1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright 2017 Joyent, Inc. 31 * Copyright (c) 2017 Datto Inc. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 /* 36 * SPA: Storage Pool Allocator 37 * 38 * This file contains all the routines used when modifying on-disk SPA state. 39 * This includes opening, importing, destroying, exporting a pool, and syncing a 40 * pool. 41 */ 42 43 #include <sys/zfs_context.h> 44 #include <sys/fm/fs/zfs.h> 45 #include <sys/spa_impl.h> 46 #include <sys/zio.h> 47 #include <sys/zio_checksum.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_tx.h> 50 #include <sys/zap.h> 51 #include <sys/zil.h> 52 #include <sys/ddt.h> 53 #include <sys/vdev_impl.h> 54 #include <sys/vdev_removal.h> 55 #include <sys/vdev_indirect_mapping.h> 56 #include <sys/vdev_indirect_births.h> 57 #include <sys/metaslab.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/uberblock_impl.h> 60 #include <sys/txg.h> 61 #include <sys/avl.h> 62 #include <sys/bpobj.h> 63 #include <sys/dmu_traverse.h> 64 #include <sys/dmu_objset.h> 65 #include <sys/unique.h> 66 #include <sys/dsl_pool.h> 67 #include <sys/dsl_dataset.h> 68 #include <sys/dsl_dir.h> 69 #include <sys/dsl_prop.h> 70 #include <sys/dsl_synctask.h> 71 #include <sys/fs/zfs.h> 72 #include <sys/arc.h> 73 #include <sys/callb.h> 74 #include <sys/systeminfo.h> 75 #include <sys/spa_boot.h> 76 #include <sys/zfs_ioctl.h> 77 #include <sys/dsl_scan.h> 78 #include <sys/zfeature.h> 79 #include <sys/dsl_destroy.h> 80 #include <sys/abd.h> 81 82 #ifdef _KERNEL 83 #include <sys/bootprops.h> 84 #include <sys/callb.h> 85 #include <sys/cpupart.h> 86 #include <sys/pool.h> 87 #include <sys/sysdc.h> 88 #include <sys/zone.h> 89 #endif /* _KERNEL */ 90 91 #include "zfs_prop.h" 92 #include "zfs_comutil.h" 93 94 /* 95 * The interval, in seconds, at which failed configuration cache file writes 96 * should be retried. 97 */ 98 int zfs_ccw_retry_interval = 300; 99 100 typedef enum zti_modes { 101 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 102 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 103 ZTI_MODE_NULL, /* don't create a taskq */ 104 ZTI_NMODES 105 } zti_modes_t; 106 107 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 108 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 109 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 110 111 #define ZTI_N(n) ZTI_P(n, 1) 112 #define ZTI_ONE ZTI_N(1) 113 114 typedef struct zio_taskq_info { 115 zti_modes_t zti_mode; 116 uint_t zti_value; 117 uint_t zti_count; 118 } zio_taskq_info_t; 119 120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 121 "issue", "issue_high", "intr", "intr_high" 122 }; 123 124 /* 125 * This table defines the taskq settings for each ZFS I/O type. When 126 * initializing a pool, we use this table to create an appropriately sized 127 * taskq. Some operations are low volume and therefore have a small, static 128 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 129 * macros. Other operations process a large amount of data; the ZTI_BATCH 130 * macro causes us to create a taskq oriented for throughput. Some operations 131 * are so high frequency and short-lived that the taskq itself can become a a 132 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 133 * additional degree of parallelism specified by the number of threads per- 134 * taskq and the number of taskqs; when dispatching an event in this case, the 135 * particular taskq is chosen at random. 136 * 137 * The different taskq priorities are to handle the different contexts (issue 138 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 139 * need to be handled with minimum delay. 140 */ 141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 142 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 143 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 144 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 145 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 146 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 149 }; 150 151 static void spa_sync_version(void *arg, dmu_tx_t *tx); 152 static void spa_sync_props(void *arg, dmu_tx_t *tx); 153 static boolean_t spa_has_active_shared_spare(spa_t *spa); 154 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport, 155 boolean_t reloading); 156 static void spa_vdev_resilver_done(spa_t *spa); 157 158 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 159 id_t zio_taskq_psrset_bind = PS_NONE; 160 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 161 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 162 163 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 164 extern int zfs_sync_pass_deferred_free; 165 166 /* 167 * Report any spa_load_verify errors found, but do not fail spa_load. 168 * This is used by zdb to analyze non-idle pools. 169 */ 170 boolean_t spa_load_verify_dryrun = B_FALSE; 171 172 /* 173 * This (illegal) pool name is used when temporarily importing a spa_t in order 174 * to get the vdev stats associated with the imported devices. 175 */ 176 #define TRYIMPORT_NAME "$import" 177 178 /* 179 * For debugging purposes: print out vdev tree during pool import. 180 */ 181 boolean_t spa_load_print_vdev_tree = B_FALSE; 182 183 /* 184 * A non-zero value for zfs_max_missing_tvds means that we allow importing 185 * pools with missing top-level vdevs. This is strictly intended for advanced 186 * pool recovery cases since missing data is almost inevitable. Pools with 187 * missing devices can only be imported read-only for safety reasons, and their 188 * fail-mode will be automatically set to "continue". 189 * 190 * With 1 missing vdev we should be able to import the pool and mount all 191 * datasets. User data that was not modified after the missing device has been 192 * added should be recoverable. This means that snapshots created prior to the 193 * addition of that device should be completely intact. 194 * 195 * With 2 missing vdevs, some datasets may fail to mount since there are 196 * dataset statistics that are stored as regular metadata. Some data might be 197 * recoverable if those vdevs were added recently. 198 * 199 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 200 * may be missing entirely. Chances of data recovery are very low. Note that 201 * there are also risks of performing an inadvertent rewind as we might be 202 * missing all the vdevs with the latest uberblocks. 203 */ 204 uint64_t zfs_max_missing_tvds = 0; 205 206 /* 207 * The parameters below are similar to zfs_max_missing_tvds but are only 208 * intended for a preliminary open of the pool with an untrusted config which 209 * might be incomplete or out-dated. 210 * 211 * We are more tolerant for pools opened from a cachefile since we could have 212 * an out-dated cachefile where a device removal was not registered. 213 * We could have set the limit arbitrarily high but in the case where devices 214 * are really missing we would want to return the proper error codes; we chose 215 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 216 * and we get a chance to retrieve the trusted config. 217 */ 218 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 219 /* 220 * In the case where config was assembled by scanning device paths (/dev/dsks 221 * by default) we are less tolerant since all the existing devices should have 222 * been detected and we want spa_load to return the right error codes. 223 */ 224 uint64_t zfs_max_missing_tvds_scan = 0; 225 226 /* 227 * ========================================================================== 228 * SPA properties routines 229 * ========================================================================== 230 */ 231 232 /* 233 * Add a (source=src, propname=propval) list to an nvlist. 234 */ 235 static void 236 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 237 uint64_t intval, zprop_source_t src) 238 { 239 const char *propname = zpool_prop_to_name(prop); 240 nvlist_t *propval; 241 242 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 243 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 244 245 if (strval != NULL) 246 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 247 else 248 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 249 250 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 251 nvlist_free(propval); 252 } 253 254 /* 255 * Get property values from the spa configuration. 256 */ 257 static void 258 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 259 { 260 vdev_t *rvd = spa->spa_root_vdev; 261 dsl_pool_t *pool = spa->spa_dsl_pool; 262 uint64_t size, alloc, cap, version; 263 zprop_source_t src = ZPROP_SRC_NONE; 264 spa_config_dirent_t *dp; 265 metaslab_class_t *mc = spa_normal_class(spa); 266 267 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 268 269 if (rvd != NULL) { 270 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 271 size = metaslab_class_get_space(spa_normal_class(spa)); 272 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 273 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 274 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 275 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 276 size - alloc, src); 277 278 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 279 metaslab_class_fragmentation(mc), src); 280 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 281 metaslab_class_expandable_space(mc), src); 282 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 283 (spa_mode(spa) == FREAD), src); 284 285 cap = (size == 0) ? 0 : (alloc * 100 / size); 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 287 288 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 289 ddt_get_pool_dedup_ratio(spa), src); 290 291 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 292 rvd->vdev_state, src); 293 294 version = spa_version(spa); 295 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 296 src = ZPROP_SRC_DEFAULT; 297 else 298 src = ZPROP_SRC_LOCAL; 299 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 300 } 301 302 if (pool != NULL) { 303 /* 304 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 305 * when opening pools before this version freedir will be NULL. 306 */ 307 if (pool->dp_free_dir != NULL) { 308 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 309 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 310 src); 311 } else { 312 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 313 NULL, 0, src); 314 } 315 316 if (pool->dp_leak_dir != NULL) { 317 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 318 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 319 src); 320 } else { 321 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 322 NULL, 0, src); 323 } 324 } 325 326 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 327 328 if (spa->spa_comment != NULL) { 329 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 330 0, ZPROP_SRC_LOCAL); 331 } 332 333 if (spa->spa_root != NULL) 334 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 335 0, ZPROP_SRC_LOCAL); 336 337 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 338 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 339 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 340 } else { 341 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 342 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 343 } 344 345 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 346 if (dp->scd_path == NULL) { 347 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 348 "none", 0, ZPROP_SRC_LOCAL); 349 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 350 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 351 dp->scd_path, 0, ZPROP_SRC_LOCAL); 352 } 353 } 354 } 355 356 /* 357 * Get zpool property values. 358 */ 359 int 360 spa_prop_get(spa_t *spa, nvlist_t **nvp) 361 { 362 objset_t *mos = spa->spa_meta_objset; 363 zap_cursor_t zc; 364 zap_attribute_t za; 365 int err; 366 367 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 368 369 mutex_enter(&spa->spa_props_lock); 370 371 /* 372 * Get properties from the spa config. 373 */ 374 spa_prop_get_config(spa, nvp); 375 376 /* If no pool property object, no more prop to get. */ 377 if (mos == NULL || spa->spa_pool_props_object == 0) { 378 mutex_exit(&spa->spa_props_lock); 379 return (0); 380 } 381 382 /* 383 * Get properties from the MOS pool property object. 384 */ 385 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 386 (err = zap_cursor_retrieve(&zc, &za)) == 0; 387 zap_cursor_advance(&zc)) { 388 uint64_t intval = 0; 389 char *strval = NULL; 390 zprop_source_t src = ZPROP_SRC_DEFAULT; 391 zpool_prop_t prop; 392 393 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 394 continue; 395 396 switch (za.za_integer_length) { 397 case 8: 398 /* integer property */ 399 if (za.za_first_integer != 400 zpool_prop_default_numeric(prop)) 401 src = ZPROP_SRC_LOCAL; 402 403 if (prop == ZPOOL_PROP_BOOTFS) { 404 dsl_pool_t *dp; 405 dsl_dataset_t *ds = NULL; 406 407 dp = spa_get_dsl(spa); 408 dsl_pool_config_enter(dp, FTAG); 409 if (err = dsl_dataset_hold_obj(dp, 410 za.za_first_integer, FTAG, &ds)) { 411 dsl_pool_config_exit(dp, FTAG); 412 break; 413 } 414 415 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 416 KM_SLEEP); 417 dsl_dataset_name(ds, strval); 418 dsl_dataset_rele(ds, FTAG); 419 dsl_pool_config_exit(dp, FTAG); 420 } else { 421 strval = NULL; 422 intval = za.za_first_integer; 423 } 424 425 spa_prop_add_list(*nvp, prop, strval, intval, src); 426 427 if (strval != NULL) 428 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 429 430 break; 431 432 case 1: 433 /* string property */ 434 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 435 err = zap_lookup(mos, spa->spa_pool_props_object, 436 za.za_name, 1, za.za_num_integers, strval); 437 if (err) { 438 kmem_free(strval, za.za_num_integers); 439 break; 440 } 441 spa_prop_add_list(*nvp, prop, strval, 0, src); 442 kmem_free(strval, za.za_num_integers); 443 break; 444 445 default: 446 break; 447 } 448 } 449 zap_cursor_fini(&zc); 450 mutex_exit(&spa->spa_props_lock); 451 out: 452 if (err && err != ENOENT) { 453 nvlist_free(*nvp); 454 *nvp = NULL; 455 return (err); 456 } 457 458 return (0); 459 } 460 461 /* 462 * Validate the given pool properties nvlist and modify the list 463 * for the property values to be set. 464 */ 465 static int 466 spa_prop_validate(spa_t *spa, nvlist_t *props) 467 { 468 nvpair_t *elem; 469 int error = 0, reset_bootfs = 0; 470 uint64_t objnum = 0; 471 boolean_t has_feature = B_FALSE; 472 473 elem = NULL; 474 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 475 uint64_t intval; 476 char *strval, *slash, *check, *fname; 477 const char *propname = nvpair_name(elem); 478 zpool_prop_t prop = zpool_name_to_prop(propname); 479 480 switch (prop) { 481 case ZPOOL_PROP_INVAL: 482 if (!zpool_prop_feature(propname)) { 483 error = SET_ERROR(EINVAL); 484 break; 485 } 486 487 /* 488 * Sanitize the input. 489 */ 490 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 491 error = SET_ERROR(EINVAL); 492 break; 493 } 494 495 if (nvpair_value_uint64(elem, &intval) != 0) { 496 error = SET_ERROR(EINVAL); 497 break; 498 } 499 500 if (intval != 0) { 501 error = SET_ERROR(EINVAL); 502 break; 503 } 504 505 fname = strchr(propname, '@') + 1; 506 if (zfeature_lookup_name(fname, NULL) != 0) { 507 error = SET_ERROR(EINVAL); 508 break; 509 } 510 511 has_feature = B_TRUE; 512 break; 513 514 case ZPOOL_PROP_VERSION: 515 error = nvpair_value_uint64(elem, &intval); 516 if (!error && 517 (intval < spa_version(spa) || 518 intval > SPA_VERSION_BEFORE_FEATURES || 519 has_feature)) 520 error = SET_ERROR(EINVAL); 521 break; 522 523 case ZPOOL_PROP_DELEGATION: 524 case ZPOOL_PROP_AUTOREPLACE: 525 case ZPOOL_PROP_LISTSNAPS: 526 case ZPOOL_PROP_AUTOEXPAND: 527 error = nvpair_value_uint64(elem, &intval); 528 if (!error && intval > 1) 529 error = SET_ERROR(EINVAL); 530 break; 531 532 case ZPOOL_PROP_BOOTFS: 533 /* 534 * If the pool version is less than SPA_VERSION_BOOTFS, 535 * or the pool is still being created (version == 0), 536 * the bootfs property cannot be set. 537 */ 538 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 539 error = SET_ERROR(ENOTSUP); 540 break; 541 } 542 543 /* 544 * Make sure the vdev config is bootable 545 */ 546 if (!vdev_is_bootable(spa->spa_root_vdev)) { 547 error = SET_ERROR(ENOTSUP); 548 break; 549 } 550 551 reset_bootfs = 1; 552 553 error = nvpair_value_string(elem, &strval); 554 555 if (!error) { 556 objset_t *os; 557 uint64_t propval; 558 559 if (strval == NULL || strval[0] == '\0') { 560 objnum = zpool_prop_default_numeric( 561 ZPOOL_PROP_BOOTFS); 562 break; 563 } 564 565 if (error = dmu_objset_hold(strval, FTAG, &os)) 566 break; 567 568 /* 569 * Must be ZPL, and its property settings 570 * must be supported by GRUB (compression 571 * is not gzip, and large blocks are not used). 572 */ 573 574 if (dmu_objset_type(os) != DMU_OST_ZFS) { 575 error = SET_ERROR(ENOTSUP); 576 } else if ((error = 577 dsl_prop_get_int_ds(dmu_objset_ds(os), 578 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 579 &propval)) == 0 && 580 !BOOTFS_COMPRESS_VALID(propval)) { 581 error = SET_ERROR(ENOTSUP); 582 } else { 583 objnum = dmu_objset_id(os); 584 } 585 dmu_objset_rele(os, FTAG); 586 } 587 break; 588 589 case ZPOOL_PROP_FAILUREMODE: 590 error = nvpair_value_uint64(elem, &intval); 591 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 592 intval > ZIO_FAILURE_MODE_PANIC)) 593 error = SET_ERROR(EINVAL); 594 595 /* 596 * This is a special case which only occurs when 597 * the pool has completely failed. This allows 598 * the user to change the in-core failmode property 599 * without syncing it out to disk (I/Os might 600 * currently be blocked). We do this by returning 601 * EIO to the caller (spa_prop_set) to trick it 602 * into thinking we encountered a property validation 603 * error. 604 */ 605 if (!error && spa_suspended(spa)) { 606 spa->spa_failmode = intval; 607 error = SET_ERROR(EIO); 608 } 609 break; 610 611 case ZPOOL_PROP_CACHEFILE: 612 if ((error = nvpair_value_string(elem, &strval)) != 0) 613 break; 614 615 if (strval[0] == '\0') 616 break; 617 618 if (strcmp(strval, "none") == 0) 619 break; 620 621 if (strval[0] != '/') { 622 error = SET_ERROR(EINVAL); 623 break; 624 } 625 626 slash = strrchr(strval, '/'); 627 ASSERT(slash != NULL); 628 629 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 630 strcmp(slash, "/..") == 0) 631 error = SET_ERROR(EINVAL); 632 break; 633 634 case ZPOOL_PROP_COMMENT: 635 if ((error = nvpair_value_string(elem, &strval)) != 0) 636 break; 637 for (check = strval; *check != '\0'; check++) { 638 /* 639 * The kernel doesn't have an easy isprint() 640 * check. For this kernel check, we merely 641 * check ASCII apart from DEL. Fix this if 642 * there is an easy-to-use kernel isprint(). 643 */ 644 if (*check >= 0x7f) { 645 error = SET_ERROR(EINVAL); 646 break; 647 } 648 } 649 if (strlen(strval) > ZPROP_MAX_COMMENT) 650 error = E2BIG; 651 break; 652 653 case ZPOOL_PROP_DEDUPDITTO: 654 if (spa_version(spa) < SPA_VERSION_DEDUP) 655 error = SET_ERROR(ENOTSUP); 656 else 657 error = nvpair_value_uint64(elem, &intval); 658 if (error == 0 && 659 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 660 error = SET_ERROR(EINVAL); 661 break; 662 } 663 664 if (error) 665 break; 666 } 667 668 if (!error && reset_bootfs) { 669 error = nvlist_remove(props, 670 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 671 672 if (!error) { 673 error = nvlist_add_uint64(props, 674 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 675 } 676 } 677 678 return (error); 679 } 680 681 void 682 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 683 { 684 char *cachefile; 685 spa_config_dirent_t *dp; 686 687 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 688 &cachefile) != 0) 689 return; 690 691 dp = kmem_alloc(sizeof (spa_config_dirent_t), 692 KM_SLEEP); 693 694 if (cachefile[0] == '\0') 695 dp->scd_path = spa_strdup(spa_config_path); 696 else if (strcmp(cachefile, "none") == 0) 697 dp->scd_path = NULL; 698 else 699 dp->scd_path = spa_strdup(cachefile); 700 701 list_insert_head(&spa->spa_config_list, dp); 702 if (need_sync) 703 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 704 } 705 706 int 707 spa_prop_set(spa_t *spa, nvlist_t *nvp) 708 { 709 int error; 710 nvpair_t *elem = NULL; 711 boolean_t need_sync = B_FALSE; 712 713 if ((error = spa_prop_validate(spa, nvp)) != 0) 714 return (error); 715 716 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 717 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 718 719 if (prop == ZPOOL_PROP_CACHEFILE || 720 prop == ZPOOL_PROP_ALTROOT || 721 prop == ZPOOL_PROP_READONLY) 722 continue; 723 724 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 725 uint64_t ver; 726 727 if (prop == ZPOOL_PROP_VERSION) { 728 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 729 } else { 730 ASSERT(zpool_prop_feature(nvpair_name(elem))); 731 ver = SPA_VERSION_FEATURES; 732 need_sync = B_TRUE; 733 } 734 735 /* Save time if the version is already set. */ 736 if (ver == spa_version(spa)) 737 continue; 738 739 /* 740 * In addition to the pool directory object, we might 741 * create the pool properties object, the features for 742 * read object, the features for write object, or the 743 * feature descriptions object. 744 */ 745 error = dsl_sync_task(spa->spa_name, NULL, 746 spa_sync_version, &ver, 747 6, ZFS_SPACE_CHECK_RESERVED); 748 if (error) 749 return (error); 750 continue; 751 } 752 753 need_sync = B_TRUE; 754 break; 755 } 756 757 if (need_sync) { 758 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 759 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 760 } 761 762 return (0); 763 } 764 765 /* 766 * If the bootfs property value is dsobj, clear it. 767 */ 768 void 769 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 770 { 771 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 772 VERIFY(zap_remove(spa->spa_meta_objset, 773 spa->spa_pool_props_object, 774 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 775 spa->spa_bootfs = 0; 776 } 777 } 778 779 /*ARGSUSED*/ 780 static int 781 spa_change_guid_check(void *arg, dmu_tx_t *tx) 782 { 783 uint64_t *newguid = arg; 784 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 785 vdev_t *rvd = spa->spa_root_vdev; 786 uint64_t vdev_state; 787 788 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 789 vdev_state = rvd->vdev_state; 790 spa_config_exit(spa, SCL_STATE, FTAG); 791 792 if (vdev_state != VDEV_STATE_HEALTHY) 793 return (SET_ERROR(ENXIO)); 794 795 ASSERT3U(spa_guid(spa), !=, *newguid); 796 797 return (0); 798 } 799 800 static void 801 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 802 { 803 uint64_t *newguid = arg; 804 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 805 uint64_t oldguid; 806 vdev_t *rvd = spa->spa_root_vdev; 807 808 oldguid = spa_guid(spa); 809 810 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 811 rvd->vdev_guid = *newguid; 812 rvd->vdev_guid_sum += (*newguid - oldguid); 813 vdev_config_dirty(rvd); 814 spa_config_exit(spa, SCL_STATE, FTAG); 815 816 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 817 oldguid, *newguid); 818 } 819 820 /* 821 * Change the GUID for the pool. This is done so that we can later 822 * re-import a pool built from a clone of our own vdevs. We will modify 823 * the root vdev's guid, our own pool guid, and then mark all of our 824 * vdevs dirty. Note that we must make sure that all our vdevs are 825 * online when we do this, or else any vdevs that weren't present 826 * would be orphaned from our pool. We are also going to issue a 827 * sysevent to update any watchers. 828 */ 829 int 830 spa_change_guid(spa_t *spa) 831 { 832 int error; 833 uint64_t guid; 834 835 mutex_enter(&spa->spa_vdev_top_lock); 836 mutex_enter(&spa_namespace_lock); 837 guid = spa_generate_guid(NULL); 838 839 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 840 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 841 842 if (error == 0) { 843 spa_write_cachefile(spa, B_FALSE, B_TRUE); 844 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 845 } 846 847 mutex_exit(&spa_namespace_lock); 848 mutex_exit(&spa->spa_vdev_top_lock); 849 850 return (error); 851 } 852 853 /* 854 * ========================================================================== 855 * SPA state manipulation (open/create/destroy/import/export) 856 * ========================================================================== 857 */ 858 859 static int 860 spa_error_entry_compare(const void *a, const void *b) 861 { 862 spa_error_entry_t *sa = (spa_error_entry_t *)a; 863 spa_error_entry_t *sb = (spa_error_entry_t *)b; 864 int ret; 865 866 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 867 sizeof (zbookmark_phys_t)); 868 869 if (ret < 0) 870 return (-1); 871 else if (ret > 0) 872 return (1); 873 else 874 return (0); 875 } 876 877 /* 878 * Utility function which retrieves copies of the current logs and 879 * re-initializes them in the process. 880 */ 881 void 882 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 883 { 884 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 885 886 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 887 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 888 889 avl_create(&spa->spa_errlist_scrub, 890 spa_error_entry_compare, sizeof (spa_error_entry_t), 891 offsetof(spa_error_entry_t, se_avl)); 892 avl_create(&spa->spa_errlist_last, 893 spa_error_entry_compare, sizeof (spa_error_entry_t), 894 offsetof(spa_error_entry_t, se_avl)); 895 } 896 897 static void 898 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 901 enum zti_modes mode = ztip->zti_mode; 902 uint_t value = ztip->zti_value; 903 uint_t count = ztip->zti_count; 904 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 905 char name[32]; 906 uint_t flags = 0; 907 boolean_t batch = B_FALSE; 908 909 if (mode == ZTI_MODE_NULL) { 910 tqs->stqs_count = 0; 911 tqs->stqs_taskq = NULL; 912 return; 913 } 914 915 ASSERT3U(count, >, 0); 916 917 tqs->stqs_count = count; 918 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 919 920 switch (mode) { 921 case ZTI_MODE_FIXED: 922 ASSERT3U(value, >=, 1); 923 value = MAX(value, 1); 924 break; 925 926 case ZTI_MODE_BATCH: 927 batch = B_TRUE; 928 flags |= TASKQ_THREADS_CPU_PCT; 929 value = zio_taskq_batch_pct; 930 break; 931 932 default: 933 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 934 "spa_activate()", 935 zio_type_name[t], zio_taskq_types[q], mode, value); 936 break; 937 } 938 939 for (uint_t i = 0; i < count; i++) { 940 taskq_t *tq; 941 942 if (count > 1) { 943 (void) snprintf(name, sizeof (name), "%s_%s_%u", 944 zio_type_name[t], zio_taskq_types[q], i); 945 } else { 946 (void) snprintf(name, sizeof (name), "%s_%s", 947 zio_type_name[t], zio_taskq_types[q]); 948 } 949 950 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 951 if (batch) 952 flags |= TASKQ_DC_BATCH; 953 954 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 955 spa->spa_proc, zio_taskq_basedc, flags); 956 } else { 957 pri_t pri = maxclsyspri; 958 /* 959 * The write issue taskq can be extremely CPU 960 * intensive. Run it at slightly lower priority 961 * than the other taskqs. 962 */ 963 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 964 pri--; 965 966 tq = taskq_create_proc(name, value, pri, 50, 967 INT_MAX, spa->spa_proc, flags); 968 } 969 970 tqs->stqs_taskq[i] = tq; 971 } 972 } 973 974 static void 975 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 976 { 977 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 978 979 if (tqs->stqs_taskq == NULL) { 980 ASSERT0(tqs->stqs_count); 981 return; 982 } 983 984 for (uint_t i = 0; i < tqs->stqs_count; i++) { 985 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 986 taskq_destroy(tqs->stqs_taskq[i]); 987 } 988 989 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 990 tqs->stqs_taskq = NULL; 991 } 992 993 /* 994 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 995 * Note that a type may have multiple discrete taskqs to avoid lock contention 996 * on the taskq itself. In that case we choose which taskq at random by using 997 * the low bits of gethrtime(). 998 */ 999 void 1000 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1001 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1002 { 1003 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1004 taskq_t *tq; 1005 1006 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1007 ASSERT3U(tqs->stqs_count, !=, 0); 1008 1009 if (tqs->stqs_count == 1) { 1010 tq = tqs->stqs_taskq[0]; 1011 } else { 1012 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1013 } 1014 1015 taskq_dispatch_ent(tq, func, arg, flags, ent); 1016 } 1017 1018 static void 1019 spa_create_zio_taskqs(spa_t *spa) 1020 { 1021 for (int t = 0; t < ZIO_TYPES; t++) { 1022 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1023 spa_taskqs_init(spa, t, q); 1024 } 1025 } 1026 } 1027 1028 #ifdef _KERNEL 1029 static void 1030 spa_thread(void *arg) 1031 { 1032 callb_cpr_t cprinfo; 1033 1034 spa_t *spa = arg; 1035 user_t *pu = PTOU(curproc); 1036 1037 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1038 spa->spa_name); 1039 1040 ASSERT(curproc != &p0); 1041 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1042 "zpool-%s", spa->spa_name); 1043 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1044 1045 /* bind this thread to the requested psrset */ 1046 if (zio_taskq_psrset_bind != PS_NONE) { 1047 pool_lock(); 1048 mutex_enter(&cpu_lock); 1049 mutex_enter(&pidlock); 1050 mutex_enter(&curproc->p_lock); 1051 1052 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1053 0, NULL, NULL) == 0) { 1054 curthread->t_bind_pset = zio_taskq_psrset_bind; 1055 } else { 1056 cmn_err(CE_WARN, 1057 "Couldn't bind process for zfs pool \"%s\" to " 1058 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1059 } 1060 1061 mutex_exit(&curproc->p_lock); 1062 mutex_exit(&pidlock); 1063 mutex_exit(&cpu_lock); 1064 pool_unlock(); 1065 } 1066 1067 if (zio_taskq_sysdc) { 1068 sysdc_thread_enter(curthread, 100, 0); 1069 } 1070 1071 spa->spa_proc = curproc; 1072 spa->spa_did = curthread->t_did; 1073 1074 spa_create_zio_taskqs(spa); 1075 1076 mutex_enter(&spa->spa_proc_lock); 1077 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1078 1079 spa->spa_proc_state = SPA_PROC_ACTIVE; 1080 cv_broadcast(&spa->spa_proc_cv); 1081 1082 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1083 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1084 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1085 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1086 1087 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1088 spa->spa_proc_state = SPA_PROC_GONE; 1089 spa->spa_proc = &p0; 1090 cv_broadcast(&spa->spa_proc_cv); 1091 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1092 1093 mutex_enter(&curproc->p_lock); 1094 lwp_exit(); 1095 } 1096 #endif 1097 1098 /* 1099 * Activate an uninitialized pool. 1100 */ 1101 static void 1102 spa_activate(spa_t *spa, int mode) 1103 { 1104 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1105 1106 spa->spa_state = POOL_STATE_ACTIVE; 1107 spa->spa_mode = mode; 1108 1109 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1110 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1111 1112 /* Try to create a covering process */ 1113 mutex_enter(&spa->spa_proc_lock); 1114 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1115 ASSERT(spa->spa_proc == &p0); 1116 spa->spa_did = 0; 1117 1118 /* Only create a process if we're going to be around a while. */ 1119 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1120 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1121 NULL, 0) == 0) { 1122 spa->spa_proc_state = SPA_PROC_CREATED; 1123 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1124 cv_wait(&spa->spa_proc_cv, 1125 &spa->spa_proc_lock); 1126 } 1127 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1128 ASSERT(spa->spa_proc != &p0); 1129 ASSERT(spa->spa_did != 0); 1130 } else { 1131 #ifdef _KERNEL 1132 cmn_err(CE_WARN, 1133 "Couldn't create process for zfs pool \"%s\"\n", 1134 spa->spa_name); 1135 #endif 1136 } 1137 } 1138 mutex_exit(&spa->spa_proc_lock); 1139 1140 /* If we didn't create a process, we need to create our taskqs. */ 1141 if (spa->spa_proc == &p0) { 1142 spa_create_zio_taskqs(spa); 1143 } 1144 1145 for (size_t i = 0; i < TXG_SIZE; i++) 1146 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0); 1147 1148 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1149 offsetof(vdev_t, vdev_config_dirty_node)); 1150 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1151 offsetof(objset_t, os_evicting_node)); 1152 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1153 offsetof(vdev_t, vdev_state_dirty_node)); 1154 1155 txg_list_create(&spa->spa_vdev_txg_list, spa, 1156 offsetof(struct vdev, vdev_txg_node)); 1157 1158 avl_create(&spa->spa_errlist_scrub, 1159 spa_error_entry_compare, sizeof (spa_error_entry_t), 1160 offsetof(spa_error_entry_t, se_avl)); 1161 avl_create(&spa->spa_errlist_last, 1162 spa_error_entry_compare, sizeof (spa_error_entry_t), 1163 offsetof(spa_error_entry_t, se_avl)); 1164 } 1165 1166 /* 1167 * Opposite of spa_activate(). 1168 */ 1169 static void 1170 spa_deactivate(spa_t *spa) 1171 { 1172 ASSERT(spa->spa_sync_on == B_FALSE); 1173 ASSERT(spa->spa_dsl_pool == NULL); 1174 ASSERT(spa->spa_root_vdev == NULL); 1175 ASSERT(spa->spa_async_zio_root == NULL); 1176 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1177 1178 spa_evicting_os_wait(spa); 1179 1180 txg_list_destroy(&spa->spa_vdev_txg_list); 1181 1182 list_destroy(&spa->spa_config_dirty_list); 1183 list_destroy(&spa->spa_evicting_os_list); 1184 list_destroy(&spa->spa_state_dirty_list); 1185 1186 for (int t = 0; t < ZIO_TYPES; t++) { 1187 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1188 spa_taskqs_fini(spa, t, q); 1189 } 1190 } 1191 1192 for (size_t i = 0; i < TXG_SIZE; i++) { 1193 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1194 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1195 spa->spa_txg_zio[i] = NULL; 1196 } 1197 1198 metaslab_class_destroy(spa->spa_normal_class); 1199 spa->spa_normal_class = NULL; 1200 1201 metaslab_class_destroy(spa->spa_log_class); 1202 spa->spa_log_class = NULL; 1203 1204 /* 1205 * If this was part of an import or the open otherwise failed, we may 1206 * still have errors left in the queues. Empty them just in case. 1207 */ 1208 spa_errlog_drain(spa); 1209 1210 avl_destroy(&spa->spa_errlist_scrub); 1211 avl_destroy(&spa->spa_errlist_last); 1212 1213 spa->spa_state = POOL_STATE_UNINITIALIZED; 1214 1215 mutex_enter(&spa->spa_proc_lock); 1216 if (spa->spa_proc_state != SPA_PROC_NONE) { 1217 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1218 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1219 cv_broadcast(&spa->spa_proc_cv); 1220 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1221 ASSERT(spa->spa_proc != &p0); 1222 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1223 } 1224 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1225 spa->spa_proc_state = SPA_PROC_NONE; 1226 } 1227 ASSERT(spa->spa_proc == &p0); 1228 mutex_exit(&spa->spa_proc_lock); 1229 1230 /* 1231 * We want to make sure spa_thread() has actually exited the ZFS 1232 * module, so that the module can't be unloaded out from underneath 1233 * it. 1234 */ 1235 if (spa->spa_did != 0) { 1236 thread_join(spa->spa_did); 1237 spa->spa_did = 0; 1238 } 1239 } 1240 1241 /* 1242 * Verify a pool configuration, and construct the vdev tree appropriately. This 1243 * will create all the necessary vdevs in the appropriate layout, with each vdev 1244 * in the CLOSED state. This will prep the pool before open/creation/import. 1245 * All vdev validation is done by the vdev_alloc() routine. 1246 */ 1247 static int 1248 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1249 uint_t id, int atype) 1250 { 1251 nvlist_t **child; 1252 uint_t children; 1253 int error; 1254 1255 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1256 return (error); 1257 1258 if ((*vdp)->vdev_ops->vdev_op_leaf) 1259 return (0); 1260 1261 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1262 &child, &children); 1263 1264 if (error == ENOENT) 1265 return (0); 1266 1267 if (error) { 1268 vdev_free(*vdp); 1269 *vdp = NULL; 1270 return (SET_ERROR(EINVAL)); 1271 } 1272 1273 for (int c = 0; c < children; c++) { 1274 vdev_t *vd; 1275 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1276 atype)) != 0) { 1277 vdev_free(*vdp); 1278 *vdp = NULL; 1279 return (error); 1280 } 1281 } 1282 1283 ASSERT(*vdp != NULL); 1284 1285 return (0); 1286 } 1287 1288 /* 1289 * Opposite of spa_load(). 1290 */ 1291 static void 1292 spa_unload(spa_t *spa) 1293 { 1294 int i; 1295 1296 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1297 1298 spa_load_note(spa, "UNLOADING"); 1299 1300 /* 1301 * Stop async tasks. 1302 */ 1303 spa_async_suspend(spa); 1304 1305 /* 1306 * Stop syncing. 1307 */ 1308 if (spa->spa_sync_on) { 1309 txg_sync_stop(spa->spa_dsl_pool); 1310 spa->spa_sync_on = B_FALSE; 1311 } 1312 1313 /* 1314 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1315 * to call it earlier, before we wait for async i/o to complete. 1316 * This ensures that there is no async metaslab prefetching, by 1317 * calling taskq_wait(mg_taskq). 1318 */ 1319 if (spa->spa_root_vdev != NULL) { 1320 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1321 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1322 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1323 spa_config_exit(spa, SCL_ALL, FTAG); 1324 } 1325 1326 /* 1327 * Wait for any outstanding async I/O to complete. 1328 */ 1329 if (spa->spa_async_zio_root != NULL) { 1330 for (int i = 0; i < max_ncpus; i++) 1331 (void) zio_wait(spa->spa_async_zio_root[i]); 1332 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1333 spa->spa_async_zio_root = NULL; 1334 } 1335 1336 if (spa->spa_vdev_removal != NULL) { 1337 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1338 spa->spa_vdev_removal = NULL; 1339 } 1340 1341 if (spa->spa_condense_zthr != NULL) { 1342 ASSERT(!zthr_isrunning(spa->spa_condense_zthr)); 1343 zthr_destroy(spa->spa_condense_zthr); 1344 spa->spa_condense_zthr = NULL; 1345 } 1346 1347 spa_condense_fini(spa); 1348 1349 bpobj_close(&spa->spa_deferred_bpobj); 1350 1351 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1352 1353 /* 1354 * Close all vdevs. 1355 */ 1356 if (spa->spa_root_vdev) 1357 vdev_free(spa->spa_root_vdev); 1358 ASSERT(spa->spa_root_vdev == NULL); 1359 1360 /* 1361 * Close the dsl pool. 1362 */ 1363 if (spa->spa_dsl_pool) { 1364 dsl_pool_close(spa->spa_dsl_pool); 1365 spa->spa_dsl_pool = NULL; 1366 spa->spa_meta_objset = NULL; 1367 } 1368 1369 ddt_unload(spa); 1370 1371 /* 1372 * Drop and purge level 2 cache 1373 */ 1374 spa_l2cache_drop(spa); 1375 1376 for (i = 0; i < spa->spa_spares.sav_count; i++) 1377 vdev_free(spa->spa_spares.sav_vdevs[i]); 1378 if (spa->spa_spares.sav_vdevs) { 1379 kmem_free(spa->spa_spares.sav_vdevs, 1380 spa->spa_spares.sav_count * sizeof (void *)); 1381 spa->spa_spares.sav_vdevs = NULL; 1382 } 1383 if (spa->spa_spares.sav_config) { 1384 nvlist_free(spa->spa_spares.sav_config); 1385 spa->spa_spares.sav_config = NULL; 1386 } 1387 spa->spa_spares.sav_count = 0; 1388 1389 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1390 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1391 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1392 } 1393 if (spa->spa_l2cache.sav_vdevs) { 1394 kmem_free(spa->spa_l2cache.sav_vdevs, 1395 spa->spa_l2cache.sav_count * sizeof (void *)); 1396 spa->spa_l2cache.sav_vdevs = NULL; 1397 } 1398 if (spa->spa_l2cache.sav_config) { 1399 nvlist_free(spa->spa_l2cache.sav_config); 1400 spa->spa_l2cache.sav_config = NULL; 1401 } 1402 spa->spa_l2cache.sav_count = 0; 1403 1404 spa->spa_async_suspended = 0; 1405 1406 spa->spa_indirect_vdevs_loaded = B_FALSE; 1407 1408 if (spa->spa_comment != NULL) { 1409 spa_strfree(spa->spa_comment); 1410 spa->spa_comment = NULL; 1411 } 1412 1413 spa_config_exit(spa, SCL_ALL, FTAG); 1414 } 1415 1416 /* 1417 * Load (or re-load) the current list of vdevs describing the active spares for 1418 * this pool. When this is called, we have some form of basic information in 1419 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1420 * then re-generate a more complete list including status information. 1421 */ 1422 void 1423 spa_load_spares(spa_t *spa) 1424 { 1425 nvlist_t **spares; 1426 uint_t nspares; 1427 int i; 1428 vdev_t *vd, *tvd; 1429 1430 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1431 1432 /* 1433 * First, close and free any existing spare vdevs. 1434 */ 1435 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1436 vd = spa->spa_spares.sav_vdevs[i]; 1437 1438 /* Undo the call to spa_activate() below */ 1439 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1440 B_FALSE)) != NULL && tvd->vdev_isspare) 1441 spa_spare_remove(tvd); 1442 vdev_close(vd); 1443 vdev_free(vd); 1444 } 1445 1446 if (spa->spa_spares.sav_vdevs) 1447 kmem_free(spa->spa_spares.sav_vdevs, 1448 spa->spa_spares.sav_count * sizeof (void *)); 1449 1450 if (spa->spa_spares.sav_config == NULL) 1451 nspares = 0; 1452 else 1453 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1454 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1455 1456 spa->spa_spares.sav_count = (int)nspares; 1457 spa->spa_spares.sav_vdevs = NULL; 1458 1459 if (nspares == 0) 1460 return; 1461 1462 /* 1463 * Construct the array of vdevs, opening them to get status in the 1464 * process. For each spare, there is potentially two different vdev_t 1465 * structures associated with it: one in the list of spares (used only 1466 * for basic validation purposes) and one in the active vdev 1467 * configuration (if it's spared in). During this phase we open and 1468 * validate each vdev on the spare list. If the vdev also exists in the 1469 * active configuration, then we also mark this vdev as an active spare. 1470 */ 1471 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1472 KM_SLEEP); 1473 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1474 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1475 VDEV_ALLOC_SPARE) == 0); 1476 ASSERT(vd != NULL); 1477 1478 spa->spa_spares.sav_vdevs[i] = vd; 1479 1480 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1481 B_FALSE)) != NULL) { 1482 if (!tvd->vdev_isspare) 1483 spa_spare_add(tvd); 1484 1485 /* 1486 * We only mark the spare active if we were successfully 1487 * able to load the vdev. Otherwise, importing a pool 1488 * with a bad active spare would result in strange 1489 * behavior, because multiple pool would think the spare 1490 * is actively in use. 1491 * 1492 * There is a vulnerability here to an equally bizarre 1493 * circumstance, where a dead active spare is later 1494 * brought back to life (onlined or otherwise). Given 1495 * the rarity of this scenario, and the extra complexity 1496 * it adds, we ignore the possibility. 1497 */ 1498 if (!vdev_is_dead(tvd)) 1499 spa_spare_activate(tvd); 1500 } 1501 1502 vd->vdev_top = vd; 1503 vd->vdev_aux = &spa->spa_spares; 1504 1505 if (vdev_open(vd) != 0) 1506 continue; 1507 1508 if (vdev_validate_aux(vd) == 0) 1509 spa_spare_add(vd); 1510 } 1511 1512 /* 1513 * Recompute the stashed list of spares, with status information 1514 * this time. 1515 */ 1516 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1517 DATA_TYPE_NVLIST_ARRAY) == 0); 1518 1519 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1520 KM_SLEEP); 1521 for (i = 0; i < spa->spa_spares.sav_count; i++) 1522 spares[i] = vdev_config_generate(spa, 1523 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1524 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1525 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1526 for (i = 0; i < spa->spa_spares.sav_count; i++) 1527 nvlist_free(spares[i]); 1528 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1529 } 1530 1531 /* 1532 * Load (or re-load) the current list of vdevs describing the active l2cache for 1533 * this pool. When this is called, we have some form of basic information in 1534 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1535 * then re-generate a more complete list including status information. 1536 * Devices which are already active have their details maintained, and are 1537 * not re-opened. 1538 */ 1539 void 1540 spa_load_l2cache(spa_t *spa) 1541 { 1542 nvlist_t **l2cache; 1543 uint_t nl2cache; 1544 int i, j, oldnvdevs; 1545 uint64_t guid; 1546 vdev_t *vd, **oldvdevs, **newvdevs; 1547 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1548 1549 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1550 1551 if (sav->sav_config != NULL) { 1552 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1553 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1554 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1555 } else { 1556 nl2cache = 0; 1557 newvdevs = NULL; 1558 } 1559 1560 oldvdevs = sav->sav_vdevs; 1561 oldnvdevs = sav->sav_count; 1562 sav->sav_vdevs = NULL; 1563 sav->sav_count = 0; 1564 1565 /* 1566 * Process new nvlist of vdevs. 1567 */ 1568 for (i = 0; i < nl2cache; i++) { 1569 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1570 &guid) == 0); 1571 1572 newvdevs[i] = NULL; 1573 for (j = 0; j < oldnvdevs; j++) { 1574 vd = oldvdevs[j]; 1575 if (vd != NULL && guid == vd->vdev_guid) { 1576 /* 1577 * Retain previous vdev for add/remove ops. 1578 */ 1579 newvdevs[i] = vd; 1580 oldvdevs[j] = NULL; 1581 break; 1582 } 1583 } 1584 1585 if (newvdevs[i] == NULL) { 1586 /* 1587 * Create new vdev 1588 */ 1589 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1590 VDEV_ALLOC_L2CACHE) == 0); 1591 ASSERT(vd != NULL); 1592 newvdevs[i] = vd; 1593 1594 /* 1595 * Commit this vdev as an l2cache device, 1596 * even if it fails to open. 1597 */ 1598 spa_l2cache_add(vd); 1599 1600 vd->vdev_top = vd; 1601 vd->vdev_aux = sav; 1602 1603 spa_l2cache_activate(vd); 1604 1605 if (vdev_open(vd) != 0) 1606 continue; 1607 1608 (void) vdev_validate_aux(vd); 1609 1610 if (!vdev_is_dead(vd)) 1611 l2arc_add_vdev(spa, vd); 1612 } 1613 } 1614 1615 /* 1616 * Purge vdevs that were dropped 1617 */ 1618 for (i = 0; i < oldnvdevs; i++) { 1619 uint64_t pool; 1620 1621 vd = oldvdevs[i]; 1622 if (vd != NULL) { 1623 ASSERT(vd->vdev_isl2cache); 1624 1625 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1626 pool != 0ULL && l2arc_vdev_present(vd)) 1627 l2arc_remove_vdev(vd); 1628 vdev_clear_stats(vd); 1629 vdev_free(vd); 1630 } 1631 } 1632 1633 if (oldvdevs) 1634 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1635 1636 if (sav->sav_config == NULL) 1637 goto out; 1638 1639 sav->sav_vdevs = newvdevs; 1640 sav->sav_count = (int)nl2cache; 1641 1642 /* 1643 * Recompute the stashed list of l2cache devices, with status 1644 * information this time. 1645 */ 1646 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1647 DATA_TYPE_NVLIST_ARRAY) == 0); 1648 1649 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1650 for (i = 0; i < sav->sav_count; i++) 1651 l2cache[i] = vdev_config_generate(spa, 1652 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1653 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1654 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1655 out: 1656 for (i = 0; i < sav->sav_count; i++) 1657 nvlist_free(l2cache[i]); 1658 if (sav->sav_count) 1659 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1660 } 1661 1662 static int 1663 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1664 { 1665 dmu_buf_t *db; 1666 char *packed = NULL; 1667 size_t nvsize = 0; 1668 int error; 1669 *value = NULL; 1670 1671 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1672 if (error != 0) 1673 return (error); 1674 1675 nvsize = *(uint64_t *)db->db_data; 1676 dmu_buf_rele(db, FTAG); 1677 1678 packed = kmem_alloc(nvsize, KM_SLEEP); 1679 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1680 DMU_READ_PREFETCH); 1681 if (error == 0) 1682 error = nvlist_unpack(packed, nvsize, value, 0); 1683 kmem_free(packed, nvsize); 1684 1685 return (error); 1686 } 1687 1688 /* 1689 * Concrete top-level vdevs that are not missing and are not logs. At every 1690 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1691 */ 1692 static uint64_t 1693 spa_healthy_core_tvds(spa_t *spa) 1694 { 1695 vdev_t *rvd = spa->spa_root_vdev; 1696 uint64_t tvds = 0; 1697 1698 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1699 vdev_t *vd = rvd->vdev_child[i]; 1700 if (vd->vdev_islog) 1701 continue; 1702 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1703 tvds++; 1704 } 1705 1706 return (tvds); 1707 } 1708 1709 /* 1710 * Checks to see if the given vdev could not be opened, in which case we post a 1711 * sysevent to notify the autoreplace code that the device has been removed. 1712 */ 1713 static void 1714 spa_check_removed(vdev_t *vd) 1715 { 1716 for (uint64_t c = 0; c < vd->vdev_children; c++) 1717 spa_check_removed(vd->vdev_child[c]); 1718 1719 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1720 vdev_is_concrete(vd)) { 1721 zfs_post_autoreplace(vd->vdev_spa, vd); 1722 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1723 } 1724 } 1725 1726 static int 1727 spa_check_for_missing_logs(spa_t *spa) 1728 { 1729 vdev_t *rvd = spa->spa_root_vdev; 1730 1731 /* 1732 * If we're doing a normal import, then build up any additional 1733 * diagnostic information about missing log devices. 1734 * We'll pass this up to the user for further processing. 1735 */ 1736 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1737 nvlist_t **child, *nv; 1738 uint64_t idx = 0; 1739 1740 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1741 KM_SLEEP); 1742 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1743 1744 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1745 vdev_t *tvd = rvd->vdev_child[c]; 1746 1747 /* 1748 * We consider a device as missing only if it failed 1749 * to open (i.e. offline or faulted is not considered 1750 * as missing). 1751 */ 1752 if (tvd->vdev_islog && 1753 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1754 child[idx++] = vdev_config_generate(spa, tvd, 1755 B_FALSE, VDEV_CONFIG_MISSING); 1756 } 1757 } 1758 1759 if (idx > 0) { 1760 fnvlist_add_nvlist_array(nv, 1761 ZPOOL_CONFIG_CHILDREN, child, idx); 1762 fnvlist_add_nvlist(spa->spa_load_info, 1763 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1764 1765 for (uint64_t i = 0; i < idx; i++) 1766 nvlist_free(child[i]); 1767 } 1768 nvlist_free(nv); 1769 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1770 1771 if (idx > 0) { 1772 spa_load_failed(spa, "some log devices are missing"); 1773 return (SET_ERROR(ENXIO)); 1774 } 1775 } else { 1776 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1777 vdev_t *tvd = rvd->vdev_child[c]; 1778 1779 if (tvd->vdev_islog && 1780 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1781 spa_set_log_state(spa, SPA_LOG_CLEAR); 1782 spa_load_note(spa, "some log devices are " 1783 "missing, ZIL is dropped."); 1784 break; 1785 } 1786 } 1787 } 1788 1789 return (0); 1790 } 1791 1792 /* 1793 * Check for missing log devices 1794 */ 1795 static boolean_t 1796 spa_check_logs(spa_t *spa) 1797 { 1798 boolean_t rv = B_FALSE; 1799 dsl_pool_t *dp = spa_get_dsl(spa); 1800 1801 switch (spa->spa_log_state) { 1802 case SPA_LOG_MISSING: 1803 /* need to recheck in case slog has been restored */ 1804 case SPA_LOG_UNKNOWN: 1805 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1806 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1807 if (rv) 1808 spa_set_log_state(spa, SPA_LOG_MISSING); 1809 break; 1810 } 1811 return (rv); 1812 } 1813 1814 static boolean_t 1815 spa_passivate_log(spa_t *spa) 1816 { 1817 vdev_t *rvd = spa->spa_root_vdev; 1818 boolean_t slog_found = B_FALSE; 1819 1820 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1821 1822 if (!spa_has_slogs(spa)) 1823 return (B_FALSE); 1824 1825 for (int c = 0; c < rvd->vdev_children; c++) { 1826 vdev_t *tvd = rvd->vdev_child[c]; 1827 metaslab_group_t *mg = tvd->vdev_mg; 1828 1829 if (tvd->vdev_islog) { 1830 metaslab_group_passivate(mg); 1831 slog_found = B_TRUE; 1832 } 1833 } 1834 1835 return (slog_found); 1836 } 1837 1838 static void 1839 spa_activate_log(spa_t *spa) 1840 { 1841 vdev_t *rvd = spa->spa_root_vdev; 1842 1843 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1844 1845 for (int c = 0; c < rvd->vdev_children; c++) { 1846 vdev_t *tvd = rvd->vdev_child[c]; 1847 metaslab_group_t *mg = tvd->vdev_mg; 1848 1849 if (tvd->vdev_islog) 1850 metaslab_group_activate(mg); 1851 } 1852 } 1853 1854 int 1855 spa_reset_logs(spa_t *spa) 1856 { 1857 int error; 1858 1859 error = dmu_objset_find(spa_name(spa), zil_reset, 1860 NULL, DS_FIND_CHILDREN); 1861 if (error == 0) { 1862 /* 1863 * We successfully offlined the log device, sync out the 1864 * current txg so that the "stubby" block can be removed 1865 * by zil_sync(). 1866 */ 1867 txg_wait_synced(spa->spa_dsl_pool, 0); 1868 } 1869 return (error); 1870 } 1871 1872 static void 1873 spa_aux_check_removed(spa_aux_vdev_t *sav) 1874 { 1875 for (int i = 0; i < sav->sav_count; i++) 1876 spa_check_removed(sav->sav_vdevs[i]); 1877 } 1878 1879 void 1880 spa_claim_notify(zio_t *zio) 1881 { 1882 spa_t *spa = zio->io_spa; 1883 1884 if (zio->io_error) 1885 return; 1886 1887 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1888 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1889 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1890 mutex_exit(&spa->spa_props_lock); 1891 } 1892 1893 typedef struct spa_load_error { 1894 uint64_t sle_meta_count; 1895 uint64_t sle_data_count; 1896 } spa_load_error_t; 1897 1898 static void 1899 spa_load_verify_done(zio_t *zio) 1900 { 1901 blkptr_t *bp = zio->io_bp; 1902 spa_load_error_t *sle = zio->io_private; 1903 dmu_object_type_t type = BP_GET_TYPE(bp); 1904 int error = zio->io_error; 1905 spa_t *spa = zio->io_spa; 1906 1907 abd_free(zio->io_abd); 1908 if (error) { 1909 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1910 type != DMU_OT_INTENT_LOG) 1911 atomic_inc_64(&sle->sle_meta_count); 1912 else 1913 atomic_inc_64(&sle->sle_data_count); 1914 } 1915 1916 mutex_enter(&spa->spa_scrub_lock); 1917 spa->spa_scrub_inflight--; 1918 cv_broadcast(&spa->spa_scrub_io_cv); 1919 mutex_exit(&spa->spa_scrub_lock); 1920 } 1921 1922 /* 1923 * Maximum number of concurrent scrub i/os to create while verifying 1924 * a pool while importing it. 1925 */ 1926 int spa_load_verify_maxinflight = 10000; 1927 boolean_t spa_load_verify_metadata = B_TRUE; 1928 boolean_t spa_load_verify_data = B_TRUE; 1929 1930 /*ARGSUSED*/ 1931 static int 1932 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1933 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1934 { 1935 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1936 return (0); 1937 /* 1938 * Note: normally this routine will not be called if 1939 * spa_load_verify_metadata is not set. However, it may be useful 1940 * to manually set the flag after the traversal has begun. 1941 */ 1942 if (!spa_load_verify_metadata) 1943 return (0); 1944 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 1945 return (0); 1946 1947 zio_t *rio = arg; 1948 size_t size = BP_GET_PSIZE(bp); 1949 1950 mutex_enter(&spa->spa_scrub_lock); 1951 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1952 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1953 spa->spa_scrub_inflight++; 1954 mutex_exit(&spa->spa_scrub_lock); 1955 1956 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 1957 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1958 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1959 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1960 return (0); 1961 } 1962 1963 /* ARGSUSED */ 1964 int 1965 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1966 { 1967 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1968 return (SET_ERROR(ENAMETOOLONG)); 1969 1970 return (0); 1971 } 1972 1973 static int 1974 spa_load_verify(spa_t *spa) 1975 { 1976 zio_t *rio; 1977 spa_load_error_t sle = { 0 }; 1978 zpool_rewind_policy_t policy; 1979 boolean_t verify_ok = B_FALSE; 1980 int error = 0; 1981 1982 zpool_get_rewind_policy(spa->spa_config, &policy); 1983 1984 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1985 return (0); 1986 1987 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1988 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1989 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1990 DS_FIND_CHILDREN); 1991 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1992 if (error != 0) 1993 return (error); 1994 1995 rio = zio_root(spa, NULL, &sle, 1996 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1997 1998 if (spa_load_verify_metadata) { 1999 if (spa->spa_extreme_rewind) { 2000 spa_load_note(spa, "performing a complete scan of the " 2001 "pool since extreme rewind is on. This may take " 2002 "a very long time.\n (spa_load_verify_data=%u, " 2003 "spa_load_verify_metadata=%u)", 2004 spa_load_verify_data, spa_load_verify_metadata); 2005 } 2006 error = traverse_pool(spa, spa->spa_verify_min_txg, 2007 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 2008 spa_load_verify_cb, rio); 2009 } 2010 2011 (void) zio_wait(rio); 2012 2013 spa->spa_load_meta_errors = sle.sle_meta_count; 2014 spa->spa_load_data_errors = sle.sle_data_count; 2015 2016 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2017 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2018 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2019 (u_longlong_t)sle.sle_data_count); 2020 } 2021 2022 if (spa_load_verify_dryrun || 2023 (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 2024 sle.sle_data_count <= policy.zrp_maxdata)) { 2025 int64_t loss = 0; 2026 2027 verify_ok = B_TRUE; 2028 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2029 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2030 2031 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2032 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2033 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2034 VERIFY(nvlist_add_int64(spa->spa_load_info, 2035 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2036 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2037 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2038 } else { 2039 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2040 } 2041 2042 if (spa_load_verify_dryrun) 2043 return (0); 2044 2045 if (error) { 2046 if (error != ENXIO && error != EIO) 2047 error = SET_ERROR(EIO); 2048 return (error); 2049 } 2050 2051 return (verify_ok ? 0 : EIO); 2052 } 2053 2054 /* 2055 * Find a value in the pool props object. 2056 */ 2057 static void 2058 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2059 { 2060 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2061 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2062 } 2063 2064 /* 2065 * Find a value in the pool directory object. 2066 */ 2067 static int 2068 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2069 { 2070 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2071 name, sizeof (uint64_t), 1, val); 2072 2073 if (error != 0 && (error != ENOENT || log_enoent)) { 2074 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2075 "[error=%d]", name, error); 2076 } 2077 2078 return (error); 2079 } 2080 2081 static int 2082 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2083 { 2084 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2085 return (SET_ERROR(err)); 2086 } 2087 2088 static void 2089 spa_spawn_aux_threads(spa_t *spa) 2090 { 2091 ASSERT(spa_writeable(spa)); 2092 2093 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2094 2095 spa_start_indirect_condensing_thread(spa); 2096 } 2097 2098 /* 2099 * Fix up config after a partly-completed split. This is done with the 2100 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2101 * pool have that entry in their config, but only the splitting one contains 2102 * a list of all the guids of the vdevs that are being split off. 2103 * 2104 * This function determines what to do with that list: either rejoin 2105 * all the disks to the pool, or complete the splitting process. To attempt 2106 * the rejoin, each disk that is offlined is marked online again, and 2107 * we do a reopen() call. If the vdev label for every disk that was 2108 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2109 * then we call vdev_split() on each disk, and complete the split. 2110 * 2111 * Otherwise we leave the config alone, with all the vdevs in place in 2112 * the original pool. 2113 */ 2114 static void 2115 spa_try_repair(spa_t *spa, nvlist_t *config) 2116 { 2117 uint_t extracted; 2118 uint64_t *glist; 2119 uint_t i, gcount; 2120 nvlist_t *nvl; 2121 vdev_t **vd; 2122 boolean_t attempt_reopen; 2123 2124 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2125 return; 2126 2127 /* check that the config is complete */ 2128 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2129 &glist, &gcount) != 0) 2130 return; 2131 2132 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2133 2134 /* attempt to online all the vdevs & validate */ 2135 attempt_reopen = B_TRUE; 2136 for (i = 0; i < gcount; i++) { 2137 if (glist[i] == 0) /* vdev is hole */ 2138 continue; 2139 2140 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2141 if (vd[i] == NULL) { 2142 /* 2143 * Don't bother attempting to reopen the disks; 2144 * just do the split. 2145 */ 2146 attempt_reopen = B_FALSE; 2147 } else { 2148 /* attempt to re-online it */ 2149 vd[i]->vdev_offline = B_FALSE; 2150 } 2151 } 2152 2153 if (attempt_reopen) { 2154 vdev_reopen(spa->spa_root_vdev); 2155 2156 /* check each device to see what state it's in */ 2157 for (extracted = 0, i = 0; i < gcount; i++) { 2158 if (vd[i] != NULL && 2159 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2160 break; 2161 ++extracted; 2162 } 2163 } 2164 2165 /* 2166 * If every disk has been moved to the new pool, or if we never 2167 * even attempted to look at them, then we split them off for 2168 * good. 2169 */ 2170 if (!attempt_reopen || gcount == extracted) { 2171 for (i = 0; i < gcount; i++) 2172 if (vd[i] != NULL) 2173 vdev_split(vd[i]); 2174 vdev_reopen(spa->spa_root_vdev); 2175 } 2176 2177 kmem_free(vd, gcount * sizeof (vdev_t *)); 2178 } 2179 2180 static int 2181 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2182 { 2183 char *ereport = FM_EREPORT_ZFS_POOL; 2184 int error; 2185 2186 spa->spa_load_state = state; 2187 2188 gethrestime(&spa->spa_loaded_ts); 2189 error = spa_load_impl(spa, type, &ereport, B_FALSE); 2190 2191 /* 2192 * Don't count references from objsets that are already closed 2193 * and are making their way through the eviction process. 2194 */ 2195 spa_evicting_os_wait(spa); 2196 spa->spa_minref = refcount_count(&spa->spa_refcount); 2197 if (error) { 2198 if (error != EEXIST) { 2199 spa->spa_loaded_ts.tv_sec = 0; 2200 spa->spa_loaded_ts.tv_nsec = 0; 2201 } 2202 if (error != EBADF) { 2203 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2204 } 2205 } 2206 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2207 spa->spa_ena = 0; 2208 2209 return (error); 2210 } 2211 2212 /* 2213 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2214 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2215 * spa's per-vdev ZAP list. 2216 */ 2217 static uint64_t 2218 vdev_count_verify_zaps(vdev_t *vd) 2219 { 2220 spa_t *spa = vd->vdev_spa; 2221 uint64_t total = 0; 2222 if (vd->vdev_top_zap != 0) { 2223 total++; 2224 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2225 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2226 } 2227 if (vd->vdev_leaf_zap != 0) { 2228 total++; 2229 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2230 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2231 } 2232 2233 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2234 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2235 } 2236 2237 return (total); 2238 } 2239 2240 static int 2241 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2242 { 2243 uint64_t hostid; 2244 char *hostname; 2245 uint64_t myhostid = 0; 2246 2247 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2248 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2249 hostname = fnvlist_lookup_string(mos_config, 2250 ZPOOL_CONFIG_HOSTNAME); 2251 2252 myhostid = zone_get_hostid(NULL); 2253 2254 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2255 cmn_err(CE_WARN, "pool '%s' could not be " 2256 "loaded as it was last accessed by " 2257 "another system (host: %s hostid: 0x%llx). " 2258 "See: http://illumos.org/msg/ZFS-8000-EY", 2259 spa_name(spa), hostname, (u_longlong_t)hostid); 2260 spa_load_failed(spa, "hostid verification failed: pool " 2261 "last accessed by host: %s (hostid: 0x%llx)", 2262 hostname, (u_longlong_t)hostid); 2263 return (SET_ERROR(EBADF)); 2264 } 2265 } 2266 2267 return (0); 2268 } 2269 2270 static int 2271 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2272 { 2273 int error = 0; 2274 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2275 int parse; 2276 vdev_t *rvd; 2277 uint64_t pool_guid; 2278 char *comment; 2279 2280 /* 2281 * Versioning wasn't explicitly added to the label until later, so if 2282 * it's not present treat it as the initial version. 2283 */ 2284 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2285 &spa->spa_ubsync.ub_version) != 0) 2286 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2287 2288 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2289 spa_load_failed(spa, "invalid config provided: '%s' missing", 2290 ZPOOL_CONFIG_POOL_GUID); 2291 return (SET_ERROR(EINVAL)); 2292 } 2293 2294 if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == 2295 SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { 2296 spa_load_failed(spa, "a pool with guid %llu is already open", 2297 (u_longlong_t)pool_guid); 2298 return (SET_ERROR(EEXIST)); 2299 } 2300 2301 spa->spa_config_guid = pool_guid; 2302 2303 nvlist_free(spa->spa_load_info); 2304 spa->spa_load_info = fnvlist_alloc(); 2305 2306 ASSERT(spa->spa_comment == NULL); 2307 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2308 spa->spa_comment = spa_strdup(comment); 2309 2310 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2311 &spa->spa_config_txg); 2312 2313 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2314 spa->spa_config_splitting = fnvlist_dup(nvl); 2315 2316 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2317 spa_load_failed(spa, "invalid config provided: '%s' missing", 2318 ZPOOL_CONFIG_VDEV_TREE); 2319 return (SET_ERROR(EINVAL)); 2320 } 2321 2322 /* 2323 * Create "The Godfather" zio to hold all async IOs 2324 */ 2325 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2326 KM_SLEEP); 2327 for (int i = 0; i < max_ncpus; i++) { 2328 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2329 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2330 ZIO_FLAG_GODFATHER); 2331 } 2332 2333 /* 2334 * Parse the configuration into a vdev tree. We explicitly set the 2335 * value that will be returned by spa_version() since parsing the 2336 * configuration requires knowing the version number. 2337 */ 2338 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2339 parse = (type == SPA_IMPORT_EXISTING ? 2340 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2341 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2342 spa_config_exit(spa, SCL_ALL, FTAG); 2343 2344 if (error != 0) { 2345 spa_load_failed(spa, "unable to parse config [error=%d]", 2346 error); 2347 return (error); 2348 } 2349 2350 ASSERT(spa->spa_root_vdev == rvd); 2351 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2352 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2353 2354 if (type != SPA_IMPORT_ASSEMBLE) { 2355 ASSERT(spa_guid(spa) == pool_guid); 2356 } 2357 2358 return (0); 2359 } 2360 2361 /* 2362 * Recursively open all vdevs in the vdev tree. This function is called twice: 2363 * first with the untrusted config, then with the trusted config. 2364 */ 2365 static int 2366 spa_ld_open_vdevs(spa_t *spa) 2367 { 2368 int error = 0; 2369 2370 /* 2371 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2372 * missing/unopenable for the root vdev to be still considered openable. 2373 */ 2374 if (spa->spa_trust_config) { 2375 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2376 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2377 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2378 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2379 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2380 } else { 2381 spa->spa_missing_tvds_allowed = 0; 2382 } 2383 2384 spa->spa_missing_tvds_allowed = 2385 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2386 2387 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2388 error = vdev_open(spa->spa_root_vdev); 2389 spa_config_exit(spa, SCL_ALL, FTAG); 2390 2391 if (spa->spa_missing_tvds != 0) { 2392 spa_load_note(spa, "vdev tree has %lld missing top-level " 2393 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2394 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2395 /* 2396 * Although theoretically we could allow users to open 2397 * incomplete pools in RW mode, we'd need to add a lot 2398 * of extra logic (e.g. adjust pool space to account 2399 * for missing vdevs). 2400 * This limitation also prevents users from accidentally 2401 * opening the pool in RW mode during data recovery and 2402 * damaging it further. 2403 */ 2404 spa_load_note(spa, "pools with missing top-level " 2405 "vdevs can only be opened in read-only mode."); 2406 error = SET_ERROR(ENXIO); 2407 } else { 2408 spa_load_note(spa, "current settings allow for maximum " 2409 "%lld missing top-level vdevs at this stage.", 2410 (u_longlong_t)spa->spa_missing_tvds_allowed); 2411 } 2412 } 2413 if (error != 0) { 2414 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2415 error); 2416 } 2417 if (spa->spa_missing_tvds != 0 || error != 0) 2418 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2419 2420 return (error); 2421 } 2422 2423 /* 2424 * We need to validate the vdev labels against the configuration that 2425 * we have in hand. This function is called twice: first with an untrusted 2426 * config, then with a trusted config. The validation is more strict when the 2427 * config is trusted. 2428 */ 2429 static int 2430 spa_ld_validate_vdevs(spa_t *spa) 2431 { 2432 int error = 0; 2433 vdev_t *rvd = spa->spa_root_vdev; 2434 2435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2436 error = vdev_validate(rvd); 2437 spa_config_exit(spa, SCL_ALL, FTAG); 2438 2439 if (error != 0) { 2440 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2441 return (error); 2442 } 2443 2444 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2445 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2446 "some vdevs"); 2447 vdev_dbgmsg_print_tree(rvd, 2); 2448 return (SET_ERROR(ENXIO)); 2449 } 2450 2451 return (0); 2452 } 2453 2454 static int 2455 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2456 { 2457 vdev_t *rvd = spa->spa_root_vdev; 2458 nvlist_t *label; 2459 uberblock_t *ub = &spa->spa_uberblock; 2460 2461 /* 2462 * Find the best uberblock. 2463 */ 2464 vdev_uberblock_load(rvd, ub, &label); 2465 2466 /* 2467 * If we weren't able to find a single valid uberblock, return failure. 2468 */ 2469 if (ub->ub_txg == 0) { 2470 nvlist_free(label); 2471 spa_load_failed(spa, "no valid uberblock found"); 2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2473 } 2474 2475 spa_load_note(spa, "using uberblock with txg=%llu", 2476 (u_longlong_t)ub->ub_txg); 2477 2478 /* 2479 * If the pool has an unsupported version we can't open it. 2480 */ 2481 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2482 nvlist_free(label); 2483 spa_load_failed(spa, "version %llu is not supported", 2484 (u_longlong_t)ub->ub_version); 2485 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2486 } 2487 2488 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2489 nvlist_t *features; 2490 2491 /* 2492 * If we weren't able to find what's necessary for reading the 2493 * MOS in the label, return failure. 2494 */ 2495 if (label == NULL) { 2496 spa_load_failed(spa, "label config unavailable"); 2497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2498 ENXIO)); 2499 } 2500 2501 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 2502 &features) != 0) { 2503 nvlist_free(label); 2504 spa_load_failed(spa, "invalid label: '%s' missing", 2505 ZPOOL_CONFIG_FEATURES_FOR_READ); 2506 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2507 ENXIO)); 2508 } 2509 2510 /* 2511 * Update our in-core representation with the definitive values 2512 * from the label. 2513 */ 2514 nvlist_free(spa->spa_label_features); 2515 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2516 } 2517 2518 nvlist_free(label); 2519 2520 /* 2521 * Look through entries in the label nvlist's features_for_read. If 2522 * there is a feature listed there which we don't understand then we 2523 * cannot open a pool. 2524 */ 2525 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2526 nvlist_t *unsup_feat; 2527 2528 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2529 0); 2530 2531 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2532 NULL); nvp != NULL; 2533 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2534 if (!zfeature_is_supported(nvpair_name(nvp))) { 2535 VERIFY(nvlist_add_string(unsup_feat, 2536 nvpair_name(nvp), "") == 0); 2537 } 2538 } 2539 2540 if (!nvlist_empty(unsup_feat)) { 2541 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2542 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2543 nvlist_free(unsup_feat); 2544 spa_load_failed(spa, "some features are unsupported"); 2545 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2546 ENOTSUP)); 2547 } 2548 2549 nvlist_free(unsup_feat); 2550 } 2551 2552 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2553 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2554 spa_try_repair(spa, spa->spa_config); 2555 spa_config_exit(spa, SCL_ALL, FTAG); 2556 nvlist_free(spa->spa_config_splitting); 2557 spa->spa_config_splitting = NULL; 2558 } 2559 2560 /* 2561 * Initialize internal SPA structures. 2562 */ 2563 spa->spa_state = POOL_STATE_ACTIVE; 2564 spa->spa_ubsync = spa->spa_uberblock; 2565 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2566 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2567 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2568 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2569 spa->spa_claim_max_txg = spa->spa_first_txg; 2570 spa->spa_prev_software_version = ub->ub_software_version; 2571 2572 return (0); 2573 } 2574 2575 static int 2576 spa_ld_open_rootbp(spa_t *spa) 2577 { 2578 int error = 0; 2579 vdev_t *rvd = spa->spa_root_vdev; 2580 2581 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2582 if (error != 0) { 2583 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 2584 "[error=%d]", error); 2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2586 } 2587 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2588 2589 return (0); 2590 } 2591 2592 static int 2593 spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type, 2594 boolean_t reloading) 2595 { 2596 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 2597 nvlist_t *nv, *mos_config, *policy; 2598 int error = 0, copy_error; 2599 uint64_t healthy_tvds, healthy_tvds_mos; 2600 uint64_t mos_config_txg; 2601 2602 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 2603 != 0) 2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2605 2606 /* 2607 * If we're assembling a pool from a split, the config provided is 2608 * already trusted so there is nothing to do. 2609 */ 2610 if (type == SPA_IMPORT_ASSEMBLE) 2611 return (0); 2612 2613 healthy_tvds = spa_healthy_core_tvds(spa); 2614 2615 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 2616 != 0) { 2617 spa_load_failed(spa, "unable to retrieve MOS config"); 2618 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2619 } 2620 2621 /* 2622 * If we are doing an open, pool owner wasn't verified yet, thus do 2623 * the verification here. 2624 */ 2625 if (spa->spa_load_state == SPA_LOAD_OPEN) { 2626 error = spa_verify_host(spa, mos_config); 2627 if (error != 0) { 2628 nvlist_free(mos_config); 2629 return (error); 2630 } 2631 } 2632 2633 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 2634 2635 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2636 2637 /* 2638 * Build a new vdev tree from the trusted config 2639 */ 2640 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 2641 2642 /* 2643 * Vdev paths in the MOS may be obsolete. If the untrusted config was 2644 * obtained by scanning /dev/dsk, then it will have the right vdev 2645 * paths. We update the trusted MOS config with this information. 2646 * We first try to copy the paths with vdev_copy_path_strict, which 2647 * succeeds only when both configs have exactly the same vdev tree. 2648 * If that fails, we fall back to a more flexible method that has a 2649 * best effort policy. 2650 */ 2651 copy_error = vdev_copy_path_strict(rvd, mrvd); 2652 if (copy_error != 0 || spa_load_print_vdev_tree) { 2653 spa_load_note(spa, "provided vdev tree:"); 2654 vdev_dbgmsg_print_tree(rvd, 2); 2655 spa_load_note(spa, "MOS vdev tree:"); 2656 vdev_dbgmsg_print_tree(mrvd, 2); 2657 } 2658 if (copy_error != 0) { 2659 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 2660 "back to vdev_copy_path_relaxed"); 2661 vdev_copy_path_relaxed(rvd, mrvd); 2662 } 2663 2664 vdev_close(rvd); 2665 vdev_free(rvd); 2666 spa->spa_root_vdev = mrvd; 2667 rvd = mrvd; 2668 spa_config_exit(spa, SCL_ALL, FTAG); 2669 2670 /* 2671 * We will use spa_config if we decide to reload the spa or if spa_load 2672 * fails and we rewind. We must thus regenerate the config using the 2673 * MOS information with the updated paths. Rewind policy is an import 2674 * setting and is not in the MOS. We copy it over to our new, trusted 2675 * config. 2676 */ 2677 mos_config_txg = fnvlist_lookup_uint64(mos_config, 2678 ZPOOL_CONFIG_POOL_TXG); 2679 nvlist_free(mos_config); 2680 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 2681 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY, 2682 &policy) == 0) 2683 fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy); 2684 spa_config_set(spa, mos_config); 2685 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 2686 2687 /* 2688 * Now that we got the config from the MOS, we should be more strict 2689 * in checking blkptrs and can make assumptions about the consistency 2690 * of the vdev tree. spa_trust_config must be set to true before opening 2691 * vdevs in order for them to be writeable. 2692 */ 2693 spa->spa_trust_config = B_TRUE; 2694 2695 /* 2696 * Open and validate the new vdev tree 2697 */ 2698 error = spa_ld_open_vdevs(spa); 2699 if (error != 0) 2700 return (error); 2701 2702 error = spa_ld_validate_vdevs(spa); 2703 if (error != 0) 2704 return (error); 2705 2706 if (copy_error != 0 || spa_load_print_vdev_tree) { 2707 spa_load_note(spa, "final vdev tree:"); 2708 vdev_dbgmsg_print_tree(rvd, 2); 2709 } 2710 2711 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 2712 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 2713 /* 2714 * Sanity check to make sure that we are indeed loading the 2715 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 2716 * in the config provided and they happened to be the only ones 2717 * to have the latest uberblock, we could involuntarily perform 2718 * an extreme rewind. 2719 */ 2720 healthy_tvds_mos = spa_healthy_core_tvds(spa); 2721 if (healthy_tvds_mos - healthy_tvds >= 2722 SPA_SYNC_MIN_VDEVS) { 2723 spa_load_note(spa, "config provided misses too many " 2724 "top-level vdevs compared to MOS (%lld vs %lld). ", 2725 (u_longlong_t)healthy_tvds, 2726 (u_longlong_t)healthy_tvds_mos); 2727 spa_load_note(spa, "vdev tree:"); 2728 vdev_dbgmsg_print_tree(rvd, 2); 2729 if (reloading) { 2730 spa_load_failed(spa, "config was already " 2731 "provided from MOS. Aborting."); 2732 return (spa_vdev_err(rvd, 2733 VDEV_AUX_CORRUPT_DATA, EIO)); 2734 } 2735 spa_load_note(spa, "spa must be reloaded using MOS " 2736 "config"); 2737 return (SET_ERROR(EAGAIN)); 2738 } 2739 } 2740 2741 error = spa_check_for_missing_logs(spa); 2742 if (error != 0) 2743 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2744 2745 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 2746 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 2747 "guid sum (%llu != %llu)", 2748 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 2749 (u_longlong_t)rvd->vdev_guid_sum); 2750 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2751 ENXIO)); 2752 } 2753 2754 return (0); 2755 } 2756 2757 static int 2758 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 2759 { 2760 int error = 0; 2761 vdev_t *rvd = spa->spa_root_vdev; 2762 2763 /* 2764 * Everything that we read before spa_remove_init() must be stored 2765 * on concreted vdevs. Therefore we do this as early as possible. 2766 */ 2767 error = spa_remove_init(spa); 2768 if (error != 0) { 2769 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 2770 error); 2771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2772 } 2773 2774 /* 2775 * Retrieve information needed to condense indirect vdev mappings. 2776 */ 2777 error = spa_condense_init(spa); 2778 if (error != 0) { 2779 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 2780 error); 2781 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 2782 } 2783 2784 return (0); 2785 } 2786 2787 static int 2788 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 2789 { 2790 int error = 0; 2791 vdev_t *rvd = spa->spa_root_vdev; 2792 2793 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2794 boolean_t missing_feat_read = B_FALSE; 2795 nvlist_t *unsup_feat, *enabled_feat; 2796 2797 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2798 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 2799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2800 } 2801 2802 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2803 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 2804 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2805 } 2806 2807 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2808 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 2809 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2810 } 2811 2812 enabled_feat = fnvlist_alloc(); 2813 unsup_feat = fnvlist_alloc(); 2814 2815 if (!spa_features_check(spa, B_FALSE, 2816 unsup_feat, enabled_feat)) 2817 missing_feat_read = B_TRUE; 2818 2819 if (spa_writeable(spa) || 2820 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 2821 if (!spa_features_check(spa, B_TRUE, 2822 unsup_feat, enabled_feat)) { 2823 *missing_feat_writep = B_TRUE; 2824 } 2825 } 2826 2827 fnvlist_add_nvlist(spa->spa_load_info, 2828 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2829 2830 if (!nvlist_empty(unsup_feat)) { 2831 fnvlist_add_nvlist(spa->spa_load_info, 2832 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2833 } 2834 2835 fnvlist_free(enabled_feat); 2836 fnvlist_free(unsup_feat); 2837 2838 if (!missing_feat_read) { 2839 fnvlist_add_boolean(spa->spa_load_info, 2840 ZPOOL_CONFIG_CAN_RDONLY); 2841 } 2842 2843 /* 2844 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2845 * twofold: to determine whether the pool is available for 2846 * import in read-write mode and (if it is not) whether the 2847 * pool is available for import in read-only mode. If the pool 2848 * is available for import in read-write mode, it is displayed 2849 * as available in userland; if it is not available for import 2850 * in read-only mode, it is displayed as unavailable in 2851 * userland. If the pool is available for import in read-only 2852 * mode but not read-write mode, it is displayed as unavailable 2853 * in userland with a special note that the pool is actually 2854 * available for open in read-only mode. 2855 * 2856 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2857 * missing a feature for write, we must first determine whether 2858 * the pool can be opened read-only before returning to 2859 * userland in order to know whether to display the 2860 * abovementioned note. 2861 */ 2862 if (missing_feat_read || (*missing_feat_writep && 2863 spa_writeable(spa))) { 2864 spa_load_failed(spa, "pool uses unsupported features"); 2865 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2866 ENOTSUP)); 2867 } 2868 2869 /* 2870 * Load refcounts for ZFS features from disk into an in-memory 2871 * cache during SPA initialization. 2872 */ 2873 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2874 uint64_t refcount; 2875 2876 error = feature_get_refcount_from_disk(spa, 2877 &spa_feature_table[i], &refcount); 2878 if (error == 0) { 2879 spa->spa_feat_refcount_cache[i] = refcount; 2880 } else if (error == ENOTSUP) { 2881 spa->spa_feat_refcount_cache[i] = 2882 SPA_FEATURE_DISABLED; 2883 } else { 2884 spa_load_failed(spa, "error getting refcount " 2885 "for feature %s [error=%d]", 2886 spa_feature_table[i].fi_guid, error); 2887 return (spa_vdev_err(rvd, 2888 VDEV_AUX_CORRUPT_DATA, EIO)); 2889 } 2890 } 2891 } 2892 2893 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2894 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2895 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 2896 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2897 } 2898 2899 return (0); 2900 } 2901 2902 static int 2903 spa_ld_load_special_directories(spa_t *spa) 2904 { 2905 int error = 0; 2906 vdev_t *rvd = spa->spa_root_vdev; 2907 2908 spa->spa_is_initializing = B_TRUE; 2909 error = dsl_pool_open(spa->spa_dsl_pool); 2910 spa->spa_is_initializing = B_FALSE; 2911 if (error != 0) { 2912 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 2913 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2914 } 2915 2916 return (0); 2917 } 2918 2919 static int 2920 spa_ld_get_props(spa_t *spa) 2921 { 2922 int error = 0; 2923 uint64_t obj; 2924 vdev_t *rvd = spa->spa_root_vdev; 2925 2926 /* Grab the secret checksum salt from the MOS. */ 2927 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2928 DMU_POOL_CHECKSUM_SALT, 1, 2929 sizeof (spa->spa_cksum_salt.zcs_bytes), 2930 spa->spa_cksum_salt.zcs_bytes); 2931 if (error == ENOENT) { 2932 /* Generate a new salt for subsequent use */ 2933 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2934 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2935 } else if (error != 0) { 2936 spa_load_failed(spa, "unable to retrieve checksum salt from " 2937 "MOS [error=%d]", error); 2938 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2939 } 2940 2941 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 2942 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2943 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2944 if (error != 0) { 2945 spa_load_failed(spa, "error opening deferred-frees bpobj " 2946 "[error=%d]", error); 2947 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2948 } 2949 2950 /* 2951 * Load the bit that tells us to use the new accounting function 2952 * (raid-z deflation). If we have an older pool, this will not 2953 * be present. 2954 */ 2955 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 2956 if (error != 0 && error != ENOENT) 2957 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2958 2959 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2960 &spa->spa_creation_version, B_FALSE); 2961 if (error != 0 && error != ENOENT) 2962 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2963 2964 /* 2965 * Load the persistent error log. If we have an older pool, this will 2966 * not be present. 2967 */ 2968 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 2969 B_FALSE); 2970 if (error != 0 && error != ENOENT) 2971 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2972 2973 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2974 &spa->spa_errlog_scrub, B_FALSE); 2975 if (error != 0 && error != ENOENT) 2976 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2977 2978 /* 2979 * Load the history object. If we have an older pool, this 2980 * will not be present. 2981 */ 2982 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 2983 if (error != 0 && error != ENOENT) 2984 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2985 2986 /* 2987 * Load the per-vdev ZAP map. If we have an older pool, this will not 2988 * be present; in this case, defer its creation to a later time to 2989 * avoid dirtying the MOS this early / out of sync context. See 2990 * spa_sync_config_object. 2991 */ 2992 2993 /* The sentinel is only available in the MOS config. */ 2994 nvlist_t *mos_config; 2995 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 2996 spa_load_failed(spa, "unable to retrieve MOS config"); 2997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2998 } 2999 3000 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3001 &spa->spa_all_vdev_zaps, B_FALSE); 3002 3003 if (error == ENOENT) { 3004 VERIFY(!nvlist_exists(mos_config, 3005 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3006 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3007 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3008 } else if (error != 0) { 3009 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3010 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3011 /* 3012 * An older version of ZFS overwrote the sentinel value, so 3013 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3014 * destruction to later; see spa_sync_config_object. 3015 */ 3016 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3017 /* 3018 * We're assuming that no vdevs have had their ZAPs created 3019 * before this. Better be sure of it. 3020 */ 3021 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3022 } 3023 nvlist_free(mos_config); 3024 3025 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3026 3027 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3028 B_FALSE); 3029 if (error && error != ENOENT) 3030 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3031 3032 if (error == 0) { 3033 uint64_t autoreplace; 3034 3035 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3036 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3037 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3038 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3039 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3040 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3041 &spa->spa_dedup_ditto); 3042 3043 spa->spa_autoreplace = (autoreplace != 0); 3044 } 3045 3046 /* 3047 * If we are importing a pool with missing top-level vdevs, 3048 * we enforce that the pool doesn't panic or get suspended on 3049 * error since the likelihood of missing data is extremely high. 3050 */ 3051 if (spa->spa_missing_tvds > 0 && 3052 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3053 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3054 spa_load_note(spa, "forcing failmode to 'continue' " 3055 "as some top level vdevs are missing"); 3056 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3057 } 3058 3059 return (0); 3060 } 3061 3062 static int 3063 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3064 { 3065 int error = 0; 3066 vdev_t *rvd = spa->spa_root_vdev; 3067 3068 /* 3069 * If we're assembling the pool from the split-off vdevs of 3070 * an existing pool, we don't want to attach the spares & cache 3071 * devices. 3072 */ 3073 3074 /* 3075 * Load any hot spares for this pool. 3076 */ 3077 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3078 B_FALSE); 3079 if (error != 0 && error != ENOENT) 3080 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3081 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3082 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3083 if (load_nvlist(spa, spa->spa_spares.sav_object, 3084 &spa->spa_spares.sav_config) != 0) { 3085 spa_load_failed(spa, "error loading spares nvlist"); 3086 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3087 } 3088 3089 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3090 spa_load_spares(spa); 3091 spa_config_exit(spa, SCL_ALL, FTAG); 3092 } else if (error == 0) { 3093 spa->spa_spares.sav_sync = B_TRUE; 3094 } 3095 3096 /* 3097 * Load any level 2 ARC devices for this pool. 3098 */ 3099 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3100 &spa->spa_l2cache.sav_object, B_FALSE); 3101 if (error != 0 && error != ENOENT) 3102 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3103 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3104 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3105 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3106 &spa->spa_l2cache.sav_config) != 0) { 3107 spa_load_failed(spa, "error loading l2cache nvlist"); 3108 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3109 } 3110 3111 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3112 spa_load_l2cache(spa); 3113 spa_config_exit(spa, SCL_ALL, FTAG); 3114 } else if (error == 0) { 3115 spa->spa_l2cache.sav_sync = B_TRUE; 3116 } 3117 3118 return (0); 3119 } 3120 3121 static int 3122 spa_ld_load_vdev_metadata(spa_t *spa) 3123 { 3124 int error = 0; 3125 vdev_t *rvd = spa->spa_root_vdev; 3126 3127 /* 3128 * If the 'autoreplace' property is set, then post a resource notifying 3129 * the ZFS DE that it should not issue any faults for unopenable 3130 * devices. We also iterate over the vdevs, and post a sysevent for any 3131 * unopenable vdevs so that the normal autoreplace handler can take 3132 * over. 3133 */ 3134 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3135 spa_check_removed(spa->spa_root_vdev); 3136 /* 3137 * For the import case, this is done in spa_import(), because 3138 * at this point we're using the spare definitions from 3139 * the MOS config, not necessarily from the userland config. 3140 */ 3141 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3142 spa_aux_check_removed(&spa->spa_spares); 3143 spa_aux_check_removed(&spa->spa_l2cache); 3144 } 3145 } 3146 3147 /* 3148 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3149 */ 3150 error = vdev_load(rvd); 3151 if (error != 0) { 3152 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3153 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3154 } 3155 3156 /* 3157 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3158 */ 3159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3160 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3161 spa_config_exit(spa, SCL_ALL, FTAG); 3162 3163 return (0); 3164 } 3165 3166 static int 3167 spa_ld_load_dedup_tables(spa_t *spa) 3168 { 3169 int error = 0; 3170 vdev_t *rvd = spa->spa_root_vdev; 3171 3172 error = ddt_load(spa); 3173 if (error != 0) { 3174 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3176 } 3177 3178 return (0); 3179 } 3180 3181 static int 3182 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3183 { 3184 vdev_t *rvd = spa->spa_root_vdev; 3185 3186 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3187 boolean_t missing = spa_check_logs(spa); 3188 if (missing) { 3189 if (spa->spa_missing_tvds != 0) { 3190 spa_load_note(spa, "spa_check_logs failed " 3191 "so dropping the logs"); 3192 } else { 3193 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3194 spa_load_failed(spa, "spa_check_logs failed"); 3195 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3196 ENXIO)); 3197 } 3198 } 3199 } 3200 3201 return (0); 3202 } 3203 3204 static int 3205 spa_ld_verify_pool_data(spa_t *spa) 3206 { 3207 int error = 0; 3208 vdev_t *rvd = spa->spa_root_vdev; 3209 3210 /* 3211 * We've successfully opened the pool, verify that we're ready 3212 * to start pushing transactions. 3213 */ 3214 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3215 error = spa_load_verify(spa); 3216 if (error != 0) { 3217 spa_load_failed(spa, "spa_load_verify failed " 3218 "[error=%d]", error); 3219 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3220 error)); 3221 } 3222 } 3223 3224 return (0); 3225 } 3226 3227 static void 3228 spa_ld_claim_log_blocks(spa_t *spa) 3229 { 3230 dmu_tx_t *tx; 3231 dsl_pool_t *dp = spa_get_dsl(spa); 3232 3233 /* 3234 * Claim log blocks that haven't been committed yet. 3235 * This must all happen in a single txg. 3236 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3237 * invoked from zil_claim_log_block()'s i/o done callback. 3238 * Price of rollback is that we abandon the log. 3239 */ 3240 spa->spa_claiming = B_TRUE; 3241 3242 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3243 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3244 zil_claim, tx, DS_FIND_CHILDREN); 3245 dmu_tx_commit(tx); 3246 3247 spa->spa_claiming = B_FALSE; 3248 3249 spa_set_log_state(spa, SPA_LOG_GOOD); 3250 } 3251 3252 static void 3253 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3254 boolean_t reloading) 3255 { 3256 vdev_t *rvd = spa->spa_root_vdev; 3257 int need_update = B_FALSE; 3258 3259 /* 3260 * If the config cache is stale, or we have uninitialized 3261 * metaslabs (see spa_vdev_add()), then update the config. 3262 * 3263 * If this is a verbatim import, trust the current 3264 * in-core spa_config and update the disk labels. 3265 */ 3266 if (reloading || config_cache_txg != spa->spa_config_txg || 3267 spa->spa_load_state == SPA_LOAD_IMPORT || 3268 spa->spa_load_state == SPA_LOAD_RECOVER || 3269 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3270 need_update = B_TRUE; 3271 3272 for (int c = 0; c < rvd->vdev_children; c++) 3273 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3274 need_update = B_TRUE; 3275 3276 /* 3277 * Update the config cache asychronously in case we're the 3278 * root pool, in which case the config cache isn't writable yet. 3279 */ 3280 if (need_update) 3281 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3282 } 3283 3284 static void 3285 spa_ld_prepare_for_reload(spa_t *spa) 3286 { 3287 int mode = spa->spa_mode; 3288 int async_suspended = spa->spa_async_suspended; 3289 3290 spa_unload(spa); 3291 spa_deactivate(spa); 3292 spa_activate(spa, mode); 3293 3294 /* 3295 * We save the value of spa_async_suspended as it gets reset to 0 by 3296 * spa_unload(). We want to restore it back to the original value before 3297 * returning as we might be calling spa_async_resume() later. 3298 */ 3299 spa->spa_async_suspended = async_suspended; 3300 } 3301 3302 /* 3303 * Load an existing storage pool, using the config provided. This config 3304 * describes which vdevs are part of the pool and is later validated against 3305 * partial configs present in each vdev's label and an entire copy of the 3306 * config stored in the MOS. 3307 */ 3308 static int 3309 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport, 3310 boolean_t reloading) 3311 { 3312 int error = 0; 3313 boolean_t missing_feat_write = B_FALSE; 3314 3315 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3316 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3317 3318 /* 3319 * Never trust the config that is provided unless we are assembling 3320 * a pool following a split. 3321 * This means don't trust blkptrs and the vdev tree in general. This 3322 * also effectively puts the spa in read-only mode since 3323 * spa_writeable() checks for spa_trust_config to be true. 3324 * We will later load a trusted config from the MOS. 3325 */ 3326 if (type != SPA_IMPORT_ASSEMBLE) 3327 spa->spa_trust_config = B_FALSE; 3328 3329 if (reloading) 3330 spa_load_note(spa, "RELOADING"); 3331 else 3332 spa_load_note(spa, "LOADING"); 3333 3334 /* 3335 * Parse the config provided to create a vdev tree. 3336 */ 3337 error = spa_ld_parse_config(spa, type); 3338 if (error != 0) 3339 return (error); 3340 3341 /* 3342 * Now that we have the vdev tree, try to open each vdev. This involves 3343 * opening the underlying physical device, retrieving its geometry and 3344 * probing the vdev with a dummy I/O. The state of each vdev will be set 3345 * based on the success of those operations. After this we'll be ready 3346 * to read from the vdevs. 3347 */ 3348 error = spa_ld_open_vdevs(spa); 3349 if (error != 0) 3350 return (error); 3351 3352 /* 3353 * Read the label of each vdev and make sure that the GUIDs stored 3354 * there match the GUIDs in the config provided. 3355 * If we're assembling a new pool that's been split off from an 3356 * existing pool, the labels haven't yet been updated so we skip 3357 * validation for now. 3358 */ 3359 if (type != SPA_IMPORT_ASSEMBLE) { 3360 error = spa_ld_validate_vdevs(spa); 3361 if (error != 0) 3362 return (error); 3363 } 3364 3365 /* 3366 * Read vdev labels to find the best uberblock (i.e. latest, unless 3367 * spa_load_max_txg is set) and store it in spa_uberblock. We get the 3368 * list of features required to read blkptrs in the MOS from the vdev 3369 * label with the best uberblock and verify that our version of zfs 3370 * supports them all. 3371 */ 3372 error = spa_ld_select_uberblock(spa, type); 3373 if (error != 0) 3374 return (error); 3375 3376 /* 3377 * Pass that uberblock to the dsl_pool layer which will open the root 3378 * blkptr. This blkptr points to the latest version of the MOS and will 3379 * allow us to read its contents. 3380 */ 3381 error = spa_ld_open_rootbp(spa); 3382 if (error != 0) 3383 return (error); 3384 3385 /* 3386 * Retrieve the trusted config stored in the MOS and use it to create 3387 * a new, exact version of the vdev tree, then reopen all vdevs. 3388 */ 3389 error = spa_ld_load_trusted_config(spa, type, reloading); 3390 if (error == EAGAIN) { 3391 VERIFY(!reloading); 3392 /* 3393 * Redo the loading process with the trusted config if it is 3394 * too different from the untrusted config. 3395 */ 3396 spa_ld_prepare_for_reload(spa); 3397 return (spa_load_impl(spa, type, ereport, B_TRUE)); 3398 } else if (error != 0) { 3399 return (error); 3400 } 3401 3402 /* 3403 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 3404 * from the pool and their contents were re-mapped to other vdevs. Note 3405 * that everything that we read before this step must have been 3406 * rewritten on concrete vdevs after the last device removal was 3407 * initiated. Otherwise we could be reading from indirect vdevs before 3408 * we have loaded their mappings. 3409 */ 3410 error = spa_ld_open_indirect_vdev_metadata(spa); 3411 if (error != 0) 3412 return (error); 3413 3414 /* 3415 * Retrieve the full list of active features from the MOS and check if 3416 * they are all supported. 3417 */ 3418 error = spa_ld_check_features(spa, &missing_feat_write); 3419 if (error != 0) 3420 return (error); 3421 3422 /* 3423 * Load several special directories from the MOS needed by the dsl_pool 3424 * layer. 3425 */ 3426 error = spa_ld_load_special_directories(spa); 3427 if (error != 0) 3428 return (error); 3429 3430 /* 3431 * Retrieve pool properties from the MOS. 3432 */ 3433 error = spa_ld_get_props(spa); 3434 if (error != 0) 3435 return (error); 3436 3437 /* 3438 * Retrieve the list of auxiliary devices - cache devices and spares - 3439 * and open them. 3440 */ 3441 error = spa_ld_open_aux_vdevs(spa, type); 3442 if (error != 0) 3443 return (error); 3444 3445 /* 3446 * Load the metadata for all vdevs. Also check if unopenable devices 3447 * should be autoreplaced. 3448 */ 3449 error = spa_ld_load_vdev_metadata(spa); 3450 if (error != 0) 3451 return (error); 3452 3453 error = spa_ld_load_dedup_tables(spa); 3454 if (error != 0) 3455 return (error); 3456 3457 /* 3458 * Verify the logs now to make sure we don't have any unexpected errors 3459 * when we claim log blocks later. 3460 */ 3461 error = spa_ld_verify_logs(spa, type, ereport); 3462 if (error != 0) 3463 return (error); 3464 3465 if (missing_feat_write) { 3466 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 3467 3468 /* 3469 * At this point, we know that we can open the pool in 3470 * read-only mode but not read-write mode. We now have enough 3471 * information and can return to userland. 3472 */ 3473 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 3474 ENOTSUP)); 3475 } 3476 3477 /* 3478 * Traverse the last txgs to make sure the pool was left off in a safe 3479 * state. When performing an extreme rewind, we verify the whole pool, 3480 * which can take a very long time. 3481 */ 3482 error = spa_ld_verify_pool_data(spa); 3483 if (error != 0) 3484 return (error); 3485 3486 /* 3487 * Calculate the deflated space for the pool. This must be done before 3488 * we write anything to the pool because we'd need to update the space 3489 * accounting using the deflated sizes. 3490 */ 3491 spa_update_dspace(spa); 3492 3493 /* 3494 * We have now retrieved all the information we needed to open the 3495 * pool. If we are importing the pool in read-write mode, a few 3496 * additional steps must be performed to finish the import. 3497 */ 3498 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 3499 spa->spa_load_max_txg == UINT64_MAX)) { 3500 uint64_t config_cache_txg = spa->spa_config_txg; 3501 3502 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 3503 3504 /* 3505 * Traverse the ZIL and claim all blocks. 3506 */ 3507 spa_ld_claim_log_blocks(spa); 3508 3509 /* 3510 * Kick-off the syncing thread. 3511 */ 3512 spa->spa_sync_on = B_TRUE; 3513 txg_sync_start(spa->spa_dsl_pool); 3514 3515 /* 3516 * Wait for all claims to sync. We sync up to the highest 3517 * claimed log block birth time so that claimed log blocks 3518 * don't appear to be from the future. spa_claim_max_txg 3519 * will have been set for us by ZIL traversal operations 3520 * performed above. 3521 */ 3522 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 3523 3524 /* 3525 * Check if we need to request an update of the config. On the 3526 * next sync, we would update the config stored in vdev labels 3527 * and the cachefile (by default /etc/zfs/zpool.cache). 3528 */ 3529 spa_ld_check_for_config_update(spa, config_cache_txg, 3530 reloading); 3531 3532 /* 3533 * Check all DTLs to see if anything needs resilvering. 3534 */ 3535 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 3536 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3537 spa_async_request(spa, SPA_ASYNC_RESILVER); 3538 3539 /* 3540 * Log the fact that we booted up (so that we can detect if 3541 * we rebooted in the middle of an operation). 3542 */ 3543 spa_history_log_version(spa, "open"); 3544 3545 /* 3546 * Delete any inconsistent datasets. 3547 */ 3548 (void) dmu_objset_find(spa_name(spa), 3549 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 3550 3551 /* 3552 * Clean up any stale temporary dataset userrefs. 3553 */ 3554 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 3555 3556 spa_restart_removal(spa); 3557 3558 spa_spawn_aux_threads(spa); 3559 } 3560 3561 spa_load_note(spa, "LOADED"); 3562 3563 return (0); 3564 } 3565 3566 static int 3567 spa_load_retry(spa_t *spa, spa_load_state_t state) 3568 { 3569 int mode = spa->spa_mode; 3570 3571 spa_unload(spa); 3572 spa_deactivate(spa); 3573 3574 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 3575 3576 spa_activate(spa, mode); 3577 spa_async_suspend(spa); 3578 3579 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 3580 (u_longlong_t)spa->spa_load_max_txg); 3581 3582 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 3583 } 3584 3585 /* 3586 * If spa_load() fails this function will try loading prior txg's. If 3587 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 3588 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 3589 * function will not rewind the pool and will return the same error as 3590 * spa_load(). 3591 */ 3592 static int 3593 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 3594 int rewind_flags) 3595 { 3596 nvlist_t *loadinfo = NULL; 3597 nvlist_t *config = NULL; 3598 int load_error, rewind_error; 3599 uint64_t safe_rewind_txg; 3600 uint64_t min_txg; 3601 3602 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 3603 spa->spa_load_max_txg = spa->spa_load_txg; 3604 spa_set_log_state(spa, SPA_LOG_CLEAR); 3605 } else { 3606 spa->spa_load_max_txg = max_request; 3607 if (max_request != UINT64_MAX) 3608 spa->spa_extreme_rewind = B_TRUE; 3609 } 3610 3611 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 3612 if (load_error == 0) 3613 return (0); 3614 3615 if (spa->spa_root_vdev != NULL) 3616 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3617 3618 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 3619 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 3620 3621 if (rewind_flags & ZPOOL_NEVER_REWIND) { 3622 nvlist_free(config); 3623 return (load_error); 3624 } 3625 3626 if (state == SPA_LOAD_RECOVER) { 3627 /* Price of rolling back is discarding txgs, including log */ 3628 spa_set_log_state(spa, SPA_LOG_CLEAR); 3629 } else { 3630 /* 3631 * If we aren't rolling back save the load info from our first 3632 * import attempt so that we can restore it after attempting 3633 * to rewind. 3634 */ 3635 loadinfo = spa->spa_load_info; 3636 spa->spa_load_info = fnvlist_alloc(); 3637 } 3638 3639 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3640 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3641 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3642 TXG_INITIAL : safe_rewind_txg; 3643 3644 /* 3645 * Continue as long as we're finding errors, we're still within 3646 * the acceptable rewind range, and we're still finding uberblocks 3647 */ 3648 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3649 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3650 if (spa->spa_load_max_txg < safe_rewind_txg) 3651 spa->spa_extreme_rewind = B_TRUE; 3652 rewind_error = spa_load_retry(spa, state); 3653 } 3654 3655 spa->spa_extreme_rewind = B_FALSE; 3656 spa->spa_load_max_txg = UINT64_MAX; 3657 3658 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3659 spa_config_set(spa, config); 3660 else 3661 nvlist_free(config); 3662 3663 if (state == SPA_LOAD_RECOVER) { 3664 ASSERT3P(loadinfo, ==, NULL); 3665 return (rewind_error); 3666 } else { 3667 /* Store the rewind info as part of the initial load info */ 3668 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3669 spa->spa_load_info); 3670 3671 /* Restore the initial load info */ 3672 fnvlist_free(spa->spa_load_info); 3673 spa->spa_load_info = loadinfo; 3674 3675 return (load_error); 3676 } 3677 } 3678 3679 /* 3680 * Pool Open/Import 3681 * 3682 * The import case is identical to an open except that the configuration is sent 3683 * down from userland, instead of grabbed from the configuration cache. For the 3684 * case of an open, the pool configuration will exist in the 3685 * POOL_STATE_UNINITIALIZED state. 3686 * 3687 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3688 * the same time open the pool, without having to keep around the spa_t in some 3689 * ambiguous state. 3690 */ 3691 static int 3692 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3693 nvlist_t **config) 3694 { 3695 spa_t *spa; 3696 spa_load_state_t state = SPA_LOAD_OPEN; 3697 int error; 3698 int locked = B_FALSE; 3699 3700 *spapp = NULL; 3701 3702 /* 3703 * As disgusting as this is, we need to support recursive calls to this 3704 * function because dsl_dir_open() is called during spa_load(), and ends 3705 * up calling spa_open() again. The real fix is to figure out how to 3706 * avoid dsl_dir_open() calling this in the first place. 3707 */ 3708 if (mutex_owner(&spa_namespace_lock) != curthread) { 3709 mutex_enter(&spa_namespace_lock); 3710 locked = B_TRUE; 3711 } 3712 3713 if ((spa = spa_lookup(pool)) == NULL) { 3714 if (locked) 3715 mutex_exit(&spa_namespace_lock); 3716 return (SET_ERROR(ENOENT)); 3717 } 3718 3719 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3720 zpool_rewind_policy_t policy; 3721 3722 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3723 &policy); 3724 if (policy.zrp_request & ZPOOL_DO_REWIND) 3725 state = SPA_LOAD_RECOVER; 3726 3727 spa_activate(spa, spa_mode_global); 3728 3729 if (state != SPA_LOAD_RECOVER) 3730 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3731 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 3732 3733 zfs_dbgmsg("spa_open_common: opening %s", pool); 3734 error = spa_load_best(spa, state, policy.zrp_txg, 3735 policy.zrp_request); 3736 3737 if (error == EBADF) { 3738 /* 3739 * If vdev_validate() returns failure (indicated by 3740 * EBADF), it indicates that one of the vdevs indicates 3741 * that the pool has been exported or destroyed. If 3742 * this is the case, the config cache is out of sync and 3743 * we should remove the pool from the namespace. 3744 */ 3745 spa_unload(spa); 3746 spa_deactivate(spa); 3747 spa_write_cachefile(spa, B_TRUE, B_TRUE); 3748 spa_remove(spa); 3749 if (locked) 3750 mutex_exit(&spa_namespace_lock); 3751 return (SET_ERROR(ENOENT)); 3752 } 3753 3754 if (error) { 3755 /* 3756 * We can't open the pool, but we still have useful 3757 * information: the state of each vdev after the 3758 * attempted vdev_open(). Return this to the user. 3759 */ 3760 if (config != NULL && spa->spa_config) { 3761 VERIFY(nvlist_dup(spa->spa_config, config, 3762 KM_SLEEP) == 0); 3763 VERIFY(nvlist_add_nvlist(*config, 3764 ZPOOL_CONFIG_LOAD_INFO, 3765 spa->spa_load_info) == 0); 3766 } 3767 spa_unload(spa); 3768 spa_deactivate(spa); 3769 spa->spa_last_open_failed = error; 3770 if (locked) 3771 mutex_exit(&spa_namespace_lock); 3772 *spapp = NULL; 3773 return (error); 3774 } 3775 } 3776 3777 spa_open_ref(spa, tag); 3778 3779 if (config != NULL) 3780 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3781 3782 /* 3783 * If we've recovered the pool, pass back any information we 3784 * gathered while doing the load. 3785 */ 3786 if (state == SPA_LOAD_RECOVER) { 3787 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3788 spa->spa_load_info) == 0); 3789 } 3790 3791 if (locked) { 3792 spa->spa_last_open_failed = 0; 3793 spa->spa_last_ubsync_txg = 0; 3794 spa->spa_load_txg = 0; 3795 mutex_exit(&spa_namespace_lock); 3796 } 3797 3798 *spapp = spa; 3799 3800 return (0); 3801 } 3802 3803 int 3804 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3805 nvlist_t **config) 3806 { 3807 return (spa_open_common(name, spapp, tag, policy, config)); 3808 } 3809 3810 int 3811 spa_open(const char *name, spa_t **spapp, void *tag) 3812 { 3813 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3814 } 3815 3816 /* 3817 * Lookup the given spa_t, incrementing the inject count in the process, 3818 * preventing it from being exported or destroyed. 3819 */ 3820 spa_t * 3821 spa_inject_addref(char *name) 3822 { 3823 spa_t *spa; 3824 3825 mutex_enter(&spa_namespace_lock); 3826 if ((spa = spa_lookup(name)) == NULL) { 3827 mutex_exit(&spa_namespace_lock); 3828 return (NULL); 3829 } 3830 spa->spa_inject_ref++; 3831 mutex_exit(&spa_namespace_lock); 3832 3833 return (spa); 3834 } 3835 3836 void 3837 spa_inject_delref(spa_t *spa) 3838 { 3839 mutex_enter(&spa_namespace_lock); 3840 spa->spa_inject_ref--; 3841 mutex_exit(&spa_namespace_lock); 3842 } 3843 3844 /* 3845 * Add spares device information to the nvlist. 3846 */ 3847 static void 3848 spa_add_spares(spa_t *spa, nvlist_t *config) 3849 { 3850 nvlist_t **spares; 3851 uint_t i, nspares; 3852 nvlist_t *nvroot; 3853 uint64_t guid; 3854 vdev_stat_t *vs; 3855 uint_t vsc; 3856 uint64_t pool; 3857 3858 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3859 3860 if (spa->spa_spares.sav_count == 0) 3861 return; 3862 3863 VERIFY(nvlist_lookup_nvlist(config, 3864 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3865 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3866 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3867 if (nspares != 0) { 3868 VERIFY(nvlist_add_nvlist_array(nvroot, 3869 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3870 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3871 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3872 3873 /* 3874 * Go through and find any spares which have since been 3875 * repurposed as an active spare. If this is the case, update 3876 * their status appropriately. 3877 */ 3878 for (i = 0; i < nspares; i++) { 3879 VERIFY(nvlist_lookup_uint64(spares[i], 3880 ZPOOL_CONFIG_GUID, &guid) == 0); 3881 if (spa_spare_exists(guid, &pool, NULL) && 3882 pool != 0ULL) { 3883 VERIFY(nvlist_lookup_uint64_array( 3884 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3885 (uint64_t **)&vs, &vsc) == 0); 3886 vs->vs_state = VDEV_STATE_CANT_OPEN; 3887 vs->vs_aux = VDEV_AUX_SPARED; 3888 } 3889 } 3890 } 3891 } 3892 3893 /* 3894 * Add l2cache device information to the nvlist, including vdev stats. 3895 */ 3896 static void 3897 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3898 { 3899 nvlist_t **l2cache; 3900 uint_t i, j, nl2cache; 3901 nvlist_t *nvroot; 3902 uint64_t guid; 3903 vdev_t *vd; 3904 vdev_stat_t *vs; 3905 uint_t vsc; 3906 3907 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3908 3909 if (spa->spa_l2cache.sav_count == 0) 3910 return; 3911 3912 VERIFY(nvlist_lookup_nvlist(config, 3913 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3914 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3915 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3916 if (nl2cache != 0) { 3917 VERIFY(nvlist_add_nvlist_array(nvroot, 3918 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3919 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3920 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3921 3922 /* 3923 * Update level 2 cache device stats. 3924 */ 3925 3926 for (i = 0; i < nl2cache; i++) { 3927 VERIFY(nvlist_lookup_uint64(l2cache[i], 3928 ZPOOL_CONFIG_GUID, &guid) == 0); 3929 3930 vd = NULL; 3931 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3932 if (guid == 3933 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3934 vd = spa->spa_l2cache.sav_vdevs[j]; 3935 break; 3936 } 3937 } 3938 ASSERT(vd != NULL); 3939 3940 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3941 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3942 == 0); 3943 vdev_get_stats(vd, vs); 3944 } 3945 } 3946 } 3947 3948 static void 3949 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3950 { 3951 nvlist_t *features; 3952 zap_cursor_t zc; 3953 zap_attribute_t za; 3954 3955 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3956 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3957 3958 if (spa->spa_feat_for_read_obj != 0) { 3959 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3960 spa->spa_feat_for_read_obj); 3961 zap_cursor_retrieve(&zc, &za) == 0; 3962 zap_cursor_advance(&zc)) { 3963 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3964 za.za_num_integers == 1); 3965 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3966 za.za_first_integer)); 3967 } 3968 zap_cursor_fini(&zc); 3969 } 3970 3971 if (spa->spa_feat_for_write_obj != 0) { 3972 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3973 spa->spa_feat_for_write_obj); 3974 zap_cursor_retrieve(&zc, &za) == 0; 3975 zap_cursor_advance(&zc)) { 3976 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3977 za.za_num_integers == 1); 3978 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3979 za.za_first_integer)); 3980 } 3981 zap_cursor_fini(&zc); 3982 } 3983 3984 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3985 features) == 0); 3986 nvlist_free(features); 3987 } 3988 3989 int 3990 spa_get_stats(const char *name, nvlist_t **config, 3991 char *altroot, size_t buflen) 3992 { 3993 int error; 3994 spa_t *spa; 3995 3996 *config = NULL; 3997 error = spa_open_common(name, &spa, FTAG, NULL, config); 3998 3999 if (spa != NULL) { 4000 /* 4001 * This still leaves a window of inconsistency where the spares 4002 * or l2cache devices could change and the config would be 4003 * self-inconsistent. 4004 */ 4005 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4006 4007 if (*config != NULL) { 4008 uint64_t loadtimes[2]; 4009 4010 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4011 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4012 VERIFY(nvlist_add_uint64_array(*config, 4013 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4014 4015 VERIFY(nvlist_add_uint64(*config, 4016 ZPOOL_CONFIG_ERRCOUNT, 4017 spa_get_errlog_size(spa)) == 0); 4018 4019 if (spa_suspended(spa)) 4020 VERIFY(nvlist_add_uint64(*config, 4021 ZPOOL_CONFIG_SUSPENDED, 4022 spa->spa_failmode) == 0); 4023 4024 spa_add_spares(spa, *config); 4025 spa_add_l2cache(spa, *config); 4026 spa_add_feature_stats(spa, *config); 4027 } 4028 } 4029 4030 /* 4031 * We want to get the alternate root even for faulted pools, so we cheat 4032 * and call spa_lookup() directly. 4033 */ 4034 if (altroot) { 4035 if (spa == NULL) { 4036 mutex_enter(&spa_namespace_lock); 4037 spa = spa_lookup(name); 4038 if (spa) 4039 spa_altroot(spa, altroot, buflen); 4040 else 4041 altroot[0] = '\0'; 4042 spa = NULL; 4043 mutex_exit(&spa_namespace_lock); 4044 } else { 4045 spa_altroot(spa, altroot, buflen); 4046 } 4047 } 4048 4049 if (spa != NULL) { 4050 spa_config_exit(spa, SCL_CONFIG, FTAG); 4051 spa_close(spa, FTAG); 4052 } 4053 4054 return (error); 4055 } 4056 4057 /* 4058 * Validate that the auxiliary device array is well formed. We must have an 4059 * array of nvlists, each which describes a valid leaf vdev. If this is an 4060 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4061 * specified, as long as they are well-formed. 4062 */ 4063 static int 4064 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4065 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4066 vdev_labeltype_t label) 4067 { 4068 nvlist_t **dev; 4069 uint_t i, ndev; 4070 vdev_t *vd; 4071 int error; 4072 4073 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4074 4075 /* 4076 * It's acceptable to have no devs specified. 4077 */ 4078 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4079 return (0); 4080 4081 if (ndev == 0) 4082 return (SET_ERROR(EINVAL)); 4083 4084 /* 4085 * Make sure the pool is formatted with a version that supports this 4086 * device type. 4087 */ 4088 if (spa_version(spa) < version) 4089 return (SET_ERROR(ENOTSUP)); 4090 4091 /* 4092 * Set the pending device list so we correctly handle device in-use 4093 * checking. 4094 */ 4095 sav->sav_pending = dev; 4096 sav->sav_npending = ndev; 4097 4098 for (i = 0; i < ndev; i++) { 4099 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4100 mode)) != 0) 4101 goto out; 4102 4103 if (!vd->vdev_ops->vdev_op_leaf) { 4104 vdev_free(vd); 4105 error = SET_ERROR(EINVAL); 4106 goto out; 4107 } 4108 4109 /* 4110 * The L2ARC currently only supports disk devices in 4111 * kernel context. For user-level testing, we allow it. 4112 */ 4113 #ifdef _KERNEL 4114 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 4115 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 4116 error = SET_ERROR(ENOTBLK); 4117 vdev_free(vd); 4118 goto out; 4119 } 4120 #endif 4121 vd->vdev_top = vd; 4122 4123 if ((error = vdev_open(vd)) == 0 && 4124 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4125 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4126 vd->vdev_guid) == 0); 4127 } 4128 4129 vdev_free(vd); 4130 4131 if (error && 4132 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4133 goto out; 4134 else 4135 error = 0; 4136 } 4137 4138 out: 4139 sav->sav_pending = NULL; 4140 sav->sav_npending = 0; 4141 return (error); 4142 } 4143 4144 static int 4145 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4146 { 4147 int error; 4148 4149 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4150 4151 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4152 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4153 VDEV_LABEL_SPARE)) != 0) { 4154 return (error); 4155 } 4156 4157 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4158 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4159 VDEV_LABEL_L2CACHE)); 4160 } 4161 4162 static void 4163 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4164 const char *config) 4165 { 4166 int i; 4167 4168 if (sav->sav_config != NULL) { 4169 nvlist_t **olddevs; 4170 uint_t oldndevs; 4171 nvlist_t **newdevs; 4172 4173 /* 4174 * Generate new dev list by concatentating with the 4175 * current dev list. 4176 */ 4177 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 4178 &olddevs, &oldndevs) == 0); 4179 4180 newdevs = kmem_alloc(sizeof (void *) * 4181 (ndevs + oldndevs), KM_SLEEP); 4182 for (i = 0; i < oldndevs; i++) 4183 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 4184 KM_SLEEP) == 0); 4185 for (i = 0; i < ndevs; i++) 4186 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 4187 KM_SLEEP) == 0); 4188 4189 VERIFY(nvlist_remove(sav->sav_config, config, 4190 DATA_TYPE_NVLIST_ARRAY) == 0); 4191 4192 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 4193 config, newdevs, ndevs + oldndevs) == 0); 4194 for (i = 0; i < oldndevs + ndevs; i++) 4195 nvlist_free(newdevs[i]); 4196 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 4197 } else { 4198 /* 4199 * Generate a new dev list. 4200 */ 4201 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 4202 KM_SLEEP) == 0); 4203 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 4204 devs, ndevs) == 0); 4205 } 4206 } 4207 4208 /* 4209 * Stop and drop level 2 ARC devices 4210 */ 4211 void 4212 spa_l2cache_drop(spa_t *spa) 4213 { 4214 vdev_t *vd; 4215 int i; 4216 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4217 4218 for (i = 0; i < sav->sav_count; i++) { 4219 uint64_t pool; 4220 4221 vd = sav->sav_vdevs[i]; 4222 ASSERT(vd != NULL); 4223 4224 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 4225 pool != 0ULL && l2arc_vdev_present(vd)) 4226 l2arc_remove_vdev(vd); 4227 } 4228 } 4229 4230 /* 4231 * Pool Creation 4232 */ 4233 int 4234 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 4235 nvlist_t *zplprops) 4236 { 4237 spa_t *spa; 4238 char *altroot = NULL; 4239 vdev_t *rvd; 4240 dsl_pool_t *dp; 4241 dmu_tx_t *tx; 4242 int error = 0; 4243 uint64_t txg = TXG_INITIAL; 4244 nvlist_t **spares, **l2cache; 4245 uint_t nspares, nl2cache; 4246 uint64_t version, obj; 4247 boolean_t has_features; 4248 4249 /* 4250 * If this pool already exists, return failure. 4251 */ 4252 mutex_enter(&spa_namespace_lock); 4253 if (spa_lookup(pool) != NULL) { 4254 mutex_exit(&spa_namespace_lock); 4255 return (SET_ERROR(EEXIST)); 4256 } 4257 4258 /* 4259 * Allocate a new spa_t structure. 4260 */ 4261 (void) nvlist_lookup_string(props, 4262 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4263 spa = spa_add(pool, NULL, altroot); 4264 spa_activate(spa, spa_mode_global); 4265 4266 if (props && (error = spa_prop_validate(spa, props))) { 4267 spa_deactivate(spa); 4268 spa_remove(spa); 4269 mutex_exit(&spa_namespace_lock); 4270 return (error); 4271 } 4272 4273 has_features = B_FALSE; 4274 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 4275 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 4276 if (zpool_prop_feature(nvpair_name(elem))) 4277 has_features = B_TRUE; 4278 } 4279 4280 if (has_features || nvlist_lookup_uint64(props, 4281 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 4282 version = SPA_VERSION; 4283 } 4284 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 4285 4286 spa->spa_first_txg = txg; 4287 spa->spa_uberblock.ub_txg = txg - 1; 4288 spa->spa_uberblock.ub_version = version; 4289 spa->spa_ubsync = spa->spa_uberblock; 4290 spa->spa_load_state = SPA_LOAD_CREATE; 4291 spa->spa_removing_phys.sr_state = DSS_NONE; 4292 spa->spa_removing_phys.sr_removing_vdev = -1; 4293 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 4294 4295 /* 4296 * Create "The Godfather" zio to hold all async IOs 4297 */ 4298 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 4299 KM_SLEEP); 4300 for (int i = 0; i < max_ncpus; i++) { 4301 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 4302 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 4303 ZIO_FLAG_GODFATHER); 4304 } 4305 4306 /* 4307 * Create the root vdev. 4308 */ 4309 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4310 4311 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 4312 4313 ASSERT(error != 0 || rvd != NULL); 4314 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 4315 4316 if (error == 0 && !zfs_allocatable_devs(nvroot)) 4317 error = SET_ERROR(EINVAL); 4318 4319 if (error == 0 && 4320 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 4321 (error = spa_validate_aux(spa, nvroot, txg, 4322 VDEV_ALLOC_ADD)) == 0) { 4323 for (int c = 0; c < rvd->vdev_children; c++) { 4324 vdev_metaslab_set_size(rvd->vdev_child[c]); 4325 vdev_expand(rvd->vdev_child[c], txg); 4326 } 4327 } 4328 4329 spa_config_exit(spa, SCL_ALL, FTAG); 4330 4331 if (error != 0) { 4332 spa_unload(spa); 4333 spa_deactivate(spa); 4334 spa_remove(spa); 4335 mutex_exit(&spa_namespace_lock); 4336 return (error); 4337 } 4338 4339 /* 4340 * Get the list of spares, if specified. 4341 */ 4342 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4343 &spares, &nspares) == 0) { 4344 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 4345 KM_SLEEP) == 0); 4346 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4347 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4348 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4349 spa_load_spares(spa); 4350 spa_config_exit(spa, SCL_ALL, FTAG); 4351 spa->spa_spares.sav_sync = B_TRUE; 4352 } 4353 4354 /* 4355 * Get the list of level 2 cache devices, if specified. 4356 */ 4357 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4358 &l2cache, &nl2cache) == 0) { 4359 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4360 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4361 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4362 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4363 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4364 spa_load_l2cache(spa); 4365 spa_config_exit(spa, SCL_ALL, FTAG); 4366 spa->spa_l2cache.sav_sync = B_TRUE; 4367 } 4368 4369 spa->spa_is_initializing = B_TRUE; 4370 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 4371 spa->spa_meta_objset = dp->dp_meta_objset; 4372 spa->spa_is_initializing = B_FALSE; 4373 4374 /* 4375 * Create DDTs (dedup tables). 4376 */ 4377 ddt_create(spa); 4378 4379 spa_update_dspace(spa); 4380 4381 tx = dmu_tx_create_assigned(dp, txg); 4382 4383 /* 4384 * Create the pool config object. 4385 */ 4386 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 4387 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 4388 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 4389 4390 if (zap_add(spa->spa_meta_objset, 4391 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 4392 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 4393 cmn_err(CE_PANIC, "failed to add pool config"); 4394 } 4395 4396 if (spa_version(spa) >= SPA_VERSION_FEATURES) 4397 spa_feature_create_zap_objects(spa, tx); 4398 4399 if (zap_add(spa->spa_meta_objset, 4400 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 4401 sizeof (uint64_t), 1, &version, tx) != 0) { 4402 cmn_err(CE_PANIC, "failed to add pool version"); 4403 } 4404 4405 /* Newly created pools with the right version are always deflated. */ 4406 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 4407 spa->spa_deflate = TRUE; 4408 if (zap_add(spa->spa_meta_objset, 4409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4410 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 4411 cmn_err(CE_PANIC, "failed to add deflate"); 4412 } 4413 } 4414 4415 /* 4416 * Create the deferred-free bpobj. Turn off compression 4417 * because sync-to-convergence takes longer if the blocksize 4418 * keeps changing. 4419 */ 4420 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 4421 dmu_object_set_compress(spa->spa_meta_objset, obj, 4422 ZIO_COMPRESS_OFF, tx); 4423 if (zap_add(spa->spa_meta_objset, 4424 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 4425 sizeof (uint64_t), 1, &obj, tx) != 0) { 4426 cmn_err(CE_PANIC, "failed to add bpobj"); 4427 } 4428 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 4429 spa->spa_meta_objset, obj)); 4430 4431 /* 4432 * Create the pool's history object. 4433 */ 4434 if (version >= SPA_VERSION_ZPOOL_HISTORY) 4435 spa_history_create_obj(spa, tx); 4436 4437 /* 4438 * Generate some random noise for salted checksums to operate on. 4439 */ 4440 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4441 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4442 4443 /* 4444 * Set pool properties. 4445 */ 4446 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 4447 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4448 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 4449 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 4450 4451 if (props != NULL) { 4452 spa_configfile_set(spa, props, B_FALSE); 4453 spa_sync_props(props, tx); 4454 } 4455 4456 dmu_tx_commit(tx); 4457 4458 spa->spa_sync_on = B_TRUE; 4459 txg_sync_start(spa->spa_dsl_pool); 4460 4461 /* 4462 * We explicitly wait for the first transaction to complete so that our 4463 * bean counters are appropriately updated. 4464 */ 4465 txg_wait_synced(spa->spa_dsl_pool, txg); 4466 4467 spa_spawn_aux_threads(spa); 4468 4469 spa_write_cachefile(spa, B_FALSE, B_TRUE); 4470 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 4471 4472 spa_history_log_version(spa, "create"); 4473 4474 /* 4475 * Don't count references from objsets that are already closed 4476 * and are making their way through the eviction process. 4477 */ 4478 spa_evicting_os_wait(spa); 4479 spa->spa_minref = refcount_count(&spa->spa_refcount); 4480 spa->spa_load_state = SPA_LOAD_NONE; 4481 4482 mutex_exit(&spa_namespace_lock); 4483 4484 return (0); 4485 } 4486 4487 #ifdef _KERNEL 4488 /* 4489 * Get the root pool information from the root disk, then import the root pool 4490 * during the system boot up time. 4491 */ 4492 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 4493 4494 static nvlist_t * 4495 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 4496 { 4497 nvlist_t *config; 4498 nvlist_t *nvtop, *nvroot; 4499 uint64_t pgid; 4500 4501 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 4502 return (NULL); 4503 4504 /* 4505 * Add this top-level vdev to the child array. 4506 */ 4507 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4508 &nvtop) == 0); 4509 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4510 &pgid) == 0); 4511 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 4512 4513 /* 4514 * Put this pool's top-level vdevs into a root vdev. 4515 */ 4516 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4517 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 4518 VDEV_TYPE_ROOT) == 0); 4519 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 4520 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 4521 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 4522 &nvtop, 1) == 0); 4523 4524 /* 4525 * Replace the existing vdev_tree with the new root vdev in 4526 * this pool's configuration (remove the old, add the new). 4527 */ 4528 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 4529 nvlist_free(nvroot); 4530 return (config); 4531 } 4532 4533 /* 4534 * Walk the vdev tree and see if we can find a device with "better" 4535 * configuration. A configuration is "better" if the label on that 4536 * device has a more recent txg. 4537 */ 4538 static void 4539 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 4540 { 4541 for (int c = 0; c < vd->vdev_children; c++) 4542 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 4543 4544 if (vd->vdev_ops->vdev_op_leaf) { 4545 nvlist_t *label; 4546 uint64_t label_txg; 4547 4548 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 4549 &label) != 0) 4550 return; 4551 4552 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 4553 &label_txg) == 0); 4554 4555 /* 4556 * Do we have a better boot device? 4557 */ 4558 if (label_txg > *txg) { 4559 *txg = label_txg; 4560 *avd = vd; 4561 } 4562 nvlist_free(label); 4563 } 4564 } 4565 4566 /* 4567 * Import a root pool. 4568 * 4569 * For x86. devpath_list will consist of devid and/or physpath name of 4570 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 4571 * The GRUB "findroot" command will return the vdev we should boot. 4572 * 4573 * For Sparc, devpath_list consists the physpath name of the booting device 4574 * no matter the rootpool is a single device pool or a mirrored pool. 4575 * e.g. 4576 * "/pci@1f,0/ide@d/disk@0,0:a" 4577 */ 4578 int 4579 spa_import_rootpool(char *devpath, char *devid) 4580 { 4581 spa_t *spa; 4582 vdev_t *rvd, *bvd, *avd = NULL; 4583 nvlist_t *config, *nvtop; 4584 uint64_t guid, txg; 4585 char *pname; 4586 int error; 4587 4588 /* 4589 * Read the label from the boot device and generate a configuration. 4590 */ 4591 config = spa_generate_rootconf(devpath, devid, &guid); 4592 #if defined(_OBP) && defined(_KERNEL) 4593 if (config == NULL) { 4594 if (strstr(devpath, "/iscsi/ssd") != NULL) { 4595 /* iscsi boot */ 4596 get_iscsi_bootpath_phy(devpath); 4597 config = spa_generate_rootconf(devpath, devid, &guid); 4598 } 4599 } 4600 #endif 4601 if (config == NULL) { 4602 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 4603 devpath); 4604 return (SET_ERROR(EIO)); 4605 } 4606 4607 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 4608 &pname) == 0); 4609 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 4610 4611 mutex_enter(&spa_namespace_lock); 4612 if ((spa = spa_lookup(pname)) != NULL) { 4613 /* 4614 * Remove the existing root pool from the namespace so that we 4615 * can replace it with the correct config we just read in. 4616 */ 4617 spa_remove(spa); 4618 } 4619 4620 spa = spa_add(pname, config, NULL); 4621 spa->spa_is_root = B_TRUE; 4622 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 4623 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 4624 &spa->spa_ubsync.ub_version) != 0) 4625 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 4626 4627 /* 4628 * Build up a vdev tree based on the boot device's label config. 4629 */ 4630 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4631 &nvtop) == 0); 4632 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4633 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 4634 VDEV_ALLOC_ROOTPOOL); 4635 spa_config_exit(spa, SCL_ALL, FTAG); 4636 if (error) { 4637 mutex_exit(&spa_namespace_lock); 4638 nvlist_free(config); 4639 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 4640 pname); 4641 return (error); 4642 } 4643 4644 /* 4645 * Get the boot vdev. 4646 */ 4647 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4648 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4649 (u_longlong_t)guid); 4650 error = SET_ERROR(ENOENT); 4651 goto out; 4652 } 4653 4654 /* 4655 * Determine if there is a better boot device. 4656 */ 4657 avd = bvd; 4658 spa_alt_rootvdev(rvd, &avd, &txg); 4659 if (avd != bvd) { 4660 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4661 "try booting from '%s'", avd->vdev_path); 4662 error = SET_ERROR(EINVAL); 4663 goto out; 4664 } 4665 4666 /* 4667 * If the boot device is part of a spare vdev then ensure that 4668 * we're booting off the active spare. 4669 */ 4670 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4671 !bvd->vdev_isspare) { 4672 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4673 "try booting from '%s'", 4674 bvd->vdev_parent-> 4675 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4676 error = SET_ERROR(EINVAL); 4677 goto out; 4678 } 4679 4680 error = 0; 4681 out: 4682 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4683 vdev_free(rvd); 4684 spa_config_exit(spa, SCL_ALL, FTAG); 4685 mutex_exit(&spa_namespace_lock); 4686 4687 nvlist_free(config); 4688 return (error); 4689 } 4690 4691 #endif 4692 4693 /* 4694 * Import a non-root pool into the system. 4695 */ 4696 int 4697 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4698 { 4699 spa_t *spa; 4700 char *altroot = NULL; 4701 spa_load_state_t state = SPA_LOAD_IMPORT; 4702 zpool_rewind_policy_t policy; 4703 uint64_t mode = spa_mode_global; 4704 uint64_t readonly = B_FALSE; 4705 int error; 4706 nvlist_t *nvroot; 4707 nvlist_t **spares, **l2cache; 4708 uint_t nspares, nl2cache; 4709 4710 /* 4711 * If a pool with this name exists, return failure. 4712 */ 4713 mutex_enter(&spa_namespace_lock); 4714 if (spa_lookup(pool) != NULL) { 4715 mutex_exit(&spa_namespace_lock); 4716 return (SET_ERROR(EEXIST)); 4717 } 4718 4719 /* 4720 * Create and initialize the spa structure. 4721 */ 4722 (void) nvlist_lookup_string(props, 4723 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4724 (void) nvlist_lookup_uint64(props, 4725 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4726 if (readonly) 4727 mode = FREAD; 4728 spa = spa_add(pool, config, altroot); 4729 spa->spa_import_flags = flags; 4730 4731 /* 4732 * Verbatim import - Take a pool and insert it into the namespace 4733 * as if it had been loaded at boot. 4734 */ 4735 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4736 if (props != NULL) 4737 spa_configfile_set(spa, props, B_FALSE); 4738 4739 spa_write_cachefile(spa, B_FALSE, B_TRUE); 4740 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 4741 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 4742 mutex_exit(&spa_namespace_lock); 4743 return (0); 4744 } 4745 4746 spa_activate(spa, mode); 4747 4748 /* 4749 * Don't start async tasks until we know everything is healthy. 4750 */ 4751 spa_async_suspend(spa); 4752 4753 zpool_get_rewind_policy(config, &policy); 4754 if (policy.zrp_request & ZPOOL_DO_REWIND) 4755 state = SPA_LOAD_RECOVER; 4756 4757 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 4758 4759 if (state != SPA_LOAD_RECOVER) { 4760 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4761 zfs_dbgmsg("spa_import: importing %s", pool); 4762 } else { 4763 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 4764 "(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg); 4765 } 4766 error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request); 4767 4768 /* 4769 * Propagate anything learned while loading the pool and pass it 4770 * back to caller (i.e. rewind info, missing devices, etc). 4771 */ 4772 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4773 spa->spa_load_info) == 0); 4774 4775 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4776 /* 4777 * Toss any existing sparelist, as it doesn't have any validity 4778 * anymore, and conflicts with spa_has_spare(). 4779 */ 4780 if (spa->spa_spares.sav_config) { 4781 nvlist_free(spa->spa_spares.sav_config); 4782 spa->spa_spares.sav_config = NULL; 4783 spa_load_spares(spa); 4784 } 4785 if (spa->spa_l2cache.sav_config) { 4786 nvlist_free(spa->spa_l2cache.sav_config); 4787 spa->spa_l2cache.sav_config = NULL; 4788 spa_load_l2cache(spa); 4789 } 4790 4791 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4792 &nvroot) == 0); 4793 if (error == 0) 4794 error = spa_validate_aux(spa, nvroot, -1ULL, 4795 VDEV_ALLOC_SPARE); 4796 if (error == 0) 4797 error = spa_validate_aux(spa, nvroot, -1ULL, 4798 VDEV_ALLOC_L2CACHE); 4799 spa_config_exit(spa, SCL_ALL, FTAG); 4800 4801 if (props != NULL) 4802 spa_configfile_set(spa, props, B_FALSE); 4803 4804 if (error != 0 || (props && spa_writeable(spa) && 4805 (error = spa_prop_set(spa, props)))) { 4806 spa_unload(spa); 4807 spa_deactivate(spa); 4808 spa_remove(spa); 4809 mutex_exit(&spa_namespace_lock); 4810 return (error); 4811 } 4812 4813 spa_async_resume(spa); 4814 4815 /* 4816 * Override any spares and level 2 cache devices as specified by 4817 * the user, as these may have correct device names/devids, etc. 4818 */ 4819 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4820 &spares, &nspares) == 0) { 4821 if (spa->spa_spares.sav_config) 4822 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4823 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4824 else 4825 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4826 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4827 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4828 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4829 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4830 spa_load_spares(spa); 4831 spa_config_exit(spa, SCL_ALL, FTAG); 4832 spa->spa_spares.sav_sync = B_TRUE; 4833 } 4834 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4835 &l2cache, &nl2cache) == 0) { 4836 if (spa->spa_l2cache.sav_config) 4837 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4838 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4839 else 4840 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4841 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4842 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4843 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4844 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4845 spa_load_l2cache(spa); 4846 spa_config_exit(spa, SCL_ALL, FTAG); 4847 spa->spa_l2cache.sav_sync = B_TRUE; 4848 } 4849 4850 /* 4851 * Check for any removed devices. 4852 */ 4853 if (spa->spa_autoreplace) { 4854 spa_aux_check_removed(&spa->spa_spares); 4855 spa_aux_check_removed(&spa->spa_l2cache); 4856 } 4857 4858 if (spa_writeable(spa)) { 4859 /* 4860 * Update the config cache to include the newly-imported pool. 4861 */ 4862 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4863 } 4864 4865 /* 4866 * It's possible that the pool was expanded while it was exported. 4867 * We kick off an async task to handle this for us. 4868 */ 4869 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4870 4871 spa_history_log_version(spa, "import"); 4872 4873 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 4874 4875 mutex_exit(&spa_namespace_lock); 4876 4877 return (0); 4878 } 4879 4880 nvlist_t * 4881 spa_tryimport(nvlist_t *tryconfig) 4882 { 4883 nvlist_t *config = NULL; 4884 char *poolname, *cachefile; 4885 spa_t *spa; 4886 uint64_t state; 4887 int error; 4888 zpool_rewind_policy_t policy; 4889 4890 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4891 return (NULL); 4892 4893 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4894 return (NULL); 4895 4896 /* 4897 * Create and initialize the spa structure. 4898 */ 4899 mutex_enter(&spa_namespace_lock); 4900 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4901 spa_activate(spa, FREAD); 4902 4903 /* 4904 * Rewind pool if a max txg was provided. Note that even though we 4905 * retrieve the complete rewind policy, only the rewind txg is relevant 4906 * for tryimport. 4907 */ 4908 zpool_get_rewind_policy(spa->spa_config, &policy); 4909 if (policy.zrp_txg != UINT64_MAX) { 4910 spa->spa_load_max_txg = policy.zrp_txg; 4911 spa->spa_extreme_rewind = B_TRUE; 4912 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 4913 poolname, (longlong_t)policy.zrp_txg); 4914 } else { 4915 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 4916 } 4917 4918 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 4919 == 0) { 4920 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 4921 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4922 } else { 4923 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 4924 } 4925 4926 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 4927 4928 /* 4929 * If 'tryconfig' was at least parsable, return the current config. 4930 */ 4931 if (spa->spa_root_vdev != NULL) { 4932 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4933 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4934 poolname) == 0); 4935 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4936 state) == 0); 4937 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4938 spa->spa_uberblock.ub_timestamp) == 0); 4939 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4940 spa->spa_load_info) == 0); 4941 4942 /* 4943 * If the bootfs property exists on this pool then we 4944 * copy it out so that external consumers can tell which 4945 * pools are bootable. 4946 */ 4947 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4948 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4949 4950 /* 4951 * We have to play games with the name since the 4952 * pool was opened as TRYIMPORT_NAME. 4953 */ 4954 if (dsl_dsobj_to_dsname(spa_name(spa), 4955 spa->spa_bootfs, tmpname) == 0) { 4956 char *cp; 4957 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4958 4959 cp = strchr(tmpname, '/'); 4960 if (cp == NULL) { 4961 (void) strlcpy(dsname, tmpname, 4962 MAXPATHLEN); 4963 } else { 4964 (void) snprintf(dsname, MAXPATHLEN, 4965 "%s/%s", poolname, ++cp); 4966 } 4967 VERIFY(nvlist_add_string(config, 4968 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4969 kmem_free(dsname, MAXPATHLEN); 4970 } 4971 kmem_free(tmpname, MAXPATHLEN); 4972 } 4973 4974 /* 4975 * Add the list of hot spares and level 2 cache devices. 4976 */ 4977 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4978 spa_add_spares(spa, config); 4979 spa_add_l2cache(spa, config); 4980 spa_config_exit(spa, SCL_CONFIG, FTAG); 4981 } 4982 4983 spa_unload(spa); 4984 spa_deactivate(spa); 4985 spa_remove(spa); 4986 mutex_exit(&spa_namespace_lock); 4987 4988 return (config); 4989 } 4990 4991 /* 4992 * Pool export/destroy 4993 * 4994 * The act of destroying or exporting a pool is very simple. We make sure there 4995 * is no more pending I/O and any references to the pool are gone. Then, we 4996 * update the pool state and sync all the labels to disk, removing the 4997 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4998 * we don't sync the labels or remove the configuration cache. 4999 */ 5000 static int 5001 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5002 boolean_t force, boolean_t hardforce) 5003 { 5004 spa_t *spa; 5005 5006 if (oldconfig) 5007 *oldconfig = NULL; 5008 5009 if (!(spa_mode_global & FWRITE)) 5010 return (SET_ERROR(EROFS)); 5011 5012 mutex_enter(&spa_namespace_lock); 5013 if ((spa = spa_lookup(pool)) == NULL) { 5014 mutex_exit(&spa_namespace_lock); 5015 return (SET_ERROR(ENOENT)); 5016 } 5017 5018 /* 5019 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5020 * reacquire the namespace lock, and see if we can export. 5021 */ 5022 spa_open_ref(spa, FTAG); 5023 mutex_exit(&spa_namespace_lock); 5024 spa_async_suspend(spa); 5025 mutex_enter(&spa_namespace_lock); 5026 spa_close(spa, FTAG); 5027 5028 /* 5029 * The pool will be in core if it's openable, 5030 * in which case we can modify its state. 5031 */ 5032 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5033 /* 5034 * Objsets may be open only because they're dirty, so we 5035 * have to force it to sync before checking spa_refcnt. 5036 */ 5037 txg_wait_synced(spa->spa_dsl_pool, 0); 5038 spa_evicting_os_wait(spa); 5039 5040 /* 5041 * A pool cannot be exported or destroyed if there are active 5042 * references. If we are resetting a pool, allow references by 5043 * fault injection handlers. 5044 */ 5045 if (!spa_refcount_zero(spa) || 5046 (spa->spa_inject_ref != 0 && 5047 new_state != POOL_STATE_UNINITIALIZED)) { 5048 spa_async_resume(spa); 5049 mutex_exit(&spa_namespace_lock); 5050 return (SET_ERROR(EBUSY)); 5051 } 5052 5053 /* 5054 * A pool cannot be exported if it has an active shared spare. 5055 * This is to prevent other pools stealing the active spare 5056 * from an exported pool. At user's own will, such pool can 5057 * be forcedly exported. 5058 */ 5059 if (!force && new_state == POOL_STATE_EXPORTED && 5060 spa_has_active_shared_spare(spa)) { 5061 spa_async_resume(spa); 5062 mutex_exit(&spa_namespace_lock); 5063 return (SET_ERROR(EXDEV)); 5064 } 5065 5066 /* 5067 * We want this to be reflected on every label, 5068 * so mark them all dirty. spa_unload() will do the 5069 * final sync that pushes these changes out. 5070 */ 5071 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 5072 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5073 spa->spa_state = new_state; 5074 spa->spa_final_txg = spa_last_synced_txg(spa) + 5075 TXG_DEFER_SIZE + 1; 5076 vdev_config_dirty(spa->spa_root_vdev); 5077 spa_config_exit(spa, SCL_ALL, FTAG); 5078 } 5079 } 5080 5081 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 5082 5083 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5084 spa_unload(spa); 5085 spa_deactivate(spa); 5086 } 5087 5088 if (oldconfig && spa->spa_config) 5089 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 5090 5091 if (new_state != POOL_STATE_UNINITIALIZED) { 5092 if (!hardforce) 5093 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5094 spa_remove(spa); 5095 } 5096 mutex_exit(&spa_namespace_lock); 5097 5098 return (0); 5099 } 5100 5101 /* 5102 * Destroy a storage pool. 5103 */ 5104 int 5105 spa_destroy(char *pool) 5106 { 5107 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 5108 B_FALSE, B_FALSE)); 5109 } 5110 5111 /* 5112 * Export a storage pool. 5113 */ 5114 int 5115 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 5116 boolean_t hardforce) 5117 { 5118 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 5119 force, hardforce)); 5120 } 5121 5122 /* 5123 * Similar to spa_export(), this unloads the spa_t without actually removing it 5124 * from the namespace in any way. 5125 */ 5126 int 5127 spa_reset(char *pool) 5128 { 5129 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 5130 B_FALSE, B_FALSE)); 5131 } 5132 5133 /* 5134 * ========================================================================== 5135 * Device manipulation 5136 * ========================================================================== 5137 */ 5138 5139 /* 5140 * Add a device to a storage pool. 5141 */ 5142 int 5143 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 5144 { 5145 uint64_t txg, id; 5146 int error; 5147 vdev_t *rvd = spa->spa_root_vdev; 5148 vdev_t *vd, *tvd; 5149 nvlist_t **spares, **l2cache; 5150 uint_t nspares, nl2cache; 5151 5152 ASSERT(spa_writeable(spa)); 5153 5154 txg = spa_vdev_enter(spa); 5155 5156 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 5157 VDEV_ALLOC_ADD)) != 0) 5158 return (spa_vdev_exit(spa, NULL, txg, error)); 5159 5160 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 5161 5162 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 5163 &nspares) != 0) 5164 nspares = 0; 5165 5166 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 5167 &nl2cache) != 0) 5168 nl2cache = 0; 5169 5170 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 5171 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5172 5173 if (vd->vdev_children != 0 && 5174 (error = vdev_create(vd, txg, B_FALSE)) != 0) 5175 return (spa_vdev_exit(spa, vd, txg, error)); 5176 5177 /* 5178 * We must validate the spares and l2cache devices after checking the 5179 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 5180 */ 5181 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 5182 return (spa_vdev_exit(spa, vd, txg, error)); 5183 5184 /* 5185 * If we are in the middle of a device removal, we can only add 5186 * devices which match the existing devices in the pool. 5187 * If we are in the middle of a removal, or have some indirect 5188 * vdevs, we can not add raidz toplevels. 5189 */ 5190 if (spa->spa_vdev_removal != NULL || 5191 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 5192 for (int c = 0; c < vd->vdev_children; c++) { 5193 tvd = vd->vdev_child[c]; 5194 if (spa->spa_vdev_removal != NULL && 5195 tvd->vdev_ashift != 5196 spa->spa_vdev_removal->svr_vdev->vdev_ashift) { 5197 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5198 } 5199 /* Fail if top level vdev is raidz */ 5200 if (tvd->vdev_ops == &vdev_raidz_ops) { 5201 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5202 } 5203 /* 5204 * Need the top level mirror to be 5205 * a mirror of leaf vdevs only 5206 */ 5207 if (tvd->vdev_ops == &vdev_mirror_ops) { 5208 for (uint64_t cid = 0; 5209 cid < tvd->vdev_children; cid++) { 5210 vdev_t *cvd = tvd->vdev_child[cid]; 5211 if (!cvd->vdev_ops->vdev_op_leaf) { 5212 return (spa_vdev_exit(spa, vd, 5213 txg, EINVAL)); 5214 } 5215 } 5216 } 5217 } 5218 } 5219 5220 for (int c = 0; c < vd->vdev_children; c++) { 5221 5222 /* 5223 * Set the vdev id to the first hole, if one exists. 5224 */ 5225 for (id = 0; id < rvd->vdev_children; id++) { 5226 if (rvd->vdev_child[id]->vdev_ishole) { 5227 vdev_free(rvd->vdev_child[id]); 5228 break; 5229 } 5230 } 5231 tvd = vd->vdev_child[c]; 5232 vdev_remove_child(vd, tvd); 5233 tvd->vdev_id = id; 5234 vdev_add_child(rvd, tvd); 5235 vdev_config_dirty(tvd); 5236 } 5237 5238 if (nspares != 0) { 5239 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 5240 ZPOOL_CONFIG_SPARES); 5241 spa_load_spares(spa); 5242 spa->spa_spares.sav_sync = B_TRUE; 5243 } 5244 5245 if (nl2cache != 0) { 5246 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 5247 ZPOOL_CONFIG_L2CACHE); 5248 spa_load_l2cache(spa); 5249 spa->spa_l2cache.sav_sync = B_TRUE; 5250 } 5251 5252 /* 5253 * We have to be careful when adding new vdevs to an existing pool. 5254 * If other threads start allocating from these vdevs before we 5255 * sync the config cache, and we lose power, then upon reboot we may 5256 * fail to open the pool because there are DVAs that the config cache 5257 * can't translate. Therefore, we first add the vdevs without 5258 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 5259 * and then let spa_config_update() initialize the new metaslabs. 5260 * 5261 * spa_load() checks for added-but-not-initialized vdevs, so that 5262 * if we lose power at any point in this sequence, the remaining 5263 * steps will be completed the next time we load the pool. 5264 */ 5265 (void) spa_vdev_exit(spa, vd, txg, 0); 5266 5267 mutex_enter(&spa_namespace_lock); 5268 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5269 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 5270 mutex_exit(&spa_namespace_lock); 5271 5272 return (0); 5273 } 5274 5275 /* 5276 * Attach a device to a mirror. The arguments are the path to any device 5277 * in the mirror, and the nvroot for the new device. If the path specifies 5278 * a device that is not mirrored, we automatically insert the mirror vdev. 5279 * 5280 * If 'replacing' is specified, the new device is intended to replace the 5281 * existing device; in this case the two devices are made into their own 5282 * mirror using the 'replacing' vdev, which is functionally identical to 5283 * the mirror vdev (it actually reuses all the same ops) but has a few 5284 * extra rules: you can't attach to it after it's been created, and upon 5285 * completion of resilvering, the first disk (the one being replaced) 5286 * is automatically detached. 5287 */ 5288 int 5289 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 5290 { 5291 uint64_t txg, dtl_max_txg; 5292 vdev_t *rvd = spa->spa_root_vdev; 5293 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 5294 vdev_ops_t *pvops; 5295 char *oldvdpath, *newvdpath; 5296 int newvd_isspare; 5297 int error; 5298 5299 ASSERT(spa_writeable(spa)); 5300 5301 txg = spa_vdev_enter(spa); 5302 5303 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 5304 5305 if (spa->spa_vdev_removal != NULL || 5306 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 5307 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5308 } 5309 5310 if (oldvd == NULL) 5311 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5312 5313 if (!oldvd->vdev_ops->vdev_op_leaf) 5314 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5315 5316 pvd = oldvd->vdev_parent; 5317 5318 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 5319 VDEV_ALLOC_ATTACH)) != 0) 5320 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5321 5322 if (newrootvd->vdev_children != 1) 5323 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5324 5325 newvd = newrootvd->vdev_child[0]; 5326 5327 if (!newvd->vdev_ops->vdev_op_leaf) 5328 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5329 5330 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 5331 return (spa_vdev_exit(spa, newrootvd, txg, error)); 5332 5333 /* 5334 * Spares can't replace logs 5335 */ 5336 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 5337 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5338 5339 if (!replacing) { 5340 /* 5341 * For attach, the only allowable parent is a mirror or the root 5342 * vdev. 5343 */ 5344 if (pvd->vdev_ops != &vdev_mirror_ops && 5345 pvd->vdev_ops != &vdev_root_ops) 5346 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5347 5348 pvops = &vdev_mirror_ops; 5349 } else { 5350 /* 5351 * Active hot spares can only be replaced by inactive hot 5352 * spares. 5353 */ 5354 if (pvd->vdev_ops == &vdev_spare_ops && 5355 oldvd->vdev_isspare && 5356 !spa_has_spare(spa, newvd->vdev_guid)) 5357 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5358 5359 /* 5360 * If the source is a hot spare, and the parent isn't already a 5361 * spare, then we want to create a new hot spare. Otherwise, we 5362 * want to create a replacing vdev. The user is not allowed to 5363 * attach to a spared vdev child unless the 'isspare' state is 5364 * the same (spare replaces spare, non-spare replaces 5365 * non-spare). 5366 */ 5367 if (pvd->vdev_ops == &vdev_replacing_ops && 5368 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 5369 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5370 } else if (pvd->vdev_ops == &vdev_spare_ops && 5371 newvd->vdev_isspare != oldvd->vdev_isspare) { 5372 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5373 } 5374 5375 if (newvd->vdev_isspare) 5376 pvops = &vdev_spare_ops; 5377 else 5378 pvops = &vdev_replacing_ops; 5379 } 5380 5381 /* 5382 * Make sure the new device is big enough. 5383 */ 5384 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 5385 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 5386 5387 /* 5388 * The new device cannot have a higher alignment requirement 5389 * than the top-level vdev. 5390 */ 5391 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 5392 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 5393 5394 /* 5395 * If this is an in-place replacement, update oldvd's path and devid 5396 * to make it distinguishable from newvd, and unopenable from now on. 5397 */ 5398 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 5399 spa_strfree(oldvd->vdev_path); 5400 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 5401 KM_SLEEP); 5402 (void) sprintf(oldvd->vdev_path, "%s/%s", 5403 newvd->vdev_path, "old"); 5404 if (oldvd->vdev_devid != NULL) { 5405 spa_strfree(oldvd->vdev_devid); 5406 oldvd->vdev_devid = NULL; 5407 } 5408 } 5409 5410 /* mark the device being resilvered */ 5411 newvd->vdev_resilver_txg = txg; 5412 5413 /* 5414 * If the parent is not a mirror, or if we're replacing, insert the new 5415 * mirror/replacing/spare vdev above oldvd. 5416 */ 5417 if (pvd->vdev_ops != pvops) 5418 pvd = vdev_add_parent(oldvd, pvops); 5419 5420 ASSERT(pvd->vdev_top->vdev_parent == rvd); 5421 ASSERT(pvd->vdev_ops == pvops); 5422 ASSERT(oldvd->vdev_parent == pvd); 5423 5424 /* 5425 * Extract the new device from its root and add it to pvd. 5426 */ 5427 vdev_remove_child(newrootvd, newvd); 5428 newvd->vdev_id = pvd->vdev_children; 5429 newvd->vdev_crtxg = oldvd->vdev_crtxg; 5430 vdev_add_child(pvd, newvd); 5431 5432 tvd = newvd->vdev_top; 5433 ASSERT(pvd->vdev_top == tvd); 5434 ASSERT(tvd->vdev_parent == rvd); 5435 5436 vdev_config_dirty(tvd); 5437 5438 /* 5439 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 5440 * for any dmu_sync-ed blocks. It will propagate upward when 5441 * spa_vdev_exit() calls vdev_dtl_reassess(). 5442 */ 5443 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 5444 5445 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 5446 dtl_max_txg - TXG_INITIAL); 5447 5448 if (newvd->vdev_isspare) { 5449 spa_spare_activate(newvd); 5450 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 5451 } 5452 5453 oldvdpath = spa_strdup(oldvd->vdev_path); 5454 newvdpath = spa_strdup(newvd->vdev_path); 5455 newvd_isspare = newvd->vdev_isspare; 5456 5457 /* 5458 * Mark newvd's DTL dirty in this txg. 5459 */ 5460 vdev_dirty(tvd, VDD_DTL, newvd, txg); 5461 5462 /* 5463 * Schedule the resilver to restart in the future. We do this to 5464 * ensure that dmu_sync-ed blocks have been stitched into the 5465 * respective datasets. 5466 */ 5467 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 5468 5469 if (spa->spa_bootfs) 5470 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 5471 5472 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 5473 5474 /* 5475 * Commit the config 5476 */ 5477 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 5478 5479 spa_history_log_internal(spa, "vdev attach", NULL, 5480 "%s vdev=%s %s vdev=%s", 5481 replacing && newvd_isspare ? "spare in" : 5482 replacing ? "replace" : "attach", newvdpath, 5483 replacing ? "for" : "to", oldvdpath); 5484 5485 spa_strfree(oldvdpath); 5486 spa_strfree(newvdpath); 5487 5488 return (0); 5489 } 5490 5491 /* 5492 * Detach a device from a mirror or replacing vdev. 5493 * 5494 * If 'replace_done' is specified, only detach if the parent 5495 * is a replacing vdev. 5496 */ 5497 int 5498 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 5499 { 5500 uint64_t txg; 5501 int error; 5502 vdev_t *rvd = spa->spa_root_vdev; 5503 vdev_t *vd, *pvd, *cvd, *tvd; 5504 boolean_t unspare = B_FALSE; 5505 uint64_t unspare_guid = 0; 5506 char *vdpath; 5507 5508 ASSERT(spa_writeable(spa)); 5509 5510 txg = spa_vdev_enter(spa); 5511 5512 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5513 5514 if (vd == NULL) 5515 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5516 5517 if (!vd->vdev_ops->vdev_op_leaf) 5518 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5519 5520 pvd = vd->vdev_parent; 5521 5522 /* 5523 * If the parent/child relationship is not as expected, don't do it. 5524 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 5525 * vdev that's replacing B with C. The user's intent in replacing 5526 * is to go from M(A,B) to M(A,C). If the user decides to cancel 5527 * the replace by detaching C, the expected behavior is to end up 5528 * M(A,B). But suppose that right after deciding to detach C, 5529 * the replacement of B completes. We would have M(A,C), and then 5530 * ask to detach C, which would leave us with just A -- not what 5531 * the user wanted. To prevent this, we make sure that the 5532 * parent/child relationship hasn't changed -- in this example, 5533 * that C's parent is still the replacing vdev R. 5534 */ 5535 if (pvd->vdev_guid != pguid && pguid != 0) 5536 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5537 5538 /* 5539 * Only 'replacing' or 'spare' vdevs can be replaced. 5540 */ 5541 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 5542 pvd->vdev_ops != &vdev_spare_ops) 5543 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5544 5545 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 5546 spa_version(spa) >= SPA_VERSION_SPARES); 5547 5548 /* 5549 * Only mirror, replacing, and spare vdevs support detach. 5550 */ 5551 if (pvd->vdev_ops != &vdev_replacing_ops && 5552 pvd->vdev_ops != &vdev_mirror_ops && 5553 pvd->vdev_ops != &vdev_spare_ops) 5554 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5555 5556 /* 5557 * If this device has the only valid copy of some data, 5558 * we cannot safely detach it. 5559 */ 5560 if (vdev_dtl_required(vd)) 5561 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5562 5563 ASSERT(pvd->vdev_children >= 2); 5564 5565 /* 5566 * If we are detaching the second disk from a replacing vdev, then 5567 * check to see if we changed the original vdev's path to have "/old" 5568 * at the end in spa_vdev_attach(). If so, undo that change now. 5569 */ 5570 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 5571 vd->vdev_path != NULL) { 5572 size_t len = strlen(vd->vdev_path); 5573 5574 for (int c = 0; c < pvd->vdev_children; c++) { 5575 cvd = pvd->vdev_child[c]; 5576 5577 if (cvd == vd || cvd->vdev_path == NULL) 5578 continue; 5579 5580 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 5581 strcmp(cvd->vdev_path + len, "/old") == 0) { 5582 spa_strfree(cvd->vdev_path); 5583 cvd->vdev_path = spa_strdup(vd->vdev_path); 5584 break; 5585 } 5586 } 5587 } 5588 5589 /* 5590 * If we are detaching the original disk from a spare, then it implies 5591 * that the spare should become a real disk, and be removed from the 5592 * active spare list for the pool. 5593 */ 5594 if (pvd->vdev_ops == &vdev_spare_ops && 5595 vd->vdev_id == 0 && 5596 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 5597 unspare = B_TRUE; 5598 5599 /* 5600 * Erase the disk labels so the disk can be used for other things. 5601 * This must be done after all other error cases are handled, 5602 * but before we disembowel vd (so we can still do I/O to it). 5603 * But if we can't do it, don't treat the error as fatal -- 5604 * it may be that the unwritability of the disk is the reason 5605 * it's being detached! 5606 */ 5607 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5608 5609 /* 5610 * Remove vd from its parent and compact the parent's children. 5611 */ 5612 vdev_remove_child(pvd, vd); 5613 vdev_compact_children(pvd); 5614 5615 /* 5616 * Remember one of the remaining children so we can get tvd below. 5617 */ 5618 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 5619 5620 /* 5621 * If we need to remove the remaining child from the list of hot spares, 5622 * do it now, marking the vdev as no longer a spare in the process. 5623 * We must do this before vdev_remove_parent(), because that can 5624 * change the GUID if it creates a new toplevel GUID. For a similar 5625 * reason, we must remove the spare now, in the same txg as the detach; 5626 * otherwise someone could attach a new sibling, change the GUID, and 5627 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 5628 */ 5629 if (unspare) { 5630 ASSERT(cvd->vdev_isspare); 5631 spa_spare_remove(cvd); 5632 unspare_guid = cvd->vdev_guid; 5633 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 5634 cvd->vdev_unspare = B_TRUE; 5635 } 5636 5637 /* 5638 * If the parent mirror/replacing vdev only has one child, 5639 * the parent is no longer needed. Remove it from the tree. 5640 */ 5641 if (pvd->vdev_children == 1) { 5642 if (pvd->vdev_ops == &vdev_spare_ops) 5643 cvd->vdev_unspare = B_FALSE; 5644 vdev_remove_parent(cvd); 5645 } 5646 5647 5648 /* 5649 * We don't set tvd until now because the parent we just removed 5650 * may have been the previous top-level vdev. 5651 */ 5652 tvd = cvd->vdev_top; 5653 ASSERT(tvd->vdev_parent == rvd); 5654 5655 /* 5656 * Reevaluate the parent vdev state. 5657 */ 5658 vdev_propagate_state(cvd); 5659 5660 /* 5661 * If the 'autoexpand' property is set on the pool then automatically 5662 * try to expand the size of the pool. For example if the device we 5663 * just detached was smaller than the others, it may be possible to 5664 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 5665 * first so that we can obtain the updated sizes of the leaf vdevs. 5666 */ 5667 if (spa->spa_autoexpand) { 5668 vdev_reopen(tvd); 5669 vdev_expand(tvd, txg); 5670 } 5671 5672 vdev_config_dirty(tvd); 5673 5674 /* 5675 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 5676 * vd->vdev_detached is set and free vd's DTL object in syncing context. 5677 * But first make sure we're not on any *other* txg's DTL list, to 5678 * prevent vd from being accessed after it's freed. 5679 */ 5680 vdpath = spa_strdup(vd->vdev_path); 5681 for (int t = 0; t < TXG_SIZE; t++) 5682 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 5683 vd->vdev_detached = B_TRUE; 5684 vdev_dirty(tvd, VDD_DTL, vd, txg); 5685 5686 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 5687 5688 /* hang on to the spa before we release the lock */ 5689 spa_open_ref(spa, FTAG); 5690 5691 error = spa_vdev_exit(spa, vd, txg, 0); 5692 5693 spa_history_log_internal(spa, "detach", NULL, 5694 "vdev=%s", vdpath); 5695 spa_strfree(vdpath); 5696 5697 /* 5698 * If this was the removal of the original device in a hot spare vdev, 5699 * then we want to go through and remove the device from the hot spare 5700 * list of every other pool. 5701 */ 5702 if (unspare) { 5703 spa_t *altspa = NULL; 5704 5705 mutex_enter(&spa_namespace_lock); 5706 while ((altspa = spa_next(altspa)) != NULL) { 5707 if (altspa->spa_state != POOL_STATE_ACTIVE || 5708 altspa == spa) 5709 continue; 5710 5711 spa_open_ref(altspa, FTAG); 5712 mutex_exit(&spa_namespace_lock); 5713 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 5714 mutex_enter(&spa_namespace_lock); 5715 spa_close(altspa, FTAG); 5716 } 5717 mutex_exit(&spa_namespace_lock); 5718 5719 /* search the rest of the vdevs for spares to remove */ 5720 spa_vdev_resilver_done(spa); 5721 } 5722 5723 /* all done with the spa; OK to release */ 5724 mutex_enter(&spa_namespace_lock); 5725 spa_close(spa, FTAG); 5726 mutex_exit(&spa_namespace_lock); 5727 5728 return (error); 5729 } 5730 5731 /* 5732 * Split a set of devices from their mirrors, and create a new pool from them. 5733 */ 5734 int 5735 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5736 nvlist_t *props, boolean_t exp) 5737 { 5738 int error = 0; 5739 uint64_t txg, *glist; 5740 spa_t *newspa; 5741 uint_t c, children, lastlog; 5742 nvlist_t **child, *nvl, *tmp; 5743 dmu_tx_t *tx; 5744 char *altroot = NULL; 5745 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5746 boolean_t activate_slog; 5747 5748 ASSERT(spa_writeable(spa)); 5749 5750 txg = spa_vdev_enter(spa); 5751 5752 /* clear the log and flush everything up to now */ 5753 activate_slog = spa_passivate_log(spa); 5754 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5755 error = spa_reset_logs(spa); 5756 txg = spa_vdev_config_enter(spa); 5757 5758 if (activate_slog) 5759 spa_activate_log(spa); 5760 5761 if (error != 0) 5762 return (spa_vdev_exit(spa, NULL, txg, error)); 5763 5764 /* check new spa name before going any further */ 5765 if (spa_lookup(newname) != NULL) 5766 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5767 5768 /* 5769 * scan through all the children to ensure they're all mirrors 5770 */ 5771 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5772 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5773 &children) != 0) 5774 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5775 5776 /* first, check to ensure we've got the right child count */ 5777 rvd = spa->spa_root_vdev; 5778 lastlog = 0; 5779 for (c = 0; c < rvd->vdev_children; c++) { 5780 vdev_t *vd = rvd->vdev_child[c]; 5781 5782 /* don't count the holes & logs as children */ 5783 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 5784 if (lastlog == 0) 5785 lastlog = c; 5786 continue; 5787 } 5788 5789 lastlog = 0; 5790 } 5791 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5792 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5793 5794 /* next, ensure no spare or cache devices are part of the split */ 5795 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5796 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5797 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5798 5799 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5800 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5801 5802 /* then, loop over each vdev and validate it */ 5803 for (c = 0; c < children; c++) { 5804 uint64_t is_hole = 0; 5805 5806 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5807 &is_hole); 5808 5809 if (is_hole != 0) { 5810 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5811 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5812 continue; 5813 } else { 5814 error = SET_ERROR(EINVAL); 5815 break; 5816 } 5817 } 5818 5819 /* which disk is going to be split? */ 5820 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5821 &glist[c]) != 0) { 5822 error = SET_ERROR(EINVAL); 5823 break; 5824 } 5825 5826 /* look it up in the spa */ 5827 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5828 if (vml[c] == NULL) { 5829 error = SET_ERROR(ENODEV); 5830 break; 5831 } 5832 5833 /* make sure there's nothing stopping the split */ 5834 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5835 vml[c]->vdev_islog || 5836 !vdev_is_concrete(vml[c]) || 5837 vml[c]->vdev_isspare || 5838 vml[c]->vdev_isl2cache || 5839 !vdev_writeable(vml[c]) || 5840 vml[c]->vdev_children != 0 || 5841 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5842 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5843 error = SET_ERROR(EINVAL); 5844 break; 5845 } 5846 5847 if (vdev_dtl_required(vml[c])) { 5848 error = SET_ERROR(EBUSY); 5849 break; 5850 } 5851 5852 /* we need certain info from the top level */ 5853 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5854 vml[c]->vdev_top->vdev_ms_array) == 0); 5855 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5856 vml[c]->vdev_top->vdev_ms_shift) == 0); 5857 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5858 vml[c]->vdev_top->vdev_asize) == 0); 5859 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5860 vml[c]->vdev_top->vdev_ashift) == 0); 5861 5862 /* transfer per-vdev ZAPs */ 5863 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5864 VERIFY0(nvlist_add_uint64(child[c], 5865 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5866 5867 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5868 VERIFY0(nvlist_add_uint64(child[c], 5869 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5870 vml[c]->vdev_parent->vdev_top_zap)); 5871 } 5872 5873 if (error != 0) { 5874 kmem_free(vml, children * sizeof (vdev_t *)); 5875 kmem_free(glist, children * sizeof (uint64_t)); 5876 return (spa_vdev_exit(spa, NULL, txg, error)); 5877 } 5878 5879 /* stop writers from using the disks */ 5880 for (c = 0; c < children; c++) { 5881 if (vml[c] != NULL) 5882 vml[c]->vdev_offline = B_TRUE; 5883 } 5884 vdev_reopen(spa->spa_root_vdev); 5885 5886 /* 5887 * Temporarily record the splitting vdevs in the spa config. This 5888 * will disappear once the config is regenerated. 5889 */ 5890 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5891 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5892 glist, children) == 0); 5893 kmem_free(glist, children * sizeof (uint64_t)); 5894 5895 mutex_enter(&spa->spa_props_lock); 5896 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5897 nvl) == 0); 5898 mutex_exit(&spa->spa_props_lock); 5899 spa->spa_config_splitting = nvl; 5900 vdev_config_dirty(spa->spa_root_vdev); 5901 5902 /* configure and create the new pool */ 5903 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5904 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5905 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5906 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5907 spa_version(spa)) == 0); 5908 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5909 spa->spa_config_txg) == 0); 5910 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5911 spa_generate_guid(NULL)) == 0); 5912 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5913 (void) nvlist_lookup_string(props, 5914 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5915 5916 /* add the new pool to the namespace */ 5917 newspa = spa_add(newname, config, altroot); 5918 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5919 newspa->spa_config_txg = spa->spa_config_txg; 5920 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5921 5922 /* release the spa config lock, retaining the namespace lock */ 5923 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5924 5925 if (zio_injection_enabled) 5926 zio_handle_panic_injection(spa, FTAG, 1); 5927 5928 spa_activate(newspa, spa_mode_global); 5929 spa_async_suspend(newspa); 5930 5931 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 5932 5933 /* create the new pool from the disks of the original pool */ 5934 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 5935 if (error) 5936 goto out; 5937 5938 /* if that worked, generate a real config for the new pool */ 5939 if (newspa->spa_root_vdev != NULL) { 5940 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5941 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5942 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5943 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5944 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5945 B_TRUE)); 5946 } 5947 5948 /* set the props */ 5949 if (props != NULL) { 5950 spa_configfile_set(newspa, props, B_FALSE); 5951 error = spa_prop_set(newspa, props); 5952 if (error) 5953 goto out; 5954 } 5955 5956 /* flush everything */ 5957 txg = spa_vdev_config_enter(newspa); 5958 vdev_config_dirty(newspa->spa_root_vdev); 5959 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5960 5961 if (zio_injection_enabled) 5962 zio_handle_panic_injection(spa, FTAG, 2); 5963 5964 spa_async_resume(newspa); 5965 5966 /* finally, update the original pool's config */ 5967 txg = spa_vdev_config_enter(spa); 5968 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5969 error = dmu_tx_assign(tx, TXG_WAIT); 5970 if (error != 0) 5971 dmu_tx_abort(tx); 5972 for (c = 0; c < children; c++) { 5973 if (vml[c] != NULL) { 5974 vdev_split(vml[c]); 5975 if (error == 0) 5976 spa_history_log_internal(spa, "detach", tx, 5977 "vdev=%s", vml[c]->vdev_path); 5978 5979 vdev_free(vml[c]); 5980 } 5981 } 5982 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5983 vdev_config_dirty(spa->spa_root_vdev); 5984 spa->spa_config_splitting = NULL; 5985 nvlist_free(nvl); 5986 if (error == 0) 5987 dmu_tx_commit(tx); 5988 (void) spa_vdev_exit(spa, NULL, txg, 0); 5989 5990 if (zio_injection_enabled) 5991 zio_handle_panic_injection(spa, FTAG, 3); 5992 5993 /* split is complete; log a history record */ 5994 spa_history_log_internal(newspa, "split", NULL, 5995 "from pool %s", spa_name(spa)); 5996 5997 kmem_free(vml, children * sizeof (vdev_t *)); 5998 5999 /* if we're not going to mount the filesystems in userland, export */ 6000 if (exp) 6001 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 6002 B_FALSE, B_FALSE); 6003 6004 return (error); 6005 6006 out: 6007 spa_unload(newspa); 6008 spa_deactivate(newspa); 6009 spa_remove(newspa); 6010 6011 txg = spa_vdev_config_enter(spa); 6012 6013 /* re-online all offlined disks */ 6014 for (c = 0; c < children; c++) { 6015 if (vml[c] != NULL) 6016 vml[c]->vdev_offline = B_FALSE; 6017 } 6018 vdev_reopen(spa->spa_root_vdev); 6019 6020 nvlist_free(spa->spa_config_splitting); 6021 spa->spa_config_splitting = NULL; 6022 (void) spa_vdev_exit(spa, NULL, txg, error); 6023 6024 kmem_free(vml, children * sizeof (vdev_t *)); 6025 return (error); 6026 } 6027 6028 /* 6029 * Find any device that's done replacing, or a vdev marked 'unspare' that's 6030 * currently spared, so we can detach it. 6031 */ 6032 static vdev_t * 6033 spa_vdev_resilver_done_hunt(vdev_t *vd) 6034 { 6035 vdev_t *newvd, *oldvd; 6036 6037 for (int c = 0; c < vd->vdev_children; c++) { 6038 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 6039 if (oldvd != NULL) 6040 return (oldvd); 6041 } 6042 6043 /* 6044 * Check for a completed replacement. We always consider the first 6045 * vdev in the list to be the oldest vdev, and the last one to be 6046 * the newest (see spa_vdev_attach() for how that works). In 6047 * the case where the newest vdev is faulted, we will not automatically 6048 * remove it after a resilver completes. This is OK as it will require 6049 * user intervention to determine which disk the admin wishes to keep. 6050 */ 6051 if (vd->vdev_ops == &vdev_replacing_ops) { 6052 ASSERT(vd->vdev_children > 1); 6053 6054 newvd = vd->vdev_child[vd->vdev_children - 1]; 6055 oldvd = vd->vdev_child[0]; 6056 6057 if (vdev_dtl_empty(newvd, DTL_MISSING) && 6058 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6059 !vdev_dtl_required(oldvd)) 6060 return (oldvd); 6061 } 6062 6063 /* 6064 * Check for a completed resilver with the 'unspare' flag set. 6065 */ 6066 if (vd->vdev_ops == &vdev_spare_ops) { 6067 vdev_t *first = vd->vdev_child[0]; 6068 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 6069 6070 if (last->vdev_unspare) { 6071 oldvd = first; 6072 newvd = last; 6073 } else if (first->vdev_unspare) { 6074 oldvd = last; 6075 newvd = first; 6076 } else { 6077 oldvd = NULL; 6078 } 6079 6080 if (oldvd != NULL && 6081 vdev_dtl_empty(newvd, DTL_MISSING) && 6082 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6083 !vdev_dtl_required(oldvd)) 6084 return (oldvd); 6085 6086 /* 6087 * If there are more than two spares attached to a disk, 6088 * and those spares are not required, then we want to 6089 * attempt to free them up now so that they can be used 6090 * by other pools. Once we're back down to a single 6091 * disk+spare, we stop removing them. 6092 */ 6093 if (vd->vdev_children > 2) { 6094 newvd = vd->vdev_child[1]; 6095 6096 if (newvd->vdev_isspare && last->vdev_isspare && 6097 vdev_dtl_empty(last, DTL_MISSING) && 6098 vdev_dtl_empty(last, DTL_OUTAGE) && 6099 !vdev_dtl_required(newvd)) 6100 return (newvd); 6101 } 6102 } 6103 6104 return (NULL); 6105 } 6106 6107 static void 6108 spa_vdev_resilver_done(spa_t *spa) 6109 { 6110 vdev_t *vd, *pvd, *ppvd; 6111 uint64_t guid, sguid, pguid, ppguid; 6112 6113 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6114 6115 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 6116 pvd = vd->vdev_parent; 6117 ppvd = pvd->vdev_parent; 6118 guid = vd->vdev_guid; 6119 pguid = pvd->vdev_guid; 6120 ppguid = ppvd->vdev_guid; 6121 sguid = 0; 6122 /* 6123 * If we have just finished replacing a hot spared device, then 6124 * we need to detach the parent's first child (the original hot 6125 * spare) as well. 6126 */ 6127 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 6128 ppvd->vdev_children == 2) { 6129 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 6130 sguid = ppvd->vdev_child[1]->vdev_guid; 6131 } 6132 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 6133 6134 spa_config_exit(spa, SCL_ALL, FTAG); 6135 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 6136 return; 6137 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 6138 return; 6139 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6140 } 6141 6142 spa_config_exit(spa, SCL_ALL, FTAG); 6143 } 6144 6145 /* 6146 * Update the stored path or FRU for this vdev. 6147 */ 6148 int 6149 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 6150 boolean_t ispath) 6151 { 6152 vdev_t *vd; 6153 boolean_t sync = B_FALSE; 6154 6155 ASSERT(spa_writeable(spa)); 6156 6157 spa_vdev_state_enter(spa, SCL_ALL); 6158 6159 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 6160 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 6161 6162 if (!vd->vdev_ops->vdev_op_leaf) 6163 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 6164 6165 if (ispath) { 6166 if (strcmp(value, vd->vdev_path) != 0) { 6167 spa_strfree(vd->vdev_path); 6168 vd->vdev_path = spa_strdup(value); 6169 sync = B_TRUE; 6170 } 6171 } else { 6172 if (vd->vdev_fru == NULL) { 6173 vd->vdev_fru = spa_strdup(value); 6174 sync = B_TRUE; 6175 } else if (strcmp(value, vd->vdev_fru) != 0) { 6176 spa_strfree(vd->vdev_fru); 6177 vd->vdev_fru = spa_strdup(value); 6178 sync = B_TRUE; 6179 } 6180 } 6181 6182 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 6183 } 6184 6185 int 6186 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 6187 { 6188 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 6189 } 6190 6191 int 6192 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 6193 { 6194 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 6195 } 6196 6197 /* 6198 * ========================================================================== 6199 * SPA Scanning 6200 * ========================================================================== 6201 */ 6202 int 6203 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 6204 { 6205 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6206 6207 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6208 return (SET_ERROR(EBUSY)); 6209 6210 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 6211 } 6212 6213 int 6214 spa_scan_stop(spa_t *spa) 6215 { 6216 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6217 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6218 return (SET_ERROR(EBUSY)); 6219 return (dsl_scan_cancel(spa->spa_dsl_pool)); 6220 } 6221 6222 int 6223 spa_scan(spa_t *spa, pool_scan_func_t func) 6224 { 6225 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6226 6227 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 6228 return (SET_ERROR(ENOTSUP)); 6229 6230 /* 6231 * If a resilver was requested, but there is no DTL on a 6232 * writeable leaf device, we have nothing to do. 6233 */ 6234 if (func == POOL_SCAN_RESILVER && 6235 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 6236 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 6237 return (0); 6238 } 6239 6240 return (dsl_scan(spa->spa_dsl_pool, func)); 6241 } 6242 6243 /* 6244 * ========================================================================== 6245 * SPA async task processing 6246 * ========================================================================== 6247 */ 6248 6249 static void 6250 spa_async_remove(spa_t *spa, vdev_t *vd) 6251 { 6252 if (vd->vdev_remove_wanted) { 6253 vd->vdev_remove_wanted = B_FALSE; 6254 vd->vdev_delayed_close = B_FALSE; 6255 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 6256 6257 /* 6258 * We want to clear the stats, but we don't want to do a full 6259 * vdev_clear() as that will cause us to throw away 6260 * degraded/faulted state as well as attempt to reopen the 6261 * device, all of which is a waste. 6262 */ 6263 vd->vdev_stat.vs_read_errors = 0; 6264 vd->vdev_stat.vs_write_errors = 0; 6265 vd->vdev_stat.vs_checksum_errors = 0; 6266 6267 vdev_state_dirty(vd->vdev_top); 6268 } 6269 6270 for (int c = 0; c < vd->vdev_children; c++) 6271 spa_async_remove(spa, vd->vdev_child[c]); 6272 } 6273 6274 static void 6275 spa_async_probe(spa_t *spa, vdev_t *vd) 6276 { 6277 if (vd->vdev_probe_wanted) { 6278 vd->vdev_probe_wanted = B_FALSE; 6279 vdev_reopen(vd); /* vdev_open() does the actual probe */ 6280 } 6281 6282 for (int c = 0; c < vd->vdev_children; c++) 6283 spa_async_probe(spa, vd->vdev_child[c]); 6284 } 6285 6286 static void 6287 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 6288 { 6289 sysevent_id_t eid; 6290 nvlist_t *attr; 6291 char *physpath; 6292 6293 if (!spa->spa_autoexpand) 6294 return; 6295 6296 for (int c = 0; c < vd->vdev_children; c++) { 6297 vdev_t *cvd = vd->vdev_child[c]; 6298 spa_async_autoexpand(spa, cvd); 6299 } 6300 6301 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 6302 return; 6303 6304 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 6305 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 6306 6307 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6308 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 6309 6310 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 6311 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 6312 6313 nvlist_free(attr); 6314 kmem_free(physpath, MAXPATHLEN); 6315 } 6316 6317 static void 6318 spa_async_thread(void *arg) 6319 { 6320 spa_t *spa = (spa_t *)arg; 6321 int tasks; 6322 6323 ASSERT(spa->spa_sync_on); 6324 6325 mutex_enter(&spa->spa_async_lock); 6326 tasks = spa->spa_async_tasks; 6327 spa->spa_async_tasks = 0; 6328 mutex_exit(&spa->spa_async_lock); 6329 6330 /* 6331 * See if the config needs to be updated. 6332 */ 6333 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 6334 uint64_t old_space, new_space; 6335 6336 mutex_enter(&spa_namespace_lock); 6337 old_space = metaslab_class_get_space(spa_normal_class(spa)); 6338 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6339 new_space = metaslab_class_get_space(spa_normal_class(spa)); 6340 mutex_exit(&spa_namespace_lock); 6341 6342 /* 6343 * If the pool grew as a result of the config update, 6344 * then log an internal history event. 6345 */ 6346 if (new_space != old_space) { 6347 spa_history_log_internal(spa, "vdev online", NULL, 6348 "pool '%s' size: %llu(+%llu)", 6349 spa_name(spa), new_space, new_space - old_space); 6350 } 6351 } 6352 6353 /* 6354 * See if any devices need to be marked REMOVED. 6355 */ 6356 if (tasks & SPA_ASYNC_REMOVE) { 6357 spa_vdev_state_enter(spa, SCL_NONE); 6358 spa_async_remove(spa, spa->spa_root_vdev); 6359 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 6360 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 6361 for (int i = 0; i < spa->spa_spares.sav_count; i++) 6362 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 6363 (void) spa_vdev_state_exit(spa, NULL, 0); 6364 } 6365 6366 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 6367 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6368 spa_async_autoexpand(spa, spa->spa_root_vdev); 6369 spa_config_exit(spa, SCL_CONFIG, FTAG); 6370 } 6371 6372 /* 6373 * See if any devices need to be probed. 6374 */ 6375 if (tasks & SPA_ASYNC_PROBE) { 6376 spa_vdev_state_enter(spa, SCL_NONE); 6377 spa_async_probe(spa, spa->spa_root_vdev); 6378 (void) spa_vdev_state_exit(spa, NULL, 0); 6379 } 6380 6381 /* 6382 * If any devices are done replacing, detach them. 6383 */ 6384 if (tasks & SPA_ASYNC_RESILVER_DONE) 6385 spa_vdev_resilver_done(spa); 6386 6387 /* 6388 * Kick off a resilver. 6389 */ 6390 if (tasks & SPA_ASYNC_RESILVER) 6391 dsl_resilver_restart(spa->spa_dsl_pool, 0); 6392 6393 /* 6394 * Let the world know that we're done. 6395 */ 6396 mutex_enter(&spa->spa_async_lock); 6397 spa->spa_async_thread = NULL; 6398 cv_broadcast(&spa->spa_async_cv); 6399 mutex_exit(&spa->spa_async_lock); 6400 thread_exit(); 6401 } 6402 6403 void 6404 spa_async_suspend(spa_t *spa) 6405 { 6406 mutex_enter(&spa->spa_async_lock); 6407 spa->spa_async_suspended++; 6408 while (spa->spa_async_thread != NULL) 6409 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 6410 mutex_exit(&spa->spa_async_lock); 6411 6412 spa_vdev_remove_suspend(spa); 6413 6414 zthr_t *condense_thread = spa->spa_condense_zthr; 6415 if (condense_thread != NULL && zthr_isrunning(condense_thread)) 6416 VERIFY0(zthr_cancel(condense_thread)); 6417 } 6418 6419 void 6420 spa_async_resume(spa_t *spa) 6421 { 6422 mutex_enter(&spa->spa_async_lock); 6423 ASSERT(spa->spa_async_suspended != 0); 6424 spa->spa_async_suspended--; 6425 mutex_exit(&spa->spa_async_lock); 6426 spa_restart_removal(spa); 6427 6428 zthr_t *condense_thread = spa->spa_condense_zthr; 6429 if (condense_thread != NULL && !zthr_isrunning(condense_thread)) 6430 zthr_resume(condense_thread); 6431 } 6432 6433 static boolean_t 6434 spa_async_tasks_pending(spa_t *spa) 6435 { 6436 uint_t non_config_tasks; 6437 uint_t config_task; 6438 boolean_t config_task_suspended; 6439 6440 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 6441 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 6442 if (spa->spa_ccw_fail_time == 0) { 6443 config_task_suspended = B_FALSE; 6444 } else { 6445 config_task_suspended = 6446 (gethrtime() - spa->spa_ccw_fail_time) < 6447 (zfs_ccw_retry_interval * NANOSEC); 6448 } 6449 6450 return (non_config_tasks || (config_task && !config_task_suspended)); 6451 } 6452 6453 static void 6454 spa_async_dispatch(spa_t *spa) 6455 { 6456 mutex_enter(&spa->spa_async_lock); 6457 if (spa_async_tasks_pending(spa) && 6458 !spa->spa_async_suspended && 6459 spa->spa_async_thread == NULL && 6460 rootdir != NULL) 6461 spa->spa_async_thread = thread_create(NULL, 0, 6462 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 6463 mutex_exit(&spa->spa_async_lock); 6464 } 6465 6466 void 6467 spa_async_request(spa_t *spa, int task) 6468 { 6469 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 6470 mutex_enter(&spa->spa_async_lock); 6471 spa->spa_async_tasks |= task; 6472 mutex_exit(&spa->spa_async_lock); 6473 } 6474 6475 /* 6476 * ========================================================================== 6477 * SPA syncing routines 6478 * ========================================================================== 6479 */ 6480 6481 static int 6482 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6483 { 6484 bpobj_t *bpo = arg; 6485 bpobj_enqueue(bpo, bp, tx); 6486 return (0); 6487 } 6488 6489 static int 6490 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6491 { 6492 zio_t *zio = arg; 6493 6494 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6495 zio->io_flags)); 6496 return (0); 6497 } 6498 6499 /* 6500 * Note: this simple function is not inlined to make it easier to dtrace the 6501 * amount of time spent syncing frees. 6502 */ 6503 static void 6504 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6505 { 6506 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6507 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6508 VERIFY(zio_wait(zio) == 0); 6509 } 6510 6511 /* 6512 * Note: this simple function is not inlined to make it easier to dtrace the 6513 * amount of time spent syncing deferred frees. 6514 */ 6515 static void 6516 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6517 { 6518 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6519 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6520 spa_free_sync_cb, zio, tx), ==, 0); 6521 VERIFY0(zio_wait(zio)); 6522 } 6523 6524 6525 static void 6526 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6527 { 6528 char *packed = NULL; 6529 size_t bufsize; 6530 size_t nvsize = 0; 6531 dmu_buf_t *db; 6532 6533 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6534 6535 /* 6536 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6537 * information. This avoids the dmu_buf_will_dirty() path and 6538 * saves us a pre-read to get data we don't actually care about. 6539 */ 6540 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6541 packed = kmem_alloc(bufsize, KM_SLEEP); 6542 6543 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6544 KM_SLEEP) == 0); 6545 bzero(packed + nvsize, bufsize - nvsize); 6546 6547 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6548 6549 kmem_free(packed, bufsize); 6550 6551 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6552 dmu_buf_will_dirty(db, tx); 6553 *(uint64_t *)db->db_data = nvsize; 6554 dmu_buf_rele(db, FTAG); 6555 } 6556 6557 static void 6558 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6559 const char *config, const char *entry) 6560 { 6561 nvlist_t *nvroot; 6562 nvlist_t **list; 6563 int i; 6564 6565 if (!sav->sav_sync) 6566 return; 6567 6568 /* 6569 * Update the MOS nvlist describing the list of available devices. 6570 * spa_validate_aux() will have already made sure this nvlist is 6571 * valid and the vdevs are labeled appropriately. 6572 */ 6573 if (sav->sav_object == 0) { 6574 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6575 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6576 sizeof (uint64_t), tx); 6577 VERIFY(zap_update(spa->spa_meta_objset, 6578 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6579 &sav->sav_object, tx) == 0); 6580 } 6581 6582 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6583 if (sav->sav_count == 0) { 6584 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6585 } else { 6586 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6587 for (i = 0; i < sav->sav_count; i++) 6588 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6589 B_FALSE, VDEV_CONFIG_L2CACHE); 6590 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6591 sav->sav_count) == 0); 6592 for (i = 0; i < sav->sav_count; i++) 6593 nvlist_free(list[i]); 6594 kmem_free(list, sav->sav_count * sizeof (void *)); 6595 } 6596 6597 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6598 nvlist_free(nvroot); 6599 6600 sav->sav_sync = B_FALSE; 6601 } 6602 6603 /* 6604 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6605 * The all-vdev ZAP must be empty. 6606 */ 6607 static void 6608 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6609 { 6610 spa_t *spa = vd->vdev_spa; 6611 if (vd->vdev_top_zap != 0) { 6612 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6613 vd->vdev_top_zap, tx)); 6614 } 6615 if (vd->vdev_leaf_zap != 0) { 6616 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6617 vd->vdev_leaf_zap, tx)); 6618 } 6619 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6620 spa_avz_build(vd->vdev_child[i], avz, tx); 6621 } 6622 } 6623 6624 static void 6625 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6626 { 6627 nvlist_t *config; 6628 6629 /* 6630 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6631 * its config may not be dirty but we still need to build per-vdev ZAPs. 6632 * Similarly, if the pool is being assembled (e.g. after a split), we 6633 * need to rebuild the AVZ although the config may not be dirty. 6634 */ 6635 if (list_is_empty(&spa->spa_config_dirty_list) && 6636 spa->spa_avz_action == AVZ_ACTION_NONE) 6637 return; 6638 6639 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6640 6641 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6642 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 6643 spa->spa_all_vdev_zaps != 0); 6644 6645 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6646 /* Make and build the new AVZ */ 6647 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6648 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6649 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6650 6651 /* Diff old AVZ with new one */ 6652 zap_cursor_t zc; 6653 zap_attribute_t za; 6654 6655 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6656 spa->spa_all_vdev_zaps); 6657 zap_cursor_retrieve(&zc, &za) == 0; 6658 zap_cursor_advance(&zc)) { 6659 uint64_t vdzap = za.za_first_integer; 6660 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6661 vdzap) == ENOENT) { 6662 /* 6663 * ZAP is listed in old AVZ but not in new one; 6664 * destroy it 6665 */ 6666 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6667 tx)); 6668 } 6669 } 6670 6671 zap_cursor_fini(&zc); 6672 6673 /* Destroy the old AVZ */ 6674 VERIFY0(zap_destroy(spa->spa_meta_objset, 6675 spa->spa_all_vdev_zaps, tx)); 6676 6677 /* Replace the old AVZ in the dir obj with the new one */ 6678 VERIFY0(zap_update(spa->spa_meta_objset, 6679 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6680 sizeof (new_avz), 1, &new_avz, tx)); 6681 6682 spa->spa_all_vdev_zaps = new_avz; 6683 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6684 zap_cursor_t zc; 6685 zap_attribute_t za; 6686 6687 /* Walk through the AVZ and destroy all listed ZAPs */ 6688 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6689 spa->spa_all_vdev_zaps); 6690 zap_cursor_retrieve(&zc, &za) == 0; 6691 zap_cursor_advance(&zc)) { 6692 uint64_t zap = za.za_first_integer; 6693 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6694 } 6695 6696 zap_cursor_fini(&zc); 6697 6698 /* Destroy and unlink the AVZ itself */ 6699 VERIFY0(zap_destroy(spa->spa_meta_objset, 6700 spa->spa_all_vdev_zaps, tx)); 6701 VERIFY0(zap_remove(spa->spa_meta_objset, 6702 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6703 spa->spa_all_vdev_zaps = 0; 6704 } 6705 6706 if (spa->spa_all_vdev_zaps == 0) { 6707 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6708 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6709 DMU_POOL_VDEV_ZAP_MAP, tx); 6710 } 6711 spa->spa_avz_action = AVZ_ACTION_NONE; 6712 6713 /* Create ZAPs for vdevs that don't have them. */ 6714 vdev_construct_zaps(spa->spa_root_vdev, tx); 6715 6716 config = spa_config_generate(spa, spa->spa_root_vdev, 6717 dmu_tx_get_txg(tx), B_FALSE); 6718 6719 /* 6720 * If we're upgrading the spa version then make sure that 6721 * the config object gets updated with the correct version. 6722 */ 6723 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6724 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6725 spa->spa_uberblock.ub_version); 6726 6727 spa_config_exit(spa, SCL_STATE, FTAG); 6728 6729 nvlist_free(spa->spa_config_syncing); 6730 spa->spa_config_syncing = config; 6731 6732 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6733 } 6734 6735 static void 6736 spa_sync_version(void *arg, dmu_tx_t *tx) 6737 { 6738 uint64_t *versionp = arg; 6739 uint64_t version = *versionp; 6740 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6741 6742 /* 6743 * Setting the version is special cased when first creating the pool. 6744 */ 6745 ASSERT(tx->tx_txg != TXG_INITIAL); 6746 6747 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6748 ASSERT(version >= spa_version(spa)); 6749 6750 spa->spa_uberblock.ub_version = version; 6751 vdev_config_dirty(spa->spa_root_vdev); 6752 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6753 } 6754 6755 /* 6756 * Set zpool properties. 6757 */ 6758 static void 6759 spa_sync_props(void *arg, dmu_tx_t *tx) 6760 { 6761 nvlist_t *nvp = arg; 6762 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6763 objset_t *mos = spa->spa_meta_objset; 6764 nvpair_t *elem = NULL; 6765 6766 mutex_enter(&spa->spa_props_lock); 6767 6768 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6769 uint64_t intval; 6770 char *strval, *fname; 6771 zpool_prop_t prop; 6772 const char *propname; 6773 zprop_type_t proptype; 6774 spa_feature_t fid; 6775 6776 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6777 case ZPOOL_PROP_INVAL: 6778 /* 6779 * We checked this earlier in spa_prop_validate(). 6780 */ 6781 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6782 6783 fname = strchr(nvpair_name(elem), '@') + 1; 6784 VERIFY0(zfeature_lookup_name(fname, &fid)); 6785 6786 spa_feature_enable(spa, fid, tx); 6787 spa_history_log_internal(spa, "set", tx, 6788 "%s=enabled", nvpair_name(elem)); 6789 break; 6790 6791 case ZPOOL_PROP_VERSION: 6792 intval = fnvpair_value_uint64(elem); 6793 /* 6794 * The version is synced seperatly before other 6795 * properties and should be correct by now. 6796 */ 6797 ASSERT3U(spa_version(spa), >=, intval); 6798 break; 6799 6800 case ZPOOL_PROP_ALTROOT: 6801 /* 6802 * 'altroot' is a non-persistent property. It should 6803 * have been set temporarily at creation or import time. 6804 */ 6805 ASSERT(spa->spa_root != NULL); 6806 break; 6807 6808 case ZPOOL_PROP_READONLY: 6809 case ZPOOL_PROP_CACHEFILE: 6810 /* 6811 * 'readonly' and 'cachefile' are also non-persisitent 6812 * properties. 6813 */ 6814 break; 6815 case ZPOOL_PROP_COMMENT: 6816 strval = fnvpair_value_string(elem); 6817 if (spa->spa_comment != NULL) 6818 spa_strfree(spa->spa_comment); 6819 spa->spa_comment = spa_strdup(strval); 6820 /* 6821 * We need to dirty the configuration on all the vdevs 6822 * so that their labels get updated. It's unnecessary 6823 * to do this for pool creation since the vdev's 6824 * configuratoin has already been dirtied. 6825 */ 6826 if (tx->tx_txg != TXG_INITIAL) 6827 vdev_config_dirty(spa->spa_root_vdev); 6828 spa_history_log_internal(spa, "set", tx, 6829 "%s=%s", nvpair_name(elem), strval); 6830 break; 6831 default: 6832 /* 6833 * Set pool property values in the poolprops mos object. 6834 */ 6835 if (spa->spa_pool_props_object == 0) { 6836 spa->spa_pool_props_object = 6837 zap_create_link(mos, DMU_OT_POOL_PROPS, 6838 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6839 tx); 6840 } 6841 6842 /* normalize the property name */ 6843 propname = zpool_prop_to_name(prop); 6844 proptype = zpool_prop_get_type(prop); 6845 6846 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6847 ASSERT(proptype == PROP_TYPE_STRING); 6848 strval = fnvpair_value_string(elem); 6849 VERIFY0(zap_update(mos, 6850 spa->spa_pool_props_object, propname, 6851 1, strlen(strval) + 1, strval, tx)); 6852 spa_history_log_internal(spa, "set", tx, 6853 "%s=%s", nvpair_name(elem), strval); 6854 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6855 intval = fnvpair_value_uint64(elem); 6856 6857 if (proptype == PROP_TYPE_INDEX) { 6858 const char *unused; 6859 VERIFY0(zpool_prop_index_to_string( 6860 prop, intval, &unused)); 6861 } 6862 VERIFY0(zap_update(mos, 6863 spa->spa_pool_props_object, propname, 6864 8, 1, &intval, tx)); 6865 spa_history_log_internal(spa, "set", tx, 6866 "%s=%lld", nvpair_name(elem), intval); 6867 } else { 6868 ASSERT(0); /* not allowed */ 6869 } 6870 6871 switch (prop) { 6872 case ZPOOL_PROP_DELEGATION: 6873 spa->spa_delegation = intval; 6874 break; 6875 case ZPOOL_PROP_BOOTFS: 6876 spa->spa_bootfs = intval; 6877 break; 6878 case ZPOOL_PROP_FAILUREMODE: 6879 spa->spa_failmode = intval; 6880 break; 6881 case ZPOOL_PROP_AUTOEXPAND: 6882 spa->spa_autoexpand = intval; 6883 if (tx->tx_txg != TXG_INITIAL) 6884 spa_async_request(spa, 6885 SPA_ASYNC_AUTOEXPAND); 6886 break; 6887 case ZPOOL_PROP_DEDUPDITTO: 6888 spa->spa_dedup_ditto = intval; 6889 break; 6890 default: 6891 break; 6892 } 6893 } 6894 6895 } 6896 6897 mutex_exit(&spa->spa_props_lock); 6898 } 6899 6900 /* 6901 * Perform one-time upgrade on-disk changes. spa_version() does not 6902 * reflect the new version this txg, so there must be no changes this 6903 * txg to anything that the upgrade code depends on after it executes. 6904 * Therefore this must be called after dsl_pool_sync() does the sync 6905 * tasks. 6906 */ 6907 static void 6908 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6909 { 6910 dsl_pool_t *dp = spa->spa_dsl_pool; 6911 6912 ASSERT(spa->spa_sync_pass == 1); 6913 6914 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6915 6916 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6917 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6918 dsl_pool_create_origin(dp, tx); 6919 6920 /* Keeping the origin open increases spa_minref */ 6921 spa->spa_minref += 3; 6922 } 6923 6924 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6925 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6926 dsl_pool_upgrade_clones(dp, tx); 6927 } 6928 6929 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6930 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6931 dsl_pool_upgrade_dir_clones(dp, tx); 6932 6933 /* Keeping the freedir open increases spa_minref */ 6934 spa->spa_minref += 3; 6935 } 6936 6937 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6938 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6939 spa_feature_create_zap_objects(spa, tx); 6940 } 6941 6942 /* 6943 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6944 * when possibility to use lz4 compression for metadata was added 6945 * Old pools that have this feature enabled must be upgraded to have 6946 * this feature active 6947 */ 6948 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6949 boolean_t lz4_en = spa_feature_is_enabled(spa, 6950 SPA_FEATURE_LZ4_COMPRESS); 6951 boolean_t lz4_ac = spa_feature_is_active(spa, 6952 SPA_FEATURE_LZ4_COMPRESS); 6953 6954 if (lz4_en && !lz4_ac) 6955 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6956 } 6957 6958 /* 6959 * If we haven't written the salt, do so now. Note that the 6960 * feature may not be activated yet, but that's fine since 6961 * the presence of this ZAP entry is backwards compatible. 6962 */ 6963 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6964 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6965 VERIFY0(zap_add(spa->spa_meta_objset, 6966 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6967 sizeof (spa->spa_cksum_salt.zcs_bytes), 6968 spa->spa_cksum_salt.zcs_bytes, tx)); 6969 } 6970 6971 rrw_exit(&dp->dp_config_rwlock, FTAG); 6972 } 6973 6974 static void 6975 vdev_indirect_state_sync_verify(vdev_t *vd) 6976 { 6977 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6978 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 6979 6980 if (vd->vdev_ops == &vdev_indirect_ops) { 6981 ASSERT(vim != NULL); 6982 ASSERT(vib != NULL); 6983 } 6984 6985 if (vdev_obsolete_sm_object(vd) != 0) { 6986 ASSERT(vd->vdev_obsolete_sm != NULL); 6987 ASSERT(vd->vdev_removing || 6988 vd->vdev_ops == &vdev_indirect_ops); 6989 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 6990 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 6991 6992 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 6993 space_map_object(vd->vdev_obsolete_sm)); 6994 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 6995 space_map_allocated(vd->vdev_obsolete_sm)); 6996 } 6997 ASSERT(vd->vdev_obsolete_segments != NULL); 6998 6999 /* 7000 * Since frees / remaps to an indirect vdev can only 7001 * happen in syncing context, the obsolete segments 7002 * tree must be empty when we start syncing. 7003 */ 7004 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 7005 } 7006 7007 /* 7008 * Sync the specified transaction group. New blocks may be dirtied as 7009 * part of the process, so we iterate until it converges. 7010 */ 7011 void 7012 spa_sync(spa_t *spa, uint64_t txg) 7013 { 7014 dsl_pool_t *dp = spa->spa_dsl_pool; 7015 objset_t *mos = spa->spa_meta_objset; 7016 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 7017 vdev_t *rvd = spa->spa_root_vdev; 7018 vdev_t *vd; 7019 dmu_tx_t *tx; 7020 int error; 7021 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 7022 zfs_vdev_queue_depth_pct / 100; 7023 7024 VERIFY(spa_writeable(spa)); 7025 7026 /* 7027 * Wait for i/os issued in open context that need to complete 7028 * before this txg syncs. 7029 */ 7030 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK])); 7031 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0); 7032 7033 /* 7034 * Lock out configuration changes. 7035 */ 7036 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7037 7038 spa->spa_syncing_txg = txg; 7039 spa->spa_sync_pass = 0; 7040 7041 mutex_enter(&spa->spa_alloc_lock); 7042 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 7043 mutex_exit(&spa->spa_alloc_lock); 7044 7045 /* 7046 * If there are any pending vdev state changes, convert them 7047 * into config changes that go out with this transaction group. 7048 */ 7049 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7050 while (list_head(&spa->spa_state_dirty_list) != NULL) { 7051 /* 7052 * We need the write lock here because, for aux vdevs, 7053 * calling vdev_config_dirty() modifies sav_config. 7054 * This is ugly and will become unnecessary when we 7055 * eliminate the aux vdev wart by integrating all vdevs 7056 * into the root vdev tree. 7057 */ 7058 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7059 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 7060 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 7061 vdev_state_clean(vd); 7062 vdev_config_dirty(vd); 7063 } 7064 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7065 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7066 } 7067 spa_config_exit(spa, SCL_STATE, FTAG); 7068 7069 tx = dmu_tx_create_assigned(dp, txg); 7070 7071 spa->spa_sync_starttime = gethrtime(); 7072 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 7073 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 7074 7075 /* 7076 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 7077 * set spa_deflate if we have no raid-z vdevs. 7078 */ 7079 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 7080 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 7081 int i; 7082 7083 for (i = 0; i < rvd->vdev_children; i++) { 7084 vd = rvd->vdev_child[i]; 7085 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 7086 break; 7087 } 7088 if (i == rvd->vdev_children) { 7089 spa->spa_deflate = TRUE; 7090 VERIFY(0 == zap_add(spa->spa_meta_objset, 7091 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 7092 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 7093 } 7094 } 7095 7096 /* 7097 * Set the top-level vdev's max queue depth. Evaluate each 7098 * top-level's async write queue depth in case it changed. 7099 * The max queue depth will not change in the middle of syncing 7100 * out this txg. 7101 */ 7102 uint64_t queue_depth_total = 0; 7103 for (int c = 0; c < rvd->vdev_children; c++) { 7104 vdev_t *tvd = rvd->vdev_child[c]; 7105 metaslab_group_t *mg = tvd->vdev_mg; 7106 7107 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 7108 !metaslab_group_initialized(mg)) 7109 continue; 7110 7111 /* 7112 * It is safe to do a lock-free check here because only async 7113 * allocations look at mg_max_alloc_queue_depth, and async 7114 * allocations all happen from spa_sync(). 7115 */ 7116 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth)); 7117 mg->mg_max_alloc_queue_depth = max_queue_depth; 7118 queue_depth_total += mg->mg_max_alloc_queue_depth; 7119 } 7120 metaslab_class_t *mc = spa_normal_class(spa); 7121 ASSERT0(refcount_count(&mc->mc_alloc_slots)); 7122 mc->mc_alloc_max_slots = queue_depth_total; 7123 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7124 7125 ASSERT3U(mc->mc_alloc_max_slots, <=, 7126 max_queue_depth * rvd->vdev_children); 7127 7128 for (int c = 0; c < rvd->vdev_children; c++) { 7129 vdev_t *vd = rvd->vdev_child[c]; 7130 vdev_indirect_state_sync_verify(vd); 7131 7132 if (vdev_indirect_should_condense(vd)) { 7133 spa_condense_indirect_start_sync(vd, tx); 7134 break; 7135 } 7136 } 7137 7138 /* 7139 * Iterate to convergence. 7140 */ 7141 do { 7142 int pass = ++spa->spa_sync_pass; 7143 7144 spa_sync_config_object(spa, tx); 7145 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 7146 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 7147 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 7148 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 7149 spa_errlog_sync(spa, txg); 7150 dsl_pool_sync(dp, txg); 7151 7152 if (pass < zfs_sync_pass_deferred_free) { 7153 spa_sync_frees(spa, free_bpl, tx); 7154 } else { 7155 /* 7156 * We can not defer frees in pass 1, because 7157 * we sync the deferred frees later in pass 1. 7158 */ 7159 ASSERT3U(pass, >, 1); 7160 bplist_iterate(free_bpl, bpobj_enqueue_cb, 7161 &spa->spa_deferred_bpobj, tx); 7162 } 7163 7164 ddt_sync(spa, txg); 7165 dsl_scan_sync(dp, tx); 7166 7167 if (spa->spa_vdev_removal != NULL) 7168 svr_sync(spa, tx); 7169 7170 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 7171 != NULL) 7172 vdev_sync(vd, txg); 7173 7174 if (pass == 1) { 7175 spa_sync_upgrades(spa, tx); 7176 ASSERT3U(txg, >=, 7177 spa->spa_uberblock.ub_rootbp.blk_birth); 7178 /* 7179 * Note: We need to check if the MOS is dirty 7180 * because we could have marked the MOS dirty 7181 * without updating the uberblock (e.g. if we 7182 * have sync tasks but no dirty user data). We 7183 * need to check the uberblock's rootbp because 7184 * it is updated if we have synced out dirty 7185 * data (though in this case the MOS will most 7186 * likely also be dirty due to second order 7187 * effects, we don't want to rely on that here). 7188 */ 7189 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 7190 !dmu_objset_is_dirty(mos, txg)) { 7191 /* 7192 * Nothing changed on the first pass, 7193 * therefore this TXG is a no-op. Avoid 7194 * syncing deferred frees, so that we 7195 * can keep this TXG as a no-op. 7196 */ 7197 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 7198 txg)); 7199 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7200 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 7201 break; 7202 } 7203 spa_sync_deferred_frees(spa, tx); 7204 } 7205 7206 } while (dmu_objset_is_dirty(mos, txg)); 7207 7208 if (!list_is_empty(&spa->spa_config_dirty_list)) { 7209 /* 7210 * Make sure that the number of ZAPs for all the vdevs matches 7211 * the number of ZAPs in the per-vdev ZAP list. This only gets 7212 * called if the config is dirty; otherwise there may be 7213 * outstanding AVZ operations that weren't completed in 7214 * spa_sync_config_object. 7215 */ 7216 uint64_t all_vdev_zap_entry_count; 7217 ASSERT0(zap_count(spa->spa_meta_objset, 7218 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 7219 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 7220 all_vdev_zap_entry_count); 7221 } 7222 7223 if (spa->spa_vdev_removal != NULL) { 7224 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 7225 } 7226 7227 /* 7228 * Rewrite the vdev configuration (which includes the uberblock) 7229 * to commit the transaction group. 7230 * 7231 * If there are no dirty vdevs, we sync the uberblock to a few 7232 * random top-level vdevs that are known to be visible in the 7233 * config cache (see spa_vdev_add() for a complete description). 7234 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 7235 */ 7236 for (;;) { 7237 /* 7238 * We hold SCL_STATE to prevent vdev open/close/etc. 7239 * while we're attempting to write the vdev labels. 7240 */ 7241 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7242 7243 if (list_is_empty(&spa->spa_config_dirty_list)) { 7244 vdev_t *svd[SPA_SYNC_MIN_VDEVS]; 7245 int svdcount = 0; 7246 int children = rvd->vdev_children; 7247 int c0 = spa_get_random(children); 7248 7249 for (int c = 0; c < children; c++) { 7250 vd = rvd->vdev_child[(c0 + c) % children]; 7251 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 7252 !vdev_is_concrete(vd)) 7253 continue; 7254 svd[svdcount++] = vd; 7255 if (svdcount == SPA_SYNC_MIN_VDEVS) 7256 break; 7257 } 7258 error = vdev_config_sync(svd, svdcount, txg); 7259 } else { 7260 error = vdev_config_sync(rvd->vdev_child, 7261 rvd->vdev_children, txg); 7262 } 7263 7264 if (error == 0) 7265 spa->spa_last_synced_guid = rvd->vdev_guid; 7266 7267 spa_config_exit(spa, SCL_STATE, FTAG); 7268 7269 if (error == 0) 7270 break; 7271 zio_suspend(spa, NULL); 7272 zio_resume_wait(spa); 7273 } 7274 dmu_tx_commit(tx); 7275 7276 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 7277 7278 /* 7279 * Clear the dirty config list. 7280 */ 7281 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 7282 vdev_config_clean(vd); 7283 7284 /* 7285 * Now that the new config has synced transactionally, 7286 * let it become visible to the config cache. 7287 */ 7288 if (spa->spa_config_syncing != NULL) { 7289 spa_config_set(spa, spa->spa_config_syncing); 7290 spa->spa_config_txg = txg; 7291 spa->spa_config_syncing = NULL; 7292 } 7293 7294 dsl_pool_sync_done(dp, txg); 7295 7296 mutex_enter(&spa->spa_alloc_lock); 7297 VERIFY0(avl_numnodes(&spa->spa_alloc_tree)); 7298 mutex_exit(&spa->spa_alloc_lock); 7299 7300 /* 7301 * Update usable space statistics. 7302 */ 7303 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 7304 vdev_sync_done(vd, txg); 7305 7306 spa_update_dspace(spa); 7307 7308 /* 7309 * It had better be the case that we didn't dirty anything 7310 * since vdev_config_sync(). 7311 */ 7312 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 7313 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7314 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 7315 7316 spa->spa_sync_pass = 0; 7317 7318 /* 7319 * Update the last synced uberblock here. We want to do this at 7320 * the end of spa_sync() so that consumers of spa_last_synced_txg() 7321 * will be guaranteed that all the processing associated with 7322 * that txg has been completed. 7323 */ 7324 spa->spa_ubsync = spa->spa_uberblock; 7325 spa_config_exit(spa, SCL_CONFIG, FTAG); 7326 7327 spa_handle_ignored_writes(spa); 7328 7329 /* 7330 * If any async tasks have been requested, kick them off. 7331 */ 7332 spa_async_dispatch(spa); 7333 } 7334 7335 /* 7336 * Sync all pools. We don't want to hold the namespace lock across these 7337 * operations, so we take a reference on the spa_t and drop the lock during the 7338 * sync. 7339 */ 7340 void 7341 spa_sync_allpools(void) 7342 { 7343 spa_t *spa = NULL; 7344 mutex_enter(&spa_namespace_lock); 7345 while ((spa = spa_next(spa)) != NULL) { 7346 if (spa_state(spa) != POOL_STATE_ACTIVE || 7347 !spa_writeable(spa) || spa_suspended(spa)) 7348 continue; 7349 spa_open_ref(spa, FTAG); 7350 mutex_exit(&spa_namespace_lock); 7351 txg_wait_synced(spa_get_dsl(spa), 0); 7352 mutex_enter(&spa_namespace_lock); 7353 spa_close(spa, FTAG); 7354 } 7355 mutex_exit(&spa_namespace_lock); 7356 } 7357 7358 /* 7359 * ========================================================================== 7360 * Miscellaneous routines 7361 * ========================================================================== 7362 */ 7363 7364 /* 7365 * Remove all pools in the system. 7366 */ 7367 void 7368 spa_evict_all(void) 7369 { 7370 spa_t *spa; 7371 7372 /* 7373 * Remove all cached state. All pools should be closed now, 7374 * so every spa in the AVL tree should be unreferenced. 7375 */ 7376 mutex_enter(&spa_namespace_lock); 7377 while ((spa = spa_next(NULL)) != NULL) { 7378 /* 7379 * Stop async tasks. The async thread may need to detach 7380 * a device that's been replaced, which requires grabbing 7381 * spa_namespace_lock, so we must drop it here. 7382 */ 7383 spa_open_ref(spa, FTAG); 7384 mutex_exit(&spa_namespace_lock); 7385 spa_async_suspend(spa); 7386 mutex_enter(&spa_namespace_lock); 7387 spa_close(spa, FTAG); 7388 7389 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7390 spa_unload(spa); 7391 spa_deactivate(spa); 7392 } 7393 spa_remove(spa); 7394 } 7395 mutex_exit(&spa_namespace_lock); 7396 } 7397 7398 vdev_t * 7399 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 7400 { 7401 vdev_t *vd; 7402 int i; 7403 7404 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 7405 return (vd); 7406 7407 if (aux) { 7408 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 7409 vd = spa->spa_l2cache.sav_vdevs[i]; 7410 if (vd->vdev_guid == guid) 7411 return (vd); 7412 } 7413 7414 for (i = 0; i < spa->spa_spares.sav_count; i++) { 7415 vd = spa->spa_spares.sav_vdevs[i]; 7416 if (vd->vdev_guid == guid) 7417 return (vd); 7418 } 7419 } 7420 7421 return (NULL); 7422 } 7423 7424 void 7425 spa_upgrade(spa_t *spa, uint64_t version) 7426 { 7427 ASSERT(spa_writeable(spa)); 7428 7429 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7430 7431 /* 7432 * This should only be called for a non-faulted pool, and since a 7433 * future version would result in an unopenable pool, this shouldn't be 7434 * possible. 7435 */ 7436 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 7437 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 7438 7439 spa->spa_uberblock.ub_version = version; 7440 vdev_config_dirty(spa->spa_root_vdev); 7441 7442 spa_config_exit(spa, SCL_ALL, FTAG); 7443 7444 txg_wait_synced(spa_get_dsl(spa), 0); 7445 } 7446 7447 boolean_t 7448 spa_has_spare(spa_t *spa, uint64_t guid) 7449 { 7450 int i; 7451 uint64_t spareguid; 7452 spa_aux_vdev_t *sav = &spa->spa_spares; 7453 7454 for (i = 0; i < sav->sav_count; i++) 7455 if (sav->sav_vdevs[i]->vdev_guid == guid) 7456 return (B_TRUE); 7457 7458 for (i = 0; i < sav->sav_npending; i++) { 7459 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 7460 &spareguid) == 0 && spareguid == guid) 7461 return (B_TRUE); 7462 } 7463 7464 return (B_FALSE); 7465 } 7466 7467 /* 7468 * Check if a pool has an active shared spare device. 7469 * Note: reference count of an active spare is 2, as a spare and as a replace 7470 */ 7471 static boolean_t 7472 spa_has_active_shared_spare(spa_t *spa) 7473 { 7474 int i, refcnt; 7475 uint64_t pool; 7476 spa_aux_vdev_t *sav = &spa->spa_spares; 7477 7478 for (i = 0; i < sav->sav_count; i++) { 7479 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 7480 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 7481 refcnt > 2) 7482 return (B_TRUE); 7483 } 7484 7485 return (B_FALSE); 7486 } 7487 7488 sysevent_t * 7489 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 7490 { 7491 sysevent_t *ev = NULL; 7492 #ifdef _KERNEL 7493 sysevent_attr_list_t *attr = NULL; 7494 sysevent_value_t value; 7495 7496 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 7497 SE_SLEEP); 7498 ASSERT(ev != NULL); 7499 7500 value.value_type = SE_DATA_TYPE_STRING; 7501 value.value.sv_string = spa_name(spa); 7502 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 7503 goto done; 7504 7505 value.value_type = SE_DATA_TYPE_UINT64; 7506 value.value.sv_uint64 = spa_guid(spa); 7507 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 7508 goto done; 7509 7510 if (vd) { 7511 value.value_type = SE_DATA_TYPE_UINT64; 7512 value.value.sv_uint64 = vd->vdev_guid; 7513 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 7514 SE_SLEEP) != 0) 7515 goto done; 7516 7517 if (vd->vdev_path) { 7518 value.value_type = SE_DATA_TYPE_STRING; 7519 value.value.sv_string = vd->vdev_path; 7520 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 7521 &value, SE_SLEEP) != 0) 7522 goto done; 7523 } 7524 } 7525 7526 if (hist_nvl != NULL) { 7527 fnvlist_merge((nvlist_t *)attr, hist_nvl); 7528 } 7529 7530 if (sysevent_attach_attributes(ev, attr) != 0) 7531 goto done; 7532 attr = NULL; 7533 7534 done: 7535 if (attr) 7536 sysevent_free_attr(attr); 7537 7538 #endif 7539 return (ev); 7540 } 7541 7542 void 7543 spa_event_post(sysevent_t *ev) 7544 { 7545 #ifdef _KERNEL 7546 sysevent_id_t eid; 7547 7548 (void) log_sysevent(ev, SE_SLEEP, &eid); 7549 sysevent_free(ev); 7550 #endif 7551 } 7552 7553 void 7554 spa_event_discard(sysevent_t *ev) 7555 { 7556 #ifdef _KERNEL 7557 sysevent_free(ev); 7558 #endif 7559 } 7560 7561 /* 7562 * Post a sysevent corresponding to the given event. The 'name' must be one of 7563 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 7564 * filled in from the spa and (optionally) the vdev and history nvl. This 7565 * doesn't do anything in the userland libzpool, as we don't want consumers to 7566 * misinterpret ztest or zdb as real changes. 7567 */ 7568 void 7569 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 7570 { 7571 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 7572 } 7573