1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017 Datto Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 */ 32 33 #ifndef _SYS_SPA_H 34 #define _SYS_SPA_H 35 36 #include <sys/avl.h> 37 #include <sys/zfs_context.h> 38 #include <sys/nvpair.h> 39 #include <sys/sysevent.h> 40 #include <sys/sysmacros.h> 41 #include <sys/types.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/space_map.h> 45 #include <sys/bitops.h> 46 47 #ifdef __cplusplus 48 extern "C" { 49 #endif 50 51 /* 52 * Forward references that lots of things need. 53 */ 54 typedef struct spa spa_t; 55 typedef struct vdev vdev_t; 56 typedef struct metaslab metaslab_t; 57 typedef struct metaslab_group metaslab_group_t; 58 typedef struct metaslab_class metaslab_class_t; 59 typedef struct zio zio_t; 60 typedef struct zilog zilog_t; 61 typedef struct spa_aux_vdev spa_aux_vdev_t; 62 typedef struct ddt ddt_t; 63 typedef struct ddt_entry ddt_entry_t; 64 struct dsl_pool; 65 struct dsl_dataset; 66 struct dsl_crypto_params; 67 68 /* 69 * We currently support block sizes from 512 bytes to 16MB. 70 * The benefits of larger blocks, and thus larger IO, need to be weighed 71 * against the cost of COWing a giant block to modify one byte, and the 72 * large latency of reading or writing a large block. 73 * 74 * Note that although blocks up to 16MB are supported, the recordsize 75 * property can not be set larger than zfs_max_recordsize (default 1MB). 76 * See the comment near zfs_max_recordsize in dsl_dataset.c for details. 77 * 78 * Note that although the LSIZE field of the blkptr_t can store sizes up 79 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to 80 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. 81 */ 82 #define SPA_MINBLOCKSHIFT 9 83 #define SPA_OLD_MAXBLOCKSHIFT 17 84 #define SPA_MAXBLOCKSHIFT 24 85 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 86 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) 87 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 88 89 /* 90 * Alignment Shift (ashift) is an immutable, internal top-level vdev property 91 * which can only be set at vdev creation time. Physical writes are always done 92 * according to it, which makes 2^ashift the smallest possible IO on a vdev. 93 * 94 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB 95 * (2^16 = 65,536). 96 */ 97 #define ASHIFT_MIN 9 98 #define ASHIFT_MAX 16 99 100 /* 101 * Size of block to hold the configuration data (a packed nvlist) 102 */ 103 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) 104 105 /* 106 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 107 * The ASIZE encoding should be at least 64 times larger (6 more bits) 108 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 109 * overhead, three DVAs per bp, plus one more bit in case we do anything 110 * else that expands the ASIZE. 111 */ 112 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 113 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 114 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 115 116 #define SPA_COMPRESSBITS 7 117 #define SPA_VDEVBITS 24 118 119 /* 120 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 121 * The members of the dva_t should be considered opaque outside the SPA. 122 */ 123 typedef struct dva { 124 uint64_t dva_word[2]; 125 } dva_t; 126 127 /* 128 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 129 */ 130 typedef struct zio_cksum { 131 uint64_t zc_word[4]; 132 } zio_cksum_t; 133 134 /* 135 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept 136 * secret and is suitable for use in MAC algorithms as the key. 137 */ 138 typedef struct zio_cksum_salt { 139 uint8_t zcs_bytes[32]; 140 } zio_cksum_salt_t; 141 142 /* 143 * Each block is described by its DVAs, time of birth, checksum, etc. 144 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 145 * 146 * 64 56 48 40 32 24 16 8 0 147 * +-------+-------+-------+-------+-------+-------+-------+-------+ 148 * 0 | pad | vdev1 | GRID | ASIZE | 149 * +-------+-------+-------+-------+-------+-------+-------+-------+ 150 * 1 |G| offset1 | 151 * +-------+-------+-------+-------+-------+-------+-------+-------+ 152 * 2 | pad | vdev2 | GRID | ASIZE | 153 * +-------+-------+-------+-------+-------+-------+-------+-------+ 154 * 3 |G| offset2 | 155 * +-------+-------+-------+-------+-------+-------+-------+-------+ 156 * 4 | pad | vdev3 | GRID | ASIZE | 157 * +-------+-------+-------+-------+-------+-------+-------+-------+ 158 * 5 |G| offset3 | 159 * +-------+-------+-------+-------+-------+-------+-------+-------+ 160 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 161 * +-------+-------+-------+-------+-------+-------+-------+-------+ 162 * 7 | padding | 163 * +-------+-------+-------+-------+-------+-------+-------+-------+ 164 * 8 | padding | 165 * +-------+-------+-------+-------+-------+-------+-------+-------+ 166 * 9 | physical birth txg | 167 * +-------+-------+-------+-------+-------+-------+-------+-------+ 168 * a | logical birth txg | 169 * +-------+-------+-------+-------+-------+-------+-------+-------+ 170 * b | fill count | 171 * +-------+-------+-------+-------+-------+-------+-------+-------+ 172 * c | checksum[0] | 173 * +-------+-------+-------+-------+-------+-------+-------+-------+ 174 * d | checksum[1] | 175 * +-------+-------+-------+-------+-------+-------+-------+-------+ 176 * e | checksum[2] | 177 * +-------+-------+-------+-------+-------+-------+-------+-------+ 178 * f | checksum[3] | 179 * +-------+-------+-------+-------+-------+-------+-------+-------+ 180 * 181 * Legend: 182 * 183 * vdev virtual device ID 184 * offset offset into virtual device 185 * LSIZE logical size 186 * PSIZE physical size (after compression) 187 * ASIZE allocated size (including RAID-Z parity and gang block headers) 188 * GRID RAID-Z layout information (reserved for future use) 189 * cksum checksum function 190 * comp compression function 191 * G gang block indicator 192 * B byteorder (endianness) 193 * D dedup 194 * X encryption 195 * E blkptr_t contains embedded data (see below) 196 * lvl level of indirection 197 * type DMU object type 198 * phys birth txg when dva[0] was written; zero if same as logical birth txg 199 * note that typically all the dva's would be written in this 200 * txg, but they could be different if they were moved by 201 * device removal. 202 * log. birth transaction group in which the block was logically born 203 * fill count number of non-zero blocks under this bp 204 * checksum[4] 256-bit checksum of the data this bp describes 205 */ 206 207 /* 208 * The blkptr_t's of encrypted blocks also need to store the encryption 209 * parameters so that the block can be decrypted. This layout is as follows: 210 * 211 * 64 56 48 40 32 24 16 8 0 212 * +-------+-------+-------+-------+-------+-------+-------+-------+ 213 * 0 | vdev1 | GRID | ASIZE | 214 * +-------+-------+-------+-------+-------+-------+-------+-------+ 215 * 1 |G| offset1 | 216 * +-------+-------+-------+-------+-------+-------+-------+-------+ 217 * 2 | vdev2 | GRID | ASIZE | 218 * +-------+-------+-------+-------+-------+-------+-------+-------+ 219 * 3 |G| offset2 | 220 * +-------+-------+-------+-------+-------+-------+-------+-------+ 221 * 4 | salt | 222 * +-------+-------+-------+-------+-------+-------+-------+-------+ 223 * 5 | IV1 | 224 * +-------+-------+-------+-------+-------+-------+-------+-------+ 225 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 226 * +-------+-------+-------+-------+-------+-------+-------+-------+ 227 * 7 | padding | 228 * +-------+-------+-------+-------+-------+-------+-------+-------+ 229 * 8 | padding | 230 * +-------+-------+-------+-------+-------+-------+-------+-------+ 231 * 9 | physical birth txg | 232 * +-------+-------+-------+-------+-------+-------+-------+-------+ 233 * a | logical birth txg | 234 * +-------+-------+-------+-------+-------+-------+-------+-------+ 235 * b | IV2 | fill count | 236 * +-------+-------+-------+-------+-------+-------+-------+-------+ 237 * c | checksum[0] | 238 * +-------+-------+-------+-------+-------+-------+-------+-------+ 239 * d | checksum[1] | 240 * +-------+-------+-------+-------+-------+-------+-------+-------+ 241 * e | MAC[0] | 242 * +-------+-------+-------+-------+-------+-------+-------+-------+ 243 * f | MAC[1] | 244 * +-------+-------+-------+-------+-------+-------+-------+-------+ 245 * 246 * Legend: 247 * 248 * salt Salt for generating encryption keys 249 * IV1 First 64 bits of encryption IV 250 * X Block requires encryption handling (set to 1) 251 * E blkptr_t contains embedded data (set to 0, see below) 252 * fill count number of non-zero blocks under this bp (truncated to 32 bits) 253 * IV2 Last 32 bits of encryption IV 254 * checksum[2] 128-bit checksum of the data this bp describes 255 * MAC[2] 128-bit message authentication code for this data 256 * 257 * The X bit being set indicates that this block is one of 3 types. If this is 258 * a level 0 block with an encrypted object type, the block is encrypted 259 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted 260 * object type, this block is authenticated with an HMAC (see 261 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC 262 * words to store a checksum-of-MACs from the level below (see 263 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED() 264 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT() 265 * refers to any of these 3 kinds of blocks. 266 * 267 * The additional encryption parameters are the salt, IV, and MAC which are 268 * explained in greater detail in the block comment at the top of zio_crypt.c. 269 * The MAC occupies half of the checksum space since it serves a very similar 270 * purpose: to prevent data corruption on disk. The only functional difference 271 * is that the checksum is used to detect on-disk corruption whether or not the 272 * encryption key is loaded and the MAC provides additional protection against 273 * malicious disk tampering. We use the 3rd DVA to store the salt and first 274 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies 275 * maximum instead of the normal 3. The last 32 bits of the IV are stored in 276 * the upper bits of what is usually the fill count. Note that only blocks at 277 * level 0 or -2 are ever encrypted, which allows us to guarantee that these 278 * 32 bits are not trampled over by other code (see zio_crypt.c for details). 279 * The salt and IV are not used for authenticated bps or bps with an indirect 280 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits 281 * for the fill count. 282 */ 283 284 /* 285 * "Embedded" blkptr_t's don't actually point to a block, instead they 286 * have a data payload embedded in the blkptr_t itself. See the comment 287 * in blkptr.c for more details. 288 * 289 * The blkptr_t is laid out as follows: 290 * 291 * 64 56 48 40 32 24 16 8 0 292 * +-------+-------+-------+-------+-------+-------+-------+-------+ 293 * 0 | payload | 294 * 1 | payload | 295 * 2 | payload | 296 * 3 | payload | 297 * 4 | payload | 298 * 5 | payload | 299 * +-------+-------+-------+-------+-------+-------+-------+-------+ 300 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 301 * +-------+-------+-------+-------+-------+-------+-------+-------+ 302 * 7 | payload | 303 * 8 | payload | 304 * 9 | payload | 305 * +-------+-------+-------+-------+-------+-------+-------+-------+ 306 * a | logical birth txg | 307 * +-------+-------+-------+-------+-------+-------+-------+-------+ 308 * b | payload | 309 * c | payload | 310 * d | payload | 311 * e | payload | 312 * f | payload | 313 * +-------+-------+-------+-------+-------+-------+-------+-------+ 314 * 315 * Legend: 316 * 317 * payload contains the embedded data 318 * B (byteorder) byteorder (endianness) 319 * D (dedup) padding (set to zero) 320 * X encryption (set to zero; see above) 321 * E (embedded) set to one 322 * lvl indirection level 323 * type DMU object type 324 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 325 * comp compression function of payload 326 * PSIZE size of payload after compression, in bytes 327 * LSIZE logical size of payload, in bytes 328 * note that 25 bits is enough to store the largest 329 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 330 * log. birth transaction group in which the block was logically born 331 * 332 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 333 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 334 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 335 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 336 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 337 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 338 * other macros, as they assert that they are only used on BP's of the correct 339 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use 340 * the payload space for encryption parameters (see the comment above on 341 * how encryption parameters are stored). 342 */ 343 344 #define BPE_GET_ETYPE(bp) \ 345 (ASSERT(BP_IS_EMBEDDED(bp)), \ 346 BF64_GET((bp)->blk_prop, 40, 8)) 347 #define BPE_SET_ETYPE(bp, t) do { \ 348 ASSERT(BP_IS_EMBEDDED(bp)); \ 349 BF64_SET((bp)->blk_prop, 40, 8, t); \ 350 _NOTE(CONSTCOND) } while (0) 351 352 #define BPE_GET_LSIZE(bp) \ 353 (ASSERT(BP_IS_EMBEDDED(bp)), \ 354 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 355 #define BPE_SET_LSIZE(bp, x) do { \ 356 ASSERT(BP_IS_EMBEDDED(bp)); \ 357 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 358 _NOTE(CONSTCOND) } while (0) 359 360 #define BPE_GET_PSIZE(bp) \ 361 (ASSERT(BP_IS_EMBEDDED(bp)), \ 362 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 363 #define BPE_SET_PSIZE(bp, x) do { \ 364 ASSERT(BP_IS_EMBEDDED(bp)); \ 365 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 366 _NOTE(CONSTCOND) } while (0) 367 368 typedef enum bp_embedded_type { 369 BP_EMBEDDED_TYPE_DATA, 370 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 371 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 372 } bp_embedded_type_t; 373 374 #define BPE_NUM_WORDS 14 375 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 376 #define BPE_IS_PAYLOADWORD(bp, wp) \ 377 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 378 379 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 380 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 381 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */ 382 383 /* 384 * A block is a hole when it has either 1) never been written to, or 385 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads 386 * without physically allocating disk space. Holes are represented in the 387 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is 388 * done through the BP_IS_HOLE macro. For holes, the logical size, level, 389 * DMU object type, and birth times are all also stored for holes that 390 * were written to at some point (i.e. were punched after having been filled). 391 */ 392 typedef struct blkptr { 393 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 394 uint64_t blk_prop; /* size, compression, type, etc */ 395 uint64_t blk_pad[2]; /* Extra space for the future */ 396 uint64_t blk_phys_birth; /* txg when block was allocated */ 397 uint64_t blk_birth; /* transaction group at birth */ 398 uint64_t blk_fill; /* fill count */ 399 zio_cksum_t blk_cksum; /* 256-bit checksum */ 400 } blkptr_t; 401 402 /* 403 * Macros to get and set fields in a bp or DVA. 404 */ 405 #define DVA_GET_ASIZE(dva) \ 406 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 407 #define DVA_SET_ASIZE(dva, x) \ 408 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 409 SPA_MINBLOCKSHIFT, 0, x) 410 411 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 412 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 413 414 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS) 415 #define DVA_SET_VDEV(dva, x) \ 416 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x) 417 418 #define DVA_GET_OFFSET(dva) \ 419 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 420 #define DVA_SET_OFFSET(dva, x) \ 421 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 422 423 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 424 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 425 426 #define BP_GET_LSIZE(bp) \ 427 (BP_IS_EMBEDDED(bp) ? \ 428 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 429 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 430 #define BP_SET_LSIZE(bp, x) do { \ 431 ASSERT(!BP_IS_EMBEDDED(bp)); \ 432 BF64_SET_SB((bp)->blk_prop, \ 433 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 434 _NOTE(CONSTCOND) } while (0) 435 436 #define BP_GET_PSIZE(bp) \ 437 (BP_IS_EMBEDDED(bp) ? 0 : \ 438 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 439 #define BP_SET_PSIZE(bp, x) do { \ 440 ASSERT(!BP_IS_EMBEDDED(bp)); \ 441 BF64_SET_SB((bp)->blk_prop, \ 442 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 443 _NOTE(CONSTCOND) } while (0) 444 445 #define BP_GET_COMPRESS(bp) \ 446 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS) 447 #define BP_SET_COMPRESS(bp, x) \ 448 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x) 449 450 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 451 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) 452 453 #define BP_GET_CHECKSUM(bp) \ 454 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ 455 BF64_GET((bp)->blk_prop, 40, 8)) 456 #define BP_SET_CHECKSUM(bp, x) do { \ 457 ASSERT(!BP_IS_EMBEDDED(bp)); \ 458 BF64_SET((bp)->blk_prop, 40, 8, x); \ 459 _NOTE(CONSTCOND) } while (0) 460 461 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 462 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 463 464 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 465 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 466 467 /* encrypted, authenticated, and MAC cksum bps use the same bit */ 468 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1) 469 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x) 470 471 #define BP_IS_ENCRYPTED(bp) \ 472 (BP_USES_CRYPT(bp) && \ 473 BP_GET_LEVEL(bp) == 0 && \ 474 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) 475 476 #define BP_IS_AUTHENTICATED(bp) \ 477 (BP_USES_CRYPT(bp) && \ 478 BP_GET_LEVEL(bp) == 0 && \ 479 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) 480 481 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \ 482 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0) 483 484 #define BP_IS_PROTECTED(bp) \ 485 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp)) 486 487 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 488 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 489 490 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 491 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 492 493 #define BP_PHYSICAL_BIRTH(bp) \ 494 (BP_IS_EMBEDDED(bp) ? 0 : \ 495 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 496 497 #define BP_SET_BIRTH(bp, logical, physical) \ 498 { \ 499 ASSERT(!BP_IS_EMBEDDED(bp)); \ 500 (bp)->blk_birth = (logical); \ 501 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ 502 } 503 504 #define BP_GET_FILL(bp) \ 505 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \ 506 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill)) 507 508 #define BP_SET_FILL(bp, fill) \ 509 { \ 510 if (BP_IS_ENCRYPTED(bp)) \ 511 BF64_SET((bp)->blk_fill, 0, 32, fill); \ 512 else \ 513 (bp)->blk_fill = fill; \ 514 } 515 516 #define BP_GET_IV2(bp) \ 517 (ASSERT(BP_IS_ENCRYPTED(bp)), \ 518 BF64_GET((bp)->blk_fill, 32, 32)) 519 #define BP_SET_IV2(bp, iv2) \ 520 { \ 521 ASSERT(BP_IS_ENCRYPTED(bp)); \ 522 BF64_SET((bp)->blk_fill, 32, 32, iv2); \ 523 } 524 525 #define BP_IS_METADATA(bp) \ 526 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 527 528 #define BP_GET_ASIZE(bp) \ 529 (BP_IS_EMBEDDED(bp) ? 0 : \ 530 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 531 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 532 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) 533 534 #define BP_GET_UCSIZE(bp) \ 535 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) 536 537 #define BP_GET_NDVAS(bp) \ 538 (BP_IS_EMBEDDED(bp) ? 0 : \ 539 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 540 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 541 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) 542 543 #define BP_COUNT_GANG(bp) \ 544 (BP_IS_EMBEDDED(bp) ? 0 : \ 545 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ 546 DVA_GET_GANG(&(bp)->blk_dva[1]) + \ 547 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))) 548 549 #define DVA_EQUAL(dva1, dva2) \ 550 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 551 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 552 553 #define BP_EQUAL(bp1, bp2) \ 554 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ 555 (bp1)->blk_birth == (bp2)->blk_birth && \ 556 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ 557 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ 558 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) 559 560 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 561 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 562 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 563 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 564 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 565 566 #define ZIO_CHECKSUM_MAC_EQUAL(zc1, zc2) \ 567 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 568 ((zc1).zc_word[1] - (zc2).zc_word[1]))) 569 570 #define ZIO_CHECKSUM_IS_ZERO(zc) \ 571 (0 == ((zc)->zc_word[0] | (zc)->zc_word[1] | \ 572 (zc)->zc_word[2] | (zc)->zc_word[3])) 573 574 #define ZIO_CHECKSUM_BSWAP(zcp) \ 575 { \ 576 (zcp)->zc_word[0] = BSWAP_64((zcp)->zc_word[0]); \ 577 (zcp)->zc_word[1] = BSWAP_64((zcp)->zc_word[1]); \ 578 (zcp)->zc_word[2] = BSWAP_64((zcp)->zc_word[2]); \ 579 (zcp)->zc_word[3] = BSWAP_64((zcp)->zc_word[3]); \ 580 } 581 582 583 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 584 585 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 586 { \ 587 (zcp)->zc_word[0] = w0; \ 588 (zcp)->zc_word[1] = w1; \ 589 (zcp)->zc_word[2] = w2; \ 590 (zcp)->zc_word[3] = w3; \ 591 } 592 593 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) 594 #define BP_IS_GANG(bp) \ 595 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) 596 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 597 (dva)->dva_word[1] == 0ULL) 598 #define BP_IS_HOLE(bp) \ 599 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) 600 601 /* BP_IS_RAIDZ(bp) assumes no block compression */ 602 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ 603 BP_GET_PSIZE(bp)) 604 605 #define BP_ZERO(bp) \ 606 { \ 607 (bp)->blk_dva[0].dva_word[0] = 0; \ 608 (bp)->blk_dva[0].dva_word[1] = 0; \ 609 (bp)->blk_dva[1].dva_word[0] = 0; \ 610 (bp)->blk_dva[1].dva_word[1] = 0; \ 611 (bp)->blk_dva[2].dva_word[0] = 0; \ 612 (bp)->blk_dva[2].dva_word[1] = 0; \ 613 (bp)->blk_prop = 0; \ 614 (bp)->blk_pad[0] = 0; \ 615 (bp)->blk_pad[1] = 0; \ 616 (bp)->blk_phys_birth = 0; \ 617 (bp)->blk_birth = 0; \ 618 (bp)->blk_fill = 0; \ 619 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 620 } 621 622 #ifdef _BIG_ENDIAN 623 #define ZFS_HOST_BYTEORDER (0ULL) 624 #else 625 #define ZFS_HOST_BYTEORDER (1ULL) 626 #endif 627 628 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) 629 630 #define BP_SPRINTF_LEN 400 631 632 /* 633 * This macro allows code sharing between zfs, libzpool, and mdb. 634 * 'func' is either snprintf() or mdb_snprintf(). 635 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. 636 */ 637 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ 638 { \ 639 static const char *copyname[] = \ 640 { "zero", "single", "double", "triple" }; \ 641 int len = 0; \ 642 int copies = 0; \ 643 const char *crypt_type; \ 644 if (bp != NULL) { \ 645 if (BP_IS_ENCRYPTED(bp)) { \ 646 crypt_type = "encrypted"; \ 647 } else if (BP_IS_AUTHENTICATED(bp)) { \ 648 crypt_type = "authenticated"; \ 649 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \ 650 crypt_type = "indirect-MAC"; \ 651 } else { \ 652 crypt_type = "unencrypted"; \ 653 } \ 654 } \ 655 if (bp == NULL) { \ 656 len += func(buf + len, size - len, "<NULL>"); \ 657 } else if (BP_IS_HOLE(bp)) { \ 658 len += func(buf + len, size - len, \ 659 "HOLE [L%llu %s] " \ 660 "size=%llxL birth=%lluL", \ 661 (u_longlong_t)BP_GET_LEVEL(bp), \ 662 type, \ 663 (u_longlong_t)BP_GET_LSIZE(bp), \ 664 (u_longlong_t)bp->blk_birth); \ 665 } else if (BP_IS_EMBEDDED(bp)) { \ 666 len = func(buf + len, size - len, \ 667 "EMBEDDED [L%llu %s] et=%u %s " \ 668 "size=%llxL/%llxP birth=%lluL", \ 669 (u_longlong_t)BP_GET_LEVEL(bp), \ 670 type, \ 671 (int)BPE_GET_ETYPE(bp), \ 672 compress, \ 673 (u_longlong_t)BPE_GET_LSIZE(bp), \ 674 (u_longlong_t)BPE_GET_PSIZE(bp), \ 675 (u_longlong_t)bp->blk_birth); \ 676 } else { \ 677 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ 678 const dva_t *dva = &bp->blk_dva[d]; \ 679 if (DVA_IS_VALID(dva)) \ 680 copies++; \ 681 len += func(buf + len, size - len, \ 682 "DVA[%d]=<%llu:%llx:%llx>%c", d, \ 683 (u_longlong_t)DVA_GET_VDEV(dva), \ 684 (u_longlong_t)DVA_GET_OFFSET(dva), \ 685 (u_longlong_t)DVA_GET_ASIZE(dva), \ 686 ws); \ 687 } \ 688 if (BP_IS_ENCRYPTED(bp)) { \ 689 len += func(buf + len, size - len, \ 690 "salt=%llx iv=%llx:%llx%c", \ 691 (u_longlong_t)bp->blk_dva[2].dva_word[0], \ 692 (u_longlong_t)bp->blk_dva[2].dva_word[1], \ 693 (u_longlong_t)BP_GET_IV2(bp), \ 694 ws); \ 695 } \ 696 if (BP_IS_GANG(bp) && \ 697 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ 698 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ 699 copies--; \ 700 len += func(buf + len, size - len, \ 701 "[L%llu %s] %s %s %s %s %s %s %s%c" \ 702 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ 703 "cksum=%llx:%llx:%llx:%llx", \ 704 (u_longlong_t)BP_GET_LEVEL(bp), \ 705 type, \ 706 checksum, \ 707 compress, \ 708 crypt_type, \ 709 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ 710 BP_IS_GANG(bp) ? "gang" : "contiguous", \ 711 BP_GET_DEDUP(bp) ? "dedup" : "unique", \ 712 copyname[copies], \ 713 ws, \ 714 (u_longlong_t)BP_GET_LSIZE(bp), \ 715 (u_longlong_t)BP_GET_PSIZE(bp), \ 716 (u_longlong_t)bp->blk_birth, \ 717 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ 718 (u_longlong_t)BP_GET_FILL(bp), \ 719 ws, \ 720 (u_longlong_t)bp->blk_cksum.zc_word[0], \ 721 (u_longlong_t)bp->blk_cksum.zc_word[1], \ 722 (u_longlong_t)bp->blk_cksum.zc_word[2], \ 723 (u_longlong_t)bp->blk_cksum.zc_word[3]); \ 724 } \ 725 ASSERT(len < size); \ 726 } 727 728 #define BP_GET_BUFC_TYPE(bp) \ 729 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) 730 731 typedef enum spa_import_type { 732 SPA_IMPORT_EXISTING, 733 SPA_IMPORT_ASSEMBLE 734 } spa_import_type_t; 735 736 /* 737 * Send TRIM commands in-line during normal pool operation while deleting. 738 * OFF: no 739 * ON: yes 740 */ 741 typedef enum { 742 SPA_AUTOTRIM_OFF = 0, /* default */ 743 SPA_AUTOTRIM_ON 744 } spa_autotrim_t; 745 746 /* 747 * Reason TRIM command was issued, used internally for accounting purposes. 748 */ 749 typedef enum trim_type { 750 TRIM_TYPE_MANUAL = 0, 751 TRIM_TYPE_AUTO = 1, 752 } trim_type_t; 753 754 /* state manipulation functions */ 755 extern int spa_open(const char *pool, spa_t **, void *tag); 756 extern int spa_open_rewind(const char *pool, spa_t **, void *tag, 757 nvlist_t *policy, nvlist_t **config); 758 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, 759 size_t buflen); 760 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 761 nvlist_t *zplprops, struct dsl_crypto_params *dcp); 762 extern int spa_import_rootpool(char *devpath, char *devid); 763 extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, 764 uint64_t flags); 765 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); 766 extern int spa_destroy(char *pool); 767 extern int spa_checkpoint(const char *pool); 768 extern int spa_checkpoint_discard(const char *pool); 769 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 770 boolean_t hardforce); 771 extern int spa_reset(char *pool); 772 extern void spa_async_request(spa_t *spa, int flag); 773 extern void spa_async_unrequest(spa_t *spa, int flag); 774 extern void spa_async_suspend(spa_t *spa); 775 extern void spa_async_resume(spa_t *spa); 776 extern spa_t *spa_inject_addref(char *pool); 777 extern void spa_inject_delref(spa_t *spa); 778 extern void spa_scan_stat_init(spa_t *spa); 779 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); 780 781 #define SPA_ASYNC_CONFIG_UPDATE 0x01 782 #define SPA_ASYNC_REMOVE 0x02 783 #define SPA_ASYNC_PROBE 0x04 784 #define SPA_ASYNC_RESILVER_DONE 0x08 785 #define SPA_ASYNC_RESILVER 0x10 786 #define SPA_ASYNC_AUTOEXPAND 0x20 787 #define SPA_ASYNC_REMOVE_DONE 0x40 788 #define SPA_ASYNC_REMOVE_STOP 0x80 789 #define SPA_ASYNC_INITIALIZE_RESTART 0x100 790 #define SPA_ASYNC_TRIM_RESTART 0x200 791 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400 792 793 /* 794 * Controls the behavior of spa_vdev_remove(). 795 */ 796 #define SPA_REMOVE_UNSPARE 0x01 797 #define SPA_REMOVE_DONE 0x02 798 799 /* device manipulation */ 800 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); 801 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, 802 int replacing); 803 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, 804 int replace_done); 805 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare); 806 extern boolean_t spa_vdev_remove_active(spa_t *spa); 807 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 808 nvlist_t *vdev_errlist); 809 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 810 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist); 811 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); 812 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); 813 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 814 nvlist_t *props, boolean_t exp); 815 816 /* spare state (which is global across all pools) */ 817 extern void spa_spare_add(vdev_t *vd); 818 extern void spa_spare_remove(vdev_t *vd); 819 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); 820 extern void spa_spare_activate(vdev_t *vd); 821 822 /* L2ARC state (which is global across all pools) */ 823 extern void spa_l2cache_add(vdev_t *vd); 824 extern void spa_l2cache_remove(vdev_t *vd); 825 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); 826 extern void spa_l2cache_activate(vdev_t *vd); 827 extern void spa_l2cache_drop(spa_t *spa); 828 829 /* scanning */ 830 extern int spa_scan(spa_t *spa, pool_scan_func_t func); 831 extern int spa_scan_stop(spa_t *spa); 832 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag); 833 834 /* spa syncing */ 835 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ 836 extern void spa_sync_allpools(void); 837 838 /* spa namespace global mutex */ 839 extern kmutex_t spa_namespace_lock; 840 841 /* 842 * SPA configuration functions in spa_config.c 843 */ 844 845 #define SPA_CONFIG_UPDATE_POOL 0 846 #define SPA_CONFIG_UPDATE_VDEVS 1 847 848 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t); 849 extern void spa_config_load(void); 850 extern nvlist_t *spa_all_configs(uint64_t *); 851 extern void spa_config_set(spa_t *spa, nvlist_t *config); 852 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, 853 int getstats); 854 extern void spa_config_update(spa_t *spa, int what); 855 856 /* 857 * Miscellaneous SPA routines in spa_misc.c 858 */ 859 860 /* Namespace manipulation */ 861 extern spa_t *spa_lookup(const char *name); 862 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); 863 extern void spa_remove(spa_t *spa); 864 extern spa_t *spa_next(spa_t *prev); 865 866 /* Refcount functions */ 867 extern void spa_open_ref(spa_t *spa, void *tag); 868 extern void spa_close(spa_t *spa, void *tag); 869 extern void spa_async_close(spa_t *spa, void *tag); 870 extern boolean_t spa_refcount_zero(spa_t *spa); 871 872 #define SCL_NONE 0x00 873 #define SCL_CONFIG 0x01 874 #define SCL_STATE 0x02 875 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ 876 #define SCL_ALLOC 0x08 877 #define SCL_ZIO 0x10 878 #define SCL_FREE 0x20 879 #define SCL_VDEV 0x40 880 #define SCL_LOCKS 7 881 #define SCL_ALL ((1 << SCL_LOCKS) - 1) 882 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) 883 884 /* Assorted pool IO kstats */ 885 typedef struct spa_iostats { 886 kstat_named_t trim_extents_written; 887 kstat_named_t trim_bytes_written; 888 kstat_named_t trim_extents_skipped; 889 kstat_named_t trim_bytes_skipped; 890 kstat_named_t trim_extents_failed; 891 kstat_named_t trim_bytes_failed; 892 kstat_named_t autotrim_extents_written; 893 kstat_named_t autotrim_bytes_written; 894 kstat_named_t autotrim_extents_skipped; 895 kstat_named_t autotrim_bytes_skipped; 896 kstat_named_t autotrim_extents_failed; 897 kstat_named_t autotrim_bytes_failed; 898 } spa_iostats_t; 899 900 /* Pool configuration locks */ 901 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw); 902 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw); 903 extern void spa_config_exit(spa_t *spa, int locks, void *tag); 904 extern int spa_config_held(spa_t *spa, int locks, krw_t rw); 905 906 /* Pool vdev add/remove lock */ 907 extern uint64_t spa_vdev_enter(spa_t *spa); 908 extern uint64_t spa_vdev_config_enter(spa_t *spa); 909 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, 910 int error, char *tag); 911 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); 912 913 /* Pool vdev state change lock */ 914 extern void spa_vdev_state_enter(spa_t *spa, int oplock); 915 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); 916 917 /* Log state */ 918 typedef enum spa_log_state { 919 SPA_LOG_UNKNOWN = 0, /* unknown log state */ 920 SPA_LOG_MISSING, /* missing log(s) */ 921 SPA_LOG_CLEAR, /* clear the log(s) */ 922 SPA_LOG_GOOD, /* log(s) are good */ 923 } spa_log_state_t; 924 925 extern spa_log_state_t spa_get_log_state(spa_t *spa); 926 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); 927 extern int spa_reset_logs(spa_t *spa); 928 929 /* Log claim callback */ 930 extern void spa_claim_notify(zio_t *zio); 931 932 /* Accessor functions */ 933 extern boolean_t spa_shutting_down(spa_t *spa); 934 extern struct dsl_pool *spa_get_dsl(spa_t *spa); 935 extern boolean_t spa_is_initializing(spa_t *spa); 936 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa); 937 extern blkptr_t *spa_get_rootblkptr(spa_t *spa); 938 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); 939 extern void spa_altroot(spa_t *, char *, size_t); 940 extern int spa_sync_pass(spa_t *spa); 941 extern char *spa_name(spa_t *spa); 942 extern uint64_t spa_guid(spa_t *spa); 943 extern uint64_t spa_load_guid(spa_t *spa); 944 extern uint64_t spa_last_synced_txg(spa_t *spa); 945 extern uint64_t spa_first_txg(spa_t *spa); 946 extern uint64_t spa_syncing_txg(spa_t *spa); 947 extern uint64_t spa_final_dirty_txg(spa_t *spa); 948 extern uint64_t spa_version(spa_t *spa); 949 extern pool_state_t spa_state(spa_t *spa); 950 extern spa_load_state_t spa_load_state(spa_t *spa); 951 extern uint64_t spa_freeze_txg(spa_t *spa); 952 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize); 953 extern uint64_t spa_get_dspace(spa_t *spa); 954 extern uint64_t spa_get_checkpoint_space(spa_t *spa); 955 extern uint64_t spa_get_slop_space(spa_t *spa); 956 extern void spa_update_dspace(spa_t *spa); 957 extern uint64_t spa_version(spa_t *spa); 958 extern boolean_t spa_deflate(spa_t *spa); 959 extern metaslab_class_t *spa_normal_class(spa_t *spa); 960 extern metaslab_class_t *spa_log_class(spa_t *spa); 961 extern metaslab_class_t *spa_special_class(spa_t *spa); 962 extern metaslab_class_t *spa_dedup_class(spa_t *spa); 963 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size, 964 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk); 965 966 extern void spa_evicting_os_register(spa_t *, objset_t *os); 967 extern void spa_evicting_os_deregister(spa_t *, objset_t *os); 968 extern void spa_evicting_os_wait(spa_t *spa); 969 extern int spa_max_replication(spa_t *spa); 970 extern int spa_prev_software_version(spa_t *spa); 971 extern int spa_busy(void); 972 extern uint8_t spa_get_failmode(spa_t *spa); 973 extern boolean_t spa_suspended(spa_t *spa); 974 extern uint64_t spa_bootfs(spa_t *spa); 975 extern uint64_t spa_delegation(spa_t *spa); 976 extern objset_t *spa_meta_objset(spa_t *spa); 977 extern space_map_t *spa_syncing_log_sm(spa_t *spa); 978 extern uint64_t spa_deadman_synctime(spa_t *spa); 979 extern uint64_t spa_dirty_data(spa_t *spa); 980 extern spa_autotrim_t spa_get_autotrim(spa_t *spa); 981 982 /* Miscellaneous support routines */ 983 extern void spa_load_failed(spa_t *spa, const char *fmt, ...); 984 extern void spa_load_note(spa_t *spa, const char *fmt, ...); 985 extern void spa_activate_mos_feature(spa_t *spa, const char *feature, 986 dmu_tx_t *tx); 987 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); 988 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); 989 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); 990 extern char *spa_strdup(const char *); 991 extern void spa_strfree(char *); 992 extern uint64_t spa_get_random(uint64_t range); 993 extern uint64_t spa_generate_guid(spa_t *spa); 994 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); 995 extern void spa_freeze(spa_t *spa); 996 extern int spa_change_guid(spa_t *spa); 997 extern void spa_upgrade(spa_t *spa, uint64_t version); 998 extern void spa_evict_all(void); 999 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, 1000 boolean_t l2cache); 1001 extern boolean_t spa_has_spare(spa_t *, uint64_t guid); 1002 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); 1003 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); 1004 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); 1005 extern boolean_t spa_has_slogs(spa_t *spa); 1006 extern boolean_t spa_is_root(spa_t *spa); 1007 extern boolean_t spa_writeable(spa_t *spa); 1008 extern boolean_t spa_has_pending_synctask(spa_t *spa); 1009 extern int spa_maxblocksize(spa_t *spa); 1010 extern int spa_maxdnodesize(spa_t *spa); 1011 extern boolean_t spa_multihost(spa_t *spa); 1012 extern unsigned long spa_get_hostid(void); 1013 extern boolean_t spa_has_checkpoint(spa_t *spa); 1014 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa); 1015 extern boolean_t spa_suspend_async_destroy(spa_t *spa); 1016 extern uint64_t spa_min_claim_txg(spa_t *spa); 1017 extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp); 1018 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, 1019 const blkptr_t *bp); 1020 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size, 1021 void *arg); 1022 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp, 1023 spa_remap_cb_t callback, void *arg); 1024 extern uint64_t spa_get_last_removal_txg(spa_t *spa); 1025 extern boolean_t spa_trust_config(spa_t *spa); 1026 extern uint64_t spa_missing_tvds_allowed(spa_t *spa); 1027 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing); 1028 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa); 1029 extern uint64_t spa_total_metaslabs(spa_t *spa); 1030 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *); 1031 1032 extern int spa_mode(spa_t *spa); 1033 extern uint64_t zfs_strtonum(const char *str, char **nptr); 1034 1035 extern char *spa_his_ievent_table[]; 1036 1037 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); 1038 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, 1039 char *his_buf); 1040 extern int spa_history_log(spa_t *spa, const char *his_buf); 1041 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); 1042 extern void spa_history_log_version(spa_t *spa, const char *operation); 1043 extern void spa_history_log_internal(spa_t *spa, const char *operation, 1044 dmu_tx_t *tx, const char *fmt, ...); 1045 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, 1046 dmu_tx_t *tx, const char *fmt, ...); 1047 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, 1048 dmu_tx_t *tx, const char *fmt, ...); 1049 1050 /* error handling */ 1051 struct zbookmark_phys; 1052 extern void spa_log_error(spa_t *spa, const struct zbookmark_phys *zb); 1053 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd, 1054 const struct zbookmark_phys *zb, struct zio *zio, uint64_t stateoroffset, 1055 uint64_t length); 1056 extern void zfs_post_remove(spa_t *spa, vdev_t *vd); 1057 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd); 1058 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); 1059 extern uint64_t spa_get_errlog_size(spa_t *spa); 1060 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count); 1061 extern void spa_errlog_rotate(spa_t *spa); 1062 extern void spa_errlog_drain(spa_t *spa); 1063 extern void spa_errlog_sync(spa_t *spa, uint64_t txg); 1064 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); 1065 1066 /* vdev cache */ 1067 extern void vdev_cache_stat_init(void); 1068 extern void vdev_cache_stat_fini(void); 1069 1070 /* vdev mirror */ 1071 extern void vdev_mirror_stat_init(void); 1072 extern void vdev_mirror_stat_fini(void); 1073 1074 /* Initialization and termination */ 1075 extern void spa_init(int flags); 1076 extern void spa_fini(void); 1077 extern void spa_boot_init(void); 1078 1079 /* properties */ 1080 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); 1081 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); 1082 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); 1083 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); 1084 1085 /* asynchronous event notification */ 1086 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl, 1087 const char *name); 1088 extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, 1089 const char *name); 1090 extern void spa_event_post(sysevent_t *ev); 1091 extern void spa_event_discard(sysevent_t *ev); 1092 1093 #ifdef ZFS_DEBUG 1094 #define dprintf_bp(bp, fmt, ...) do { \ 1095 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ 1096 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ 1097 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ 1098 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ 1099 kmem_free(__blkbuf, BP_SPRINTF_LEN); \ 1100 } \ 1101 _NOTE(CONSTCOND) } while (0) 1102 #else 1103 #define dprintf_bp(bp, fmt, ...) 1104 #endif 1105 1106 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */ 1107 1108 #ifdef __cplusplus 1109 } 1110 #endif 1111 1112 #endif /* _SYS_SPA_H */ 1113