1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 * Copyright 2013 DEY Storage Systems, Inc. 28 * Copyright 2014 HybridCluster. All rights reserved. 29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 30 * Copyright 2013 Saso Kiselkov. All rights reserved. 31 * Copyright (c) 2017, Intel Corporation. 32 * Copyright (c) 2014 Integros [integros.com] 33 */ 34 35 /* Portions Copyright 2010 Robert Milkowski */ 36 37 #ifndef _SYS_DMU_H 38 #define _SYS_DMU_H 39 40 /* 41 * This file describes the interface that the DMU provides for its 42 * consumers. 43 * 44 * The DMU also interacts with the SPA. That interface is described in 45 * dmu_spa.h. 46 */ 47 48 #include <sys/zfs_context.h> 49 #include <sys/inttypes.h> 50 #include <sys/cred.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zio_compress.h> 53 #include <sys/zio_priority.h> 54 55 #ifdef __cplusplus 56 extern "C" { 57 #endif 58 59 struct uio; 60 struct xuio; 61 struct page; 62 struct vnode; 63 struct spa; 64 struct zilog; 65 struct zio; 66 struct blkptr; 67 struct zap_cursor; 68 struct dsl_dataset; 69 struct dsl_pool; 70 struct dnode; 71 struct drr_begin; 72 struct drr_end; 73 struct zbookmark_phys; 74 struct spa; 75 struct nvlist; 76 struct arc_buf; 77 struct zio_prop; 78 struct sa_handle; 79 struct locked_range; 80 struct dsl_crypto_params; 81 82 typedef struct objset objset_t; 83 typedef struct dmu_tx dmu_tx_t; 84 typedef struct dsl_dir dsl_dir_t; 85 typedef struct dnode dnode_t; 86 87 typedef enum dmu_object_byteswap { 88 DMU_BSWAP_UINT8, 89 DMU_BSWAP_UINT16, 90 DMU_BSWAP_UINT32, 91 DMU_BSWAP_UINT64, 92 DMU_BSWAP_ZAP, 93 DMU_BSWAP_DNODE, 94 DMU_BSWAP_OBJSET, 95 DMU_BSWAP_ZNODE, 96 DMU_BSWAP_OLDACL, 97 DMU_BSWAP_ACL, 98 /* 99 * Allocating a new byteswap type number makes the on-disk format 100 * incompatible with any other format that uses the same number. 101 * 102 * Data can usually be structured to work with one of the 103 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 104 */ 105 DMU_BSWAP_NUMFUNCS 106 } dmu_object_byteswap_t; 107 108 #define DMU_OT_NEWTYPE 0x80 109 #define DMU_OT_METADATA 0x40 110 #define DMU_OT_ENCRYPTED 0x20 111 #define DMU_OT_BYTESWAP_MASK 0x1f 112 113 /* 114 * Defines a uint8_t object type. Object types specify if the data 115 * in the object is metadata (boolean) and how to byteswap the data 116 * (dmu_object_byteswap_t). All of the types created by this method 117 * are cached in the dbuf metadata cache. 118 */ 119 #define DMU_OT(byteswap, metadata, encrypted) \ 120 (DMU_OT_NEWTYPE | \ 121 ((metadata) ? DMU_OT_METADATA : 0) | \ 122 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \ 123 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 124 125 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 126 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 127 (ot) < DMU_OT_NUMTYPES) 128 129 /* 130 * MDB doesn't have dmu_ot; it defines these macros itself. 131 */ 132 #ifndef ZFS_MDB 133 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata) 134 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt) 135 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap) 136 #endif 137 138 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 139 ((ot) & DMU_OT_METADATA) : \ 140 DMU_OT_IS_METADATA_IMPL(ot)) 141 142 #define DMU_OT_IS_DDT(ot) \ 143 ((ot) == DMU_OT_DDT_ZAP) 144 145 #define DMU_OT_IS_ZIL(ot) \ 146 ((ot) == DMU_OT_INTENT_LOG) 147 148 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */ 149 #define DMU_OT_IS_FILE(ot) \ 150 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER) 151 152 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 153 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) 154 155 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 156 ((ot) & DMU_OT_ENCRYPTED) : \ 157 DMU_OT_IS_ENCRYPTED_IMPL(ot)) 158 159 /* 160 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 161 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 162 * is repurposed for embedded BPs. 163 */ 164 #define DMU_OT_HAS_FILL(ot) \ 165 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 166 167 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 168 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 169 DMU_OT_BYTESWAP_IMPL(ot)) 170 171 typedef enum dmu_object_type { 172 DMU_OT_NONE, 173 /* general: */ 174 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 175 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 176 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 177 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 178 DMU_OT_BPOBJ, /* UINT64 */ 179 DMU_OT_BPOBJ_HDR, /* UINT64 */ 180 /* spa: */ 181 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 182 DMU_OT_SPACE_MAP, /* UINT64 */ 183 /* zil: */ 184 DMU_OT_INTENT_LOG, /* UINT64 */ 185 /* dmu: */ 186 DMU_OT_DNODE, /* DNODE */ 187 DMU_OT_OBJSET, /* OBJSET */ 188 /* dsl: */ 189 DMU_OT_DSL_DIR, /* UINT64 */ 190 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 191 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 192 DMU_OT_DSL_PROPS, /* ZAP */ 193 DMU_OT_DSL_DATASET, /* UINT64 */ 194 /* zpl: */ 195 DMU_OT_ZNODE, /* ZNODE */ 196 DMU_OT_OLDACL, /* Old ACL */ 197 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 198 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 199 DMU_OT_MASTER_NODE, /* ZAP */ 200 DMU_OT_UNLINKED_SET, /* ZAP */ 201 /* zvol: */ 202 DMU_OT_ZVOL, /* UINT8 */ 203 DMU_OT_ZVOL_PROP, /* ZAP */ 204 /* other; for testing only! */ 205 DMU_OT_PLAIN_OTHER, /* UINT8 */ 206 DMU_OT_UINT64_OTHER, /* UINT64 */ 207 DMU_OT_ZAP_OTHER, /* ZAP */ 208 /* new object types: */ 209 DMU_OT_ERROR_LOG, /* ZAP */ 210 DMU_OT_SPA_HISTORY, /* UINT8 */ 211 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 212 DMU_OT_POOL_PROPS, /* ZAP */ 213 DMU_OT_DSL_PERMS, /* ZAP */ 214 DMU_OT_ACL, /* ACL */ 215 DMU_OT_SYSACL, /* SYSACL */ 216 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 217 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 218 DMU_OT_NEXT_CLONES, /* ZAP */ 219 DMU_OT_SCAN_QUEUE, /* ZAP */ 220 DMU_OT_USERGROUP_USED, /* ZAP */ 221 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 222 DMU_OT_USERREFS, /* ZAP */ 223 DMU_OT_DDT_ZAP, /* ZAP */ 224 DMU_OT_DDT_STATS, /* ZAP */ 225 DMU_OT_SA, /* System attr */ 226 DMU_OT_SA_MASTER_NODE, /* ZAP */ 227 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 228 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 229 DMU_OT_SCAN_XLATE, /* ZAP */ 230 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 231 DMU_OT_DEADLIST, /* ZAP */ 232 DMU_OT_DEADLIST_HDR, /* UINT64 */ 233 DMU_OT_DSL_CLONES, /* ZAP */ 234 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 235 /* 236 * Do not allocate new object types here. Doing so makes the on-disk 237 * format incompatible with any other format that uses the same object 238 * type number. 239 * 240 * When creating an object which does not have one of the above types 241 * use the DMU_OTN_* type with the correct byteswap and metadata 242 * values. 243 * 244 * The DMU_OTN_* types do not have entries in the dmu_ot table, 245 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead 247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 248 * and DMU_OTN_* types). 249 */ 250 DMU_OT_NUMTYPES, 251 252 /* 253 * Names for valid types declared with DMU_OT(). 254 */ 255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE), 256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE), 257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE), 258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE), 259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE), 260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE), 261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE), 262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE), 263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE), 264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE), 265 266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE), 267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE), 268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE), 269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE), 270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE), 271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE), 272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE), 273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE), 274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE), 275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE), 276 } dmu_object_type_t; 277 278 /* 279 * These flags are intended to be used to specify the "txg_how" 280 * parameter when calling the dmu_tx_assign() function. See the comment 281 * above dmu_tx_assign() for more details on the meaning of these flags. 282 */ 283 #define TXG_NOWAIT (0ULL) 284 #define TXG_WAIT (1ULL<<0) 285 #define TXG_NOTHROTTLE (1ULL<<1) 286 287 void byteswap_uint64_array(void *buf, size_t size); 288 void byteswap_uint32_array(void *buf, size_t size); 289 void byteswap_uint16_array(void *buf, size_t size); 290 void byteswap_uint8_array(void *buf, size_t size); 291 void zap_byteswap(void *buf, size_t size); 292 void zfs_oldacl_byteswap(void *buf, size_t size); 293 void zfs_acl_byteswap(void *buf, size_t size); 294 void zfs_znode_byteswap(void *buf, size_t size); 295 296 #define DS_FIND_SNAPSHOTS (1<<0) 297 #define DS_FIND_CHILDREN (1<<1) 298 #define DS_FIND_SERIALIZE (1<<2) 299 300 /* 301 * The maximum number of bytes that can be accessed as part of one 302 * operation, including metadata. 303 */ 304 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ 305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 306 307 #define DMU_USERUSED_OBJECT (-1ULL) 308 #define DMU_GROUPUSED_OBJECT (-2ULL) 309 #define DMU_PROJECTUSED_OBJECT (-3ULL) 310 311 /* 312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT. 313 */ 314 #define DMU_OBJACCT_PREFIX "obj-" 315 #define DMU_OBJACCT_PREFIX_LEN 4 316 317 /* 318 * artificial blkids for bonus buffer and spill blocks 319 */ 320 #define DMU_BONUS_BLKID (-1ULL) 321 #define DMU_SPILL_BLKID (-2ULL) 322 323 /* 324 * Public routines to create, destroy, open, and close objsets. 325 */ 326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg, 327 cred_t *cr, dmu_tx_t *tx); 328 329 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 330 int dmu_objset_own(const char *name, dmu_objset_type_t type, 331 boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp); 332 void dmu_objset_rele(objset_t *os, void *tag); 333 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag); 334 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 335 336 void dmu_objset_evict_dbufs(objset_t *os); 337 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 338 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func, 339 void *arg); 340 int dmu_objset_clone(const char *name, const char *origin); 341 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 342 struct nvlist *errlist); 343 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 344 int dmu_objset_snapshot_tmp(const char *, const char *, int); 345 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 346 int flags); 347 void dmu_objset_byteswap(void *buf, size_t size); 348 int dsl_dataset_rename_snapshot(const char *fsname, 349 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 350 int dmu_objset_remap_indirects(const char *fsname); 351 352 typedef struct dmu_buf { 353 uint64_t db_object; /* object that this buffer is part of */ 354 uint64_t db_offset; /* byte offset in this object */ 355 uint64_t db_size; /* size of buffer in bytes */ 356 void *db_data; /* data in buffer */ 357 } dmu_buf_t; 358 359 /* 360 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 361 */ 362 #define DMU_POOL_DIRECTORY_OBJECT 1 363 #define DMU_POOL_CONFIG "config" 364 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 365 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 366 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 367 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 368 #define DMU_POOL_ROOT_DATASET "root_dataset" 369 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 370 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 371 #define DMU_POOL_ERRLOG_LAST "errlog_last" 372 #define DMU_POOL_SPARES "spares" 373 #define DMU_POOL_DEFLATE "deflate" 374 #define DMU_POOL_HISTORY "history" 375 #define DMU_POOL_PROPS "pool_props" 376 #define DMU_POOL_L2CACHE "l2cache" 377 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 378 #define DMU_POOL_DDT "DDT-%s-%s-%s" 379 #define DMU_POOL_DDT_STATS "DDT-statistics" 380 #define DMU_POOL_CREATION_VERSION "creation_version" 381 #define DMU_POOL_SCAN "scan" 382 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 383 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 384 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 385 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 386 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 387 #define DMU_POOL_REMOVING "com.delphix:removing" 388 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 389 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 390 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 391 392 /* 393 * Allocate an object from this objset. The range of object numbers 394 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 395 * 396 * The transaction must be assigned to a txg. The newly allocated 397 * object will be "held" in the transaction (ie. you can modify the 398 * newly allocated object in this transaction). 399 * 400 * dmu_object_alloc() chooses an object and returns it in *objectp. 401 * 402 * dmu_object_claim() allocates a specific object number. If that 403 * number is already allocated, it fails and returns EEXIST. 404 * 405 * Return 0 on success, or ENOSPC or EEXIST as specified above. 406 */ 407 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 408 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 409 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, 410 int indirect_blockshift, 411 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 412 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, 413 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 414 int dnodesize, dmu_tx_t *tx); 415 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, 416 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 417 int dnodesize, dmu_tx_t *tx); 418 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, 419 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, 420 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *txp); 421 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 422 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 423 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 424 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 425 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx); 426 427 /* 428 * Free an object from this objset. 429 * 430 * The object's data will be freed as well (ie. you don't need to call 431 * dmu_free(object, 0, -1, tx)). 432 * 433 * The object need not be held in the transaction. 434 * 435 * If there are any holds on this object's buffers (via dmu_buf_hold()), 436 * or tx holds on the object (via dmu_tx_hold_object()), you can not 437 * free it; it fails and returns EBUSY. 438 * 439 * If the object is not allocated, it fails and returns ENOENT. 440 * 441 * Return 0 on success, or EBUSY or ENOENT as specified above. 442 */ 443 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 444 445 /* 446 * Find the next allocated or free object. 447 * 448 * The objectp parameter is in-out. It will be updated to be the next 449 * object which is allocated. Ignore objects which have not been 450 * modified since txg. 451 * 452 * XXX Can only be called on a objset with no dirty data. 453 * 454 * Returns 0 on success, or ENOENT if there are no more objects. 455 */ 456 int dmu_object_next(objset_t *os, uint64_t *objectp, 457 boolean_t hole, uint64_t txg); 458 459 /* 460 * Set the number of levels on a dnode. nlevels must be greater than the 461 * current number of levels or an EINVAL will be returned. 462 */ 463 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, 464 dmu_tx_t *tx); 465 466 /* 467 * Set the data blocksize for an object. 468 * 469 * The object cannot have any blocks allcated beyond the first. If 470 * the first block is allocated already, the new size must be greater 471 * than the current block size. If these conditions are not met, 472 * ENOTSUP will be returned. 473 * 474 * Returns 0 on success, or EBUSY if there are any holds on the object 475 * contents, or ENOTSUP as described above. 476 */ 477 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 478 int ibs, dmu_tx_t *tx); 479 480 /* 481 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly 482 * to accommodate the change. When calling this function, the caller must 483 * ensure that the object's nlevels can sufficiently support the new maxblkid. 484 */ 485 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 486 dmu_tx_t *tx); 487 488 /* 489 * Set the checksum property on a dnode. The new checksum algorithm will 490 * apply to all newly written blocks; existing blocks will not be affected. 491 */ 492 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 493 dmu_tx_t *tx); 494 495 /* 496 * Set the compress property on a dnode. The new compression algorithm will 497 * apply to all newly written blocks; existing blocks will not be affected. 498 */ 499 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 500 dmu_tx_t *tx); 501 502 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg); 503 504 void 505 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 506 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 507 int compressed_size, int byteorder, dmu_tx_t *tx); 508 509 /* 510 * Decide how to write a block: checksum, compression, number of copies, etc. 511 */ 512 #define WP_NOFILL 0x1 513 #define WP_DMU_SYNC 0x2 514 #define WP_SPILL 0x4 515 516 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 517 struct zio_prop *zp); 518 void dmu_write_policy_override_compress(struct zio_prop *zp, 519 enum zio_compress compress); 520 void dmu_write_policy_override_encrypt(struct zio_prop *zp, 521 dmu_object_type_t ot, boolean_t byteorder, enum zio_compress compress, 522 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac); 523 /* 524 * The bonus data is accessed more or less like a regular buffer. 525 * You must dmu_bonus_hold() to get the buffer, which will give you a 526 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 527 * data. As with any normal buffer, you must call dmu_buf_will_dirty() 528 * before modifying it, and the 529 * object must be held in an assigned transaction before calling 530 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 531 * buffer as well. You must release your hold with dmu_buf_rele(). 532 * 533 * Returns ENOENT, EIO, or 0. 534 */ 535 int dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, 536 uint32_t flags, dmu_buf_t **dbp); 537 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 538 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 539 uint32_t flags); 540 int dmu_bonus_max(void); 541 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 542 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 543 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 544 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 545 546 /* 547 * Special spill buffer support used by "SA" framework 548 */ 549 550 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 551 dmu_buf_t **dbp); 552 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 553 void *tag, dmu_buf_t **dbp); 554 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 555 556 /* 557 * Obtain the DMU buffer from the specified object which contains the 558 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 559 * that it will remain in memory. You must release the hold with 560 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 561 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 562 * 563 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 564 * on the returned buffer before reading or writing the buffer's 565 * db_data. The comments for those routines describe what particular 566 * operations are valid after calling them. 567 * 568 * The object number must be a valid, allocated object number. 569 */ 570 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 571 void *tag, dmu_buf_t **, int flags); 572 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 573 void *tag, dmu_buf_t **dbp, int flags); 574 575 /* 576 * Add a reference to a dmu buffer that has already been held via 577 * dmu_buf_hold() in the current context. 578 */ 579 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 580 581 /* 582 * Attempt to add a reference to a dmu buffer that is in an unknown state, 583 * using a pointer that may have been invalidated by eviction processing. 584 * The request will succeed if the passed in dbuf still represents the 585 * same os/object/blkid, is ineligible for eviction, and has at least 586 * one hold by a user other than the syncer. 587 */ 588 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 589 uint64_t blkid, void *tag); 590 591 void dmu_buf_rele(dmu_buf_t *db, void *tag); 592 uint64_t dmu_buf_refcount(dmu_buf_t *db); 593 uint64_t dmu_buf_user_refcount(dmu_buf_t *db); 594 595 /* 596 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 597 * range of an object. A pointer to an array of dmu_buf_t*'s is 598 * returned (in *dbpp). 599 * 600 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 601 * frees the array. The hold on the array of buffers MUST be released 602 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 603 * individually with dmu_buf_rele. 604 */ 605 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 606 uint64_t length, boolean_t read, void *tag, 607 int *numbufsp, dmu_buf_t ***dbpp); 608 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 609 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, 610 uint32_t flags); 611 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 612 613 typedef void dmu_buf_evict_func_t(void *user_ptr); 614 615 /* 616 * A DMU buffer user object may be associated with a dbuf for the 617 * duration of its lifetime. This allows the user of a dbuf (client) 618 * to attach private data to a dbuf (e.g. in-core only data such as a 619 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 620 * when that dbuf has been evicted. Clients typically respond to the 621 * eviction notification by freeing their private data, thus ensuring 622 * the same lifetime for both dbuf and private data. 623 * 624 * The mapping from a dmu_buf_user_t to any client private data is the 625 * client's responsibility. All current consumers of the API with private 626 * data embed a dmu_buf_user_t as the first member of the structure for 627 * their private data. This allows conversions between the two types 628 * with a simple cast. Since the DMU buf user API never needs access 629 * to the private data, other strategies can be employed if necessary 630 * or convenient for the client (e.g. using __containerof() to do the 631 * conversion for private data that cannot have the dmu_buf_user_t as 632 * its first member). 633 * 634 * Eviction callbacks are executed without the dbuf mutex held or any 635 * other type of mechanism to guarantee that the dbuf is still available. 636 * For this reason, users must assume the dbuf has already been freed 637 * and not reference the dbuf from the callback context. 638 * 639 * Users requesting "immediate eviction" are notified as soon as the dbuf 640 * is only referenced by dirty records (dirties == holds). Otherwise the 641 * notification occurs after eviction processing for the dbuf begins. 642 */ 643 typedef struct dmu_buf_user { 644 /* 645 * Asynchronous user eviction callback state. 646 */ 647 taskq_ent_t dbu_tqent; 648 649 /* 650 * This instance's eviction function pointers. 651 * 652 * dbu_evict_func_sync is called synchronously and then 653 * dbu_evict_func_async is executed asynchronously on a taskq. 654 */ 655 dmu_buf_evict_func_t *dbu_evict_func_sync; 656 dmu_buf_evict_func_t *dbu_evict_func_async; 657 #ifdef ZFS_DEBUG 658 /* 659 * Pointer to user's dbuf pointer. NULL for clients that do 660 * not associate a dbuf with their user data. 661 * 662 * The dbuf pointer is cleared upon eviction so as to catch 663 * use-after-evict bugs in clients. 664 */ 665 dmu_buf_t **dbu_clear_on_evict_dbufp; 666 #endif 667 } dmu_buf_user_t; 668 669 /* 670 * Initialize the given dmu_buf_user_t instance with the eviction function 671 * evict_func, to be called when the user is evicted. 672 * 673 * NOTE: This function should only be called once on a given dmu_buf_user_t. 674 * To allow enforcement of this, dbu must already be zeroed on entry. 675 */ 676 /*ARGSUSED*/ 677 inline void 678 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 679 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) 680 { 681 ASSERT(dbu->dbu_evict_func_sync == NULL); 682 ASSERT(dbu->dbu_evict_func_async == NULL); 683 684 /* must have at least one evict func */ 685 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 686 dbu->dbu_evict_func_sync = evict_func_sync; 687 dbu->dbu_evict_func_async = evict_func_async; 688 #ifdef ZFS_DEBUG 689 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 690 #endif 691 } 692 693 /* 694 * Attach user data to a dbuf and mark it for normal (when the dbuf's 695 * data is cleared or its reference count goes to zero) eviction processing. 696 * 697 * Returns NULL on success, or the existing user if another user currently 698 * owns the buffer. 699 */ 700 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 701 702 /* 703 * Attach user data to a dbuf and mark it for immediate (its dirty and 704 * reference counts are equal) eviction processing. 705 * 706 * Returns NULL on success, or the existing user if another user currently 707 * owns the buffer. 708 */ 709 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 710 711 /* 712 * Replace the current user of a dbuf. 713 * 714 * If given the current user of a dbuf, replaces the dbuf's user with 715 * "new_user" and returns the user data pointer that was replaced. 716 * Otherwise returns the current, and unmodified, dbuf user pointer. 717 */ 718 void *dmu_buf_replace_user(dmu_buf_t *db, 719 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 720 721 /* 722 * Remove the specified user data for a DMU buffer. 723 * 724 * Returns the user that was removed on success, or the current user if 725 * another user currently owns the buffer. 726 */ 727 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 728 729 /* 730 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 731 */ 732 void *dmu_buf_get_user(dmu_buf_t *db); 733 734 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 735 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); 736 void dmu_buf_dnode_exit(dmu_buf_t *db); 737 738 /* Block until any in-progress dmu buf user evictions complete. */ 739 void dmu_buf_user_evict_wait(void); 740 741 /* 742 * Returns the blkptr associated with this dbuf, or NULL if not set. 743 */ 744 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 745 746 /* 747 * Indicate that you are going to modify the buffer's data (db_data). 748 * 749 * The transaction (tx) must be assigned to a txg (ie. you've called 750 * dmu_tx_assign()). The buffer's object must be held in the tx 751 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 752 */ 753 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 754 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 755 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); 756 757 /* 758 * You must create a transaction, then hold the objects which you will 759 * (or might) modify as part of this transaction. Then you must assign 760 * the transaction to a transaction group. Once the transaction has 761 * been assigned, you can modify buffers which belong to held objects as 762 * part of this transaction. You can't modify buffers before the 763 * transaction has been assigned; you can't modify buffers which don't 764 * belong to objects which this transaction holds; you can't hold 765 * objects once the transaction has been assigned. You may hold an 766 * object which you are going to free (with dmu_object_free()), but you 767 * don't have to. 768 * 769 * You can abort the transaction before it has been assigned. 770 * 771 * Note that you may hold buffers (with dmu_buf_hold) at any time, 772 * regardless of transaction state. 773 */ 774 775 #define DMU_NEW_OBJECT (-1ULL) 776 #define DMU_OBJECT_END (-1ULL) 777 778 dmu_tx_t *dmu_tx_create(objset_t *os); 779 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 780 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 781 int len); 782 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 783 uint64_t len); 784 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 785 uint64_t len); 786 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object); 787 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 788 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 789 const char *name); 790 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 791 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 792 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 793 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 794 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 795 void dmu_tx_abort(dmu_tx_t *tx); 796 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); 797 void dmu_tx_wait(dmu_tx_t *tx); 798 void dmu_tx_commit(dmu_tx_t *tx); 799 void dmu_tx_mark_netfree(dmu_tx_t *tx); 800 801 /* 802 * To register a commit callback, dmu_tx_callback_register() must be called. 803 * 804 * dcb_data is a pointer to caller private data that is passed on as a 805 * callback parameter. The caller is responsible for properly allocating and 806 * freeing it. 807 * 808 * When registering a callback, the transaction must be already created, but 809 * it cannot be committed or aborted. It can be assigned to a txg or not. 810 * 811 * The callback will be called after the transaction has been safely written 812 * to stable storage and will also be called if the dmu_tx is aborted. 813 * If there is any error which prevents the transaction from being committed to 814 * disk, the callback will be called with a value of error != 0. 815 */ 816 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 817 818 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 819 void *dcb_data); 820 821 /* 822 * Free up the data blocks for a defined range of a file. If size is 823 * -1, the range from offset to end-of-file is freed. 824 */ 825 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 826 uint64_t size, dmu_tx_t *tx); 827 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 828 uint64_t size); 829 int dmu_free_long_object(objset_t *os, uint64_t object); 830 831 /* 832 * Convenience functions. 833 * 834 * Canfail routines will return 0 on success, or an errno if there is a 835 * nonrecoverable I/O error. 836 */ 837 #define DMU_READ_PREFETCH 0 /* prefetch */ 838 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 839 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */ 840 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 841 void *buf, uint32_t flags); 842 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 843 uint32_t flags); 844 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 845 const void *buf, dmu_tx_t *tx); 846 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 847 const void *buf, dmu_tx_t *tx); 848 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 849 dmu_tx_t *tx); 850 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 851 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); 852 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size); 853 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 854 dmu_tx_t *tx); 855 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 856 dmu_tx_t *tx); 857 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size, 858 dmu_tx_t *tx); 859 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 860 uint64_t size, struct page *pp, dmu_tx_t *tx); 861 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 862 void dmu_return_arcbuf(struct arc_buf *buf); 863 int dmu_assign_arcbuf_by_dnode(dnode_t *handle, uint64_t offset, 864 struct arc_buf *buf, dmu_tx_t *tx); 865 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, 866 struct arc_buf *buf, dmu_tx_t *tx); 867 void dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, 868 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); 869 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf 870 void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset, 871 dmu_buf_t *handle, dmu_tx_t *tx); 872 int dmu_xuio_init(struct xuio *uio, int niov); 873 void dmu_xuio_fini(struct xuio *uio); 874 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 875 size_t n); 876 int dmu_xuio_cnt(struct xuio *uio); 877 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 878 void dmu_xuio_clear(struct xuio *uio, int i); 879 void xuio_stat_wbuf_copied(void); 880 void xuio_stat_wbuf_nocopy(void); 881 882 extern boolean_t zfs_prefetch_disable; 883 extern int zfs_max_recordsize; 884 885 /* 886 * Asynchronously try to read in the data. 887 */ 888 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 889 uint64_t len, enum zio_priority pri); 890 891 typedef struct dmu_object_info { 892 /* All sizes are in bytes unless otherwise indicated. */ 893 uint32_t doi_data_block_size; 894 uint32_t doi_metadata_block_size; 895 dmu_object_type_t doi_type; 896 dmu_object_type_t doi_bonus_type; 897 uint64_t doi_bonus_size; 898 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 899 uint8_t doi_checksum; 900 uint8_t doi_compress; 901 uint8_t doi_nblkptr; 902 int8_t doi_pad[4]; 903 uint64_t doi_dnodesize; 904 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 905 uint64_t doi_max_offset; 906 uint64_t doi_fill_count; /* number of non-empty blocks */ 907 } dmu_object_info_t; 908 909 typedef void arc_byteswap_func_t(void *buf, size_t size); 910 911 typedef struct dmu_object_type_info { 912 dmu_object_byteswap_t ot_byteswap; 913 boolean_t ot_metadata; 914 boolean_t ot_dbuf_metadata_cache; 915 boolean_t ot_encrypt; 916 char *ot_name; 917 } dmu_object_type_info_t; 918 919 typedef struct dmu_object_byteswap_info { 920 arc_byteswap_func_t *ob_func; 921 char *ob_name; 922 } dmu_object_byteswap_info_t; 923 924 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 925 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 926 927 /* 928 * Get information on a DMU object. 929 * 930 * Return 0 on success or ENOENT if object is not allocated. 931 * 932 * If doi is NULL, just indicates whether the object exists. 933 */ 934 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 935 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 936 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 937 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 938 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 939 /* 940 * Like dmu_object_info_from_db, but faster still when you only care about 941 * the size. This is specifically optimized for zfs_getattr(). 942 */ 943 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 944 u_longlong_t *nblk512); 945 946 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); 947 948 typedef struct dmu_objset_stats { 949 uint64_t dds_num_clones; /* number of clones of this */ 950 uint64_t dds_creation_txg; 951 uint64_t dds_guid; 952 dmu_objset_type_t dds_type; 953 uint8_t dds_is_snapshot; 954 uint8_t dds_inconsistent; 955 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 956 } dmu_objset_stats_t; 957 958 /* 959 * Get stats on a dataset. 960 */ 961 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 962 963 /* 964 * Add entries to the nvlist for all the objset's properties. See 965 * zfs_prop_table[] and zfs(1m) for details on the properties. 966 */ 967 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 968 969 /* 970 * Get the space usage statistics for statvfs(). 971 * 972 * refdbytes is the amount of space "referenced" by this objset. 973 * availbytes is the amount of space available to this objset, taking 974 * into account quotas & reservations, assuming that no other objsets 975 * use the space first. These values correspond to the 'referenced' and 976 * 'available' properties, described in the zfs(1m) manpage. 977 * 978 * usedobjs and availobjs are the number of objects currently allocated, 979 * and available. 980 */ 981 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 982 uint64_t *usedobjsp, uint64_t *availobjsp); 983 984 /* 985 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 986 * (Contrast with the ds_guid which is a 64-bit ID that will never 987 * change, so there is a small probability that it will collide.) 988 */ 989 uint64_t dmu_objset_fsid_guid(objset_t *os); 990 991 /* 992 * Get the [cm]time for an objset's snapshot dir 993 */ 994 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 995 996 int dmu_objset_is_snapshot(objset_t *os); 997 998 extern struct spa *dmu_objset_spa(objset_t *os); 999 extern struct zilog *dmu_objset_zil(objset_t *os); 1000 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 1001 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 1002 extern void dmu_objset_name(objset_t *os, char *buf); 1003 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 1004 extern uint64_t dmu_objset_id(objset_t *os); 1005 extern uint64_t dmu_objset_dnodesize(objset_t *os); 1006 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 1007 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 1008 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 1009 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 1010 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 1011 int maxlen, boolean_t *conflict); 1012 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 1013 uint64_t *idp, uint64_t *offp); 1014 1015 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 1016 void *bonus, uint64_t *userp, uint64_t *groupp, uint64_t *projectp); 1017 extern void dmu_objset_register_type(dmu_objset_type_t ost, 1018 objset_used_cb_t *cb); 1019 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 1020 extern void *dmu_objset_get_user(objset_t *os); 1021 1022 /* 1023 * Return the txg number for the given assigned transaction. 1024 */ 1025 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 1026 1027 /* 1028 * Synchronous write. 1029 * If a parent zio is provided this function initiates a write on the 1030 * provided buffer as a child of the parent zio. 1031 * In the absence of a parent zio, the write is completed synchronously. 1032 * At write completion, blk is filled with the bp of the written block. 1033 * Note that while the data covered by this function will be on stable 1034 * storage when the write completes this new data does not become a 1035 * permanent part of the file until the associated transaction commits. 1036 */ 1037 1038 /* 1039 * {zfs,zvol,ztest}_get_done() args 1040 */ 1041 typedef struct zgd { 1042 struct lwb *zgd_lwb; 1043 struct blkptr *zgd_bp; 1044 dmu_buf_t *zgd_db; 1045 struct locked_range *zgd_lr; 1046 void *zgd_private; 1047 } zgd_t; 1048 1049 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 1050 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 1051 1052 /* 1053 * Find the next hole or data block in file starting at *off 1054 * Return found offset in *off. Return ESRCH for end of file. 1055 */ 1056 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 1057 uint64_t *off); 1058 1059 /* 1060 * Check if a DMU object has any dirty blocks. If so, sync out 1061 * all pending transaction groups. Otherwise, this function 1062 * does not alter DMU state. This could be improved to only sync 1063 * out the necessary transaction groups for this particular 1064 * object. 1065 */ 1066 int dmu_object_wait_synced(objset_t *os, uint64_t object); 1067 1068 /* 1069 * Initial setup and final teardown. 1070 */ 1071 extern void dmu_init(void); 1072 extern void dmu_fini(void); 1073 1074 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 1075 uint64_t object, uint64_t offset, int len); 1076 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 1077 dmu_traverse_cb_t cb, void *arg); 1078 1079 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 1080 struct vnode *vp, offset_t *offp); 1081 1082 /* CRC64 table */ 1083 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 1084 extern uint64_t zfs_crc64_table[256]; 1085 1086 #ifdef __cplusplus 1087 } 1088 #endif 1089 1090 #endif /* _SYS_DMU_H */ 1091