1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/zil.h> 34 #include <sys/callb.h> 35 36 /* 37 * ZFS Transaction Groups 38 * ---------------------- 39 * 40 * ZFS transaction groups are, as the name implies, groups of transactions 41 * that act on persistent state. ZFS asserts consistency at the granularity of 42 * these transaction groups. Each successive transaction group (txg) is 43 * assigned a 64-bit consecutive identifier. There are three active 44 * transaction group states: open, quiescing, or syncing. At any given time, 45 * there may be an active txg associated with each state; each active txg may 46 * either be processing, or blocked waiting to enter the next state. There may 47 * be up to three active txgs, and there is always a txg in the open state 48 * (though it may be blocked waiting to enter the quiescing state). In broad 49 * strokes, transactions -- operations that change in-memory structures -- are 50 * accepted into the txg in the open state, and are completed while the txg is 51 * in the open or quiescing states. The accumulated changes are written to 52 * disk in the syncing state. 53 * 54 * Open 55 * 56 * When a new txg becomes active, it first enters the open state. New 57 * transactions -- updates to in-memory structures -- are assigned to the 58 * currently open txg. There is always a txg in the open state so that ZFS can 59 * accept new changes (though the txg may refuse new changes if it has hit 60 * some limit). ZFS advances the open txg to the next state for a variety of 61 * reasons such as it hitting a time or size threshold, or the execution of an 62 * administrative action that must be completed in the syncing state. 63 * 64 * Quiescing 65 * 66 * After a txg exits the open state, it enters the quiescing state. The 67 * quiescing state is intended to provide a buffer between accepting new 68 * transactions in the open state and writing them out to stable storage in 69 * the syncing state. While quiescing, transactions can continue their 70 * operation without delaying either of the other states. Typically, a txg is 71 * in the quiescing state very briefly since the operations are bounded by 72 * software latencies rather than, say, slower I/O latencies. After all 73 * transactions complete, the txg is ready to enter the next state. 74 * 75 * Syncing 76 * 77 * In the syncing state, the in-memory state built up during the open and (to 78 * a lesser degree) the quiescing states is written to stable storage. The 79 * process of writing out modified data can, in turn modify more data. For 80 * example when we write new blocks, we need to allocate space for them; those 81 * allocations modify metadata (space maps)... which themselves must be 82 * written to stable storage. During the sync state, ZFS iterates, writing out 83 * data until it converges and all in-memory changes have been written out. 84 * The first such pass is the largest as it encompasses all the modified user 85 * data (as opposed to filesystem metadata). Subsequent passes typically have 86 * far less data to write as they consist exclusively of filesystem metadata. 87 * 88 * To ensure convergence, after a certain number of passes ZFS begins 89 * overwriting locations on stable storage that had been allocated earlier in 90 * the syncing state (and subsequently freed). ZFS usually allocates new 91 * blocks to optimize for large, continuous, writes. For the syncing state to 92 * converge however it must complete a pass where no new blocks are allocated 93 * since each allocation requires a modification of persistent metadata. 94 * Further, to hasten convergence, after a prescribed number of passes, ZFS 95 * also defers frees, and stops compressing. 96 * 97 * In addition to writing out user data, we must also execute synctasks during 98 * the syncing context. A synctask is the mechanism by which some 99 * administrative activities work such as creating and destroying snapshots or 100 * datasets. Note that when a synctask is initiated it enters the open txg, 101 * and ZFS then pushes that txg as quickly as possible to completion of the 102 * syncing state in order to reduce the latency of the administrative 103 * activity. To complete the syncing state, ZFS writes out a new uberblock, 104 * the root of the tree of blocks that comprise all state stored on the ZFS 105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 106 * now transition to the syncing state. 107 */ 108 109 static void txg_sync_thread(void *arg); 110 static void txg_quiesce_thread(void *arg); 111 112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 113 114 /* 115 * Prepare the txg subsystem. 116 */ 117 void 118 txg_init(dsl_pool_t *dp, uint64_t txg) 119 { 120 tx_state_t *tx = &dp->dp_tx; 121 int c; 122 bzero(tx, sizeof (tx_state_t)); 123 124 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 125 126 for (c = 0; c < max_ncpus; c++) { 127 int i; 128 129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT, 131 NULL); 132 for (i = 0; i < TXG_SIZE; i++) { 133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 134 NULL); 135 list_create(&tx->tx_cpu[c].tc_callbacks[i], 136 sizeof (dmu_tx_callback_t), 137 offsetof(dmu_tx_callback_t, dcb_node)); 138 } 139 } 140 141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 142 143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 148 149 tx->tx_open_txg = txg; 150 } 151 152 /* 153 * Close down the txg subsystem. 154 */ 155 void 156 txg_fini(dsl_pool_t *dp) 157 { 158 tx_state_t *tx = &dp->dp_tx; 159 int c; 160 161 ASSERT0(tx->tx_threads); 162 163 mutex_destroy(&tx->tx_sync_lock); 164 165 cv_destroy(&tx->tx_sync_more_cv); 166 cv_destroy(&tx->tx_sync_done_cv); 167 cv_destroy(&tx->tx_quiesce_more_cv); 168 cv_destroy(&tx->tx_quiesce_done_cv); 169 cv_destroy(&tx->tx_exit_cv); 170 171 for (c = 0; c < max_ncpus; c++) { 172 int i; 173 174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 175 mutex_destroy(&tx->tx_cpu[c].tc_lock); 176 for (i = 0; i < TXG_SIZE; i++) { 177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 179 } 180 } 181 182 if (tx->tx_commit_cb_taskq != NULL) 183 taskq_destroy(tx->tx_commit_cb_taskq); 184 185 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 186 187 bzero(tx, sizeof (tx_state_t)); 188 } 189 190 /* 191 * Start syncing transaction groups. 192 */ 193 void 194 txg_sync_start(dsl_pool_t *dp) 195 { 196 tx_state_t *tx = &dp->dp_tx; 197 198 mutex_enter(&tx->tx_sync_lock); 199 200 dprintf("pool %p\n", dp); 201 202 ASSERT0(tx->tx_threads); 203 204 tx->tx_threads = 2; 205 206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 207 dp, 0, &p0, TS_RUN, minclsyspri); 208 209 /* 210 * The sync thread can need a larger-than-default stack size on 211 * 32-bit x86. This is due in part to nested pools and 212 * scrub_visitbp() recursion. 213 */ 214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 215 dp, 0, &p0, TS_RUN, minclsyspri); 216 217 mutex_exit(&tx->tx_sync_lock); 218 } 219 220 static void 221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 222 { 223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 224 mutex_enter(&tx->tx_sync_lock); 225 } 226 227 static void 228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 229 { 230 ASSERT(*tpp != NULL); 231 *tpp = NULL; 232 tx->tx_threads--; 233 cv_broadcast(&tx->tx_exit_cv); 234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 235 thread_exit(); 236 } 237 238 static void 239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 240 { 241 CALLB_CPR_SAFE_BEGIN(cpr); 242 243 if (time) 244 (void) cv_timedwait(cv, &tx->tx_sync_lock, 245 ddi_get_lbolt() + time); 246 else 247 cv_wait(cv, &tx->tx_sync_lock); 248 249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 250 } 251 252 /* 253 * Stop syncing transaction groups. 254 */ 255 void 256 txg_sync_stop(dsl_pool_t *dp) 257 { 258 tx_state_t *tx = &dp->dp_tx; 259 260 dprintf("pool %p\n", dp); 261 /* 262 * Finish off any work in progress. 263 */ 264 ASSERT3U(tx->tx_threads, ==, 2); 265 266 /* 267 * We need to ensure that we've vacated the deferred space_maps. 268 */ 269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 270 271 /* 272 * Wake all sync threads and wait for them to die. 273 */ 274 mutex_enter(&tx->tx_sync_lock); 275 276 ASSERT3U(tx->tx_threads, ==, 2); 277 278 tx->tx_exiting = 1; 279 280 cv_broadcast(&tx->tx_quiesce_more_cv); 281 cv_broadcast(&tx->tx_quiesce_done_cv); 282 cv_broadcast(&tx->tx_sync_more_cv); 283 284 while (tx->tx_threads != 0) 285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 286 287 tx->tx_exiting = 0; 288 289 mutex_exit(&tx->tx_sync_lock); 290 } 291 292 uint64_t 293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 294 { 295 tx_state_t *tx = &dp->dp_tx; 296 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 297 uint64_t txg; 298 299 mutex_enter(&tc->tc_open_lock); 300 txg = tx->tx_open_txg; 301 302 mutex_enter(&tc->tc_lock); 303 tc->tc_count[txg & TXG_MASK]++; 304 mutex_exit(&tc->tc_lock); 305 306 th->th_cpu = tc; 307 th->th_txg = txg; 308 309 return (txg); 310 } 311 312 void 313 txg_rele_to_quiesce(txg_handle_t *th) 314 { 315 tx_cpu_t *tc = th->th_cpu; 316 317 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 318 mutex_exit(&tc->tc_open_lock); 319 } 320 321 void 322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 323 { 324 tx_cpu_t *tc = th->th_cpu; 325 int g = th->th_txg & TXG_MASK; 326 327 mutex_enter(&tc->tc_lock); 328 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 329 mutex_exit(&tc->tc_lock); 330 } 331 332 void 333 txg_rele_to_sync(txg_handle_t *th) 334 { 335 tx_cpu_t *tc = th->th_cpu; 336 int g = th->th_txg & TXG_MASK; 337 338 mutex_enter(&tc->tc_lock); 339 ASSERT(tc->tc_count[g] != 0); 340 if (--tc->tc_count[g] == 0) 341 cv_broadcast(&tc->tc_cv[g]); 342 mutex_exit(&tc->tc_lock); 343 344 th->th_cpu = NULL; /* defensive */ 345 } 346 347 /* 348 * Blocks until all transactions in the group are committed. 349 * 350 * On return, the transaction group has reached a stable state in which it can 351 * then be passed off to the syncing context. 352 */ 353 static void 354 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 355 { 356 tx_state_t *tx = &dp->dp_tx; 357 int g = txg & TXG_MASK; 358 int c; 359 360 /* 361 * Grab all tc_open_locks so nobody else can get into this txg. 362 */ 363 for (c = 0; c < max_ncpus; c++) 364 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 365 366 ASSERT(txg == tx->tx_open_txg); 367 tx->tx_open_txg++; 368 tx->tx_open_time = gethrtime(); 369 370 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 371 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 372 373 /* 374 * Now that we've incremented tx_open_txg, we can let threads 375 * enter the next transaction group. 376 */ 377 for (c = 0; c < max_ncpus; c++) 378 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 379 380 /* 381 * Quiesce the transaction group by waiting for everyone to txg_exit(). 382 */ 383 for (c = 0; c < max_ncpus; c++) { 384 tx_cpu_t *tc = &tx->tx_cpu[c]; 385 mutex_enter(&tc->tc_lock); 386 while (tc->tc_count[g] != 0) 387 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 388 mutex_exit(&tc->tc_lock); 389 } 390 } 391 392 static void 393 txg_do_callbacks(list_t *cb_list) 394 { 395 dmu_tx_do_callbacks(cb_list, 0); 396 397 list_destroy(cb_list); 398 399 kmem_free(cb_list, sizeof (list_t)); 400 } 401 402 /* 403 * Dispatch the commit callbacks registered on this txg to worker threads. 404 * 405 * If no callbacks are registered for a given TXG, nothing happens. 406 * This function creates a taskq for the associated pool, if needed. 407 */ 408 static void 409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 410 { 411 int c; 412 tx_state_t *tx = &dp->dp_tx; 413 list_t *cb_list; 414 415 for (c = 0; c < max_ncpus; c++) { 416 tx_cpu_t *tc = &tx->tx_cpu[c]; 417 /* 418 * No need to lock tx_cpu_t at this point, since this can 419 * only be called once a txg has been synced. 420 */ 421 422 int g = txg & TXG_MASK; 423 424 if (list_is_empty(&tc->tc_callbacks[g])) 425 continue; 426 427 if (tx->tx_commit_cb_taskq == NULL) { 428 /* 429 * Commit callback taskq hasn't been created yet. 430 */ 431 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 432 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 433 TASKQ_PREPOPULATE); 434 } 435 436 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 437 list_create(cb_list, sizeof (dmu_tx_callback_t), 438 offsetof(dmu_tx_callback_t, dcb_node)); 439 440 list_move_tail(cb_list, &tc->tc_callbacks[g]); 441 442 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 443 txg_do_callbacks, cb_list, TQ_SLEEP); 444 } 445 } 446 447 static void 448 txg_sync_thread(void *arg) 449 { 450 dsl_pool_t *dp = arg; 451 spa_t *spa = dp->dp_spa; 452 tx_state_t *tx = &dp->dp_tx; 453 callb_cpr_t cpr; 454 uint64_t start, delta; 455 456 txg_thread_enter(tx, &cpr); 457 458 start = delta = 0; 459 for (;;) { 460 uint64_t timeout = zfs_txg_timeout * hz; 461 uint64_t timer; 462 uint64_t txg; 463 464 /* 465 * We sync when we're scanning, there's someone waiting 466 * on us, or the quiesce thread has handed off a txg to 467 * us, or we have reached our timeout. 468 */ 469 timer = (delta >= timeout ? 0 : timeout - delta); 470 while (!dsl_scan_active(dp->dp_scan) && 471 !tx->tx_exiting && timer > 0 && 472 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 473 tx->tx_quiesced_txg == 0 && 474 dp->dp_dirty_total < zfs_dirty_data_sync) { 475 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 476 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 477 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 478 delta = ddi_get_lbolt() - start; 479 timer = (delta > timeout ? 0 : timeout - delta); 480 } 481 482 /* 483 * Wait until the quiesce thread hands off a txg to us, 484 * prompting it to do so if necessary. 485 */ 486 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 487 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 488 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 489 cv_broadcast(&tx->tx_quiesce_more_cv); 490 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 491 } 492 493 if (tx->tx_exiting) 494 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 495 496 /* 497 * Consume the quiesced txg which has been handed off to 498 * us. This may cause the quiescing thread to now be 499 * able to quiesce another txg, so we must signal it. 500 */ 501 txg = tx->tx_quiesced_txg; 502 tx->tx_quiesced_txg = 0; 503 tx->tx_syncing_txg = txg; 504 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 505 cv_broadcast(&tx->tx_quiesce_more_cv); 506 507 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 508 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 509 mutex_exit(&tx->tx_sync_lock); 510 511 start = ddi_get_lbolt(); 512 spa_sync(spa, txg); 513 delta = ddi_get_lbolt() - start; 514 515 mutex_enter(&tx->tx_sync_lock); 516 tx->tx_synced_txg = txg; 517 tx->tx_syncing_txg = 0; 518 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 519 cv_broadcast(&tx->tx_sync_done_cv); 520 521 /* 522 * Dispatch commit callbacks to worker threads. 523 */ 524 txg_dispatch_callbacks(dp, txg); 525 } 526 } 527 528 static void 529 txg_quiesce_thread(void *arg) 530 { 531 dsl_pool_t *dp = arg; 532 tx_state_t *tx = &dp->dp_tx; 533 callb_cpr_t cpr; 534 535 txg_thread_enter(tx, &cpr); 536 537 for (;;) { 538 uint64_t txg; 539 540 /* 541 * We quiesce when there's someone waiting on us. 542 * However, we can only have one txg in "quiescing" or 543 * "quiesced, waiting to sync" state. So we wait until 544 * the "quiesced, waiting to sync" txg has been consumed 545 * by the sync thread. 546 */ 547 while (!tx->tx_exiting && 548 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 549 tx->tx_quiesced_txg != 0)) 550 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 551 552 if (tx->tx_exiting) 553 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 554 555 txg = tx->tx_open_txg; 556 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 557 txg, tx->tx_quiesce_txg_waiting, 558 tx->tx_sync_txg_waiting); 559 mutex_exit(&tx->tx_sync_lock); 560 txg_quiesce(dp, txg); 561 mutex_enter(&tx->tx_sync_lock); 562 563 /* 564 * Hand this txg off to the sync thread. 565 */ 566 dprintf("quiesce done, handing off txg %llu\n", txg); 567 tx->tx_quiesced_txg = txg; 568 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 569 cv_broadcast(&tx->tx_sync_more_cv); 570 cv_broadcast(&tx->tx_quiesce_done_cv); 571 } 572 } 573 574 /* 575 * Delay this thread by delay nanoseconds if we are still in the open 576 * transaction group and there is already a waiting txg quiescing or quiesced. 577 * Abort the delay if this txg stalls or enters the quiescing state. 578 */ 579 void 580 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 581 { 582 tx_state_t *tx = &dp->dp_tx; 583 hrtime_t start = gethrtime(); 584 585 /* don't delay if this txg could transition to quiescing immediately */ 586 if (tx->tx_open_txg > txg || 587 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 588 return; 589 590 mutex_enter(&tx->tx_sync_lock); 591 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 592 mutex_exit(&tx->tx_sync_lock); 593 return; 594 } 595 596 while (gethrtime() - start < delay && 597 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 598 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 599 &tx->tx_sync_lock, delay, resolution, 0); 600 } 601 602 mutex_exit(&tx->tx_sync_lock); 603 } 604 605 void 606 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 607 { 608 tx_state_t *tx = &dp->dp_tx; 609 610 ASSERT(!dsl_pool_config_held(dp)); 611 612 mutex_enter(&tx->tx_sync_lock); 613 ASSERT3U(tx->tx_threads, ==, 2); 614 if (txg == 0) 615 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 616 if (tx->tx_sync_txg_waiting < txg) 617 tx->tx_sync_txg_waiting = txg; 618 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 619 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 620 while (tx->tx_synced_txg < txg) { 621 dprintf("broadcasting sync more " 622 "tx_synced=%llu waiting=%llu dp=%p\n", 623 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 624 cv_broadcast(&tx->tx_sync_more_cv); 625 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 626 } 627 mutex_exit(&tx->tx_sync_lock); 628 } 629 630 void 631 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 632 { 633 tx_state_t *tx = &dp->dp_tx; 634 635 ASSERT(!dsl_pool_config_held(dp)); 636 637 mutex_enter(&tx->tx_sync_lock); 638 ASSERT3U(tx->tx_threads, ==, 2); 639 if (txg == 0) 640 txg = tx->tx_open_txg + 1; 641 if (tx->tx_quiesce_txg_waiting < txg) 642 tx->tx_quiesce_txg_waiting = txg; 643 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 644 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 645 while (tx->tx_open_txg < txg) { 646 cv_broadcast(&tx->tx_quiesce_more_cv); 647 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 648 } 649 mutex_exit(&tx->tx_sync_lock); 650 } 651 652 /* 653 * If there isn't a txg syncing or in the pipeline, push another txg through 654 * the pipeline by queiscing the open txg. 655 */ 656 void 657 txg_kick(dsl_pool_t *dp) 658 { 659 tx_state_t *tx = &dp->dp_tx; 660 661 ASSERT(!dsl_pool_config_held(dp)); 662 663 mutex_enter(&tx->tx_sync_lock); 664 if (tx->tx_syncing_txg == 0 && 665 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 666 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 667 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 668 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 669 cv_broadcast(&tx->tx_quiesce_more_cv); 670 } 671 mutex_exit(&tx->tx_sync_lock); 672 } 673 674 boolean_t 675 txg_stalled(dsl_pool_t *dp) 676 { 677 tx_state_t *tx = &dp->dp_tx; 678 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 679 } 680 681 boolean_t 682 txg_sync_waiting(dsl_pool_t *dp) 683 { 684 tx_state_t *tx = &dp->dp_tx; 685 686 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 687 tx->tx_quiesced_txg != 0); 688 } 689 690 /* 691 * Verify that this txg is active (open, quiescing, syncing). Non-active 692 * txg's should not be manipulated. 693 */ 694 void 695 txg_verify(spa_t *spa, uint64_t txg) 696 { 697 dsl_pool_t *dp = spa_get_dsl(spa); 698 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 699 return; 700 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 701 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 702 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 703 } 704 705 /* 706 * Per-txg object lists. 707 */ 708 void 709 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 710 { 711 int t; 712 713 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 714 715 tl->tl_offset = offset; 716 tl->tl_spa = spa; 717 718 for (t = 0; t < TXG_SIZE; t++) 719 tl->tl_head[t] = NULL; 720 } 721 722 void 723 txg_list_destroy(txg_list_t *tl) 724 { 725 int t; 726 727 for (t = 0; t < TXG_SIZE; t++) 728 ASSERT(txg_list_empty(tl, t)); 729 730 mutex_destroy(&tl->tl_lock); 731 } 732 733 boolean_t 734 txg_list_empty(txg_list_t *tl, uint64_t txg) 735 { 736 txg_verify(tl->tl_spa, txg); 737 return (tl->tl_head[txg & TXG_MASK] == NULL); 738 } 739 740 /* 741 * Returns true if all txg lists are empty. 742 * 743 * Warning: this is inherently racy (an item could be added immediately 744 * after this function returns). We don't bother with the lock because 745 * it wouldn't change the semantics. 746 */ 747 boolean_t 748 txg_all_lists_empty(txg_list_t *tl) 749 { 750 for (int i = 0; i < TXG_SIZE; i++) { 751 if (!txg_list_empty(tl, i)) { 752 return (B_FALSE); 753 } 754 } 755 return (B_TRUE); 756 } 757 758 /* 759 * Add an entry to the list (unless it's already on the list). 760 * Returns B_TRUE if it was actually added. 761 */ 762 boolean_t 763 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 764 { 765 int t = txg & TXG_MASK; 766 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 767 boolean_t add; 768 769 txg_verify(tl->tl_spa, txg); 770 mutex_enter(&tl->tl_lock); 771 add = (tn->tn_member[t] == 0); 772 if (add) { 773 tn->tn_member[t] = 1; 774 tn->tn_next[t] = tl->tl_head[t]; 775 tl->tl_head[t] = tn; 776 } 777 mutex_exit(&tl->tl_lock); 778 779 return (add); 780 } 781 782 /* 783 * Add an entry to the end of the list, unless it's already on the list. 784 * (walks list to find end) 785 * Returns B_TRUE if it was actually added. 786 */ 787 boolean_t 788 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 789 { 790 int t = txg & TXG_MASK; 791 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 792 boolean_t add; 793 794 txg_verify(tl->tl_spa, txg); 795 mutex_enter(&tl->tl_lock); 796 add = (tn->tn_member[t] == 0); 797 if (add) { 798 txg_node_t **tp; 799 800 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 801 continue; 802 803 tn->tn_member[t] = 1; 804 tn->tn_next[t] = NULL; 805 *tp = tn; 806 } 807 mutex_exit(&tl->tl_lock); 808 809 return (add); 810 } 811 812 /* 813 * Remove the head of the list and return it. 814 */ 815 void * 816 txg_list_remove(txg_list_t *tl, uint64_t txg) 817 { 818 int t = txg & TXG_MASK; 819 txg_node_t *tn; 820 void *p = NULL; 821 822 txg_verify(tl->tl_spa, txg); 823 mutex_enter(&tl->tl_lock); 824 if ((tn = tl->tl_head[t]) != NULL) { 825 ASSERT(tn->tn_member[t]); 826 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]); 827 p = (char *)tn - tl->tl_offset; 828 tl->tl_head[t] = tn->tn_next[t]; 829 tn->tn_next[t] = NULL; 830 tn->tn_member[t] = 0; 831 } 832 mutex_exit(&tl->tl_lock); 833 834 return (p); 835 } 836 837 /* 838 * Remove a specific item from the list and return it. 839 */ 840 void * 841 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 842 { 843 int t = txg & TXG_MASK; 844 txg_node_t *tn, **tp; 845 846 txg_verify(tl->tl_spa, txg); 847 mutex_enter(&tl->tl_lock); 848 849 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 850 if ((char *)tn - tl->tl_offset == p) { 851 *tp = tn->tn_next[t]; 852 tn->tn_next[t] = NULL; 853 tn->tn_member[t] = 0; 854 mutex_exit(&tl->tl_lock); 855 return (p); 856 } 857 } 858 859 mutex_exit(&tl->tl_lock); 860 861 return (NULL); 862 } 863 864 boolean_t 865 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 866 { 867 int t = txg & TXG_MASK; 868 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 869 870 txg_verify(tl->tl_spa, txg); 871 return (tn->tn_member[t] != 0); 872 } 873 874 /* 875 * Walk a txg list -- only safe if you know it's not changing. 876 */ 877 void * 878 txg_list_head(txg_list_t *tl, uint64_t txg) 879 { 880 int t = txg & TXG_MASK; 881 txg_node_t *tn = tl->tl_head[t]; 882 883 txg_verify(tl->tl_spa, txg); 884 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 885 } 886 887 void * 888 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 889 { 890 int t = txg & TXG_MASK; 891 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 892 893 txg_verify(tl->tl_spa, txg); 894 tn = tn->tn_next[t]; 895 896 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 897 } 898