xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision e8921a52c53ee69f7b65f054d9b2e886139daa59)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25  */
26 
27 /*
28  * ZFS control directory (a.k.a. ".zfs")
29  *
30  * This directory provides a common location for all ZFS meta-objects.
31  * Currently, this is only the 'snapshot' directory, but this may expand in the
32  * future.  The elements are built using the GFS primitives, as the hierarchy
33  * does not actually exist on disk.
34  *
35  * For 'snapshot', we don't want to have all snapshots always mounted, because
36  * this would take up a huge amount of space in /etc/mnttab.  We have three
37  * types of objects:
38  *
39  * 	ctldir ------> snapshotdir -------> snapshot
40  *                                             |
41  *                                             |
42  *                                             V
43  *                                         mounted fs
44  *
45  * The 'snapshot' node contains just enough information to lookup '..' and act
46  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
47  * perform an automount of the underlying filesystem and return the
48  * corresponding vnode.
49  *
50  * All mounts are handled automatically by the kernel, but unmounts are
51  * (currently) handled from user land.  The main reason is that there is no
52  * reliable way to auto-unmount the filesystem when it's "no longer in use".
53  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
54  * unmounts any snapshots within the snapshot directory.
55  *
56  * The '.zfs', '.zfs/snapshot', and all directories created under
57  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
58  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
59  *
60  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
61  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
62  * However, vnodes within these mounted on file systems have their v_vfsp
63  * fields set to the head filesystem to make NFS happy (see
64  * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
65  * so that it cannot be freed until all snapshots have been unmounted.
66  */
67 
68 #include <fs/fs_subr.h>
69 #include <sys/zfs_ctldir.h>
70 #include <sys/zfs_ioctl.h>
71 #include <sys/zfs_vfsops.h>
72 #include <sys/vfs_opreg.h>
73 #include <sys/gfs.h>
74 #include <sys/stat.h>
75 #include <sys/dmu.h>
76 #include <sys/dsl_destroy.h>
77 #include <sys/dsl_deleg.h>
78 #include <sys/mount.h>
79 #include <sys/sunddi.h>
80 
81 #include "zfs_namecheck.h"
82 
83 typedef struct zfsctl_node {
84 	gfs_dir_t	zc_gfs_private;
85 	uint64_t	zc_id;
86 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
87 } zfsctl_node_t;
88 
89 typedef struct zfsctl_snapdir {
90 	zfsctl_node_t	sd_node;
91 	kmutex_t	sd_lock;
92 	avl_tree_t	sd_snaps;
93 } zfsctl_snapdir_t;
94 
95 typedef struct {
96 	char		*se_name;
97 	vnode_t		*se_root;
98 	avl_node_t	se_node;
99 } zfs_snapentry_t;
100 
101 static int
102 snapentry_compare(const void *a, const void *b)
103 {
104 	const zfs_snapentry_t *sa = a;
105 	const zfs_snapentry_t *sb = b;
106 	int ret = strcmp(sa->se_name, sb->se_name);
107 
108 	if (ret < 0)
109 		return (-1);
110 	else if (ret > 0)
111 		return (1);
112 	else
113 		return (0);
114 }
115 
116 vnodeops_t *zfsctl_ops_root;
117 vnodeops_t *zfsctl_ops_snapdir;
118 vnodeops_t *zfsctl_ops_snapshot;
119 vnodeops_t *zfsctl_ops_shares;
120 
121 static const fs_operation_def_t zfsctl_tops_root[];
122 static const fs_operation_def_t zfsctl_tops_snapdir[];
123 static const fs_operation_def_t zfsctl_tops_snapshot[];
124 static const fs_operation_def_t zfsctl_tops_shares[];
125 
126 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
127 static vnode_t *zfsctl_mknode_shares(vnode_t *);
128 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
129 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
130 
131 static gfs_opsvec_t zfsctl_opsvec[] = {
132 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
133 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
134 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
135 	{ ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares },
136 	{ NULL }
137 };
138 
139 /*
140  * Root directory elements.  We only have two entries
141  * snapshot and shares.
142  */
143 static gfs_dirent_t zfsctl_root_entries[] = {
144 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
145 	{ "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE },
146 	{ NULL }
147 };
148 
149 /* include . and .. in the calculation */
150 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
151     sizeof (gfs_dirent_t)) + 1)
152 
153 
154 /*
155  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
156  * directories.  This is called from the ZFS init routine, and initializes the
157  * vnode ops vectors that we'll be using.
158  */
159 void
160 zfsctl_init(void)
161 {
162 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
163 }
164 
165 void
166 zfsctl_fini(void)
167 {
168 	/*
169 	 * Remove vfsctl vnode ops
170 	 */
171 	if (zfsctl_ops_root)
172 		vn_freevnodeops(zfsctl_ops_root);
173 	if (zfsctl_ops_snapdir)
174 		vn_freevnodeops(zfsctl_ops_snapdir);
175 	if (zfsctl_ops_snapshot)
176 		vn_freevnodeops(zfsctl_ops_snapshot);
177 	if (zfsctl_ops_shares)
178 		vn_freevnodeops(zfsctl_ops_shares);
179 
180 	zfsctl_ops_root = NULL;
181 	zfsctl_ops_snapdir = NULL;
182 	zfsctl_ops_snapshot = NULL;
183 	zfsctl_ops_shares = NULL;
184 }
185 
186 boolean_t
187 zfsctl_is_node(vnode_t *vp)
188 {
189 	return (vn_matchops(vp, zfsctl_ops_root) ||
190 	    vn_matchops(vp, zfsctl_ops_snapdir) ||
191 	    vn_matchops(vp, zfsctl_ops_snapshot) ||
192 	    vn_matchops(vp, zfsctl_ops_shares));
193 
194 }
195 
196 /*
197  * Return the inode number associated with the 'snapshot' or
198  * 'shares' directory.
199  */
200 /* ARGSUSED */
201 static ino64_t
202 zfsctl_root_inode_cb(vnode_t *vp, int index)
203 {
204 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
205 
206 	ASSERT(index < 2);
207 
208 	if (index == 0)
209 		return (ZFSCTL_INO_SNAPDIR);
210 
211 	return (zfsvfs->z_shares_dir);
212 }
213 
214 /*
215  * Create the '.zfs' directory.  This directory is cached as part of the VFS
216  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
217  * therefore checks against a vfs_count of 2 instead of 1.  This reference
218  * is removed when the ctldir is destroyed in the unmount.
219  */
220 void
221 zfsctl_create(zfsvfs_t *zfsvfs)
222 {
223 	vnode_t *vp, *rvp;
224 	zfsctl_node_t *zcp;
225 	uint64_t crtime[2];
226 
227 	ASSERT(zfsvfs->z_ctldir == NULL);
228 
229 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
230 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
231 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
232 	zcp = vp->v_data;
233 	zcp->zc_id = ZFSCTL_INO_ROOT;
234 
235 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
236 	VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
237 	    &crtime, sizeof (crtime)));
238 	ZFS_TIME_DECODE(&zcp->zc_cmtime, crtime);
239 	VN_RELE(rvp);
240 
241 	/*
242 	 * We're only faking the fact that we have a root of a filesystem for
243 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
244 	 * for us.
245 	 */
246 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
247 
248 	zfsvfs->z_ctldir = vp;
249 }
250 
251 /*
252  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
253  * There might still be more references if we were force unmounted, but only
254  * new zfs_inactive() calls can occur and they don't reference .zfs
255  */
256 void
257 zfsctl_destroy(zfsvfs_t *zfsvfs)
258 {
259 	VN_RELE(zfsvfs->z_ctldir);
260 	zfsvfs->z_ctldir = NULL;
261 }
262 
263 /*
264  * Given a root znode, retrieve the associated .zfs directory.
265  * Add a hold to the vnode and return it.
266  */
267 vnode_t *
268 zfsctl_root(znode_t *zp)
269 {
270 	ASSERT(zfs_has_ctldir(zp));
271 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
272 	return (zp->z_zfsvfs->z_ctldir);
273 }
274 
275 /*
276  * Common open routine.  Disallow any write access.
277  */
278 /* ARGSUSED */
279 static int
280 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
281 {
282 	if (flags & FWRITE)
283 		return (SET_ERROR(EACCES));
284 
285 	return (0);
286 }
287 
288 /*
289  * Common close routine.  Nothing to do here.
290  */
291 /* ARGSUSED */
292 static int
293 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
294     cred_t *cr, caller_context_t *ct)
295 {
296 	return (0);
297 }
298 
299 /*
300  * Common access routine.  Disallow writes.
301  */
302 /* ARGSUSED */
303 static int
304 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
305     caller_context_t *ct)
306 {
307 	if (flags & V_ACE_MASK) {
308 		if (mode & ACE_ALL_WRITE_PERMS)
309 			return (SET_ERROR(EACCES));
310 	} else {
311 		if (mode & VWRITE)
312 			return (SET_ERROR(EACCES));
313 	}
314 
315 	return (0);
316 }
317 
318 /*
319  * Common getattr function.  Fill in basic information.
320  */
321 static void
322 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
323 {
324 	timestruc_t	now;
325 
326 	vap->va_uid = 0;
327 	vap->va_gid = 0;
328 	vap->va_rdev = 0;
329 	/*
330 	 * We are a purely virtual object, so we have no
331 	 * blocksize or allocated blocks.
332 	 */
333 	vap->va_blksize = 0;
334 	vap->va_nblocks = 0;
335 	vap->va_seq = 0;
336 	vap->va_fsid = vp->v_vfsp->vfs_dev;
337 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
338 	    S_IROTH | S_IXOTH;
339 	vap->va_type = VDIR;
340 	/*
341 	 * We live in the now (for atime).
342 	 */
343 	gethrestime(&now);
344 	vap->va_atime = now;
345 }
346 
347 /*ARGSUSED*/
348 static int
349 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
350 {
351 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
352 	zfsctl_node_t	*zcp = vp->v_data;
353 	uint64_t	object = zcp->zc_id;
354 	zfid_short_t	*zfid;
355 	int		i;
356 
357 	ZFS_ENTER(zfsvfs);
358 
359 	if (fidp->fid_len < SHORT_FID_LEN) {
360 		fidp->fid_len = SHORT_FID_LEN;
361 		ZFS_EXIT(zfsvfs);
362 		return (SET_ERROR(ENOSPC));
363 	}
364 
365 	zfid = (zfid_short_t *)fidp;
366 
367 	zfid->zf_len = SHORT_FID_LEN;
368 
369 	for (i = 0; i < sizeof (zfid->zf_object); i++)
370 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
371 
372 	/* .zfs znodes always have a generation number of 0 */
373 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
374 		zfid->zf_gen[i] = 0;
375 
376 	ZFS_EXIT(zfsvfs);
377 	return (0);
378 }
379 
380 
381 /*ARGSUSED*/
382 static int
383 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
384 {
385 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
386 	znode_t		*dzp;
387 	int		error;
388 
389 	ZFS_ENTER(zfsvfs);
390 
391 	if (zfsvfs->z_shares_dir == 0) {
392 		ZFS_EXIT(zfsvfs);
393 		return (SET_ERROR(ENOTSUP));
394 	}
395 
396 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
397 		error = VOP_FID(ZTOV(dzp), fidp, ct);
398 		VN_RELE(ZTOV(dzp));
399 	}
400 
401 	ZFS_EXIT(zfsvfs);
402 	return (error);
403 }
404 /*
405  * .zfs inode namespace
406  *
407  * We need to generate unique inode numbers for all files and directories
408  * within the .zfs pseudo-filesystem.  We use the following scheme:
409  *
410  * 	ENTRY			ZFSCTL_INODE
411  * 	.zfs			1
412  * 	.zfs/snapshot		2
413  * 	.zfs/snapshot/<snap>	objectid(snap)
414  */
415 
416 #define	ZFSCTL_INO_SNAP(id)	(id)
417 
418 /*
419  * Get root directory attributes.
420  */
421 /* ARGSUSED */
422 static int
423 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
424     caller_context_t *ct)
425 {
426 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
427 	zfsctl_node_t *zcp = vp->v_data;
428 
429 	ZFS_ENTER(zfsvfs);
430 	vap->va_nodeid = ZFSCTL_INO_ROOT;
431 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
432 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
433 
434 	zfsctl_common_getattr(vp, vap);
435 	ZFS_EXIT(zfsvfs);
436 
437 	return (0);
438 }
439 
440 /*
441  * Special case the handling of "..".
442  */
443 /* ARGSUSED */
444 int
445 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
446     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
447     int *direntflags, pathname_t *realpnp)
448 {
449 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
450 	int err;
451 
452 	/*
453 	 * No extended attributes allowed under .zfs
454 	 */
455 	if (flags & LOOKUP_XATTR)
456 		return (SET_ERROR(EINVAL));
457 
458 	ZFS_ENTER(zfsvfs);
459 
460 	if (strcmp(nm, "..") == 0) {
461 		err = VFS_ROOT(dvp->v_vfsp, vpp);
462 	} else {
463 		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
464 		    cr, ct, direntflags, realpnp);
465 	}
466 
467 	ZFS_EXIT(zfsvfs);
468 
469 	return (err);
470 }
471 
472 static int
473 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
474     caller_context_t *ct)
475 {
476 	/*
477 	 * We only care about ACL_ENABLED so that libsec can
478 	 * display ACL correctly and not default to POSIX draft.
479 	 */
480 	if (cmd == _PC_ACL_ENABLED) {
481 		*valp = _ACL_ACE_ENABLED;
482 		return (0);
483 	}
484 
485 	return (fs_pathconf(vp, cmd, valp, cr, ct));
486 }
487 
488 static const fs_operation_def_t zfsctl_tops_root[] = {
489 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
490 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
491 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
492 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
493 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
494 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
495 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
496 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
497 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
498 	{ VOPNAME_PATHCONF,	{ .vop_pathconf = zfsctl_pathconf }	},
499 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
500 	{ NULL }
501 };
502 
503 /*
504  * Gets the full dataset name that corresponds to the given snapshot name
505  * Example:
506  * 	zfsctl_snapshot_zname("snap1") -> "mypool/myfs@snap1"
507  */
508 static int
509 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
510 {
511 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
512 
513 	if (zfs_component_namecheck(name, NULL, NULL) != 0)
514 		return (SET_ERROR(EILSEQ));
515 	dmu_objset_name(os, zname);
516 	if (strlen(zname) + 1 + strlen(name) >= len)
517 		return (SET_ERROR(ENAMETOOLONG));
518 	(void) strcat(zname, "@");
519 	(void) strcat(zname, name);
520 	return (0);
521 }
522 
523 static int
524 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
525 {
526 	vnode_t *svp = sep->se_root;
527 	int error;
528 
529 	ASSERT(vn_ismntpt(svp));
530 
531 	/* this will be dropped by dounmount() */
532 	if ((error = vn_vfswlock(svp)) != 0)
533 		return (error);
534 
535 	VN_HOLD(svp);
536 	error = dounmount(vn_mountedvfs(svp), fflags, cr);
537 	if (error) {
538 		VN_RELE(svp);
539 		return (error);
540 	}
541 
542 	/*
543 	 * We can't use VN_RELE(), as that will try to invoke
544 	 * zfsctl_snapdir_inactive(), which would cause us to destroy
545 	 * the sd_lock mutex held by our caller.
546 	 */
547 	ASSERT(svp->v_count == 1);
548 	gfs_vop_inactive(svp, cr, NULL);
549 
550 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
551 	kmem_free(sep, sizeof (zfs_snapentry_t));
552 
553 	return (0);
554 }
555 
556 static void
557 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
558 {
559 	avl_index_t where;
560 	vfs_t *vfsp;
561 	refstr_t *pathref;
562 	char newpath[MAXNAMELEN];
563 	char *tail;
564 
565 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
566 	ASSERT(sep != NULL);
567 
568 	vfsp = vn_mountedvfs(sep->se_root);
569 	ASSERT(vfsp != NULL);
570 
571 	vfs_lock_wait(vfsp);
572 
573 	/*
574 	 * Change the name in the AVL tree.
575 	 */
576 	avl_remove(&sdp->sd_snaps, sep);
577 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
578 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
579 	(void) strcpy(sep->se_name, nm);
580 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
581 	avl_insert(&sdp->sd_snaps, sep, where);
582 
583 	/*
584 	 * Change the current mountpoint info:
585 	 * 	- update the tail of the mntpoint path
586 	 *	- update the tail of the resource path
587 	 */
588 	pathref = vfs_getmntpoint(vfsp);
589 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
590 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
591 	*(tail+1) = '\0';
592 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
593 	(void) strcat(newpath, nm);
594 	refstr_rele(pathref);
595 	vfs_setmntpoint(vfsp, newpath, 0);
596 
597 	pathref = vfs_getresource(vfsp);
598 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
599 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
600 	*(tail+1) = '\0';
601 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
602 	(void) strcat(newpath, nm);
603 	refstr_rele(pathref);
604 	vfs_setresource(vfsp, newpath, 0);
605 
606 	vfs_unlock(vfsp);
607 }
608 
609 /*ARGSUSED*/
610 static int
611 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
612     cred_t *cr, caller_context_t *ct, int flags)
613 {
614 	zfsctl_snapdir_t *sdp = sdvp->v_data;
615 	zfs_snapentry_t search, *sep;
616 	zfsvfs_t *zfsvfs;
617 	avl_index_t where;
618 	char from[ZFS_MAX_DATASET_NAME_LEN], to[ZFS_MAX_DATASET_NAME_LEN];
619 	char real[ZFS_MAX_DATASET_NAME_LEN], fsname[ZFS_MAX_DATASET_NAME_LEN];
620 	int err;
621 
622 	zfsvfs = sdvp->v_vfsp->vfs_data;
623 	ZFS_ENTER(zfsvfs);
624 
625 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
626 		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
627 		    sizeof (real), NULL);
628 		if (err == 0) {
629 			snm = real;
630 		} else if (err != ENOTSUP) {
631 			ZFS_EXIT(zfsvfs);
632 			return (err);
633 		}
634 	}
635 
636 	ZFS_EXIT(zfsvfs);
637 
638 	dmu_objset_name(zfsvfs->z_os, fsname);
639 
640 	err = zfsctl_snapshot_zname(sdvp, snm, sizeof (from), from);
641 	if (err == 0)
642 		err = zfsctl_snapshot_zname(tdvp, tnm, sizeof (to), to);
643 	if (err == 0)
644 		err = zfs_secpolicy_rename_perms(from, to, cr);
645 	if (err != 0)
646 		return (err);
647 
648 	/*
649 	 * Cannot move snapshots out of the snapdir.
650 	 */
651 	if (sdvp != tdvp)
652 		return (SET_ERROR(EINVAL));
653 
654 	if (strcmp(snm, tnm) == 0)
655 		return (0);
656 
657 	mutex_enter(&sdp->sd_lock);
658 
659 	search.se_name = (char *)snm;
660 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
661 		mutex_exit(&sdp->sd_lock);
662 		return (SET_ERROR(ENOENT));
663 	}
664 
665 	err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
666 	if (err == 0)
667 		zfsctl_rename_snap(sdp, sep, tnm);
668 
669 	mutex_exit(&sdp->sd_lock);
670 
671 	return (err);
672 }
673 
674 /* ARGSUSED */
675 static int
676 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
677     caller_context_t *ct, int flags)
678 {
679 	zfsctl_snapdir_t *sdp = dvp->v_data;
680 	zfs_snapentry_t *sep;
681 	zfs_snapentry_t search;
682 	zfsvfs_t *zfsvfs;
683 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
684 	char real[ZFS_MAX_DATASET_NAME_LEN];
685 	int err;
686 
687 	zfsvfs = dvp->v_vfsp->vfs_data;
688 	ZFS_ENTER(zfsvfs);
689 
690 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
691 
692 		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
693 		    sizeof (real), NULL);
694 		if (err == 0) {
695 			name = real;
696 		} else if (err != ENOTSUP) {
697 			ZFS_EXIT(zfsvfs);
698 			return (err);
699 		}
700 	}
701 
702 	ZFS_EXIT(zfsvfs);
703 
704 	err = zfsctl_snapshot_zname(dvp, name, sizeof (snapname), snapname);
705 	if (err == 0)
706 		err = zfs_secpolicy_destroy_perms(snapname, cr);
707 	if (err != 0)
708 		return (err);
709 
710 	mutex_enter(&sdp->sd_lock);
711 
712 	search.se_name = name;
713 	sep = avl_find(&sdp->sd_snaps, &search, NULL);
714 	if (sep) {
715 		avl_remove(&sdp->sd_snaps, sep);
716 		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
717 		if (err != 0)
718 			avl_add(&sdp->sd_snaps, sep);
719 		else
720 			err = dsl_destroy_snapshot(snapname, B_FALSE);
721 	} else {
722 		err = SET_ERROR(ENOENT);
723 	}
724 
725 	mutex_exit(&sdp->sd_lock);
726 
727 	return (err);
728 }
729 
730 /*
731  * This creates a snapshot under '.zfs/snapshot'.
732  */
733 /* ARGSUSED */
734 static int
735 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
736     cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
737 {
738 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
739 	char name[ZFS_MAX_DATASET_NAME_LEN];
740 	int err;
741 	static enum symfollow follow = NO_FOLLOW;
742 	static enum uio_seg seg = UIO_SYSSPACE;
743 
744 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0)
745 		return (SET_ERROR(EILSEQ));
746 
747 	dmu_objset_name(zfsvfs->z_os, name);
748 
749 	*vpp = NULL;
750 
751 	err = zfs_secpolicy_snapshot_perms(name, cr);
752 	if (err != 0)
753 		return (err);
754 
755 	if (err == 0) {
756 		err = dmu_objset_snapshot_one(name, dirname);
757 		if (err != 0)
758 			return (err);
759 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
760 	}
761 
762 	return (err);
763 }
764 
765 /*
766  * Lookup entry point for the 'snapshot' directory.  Try to open the
767  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
768  * Perform a mount of the associated dataset on top of the vnode.
769  */
770 /* ARGSUSED */
771 static int
772 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
773     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
774     int *direntflags, pathname_t *realpnp)
775 {
776 	zfsctl_snapdir_t *sdp = dvp->v_data;
777 	objset_t *snap;
778 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
779 	char real[ZFS_MAX_DATASET_NAME_LEN];
780 	char *mountpoint;
781 	zfs_snapentry_t *sep, search;
782 	struct mounta margs;
783 	vfs_t *vfsp;
784 	size_t mountpoint_len;
785 	avl_index_t where;
786 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
787 	int err;
788 
789 	/*
790 	 * No extended attributes allowed under .zfs
791 	 */
792 	if (flags & LOOKUP_XATTR)
793 		return (SET_ERROR(EINVAL));
794 
795 	ASSERT(dvp->v_type == VDIR);
796 
797 	/*
798 	 * If we get a recursive call, that means we got called
799 	 * from the domount() code while it was trying to look up the
800 	 * spec (which looks like a local path for zfs).  We need to
801 	 * add some flag to domount() to tell it not to do this lookup.
802 	 */
803 	if (MUTEX_HELD(&sdp->sd_lock))
804 		return (SET_ERROR(ENOENT));
805 
806 	ZFS_ENTER(zfsvfs);
807 
808 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
809 		ZFS_EXIT(zfsvfs);
810 		return (0);
811 	}
812 
813 	if (flags & FIGNORECASE) {
814 		boolean_t conflict = B_FALSE;
815 
816 		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
817 		    sizeof (real), &conflict);
818 		if (err == 0) {
819 			nm = real;
820 		} else if (err != ENOTSUP) {
821 			ZFS_EXIT(zfsvfs);
822 			return (err);
823 		}
824 		if (realpnp)
825 			(void) strlcpy(realpnp->pn_buf, nm,
826 			    realpnp->pn_bufsize);
827 		if (conflict && direntflags)
828 			*direntflags = ED_CASE_CONFLICT;
829 	}
830 
831 	mutex_enter(&sdp->sd_lock);
832 	search.se_name = (char *)nm;
833 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
834 		*vpp = sep->se_root;
835 		VN_HOLD(*vpp);
836 		err = traverse(vpp);
837 		if (err != 0) {
838 			VN_RELE(*vpp);
839 			*vpp = NULL;
840 		} else if (*vpp == sep->se_root) {
841 			/*
842 			 * The snapshot was unmounted behind our backs,
843 			 * try to remount it.
844 			 */
845 			goto domount;
846 		} else {
847 			/*
848 			 * VROOT was set during the traverse call.  We need
849 			 * to clear it since we're pretending to be part
850 			 * of our parent's vfs.
851 			 */
852 			(*vpp)->v_flag &= ~VROOT;
853 		}
854 		mutex_exit(&sdp->sd_lock);
855 		ZFS_EXIT(zfsvfs);
856 		return (err);
857 	}
858 
859 	/*
860 	 * The requested snapshot is not currently mounted, look it up.
861 	 */
862 	err = zfsctl_snapshot_zname(dvp, nm, sizeof (snapname), snapname);
863 	if (err != 0) {
864 		mutex_exit(&sdp->sd_lock);
865 		ZFS_EXIT(zfsvfs);
866 		/*
867 		 * handle "ls *" or "?" in a graceful manner,
868 		 * forcing EILSEQ to ENOENT.
869 		 * Since shell ultimately passes "*" or "?" as name to lookup
870 		 */
871 		return (err == EILSEQ ? ENOENT : err);
872 	}
873 	if (dmu_objset_hold(snapname, FTAG, &snap) != 0) {
874 		mutex_exit(&sdp->sd_lock);
875 		ZFS_EXIT(zfsvfs);
876 		return (SET_ERROR(ENOENT));
877 	}
878 
879 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
880 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
881 	(void) strcpy(sep->se_name, nm);
882 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
883 	avl_insert(&sdp->sd_snaps, sep, where);
884 
885 	dmu_objset_rele(snap, FTAG);
886 domount:
887 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
888 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
889 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
890 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
891 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
892 
893 	margs.spec = snapname;
894 	margs.dir = mountpoint;
895 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
896 	margs.fstype = "zfs";
897 	margs.dataptr = NULL;
898 	margs.datalen = 0;
899 	margs.optptr = NULL;
900 	margs.optlen = 0;
901 
902 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
903 	kmem_free(mountpoint, mountpoint_len);
904 
905 	if (err == 0) {
906 		/*
907 		 * Return the mounted root rather than the covered mount point.
908 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
909 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
910 		 * vnode is the root of the newly created vfsp.
911 		 */
912 		VFS_RELE(vfsp);
913 		err = traverse(vpp);
914 	}
915 
916 	if (err == 0) {
917 		/*
918 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
919 		 *
920 		 * This is where we lie about our v_vfsp in order to
921 		 * make .zfs/snapshot/<snapname> accessible over NFS
922 		 * without requiring manual mounts of <snapname>.
923 		 */
924 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
925 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
926 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
927 		(*vpp)->v_flag &= ~VROOT;
928 	}
929 	mutex_exit(&sdp->sd_lock);
930 	ZFS_EXIT(zfsvfs);
931 
932 	/*
933 	 * If we had an error, drop our hold on the vnode and
934 	 * zfsctl_snapshot_inactive() will clean up.
935 	 */
936 	if (err != 0) {
937 		VN_RELE(*vpp);
938 		*vpp = NULL;
939 	}
940 	return (err);
941 }
942 
943 /* ARGSUSED */
944 static int
945 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
946     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
947     int *direntflags, pathname_t *realpnp)
948 {
949 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
950 	znode_t *dzp;
951 	int error;
952 
953 	ZFS_ENTER(zfsvfs);
954 
955 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
956 		ZFS_EXIT(zfsvfs);
957 		return (0);
958 	}
959 
960 	if (zfsvfs->z_shares_dir == 0) {
961 		ZFS_EXIT(zfsvfs);
962 		return (SET_ERROR(ENOTSUP));
963 	}
964 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
965 		error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp,
966 		    flags, rdir, cr, ct, direntflags, realpnp);
967 		VN_RELE(ZTOV(dzp));
968 	}
969 
970 	ZFS_EXIT(zfsvfs);
971 
972 	return (error);
973 }
974 
975 /* ARGSUSED */
976 static int
977 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
978     offset_t *offp, offset_t *nextp, void *data, int flags)
979 {
980 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
981 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
982 	uint64_t id, cookie;
983 	boolean_t case_conflict;
984 	int error;
985 
986 	ZFS_ENTER(zfsvfs);
987 
988 	cookie = *offp;
989 	dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
990 	error = dmu_snapshot_list_next(zfsvfs->z_os,
991 	    sizeof (snapname), snapname, &id, &cookie, &case_conflict);
992 	dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
993 	if (error) {
994 		ZFS_EXIT(zfsvfs);
995 		if (error == ENOENT) {
996 			*eofp = 1;
997 			return (0);
998 		}
999 		return (error);
1000 	}
1001 
1002 	if (flags & V_RDDIR_ENTFLAGS) {
1003 		edirent_t *eodp = dp;
1004 
1005 		(void) strcpy(eodp->ed_name, snapname);
1006 		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
1007 		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
1008 	} else {
1009 		struct dirent64 *odp = dp;
1010 
1011 		(void) strcpy(odp->d_name, snapname);
1012 		odp->d_ino = ZFSCTL_INO_SNAP(id);
1013 	}
1014 	*nextp = cookie;
1015 
1016 	ZFS_EXIT(zfsvfs);
1017 
1018 	return (0);
1019 }
1020 
1021 /* ARGSUSED */
1022 static int
1023 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1024     caller_context_t *ct, int flags)
1025 {
1026 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1027 	znode_t *dzp;
1028 	int error;
1029 
1030 	ZFS_ENTER(zfsvfs);
1031 
1032 	if (zfsvfs->z_shares_dir == 0) {
1033 		ZFS_EXIT(zfsvfs);
1034 		return (SET_ERROR(ENOTSUP));
1035 	}
1036 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1037 		error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags);
1038 		VN_RELE(ZTOV(dzp));
1039 	} else {
1040 		*eofp = 1;
1041 		error = SET_ERROR(ENOENT);
1042 	}
1043 
1044 	ZFS_EXIT(zfsvfs);
1045 	return (error);
1046 }
1047 
1048 /*
1049  * pvp is the '.zfs' directory (zfsctl_node_t).
1050  *
1051  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
1052  *
1053  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
1054  * when a lookup is performed on .zfs for "snapshot".
1055  */
1056 vnode_t *
1057 zfsctl_mknode_snapdir(vnode_t *pvp)
1058 {
1059 	vnode_t *vp;
1060 	zfsctl_snapdir_t *sdp;
1061 
1062 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
1063 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
1064 	    zfsctl_snapdir_readdir_cb, NULL);
1065 	sdp = vp->v_data;
1066 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
1067 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1068 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
1069 	avl_create(&sdp->sd_snaps, snapentry_compare,
1070 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
1071 	return (vp);
1072 }
1073 
1074 vnode_t *
1075 zfsctl_mknode_shares(vnode_t *pvp)
1076 {
1077 	vnode_t *vp;
1078 	zfsctl_node_t *sdp;
1079 
1080 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1081 	    zfsctl_ops_shares, NULL, NULL, MAXNAMELEN,
1082 	    NULL, NULL);
1083 	sdp = vp->v_data;
1084 	sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1085 	return (vp);
1086 
1087 }
1088 
1089 /* ARGSUSED */
1090 static int
1091 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1092     caller_context_t *ct)
1093 {
1094 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1095 	znode_t *dzp;
1096 	int error;
1097 
1098 	ZFS_ENTER(zfsvfs);
1099 	if (zfsvfs->z_shares_dir == 0) {
1100 		ZFS_EXIT(zfsvfs);
1101 		return (SET_ERROR(ENOTSUP));
1102 	}
1103 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1104 		error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct);
1105 		VN_RELE(ZTOV(dzp));
1106 	}
1107 	ZFS_EXIT(zfsvfs);
1108 	return (error);
1109 
1110 
1111 }
1112 
1113 /* ARGSUSED */
1114 static int
1115 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1116     caller_context_t *ct)
1117 {
1118 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1119 	zfsctl_snapdir_t *sdp = vp->v_data;
1120 
1121 	ZFS_ENTER(zfsvfs);
1122 	zfsctl_common_getattr(vp, vap);
1123 	vap->va_nodeid = gfs_file_inode(vp);
1124 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
1125 	vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1126 	ZFS_EXIT(zfsvfs);
1127 
1128 	return (0);
1129 }
1130 
1131 /* ARGSUSED */
1132 static void
1133 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1134 {
1135 	zfsctl_snapdir_t *sdp = vp->v_data;
1136 	void *private;
1137 
1138 	private = gfs_dir_inactive(vp);
1139 	if (private != NULL) {
1140 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
1141 		mutex_destroy(&sdp->sd_lock);
1142 		avl_destroy(&sdp->sd_snaps);
1143 		kmem_free(private, sizeof (zfsctl_snapdir_t));
1144 	}
1145 }
1146 
1147 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1148 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1149 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1150 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1151 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
1152 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1153 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
1154 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
1155 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
1156 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
1157 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
1158 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1159 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
1160 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
1161 	{ NULL }
1162 };
1163 
1164 static const fs_operation_def_t zfsctl_tops_shares[] = {
1165 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
1166 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
1167 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
1168 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_shares_getattr } },
1169 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
1170 	{ VOPNAME_READDIR,	{ .vop_readdir = zfsctl_shares_readdir } },
1171 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_shares_lookup }	},
1172 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
1173 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive } },
1174 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_shares_fid } },
1175 	{ NULL }
1176 };
1177 
1178 /*
1179  * pvp is the GFS vnode '.zfs/snapshot'.
1180  *
1181  * This creates a GFS node under '.zfs/snapshot' representing each
1182  * snapshot.  This newly created GFS node is what we mount snapshot
1183  * vfs_t's ontop of.
1184  */
1185 static vnode_t *
1186 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1187 {
1188 	vnode_t *vp;
1189 	zfsctl_node_t *zcp;
1190 
1191 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1192 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1193 	zcp = vp->v_data;
1194 	zcp->zc_id = objset;
1195 
1196 	return (vp);
1197 }
1198 
1199 static void
1200 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1201 {
1202 	zfsctl_snapdir_t *sdp;
1203 	zfs_snapentry_t *sep, *next;
1204 	vnode_t *dvp;
1205 
1206 	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1207 	sdp = dvp->v_data;
1208 
1209 	mutex_enter(&sdp->sd_lock);
1210 
1211 	mutex_enter(&vp->v_lock);
1212 	if (vp->v_count > 1) {
1213 		VN_RELE_LOCKED(vp);
1214 		mutex_exit(&vp->v_lock);
1215 		mutex_exit(&sdp->sd_lock);
1216 		VN_RELE(dvp);
1217 		return;
1218 	}
1219 	mutex_exit(&vp->v_lock);
1220 	ASSERT(!vn_ismntpt(vp));
1221 
1222 	sep = avl_first(&sdp->sd_snaps);
1223 	while (sep != NULL) {
1224 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1225 
1226 		if (sep->se_root == vp) {
1227 			avl_remove(&sdp->sd_snaps, sep);
1228 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1229 			kmem_free(sep, sizeof (zfs_snapentry_t));
1230 			break;
1231 		}
1232 		sep = next;
1233 	}
1234 	ASSERT(sep != NULL);
1235 
1236 	mutex_exit(&sdp->sd_lock);
1237 	VN_RELE(dvp);
1238 
1239 	/*
1240 	 * Dispose of the vnode for the snapshot mount point.
1241 	 * This is safe to do because once this entry has been removed
1242 	 * from the AVL tree, it can't be found again, so cannot become
1243 	 * "active".  If we lookup the same name again we will end up
1244 	 * creating a new vnode.
1245 	 */
1246 	gfs_vop_inactive(vp, cr, ct);
1247 }
1248 
1249 
1250 /*
1251  * These VP's should never see the light of day.  They should always
1252  * be covered.
1253  */
1254 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1255 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
1256 	NULL, NULL
1257 };
1258 
1259 int
1260 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1261 {
1262 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1263 	vnode_t *dvp, *vp;
1264 	zfsctl_snapdir_t *sdp;
1265 	zfsctl_node_t *zcp;
1266 	zfs_snapentry_t *sep;
1267 	int error;
1268 
1269 	ASSERT(zfsvfs->z_ctldir != NULL);
1270 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1271 	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1272 	if (error != 0)
1273 		return (error);
1274 	sdp = dvp->v_data;
1275 
1276 	mutex_enter(&sdp->sd_lock);
1277 	sep = avl_first(&sdp->sd_snaps);
1278 	while (sep != NULL) {
1279 		vp = sep->se_root;
1280 		zcp = vp->v_data;
1281 		if (zcp->zc_id == objsetid)
1282 			break;
1283 
1284 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1285 	}
1286 
1287 	if (sep != NULL) {
1288 		VN_HOLD(vp);
1289 		/*
1290 		 * Return the mounted root rather than the covered mount point.
1291 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1292 		 * and returns the ZFS vnode mounted on top of the GFS node.
1293 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1294 		 */
1295 		error = traverse(&vp);
1296 		if (error == 0) {
1297 			if (vp == sep->se_root)
1298 				error = SET_ERROR(EINVAL);
1299 			else
1300 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1301 		}
1302 		mutex_exit(&sdp->sd_lock);
1303 		VN_RELE(vp);
1304 	} else {
1305 		error = SET_ERROR(EINVAL);
1306 		mutex_exit(&sdp->sd_lock);
1307 	}
1308 
1309 	VN_RELE(dvp);
1310 
1311 	return (error);
1312 }
1313 
1314 /*
1315  * Unmount any snapshots for the given filesystem.  This is called from
1316  * zfs_umount() - if we have a ctldir, then go through and unmount all the
1317  * snapshots.
1318  */
1319 int
1320 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1321 {
1322 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1323 	vnode_t *dvp;
1324 	zfsctl_snapdir_t *sdp;
1325 	zfs_snapentry_t *sep, *next;
1326 	int error;
1327 
1328 	ASSERT(zfsvfs->z_ctldir != NULL);
1329 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1330 	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1331 	if (error != 0)
1332 		return (error);
1333 	sdp = dvp->v_data;
1334 
1335 	mutex_enter(&sdp->sd_lock);
1336 
1337 	sep = avl_first(&sdp->sd_snaps);
1338 	while (sep != NULL) {
1339 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1340 
1341 		/*
1342 		 * If this snapshot is not mounted, then it must
1343 		 * have just been unmounted by somebody else, and
1344 		 * will be cleaned up by zfsctl_snapdir_inactive().
1345 		 */
1346 		if (vn_ismntpt(sep->se_root)) {
1347 			avl_remove(&sdp->sd_snaps, sep);
1348 			error = zfsctl_unmount_snap(sep, fflags, cr);
1349 			if (error) {
1350 				avl_add(&sdp->sd_snaps, sep);
1351 				break;
1352 			}
1353 		}
1354 		sep = next;
1355 	}
1356 
1357 	mutex_exit(&sdp->sd_lock);
1358 	VN_RELE(dvp);
1359 
1360 	return (error);
1361 }
1362