } else { 4278 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4279 } 4280 4281 *pl = NULL; 4282 4283 ZFS_EXIT(zfsvfs); 4284 return (err); 4285 } 4286 4287 /* 4288 * Request a memory map for a section of a file. This code interacts 4289 * with common code and the VM system as follows: 4290 * 4291 * common code calls mmap(), which ends up in smmap_common() 4292 * 4293 * this calls VOP_MAP(), which takes you into (say) zfs 4294 * 4295 * zfs_map() calls as_map(), passing segvn_create() as the callback 4296 * 4297 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4298 * 4299 * zfs_addmap() updates z_mapcnt 4300 */ 4301 /*ARGSUSED*/ 4302 static int 4303 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4304 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4305 caller_context_t *ct) 4306 { 4307 znode_t *zp = VTOZ(vp); 4308 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4309 segvn_crargs_t vn_a; 4310 int error; 4311 4312 ZFS_ENTER(zfsvfs); 4313 ZFS_VERIFY_ZP(zp); 4314 4315 if ((prot & PROT_WRITE) && 4316 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4317 ZFS_APPENDONLY))) { 4318 ZFS_EXIT(zfsvfs); 4319 return (EPERM); 4320 } 4321 4322 if ((prot & (PROT_READ | PROT_EXEC)) && 4323 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4324 ZFS_EXIT(zfsvfs); 4325 return (EACCES); 4326 } 4327 4328 if (vp->v_flag & VNOMAP) { 4329 ZFS_EXIT(zfsvfs); 4330 return (ENOSYS); 4331 } 4332 4333 if (off < 0 || len > MAXOFFSET_T - off) { 4334 ZFS_EXIT(zfsvfs); 4335 return (ENXIO); 4336 } 4337 4338 if (vp->v_type != VREG) { 4339 ZFS_EXIT(zfsvfs); 4340 return (ENODEV); 4341 } 4342 4343 /* 4344 * If file is locked, disallow mapping. 4345 */ 4346 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4347 ZFS_EXIT(zfsvfs); 4348 return (EAGAIN); 4349 } 4350 4351 as_rangelock(as); 4352 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4353 if (error != 0) { 4354 as_rangeunlock(as); 4355 ZFS_EXIT(zfsvfs); 4356 return (error); 4357 } 4358 4359 vn_a.vp = vp; 4360 vn_a.offset = (u_offset_t)off; 4361 vn_a.type = flags & MAP_TYPE; 4362 vn_a.prot = prot; 4363 vn_a.maxprot = maxprot; 4364 vn_a.cred = cr; 4365 vn_a.amp = NULL; 4366 vn_a.flags = flags & ~MAP_TYPE; 4367 vn_a.szc = 0; 4368 vn_a.lgrp_mem_policy_flags = 0; 4369 4370 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4371 4372 as_rangeunlock(as); 4373 ZFS_EXIT(zfsvfs); 4374 return (error); 4375 } 4376 4377 /* ARGSUSED */ 4378 static int 4379 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4380 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4381 caller_context_t *ct) 4382 { 4383 uint64_t pages = btopr(len); 4384 4385 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4386 return (0); 4387 } 4388 4389 /* 4390 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4391 * more accurate mtime for the associated file. Since we don't have a way of 4392 * detecting when the data was actually modified, we have to resort to 4393 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4394 * last page is pushed. The problem occurs when the msync() call is omitted, 4395 * which by far the most common case: 4396 * 4397 * open() 4398 * mmap() 4399 * <modify memory> 4400 * munmap() 4401 * close() 4402 * <time lapse> 4403 * putpage() via fsflush 4404 * 4405 * If we wait until fsflush to come along, we can have a modification time that 4406 * is some arbitrary point in the future. In order to prevent this in the 4407 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4408 * torn down. 4409 */ 4410 /* ARGSUSED */ 4411 static int 4412 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4413 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4414 caller_context_t *ct) 4415 { 4416 uint64_t pages = btopr(len); 4417 4418 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4419 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4420 4421 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4422 vn_has_cached_data(vp)) 4423 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4424 4425 return (0); 4426 } 4427 4428 /* 4429 * Free or allocate space in a file. Currently, this function only 4430 * supports the `F_FREESP' command. However, this command is somewhat 4431 * misnamed, as its functionality includes the ability to allocate as 4432 * well as free space. 4433 * 4434 * IN: vp - vnode of file to free data in. 4435 * cmd - action to take (only F_FREESP supported). 4436 * bfp - section of file to free/alloc. 4437 * flag - current file open mode flags. 4438 * offset - current file offset. 4439 * cr - credentials of caller [UNUSED]. 4440 * ct - caller context. 4441 * 4442 * RETURN: 0 if success 4443 * error code if failure 4444 * 4445 * Timestamps: 4446 * vp - ctime|mtime updated 4447 */ 4448 /* ARGSUSED */ 4449 static int 4450 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4451 offset_t offset, cred_t *cr, caller_context_t *ct) 4452 { 4453 znode_t *zp = VTOZ(vp); 4454 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4455 uint64_t off, len; 4456 int error; 4457 4458 ZFS_ENTER(zfsvfs); 4459 ZFS_VERIFY_ZP(zp); 4460 4461 if (cmd != F_FREESP) { 4462 ZFS_EXIT(zfsvfs); 4463 return (EINVAL); 4464 } 4465 4466 if (error = convoff(vp, bfp, 0, offset)) { 4467 ZFS_EXIT(zfsvfs); 4468 return (error); 4469 } 4470 4471 if (bfp->l_len < 0) { 4472 ZFS_EXIT(zfsvfs); 4473 return (EINVAL); 4474 } 4475 4476 off = bfp->l_start; 4477 len = bfp->l_len; /* 0 means from off to end of file */ 4478 4479 error = zfs_freesp(zp, off, len, flag, TRUE); 4480 4481 ZFS_EXIT(zfsvfs); 4482 return (error); 4483 } 4484 4485 /*ARGSUSED*/ 4486 static int 4487 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4488 { 4489 znode_t *zp = VTOZ(vp); 4490 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4491 uint32_t gen; 4492 uint64_t object = zp->z_id; 4493 zfid_short_t *zfid; 4494 int size, i; 4495 4496 ZFS_ENTER(zfsvfs); 4497 ZFS_VERIFY_ZP(zp); 4498 gen = (uint32_t)zp->z_gen; 4499 4500 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4501 if (fidp->fid_len < size) { 4502 fidp->fid_len = size; 4503 ZFS_EXIT(zfsvfs); 4504 return (ENOSPC); 4505 } 4506 4507 zfid = (zfid_short_t *)fidp; 4508 4509 zfid->zf_len = size; 4510 4511 for (i = 0; i < sizeof (zfid->zf_object); i++) 4512 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4513 4514 /* Must have a non-zero generation number to distinguish from .zfs */ 4515 if (gen == 0) 4516 gen = 1; 4517 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4518 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4519 4520 if (size == LONG_FID_LEN) { 4521 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4522 zfid_long_t *zlfid; 4523 4524 zlfid = (zfid_long_t *)fidp; 4525 4526 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4527 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4528 4529 /* XXX - this should be the generation number for the objset */ 4530 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4531 zlfid->zf_setgen[i] = 0; 4532 } 4533 4534 ZFS_EXIT(zfsvfs); 4535 return (0); 4536 } 4537 4538 static int 4539 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4540 caller_context_t *ct) 4541 { 4542 znode_t *zp, *xzp; 4543 zfsvfs_t *zfsvfs; 4544 zfs_dirlock_t *dl; 4545 int error; 4546 4547 switch (cmd) { 4548 case _PC_LINK_MAX: 4549 *valp = ULONG_MAX; 4550 return (0); 4551 4552 case _PC_FILESIZEBITS: 4553 *valp = 64; 4554 return (0); 4555 4556 case _PC_XATTR_EXISTS: 4557 zp = VTOZ(vp); 4558 zfsvfs = zp->z_zfsvfs; 4559 ZFS_ENTER(zfsvfs); 4560 ZFS_VERIFY_ZP(zp); 4561 *valp = 0; 4562 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4563 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4564 if (error == 0) { 4565 zfs_dirent_unlock(dl); 4566 if (!zfs_dirempty(xzp)) 4567 *valp = 1; 4568 VN_RELE(ZTOV(xzp)); 4569 } else if (error == ENOENT) { 4570 /* 4571 * If there aren't extended attributes, it's the 4572 * same as having zero of them. 4573 */ 4574 error = 0; 4575 } 4576 ZFS_EXIT(zfsvfs); 4577 return (error); 4578 4579 case _PC_SATTR_ENABLED: 4580 case _PC_SATTR_EXISTS: 4581 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4582 (vp->v_type == VREG || vp->v_type == VDIR); 4583 return (0); 4584 4585 case _PC_ACCESS_FILTERING: 4586 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4587 vp->v_type == VDIR; 4588 return (0); 4589 4590 case _PC_ACL_ENABLED: 4591 *valp = _ACL_ACE_ENABLED; 4592 return (0); 4593 4594 case _PC_MIN_HOLE_SIZE: 4595 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4596 return (0); 4597 4598 case _PC_TIMESTAMP_RESOLUTION: 4599 /* nanosecond timestamp resolution */ 4600 *valp = 1L; 4601 return (0); 4602 4603 default: 4604 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4605 } 4606 } 4607 4608 /*ARGSUSED*/ 4609 static int 4610 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4611 caller_context_t *ct) 4612 { 4613 znode_t *zp = VTOZ(vp); 4614 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4615 int error; 4616 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4617 4618 ZFS_ENTER(zfsvfs); 4619 ZFS_VERIFY_ZP(zp); 4620 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4621 ZFS_EXIT(zfsvfs); 4622 4623 return (error); 4624 } 4625 4626 /*ARGSUSED*/ 4627 static int 4628 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4629 caller_context_t *ct) 4630 { 4631 znode_t *zp = VTOZ(vp); 4632 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4633 int error; 4634 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4635 4636 ZFS_ENTER(zfsvfs); 4637 ZFS_VERIFY_ZP(zp); 4638 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4639 ZFS_EXIT(zfsvfs); 4640 return (error); 4641 } 4642 4643 /* 4644 * Tunable, both must be a power of 2. 4645 * 4646 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4647 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4648 * an arcbuf for a partial block read 4649 */ 4650 int zcr_blksz_min = (1 << 10); /* 1K */ 4651 int zcr_blksz_max = (1 << 17); /* 128K */ 4652 4653 /*ARGSUSED*/ 4654 static int 4655 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4656 caller_context_t *ct) 4657 { 4658 znode_t *zp = VTOZ(vp); 4659 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4660 int max_blksz = zfsvfs->z_max_blksz; 4661 uio_t *uio = &xuio->xu_uio; 4662 ssize_t size = uio->uio_resid; 4663 offset_t offset = uio->uio_loffset; 4664 int blksz; 4665 int fullblk, i; 4666 arc_buf_t *abuf; 4667 ssize_t maxsize; 4668 int preamble, postamble; 4669 4670 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4671 return (EINVAL); 4672 4673 ZFS_ENTER(zfsvfs); 4674 ZFS_VERIFY_ZP(zp); 4675 switch (ioflag) { 4676 case UIO_WRITE: 4677 /* 4678 * Loan out an arc_buf for write if write size is bigger than 4679 * max_blksz, and the file's block size is also max_blksz. 4680 */ 4681 blksz = max_blksz; 4682 if (size < blksz || zp->z_blksz != blksz) { 4683 ZFS_EXIT(zfsvfs); 4684 return (EINVAL); 4685 } 4686 /* 4687 * Caller requests buffers for write before knowing where the 4688 * write offset might be (e.g. NFS TCP write). 4689 */ 4690 if (offset == -1) { 4691 preamble = 0; 4692 } else { 4693 preamble = P2PHASE(offset, blksz); 4694 if (preamble) { 4695 preamble = blksz - preamble; 4696 size -= preamble; 4697 } 4698 } 4699 4700 postamble = P2PHASE(size, blksz); 4701 size -= postamble; 4702 4703 fullblk = size / blksz; 4704 (void) dmu_xuio_init(xuio, 4705 (preamble != 0) + fullblk + (postamble != 0)); 4706 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4707 int, postamble, int, 4708 (preamble != 0) + fullblk + (postamble != 0)); 4709 4710 /* 4711 * Have to fix iov base/len for partial buffers. They 4712 * currently represent full arc_buf's. 4713 */ 4714 if (preamble) { 4715 /* data begins in the middle of the arc_buf */ 4716 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 4717 ASSERT(abuf); 4718 (void) dmu_xuio_add(xuio, abuf, 4719 blksz - preamble, preamble); 4720 } 4721 4722 for (i = 0; i < fullblk; i++) { 4723 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 4724 ASSERT(abuf); 4725 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4726 } 4727 4728 if (postamble) { 4729 /* data ends in the middle of the arc_buf */ 4730 abuf = dmu_request_arcbuf(zp->z_dbuf, blksz); 4731 ASSERT(abuf); 4732 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4733 } 4734 break; 4735 case UIO_READ: 4736 /* 4737 * Loan out an arc_buf for read if the read size is larger than 4738 * the current file block size. Block alignment is not 4739 * considered. Partial arc_buf will be loaned out for read. 4740 */ 4741 blksz = zp->z_blksz; 4742 if (blksz < zcr_blksz_min) 4743 blksz = zcr_blksz_min; 4744 if (blksz > zcr_blksz_max) 4745 blksz = zcr_blksz_max; 4746 /* avoid potential complexity of dealing with it */ 4747 if (blksz > max_blksz) { 4748 ZFS_EXIT(zfsvfs); 4749 return (EINVAL); 4750 } 4751 4752 maxsize = zp->z_phys->zp_size - uio->uio_loffset; 4753 if (size > maxsize) 4754 size = maxsize; 4755 4756 if (size < blksz || vn_has_cached_data(vp)) { 4757 ZFS_EXIT(zfsvfs); 4758 return (EINVAL); 4759 } 4760 break; 4761 default: 4762 ZFS_EXIT(zfsvfs); 4763 return (EINVAL); 4764 } 4765 4766 uio->uio_extflg = UIO_XUIO; 4767 XUIO_XUZC_RW(xuio) = ioflag; 4768 ZFS_EXIT(zfsvfs); 4769 return (0); 4770 } 4771 4772 /*ARGSUSED*/ 4773 static int 4774 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 4775 { 4776 int i; 4777 arc_buf_t *abuf; 4778 int ioflag = XUIO_XUZC_RW(xuio); 4779 4780 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 4781 4782 i = dmu_xuio_cnt(xuio); 4783 while (i-- > 0) { 4784 abuf = dmu_xuio_arcbuf(xuio, i); 4785 /* 4786 * if abuf == NULL, it must be a write buffer 4787 * that has been returned in zfs_write(). 4788 */ 4789 if (abuf) 4790 dmu_return_arcbuf(abuf); 4791 ASSERT(abuf || ioflag == UIO_WRITE); 4792 } 4793 4794 dmu_xuio_fini(xuio); 4795 return (0); 4796 } 4797 4798 /* 4799 * Predeclare these here so that the compiler assumes that 4800 * this is an "old style" function declaration that does 4801 * not include arguments => we won't get type mismatch errors 4802 * in the initializations that follow. 4803 */ 4804 static int zfs_inval(); 4805 static int zfs_isdir(); 4806 4807 static int 4808 zfs_inval() 4809 { 4810 return (EINVAL); 4811 } 4812 4813 static int 4814 zfs_isdir() 4815 { 4816 return (EISDIR); 4817 } 4818 /* 4819 * Directory vnode operations template 4820 */ 4821 vnodeops_t *zfs_dvnodeops; 4822 const fs_operation_def_t zfs_dvnodeops_template[] = { 4823 VOPNAME_OPEN, { .vop_open = zfs_open }, 4824 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4825 VOPNAME_READ, { .error = zfs_isdir }, 4826 VOPNAME_WRITE, { .error = zfs_isdir }, 4827 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4828 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4829 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4830 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4831 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4832 VOPNAME_CREATE, { .vop_create = zfs_create }, 4833 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4834 VOPNAME_LINK, { .vop_link = zfs_link }, 4835 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4836 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4837 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4838 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4839 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4840 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4841 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4842 VOPNAME_FID, { .vop_fid = zfs_fid }, 4843 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4844 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4845 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4846 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4847 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4848 NULL, NULL 4849 }; 4850 4851 /* 4852 * Regular file vnode operations template 4853 */ 4854 vnodeops_t *zfs_fvnodeops; 4855 const fs_operation_def_t zfs_fvnodeops_template[] = { 4856 VOPNAME_OPEN, { .vop_open = zfs_open }, 4857 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4858 VOPNAME_READ, { .vop_read = zfs_read }, 4859 VOPNAME_WRITE, { .vop_write = zfs_write }, 4860 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4861 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4862 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4863 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4864 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4865 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4866 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4867 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4868 VOPNAME_FID, { .vop_fid = zfs_fid }, 4869 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4870 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4871 VOPNAME_SPACE, { .vop_space = zfs_space }, 4872 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4873 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4874 VOPNAME_MAP, { .vop_map = zfs_map }, 4875 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4876 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4877 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4878 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4879 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4880 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4881 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 4882 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 4883 NULL, NULL 4884 }; 4885 4886 /* 4887 * Symbolic link vnode operations template 4888 */ 4889 vnodeops_t *zfs_symvnodeops; 4890 const fs_operation_def_t zfs_symvnodeops_template[] = { 4891 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4892 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4893 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4894 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4895 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4896 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4897 VOPNAME_FID, { .vop_fid = zfs_fid }, 4898 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4899 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4900 NULL, NULL 4901 }; 4902 4903 /* 4904 * special share hidden files vnode operations template 4905 */ 4906 vnodeops_t *zfs_sharevnodeops; 4907 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4908 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4909 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4910 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4911 VOPNAME_FID, { .vop_fid = zfs_fid }, 4912 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4913 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4914 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4915 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4916 NULL, NULL 4917 }; 4918 4919 /* 4920 * Extended attribute directory vnode operations template 4921 * This template is identical to the directory vnodes 4922 * operation template except for restricted operations: 4923 * VOP_MKDIR() 4924 * VOP_SYMLINK() 4925 * Note that there are other restrictions embedded in: 4926 * zfs_create() - restrict type to VREG 4927 * zfs_link() - no links into/out of attribute space 4928 * zfs_rename() - no moves into/out of attribute space 4929 */ 4930 vnodeops_t *zfs_xdvnodeops; 4931 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4932 VOPNAME_OPEN, { .vop_open = zfs_open }, 4933 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4934 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4935 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4936 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4937 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4938 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4939 VOPNAME_CREATE, { .vop_create = zfs_create }, 4940 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4941 VOPNAME_LINK, { .vop_link = zfs_link }, 4942 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4943 VOPNAME_MKDIR, { .error = zfs_inval }, 4944 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4945 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4946 VOPNAME_SYMLINK, { .error = zfs_inval }, 4947 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4948 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4949 VOPNAME_FID, { .vop_fid = zfs_fid }, 4950 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4951 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4952 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4953 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4954 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4955 NULL, NULL 4956 }; 4957 4958 /* 4959 * Error vnode operations template 4960 */ 4961 vnodeops_t *zfs_evnodeops; 4962 const fs_operation_def_t zfs_evnodeops_template[] = { 4963 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4964 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4965 NULL, NULL 4966 }; 4967