1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 31 * Copyright 2019 Joyent, Inc. 32 * Copyright (c) 2017, Intel Corporation. 33 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org> 34 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association. 35 */ 36 37 /* 38 * SPA: Storage Pool Allocator 39 * 40 * This file contains all the routines used when modifying on-disk SPA state. 41 * This includes opening, importing, destroying, exporting a pool, and syncing a 42 * pool. 43 */ 44 45 #include <sys/zfs_context.h> 46 #include <sys/fm/fs/zfs.h> 47 #include <sys/spa_impl.h> 48 #include <sys/zio.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/dmu.h> 51 #include <sys/dmu_tx.h> 52 #include <sys/zap.h> 53 #include <sys/zil.h> 54 #include <sys/ddt.h> 55 #include <sys/vdev_impl.h> 56 #include <sys/vdev_removal.h> 57 #include <sys/vdev_indirect_mapping.h> 58 #include <sys/vdev_indirect_births.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/metaslab.h> 62 #include <sys/metaslab_impl.h> 63 #include <sys/mmp.h> 64 #include <sys/uberblock_impl.h> 65 #include <sys/txg.h> 66 #include <sys/avl.h> 67 #include <sys/bpobj.h> 68 #include <sys/dmu_traverse.h> 69 #include <sys/dmu_objset.h> 70 #include <sys/unique.h> 71 #include <sys/dsl_pool.h> 72 #include <sys/dsl_dataset.h> 73 #include <sys/dsl_dir.h> 74 #include <sys/dsl_prop.h> 75 #include <sys/dsl_synctask.h> 76 #include <sys/fs/zfs.h> 77 #include <sys/arc.h> 78 #include <sys/callb.h> 79 #include <sys/systeminfo.h> 80 #include <sys/spa_boot.h> 81 #include <sys/zfs_ioctl.h> 82 #include <sys/dsl_scan.h> 83 #include <sys/zfeature.h> 84 #include <sys/dsl_destroy.h> 85 #include <sys/abd.h> 86 87 #ifdef _KERNEL 88 #include <sys/bootprops.h> 89 #include <sys/callb.h> 90 #include <sys/cpupart.h> 91 #include <sys/pool.h> 92 #include <sys/sysdc.h> 93 #include <sys/zone.h> 94 #endif /* _KERNEL */ 95 96 #include "zfs_prop.h" 97 #include "zfs_comutil.h" 98 99 /* 100 * The interval, in seconds, at which failed configuration cache file writes 101 * should be retried. 102 */ 103 int zfs_ccw_retry_interval = 300; 104 105 typedef enum zti_modes { 106 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 107 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 108 ZTI_MODE_NULL, /* don't create a taskq */ 109 ZTI_NMODES 110 } zti_modes_t; 111 112 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 113 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 114 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 115 116 #define ZTI_N(n) ZTI_P(n, 1) 117 #define ZTI_ONE ZTI_N(1) 118 119 typedef struct zio_taskq_info { 120 zti_modes_t zti_mode; 121 uint_t zti_value; 122 uint_t zti_count; 123 } zio_taskq_info_t; 124 125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 126 "issue", "issue_high", "intr", "intr_high" 127 }; 128 129 /* 130 * This table defines the taskq settings for each ZFS I/O type. When 131 * initializing a pool, we use this table to create an appropriately sized 132 * taskq. Some operations are low volume and therefore have a small, static 133 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 134 * macros. Other operations process a large amount of data; the ZTI_BATCH 135 * macro causes us to create a taskq oriented for throughput. Some operations 136 * are so high frequency and short-lived that the taskq itself can become a 137 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 138 * additional degree of parallelism specified by the number of threads per- 139 * taskq and the number of taskqs; when dispatching an event in this case, the 140 * particular taskq is chosen at random. 141 * 142 * The different taskq priorities are to handle the different contexts (issue 143 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 144 * need to be handled with minimum delay. 145 */ 146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 147 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 149 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 150 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 151 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 152 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 153 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 154 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 155 }; 156 157 static void spa_sync_version(void *arg, dmu_tx_t *tx); 158 static void spa_sync_props(void *arg, dmu_tx_t *tx); 159 static boolean_t spa_has_active_shared_spare(spa_t *spa); 160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 161 static void spa_vdev_resilver_done(spa_t *spa); 162 163 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 164 id_t zio_taskq_psrset_bind = PS_NONE; 165 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 166 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 167 168 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 169 extern int zfs_sync_pass_deferred_free; 170 171 /* 172 * Report any spa_load_verify errors found, but do not fail spa_load. 173 * This is used by zdb to analyze non-idle pools. 174 */ 175 boolean_t spa_load_verify_dryrun = B_FALSE; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * For debugging purposes: print out vdev tree during pool import. 185 */ 186 boolean_t spa_load_print_vdev_tree = B_FALSE; 187 188 /* 189 * A non-zero value for zfs_max_missing_tvds means that we allow importing 190 * pools with missing top-level vdevs. This is strictly intended for advanced 191 * pool recovery cases since missing data is almost inevitable. Pools with 192 * missing devices can only be imported read-only for safety reasons, and their 193 * fail-mode will be automatically set to "continue". 194 * 195 * With 1 missing vdev we should be able to import the pool and mount all 196 * datasets. User data that was not modified after the missing device has been 197 * added should be recoverable. This means that snapshots created prior to the 198 * addition of that device should be completely intact. 199 * 200 * With 2 missing vdevs, some datasets may fail to mount since there are 201 * dataset statistics that are stored as regular metadata. Some data might be 202 * recoverable if those vdevs were added recently. 203 * 204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 205 * may be missing entirely. Chances of data recovery are very low. Note that 206 * there are also risks of performing an inadvertent rewind as we might be 207 * missing all the vdevs with the latest uberblocks. 208 */ 209 uint64_t zfs_max_missing_tvds = 0; 210 211 /* 212 * The parameters below are similar to zfs_max_missing_tvds but are only 213 * intended for a preliminary open of the pool with an untrusted config which 214 * might be incomplete or out-dated. 215 * 216 * We are more tolerant for pools opened from a cachefile since we could have 217 * an out-dated cachefile where a device removal was not registered. 218 * We could have set the limit arbitrarily high but in the case where devices 219 * are really missing we would want to return the proper error codes; we chose 220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 221 * and we get a chance to retrieve the trusted config. 222 */ 223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 224 225 /* 226 * In the case where config was assembled by scanning device paths (/dev/dsks 227 * by default) we are less tolerant since all the existing devices should have 228 * been detected and we want spa_load to return the right error codes. 229 */ 230 uint64_t zfs_max_missing_tvds_scan = 0; 231 232 /* 233 * Interval in seconds at which to poll spare vdevs for health. 234 * Setting this to zero disables spare polling. 235 * Set to three hours by default. 236 */ 237 uint_t spa_spare_poll_interval_seconds = 60 * 60 * 3; 238 239 /* 240 * Debugging aid that pauses spa_sync() towards the end. 241 */ 242 boolean_t zfs_pause_spa_sync = B_FALSE; 243 244 /* 245 * ========================================================================== 246 * SPA properties routines 247 * ========================================================================== 248 */ 249 250 /* 251 * Add a (source=src, propname=propval) list to an nvlist. 252 */ 253 static void 254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 255 uint64_t intval, zprop_source_t src) 256 { 257 const char *propname = zpool_prop_to_name(prop); 258 nvlist_t *propval; 259 260 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 261 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 262 263 if (strval != NULL) 264 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 265 else 266 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 267 268 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 269 nvlist_free(propval); 270 } 271 272 /* 273 * Get property values from the spa configuration. 274 */ 275 static void 276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 277 { 278 vdev_t *rvd = spa->spa_root_vdev; 279 dsl_pool_t *pool = spa->spa_dsl_pool; 280 uint64_t size, alloc, cap, version; 281 zprop_source_t src = ZPROP_SRC_NONE; 282 spa_config_dirent_t *dp; 283 metaslab_class_t *mc = spa_normal_class(spa); 284 285 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 286 287 if (rvd != NULL) { 288 alloc = metaslab_class_get_alloc(mc); 289 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 290 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 291 292 size = metaslab_class_get_space(mc); 293 size += metaslab_class_get_space(spa_special_class(spa)); 294 size += metaslab_class_get_space(spa_dedup_class(spa)); 295 296 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 297 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 298 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 299 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 300 size - alloc, src); 301 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 302 spa->spa_checkpoint_info.sci_dspace, src); 303 304 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 305 metaslab_class_fragmentation(mc), src); 306 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 307 metaslab_class_expandable_space(mc), src); 308 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 309 (spa_mode(spa) == FREAD), src); 310 311 cap = (size == 0) ? 0 : (alloc * 100 / size); 312 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 313 314 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 315 ddt_get_pool_dedup_ratio(spa), src); 316 317 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 318 rvd->vdev_state, src); 319 320 version = spa_version(spa); 321 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 322 src = ZPROP_SRC_DEFAULT; 323 else 324 src = ZPROP_SRC_LOCAL; 325 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 326 } 327 328 if (pool != NULL) { 329 /* 330 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 331 * when opening pools before this version freedir will be NULL. 332 */ 333 if (pool->dp_free_dir != NULL) { 334 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 335 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 336 src); 337 } else { 338 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 339 NULL, 0, src); 340 } 341 342 if (pool->dp_leak_dir != NULL) { 343 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 344 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 345 src); 346 } else { 347 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 348 NULL, 0, src); 349 } 350 } 351 352 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 353 354 if (spa->spa_comment != NULL) { 355 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 356 0, ZPROP_SRC_LOCAL); 357 } 358 359 if (spa->spa_root != NULL) 360 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 361 0, ZPROP_SRC_LOCAL); 362 363 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 364 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 365 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 366 } else { 367 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 368 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 369 } 370 371 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 372 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 373 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 374 } else { 375 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 376 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 377 } 378 379 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 380 if (dp->scd_path == NULL) { 381 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 382 "none", 0, ZPROP_SRC_LOCAL); 383 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 384 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 385 dp->scd_path, 0, ZPROP_SRC_LOCAL); 386 } 387 } 388 } 389 390 /* 391 * Get zpool property values. 392 */ 393 int 394 spa_prop_get(spa_t *spa, nvlist_t **nvp) 395 { 396 objset_t *mos = spa->spa_meta_objset; 397 zap_cursor_t zc; 398 zap_attribute_t za; 399 int err; 400 401 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 402 403 mutex_enter(&spa->spa_props_lock); 404 405 /* 406 * Get properties from the spa config. 407 */ 408 spa_prop_get_config(spa, nvp); 409 410 /* If no pool property object, no more prop to get. */ 411 if (mos == NULL || spa->spa_pool_props_object == 0) { 412 mutex_exit(&spa->spa_props_lock); 413 return (0); 414 } 415 416 /* 417 * Get properties from the MOS pool property object. 418 */ 419 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 420 (err = zap_cursor_retrieve(&zc, &za)) == 0; 421 zap_cursor_advance(&zc)) { 422 uint64_t intval = 0; 423 char *strval = NULL; 424 zprop_source_t src = ZPROP_SRC_DEFAULT; 425 zpool_prop_t prop; 426 427 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 428 continue; 429 430 switch (za.za_integer_length) { 431 case 8: 432 /* integer property */ 433 if (za.za_first_integer != 434 zpool_prop_default_numeric(prop)) 435 src = ZPROP_SRC_LOCAL; 436 437 if (prop == ZPOOL_PROP_BOOTFS) { 438 dsl_pool_t *dp; 439 dsl_dataset_t *ds = NULL; 440 441 dp = spa_get_dsl(spa); 442 dsl_pool_config_enter(dp, FTAG); 443 err = dsl_dataset_hold_obj(dp, 444 za.za_first_integer, FTAG, &ds); 445 if (err != 0) { 446 dsl_pool_config_exit(dp, FTAG); 447 break; 448 } 449 450 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 451 KM_SLEEP); 452 dsl_dataset_name(ds, strval); 453 dsl_dataset_rele(ds, FTAG); 454 dsl_pool_config_exit(dp, FTAG); 455 } else { 456 strval = NULL; 457 intval = za.za_first_integer; 458 } 459 460 spa_prop_add_list(*nvp, prop, strval, intval, src); 461 462 if (strval != NULL) 463 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 464 465 break; 466 467 case 1: 468 /* string property */ 469 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 470 err = zap_lookup(mos, spa->spa_pool_props_object, 471 za.za_name, 1, za.za_num_integers, strval); 472 if (err) { 473 kmem_free(strval, za.za_num_integers); 474 break; 475 } 476 spa_prop_add_list(*nvp, prop, strval, 0, src); 477 kmem_free(strval, za.za_num_integers); 478 break; 479 480 default: 481 break; 482 } 483 } 484 zap_cursor_fini(&zc); 485 mutex_exit(&spa->spa_props_lock); 486 out: 487 if (err && err != ENOENT) { 488 nvlist_free(*nvp); 489 *nvp = NULL; 490 return (err); 491 } 492 493 return (0); 494 } 495 496 /* 497 * Validate the given pool properties nvlist and modify the list 498 * for the property values to be set. 499 */ 500 static int 501 spa_prop_validate(spa_t *spa, nvlist_t *props) 502 { 503 nvpair_t *elem; 504 int error = 0, reset_bootfs = 0; 505 uint64_t objnum = 0; 506 boolean_t has_feature = B_FALSE; 507 508 elem = NULL; 509 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 510 uint64_t intval; 511 char *strval, *slash, *check, *fname; 512 const char *propname = nvpair_name(elem); 513 zpool_prop_t prop = zpool_name_to_prop(propname); 514 515 switch (prop) { 516 case ZPOOL_PROP_INVAL: 517 if (!zpool_prop_feature(propname)) { 518 error = SET_ERROR(EINVAL); 519 break; 520 } 521 522 /* 523 * Sanitize the input. 524 */ 525 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 526 error = SET_ERROR(EINVAL); 527 break; 528 } 529 530 if (nvpair_value_uint64(elem, &intval) != 0) { 531 error = SET_ERROR(EINVAL); 532 break; 533 } 534 535 if (intval != 0) { 536 error = SET_ERROR(EINVAL); 537 break; 538 } 539 540 fname = strchr(propname, '@') + 1; 541 if (zfeature_lookup_name(fname, NULL) != 0) { 542 error = SET_ERROR(EINVAL); 543 break; 544 } 545 546 has_feature = B_TRUE; 547 break; 548 549 case ZPOOL_PROP_VERSION: 550 error = nvpair_value_uint64(elem, &intval); 551 if (!error && 552 (intval < spa_version(spa) || 553 intval > SPA_VERSION_BEFORE_FEATURES || 554 has_feature)) 555 error = SET_ERROR(EINVAL); 556 break; 557 558 case ZPOOL_PROP_DELEGATION: 559 case ZPOOL_PROP_AUTOREPLACE: 560 case ZPOOL_PROP_LISTSNAPS: 561 case ZPOOL_PROP_AUTOEXPAND: 562 case ZPOOL_PROP_AUTOTRIM: 563 error = nvpair_value_uint64(elem, &intval); 564 if (!error && intval > 1) 565 error = SET_ERROR(EINVAL); 566 break; 567 568 case ZPOOL_PROP_MULTIHOST: 569 error = nvpair_value_uint64(elem, &intval); 570 if (!error && intval > 1) 571 error = SET_ERROR(EINVAL); 572 573 if (!error && !spa_get_hostid()) 574 error = SET_ERROR(ENOTSUP); 575 576 break; 577 578 case ZPOOL_PROP_BOOTFS: 579 /* 580 * If the pool version is less than SPA_VERSION_BOOTFS, 581 * or the pool is still being created (version == 0), 582 * the bootfs property cannot be set. 583 */ 584 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 585 error = SET_ERROR(ENOTSUP); 586 break; 587 } 588 589 /* 590 * Make sure the vdev config is bootable 591 */ 592 if (!vdev_is_bootable(spa->spa_root_vdev)) { 593 error = SET_ERROR(ENOTSUP); 594 break; 595 } 596 597 reset_bootfs = 1; 598 599 error = nvpair_value_string(elem, &strval); 600 601 if (!error) { 602 objset_t *os; 603 uint64_t propval; 604 605 if (strval == NULL || strval[0] == '\0') { 606 objnum = zpool_prop_default_numeric( 607 ZPOOL_PROP_BOOTFS); 608 break; 609 } 610 611 error = dmu_objset_hold(strval, FTAG, &os); 612 if (error != 0) 613 break; 614 615 /* 616 * Must be ZPL, and its property settings 617 * must be supported. 618 */ 619 620 if (dmu_objset_type(os) != DMU_OST_ZFS) { 621 error = SET_ERROR(ENOTSUP); 622 } else if ((error = 623 dsl_prop_get_int_ds(dmu_objset_ds(os), 624 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 625 &propval)) == 0 && 626 !BOOTFS_COMPRESS_VALID(propval)) { 627 error = SET_ERROR(ENOTSUP); 628 } else { 629 objnum = dmu_objset_id(os); 630 } 631 dmu_objset_rele(os, FTAG); 632 } 633 break; 634 635 case ZPOOL_PROP_FAILUREMODE: 636 error = nvpair_value_uint64(elem, &intval); 637 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 638 intval > ZIO_FAILURE_MODE_PANIC)) 639 error = SET_ERROR(EINVAL); 640 641 /* 642 * This is a special case which only occurs when 643 * the pool has completely failed. This allows 644 * the user to change the in-core failmode property 645 * without syncing it out to disk (I/Os might 646 * currently be blocked). We do this by returning 647 * EIO to the caller (spa_prop_set) to trick it 648 * into thinking we encountered a property validation 649 * error. 650 */ 651 if (!error && spa_suspended(spa)) { 652 spa->spa_failmode = intval; 653 error = SET_ERROR(EIO); 654 } 655 break; 656 657 case ZPOOL_PROP_CACHEFILE: 658 if ((error = nvpair_value_string(elem, &strval)) != 0) 659 break; 660 661 if (strval[0] == '\0') 662 break; 663 664 if (strcmp(strval, "none") == 0) 665 break; 666 667 if (strval[0] != '/') { 668 error = SET_ERROR(EINVAL); 669 break; 670 } 671 672 slash = strrchr(strval, '/'); 673 ASSERT(slash != NULL); 674 675 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 676 strcmp(slash, "/..") == 0) 677 error = SET_ERROR(EINVAL); 678 break; 679 680 case ZPOOL_PROP_COMMENT: 681 if ((error = nvpair_value_string(elem, &strval)) != 0) 682 break; 683 for (check = strval; *check != '\0'; check++) { 684 /* 685 * The kernel doesn't have an easy isprint() 686 * check. For this kernel check, we merely 687 * check ASCII apart from DEL. Fix this if 688 * there is an easy-to-use kernel isprint(). 689 */ 690 if (*check >= 0x7f) { 691 error = SET_ERROR(EINVAL); 692 break; 693 } 694 } 695 if (strlen(strval) > ZPROP_MAX_COMMENT) 696 error = E2BIG; 697 break; 698 699 case ZPOOL_PROP_DEDUPDITTO: 700 if (spa_version(spa) < SPA_VERSION_DEDUP) 701 error = SET_ERROR(ENOTSUP); 702 else 703 error = nvpair_value_uint64(elem, &intval); 704 if (error == 0 && 705 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 706 error = SET_ERROR(EINVAL); 707 break; 708 } 709 710 if (error) 711 break; 712 } 713 714 if (!error && reset_bootfs) { 715 error = nvlist_remove(props, 716 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 717 718 if (!error) { 719 error = nvlist_add_uint64(props, 720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 721 } 722 } 723 724 return (error); 725 } 726 727 void 728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 729 { 730 char *cachefile; 731 spa_config_dirent_t *dp; 732 733 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 734 &cachefile) != 0) 735 return; 736 737 dp = kmem_alloc(sizeof (spa_config_dirent_t), 738 KM_SLEEP); 739 740 if (cachefile[0] == '\0') 741 dp->scd_path = spa_strdup(spa_config_path); 742 else if (strcmp(cachefile, "none") == 0) 743 dp->scd_path = NULL; 744 else 745 dp->scd_path = spa_strdup(cachefile); 746 747 list_insert_head(&spa->spa_config_list, dp); 748 if (need_sync) 749 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 750 } 751 752 int 753 spa_prop_set(spa_t *spa, nvlist_t *nvp) 754 { 755 int error; 756 nvpair_t *elem = NULL; 757 boolean_t need_sync = B_FALSE; 758 759 if ((error = spa_prop_validate(spa, nvp)) != 0) 760 return (error); 761 762 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 763 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 764 765 if (prop == ZPOOL_PROP_CACHEFILE || 766 prop == ZPOOL_PROP_ALTROOT || 767 prop == ZPOOL_PROP_READONLY) 768 continue; 769 770 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 771 uint64_t ver; 772 773 if (prop == ZPOOL_PROP_VERSION) { 774 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 775 } else { 776 ASSERT(zpool_prop_feature(nvpair_name(elem))); 777 ver = SPA_VERSION_FEATURES; 778 need_sync = B_TRUE; 779 } 780 781 /* Save time if the version is already set. */ 782 if (ver == spa_version(spa)) 783 continue; 784 785 /* 786 * In addition to the pool directory object, we might 787 * create the pool properties object, the features for 788 * read object, the features for write object, or the 789 * feature descriptions object. 790 */ 791 error = dsl_sync_task(spa->spa_name, NULL, 792 spa_sync_version, &ver, 793 6, ZFS_SPACE_CHECK_RESERVED); 794 if (error) 795 return (error); 796 continue; 797 } 798 799 need_sync = B_TRUE; 800 break; 801 } 802 803 if (need_sync) { 804 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 805 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 806 } 807 808 return (0); 809 } 810 811 /* 812 * If the bootfs property value is dsobj, clear it. 813 */ 814 void 815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 816 { 817 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 818 VERIFY(zap_remove(spa->spa_meta_objset, 819 spa->spa_pool_props_object, 820 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 821 spa->spa_bootfs = 0; 822 } 823 } 824 825 /*ARGSUSED*/ 826 static int 827 spa_change_guid_check(void *arg, dmu_tx_t *tx) 828 { 829 uint64_t *newguid = arg; 830 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 831 vdev_t *rvd = spa->spa_root_vdev; 832 uint64_t vdev_state; 833 834 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 835 int error = (spa_has_checkpoint(spa)) ? 836 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 837 return (SET_ERROR(error)); 838 } 839 840 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 841 vdev_state = rvd->vdev_state; 842 spa_config_exit(spa, SCL_STATE, FTAG); 843 844 if (vdev_state != VDEV_STATE_HEALTHY) 845 return (SET_ERROR(ENXIO)); 846 847 ASSERT3U(spa_guid(spa), !=, *newguid); 848 849 return (0); 850 } 851 852 static void 853 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 854 { 855 uint64_t *newguid = arg; 856 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 857 uint64_t oldguid; 858 vdev_t *rvd = spa->spa_root_vdev; 859 860 oldguid = spa_guid(spa); 861 862 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 863 rvd->vdev_guid = *newguid; 864 rvd->vdev_guid_sum += (*newguid - oldguid); 865 vdev_config_dirty(rvd); 866 spa_config_exit(spa, SCL_STATE, FTAG); 867 868 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 869 oldguid, *newguid); 870 } 871 872 /* 873 * Change the GUID for the pool. This is done so that we can later 874 * re-import a pool built from a clone of our own vdevs. We will modify 875 * the root vdev's guid, our own pool guid, and then mark all of our 876 * vdevs dirty. Note that we must make sure that all our vdevs are 877 * online when we do this, or else any vdevs that weren't present 878 * would be orphaned from our pool. We are also going to issue a 879 * sysevent to update any watchers. 880 */ 881 int 882 spa_change_guid(spa_t *spa) 883 { 884 int error; 885 uint64_t guid; 886 887 mutex_enter(&spa->spa_vdev_top_lock); 888 mutex_enter(&spa_namespace_lock); 889 guid = spa_generate_guid(NULL); 890 891 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 892 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 893 894 if (error == 0) { 895 spa_write_cachefile(spa, B_FALSE, B_TRUE); 896 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 897 } 898 899 mutex_exit(&spa_namespace_lock); 900 mutex_exit(&spa->spa_vdev_top_lock); 901 902 return (error); 903 } 904 905 /* 906 * ========================================================================== 907 * SPA state manipulation (open/create/destroy/import/export) 908 * ========================================================================== 909 */ 910 911 static int 912 spa_error_entry_compare(const void *a, const void *b) 913 { 914 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 915 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 916 int ret; 917 918 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 919 sizeof (zbookmark_phys_t)); 920 921 return (TREE_ISIGN(ret)); 922 } 923 924 /* 925 * Utility function which retrieves copies of the current logs and 926 * re-initializes them in the process. 927 */ 928 void 929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 930 { 931 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 932 933 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 934 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 935 936 avl_create(&spa->spa_errlist_scrub, 937 spa_error_entry_compare, sizeof (spa_error_entry_t), 938 offsetof(spa_error_entry_t, se_avl)); 939 avl_create(&spa->spa_errlist_last, 940 spa_error_entry_compare, sizeof (spa_error_entry_t), 941 offsetof(spa_error_entry_t, se_avl)); 942 } 943 944 static void 945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 946 { 947 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 948 enum zti_modes mode = ztip->zti_mode; 949 uint_t value = ztip->zti_value; 950 uint_t count = ztip->zti_count; 951 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 952 char name[32]; 953 uint_t flags = 0; 954 boolean_t batch = B_FALSE; 955 956 if (mode == ZTI_MODE_NULL) { 957 tqs->stqs_count = 0; 958 tqs->stqs_taskq = NULL; 959 return; 960 } 961 962 ASSERT3U(count, >, 0); 963 964 tqs->stqs_count = count; 965 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 966 967 switch (mode) { 968 case ZTI_MODE_FIXED: 969 ASSERT3U(value, >=, 1); 970 value = MAX(value, 1); 971 break; 972 973 case ZTI_MODE_BATCH: 974 batch = B_TRUE; 975 flags |= TASKQ_THREADS_CPU_PCT; 976 value = zio_taskq_batch_pct; 977 break; 978 979 default: 980 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 981 "spa_activate()", 982 zio_type_name[t], zio_taskq_types[q], mode, value); 983 break; 984 } 985 986 for (uint_t i = 0; i < count; i++) { 987 taskq_t *tq; 988 989 if (count > 1) { 990 (void) snprintf(name, sizeof (name), "%s_%s_%u", 991 zio_type_name[t], zio_taskq_types[q], i); 992 } else { 993 (void) snprintf(name, sizeof (name), "%s_%s", 994 zio_type_name[t], zio_taskq_types[q]); 995 } 996 997 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 998 if (batch) 999 flags |= TASKQ_DC_BATCH; 1000 1001 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1002 spa->spa_proc, zio_taskq_basedc, flags); 1003 } else { 1004 pri_t pri = maxclsyspri; 1005 /* 1006 * The write issue taskq can be extremely CPU 1007 * intensive. Run it at slightly lower priority 1008 * than the other taskqs. 1009 */ 1010 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 1011 pri--; 1012 1013 tq = taskq_create_proc(name, value, pri, 50, 1014 INT_MAX, spa->spa_proc, flags); 1015 } 1016 1017 tqs->stqs_taskq[i] = tq; 1018 } 1019 } 1020 1021 static void 1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1023 { 1024 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1025 1026 if (tqs->stqs_taskq == NULL) { 1027 ASSERT0(tqs->stqs_count); 1028 return; 1029 } 1030 1031 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1032 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1033 taskq_destroy(tqs->stqs_taskq[i]); 1034 } 1035 1036 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1037 tqs->stqs_taskq = NULL; 1038 } 1039 1040 /* 1041 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1042 * Note that a type may have multiple discrete taskqs to avoid lock contention 1043 * on the taskq itself. In that case we choose which taskq at random by using 1044 * the low bits of gethrtime(). 1045 */ 1046 void 1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1048 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1049 { 1050 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1051 taskq_t *tq; 1052 1053 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1054 ASSERT3U(tqs->stqs_count, !=, 0); 1055 1056 if (tqs->stqs_count == 1) { 1057 tq = tqs->stqs_taskq[0]; 1058 } else { 1059 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1060 } 1061 1062 taskq_dispatch_ent(tq, func, arg, flags, ent); 1063 } 1064 1065 static void 1066 spa_create_zio_taskqs(spa_t *spa) 1067 { 1068 for (int t = 0; t < ZIO_TYPES; t++) { 1069 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1070 spa_taskqs_init(spa, t, q); 1071 } 1072 } 1073 } 1074 1075 #ifdef _KERNEL 1076 static void 1077 spa_thread(void *arg) 1078 { 1079 callb_cpr_t cprinfo; 1080 1081 spa_t *spa = arg; 1082 user_t *pu = PTOU(curproc); 1083 1084 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1085 spa->spa_name); 1086 1087 ASSERT(curproc != &p0); 1088 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1089 "zpool-%s", spa->spa_name); 1090 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1091 1092 /* bind this thread to the requested psrset */ 1093 if (zio_taskq_psrset_bind != PS_NONE) { 1094 pool_lock(); 1095 mutex_enter(&cpu_lock); 1096 mutex_enter(&pidlock); 1097 mutex_enter(&curproc->p_lock); 1098 1099 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1100 0, NULL, NULL) == 0) { 1101 curthread->t_bind_pset = zio_taskq_psrset_bind; 1102 } else { 1103 cmn_err(CE_WARN, 1104 "Couldn't bind process for zfs pool \"%s\" to " 1105 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1106 } 1107 1108 mutex_exit(&curproc->p_lock); 1109 mutex_exit(&pidlock); 1110 mutex_exit(&cpu_lock); 1111 pool_unlock(); 1112 } 1113 1114 if (zio_taskq_sysdc) { 1115 sysdc_thread_enter(curthread, 100, 0); 1116 } 1117 1118 spa->spa_proc = curproc; 1119 spa->spa_did = curthread->t_did; 1120 1121 spa_create_zio_taskqs(spa); 1122 1123 mutex_enter(&spa->spa_proc_lock); 1124 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1125 1126 spa->spa_proc_state = SPA_PROC_ACTIVE; 1127 cv_broadcast(&spa->spa_proc_cv); 1128 1129 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1130 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1133 1134 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1135 spa->spa_proc_state = SPA_PROC_GONE; 1136 spa->spa_proc = &p0; 1137 cv_broadcast(&spa->spa_proc_cv); 1138 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1139 1140 mutex_enter(&curproc->p_lock); 1141 lwp_exit(); 1142 } 1143 #endif 1144 1145 /* 1146 * Activate an uninitialized pool. 1147 */ 1148 static void 1149 spa_activate(spa_t *spa, int mode) 1150 { 1151 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1152 1153 spa->spa_state = POOL_STATE_ACTIVE; 1154 spa->spa_mode = mode; 1155 1156 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1157 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1158 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1159 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1160 1161 /* Try to create a covering process */ 1162 mutex_enter(&spa->spa_proc_lock); 1163 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1164 ASSERT(spa->spa_proc == &p0); 1165 spa->spa_did = 0; 1166 1167 /* Only create a process if we're going to be around a while. */ 1168 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1169 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1170 NULL, 0) == 0) { 1171 spa->spa_proc_state = SPA_PROC_CREATED; 1172 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1173 cv_wait(&spa->spa_proc_cv, 1174 &spa->spa_proc_lock); 1175 } 1176 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1177 ASSERT(spa->spa_proc != &p0); 1178 ASSERT(spa->spa_did != 0); 1179 } else { 1180 #ifdef _KERNEL 1181 cmn_err(CE_WARN, 1182 "Couldn't create process for zfs pool \"%s\"\n", 1183 spa->spa_name); 1184 #endif 1185 } 1186 } 1187 mutex_exit(&spa->spa_proc_lock); 1188 1189 /* If we didn't create a process, we need to create our taskqs. */ 1190 if (spa->spa_proc == &p0) { 1191 spa_create_zio_taskqs(spa); 1192 } 1193 1194 for (size_t i = 0; i < TXG_SIZE; i++) { 1195 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1196 ZIO_FLAG_CANFAIL); 1197 } 1198 1199 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1200 offsetof(vdev_t, vdev_config_dirty_node)); 1201 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1202 offsetof(objset_t, os_evicting_node)); 1203 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1204 offsetof(vdev_t, vdev_state_dirty_node)); 1205 1206 txg_list_create(&spa->spa_vdev_txg_list, spa, 1207 offsetof(struct vdev, vdev_txg_node)); 1208 1209 avl_create(&spa->spa_errlist_scrub, 1210 spa_error_entry_compare, sizeof (spa_error_entry_t), 1211 offsetof(spa_error_entry_t, se_avl)); 1212 avl_create(&spa->spa_errlist_last, 1213 spa_error_entry_compare, sizeof (spa_error_entry_t), 1214 offsetof(spa_error_entry_t, se_avl)); 1215 1216 spa_keystore_init(&spa->spa_keystore); 1217 1218 /* 1219 * The taskq to upgrade datasets in this pool. Currently used by 1220 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1221 */ 1222 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus, 1223 minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1224 } 1225 1226 /* 1227 * Opposite of spa_activate(). 1228 */ 1229 static void 1230 spa_deactivate(spa_t *spa) 1231 { 1232 ASSERT(spa->spa_sync_on == B_FALSE); 1233 ASSERT(spa->spa_dsl_pool == NULL); 1234 ASSERT(spa->spa_root_vdev == NULL); 1235 ASSERT(spa->spa_async_zio_root == NULL); 1236 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1237 1238 spa_evicting_os_wait(spa); 1239 1240 if (spa->spa_upgrade_taskq) { 1241 taskq_destroy(spa->spa_upgrade_taskq); 1242 spa->spa_upgrade_taskq = NULL; 1243 } 1244 1245 txg_list_destroy(&spa->spa_vdev_txg_list); 1246 1247 list_destroy(&spa->spa_config_dirty_list); 1248 list_destroy(&spa->spa_evicting_os_list); 1249 list_destroy(&spa->spa_state_dirty_list); 1250 1251 for (int t = 0; t < ZIO_TYPES; t++) { 1252 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1253 spa_taskqs_fini(spa, t, q); 1254 } 1255 } 1256 1257 for (size_t i = 0; i < TXG_SIZE; i++) { 1258 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1259 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1260 spa->spa_txg_zio[i] = NULL; 1261 } 1262 1263 metaslab_class_destroy(spa->spa_normal_class); 1264 spa->spa_normal_class = NULL; 1265 1266 metaslab_class_destroy(spa->spa_log_class); 1267 spa->spa_log_class = NULL; 1268 1269 metaslab_class_destroy(spa->spa_special_class); 1270 spa->spa_special_class = NULL; 1271 1272 metaslab_class_destroy(spa->spa_dedup_class); 1273 spa->spa_dedup_class = NULL; 1274 1275 /* 1276 * If this was part of an import or the open otherwise failed, we may 1277 * still have errors left in the queues. Empty them just in case. 1278 */ 1279 spa_errlog_drain(spa); 1280 avl_destroy(&spa->spa_errlist_scrub); 1281 avl_destroy(&spa->spa_errlist_last); 1282 1283 spa_keystore_fini(&spa->spa_keystore); 1284 1285 spa->spa_state = POOL_STATE_UNINITIALIZED; 1286 1287 mutex_enter(&spa->spa_proc_lock); 1288 if (spa->spa_proc_state != SPA_PROC_NONE) { 1289 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1290 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1291 cv_broadcast(&spa->spa_proc_cv); 1292 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1293 ASSERT(spa->spa_proc != &p0); 1294 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1295 } 1296 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1297 spa->spa_proc_state = SPA_PROC_NONE; 1298 } 1299 ASSERT(spa->spa_proc == &p0); 1300 mutex_exit(&spa->spa_proc_lock); 1301 1302 /* 1303 * We want to make sure spa_thread() has actually exited the ZFS 1304 * module, so that the module can't be unloaded out from underneath 1305 * it. 1306 */ 1307 if (spa->spa_did != 0) { 1308 thread_join(spa->spa_did); 1309 spa->spa_did = 0; 1310 } 1311 } 1312 1313 /* 1314 * Verify a pool configuration, and construct the vdev tree appropriately. This 1315 * will create all the necessary vdevs in the appropriate layout, with each vdev 1316 * in the CLOSED state. This will prep the pool before open/creation/import. 1317 * All vdev validation is done by the vdev_alloc() routine. 1318 */ 1319 static int 1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1321 uint_t id, int atype) 1322 { 1323 nvlist_t **child; 1324 uint_t children; 1325 int error; 1326 1327 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1328 return (error); 1329 1330 if ((*vdp)->vdev_ops->vdev_op_leaf) 1331 return (0); 1332 1333 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1334 &child, &children); 1335 1336 if (error == ENOENT) 1337 return (0); 1338 1339 if (error) { 1340 vdev_free(*vdp); 1341 *vdp = NULL; 1342 return (SET_ERROR(EINVAL)); 1343 } 1344 1345 for (int c = 0; c < children; c++) { 1346 vdev_t *vd; 1347 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1348 atype)) != 0) { 1349 vdev_free(*vdp); 1350 *vdp = NULL; 1351 return (error); 1352 } 1353 } 1354 1355 ASSERT(*vdp != NULL); 1356 1357 return (0); 1358 } 1359 1360 static boolean_t 1361 spa_should_flush_logs_on_unload(spa_t *spa) 1362 { 1363 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1364 return (B_FALSE); 1365 1366 if (!spa_writeable(spa)) 1367 return (B_FALSE); 1368 1369 if (!spa->spa_sync_on) 1370 return (B_FALSE); 1371 1372 if (spa_state(spa) != POOL_STATE_EXPORTED) 1373 return (B_FALSE); 1374 1375 if (zfs_keep_log_spacemaps_at_export) 1376 return (B_FALSE); 1377 1378 return (B_TRUE); 1379 } 1380 1381 /* 1382 * Opens a transaction that will set the flag that will instruct 1383 * spa_sync to attempt to flush all the metaslabs for that txg. 1384 */ 1385 static void 1386 spa_unload_log_sm_flush_all(spa_t *spa) 1387 { 1388 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1389 1390 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1391 1392 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1393 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1394 1395 dmu_tx_commit(tx); 1396 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1397 } 1398 1399 static void 1400 spa_unload_log_sm_metadata(spa_t *spa) 1401 { 1402 void *cookie = NULL; 1403 spa_log_sm_t *sls; 1404 1405 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1406 &cookie)) != NULL) { 1407 VERIFY0(sls->sls_mscount); 1408 kmem_free(sls, sizeof (spa_log_sm_t)); 1409 } 1410 1411 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1412 e != NULL; e = list_head(&spa->spa_log_summary)) { 1413 VERIFY0(e->lse_mscount); 1414 list_remove(&spa->spa_log_summary, e); 1415 kmem_free(e, sizeof (log_summary_entry_t)); 1416 } 1417 1418 spa->spa_unflushed_stats.sus_nblocks = 0; 1419 spa->spa_unflushed_stats.sus_memused = 0; 1420 spa->spa_unflushed_stats.sus_blocklimit = 0; 1421 } 1422 1423 /* 1424 * Opposite of spa_load(). 1425 */ 1426 static void 1427 spa_unload(spa_t *spa) 1428 { 1429 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1430 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1431 1432 spa_import_progress_remove(spa); 1433 spa_load_note(spa, "UNLOADING"); 1434 1435 /* 1436 * If the log space map feature is enabled and the pool is getting 1437 * exported (but not destroyed), we want to spend some time flushing 1438 * as many metaslabs as we can in an attempt to destroy log space 1439 * maps and save import time. 1440 */ 1441 if (spa_should_flush_logs_on_unload(spa)) 1442 spa_unload_log_sm_flush_all(spa); 1443 1444 /* 1445 * Stop async tasks. 1446 */ 1447 spa_async_suspend(spa); 1448 1449 if (spa->spa_root_vdev) { 1450 vdev_t *root_vdev = spa->spa_root_vdev; 1451 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); 1452 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1453 vdev_autotrim_stop_all(spa); 1454 } 1455 1456 /* 1457 * Stop syncing. 1458 */ 1459 if (spa->spa_sync_on) { 1460 txg_sync_stop(spa->spa_dsl_pool); 1461 spa->spa_sync_on = B_FALSE; 1462 } 1463 1464 /* 1465 * This ensures that there is no async metaslab prefetching 1466 * while we attempt to unload the spa. 1467 */ 1468 if (spa->spa_root_vdev != NULL) { 1469 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1470 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1471 if (vc->vdev_mg != NULL) 1472 taskq_wait(vc->vdev_mg->mg_taskq); 1473 } 1474 } 1475 1476 if (spa->spa_mmp.mmp_thread) 1477 mmp_thread_stop(spa); 1478 1479 /* 1480 * Wait for any outstanding async I/O to complete. 1481 */ 1482 if (spa->spa_async_zio_root != NULL) { 1483 for (int i = 0; i < max_ncpus; i++) 1484 (void) zio_wait(spa->spa_async_zio_root[i]); 1485 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1486 spa->spa_async_zio_root = NULL; 1487 } 1488 1489 if (spa->spa_vdev_removal != NULL) { 1490 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1491 spa->spa_vdev_removal = NULL; 1492 } 1493 1494 if (spa->spa_condense_zthr != NULL) { 1495 zthr_destroy(spa->spa_condense_zthr); 1496 spa->spa_condense_zthr = NULL; 1497 } 1498 1499 if (spa->spa_checkpoint_discard_zthr != NULL) { 1500 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1501 spa->spa_checkpoint_discard_zthr = NULL; 1502 } 1503 1504 spa_condense_fini(spa); 1505 1506 bpobj_close(&spa->spa_deferred_bpobj); 1507 1508 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1509 1510 /* 1511 * Close all vdevs. 1512 */ 1513 if (spa->spa_root_vdev) 1514 vdev_free(spa->spa_root_vdev); 1515 ASSERT(spa->spa_root_vdev == NULL); 1516 1517 /* 1518 * Close the dsl pool. 1519 */ 1520 if (spa->spa_dsl_pool) { 1521 dsl_pool_close(spa->spa_dsl_pool); 1522 spa->spa_dsl_pool = NULL; 1523 spa->spa_meta_objset = NULL; 1524 } 1525 1526 ddt_unload(spa); 1527 spa_unload_log_sm_metadata(spa); 1528 1529 /* 1530 * Drop and purge level 2 cache 1531 */ 1532 spa_l2cache_drop(spa); 1533 1534 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1535 vdev_free(spa->spa_spares.sav_vdevs[i]); 1536 if (spa->spa_spares.sav_vdevs) { 1537 kmem_free(spa->spa_spares.sav_vdevs, 1538 spa->spa_spares.sav_count * sizeof (void *)); 1539 spa->spa_spares.sav_vdevs = NULL; 1540 } 1541 if (spa->spa_spares.sav_config) { 1542 nvlist_free(spa->spa_spares.sav_config); 1543 spa->spa_spares.sav_config = NULL; 1544 } 1545 spa->spa_spares.sav_count = 0; 1546 1547 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1548 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1549 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1550 } 1551 if (spa->spa_l2cache.sav_vdevs) { 1552 kmem_free(spa->spa_l2cache.sav_vdevs, 1553 spa->spa_l2cache.sav_count * sizeof (void *)); 1554 spa->spa_l2cache.sav_vdevs = NULL; 1555 } 1556 if (spa->spa_l2cache.sav_config) { 1557 nvlist_free(spa->spa_l2cache.sav_config); 1558 spa->spa_l2cache.sav_config = NULL; 1559 } 1560 spa->spa_l2cache.sav_count = 0; 1561 1562 spa->spa_async_suspended = 0; 1563 1564 spa->spa_indirect_vdevs_loaded = B_FALSE; 1565 1566 if (spa->spa_comment != NULL) { 1567 spa_strfree(spa->spa_comment); 1568 spa->spa_comment = NULL; 1569 } 1570 1571 spa_config_exit(spa, SCL_ALL, spa); 1572 } 1573 1574 /* 1575 * Load (or re-load) the current list of vdevs describing the active spares for 1576 * this pool. When this is called, we have some form of basic information in 1577 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1578 * then re-generate a more complete list including status information. 1579 */ 1580 void 1581 spa_load_spares(spa_t *spa) 1582 { 1583 nvlist_t **spares; 1584 uint_t nspares; 1585 int i; 1586 vdev_t *vd, *tvd; 1587 1588 #ifndef _KERNEL 1589 /* 1590 * zdb opens both the current state of the pool and the 1591 * checkpointed state (if present), with a different spa_t. 1592 * 1593 * As spare vdevs are shared among open pools, we skip loading 1594 * them when we load the checkpointed state of the pool. 1595 */ 1596 if (!spa_writeable(spa)) 1597 return; 1598 #endif 1599 1600 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1601 1602 /* 1603 * First, close and free any existing spare vdevs. 1604 */ 1605 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1606 vd = spa->spa_spares.sav_vdevs[i]; 1607 1608 /* Undo the call to spa_activate() below */ 1609 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1610 B_FALSE)) != NULL && tvd->vdev_isspare) 1611 spa_spare_remove(tvd); 1612 vdev_close(vd); 1613 vdev_free(vd); 1614 } 1615 1616 if (spa->spa_spares.sav_vdevs) 1617 kmem_free(spa->spa_spares.sav_vdevs, 1618 spa->spa_spares.sav_count * sizeof (void *)); 1619 1620 if (spa->spa_spares.sav_config == NULL) 1621 nspares = 0; 1622 else 1623 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1624 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1625 1626 spa->spa_spares.sav_count = (int)nspares; 1627 spa->spa_spares.sav_vdevs = NULL; 1628 1629 if (nspares == 0) 1630 return; 1631 1632 /* 1633 * Construct the array of vdevs, opening them to get status in the 1634 * process. For each spare, there is potentially two different vdev_t 1635 * structures associated with it: one in the list of spares (used only 1636 * for basic validation purposes) and one in the active vdev 1637 * configuration (if it's spared in). During this phase we open and 1638 * validate each vdev on the spare list. If the vdev also exists in the 1639 * active configuration, then we also mark this vdev as an active spare. 1640 */ 1641 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1642 KM_SLEEP); 1643 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1644 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1645 VDEV_ALLOC_SPARE) == 0); 1646 ASSERT(vd != NULL); 1647 1648 spa->spa_spares.sav_vdevs[i] = vd; 1649 1650 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1651 B_FALSE)) != NULL) { 1652 if (!tvd->vdev_isspare) 1653 spa_spare_add(tvd); 1654 1655 /* 1656 * We only mark the spare active if we were successfully 1657 * able to load the vdev. Otherwise, importing a pool 1658 * with a bad active spare would result in strange 1659 * behavior, because multiple pool would think the spare 1660 * is actively in use. 1661 * 1662 * There is a vulnerability here to an equally bizarre 1663 * circumstance, where a dead active spare is later 1664 * brought back to life (onlined or otherwise). Given 1665 * the rarity of this scenario, and the extra complexity 1666 * it adds, we ignore the possibility. 1667 */ 1668 if (!vdev_is_dead(tvd)) 1669 spa_spare_activate(tvd); 1670 } 1671 1672 vd->vdev_top = vd; 1673 vd->vdev_aux = &spa->spa_spares; 1674 1675 if (vdev_open(vd) != 0) 1676 continue; 1677 1678 if (vdev_validate_aux(vd) == 0) 1679 spa_spare_add(vd); 1680 } 1681 1682 /* 1683 * Recompute the stashed list of spares, with status information 1684 * this time. 1685 */ 1686 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1687 DATA_TYPE_NVLIST_ARRAY) == 0); 1688 1689 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1690 KM_SLEEP); 1691 for (i = 0; i < spa->spa_spares.sav_count; i++) 1692 spares[i] = vdev_config_generate(spa, 1693 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1694 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1695 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1696 for (i = 0; i < spa->spa_spares.sav_count; i++) 1697 nvlist_free(spares[i]); 1698 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1699 } 1700 1701 /* 1702 * Load (or re-load) the current list of vdevs describing the active l2cache for 1703 * this pool. When this is called, we have some form of basic information in 1704 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1705 * then re-generate a more complete list including status information. 1706 * Devices which are already active have their details maintained, and are 1707 * not re-opened. 1708 */ 1709 void 1710 spa_load_l2cache(spa_t *spa) 1711 { 1712 nvlist_t **l2cache; 1713 uint_t nl2cache; 1714 int i, j, oldnvdevs; 1715 uint64_t guid; 1716 vdev_t *vd, **oldvdevs, **newvdevs; 1717 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1718 1719 #ifndef _KERNEL 1720 /* 1721 * zdb opens both the current state of the pool and the 1722 * checkpointed state (if present), with a different spa_t. 1723 * 1724 * As L2 caches are part of the ARC which is shared among open 1725 * pools, we skip loading them when we load the checkpointed 1726 * state of the pool. 1727 */ 1728 if (!spa_writeable(spa)) 1729 return; 1730 #endif 1731 1732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1733 1734 nl2cache = 0; 1735 newvdevs = NULL; 1736 if (sav->sav_config != NULL) { 1737 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1738 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1739 if (nl2cache > 0) { 1740 newvdevs = kmem_alloc( 1741 nl2cache * sizeof (void *), KM_SLEEP); 1742 } 1743 } 1744 1745 oldvdevs = sav->sav_vdevs; 1746 oldnvdevs = sav->sav_count; 1747 sav->sav_vdevs = NULL; 1748 sav->sav_count = 0; 1749 1750 /* 1751 * Process new nvlist of vdevs. 1752 */ 1753 for (i = 0; i < nl2cache; i++) { 1754 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1755 &guid) == 0); 1756 1757 newvdevs[i] = NULL; 1758 for (j = 0; j < oldnvdevs; j++) { 1759 vd = oldvdevs[j]; 1760 if (vd != NULL && guid == vd->vdev_guid) { 1761 /* 1762 * Retain previous vdev for add/remove ops. 1763 */ 1764 newvdevs[i] = vd; 1765 oldvdevs[j] = NULL; 1766 break; 1767 } 1768 } 1769 1770 if (newvdevs[i] == NULL) { 1771 /* 1772 * Create new vdev 1773 */ 1774 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1775 VDEV_ALLOC_L2CACHE) == 0); 1776 ASSERT(vd != NULL); 1777 newvdevs[i] = vd; 1778 1779 /* 1780 * Commit this vdev as an l2cache device, 1781 * even if it fails to open. 1782 */ 1783 spa_l2cache_add(vd); 1784 1785 vd->vdev_top = vd; 1786 vd->vdev_aux = sav; 1787 1788 spa_l2cache_activate(vd); 1789 1790 if (vdev_open(vd) != 0) 1791 continue; 1792 1793 (void) vdev_validate_aux(vd); 1794 1795 if (!vdev_is_dead(vd)) 1796 l2arc_add_vdev(spa, vd); 1797 } 1798 } 1799 1800 /* 1801 * Purge vdevs that were dropped 1802 */ 1803 for (i = 0; i < oldnvdevs; i++) { 1804 uint64_t pool; 1805 1806 vd = oldvdevs[i]; 1807 if (vd != NULL) { 1808 ASSERT(vd->vdev_isl2cache); 1809 1810 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1811 pool != 0ULL && l2arc_vdev_present(vd)) 1812 l2arc_remove_vdev(vd); 1813 vdev_clear_stats(vd); 1814 vdev_free(vd); 1815 } 1816 } 1817 1818 if (oldvdevs) 1819 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1820 1821 if (sav->sav_config == NULL) 1822 goto out; 1823 1824 sav->sav_vdevs = newvdevs; 1825 sav->sav_count = (int)nl2cache; 1826 1827 /* 1828 * Recompute the stashed list of l2cache devices, with status 1829 * information this time. 1830 */ 1831 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1832 DATA_TYPE_NVLIST_ARRAY) == 0); 1833 1834 l2cache = NULL; 1835 if (sav->sav_count > 0) { 1836 l2cache = kmem_alloc( 1837 sav->sav_count * sizeof (void *), KM_SLEEP); 1838 } 1839 for (i = 0; i < sav->sav_count; i++) 1840 l2cache[i] = vdev_config_generate(spa, 1841 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1842 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1843 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1844 out: 1845 for (i = 0; i < sav->sav_count; i++) 1846 nvlist_free(l2cache[i]); 1847 if (sav->sav_count) 1848 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1849 } 1850 1851 static int 1852 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1853 { 1854 dmu_buf_t *db; 1855 char *packed = NULL; 1856 size_t nvsize = 0; 1857 int error; 1858 *value = NULL; 1859 1860 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1861 if (error != 0) 1862 return (error); 1863 1864 nvsize = *(uint64_t *)db->db_data; 1865 dmu_buf_rele(db, FTAG); 1866 1867 packed = kmem_alloc(nvsize, KM_SLEEP); 1868 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1869 DMU_READ_PREFETCH); 1870 if (error == 0) 1871 error = nvlist_unpack(packed, nvsize, value, 0); 1872 kmem_free(packed, nvsize); 1873 1874 return (error); 1875 } 1876 1877 /* 1878 * Concrete top-level vdevs that are not missing and are not logs. At every 1879 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1880 */ 1881 static uint64_t 1882 spa_healthy_core_tvds(spa_t *spa) 1883 { 1884 vdev_t *rvd = spa->spa_root_vdev; 1885 uint64_t tvds = 0; 1886 1887 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1888 vdev_t *vd = rvd->vdev_child[i]; 1889 if (vd->vdev_islog) 1890 continue; 1891 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1892 tvds++; 1893 } 1894 1895 return (tvds); 1896 } 1897 1898 /* 1899 * Checks to see if the given vdev could not be opened, in which case we post a 1900 * sysevent to notify the autoreplace code that the device has been removed. 1901 */ 1902 static void 1903 spa_check_removed(vdev_t *vd) 1904 { 1905 for (uint64_t c = 0; c < vd->vdev_children; c++) 1906 spa_check_removed(vd->vdev_child[c]); 1907 1908 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1909 vdev_is_concrete(vd)) { 1910 zfs_post_autoreplace(vd->vdev_spa, vd); 1911 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1912 } 1913 } 1914 1915 static int 1916 spa_check_for_missing_logs(spa_t *spa) 1917 { 1918 vdev_t *rvd = spa->spa_root_vdev; 1919 1920 /* 1921 * If we're doing a normal import, then build up any additional 1922 * diagnostic information about missing log devices. 1923 * We'll pass this up to the user for further processing. 1924 */ 1925 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1926 nvlist_t **child, *nv; 1927 uint64_t idx = 0; 1928 1929 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1930 KM_SLEEP); 1931 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1932 1933 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1934 vdev_t *tvd = rvd->vdev_child[c]; 1935 1936 /* 1937 * We consider a device as missing only if it failed 1938 * to open (i.e. offline or faulted is not considered 1939 * as missing). 1940 */ 1941 if (tvd->vdev_islog && 1942 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1943 child[idx++] = vdev_config_generate(spa, tvd, 1944 B_FALSE, VDEV_CONFIG_MISSING); 1945 } 1946 } 1947 1948 if (idx > 0) { 1949 fnvlist_add_nvlist_array(nv, 1950 ZPOOL_CONFIG_CHILDREN, child, idx); 1951 fnvlist_add_nvlist(spa->spa_load_info, 1952 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1953 1954 for (uint64_t i = 0; i < idx; i++) 1955 nvlist_free(child[i]); 1956 } 1957 nvlist_free(nv); 1958 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1959 1960 if (idx > 0) { 1961 spa_load_failed(spa, "some log devices are missing"); 1962 vdev_dbgmsg_print_tree(rvd, 2); 1963 return (SET_ERROR(ENXIO)); 1964 } 1965 } else { 1966 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1967 vdev_t *tvd = rvd->vdev_child[c]; 1968 1969 if (tvd->vdev_islog && 1970 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1971 spa_set_log_state(spa, SPA_LOG_CLEAR); 1972 spa_load_note(spa, "some log devices are " 1973 "missing, ZIL is dropped."); 1974 vdev_dbgmsg_print_tree(rvd, 2); 1975 break; 1976 } 1977 } 1978 } 1979 1980 return (0); 1981 } 1982 1983 /* 1984 * Check for missing log devices 1985 */ 1986 static boolean_t 1987 spa_check_logs(spa_t *spa) 1988 { 1989 boolean_t rv = B_FALSE; 1990 dsl_pool_t *dp = spa_get_dsl(spa); 1991 1992 switch (spa->spa_log_state) { 1993 case SPA_LOG_MISSING: 1994 /* need to recheck in case slog has been restored */ 1995 case SPA_LOG_UNKNOWN: 1996 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1997 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1998 if (rv) 1999 spa_set_log_state(spa, SPA_LOG_MISSING); 2000 break; 2001 } 2002 return (rv); 2003 } 2004 2005 static boolean_t 2006 spa_passivate_log(spa_t *spa) 2007 { 2008 vdev_t *rvd = spa->spa_root_vdev; 2009 boolean_t slog_found = B_FALSE; 2010 2011 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2012 2013 if (!spa_has_slogs(spa)) 2014 return (B_FALSE); 2015 2016 for (int c = 0; c < rvd->vdev_children; c++) { 2017 vdev_t *tvd = rvd->vdev_child[c]; 2018 metaslab_group_t *mg = tvd->vdev_mg; 2019 2020 if (tvd->vdev_islog) { 2021 metaslab_group_passivate(mg); 2022 slog_found = B_TRUE; 2023 } 2024 } 2025 2026 return (slog_found); 2027 } 2028 2029 static void 2030 spa_activate_log(spa_t *spa) 2031 { 2032 vdev_t *rvd = spa->spa_root_vdev; 2033 2034 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2035 2036 for (int c = 0; c < rvd->vdev_children; c++) { 2037 vdev_t *tvd = rvd->vdev_child[c]; 2038 metaslab_group_t *mg = tvd->vdev_mg; 2039 2040 if (tvd->vdev_islog) 2041 metaslab_group_activate(mg); 2042 } 2043 } 2044 2045 int 2046 spa_reset_logs(spa_t *spa) 2047 { 2048 int error; 2049 2050 error = dmu_objset_find(spa_name(spa), zil_reset, 2051 NULL, DS_FIND_CHILDREN); 2052 if (error == 0) { 2053 /* 2054 * We successfully offlined the log device, sync out the 2055 * current txg so that the "stubby" block can be removed 2056 * by zil_sync(). 2057 */ 2058 txg_wait_synced(spa->spa_dsl_pool, 0); 2059 } 2060 return (error); 2061 } 2062 2063 static void 2064 spa_aux_check_removed(spa_aux_vdev_t *sav) 2065 { 2066 for (int i = 0; i < sav->sav_count; i++) 2067 spa_check_removed(sav->sav_vdevs[i]); 2068 } 2069 2070 void 2071 spa_claim_notify(zio_t *zio) 2072 { 2073 spa_t *spa = zio->io_spa; 2074 2075 if (zio->io_error) 2076 return; 2077 2078 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2079 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2080 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2081 mutex_exit(&spa->spa_props_lock); 2082 } 2083 2084 typedef struct spa_load_error { 2085 uint64_t sle_meta_count; 2086 uint64_t sle_data_count; 2087 } spa_load_error_t; 2088 2089 static void 2090 spa_load_verify_done(zio_t *zio) 2091 { 2092 blkptr_t *bp = zio->io_bp; 2093 spa_load_error_t *sle = zio->io_private; 2094 dmu_object_type_t type = BP_GET_TYPE(bp); 2095 int error = zio->io_error; 2096 spa_t *spa = zio->io_spa; 2097 2098 abd_free(zio->io_abd); 2099 if (error) { 2100 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2101 type != DMU_OT_INTENT_LOG) 2102 atomic_inc_64(&sle->sle_meta_count); 2103 else 2104 atomic_inc_64(&sle->sle_data_count); 2105 } 2106 2107 mutex_enter(&spa->spa_scrub_lock); 2108 spa->spa_load_verify_ios--; 2109 cv_broadcast(&spa->spa_scrub_io_cv); 2110 mutex_exit(&spa->spa_scrub_lock); 2111 } 2112 2113 /* 2114 * Maximum number of concurrent scrub i/os to create while verifying 2115 * a pool while importing it. 2116 */ 2117 int spa_load_verify_maxinflight = 10000; 2118 boolean_t spa_load_verify_metadata = B_TRUE; 2119 boolean_t spa_load_verify_data = B_TRUE; 2120 2121 /*ARGSUSED*/ 2122 static int 2123 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2124 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2125 { 2126 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2127 return (0); 2128 /* 2129 * Note: normally this routine will not be called if 2130 * spa_load_verify_metadata is not set. However, it may be useful 2131 * to manually set the flag after the traversal has begun. 2132 */ 2133 if (!spa_load_verify_metadata) 2134 return (0); 2135 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2136 return (0); 2137 2138 zio_t *rio = arg; 2139 size_t size = BP_GET_PSIZE(bp); 2140 2141 mutex_enter(&spa->spa_scrub_lock); 2142 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight) 2143 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2144 spa->spa_load_verify_ios++; 2145 mutex_exit(&spa->spa_scrub_lock); 2146 2147 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2148 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2149 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2150 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2151 return (0); 2152 } 2153 2154 /* ARGSUSED */ 2155 int 2156 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2157 { 2158 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2159 return (SET_ERROR(ENAMETOOLONG)); 2160 2161 return (0); 2162 } 2163 2164 static int 2165 spa_load_verify(spa_t *spa) 2166 { 2167 zio_t *rio; 2168 spa_load_error_t sle = { 0 }; 2169 zpool_load_policy_t policy; 2170 boolean_t verify_ok = B_FALSE; 2171 int error = 0; 2172 2173 zpool_get_load_policy(spa->spa_config, &policy); 2174 2175 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2176 return (0); 2177 2178 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2179 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2180 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2181 DS_FIND_CHILDREN); 2182 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2183 if (error != 0) 2184 return (error); 2185 2186 rio = zio_root(spa, NULL, &sle, 2187 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2188 2189 if (spa_load_verify_metadata) { 2190 if (spa->spa_extreme_rewind) { 2191 spa_load_note(spa, "performing a complete scan of the " 2192 "pool since extreme rewind is on. This may take " 2193 "a very long time.\n (spa_load_verify_data=%u, " 2194 "spa_load_verify_metadata=%u)", 2195 spa_load_verify_data, spa_load_verify_metadata); 2196 } 2197 error = traverse_pool(spa, spa->spa_verify_min_txg, 2198 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2199 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2200 } 2201 2202 (void) zio_wait(rio); 2203 2204 spa->spa_load_meta_errors = sle.sle_meta_count; 2205 spa->spa_load_data_errors = sle.sle_data_count; 2206 2207 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2208 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2209 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2210 (u_longlong_t)sle.sle_data_count); 2211 } 2212 2213 if (spa_load_verify_dryrun || 2214 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2215 sle.sle_data_count <= policy.zlp_maxdata)) { 2216 int64_t loss = 0; 2217 2218 verify_ok = B_TRUE; 2219 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2220 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2221 2222 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2223 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2224 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2225 VERIFY(nvlist_add_int64(spa->spa_load_info, 2226 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2227 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2228 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2229 } else { 2230 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2231 } 2232 2233 if (spa_load_verify_dryrun) 2234 return (0); 2235 2236 if (error) { 2237 if (error != ENXIO && error != EIO) 2238 error = SET_ERROR(EIO); 2239 return (error); 2240 } 2241 2242 return (verify_ok ? 0 : EIO); 2243 } 2244 2245 /* 2246 * Find a value in the pool props object. 2247 */ 2248 static void 2249 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2250 { 2251 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2252 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2253 } 2254 2255 /* 2256 * Find a value in the pool directory object. 2257 */ 2258 static int 2259 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2260 { 2261 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2262 name, sizeof (uint64_t), 1, val); 2263 2264 if (error != 0 && (error != ENOENT || log_enoent)) { 2265 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2266 "[error=%d]", name, error); 2267 } 2268 2269 return (error); 2270 } 2271 2272 static int 2273 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2274 { 2275 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2276 return (SET_ERROR(err)); 2277 } 2278 2279 static void 2280 spa_spawn_aux_threads(spa_t *spa) 2281 { 2282 ASSERT(spa_writeable(spa)); 2283 2284 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2285 2286 spa_start_indirect_condensing_thread(spa); 2287 2288 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2289 spa->spa_checkpoint_discard_zthr = 2290 zthr_create(spa_checkpoint_discard_thread_check, 2291 spa_checkpoint_discard_thread, spa); 2292 } 2293 2294 /* 2295 * Fix up config after a partly-completed split. This is done with the 2296 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2297 * pool have that entry in their config, but only the splitting one contains 2298 * a list of all the guids of the vdevs that are being split off. 2299 * 2300 * This function determines what to do with that list: either rejoin 2301 * all the disks to the pool, or complete the splitting process. To attempt 2302 * the rejoin, each disk that is offlined is marked online again, and 2303 * we do a reopen() call. If the vdev label for every disk that was 2304 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2305 * then we call vdev_split() on each disk, and complete the split. 2306 * 2307 * Otherwise we leave the config alone, with all the vdevs in place in 2308 * the original pool. 2309 */ 2310 static void 2311 spa_try_repair(spa_t *spa, nvlist_t *config) 2312 { 2313 uint_t extracted; 2314 uint64_t *glist; 2315 uint_t i, gcount; 2316 nvlist_t *nvl; 2317 vdev_t **vd; 2318 boolean_t attempt_reopen; 2319 2320 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2321 return; 2322 2323 /* check that the config is complete */ 2324 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2325 &glist, &gcount) != 0) 2326 return; 2327 2328 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2329 2330 /* attempt to online all the vdevs & validate */ 2331 attempt_reopen = B_TRUE; 2332 for (i = 0; i < gcount; i++) { 2333 if (glist[i] == 0) /* vdev is hole */ 2334 continue; 2335 2336 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2337 if (vd[i] == NULL) { 2338 /* 2339 * Don't bother attempting to reopen the disks; 2340 * just do the split. 2341 */ 2342 attempt_reopen = B_FALSE; 2343 } else { 2344 /* attempt to re-online it */ 2345 vd[i]->vdev_offline = B_FALSE; 2346 } 2347 } 2348 2349 if (attempt_reopen) { 2350 vdev_reopen(spa->spa_root_vdev); 2351 2352 /* check each device to see what state it's in */ 2353 for (extracted = 0, i = 0; i < gcount; i++) { 2354 if (vd[i] != NULL && 2355 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2356 break; 2357 ++extracted; 2358 } 2359 } 2360 2361 /* 2362 * If every disk has been moved to the new pool, or if we never 2363 * even attempted to look at them, then we split them off for 2364 * good. 2365 */ 2366 if (!attempt_reopen || gcount == extracted) { 2367 for (i = 0; i < gcount; i++) 2368 if (vd[i] != NULL) 2369 vdev_split(vd[i]); 2370 vdev_reopen(spa->spa_root_vdev); 2371 } 2372 2373 kmem_free(vd, gcount * sizeof (vdev_t *)); 2374 } 2375 2376 static int 2377 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2378 { 2379 char *ereport = FM_EREPORT_ZFS_POOL; 2380 int error; 2381 2382 spa->spa_load_state = state; 2383 (void) spa_import_progress_set_state(spa, spa_load_state(spa)); 2384 2385 gethrestime(&spa->spa_loaded_ts); 2386 error = spa_load_impl(spa, type, &ereport); 2387 2388 /* 2389 * Don't count references from objsets that are already closed 2390 * and are making their way through the eviction process. 2391 */ 2392 spa_evicting_os_wait(spa); 2393 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2394 if (error) { 2395 if (error != EEXIST) { 2396 spa->spa_loaded_ts.tv_sec = 0; 2397 spa->spa_loaded_ts.tv_nsec = 0; 2398 } 2399 if (error != EBADF) { 2400 (void) zfs_ereport_post(ereport, spa, 2401 NULL, NULL, NULL, 0, 0); 2402 } 2403 } 2404 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2405 spa->spa_ena = 0; 2406 2407 (void) spa_import_progress_set_state(spa, spa_load_state(spa)); 2408 2409 return (error); 2410 } 2411 2412 /* 2413 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2414 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2415 * spa's per-vdev ZAP list. 2416 */ 2417 static uint64_t 2418 vdev_count_verify_zaps(vdev_t *vd) 2419 { 2420 spa_t *spa = vd->vdev_spa; 2421 uint64_t total = 0; 2422 if (vd->vdev_top_zap != 0) { 2423 total++; 2424 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2425 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2426 } 2427 if (vd->vdev_leaf_zap != 0) { 2428 total++; 2429 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2430 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2431 } 2432 2433 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2434 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2435 } 2436 2437 return (total); 2438 } 2439 2440 /* 2441 * Determine whether the activity check is required. 2442 */ 2443 static boolean_t 2444 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2445 nvlist_t *config) 2446 { 2447 uint64_t state = 0; 2448 uint64_t hostid = 0; 2449 uint64_t tryconfig_txg = 0; 2450 uint64_t tryconfig_timestamp = 0; 2451 uint16_t tryconfig_mmp_seq = 0; 2452 nvlist_t *nvinfo; 2453 2454 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2455 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2456 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2457 &tryconfig_txg); 2458 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2459 &tryconfig_timestamp); 2460 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 2461 &tryconfig_mmp_seq); 2462 } 2463 2464 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2465 2466 /* 2467 * Disable the MMP activity check - This is used by zdb which 2468 * is intended to be used on potentially active pools. 2469 */ 2470 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2471 return (B_FALSE); 2472 2473 /* 2474 * Skip the activity check when the MMP feature is disabled. 2475 */ 2476 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2477 return (B_FALSE); 2478 2479 /* 2480 * If the tryconfig_ values are nonzero, they are the results of an 2481 * earlier tryimport. If they all match the uberblock we just found, 2482 * then the pool has not changed and we return false so we do not test 2483 * a second time. 2484 */ 2485 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2486 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 2487 tryconfig_mmp_seq && tryconfig_mmp_seq == 2488 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 2489 return (B_FALSE); 2490 2491 /* 2492 * Allow the activity check to be skipped when importing the pool 2493 * on the same host which last imported it. Since the hostid from 2494 * configuration may be stale use the one read from the label. 2495 */ 2496 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2497 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2498 2499 if (hostid == spa_get_hostid()) 2500 return (B_FALSE); 2501 2502 /* 2503 * Skip the activity test when the pool was cleanly exported. 2504 */ 2505 if (state != POOL_STATE_ACTIVE) 2506 return (B_FALSE); 2507 2508 return (B_TRUE); 2509 } 2510 2511 /* 2512 * Nanoseconds the activity check must watch for changes on-disk. 2513 */ 2514 static uint64_t 2515 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 2516 { 2517 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 2518 uint64_t multihost_interval = MSEC2NSEC( 2519 MMP_INTERVAL_OK(zfs_multihost_interval)); 2520 uint64_t import_delay = MAX(NANOSEC, import_intervals * 2521 multihost_interval); 2522 2523 /* 2524 * Local tunables determine a minimum duration except for the case 2525 * where we know when the remote host will suspend the pool if MMP 2526 * writes do not land. 2527 * 2528 * See Big Theory comment at the top of mmp.c for the reasoning behind 2529 * these cases and times. 2530 */ 2531 2532 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 2533 2534 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 2535 MMP_FAIL_INT(ub) > 0) { 2536 2537 /* MMP on remote host will suspend pool after failed writes */ 2538 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 2539 MMP_IMPORT_SAFETY_FACTOR / 100; 2540 2541 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 2542 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 2543 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), 2544 MMP_INTERVAL(ub), import_intervals); 2545 2546 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 2547 MMP_FAIL_INT(ub) == 0) { 2548 2549 /* MMP on remote host will never suspend pool */ 2550 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 2551 ub->ub_mmp_delay) * import_intervals); 2552 2553 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 2554 "mmp_interval=%llu ub_mmp_delay=%llu " 2555 "import_intervals=%u", import_delay, MMP_INTERVAL(ub), 2556 ub->ub_mmp_delay, import_intervals); 2557 2558 } else if (MMP_VALID(ub)) { 2559 /* 2560 * zfs-0.7 compatability case 2561 */ 2562 2563 import_delay = MAX(import_delay, (multihost_interval + 2564 ub->ub_mmp_delay) * import_intervals); 2565 2566 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 2567 "import_intervals=%u leaves=%u", import_delay, 2568 ub->ub_mmp_delay, import_intervals, 2569 vdev_count_leaves(spa)); 2570 } else { 2571 /* Using local tunings is the only reasonable option */ 2572 zfs_dbgmsg("pool last imported on non-MMP aware " 2573 "host using import_delay=%llu multihost_interval=%llu " 2574 "import_intervals=%u", import_delay, multihost_interval, 2575 import_intervals); 2576 } 2577 2578 return (import_delay); 2579 } 2580 2581 /* 2582 * Perform the import activity check. If the user canceled the import or 2583 * we detected activity then fail. 2584 */ 2585 static int 2586 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 2587 { 2588 uint64_t txg = ub->ub_txg; 2589 uint64_t timestamp = ub->ub_timestamp; 2590 uint64_t mmp_config = ub->ub_mmp_config; 2591 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 2592 uint64_t import_delay; 2593 hrtime_t import_expire; 2594 nvlist_t *mmp_label = NULL; 2595 vdev_t *rvd = spa->spa_root_vdev; 2596 kcondvar_t cv; 2597 kmutex_t mtx; 2598 int error = 0; 2599 2600 cv_init(&cv, NULL, CV_DEFAULT, NULL); 2601 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 2602 mutex_enter(&mtx); 2603 2604 /* 2605 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 2606 * during the earlier tryimport. If the txg recorded there is 0 then 2607 * the pool is known to be active on another host. 2608 * 2609 * Otherwise, the pool might be in use on another host. Check for 2610 * changes in the uberblocks on disk if necessary. 2611 */ 2612 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2613 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 2614 ZPOOL_CONFIG_LOAD_INFO); 2615 2616 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 2617 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 2618 vdev_uberblock_load(rvd, ub, &mmp_label); 2619 error = SET_ERROR(EREMOTEIO); 2620 goto out; 2621 } 2622 } 2623 2624 import_delay = spa_activity_check_duration(spa, ub); 2625 2626 /* Add a small random factor in case of simultaneous imports (0-25%) */ 2627 import_delay += import_delay * spa_get_random(250) / 1000; 2628 2629 import_expire = gethrtime() + import_delay; 2630 2631 while (gethrtime() < import_expire) { 2632 (void) spa_import_progress_set_mmp_check(spa, 2633 NSEC2SEC(import_expire - gethrtime())); 2634 2635 vdev_uberblock_load(rvd, ub, &mmp_label); 2636 2637 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 2638 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 2639 zfs_dbgmsg("multihost activity detected " 2640 "txg %llu ub_txg %llu " 2641 "timestamp %llu ub_timestamp %llu " 2642 "mmp_config %#llx ub_mmp_config %#llx", 2643 txg, ub->ub_txg, timestamp, ub->ub_timestamp, 2644 mmp_config, ub->ub_mmp_config); 2645 2646 error = SET_ERROR(EREMOTEIO); 2647 break; 2648 } 2649 2650 if (mmp_label) { 2651 nvlist_free(mmp_label); 2652 mmp_label = NULL; 2653 } 2654 2655 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 2656 if (error != -1) { 2657 error = SET_ERROR(EINTR); 2658 break; 2659 } 2660 error = 0; 2661 } 2662 2663 out: 2664 mutex_exit(&mtx); 2665 mutex_destroy(&mtx); 2666 cv_destroy(&cv); 2667 2668 /* 2669 * If the pool is determined to be active store the status in the 2670 * spa->spa_load_info nvlist. If the remote hostname or hostid are 2671 * available from configuration read from disk store them as well. 2672 * This allows 'zpool import' to generate a more useful message. 2673 * 2674 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 2675 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 2676 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 2677 */ 2678 if (error == EREMOTEIO) { 2679 char *hostname = "<unknown>"; 2680 uint64_t hostid = 0; 2681 2682 if (mmp_label) { 2683 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 2684 hostname = fnvlist_lookup_string(mmp_label, 2685 ZPOOL_CONFIG_HOSTNAME); 2686 fnvlist_add_string(spa->spa_load_info, 2687 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 2688 } 2689 2690 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 2691 hostid = fnvlist_lookup_uint64(mmp_label, 2692 ZPOOL_CONFIG_HOSTID); 2693 fnvlist_add_uint64(spa->spa_load_info, 2694 ZPOOL_CONFIG_MMP_HOSTID, hostid); 2695 } 2696 } 2697 2698 fnvlist_add_uint64(spa->spa_load_info, 2699 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 2700 fnvlist_add_uint64(spa->spa_load_info, 2701 ZPOOL_CONFIG_MMP_TXG, 0); 2702 2703 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 2704 } 2705 2706 if (mmp_label) 2707 nvlist_free(mmp_label); 2708 2709 return (error); 2710 } 2711 2712 static int 2713 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2714 { 2715 uint64_t hostid; 2716 char *hostname; 2717 uint64_t myhostid = 0; 2718 2719 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2720 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2721 hostname = fnvlist_lookup_string(mos_config, 2722 ZPOOL_CONFIG_HOSTNAME); 2723 2724 myhostid = zone_get_hostid(NULL); 2725 2726 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2727 cmn_err(CE_WARN, "pool '%s' could not be " 2728 "loaded as it was last accessed by " 2729 "another system (host: %s hostid: 0x%llx). " 2730 "See: http://illumos.org/msg/ZFS-8000-EY", 2731 spa_name(spa), hostname, (u_longlong_t)hostid); 2732 spa_load_failed(spa, "hostid verification failed: pool " 2733 "last accessed by host: %s (hostid: 0x%llx)", 2734 hostname, (u_longlong_t)hostid); 2735 return (SET_ERROR(EBADF)); 2736 } 2737 } 2738 2739 return (0); 2740 } 2741 2742 static int 2743 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2744 { 2745 int error = 0; 2746 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2747 int parse; 2748 vdev_t *rvd; 2749 uint64_t pool_guid; 2750 char *comment; 2751 2752 /* 2753 * Versioning wasn't explicitly added to the label until later, so if 2754 * it's not present treat it as the initial version. 2755 */ 2756 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2757 &spa->spa_ubsync.ub_version) != 0) 2758 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2759 2760 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2761 spa_load_failed(spa, "invalid config provided: '%s' missing", 2762 ZPOOL_CONFIG_POOL_GUID); 2763 return (SET_ERROR(EINVAL)); 2764 } 2765 2766 /* 2767 * If we are doing an import, ensure that the pool is not already 2768 * imported by checking if its pool guid already exists in the 2769 * spa namespace. 2770 * 2771 * The only case that we allow an already imported pool to be 2772 * imported again, is when the pool is checkpointed and we want to 2773 * look at its checkpointed state from userland tools like zdb. 2774 */ 2775 #ifdef _KERNEL 2776 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2777 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2778 spa_guid_exists(pool_guid, 0)) { 2779 #else 2780 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2781 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2782 spa_guid_exists(pool_guid, 0) && 2783 !spa_importing_readonly_checkpoint(spa)) { 2784 #endif 2785 spa_load_failed(spa, "a pool with guid %llu is already open", 2786 (u_longlong_t)pool_guid); 2787 return (SET_ERROR(EEXIST)); 2788 } 2789 2790 spa->spa_config_guid = pool_guid; 2791 2792 nvlist_free(spa->spa_load_info); 2793 spa->spa_load_info = fnvlist_alloc(); 2794 2795 ASSERT(spa->spa_comment == NULL); 2796 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2797 spa->spa_comment = spa_strdup(comment); 2798 2799 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2800 &spa->spa_config_txg); 2801 2802 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2803 spa->spa_config_splitting = fnvlist_dup(nvl); 2804 2805 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2806 spa_load_failed(spa, "invalid config provided: '%s' missing", 2807 ZPOOL_CONFIG_VDEV_TREE); 2808 return (SET_ERROR(EINVAL)); 2809 } 2810 2811 /* 2812 * Create "The Godfather" zio to hold all async IOs 2813 */ 2814 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2815 KM_SLEEP); 2816 for (int i = 0; i < max_ncpus; i++) { 2817 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2818 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2819 ZIO_FLAG_GODFATHER); 2820 } 2821 2822 /* 2823 * Parse the configuration into a vdev tree. We explicitly set the 2824 * value that will be returned by spa_version() since parsing the 2825 * configuration requires knowing the version number. 2826 */ 2827 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2828 parse = (type == SPA_IMPORT_EXISTING ? 2829 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2830 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2831 spa_config_exit(spa, SCL_ALL, FTAG); 2832 2833 if (error != 0) { 2834 spa_load_failed(spa, "unable to parse config [error=%d]", 2835 error); 2836 return (error); 2837 } 2838 2839 ASSERT(spa->spa_root_vdev == rvd); 2840 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2841 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2842 2843 if (type != SPA_IMPORT_ASSEMBLE) { 2844 ASSERT(spa_guid(spa) == pool_guid); 2845 } 2846 2847 return (0); 2848 } 2849 2850 /* 2851 * Recursively open all vdevs in the vdev tree. This function is called twice: 2852 * first with the untrusted config, then with the trusted config. 2853 */ 2854 static int 2855 spa_ld_open_vdevs(spa_t *spa) 2856 { 2857 int error = 0; 2858 2859 /* 2860 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2861 * missing/unopenable for the root vdev to be still considered openable. 2862 */ 2863 if (spa->spa_trust_config) { 2864 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2865 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2866 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2867 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2868 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2869 } else { 2870 spa->spa_missing_tvds_allowed = 0; 2871 } 2872 2873 spa->spa_missing_tvds_allowed = 2874 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2875 2876 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2877 error = vdev_open(spa->spa_root_vdev); 2878 spa_config_exit(spa, SCL_ALL, FTAG); 2879 2880 if (spa->spa_missing_tvds != 0) { 2881 spa_load_note(spa, "vdev tree has %lld missing top-level " 2882 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2883 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2884 /* 2885 * Although theoretically we could allow users to open 2886 * incomplete pools in RW mode, we'd need to add a lot 2887 * of extra logic (e.g. adjust pool space to account 2888 * for missing vdevs). 2889 * This limitation also prevents users from accidentally 2890 * opening the pool in RW mode during data recovery and 2891 * damaging it further. 2892 */ 2893 spa_load_note(spa, "pools with missing top-level " 2894 "vdevs can only be opened in read-only mode."); 2895 error = SET_ERROR(ENXIO); 2896 } else { 2897 spa_load_note(spa, "current settings allow for maximum " 2898 "%lld missing top-level vdevs at this stage.", 2899 (u_longlong_t)spa->spa_missing_tvds_allowed); 2900 } 2901 } 2902 if (error != 0) { 2903 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2904 error); 2905 } 2906 if (spa->spa_missing_tvds != 0 || error != 0) 2907 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2908 2909 return (error); 2910 } 2911 2912 /* 2913 * We need to validate the vdev labels against the configuration that 2914 * we have in hand. This function is called twice: first with an untrusted 2915 * config, then with a trusted config. The validation is more strict when the 2916 * config is trusted. 2917 */ 2918 static int 2919 spa_ld_validate_vdevs(spa_t *spa) 2920 { 2921 int error = 0; 2922 vdev_t *rvd = spa->spa_root_vdev; 2923 2924 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2925 error = vdev_validate(rvd); 2926 spa_config_exit(spa, SCL_ALL, FTAG); 2927 2928 if (error != 0) { 2929 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2930 return (error); 2931 } 2932 2933 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2934 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2935 "some vdevs"); 2936 vdev_dbgmsg_print_tree(rvd, 2); 2937 return (SET_ERROR(ENXIO)); 2938 } 2939 2940 return (0); 2941 } 2942 2943 static void 2944 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 2945 { 2946 spa->spa_state = POOL_STATE_ACTIVE; 2947 spa->spa_ubsync = spa->spa_uberblock; 2948 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2949 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2950 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2951 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2952 spa->spa_claim_max_txg = spa->spa_first_txg; 2953 spa->spa_prev_software_version = ub->ub_software_version; 2954 } 2955 2956 static int 2957 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2958 { 2959 vdev_t *rvd = spa->spa_root_vdev; 2960 nvlist_t *label; 2961 uberblock_t *ub = &spa->spa_uberblock; 2962 boolean_t activity_check = B_FALSE; 2963 2964 /* 2965 * If we are opening the checkpointed state of the pool by 2966 * rewinding to it, at this point we will have written the 2967 * checkpointed uberblock to the vdev labels, so searching 2968 * the labels will find the right uberblock. However, if 2969 * we are opening the checkpointed state read-only, we have 2970 * not modified the labels. Therefore, we must ignore the 2971 * labels and continue using the spa_uberblock that was set 2972 * by spa_ld_checkpoint_rewind. 2973 * 2974 * Note that it would be fine to ignore the labels when 2975 * rewinding (opening writeable) as well. However, if we 2976 * crash just after writing the labels, we will end up 2977 * searching the labels. Doing so in the common case means 2978 * that this code path gets exercised normally, rather than 2979 * just in the edge case. 2980 */ 2981 if (ub->ub_checkpoint_txg != 0 && 2982 spa_importing_readonly_checkpoint(spa)) { 2983 spa_ld_select_uberblock_done(spa, ub); 2984 return (0); 2985 } 2986 2987 /* 2988 * Find the best uberblock. 2989 */ 2990 vdev_uberblock_load(rvd, ub, &label); 2991 2992 /* 2993 * If we weren't able to find a single valid uberblock, return failure. 2994 */ 2995 if (ub->ub_txg == 0) { 2996 nvlist_free(label); 2997 spa_load_failed(spa, "no valid uberblock found"); 2998 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2999 } 3000 3001 if (spa->spa_load_max_txg != UINT64_MAX) { 3002 (void) spa_import_progress_set_max_txg(spa, 3003 (u_longlong_t)spa->spa_load_max_txg); 3004 } 3005 spa_load_note(spa, "using uberblock with txg=%llu", 3006 (u_longlong_t)ub->ub_txg); 3007 3008 /* 3009 * For pools which have the multihost property on determine if the 3010 * pool is truly inactive and can be safely imported. Prevent 3011 * hosts which don't have a hostid set from importing the pool. 3012 */ 3013 activity_check = spa_activity_check_required(spa, ub, label, 3014 spa->spa_config); 3015 if (activity_check) { 3016 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3017 spa_get_hostid() == 0) { 3018 nvlist_free(label); 3019 fnvlist_add_uint64(spa->spa_load_info, 3020 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3021 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3022 } 3023 3024 int error = spa_activity_check(spa, ub, spa->spa_config); 3025 if (error) { 3026 nvlist_free(label); 3027 return (error); 3028 } 3029 3030 fnvlist_add_uint64(spa->spa_load_info, 3031 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3032 fnvlist_add_uint64(spa->spa_load_info, 3033 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3034 fnvlist_add_uint16(spa->spa_load_info, 3035 ZPOOL_CONFIG_MMP_SEQ, 3036 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3037 } 3038 3039 /* 3040 * If the pool has an unsupported version we can't open it. 3041 */ 3042 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3043 nvlist_free(label); 3044 spa_load_failed(spa, "version %llu is not supported", 3045 (u_longlong_t)ub->ub_version); 3046 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3047 } 3048 3049 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3050 nvlist_t *features; 3051 3052 /* 3053 * If we weren't able to find what's necessary for reading the 3054 * MOS in the label, return failure. 3055 */ 3056 if (label == NULL) { 3057 spa_load_failed(spa, "label config unavailable"); 3058 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3059 ENXIO)); 3060 } 3061 3062 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3063 &features) != 0) { 3064 nvlist_free(label); 3065 spa_load_failed(spa, "invalid label: '%s' missing", 3066 ZPOOL_CONFIG_FEATURES_FOR_READ); 3067 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3068 ENXIO)); 3069 } 3070 3071 /* 3072 * Update our in-core representation with the definitive values 3073 * from the label. 3074 */ 3075 nvlist_free(spa->spa_label_features); 3076 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 3077 } 3078 3079 nvlist_free(label); 3080 3081 /* 3082 * Look through entries in the label nvlist's features_for_read. If 3083 * there is a feature listed there which we don't understand then we 3084 * cannot open a pool. 3085 */ 3086 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3087 nvlist_t *unsup_feat; 3088 3089 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 3090 0); 3091 3092 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3093 NULL); nvp != NULL; 3094 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3095 if (!zfeature_is_supported(nvpair_name(nvp))) { 3096 VERIFY(nvlist_add_string(unsup_feat, 3097 nvpair_name(nvp), "") == 0); 3098 } 3099 } 3100 3101 if (!nvlist_empty(unsup_feat)) { 3102 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 3103 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 3104 nvlist_free(unsup_feat); 3105 spa_load_failed(spa, "some features are unsupported"); 3106 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3107 ENOTSUP)); 3108 } 3109 3110 nvlist_free(unsup_feat); 3111 } 3112 3113 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3115 spa_try_repair(spa, spa->spa_config); 3116 spa_config_exit(spa, SCL_ALL, FTAG); 3117 nvlist_free(spa->spa_config_splitting); 3118 spa->spa_config_splitting = NULL; 3119 } 3120 3121 /* 3122 * Initialize internal SPA structures. 3123 */ 3124 spa_ld_select_uberblock_done(spa, ub); 3125 3126 return (0); 3127 } 3128 3129 static int 3130 spa_ld_open_rootbp(spa_t *spa) 3131 { 3132 int error = 0; 3133 vdev_t *rvd = spa->spa_root_vdev; 3134 3135 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3136 if (error != 0) { 3137 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3138 "[error=%d]", error); 3139 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3140 } 3141 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3142 3143 return (0); 3144 } 3145 3146 static int 3147 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3148 boolean_t reloading) 3149 { 3150 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3151 nvlist_t *nv, *mos_config, *policy; 3152 int error = 0, copy_error; 3153 uint64_t healthy_tvds, healthy_tvds_mos; 3154 uint64_t mos_config_txg; 3155 3156 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3157 != 0) 3158 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3159 3160 /* 3161 * If we're assembling a pool from a split, the config provided is 3162 * already trusted so there is nothing to do. 3163 */ 3164 if (type == SPA_IMPORT_ASSEMBLE) 3165 return (0); 3166 3167 healthy_tvds = spa_healthy_core_tvds(spa); 3168 3169 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3170 != 0) { 3171 spa_load_failed(spa, "unable to retrieve MOS config"); 3172 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3173 } 3174 3175 /* 3176 * If we are doing an open, pool owner wasn't verified yet, thus do 3177 * the verification here. 3178 */ 3179 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3180 error = spa_verify_host(spa, mos_config); 3181 if (error != 0) { 3182 nvlist_free(mos_config); 3183 return (error); 3184 } 3185 } 3186 3187 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3188 3189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3190 3191 /* 3192 * Build a new vdev tree from the trusted config 3193 */ 3194 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3195 3196 /* 3197 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3198 * obtained by scanning /dev/dsk, then it will have the right vdev 3199 * paths. We update the trusted MOS config with this information. 3200 * We first try to copy the paths with vdev_copy_path_strict, which 3201 * succeeds only when both configs have exactly the same vdev tree. 3202 * If that fails, we fall back to a more flexible method that has a 3203 * best effort policy. 3204 */ 3205 copy_error = vdev_copy_path_strict(rvd, mrvd); 3206 if (copy_error != 0 || spa_load_print_vdev_tree) { 3207 spa_load_note(spa, "provided vdev tree:"); 3208 vdev_dbgmsg_print_tree(rvd, 2); 3209 spa_load_note(spa, "MOS vdev tree:"); 3210 vdev_dbgmsg_print_tree(mrvd, 2); 3211 } 3212 if (copy_error != 0) { 3213 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3214 "back to vdev_copy_path_relaxed"); 3215 vdev_copy_path_relaxed(rvd, mrvd); 3216 } 3217 3218 vdev_close(rvd); 3219 vdev_free(rvd); 3220 spa->spa_root_vdev = mrvd; 3221 rvd = mrvd; 3222 spa_config_exit(spa, SCL_ALL, FTAG); 3223 3224 /* 3225 * We will use spa_config if we decide to reload the spa or if spa_load 3226 * fails and we rewind. We must thus regenerate the config using the 3227 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3228 * pass settings on how to load the pool and is not stored in the MOS. 3229 * We copy it over to our new, trusted config. 3230 */ 3231 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3232 ZPOOL_CONFIG_POOL_TXG); 3233 nvlist_free(mos_config); 3234 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3235 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3236 &policy) == 0) 3237 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3238 spa_config_set(spa, mos_config); 3239 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3240 3241 /* 3242 * Now that we got the config from the MOS, we should be more strict 3243 * in checking blkptrs and can make assumptions about the consistency 3244 * of the vdev tree. spa_trust_config must be set to true before opening 3245 * vdevs in order for them to be writeable. 3246 */ 3247 spa->spa_trust_config = B_TRUE; 3248 3249 /* 3250 * Open and validate the new vdev tree 3251 */ 3252 error = spa_ld_open_vdevs(spa); 3253 if (error != 0) 3254 return (error); 3255 3256 error = spa_ld_validate_vdevs(spa); 3257 if (error != 0) 3258 return (error); 3259 3260 if (copy_error != 0 || spa_load_print_vdev_tree) { 3261 spa_load_note(spa, "final vdev tree:"); 3262 vdev_dbgmsg_print_tree(rvd, 2); 3263 } 3264 3265 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3266 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3267 /* 3268 * Sanity check to make sure that we are indeed loading the 3269 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3270 * in the config provided and they happened to be the only ones 3271 * to have the latest uberblock, we could involuntarily perform 3272 * an extreme rewind. 3273 */ 3274 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3275 if (healthy_tvds_mos - healthy_tvds >= 3276 SPA_SYNC_MIN_VDEVS) { 3277 spa_load_note(spa, "config provided misses too many " 3278 "top-level vdevs compared to MOS (%lld vs %lld). ", 3279 (u_longlong_t)healthy_tvds, 3280 (u_longlong_t)healthy_tvds_mos); 3281 spa_load_note(spa, "vdev tree:"); 3282 vdev_dbgmsg_print_tree(rvd, 2); 3283 if (reloading) { 3284 spa_load_failed(spa, "config was already " 3285 "provided from MOS. Aborting."); 3286 return (spa_vdev_err(rvd, 3287 VDEV_AUX_CORRUPT_DATA, EIO)); 3288 } 3289 spa_load_note(spa, "spa must be reloaded using MOS " 3290 "config"); 3291 return (SET_ERROR(EAGAIN)); 3292 } 3293 } 3294 3295 error = spa_check_for_missing_logs(spa); 3296 if (error != 0) 3297 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3298 3299 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3300 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3301 "guid sum (%llu != %llu)", 3302 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3303 (u_longlong_t)rvd->vdev_guid_sum); 3304 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3305 ENXIO)); 3306 } 3307 3308 return (0); 3309 } 3310 3311 static int 3312 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3313 { 3314 int error = 0; 3315 vdev_t *rvd = spa->spa_root_vdev; 3316 3317 /* 3318 * Everything that we read before spa_remove_init() must be stored 3319 * on concreted vdevs. Therefore we do this as early as possible. 3320 */ 3321 error = spa_remove_init(spa); 3322 if (error != 0) { 3323 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3324 error); 3325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3326 } 3327 3328 /* 3329 * Retrieve information needed to condense indirect vdev mappings. 3330 */ 3331 error = spa_condense_init(spa); 3332 if (error != 0) { 3333 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3334 error); 3335 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3336 } 3337 3338 return (0); 3339 } 3340 3341 static int 3342 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3343 { 3344 int error = 0; 3345 vdev_t *rvd = spa->spa_root_vdev; 3346 3347 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3348 boolean_t missing_feat_read = B_FALSE; 3349 nvlist_t *unsup_feat, *enabled_feat; 3350 3351 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3352 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3354 } 3355 3356 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3357 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3359 } 3360 3361 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3362 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3364 } 3365 3366 enabled_feat = fnvlist_alloc(); 3367 unsup_feat = fnvlist_alloc(); 3368 3369 if (!spa_features_check(spa, B_FALSE, 3370 unsup_feat, enabled_feat)) 3371 missing_feat_read = B_TRUE; 3372 3373 if (spa_writeable(spa) || 3374 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3375 if (!spa_features_check(spa, B_TRUE, 3376 unsup_feat, enabled_feat)) { 3377 *missing_feat_writep = B_TRUE; 3378 } 3379 } 3380 3381 fnvlist_add_nvlist(spa->spa_load_info, 3382 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3383 3384 if (!nvlist_empty(unsup_feat)) { 3385 fnvlist_add_nvlist(spa->spa_load_info, 3386 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3387 } 3388 3389 fnvlist_free(enabled_feat); 3390 fnvlist_free(unsup_feat); 3391 3392 if (!missing_feat_read) { 3393 fnvlist_add_boolean(spa->spa_load_info, 3394 ZPOOL_CONFIG_CAN_RDONLY); 3395 } 3396 3397 /* 3398 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3399 * twofold: to determine whether the pool is available for 3400 * import in read-write mode and (if it is not) whether the 3401 * pool is available for import in read-only mode. If the pool 3402 * is available for import in read-write mode, it is displayed 3403 * as available in userland; if it is not available for import 3404 * in read-only mode, it is displayed as unavailable in 3405 * userland. If the pool is available for import in read-only 3406 * mode but not read-write mode, it is displayed as unavailable 3407 * in userland with a special note that the pool is actually 3408 * available for open in read-only mode. 3409 * 3410 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3411 * missing a feature for write, we must first determine whether 3412 * the pool can be opened read-only before returning to 3413 * userland in order to know whether to display the 3414 * abovementioned note. 3415 */ 3416 if (missing_feat_read || (*missing_feat_writep && 3417 spa_writeable(spa))) { 3418 spa_load_failed(spa, "pool uses unsupported features"); 3419 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3420 ENOTSUP)); 3421 } 3422 3423 /* 3424 * Load refcounts for ZFS features from disk into an in-memory 3425 * cache during SPA initialization. 3426 */ 3427 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3428 uint64_t refcount; 3429 3430 error = feature_get_refcount_from_disk(spa, 3431 &spa_feature_table[i], &refcount); 3432 if (error == 0) { 3433 spa->spa_feat_refcount_cache[i] = refcount; 3434 } else if (error == ENOTSUP) { 3435 spa->spa_feat_refcount_cache[i] = 3436 SPA_FEATURE_DISABLED; 3437 } else { 3438 spa_load_failed(spa, "error getting refcount " 3439 "for feature %s [error=%d]", 3440 spa_feature_table[i].fi_guid, error); 3441 return (spa_vdev_err(rvd, 3442 VDEV_AUX_CORRUPT_DATA, EIO)); 3443 } 3444 } 3445 } 3446 3447 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3448 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3449 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3450 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3451 } 3452 3453 /* 3454 * Encryption was added before bookmark_v2, even though bookmark_v2 3455 * is now a dependency. If this pool has encryption enabled without 3456 * bookmark_v2, trigger an errata message. 3457 */ 3458 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 3459 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 3460 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 3461 } 3462 3463 return (0); 3464 } 3465 3466 static int 3467 spa_ld_load_special_directories(spa_t *spa) 3468 { 3469 int error = 0; 3470 vdev_t *rvd = spa->spa_root_vdev; 3471 3472 spa->spa_is_initializing = B_TRUE; 3473 error = dsl_pool_open(spa->spa_dsl_pool); 3474 spa->spa_is_initializing = B_FALSE; 3475 if (error != 0) { 3476 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3478 } 3479 3480 return (0); 3481 } 3482 3483 static int 3484 spa_ld_get_props(spa_t *spa) 3485 { 3486 int error = 0; 3487 uint64_t obj; 3488 vdev_t *rvd = spa->spa_root_vdev; 3489 3490 /* Grab the secret checksum salt from the MOS. */ 3491 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3492 DMU_POOL_CHECKSUM_SALT, 1, 3493 sizeof (spa->spa_cksum_salt.zcs_bytes), 3494 spa->spa_cksum_salt.zcs_bytes); 3495 if (error == ENOENT) { 3496 /* Generate a new salt for subsequent use */ 3497 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3498 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3499 } else if (error != 0) { 3500 spa_load_failed(spa, "unable to retrieve checksum salt from " 3501 "MOS [error=%d]", error); 3502 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3503 } 3504 3505 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3506 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3507 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3508 if (error != 0) { 3509 spa_load_failed(spa, "error opening deferred-frees bpobj " 3510 "[error=%d]", error); 3511 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3512 } 3513 3514 /* 3515 * Load the bit that tells us to use the new accounting function 3516 * (raid-z deflation). If we have an older pool, this will not 3517 * be present. 3518 */ 3519 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3520 if (error != 0 && error != ENOENT) 3521 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3522 3523 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3524 &spa->spa_creation_version, B_FALSE); 3525 if (error != 0 && error != ENOENT) 3526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3527 3528 /* 3529 * Load the persistent error log. If we have an older pool, this will 3530 * not be present. 3531 */ 3532 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 3533 B_FALSE); 3534 if (error != 0 && error != ENOENT) 3535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3536 3537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 3538 &spa->spa_errlog_scrub, B_FALSE); 3539 if (error != 0 && error != ENOENT) 3540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3541 3542 /* 3543 * Load the history object. If we have an older pool, this 3544 * will not be present. 3545 */ 3546 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 3547 if (error != 0 && error != ENOENT) 3548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3549 3550 /* 3551 * Load the per-vdev ZAP map. If we have an older pool, this will not 3552 * be present; in this case, defer its creation to a later time to 3553 * avoid dirtying the MOS this early / out of sync context. See 3554 * spa_sync_config_object. 3555 */ 3556 3557 /* The sentinel is only available in the MOS config. */ 3558 nvlist_t *mos_config; 3559 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 3560 spa_load_failed(spa, "unable to retrieve MOS config"); 3561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3562 } 3563 3564 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3565 &spa->spa_all_vdev_zaps, B_FALSE); 3566 3567 if (error == ENOENT) { 3568 VERIFY(!nvlist_exists(mos_config, 3569 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3570 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3571 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3572 } else if (error != 0) { 3573 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3574 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3575 /* 3576 * An older version of ZFS overwrote the sentinel value, so 3577 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3578 * destruction to later; see spa_sync_config_object. 3579 */ 3580 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3581 /* 3582 * We're assuming that no vdevs have had their ZAPs created 3583 * before this. Better be sure of it. 3584 */ 3585 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3586 } 3587 nvlist_free(mos_config); 3588 3589 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3590 3591 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3592 B_FALSE); 3593 if (error && error != ENOENT) 3594 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3595 3596 if (error == 0) { 3597 uint64_t autoreplace; 3598 3599 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3600 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3601 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3602 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3603 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3604 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize); 3605 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 3606 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3607 &spa->spa_dedup_ditto); 3608 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 3609 spa->spa_autoreplace = (autoreplace != 0); 3610 } 3611 3612 /* 3613 * If we are importing a pool with missing top-level vdevs, 3614 * we enforce that the pool doesn't panic or get suspended on 3615 * error since the likelihood of missing data is extremely high. 3616 */ 3617 if (spa->spa_missing_tvds > 0 && 3618 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3619 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3620 spa_load_note(spa, "forcing failmode to 'continue' " 3621 "as some top level vdevs are missing"); 3622 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3623 } 3624 3625 return (0); 3626 } 3627 3628 static int 3629 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3630 { 3631 int error = 0; 3632 vdev_t *rvd = spa->spa_root_vdev; 3633 3634 /* 3635 * If we're assembling the pool from the split-off vdevs of 3636 * an existing pool, we don't want to attach the spares & cache 3637 * devices. 3638 */ 3639 3640 /* 3641 * Load any hot spares for this pool. 3642 */ 3643 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3644 B_FALSE); 3645 if (error != 0 && error != ENOENT) 3646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3647 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3648 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3649 if (load_nvlist(spa, spa->spa_spares.sav_object, 3650 &spa->spa_spares.sav_config) != 0) { 3651 spa_load_failed(spa, "error loading spares nvlist"); 3652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3653 } 3654 3655 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3656 spa_load_spares(spa); 3657 spa_config_exit(spa, SCL_ALL, FTAG); 3658 } else if (error == 0) { 3659 spa->spa_spares.sav_sync = B_TRUE; 3660 } 3661 3662 /* 3663 * Load any level 2 ARC devices for this pool. 3664 */ 3665 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3666 &spa->spa_l2cache.sav_object, B_FALSE); 3667 if (error != 0 && error != ENOENT) 3668 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3669 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3670 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3671 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3672 &spa->spa_l2cache.sav_config) != 0) { 3673 spa_load_failed(spa, "error loading l2cache nvlist"); 3674 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3675 } 3676 3677 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3678 spa_load_l2cache(spa); 3679 spa_config_exit(spa, SCL_ALL, FTAG); 3680 } else if (error == 0) { 3681 spa->spa_l2cache.sav_sync = B_TRUE; 3682 } 3683 3684 return (0); 3685 } 3686 3687 static int 3688 spa_ld_load_vdev_metadata(spa_t *spa) 3689 { 3690 int error = 0; 3691 vdev_t *rvd = spa->spa_root_vdev; 3692 3693 /* 3694 * If the 'multihost' property is set, then never allow a pool to 3695 * be imported when the system hostid is zero. The exception to 3696 * this rule is zdb which is always allowed to access pools. 3697 */ 3698 if (spa_multihost(spa) && spa_get_hostid() == 0 && 3699 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 3700 fnvlist_add_uint64(spa->spa_load_info, 3701 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3702 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3703 } 3704 3705 /* 3706 * If the 'autoreplace' property is set, then post a resource notifying 3707 * the ZFS DE that it should not issue any faults for unopenable 3708 * devices. We also iterate over the vdevs, and post a sysevent for any 3709 * unopenable vdevs so that the normal autoreplace handler can take 3710 * over. 3711 */ 3712 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3713 spa_check_removed(spa->spa_root_vdev); 3714 /* 3715 * For the import case, this is done in spa_import(), because 3716 * at this point we're using the spare definitions from 3717 * the MOS config, not necessarily from the userland config. 3718 */ 3719 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3720 spa_aux_check_removed(&spa->spa_spares); 3721 spa_aux_check_removed(&spa->spa_l2cache); 3722 } 3723 } 3724 3725 /* 3726 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3727 */ 3728 error = vdev_load(rvd); 3729 if (error != 0) { 3730 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3732 } 3733 3734 error = spa_ld_log_spacemaps(spa); 3735 if (error != 0) { 3736 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", 3737 error); 3738 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3739 } 3740 3741 /* 3742 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3743 */ 3744 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3745 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3746 spa_config_exit(spa, SCL_ALL, FTAG); 3747 3748 return (0); 3749 } 3750 3751 static int 3752 spa_ld_load_dedup_tables(spa_t *spa) 3753 { 3754 int error = 0; 3755 vdev_t *rvd = spa->spa_root_vdev; 3756 3757 error = ddt_load(spa); 3758 if (error != 0) { 3759 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3760 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3761 } 3762 3763 return (0); 3764 } 3765 3766 static int 3767 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3768 { 3769 vdev_t *rvd = spa->spa_root_vdev; 3770 3771 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3772 boolean_t missing = spa_check_logs(spa); 3773 if (missing) { 3774 if (spa->spa_missing_tvds != 0) { 3775 spa_load_note(spa, "spa_check_logs failed " 3776 "so dropping the logs"); 3777 } else { 3778 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3779 spa_load_failed(spa, "spa_check_logs failed"); 3780 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3781 ENXIO)); 3782 } 3783 } 3784 } 3785 3786 return (0); 3787 } 3788 3789 static int 3790 spa_ld_verify_pool_data(spa_t *spa) 3791 { 3792 int error = 0; 3793 vdev_t *rvd = spa->spa_root_vdev; 3794 3795 /* 3796 * We've successfully opened the pool, verify that we're ready 3797 * to start pushing transactions. 3798 */ 3799 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3800 error = spa_load_verify(spa); 3801 if (error != 0) { 3802 spa_load_failed(spa, "spa_load_verify failed " 3803 "[error=%d]", error); 3804 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3805 error)); 3806 } 3807 } 3808 3809 return (0); 3810 } 3811 3812 static void 3813 spa_ld_claim_log_blocks(spa_t *spa) 3814 { 3815 dmu_tx_t *tx; 3816 dsl_pool_t *dp = spa_get_dsl(spa); 3817 3818 /* 3819 * Claim log blocks that haven't been committed yet. 3820 * This must all happen in a single txg. 3821 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3822 * invoked from zil_claim_log_block()'s i/o done callback. 3823 * Price of rollback is that we abandon the log. 3824 */ 3825 spa->spa_claiming = B_TRUE; 3826 3827 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3828 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3829 zil_claim, tx, DS_FIND_CHILDREN); 3830 dmu_tx_commit(tx); 3831 3832 spa->spa_claiming = B_FALSE; 3833 3834 spa_set_log_state(spa, SPA_LOG_GOOD); 3835 } 3836 3837 static void 3838 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3839 boolean_t update_config_cache) 3840 { 3841 vdev_t *rvd = spa->spa_root_vdev; 3842 int need_update = B_FALSE; 3843 3844 /* 3845 * If the config cache is stale, or we have uninitialized 3846 * metaslabs (see spa_vdev_add()), then update the config. 3847 * 3848 * If this is a verbatim import, trust the current 3849 * in-core spa_config and update the disk labels. 3850 */ 3851 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 3852 spa->spa_load_state == SPA_LOAD_IMPORT || 3853 spa->spa_load_state == SPA_LOAD_RECOVER || 3854 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3855 need_update = B_TRUE; 3856 3857 for (int c = 0; c < rvd->vdev_children; c++) 3858 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3859 need_update = B_TRUE; 3860 3861 /* 3862 * Update the config cache asychronously in case we're the 3863 * root pool, in which case the config cache isn't writable yet. 3864 */ 3865 if (need_update) 3866 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3867 } 3868 3869 static void 3870 spa_ld_prepare_for_reload(spa_t *spa) 3871 { 3872 int mode = spa->spa_mode; 3873 int async_suspended = spa->spa_async_suspended; 3874 3875 spa_unload(spa); 3876 spa_deactivate(spa); 3877 spa_activate(spa, mode); 3878 3879 /* 3880 * We save the value of spa_async_suspended as it gets reset to 0 by 3881 * spa_unload(). We want to restore it back to the original value before 3882 * returning as we might be calling spa_async_resume() later. 3883 */ 3884 spa->spa_async_suspended = async_suspended; 3885 } 3886 3887 static int 3888 spa_ld_read_checkpoint_txg(spa_t *spa) 3889 { 3890 uberblock_t checkpoint; 3891 int error = 0; 3892 3893 ASSERT0(spa->spa_checkpoint_txg); 3894 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3895 3896 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3897 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3898 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3899 3900 if (error == ENOENT) 3901 return (0); 3902 3903 if (error != 0) 3904 return (error); 3905 3906 ASSERT3U(checkpoint.ub_txg, !=, 0); 3907 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 3908 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 3909 spa->spa_checkpoint_txg = checkpoint.ub_txg; 3910 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 3911 3912 return (0); 3913 } 3914 3915 static int 3916 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 3917 { 3918 int error = 0; 3919 3920 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3921 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3922 3923 /* 3924 * Never trust the config that is provided unless we are assembling 3925 * a pool following a split. 3926 * This means don't trust blkptrs and the vdev tree in general. This 3927 * also effectively puts the spa in read-only mode since 3928 * spa_writeable() checks for spa_trust_config to be true. 3929 * We will later load a trusted config from the MOS. 3930 */ 3931 if (type != SPA_IMPORT_ASSEMBLE) 3932 spa->spa_trust_config = B_FALSE; 3933 3934 /* 3935 * Parse the config provided to create a vdev tree. 3936 */ 3937 error = spa_ld_parse_config(spa, type); 3938 if (error != 0) 3939 return (error); 3940 3941 spa_import_progress_add(spa); 3942 3943 /* 3944 * Now that we have the vdev tree, try to open each vdev. This involves 3945 * opening the underlying physical device, retrieving its geometry and 3946 * probing the vdev with a dummy I/O. The state of each vdev will be set 3947 * based on the success of those operations. After this we'll be ready 3948 * to read from the vdevs. 3949 */ 3950 error = spa_ld_open_vdevs(spa); 3951 if (error != 0) 3952 return (error); 3953 3954 /* 3955 * Read the label of each vdev and make sure that the GUIDs stored 3956 * there match the GUIDs in the config provided. 3957 * If we're assembling a new pool that's been split off from an 3958 * existing pool, the labels haven't yet been updated so we skip 3959 * validation for now. 3960 */ 3961 if (type != SPA_IMPORT_ASSEMBLE) { 3962 error = spa_ld_validate_vdevs(spa); 3963 if (error != 0) 3964 return (error); 3965 } 3966 3967 /* 3968 * Read all vdev labels to find the best uberblock (i.e. latest, 3969 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 3970 * get the list of features required to read blkptrs in the MOS from 3971 * the vdev label with the best uberblock and verify that our version 3972 * of zfs supports them all. 3973 */ 3974 error = spa_ld_select_uberblock(spa, type); 3975 if (error != 0) 3976 return (error); 3977 3978 /* 3979 * Pass that uberblock to the dsl_pool layer which will open the root 3980 * blkptr. This blkptr points to the latest version of the MOS and will 3981 * allow us to read its contents. 3982 */ 3983 error = spa_ld_open_rootbp(spa); 3984 if (error != 0) 3985 return (error); 3986 3987 return (0); 3988 } 3989 3990 static int 3991 spa_ld_checkpoint_rewind(spa_t *spa) 3992 { 3993 uberblock_t checkpoint; 3994 int error = 0; 3995 3996 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3997 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3998 3999 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4000 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4001 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4002 4003 if (error != 0) { 4004 spa_load_failed(spa, "unable to retrieve checkpointed " 4005 "uberblock from the MOS config [error=%d]", error); 4006 4007 if (error == ENOENT) 4008 error = ZFS_ERR_NO_CHECKPOINT; 4009 4010 return (error); 4011 } 4012 4013 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4014 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4015 4016 /* 4017 * We need to update the txg and timestamp of the checkpointed 4018 * uberblock to be higher than the latest one. This ensures that 4019 * the checkpointed uberblock is selected if we were to close and 4020 * reopen the pool right after we've written it in the vdev labels. 4021 * (also see block comment in vdev_uberblock_compare) 4022 */ 4023 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4024 checkpoint.ub_timestamp = gethrestime_sec(); 4025 4026 /* 4027 * Set current uberblock to be the checkpointed uberblock. 4028 */ 4029 spa->spa_uberblock = checkpoint; 4030 4031 /* 4032 * If we are doing a normal rewind, then the pool is open for 4033 * writing and we sync the "updated" checkpointed uberblock to 4034 * disk. Once this is done, we've basically rewound the whole 4035 * pool and there is no way back. 4036 * 4037 * There are cases when we don't want to attempt and sync the 4038 * checkpointed uberblock to disk because we are opening a 4039 * pool as read-only. Specifically, verifying the checkpointed 4040 * state with zdb, and importing the checkpointed state to get 4041 * a "preview" of its content. 4042 */ 4043 if (spa_writeable(spa)) { 4044 vdev_t *rvd = spa->spa_root_vdev; 4045 4046 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4047 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4048 int svdcount = 0; 4049 int children = rvd->vdev_children; 4050 int c0 = spa_get_random(children); 4051 4052 for (int c = 0; c < children; c++) { 4053 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4054 4055 /* Stop when revisiting the first vdev */ 4056 if (c > 0 && svd[0] == vd) 4057 break; 4058 4059 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4060 !vdev_is_concrete(vd)) 4061 continue; 4062 4063 svd[svdcount++] = vd; 4064 if (svdcount == SPA_SYNC_MIN_VDEVS) 4065 break; 4066 } 4067 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4068 if (error == 0) 4069 spa->spa_last_synced_guid = rvd->vdev_guid; 4070 spa_config_exit(spa, SCL_ALL, FTAG); 4071 4072 if (error != 0) { 4073 spa_load_failed(spa, "failed to write checkpointed " 4074 "uberblock to the vdev labels [error=%d]", error); 4075 return (error); 4076 } 4077 } 4078 4079 return (0); 4080 } 4081 4082 static int 4083 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4084 boolean_t *update_config_cache) 4085 { 4086 int error; 4087 4088 /* 4089 * Parse the config for pool, open and validate vdevs, 4090 * select an uberblock, and use that uberblock to open 4091 * the MOS. 4092 */ 4093 error = spa_ld_mos_init(spa, type); 4094 if (error != 0) 4095 return (error); 4096 4097 /* 4098 * Retrieve the trusted config stored in the MOS and use it to create 4099 * a new, exact version of the vdev tree, then reopen all vdevs. 4100 */ 4101 error = spa_ld_trusted_config(spa, type, B_FALSE); 4102 if (error == EAGAIN) { 4103 if (update_config_cache != NULL) 4104 *update_config_cache = B_TRUE; 4105 4106 /* 4107 * Redo the loading process with the trusted config if it is 4108 * too different from the untrusted config. 4109 */ 4110 spa_ld_prepare_for_reload(spa); 4111 spa_load_note(spa, "RELOADING"); 4112 error = spa_ld_mos_init(spa, type); 4113 if (error != 0) 4114 return (error); 4115 4116 error = spa_ld_trusted_config(spa, type, B_TRUE); 4117 if (error != 0) 4118 return (error); 4119 4120 } else if (error != 0) { 4121 return (error); 4122 } 4123 4124 return (0); 4125 } 4126 4127 /* 4128 * Load an existing storage pool, using the config provided. This config 4129 * describes which vdevs are part of the pool and is later validated against 4130 * partial configs present in each vdev's label and an entire copy of the 4131 * config stored in the MOS. 4132 */ 4133 static int 4134 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4135 { 4136 int error = 0; 4137 boolean_t missing_feat_write = B_FALSE; 4138 boolean_t checkpoint_rewind = 4139 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4140 boolean_t update_config_cache = B_FALSE; 4141 4142 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4143 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4144 4145 spa_load_note(spa, "LOADING"); 4146 4147 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4148 if (error != 0) 4149 return (error); 4150 4151 /* 4152 * If we are rewinding to the checkpoint then we need to repeat 4153 * everything we've done so far in this function but this time 4154 * selecting the checkpointed uberblock and using that to open 4155 * the MOS. 4156 */ 4157 if (checkpoint_rewind) { 4158 /* 4159 * If we are rewinding to the checkpoint update config cache 4160 * anyway. 4161 */ 4162 update_config_cache = B_TRUE; 4163 4164 /* 4165 * Extract the checkpointed uberblock from the current MOS 4166 * and use this as the pool's uberblock from now on. If the 4167 * pool is imported as writeable we also write the checkpoint 4168 * uberblock to the labels, making the rewind permanent. 4169 */ 4170 error = spa_ld_checkpoint_rewind(spa); 4171 if (error != 0) 4172 return (error); 4173 4174 /* 4175 * Redo the loading process process again with the 4176 * checkpointed uberblock. 4177 */ 4178 spa_ld_prepare_for_reload(spa); 4179 spa_load_note(spa, "LOADING checkpointed uberblock"); 4180 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4181 if (error != 0) 4182 return (error); 4183 } 4184 4185 /* 4186 * Retrieve the checkpoint txg if the pool has a checkpoint. 4187 */ 4188 error = spa_ld_read_checkpoint_txg(spa); 4189 if (error != 0) 4190 return (error); 4191 4192 /* 4193 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4194 * from the pool and their contents were re-mapped to other vdevs. Note 4195 * that everything that we read before this step must have been 4196 * rewritten on concrete vdevs after the last device removal was 4197 * initiated. Otherwise we could be reading from indirect vdevs before 4198 * we have loaded their mappings. 4199 */ 4200 error = spa_ld_open_indirect_vdev_metadata(spa); 4201 if (error != 0) 4202 return (error); 4203 4204 /* 4205 * Retrieve the full list of active features from the MOS and check if 4206 * they are all supported. 4207 */ 4208 error = spa_ld_check_features(spa, &missing_feat_write); 4209 if (error != 0) 4210 return (error); 4211 4212 /* 4213 * Load several special directories from the MOS needed by the dsl_pool 4214 * layer. 4215 */ 4216 error = spa_ld_load_special_directories(spa); 4217 if (error != 0) 4218 return (error); 4219 4220 /* 4221 * Retrieve pool properties from the MOS. 4222 */ 4223 error = spa_ld_get_props(spa); 4224 if (error != 0) 4225 return (error); 4226 4227 /* 4228 * Retrieve the list of auxiliary devices - cache devices and spares - 4229 * and open them. 4230 */ 4231 error = spa_ld_open_aux_vdevs(spa, type); 4232 if (error != 0) 4233 return (error); 4234 4235 /* 4236 * Load the metadata for all vdevs. Also check if unopenable devices 4237 * should be autoreplaced. 4238 */ 4239 error = spa_ld_load_vdev_metadata(spa); 4240 if (error != 0) 4241 return (error); 4242 4243 error = spa_ld_load_dedup_tables(spa); 4244 if (error != 0) 4245 return (error); 4246 4247 /* 4248 * Verify the logs now to make sure we don't have any unexpected errors 4249 * when we claim log blocks later. 4250 */ 4251 error = spa_ld_verify_logs(spa, type, ereport); 4252 if (error != 0) 4253 return (error); 4254 4255 if (missing_feat_write) { 4256 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4257 4258 /* 4259 * At this point, we know that we can open the pool in 4260 * read-only mode but not read-write mode. We now have enough 4261 * information and can return to userland. 4262 */ 4263 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4264 ENOTSUP)); 4265 } 4266 4267 /* 4268 * Traverse the last txgs to make sure the pool was left off in a safe 4269 * state. When performing an extreme rewind, we verify the whole pool, 4270 * which can take a very long time. 4271 */ 4272 error = spa_ld_verify_pool_data(spa); 4273 if (error != 0) 4274 return (error); 4275 4276 /* 4277 * Calculate the deflated space for the pool. This must be done before 4278 * we write anything to the pool because we'd need to update the space 4279 * accounting using the deflated sizes. 4280 */ 4281 spa_update_dspace(spa); 4282 4283 /* 4284 * We have now retrieved all the information we needed to open the 4285 * pool. If we are importing the pool in read-write mode, a few 4286 * additional steps must be performed to finish the import. 4287 */ 4288 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4289 spa->spa_load_max_txg == UINT64_MAX)) { 4290 uint64_t config_cache_txg = spa->spa_config_txg; 4291 4292 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4293 4294 /* 4295 * In case of a checkpoint rewind, log the original txg 4296 * of the checkpointed uberblock. 4297 */ 4298 if (checkpoint_rewind) { 4299 spa_history_log_internal(spa, "checkpoint rewind", 4300 NULL, "rewound state to txg=%llu", 4301 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4302 } 4303 4304 /* 4305 * Traverse the ZIL and claim all blocks. 4306 */ 4307 spa_ld_claim_log_blocks(spa); 4308 4309 /* 4310 * Kick-off the syncing thread. 4311 */ 4312 spa->spa_sync_on = B_TRUE; 4313 txg_sync_start(spa->spa_dsl_pool); 4314 mmp_thread_start(spa); 4315 4316 /* 4317 * Wait for all claims to sync. We sync up to the highest 4318 * claimed log block birth time so that claimed log blocks 4319 * don't appear to be from the future. spa_claim_max_txg 4320 * will have been set for us by ZIL traversal operations 4321 * performed above. 4322 */ 4323 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4324 4325 /* 4326 * Check if we need to request an update of the config. On the 4327 * next sync, we would update the config stored in vdev labels 4328 * and the cachefile (by default /etc/zfs/zpool.cache). 4329 */ 4330 spa_ld_check_for_config_update(spa, config_cache_txg, 4331 update_config_cache); 4332 4333 /* 4334 * Check all DTLs to see if anything needs resilvering. 4335 */ 4336 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4337 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4338 spa_async_request(spa, SPA_ASYNC_RESILVER); 4339 4340 /* 4341 * Log the fact that we booted up (so that we can detect if 4342 * we rebooted in the middle of an operation). 4343 */ 4344 spa_history_log_version(spa, "open"); 4345 4346 spa_restart_removal(spa); 4347 spa_spawn_aux_threads(spa); 4348 4349 /* 4350 * Delete any inconsistent datasets. 4351 * 4352 * Note: 4353 * Since we may be issuing deletes for clones here, 4354 * we make sure to do so after we've spawned all the 4355 * auxiliary threads above (from which the livelist 4356 * deletion zthr is part of). 4357 */ 4358 (void) dmu_objset_find(spa_name(spa), 4359 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4360 4361 /* 4362 * Clean up any stale temporary dataset userrefs. 4363 */ 4364 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4365 4366 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4367 vdev_initialize_restart(spa->spa_root_vdev); 4368 vdev_trim_restart(spa->spa_root_vdev); 4369 vdev_autotrim_restart(spa); 4370 spa_config_exit(spa, SCL_CONFIG, FTAG); 4371 } 4372 4373 spa_import_progress_remove(spa); 4374 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 4375 4376 spa_load_note(spa, "LOADED"); 4377 4378 return (0); 4379 } 4380 4381 static int 4382 spa_load_retry(spa_t *spa, spa_load_state_t state) 4383 { 4384 int mode = spa->spa_mode; 4385 4386 spa_unload(spa); 4387 spa_deactivate(spa); 4388 4389 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4390 4391 spa_activate(spa, mode); 4392 spa_async_suspend(spa); 4393 4394 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4395 (u_longlong_t)spa->spa_load_max_txg); 4396 4397 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4398 } 4399 4400 /* 4401 * If spa_load() fails this function will try loading prior txg's. If 4402 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4403 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4404 * function will not rewind the pool and will return the same error as 4405 * spa_load(). 4406 */ 4407 static int 4408 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4409 int rewind_flags) 4410 { 4411 nvlist_t *loadinfo = NULL; 4412 nvlist_t *config = NULL; 4413 int load_error, rewind_error; 4414 uint64_t safe_rewind_txg; 4415 uint64_t min_txg; 4416 4417 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4418 spa->spa_load_max_txg = spa->spa_load_txg; 4419 spa_set_log_state(spa, SPA_LOG_CLEAR); 4420 } else { 4421 spa->spa_load_max_txg = max_request; 4422 if (max_request != UINT64_MAX) 4423 spa->spa_extreme_rewind = B_TRUE; 4424 } 4425 4426 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4427 if (load_error == 0) 4428 return (0); 4429 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4430 /* 4431 * When attempting checkpoint-rewind on a pool with no 4432 * checkpoint, we should not attempt to load uberblocks 4433 * from previous txgs when spa_load fails. 4434 */ 4435 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4436 spa_import_progress_remove(spa); 4437 return (load_error); 4438 } 4439 4440 if (spa->spa_root_vdev != NULL) 4441 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4442 4443 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4444 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4445 4446 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4447 nvlist_free(config); 4448 spa_import_progress_remove(spa); 4449 return (load_error); 4450 } 4451 4452 if (state == SPA_LOAD_RECOVER) { 4453 /* Price of rolling back is discarding txgs, including log */ 4454 spa_set_log_state(spa, SPA_LOG_CLEAR); 4455 } else { 4456 /* 4457 * If we aren't rolling back save the load info from our first 4458 * import attempt so that we can restore it after attempting 4459 * to rewind. 4460 */ 4461 loadinfo = spa->spa_load_info; 4462 spa->spa_load_info = fnvlist_alloc(); 4463 } 4464 4465 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4466 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4467 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4468 TXG_INITIAL : safe_rewind_txg; 4469 4470 /* 4471 * Continue as long as we're finding errors, we're still within 4472 * the acceptable rewind range, and we're still finding uberblocks 4473 */ 4474 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4475 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4476 if (spa->spa_load_max_txg < safe_rewind_txg) 4477 spa->spa_extreme_rewind = B_TRUE; 4478 rewind_error = spa_load_retry(spa, state); 4479 } 4480 4481 spa->spa_extreme_rewind = B_FALSE; 4482 spa->spa_load_max_txg = UINT64_MAX; 4483 4484 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4485 spa_config_set(spa, config); 4486 else 4487 nvlist_free(config); 4488 4489 if (state == SPA_LOAD_RECOVER) { 4490 ASSERT3P(loadinfo, ==, NULL); 4491 spa_import_progress_remove(spa); 4492 return (rewind_error); 4493 } else { 4494 /* Store the rewind info as part of the initial load info */ 4495 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4496 spa->spa_load_info); 4497 4498 /* Restore the initial load info */ 4499 fnvlist_free(spa->spa_load_info); 4500 spa->spa_load_info = loadinfo; 4501 4502 spa_import_progress_remove(spa); 4503 return (load_error); 4504 } 4505 } 4506 4507 /* 4508 * Pool Open/Import 4509 * 4510 * The import case is identical to an open except that the configuration is sent 4511 * down from userland, instead of grabbed from the configuration cache. For the 4512 * case of an open, the pool configuration will exist in the 4513 * POOL_STATE_UNINITIALIZED state. 4514 * 4515 * The stats information (gen/count/ustats) is used to gather vdev statistics at 4516 * the same time open the pool, without having to keep around the spa_t in some 4517 * ambiguous state. 4518 */ 4519 static int 4520 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 4521 nvlist_t **config) 4522 { 4523 spa_t *spa; 4524 spa_load_state_t state = SPA_LOAD_OPEN; 4525 int error; 4526 int locked = B_FALSE; 4527 4528 *spapp = NULL; 4529 4530 /* 4531 * As disgusting as this is, we need to support recursive calls to this 4532 * function because dsl_dir_open() is called during spa_load(), and ends 4533 * up calling spa_open() again. The real fix is to figure out how to 4534 * avoid dsl_dir_open() calling this in the first place. 4535 */ 4536 if (mutex_owner(&spa_namespace_lock) != curthread) { 4537 mutex_enter(&spa_namespace_lock); 4538 locked = B_TRUE; 4539 } 4540 4541 if ((spa = spa_lookup(pool)) == NULL) { 4542 if (locked) 4543 mutex_exit(&spa_namespace_lock); 4544 return (SET_ERROR(ENOENT)); 4545 } 4546 4547 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 4548 zpool_load_policy_t policy; 4549 4550 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 4551 &policy); 4552 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 4553 state = SPA_LOAD_RECOVER; 4554 4555 spa_activate(spa, spa_mode_global); 4556 4557 if (state != SPA_LOAD_RECOVER) 4558 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4559 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4560 4561 zfs_dbgmsg("spa_open_common: opening %s", pool); 4562 error = spa_load_best(spa, state, policy.zlp_txg, 4563 policy.zlp_rewind); 4564 4565 if (error == EBADF) { 4566 /* 4567 * If vdev_validate() returns failure (indicated by 4568 * EBADF), it indicates that one of the vdevs indicates 4569 * that the pool has been exported or destroyed. If 4570 * this is the case, the config cache is out of sync and 4571 * we should remove the pool from the namespace. 4572 */ 4573 spa_unload(spa); 4574 spa_deactivate(spa); 4575 spa_write_cachefile(spa, B_TRUE, B_TRUE); 4576 spa_remove(spa); 4577 if (locked) 4578 mutex_exit(&spa_namespace_lock); 4579 return (SET_ERROR(ENOENT)); 4580 } 4581 4582 if (error) { 4583 /* 4584 * We can't open the pool, but we still have useful 4585 * information: the state of each vdev after the 4586 * attempted vdev_open(). Return this to the user. 4587 */ 4588 if (config != NULL && spa->spa_config) { 4589 VERIFY(nvlist_dup(spa->spa_config, config, 4590 KM_SLEEP) == 0); 4591 VERIFY(nvlist_add_nvlist(*config, 4592 ZPOOL_CONFIG_LOAD_INFO, 4593 spa->spa_load_info) == 0); 4594 } 4595 spa_unload(spa); 4596 spa_deactivate(spa); 4597 spa->spa_last_open_failed = error; 4598 if (locked) 4599 mutex_exit(&spa_namespace_lock); 4600 *spapp = NULL; 4601 return (error); 4602 } 4603 } 4604 4605 spa_open_ref(spa, tag); 4606 4607 if (config != NULL) 4608 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4609 4610 /* 4611 * If we've recovered the pool, pass back any information we 4612 * gathered while doing the load. 4613 */ 4614 if (state == SPA_LOAD_RECOVER) { 4615 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 4616 spa->spa_load_info) == 0); 4617 } 4618 4619 if (locked) { 4620 spa->spa_last_open_failed = 0; 4621 spa->spa_last_ubsync_txg = 0; 4622 spa->spa_load_txg = 0; 4623 mutex_exit(&spa_namespace_lock); 4624 } 4625 4626 *spapp = spa; 4627 4628 return (0); 4629 } 4630 4631 int 4632 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 4633 nvlist_t **config) 4634 { 4635 return (spa_open_common(name, spapp, tag, policy, config)); 4636 } 4637 4638 int 4639 spa_open(const char *name, spa_t **spapp, void *tag) 4640 { 4641 return (spa_open_common(name, spapp, tag, NULL, NULL)); 4642 } 4643 4644 /* 4645 * Lookup the given spa_t, incrementing the inject count in the process, 4646 * preventing it from being exported or destroyed. 4647 */ 4648 spa_t * 4649 spa_inject_addref(char *name) 4650 { 4651 spa_t *spa; 4652 4653 mutex_enter(&spa_namespace_lock); 4654 if ((spa = spa_lookup(name)) == NULL) { 4655 mutex_exit(&spa_namespace_lock); 4656 return (NULL); 4657 } 4658 spa->spa_inject_ref++; 4659 mutex_exit(&spa_namespace_lock); 4660 4661 return (spa); 4662 } 4663 4664 void 4665 spa_inject_delref(spa_t *spa) 4666 { 4667 mutex_enter(&spa_namespace_lock); 4668 spa->spa_inject_ref--; 4669 mutex_exit(&spa_namespace_lock); 4670 } 4671 4672 /* 4673 * Add spares device information to the nvlist. 4674 */ 4675 static void 4676 spa_add_spares(spa_t *spa, nvlist_t *config) 4677 { 4678 nvlist_t **spares; 4679 uint_t i, nspares; 4680 nvlist_t *nvroot; 4681 uint64_t guid; 4682 vdev_stat_t *vs; 4683 uint_t vsc; 4684 uint64_t pool; 4685 4686 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4687 4688 if (spa->spa_spares.sav_count == 0) 4689 return; 4690 4691 VERIFY(nvlist_lookup_nvlist(config, 4692 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4693 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4694 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4695 if (nspares != 0) { 4696 VERIFY(nvlist_add_nvlist_array(nvroot, 4697 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4698 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4699 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4700 4701 /* 4702 * Go through and find any spares which have since been 4703 * repurposed as an active spare. If this is the case, update 4704 * their status appropriately. 4705 */ 4706 for (i = 0; i < nspares; i++) { 4707 VERIFY(nvlist_lookup_uint64(spares[i], 4708 ZPOOL_CONFIG_GUID, &guid) == 0); 4709 if (spa_spare_exists(guid, &pool, NULL) && 4710 pool != 0ULL) { 4711 VERIFY(nvlist_lookup_uint64_array( 4712 spares[i], ZPOOL_CONFIG_VDEV_STATS, 4713 (uint64_t **)&vs, &vsc) == 0); 4714 vs->vs_state = VDEV_STATE_CANT_OPEN; 4715 vs->vs_aux = VDEV_AUX_SPARED; 4716 } 4717 } 4718 } 4719 } 4720 4721 /* 4722 * Add l2cache device information to the nvlist, including vdev stats. 4723 */ 4724 static void 4725 spa_add_l2cache(spa_t *spa, nvlist_t *config) 4726 { 4727 nvlist_t **l2cache; 4728 uint_t i, j, nl2cache; 4729 nvlist_t *nvroot; 4730 uint64_t guid; 4731 vdev_t *vd; 4732 vdev_stat_t *vs; 4733 uint_t vsc; 4734 4735 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4736 4737 if (spa->spa_l2cache.sav_count == 0) 4738 return; 4739 4740 VERIFY(nvlist_lookup_nvlist(config, 4741 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4742 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4743 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4744 if (nl2cache != 0) { 4745 VERIFY(nvlist_add_nvlist_array(nvroot, 4746 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4747 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4748 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4749 4750 /* 4751 * Update level 2 cache device stats. 4752 */ 4753 4754 for (i = 0; i < nl2cache; i++) { 4755 VERIFY(nvlist_lookup_uint64(l2cache[i], 4756 ZPOOL_CONFIG_GUID, &guid) == 0); 4757 4758 vd = NULL; 4759 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 4760 if (guid == 4761 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 4762 vd = spa->spa_l2cache.sav_vdevs[j]; 4763 break; 4764 } 4765 } 4766 ASSERT(vd != NULL); 4767 4768 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 4769 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 4770 == 0); 4771 vdev_get_stats(vd, vs); 4772 vdev_config_generate_stats(vd, l2cache[i]); 4773 4774 } 4775 } 4776 } 4777 4778 static void 4779 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 4780 { 4781 nvlist_t *features; 4782 zap_cursor_t zc; 4783 zap_attribute_t za; 4784 4785 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4786 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4787 4788 if (spa->spa_feat_for_read_obj != 0) { 4789 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4790 spa->spa_feat_for_read_obj); 4791 zap_cursor_retrieve(&zc, &za) == 0; 4792 zap_cursor_advance(&zc)) { 4793 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4794 za.za_num_integers == 1); 4795 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4796 za.za_first_integer)); 4797 } 4798 zap_cursor_fini(&zc); 4799 } 4800 4801 if (spa->spa_feat_for_write_obj != 0) { 4802 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4803 spa->spa_feat_for_write_obj); 4804 zap_cursor_retrieve(&zc, &za) == 0; 4805 zap_cursor_advance(&zc)) { 4806 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4807 za.za_num_integers == 1); 4808 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4809 za.za_first_integer)); 4810 } 4811 zap_cursor_fini(&zc); 4812 } 4813 4814 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 4815 features) == 0); 4816 nvlist_free(features); 4817 } 4818 4819 int 4820 spa_get_stats(const char *name, nvlist_t **config, 4821 char *altroot, size_t buflen) 4822 { 4823 int error; 4824 spa_t *spa; 4825 4826 *config = NULL; 4827 error = spa_open_common(name, &spa, FTAG, NULL, config); 4828 4829 if (spa != NULL) { 4830 /* 4831 * This still leaves a window of inconsistency where the spares 4832 * or l2cache devices could change and the config would be 4833 * self-inconsistent. 4834 */ 4835 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4836 4837 if (*config != NULL) { 4838 uint64_t loadtimes[2]; 4839 4840 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4841 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4842 VERIFY(nvlist_add_uint64_array(*config, 4843 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4844 4845 VERIFY(nvlist_add_uint64(*config, 4846 ZPOOL_CONFIG_ERRCOUNT, 4847 spa_get_errlog_size(spa)) == 0); 4848 4849 if (spa_suspended(spa)) { 4850 VERIFY(nvlist_add_uint64(*config, 4851 ZPOOL_CONFIG_SUSPENDED, 4852 spa->spa_failmode) == 0); 4853 VERIFY(nvlist_add_uint64(*config, 4854 ZPOOL_CONFIG_SUSPENDED_REASON, 4855 spa->spa_suspended) == 0); 4856 } 4857 4858 spa_add_spares(spa, *config); 4859 spa_add_l2cache(spa, *config); 4860 spa_add_feature_stats(spa, *config); 4861 } 4862 } 4863 4864 /* 4865 * We want to get the alternate root even for faulted pools, so we cheat 4866 * and call spa_lookup() directly. 4867 */ 4868 if (altroot) { 4869 if (spa == NULL) { 4870 mutex_enter(&spa_namespace_lock); 4871 spa = spa_lookup(name); 4872 if (spa) 4873 spa_altroot(spa, altroot, buflen); 4874 else 4875 altroot[0] = '\0'; 4876 spa = NULL; 4877 mutex_exit(&spa_namespace_lock); 4878 } else { 4879 spa_altroot(spa, altroot, buflen); 4880 } 4881 } 4882 4883 if (spa != NULL) { 4884 spa_config_exit(spa, SCL_CONFIG, FTAG); 4885 spa_close(spa, FTAG); 4886 } 4887 4888 return (error); 4889 } 4890 4891 /* 4892 * Validate that the auxiliary device array is well formed. We must have an 4893 * array of nvlists, each which describes a valid leaf vdev. If this is an 4894 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4895 * specified, as long as they are well-formed. 4896 */ 4897 static int 4898 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4899 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4900 vdev_labeltype_t label) 4901 { 4902 nvlist_t **dev; 4903 uint_t i, ndev; 4904 vdev_t *vd; 4905 int error; 4906 4907 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4908 4909 /* 4910 * It's acceptable to have no devs specified. 4911 */ 4912 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4913 return (0); 4914 4915 if (ndev == 0) 4916 return (SET_ERROR(EINVAL)); 4917 4918 /* 4919 * Make sure the pool is formatted with a version that supports this 4920 * device type. 4921 */ 4922 if (spa_version(spa) < version) 4923 return (SET_ERROR(ENOTSUP)); 4924 4925 /* 4926 * Set the pending device list so we correctly handle device in-use 4927 * checking. 4928 */ 4929 sav->sav_pending = dev; 4930 sav->sav_npending = ndev; 4931 4932 for (i = 0; i < ndev; i++) { 4933 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4934 mode)) != 0) 4935 goto out; 4936 4937 if (!vd->vdev_ops->vdev_op_leaf) { 4938 vdev_free(vd); 4939 error = SET_ERROR(EINVAL); 4940 goto out; 4941 } 4942 4943 vd->vdev_top = vd; 4944 4945 if ((error = vdev_open(vd)) == 0 && 4946 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4947 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4948 vd->vdev_guid) == 0); 4949 } 4950 4951 vdev_free(vd); 4952 4953 if (error && 4954 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4955 goto out; 4956 else 4957 error = 0; 4958 } 4959 4960 out: 4961 sav->sav_pending = NULL; 4962 sav->sav_npending = 0; 4963 return (error); 4964 } 4965 4966 static int 4967 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4968 { 4969 int error; 4970 4971 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4972 4973 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4974 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4975 VDEV_LABEL_SPARE)) != 0) { 4976 return (error); 4977 } 4978 4979 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4980 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4981 VDEV_LABEL_L2CACHE)); 4982 } 4983 4984 static void 4985 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4986 const char *config) 4987 { 4988 int i; 4989 4990 if (sav->sav_config != NULL) { 4991 nvlist_t **olddevs; 4992 uint_t oldndevs; 4993 nvlist_t **newdevs; 4994 4995 /* 4996 * Generate new dev list by concatentating with the 4997 * current dev list. 4998 */ 4999 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 5000 &olddevs, &oldndevs) == 0); 5001 5002 newdevs = kmem_alloc(sizeof (void *) * 5003 (ndevs + oldndevs), KM_SLEEP); 5004 for (i = 0; i < oldndevs; i++) 5005 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 5006 KM_SLEEP) == 0); 5007 for (i = 0; i < ndevs; i++) 5008 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 5009 KM_SLEEP) == 0); 5010 5011 VERIFY(nvlist_remove(sav->sav_config, config, 5012 DATA_TYPE_NVLIST_ARRAY) == 0); 5013 5014 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 5015 config, newdevs, ndevs + oldndevs) == 0); 5016 for (i = 0; i < oldndevs + ndevs; i++) 5017 nvlist_free(newdevs[i]); 5018 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5019 } else { 5020 /* 5021 * Generate a new dev list. 5022 */ 5023 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 5024 KM_SLEEP) == 0); 5025 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 5026 devs, ndevs) == 0); 5027 } 5028 } 5029 5030 /* 5031 * Stop and drop level 2 ARC devices 5032 */ 5033 void 5034 spa_l2cache_drop(spa_t *spa) 5035 { 5036 vdev_t *vd; 5037 int i; 5038 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5039 5040 for (i = 0; i < sav->sav_count; i++) { 5041 uint64_t pool; 5042 5043 vd = sav->sav_vdevs[i]; 5044 ASSERT(vd != NULL); 5045 5046 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5047 pool != 0ULL && l2arc_vdev_present(vd)) 5048 l2arc_remove_vdev(vd); 5049 } 5050 } 5051 5052 /* 5053 * Verify encryption parameters for spa creation. If we are encrypting, we must 5054 * have the encryption feature flag enabled. 5055 */ 5056 static int 5057 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5058 boolean_t has_encryption) 5059 { 5060 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5061 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5062 !has_encryption) 5063 return (SET_ERROR(ENOTSUP)); 5064 5065 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5066 } 5067 5068 /* 5069 * Pool Creation 5070 */ 5071 int 5072 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5073 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5074 { 5075 spa_t *spa; 5076 char *altroot = NULL; 5077 vdev_t *rvd; 5078 dsl_pool_t *dp; 5079 dmu_tx_t *tx; 5080 int error = 0; 5081 uint64_t txg = TXG_INITIAL; 5082 nvlist_t **spares, **l2cache; 5083 uint_t nspares, nl2cache; 5084 uint64_t version, obj; 5085 boolean_t has_features; 5086 char *poolname; 5087 nvlist_t *nvl; 5088 boolean_t has_encryption; 5089 spa_feature_t feat; 5090 char *feat_name; 5091 5092 if (props == NULL || 5093 nvlist_lookup_string(props, 5094 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 5095 poolname = (char *)pool; 5096 5097 /* 5098 * If this pool already exists, return failure. 5099 */ 5100 mutex_enter(&spa_namespace_lock); 5101 if (spa_lookup(poolname) != NULL) { 5102 mutex_exit(&spa_namespace_lock); 5103 return (SET_ERROR(EEXIST)); 5104 } 5105 5106 /* 5107 * Allocate a new spa_t structure. 5108 */ 5109 nvl = fnvlist_alloc(); 5110 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5111 (void) nvlist_lookup_string(props, 5112 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5113 spa = spa_add(poolname, nvl, altroot); 5114 fnvlist_free(nvl); 5115 spa_activate(spa, spa_mode_global); 5116 5117 if (props && (error = spa_prop_validate(spa, props))) { 5118 spa_deactivate(spa); 5119 spa_remove(spa); 5120 mutex_exit(&spa_namespace_lock); 5121 return (error); 5122 } 5123 5124 /* 5125 * Temporary pool names should never be written to disk. 5126 */ 5127 if (poolname != pool) 5128 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5129 5130 has_features = B_FALSE; 5131 has_encryption = B_FALSE; 5132 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5133 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5134 if (zpool_prop_feature(nvpair_name(elem))) { 5135 has_features = B_TRUE; 5136 feat_name = strchr(nvpair_name(elem), '@') + 1; 5137 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5138 if (feat == SPA_FEATURE_ENCRYPTION) 5139 has_encryption = B_TRUE; 5140 } 5141 } 5142 5143 /* verify encryption params, if they were provided */ 5144 if (dcp != NULL) { 5145 error = spa_create_check_encryption_params(dcp, has_encryption); 5146 if (error != 0) { 5147 spa_deactivate(spa); 5148 spa_remove(spa); 5149 mutex_exit(&spa_namespace_lock); 5150 return (error); 5151 } 5152 } 5153 5154 if (has_features || nvlist_lookup_uint64(props, 5155 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5156 version = SPA_VERSION; 5157 } 5158 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5159 5160 spa->spa_first_txg = txg; 5161 spa->spa_uberblock.ub_txg = txg - 1; 5162 spa->spa_uberblock.ub_version = version; 5163 spa->spa_ubsync = spa->spa_uberblock; 5164 spa->spa_load_state = SPA_LOAD_CREATE; 5165 spa->spa_removing_phys.sr_state = DSS_NONE; 5166 spa->spa_removing_phys.sr_removing_vdev = -1; 5167 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5168 spa->spa_indirect_vdevs_loaded = B_TRUE; 5169 5170 /* 5171 * Create "The Godfather" zio to hold all async IOs 5172 */ 5173 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5174 KM_SLEEP); 5175 for (int i = 0; i < max_ncpus; i++) { 5176 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5177 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5178 ZIO_FLAG_GODFATHER); 5179 } 5180 5181 /* 5182 * Create the root vdev. 5183 */ 5184 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5185 5186 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5187 5188 ASSERT(error != 0 || rvd != NULL); 5189 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5190 5191 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5192 error = SET_ERROR(EINVAL); 5193 5194 if (error == 0 && 5195 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5196 (error = spa_validate_aux(spa, nvroot, txg, 5197 VDEV_ALLOC_ADD)) == 0) { 5198 /* 5199 * instantiate the metaslab groups (this will dirty the vdevs) 5200 * we can no longer error exit past this point 5201 */ 5202 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5203 vdev_t *vd = rvd->vdev_child[c]; 5204 5205 vdev_metaslab_set_size(vd); 5206 vdev_expand(vd, txg); 5207 } 5208 } 5209 5210 spa_config_exit(spa, SCL_ALL, FTAG); 5211 5212 if (error != 0) { 5213 spa_unload(spa); 5214 spa_deactivate(spa); 5215 spa_remove(spa); 5216 mutex_exit(&spa_namespace_lock); 5217 return (error); 5218 } 5219 5220 /* 5221 * Get the list of spares, if specified. 5222 */ 5223 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5224 &spares, &nspares) == 0) { 5225 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 5226 KM_SLEEP) == 0); 5227 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5228 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5229 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5230 spa_load_spares(spa); 5231 spa_config_exit(spa, SCL_ALL, FTAG); 5232 spa->spa_spares.sav_sync = B_TRUE; 5233 } 5234 5235 /* 5236 * Get the list of level 2 cache devices, if specified. 5237 */ 5238 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5239 &l2cache, &nl2cache) == 0) { 5240 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5241 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5242 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5243 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5244 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5245 spa_load_l2cache(spa); 5246 spa_config_exit(spa, SCL_ALL, FTAG); 5247 spa->spa_l2cache.sav_sync = B_TRUE; 5248 } 5249 5250 spa->spa_is_initializing = B_TRUE; 5251 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5252 spa->spa_is_initializing = B_FALSE; 5253 5254 /* 5255 * Create DDTs (dedup tables). 5256 */ 5257 ddt_create(spa); 5258 5259 spa_update_dspace(spa); 5260 5261 tx = dmu_tx_create_assigned(dp, txg); 5262 5263 /* 5264 * Create the pool config object. 5265 */ 5266 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5267 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5268 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5269 5270 if (zap_add(spa->spa_meta_objset, 5271 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5272 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5273 cmn_err(CE_PANIC, "failed to add pool config"); 5274 } 5275 5276 if (zap_add(spa->spa_meta_objset, 5277 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5278 sizeof (uint64_t), 1, &version, tx) != 0) { 5279 cmn_err(CE_PANIC, "failed to add pool version"); 5280 } 5281 5282 /* Newly created pools with the right version are always deflated. */ 5283 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5284 spa->spa_deflate = TRUE; 5285 if (zap_add(spa->spa_meta_objset, 5286 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5287 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5288 cmn_err(CE_PANIC, "failed to add deflate"); 5289 } 5290 } 5291 5292 /* 5293 * Create the deferred-free bpobj. Turn off compression 5294 * because sync-to-convergence takes longer if the blocksize 5295 * keeps changing. 5296 */ 5297 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5298 dmu_object_set_compress(spa->spa_meta_objset, obj, 5299 ZIO_COMPRESS_OFF, tx); 5300 if (zap_add(spa->spa_meta_objset, 5301 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5302 sizeof (uint64_t), 1, &obj, tx) != 0) { 5303 cmn_err(CE_PANIC, "failed to add bpobj"); 5304 } 5305 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5306 spa->spa_meta_objset, obj)); 5307 5308 /* 5309 * Create the pool's history object. 5310 */ 5311 if (version >= SPA_VERSION_ZPOOL_HISTORY) 5312 spa_history_create_obj(spa, tx); 5313 5314 /* 5315 * Generate some random noise for salted checksums to operate on. 5316 */ 5317 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5318 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5319 5320 /* 5321 * Set pool properties. 5322 */ 5323 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5324 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5325 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5326 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5327 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5328 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 5329 5330 if (props != NULL) { 5331 spa_configfile_set(spa, props, B_FALSE); 5332 spa_sync_props(props, tx); 5333 } 5334 5335 dmu_tx_commit(tx); 5336 5337 spa->spa_sync_on = B_TRUE; 5338 txg_sync_start(spa->spa_dsl_pool); 5339 mmp_thread_start(spa); 5340 5341 /* 5342 * We explicitly wait for the first transaction to complete so that our 5343 * bean counters are appropriately updated. 5344 */ 5345 txg_wait_synced(spa->spa_dsl_pool, txg); 5346 5347 spa_spawn_aux_threads(spa); 5348 5349 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5350 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5351 5352 spa_history_log_version(spa, "create"); 5353 5354 /* 5355 * Don't count references from objsets that are already closed 5356 * and are making their way through the eviction process. 5357 */ 5358 spa_evicting_os_wait(spa); 5359 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5360 spa->spa_load_state = SPA_LOAD_NONE; 5361 5362 mutex_exit(&spa_namespace_lock); 5363 5364 return (0); 5365 } 5366 5367 #ifdef _KERNEL 5368 /* 5369 * Get the root pool information from the root disk, then import the root pool 5370 * during the system boot up time. 5371 */ 5372 static nvlist_t * 5373 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid, 5374 uint64_t pool_guid) 5375 { 5376 nvlist_t *config; 5377 nvlist_t *nvtop, *nvroot; 5378 uint64_t pgid; 5379 5380 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 5381 return (NULL); 5382 5383 /* 5384 * Add this top-level vdev to the child array. 5385 */ 5386 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5387 &nvtop) == 0); 5388 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5389 &pgid) == 0); 5390 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 5391 5392 if (pool_guid != 0 && pool_guid != pgid) { 5393 /* 5394 * The boot loader provided a pool GUID, but it does not match 5395 * the one we found in the label. Return failure so that we 5396 * can fall back to the full device scan. 5397 */ 5398 zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != " 5399 "label pool guid %llu", (u_longlong_t)pool_guid, 5400 (u_longlong_t)pgid); 5401 nvlist_free(config); 5402 return (NULL); 5403 } 5404 5405 /* 5406 * Put this pool's top-level vdevs into a root vdev. 5407 */ 5408 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5409 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 5410 VDEV_TYPE_ROOT) == 0); 5411 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 5412 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 5413 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 5414 &nvtop, 1) == 0); 5415 5416 /* 5417 * Replace the existing vdev_tree with the new root vdev in 5418 * this pool's configuration (remove the old, add the new). 5419 */ 5420 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 5421 nvlist_free(nvroot); 5422 return (config); 5423 } 5424 5425 /* 5426 * Walk the vdev tree and see if we can find a device with "better" 5427 * configuration. A configuration is "better" if the label on that 5428 * device has a more recent txg. 5429 */ 5430 static void 5431 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 5432 { 5433 for (int c = 0; c < vd->vdev_children; c++) 5434 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 5435 5436 if (vd->vdev_ops->vdev_op_leaf) { 5437 nvlist_t *label; 5438 uint64_t label_txg; 5439 5440 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 5441 &label) != 0) 5442 return; 5443 5444 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 5445 &label_txg) == 0); 5446 5447 /* 5448 * Do we have a better boot device? 5449 */ 5450 if (label_txg > *txg) { 5451 *txg = label_txg; 5452 *avd = vd; 5453 } 5454 nvlist_free(label); 5455 } 5456 } 5457 5458 /* 5459 * Import a root pool. 5460 * 5461 * For x86. devpath_list will consist of devid and/or physpath name of 5462 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 5463 * The GRUB "findroot" command will return the vdev we should boot. 5464 * 5465 * For Sparc, devpath_list consists the physpath name of the booting device 5466 * no matter the rootpool is a single device pool or a mirrored pool. 5467 * e.g. 5468 * "/pci@1f,0/ide@d/disk@0,0:a" 5469 */ 5470 int 5471 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid, 5472 uint64_t vdev_guid) 5473 { 5474 spa_t *spa; 5475 vdev_t *rvd, *bvd, *avd = NULL; 5476 nvlist_t *config, *nvtop; 5477 uint64_t guid, txg; 5478 char *pname; 5479 int error; 5480 const char *altdevpath = NULL; 5481 5482 /* 5483 * Read the label from the boot device and generate a configuration. 5484 */ 5485 config = spa_generate_rootconf(devpath, devid, &guid, pool_guid); 5486 #if defined(_OBP) && defined(_KERNEL) 5487 if (config == NULL) { 5488 if (strstr(devpath, "/iscsi/ssd") != NULL) { 5489 /* iscsi boot */ 5490 get_iscsi_bootpath_phy(devpath); 5491 config = spa_generate_rootconf(devpath, devid, &guid, 5492 pool_guid); 5493 } 5494 } 5495 #endif 5496 5497 /* 5498 * We were unable to import the pool using the /devices path or devid 5499 * provided by the boot loader. This may be the case if the boot 5500 * device has been connected to a different location in the system, or 5501 * if a new boot environment has changed the driver used to access the 5502 * boot device. 5503 * 5504 * Attempt an exhaustive scan of all visible block devices to see if we 5505 * can locate an alternative /devices path with a label that matches 5506 * the expected pool and vdev GUID. 5507 */ 5508 if (config == NULL && (altdevpath = 5509 vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) { 5510 cmn_err(CE_NOTE, "Original /devices path (%s) not available; " 5511 "ZFS is trying an alternate path (%s)", devpath, 5512 altdevpath); 5513 config = spa_generate_rootconf(altdevpath, NULL, &guid, 5514 pool_guid); 5515 } 5516 5517 if (config == NULL) { 5518 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 5519 devpath); 5520 return (SET_ERROR(EIO)); 5521 } 5522 5523 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 5524 &pname) == 0); 5525 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 5526 5527 mutex_enter(&spa_namespace_lock); 5528 if ((spa = spa_lookup(pname)) != NULL) { 5529 /* 5530 * Remove the existing root pool from the namespace so that we 5531 * can replace it with the correct config we just read in. 5532 */ 5533 spa_remove(spa); 5534 } 5535 5536 spa = spa_add(pname, config, NULL); 5537 spa->spa_is_root = B_TRUE; 5538 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 5539 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 5540 &spa->spa_ubsync.ub_version) != 0) 5541 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 5542 5543 /* 5544 * Build up a vdev tree based on the boot device's label config. 5545 */ 5546 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5547 &nvtop) == 0); 5548 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5549 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 5550 VDEV_ALLOC_ROOTPOOL); 5551 spa_config_exit(spa, SCL_ALL, FTAG); 5552 if (error) { 5553 mutex_exit(&spa_namespace_lock); 5554 nvlist_free(config); 5555 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 5556 pname); 5557 return (error); 5558 } 5559 5560 /* 5561 * Get the boot vdev. 5562 */ 5563 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 5564 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 5565 (u_longlong_t)guid); 5566 error = SET_ERROR(ENOENT); 5567 goto out; 5568 } 5569 5570 /* 5571 * Determine if there is a better boot device. 5572 */ 5573 avd = bvd; 5574 spa_alt_rootvdev(rvd, &avd, &txg); 5575 if (avd != bvd) { 5576 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 5577 "try booting from '%s'", avd->vdev_path); 5578 error = SET_ERROR(EINVAL); 5579 goto out; 5580 } 5581 5582 /* 5583 * If the boot device is part of a spare vdev then ensure that 5584 * we're booting off the active spare. 5585 */ 5586 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 5587 !bvd->vdev_isspare) { 5588 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 5589 "try booting from '%s'", 5590 bvd->vdev_parent-> 5591 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 5592 error = SET_ERROR(EINVAL); 5593 goto out; 5594 } 5595 5596 error = 0; 5597 out: 5598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5599 vdev_free(rvd); 5600 spa_config_exit(spa, SCL_ALL, FTAG); 5601 mutex_exit(&spa_namespace_lock); 5602 5603 nvlist_free(config); 5604 return (error); 5605 } 5606 5607 #endif 5608 5609 /* 5610 * Import a non-root pool into the system. 5611 */ 5612 int 5613 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5614 { 5615 spa_t *spa; 5616 char *altroot = NULL; 5617 spa_load_state_t state = SPA_LOAD_IMPORT; 5618 zpool_load_policy_t policy; 5619 uint64_t mode = spa_mode_global; 5620 uint64_t readonly = B_FALSE; 5621 int error; 5622 nvlist_t *nvroot; 5623 nvlist_t **spares, **l2cache; 5624 uint_t nspares, nl2cache; 5625 5626 /* 5627 * If a pool with this name exists, return failure. 5628 */ 5629 mutex_enter(&spa_namespace_lock); 5630 if (spa_lookup(pool) != NULL) { 5631 mutex_exit(&spa_namespace_lock); 5632 return (SET_ERROR(EEXIST)); 5633 } 5634 5635 /* 5636 * Create and initialize the spa structure. 5637 */ 5638 (void) nvlist_lookup_string(props, 5639 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5640 (void) nvlist_lookup_uint64(props, 5641 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5642 if (readonly) 5643 mode = FREAD; 5644 spa = spa_add(pool, config, altroot); 5645 spa->spa_import_flags = flags; 5646 5647 /* 5648 * Verbatim import - Take a pool and insert it into the namespace 5649 * as if it had been loaded at boot. 5650 */ 5651 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5652 if (props != NULL) 5653 spa_configfile_set(spa, props, B_FALSE); 5654 5655 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5656 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5657 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5658 mutex_exit(&spa_namespace_lock); 5659 return (0); 5660 } 5661 5662 spa_activate(spa, mode); 5663 5664 /* 5665 * Don't start async tasks until we know everything is healthy. 5666 */ 5667 spa_async_suspend(spa); 5668 5669 zpool_get_load_policy(config, &policy); 5670 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5671 state = SPA_LOAD_RECOVER; 5672 5673 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5674 5675 if (state != SPA_LOAD_RECOVER) { 5676 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5677 zfs_dbgmsg("spa_import: importing %s", pool); 5678 } else { 5679 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5680 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5681 } 5682 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5683 5684 /* 5685 * Propagate anything learned while loading the pool and pass it 5686 * back to caller (i.e. rewind info, missing devices, etc). 5687 */ 5688 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5689 spa->spa_load_info) == 0); 5690 5691 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5692 /* 5693 * Toss any existing sparelist, as it doesn't have any validity 5694 * anymore, and conflicts with spa_has_spare(). 5695 */ 5696 if (spa->spa_spares.sav_config) { 5697 nvlist_free(spa->spa_spares.sav_config); 5698 spa->spa_spares.sav_config = NULL; 5699 spa_load_spares(spa); 5700 } 5701 if (spa->spa_l2cache.sav_config) { 5702 nvlist_free(spa->spa_l2cache.sav_config); 5703 spa->spa_l2cache.sav_config = NULL; 5704 spa_load_l2cache(spa); 5705 } 5706 5707 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5708 &nvroot) == 0); 5709 if (error == 0) 5710 error = spa_validate_aux(spa, nvroot, -1ULL, 5711 VDEV_ALLOC_SPARE); 5712 if (error == 0) 5713 error = spa_validate_aux(spa, nvroot, -1ULL, 5714 VDEV_ALLOC_L2CACHE); 5715 spa_config_exit(spa, SCL_ALL, FTAG); 5716 5717 if (props != NULL) 5718 spa_configfile_set(spa, props, B_FALSE); 5719 5720 if (error != 0 || (props && spa_writeable(spa) && 5721 (error = spa_prop_set(spa, props)))) { 5722 spa_unload(spa); 5723 spa_deactivate(spa); 5724 spa_remove(spa); 5725 mutex_exit(&spa_namespace_lock); 5726 return (error); 5727 } 5728 5729 spa_async_resume(spa); 5730 5731 /* 5732 * Override any spares and level 2 cache devices as specified by 5733 * the user, as these may have correct device names/devids, etc. 5734 */ 5735 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5736 &spares, &nspares) == 0) { 5737 if (spa->spa_spares.sav_config) 5738 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 5739 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 5740 else 5741 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 5742 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5743 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5744 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5745 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5746 spa_load_spares(spa); 5747 spa_config_exit(spa, SCL_ALL, FTAG); 5748 spa->spa_spares.sav_sync = B_TRUE; 5749 } 5750 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5751 &l2cache, &nl2cache) == 0) { 5752 if (spa->spa_l2cache.sav_config) 5753 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 5754 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 5755 else 5756 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5757 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5758 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5759 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5760 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5761 spa_load_l2cache(spa); 5762 spa_config_exit(spa, SCL_ALL, FTAG); 5763 spa->spa_l2cache.sav_sync = B_TRUE; 5764 } 5765 5766 /* 5767 * Check for any removed devices. 5768 */ 5769 if (spa->spa_autoreplace) { 5770 spa_aux_check_removed(&spa->spa_spares); 5771 spa_aux_check_removed(&spa->spa_l2cache); 5772 } 5773 5774 if (spa_writeable(spa)) { 5775 /* 5776 * Update the config cache to include the newly-imported pool. 5777 */ 5778 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5779 } 5780 5781 /* 5782 * It's possible that the pool was expanded while it was exported. 5783 * We kick off an async task to handle this for us. 5784 */ 5785 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5786 5787 spa_history_log_version(spa, "import"); 5788 5789 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5790 5791 mutex_exit(&spa_namespace_lock); 5792 5793 return (0); 5794 } 5795 5796 nvlist_t * 5797 spa_tryimport(nvlist_t *tryconfig) 5798 { 5799 nvlist_t *config = NULL; 5800 char *poolname, *cachefile; 5801 spa_t *spa; 5802 uint64_t state; 5803 int error; 5804 zpool_load_policy_t policy; 5805 5806 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 5807 return (NULL); 5808 5809 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 5810 return (NULL); 5811 5812 /* 5813 * Create and initialize the spa structure. 5814 */ 5815 mutex_enter(&spa_namespace_lock); 5816 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 5817 spa_activate(spa, FREAD); 5818 5819 /* 5820 * Rewind pool if a max txg was provided. 5821 */ 5822 zpool_get_load_policy(spa->spa_config, &policy); 5823 if (policy.zlp_txg != UINT64_MAX) { 5824 spa->spa_load_max_txg = policy.zlp_txg; 5825 spa->spa_extreme_rewind = B_TRUE; 5826 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 5827 poolname, (longlong_t)policy.zlp_txg); 5828 } else { 5829 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 5830 } 5831 5832 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 5833 == 0) { 5834 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 5835 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5836 } else { 5837 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 5838 } 5839 5840 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 5841 5842 /* 5843 * If 'tryconfig' was at least parsable, return the current config. 5844 */ 5845 if (spa->spa_root_vdev != NULL) { 5846 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5847 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 5848 poolname) == 0); 5849 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5850 state) == 0); 5851 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 5852 spa->spa_uberblock.ub_timestamp) == 0); 5853 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5854 spa->spa_load_info) == 0); 5855 5856 /* 5857 * If the bootfs property exists on this pool then we 5858 * copy it out so that external consumers can tell which 5859 * pools are bootable. 5860 */ 5861 if ((!error || error == EEXIST) && spa->spa_bootfs) { 5862 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5863 5864 /* 5865 * We have to play games with the name since the 5866 * pool was opened as TRYIMPORT_NAME. 5867 */ 5868 if (dsl_dsobj_to_dsname(spa_name(spa), 5869 spa->spa_bootfs, tmpname) == 0) { 5870 char *cp; 5871 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5872 5873 cp = strchr(tmpname, '/'); 5874 if (cp == NULL) { 5875 (void) strlcpy(dsname, tmpname, 5876 MAXPATHLEN); 5877 } else { 5878 (void) snprintf(dsname, MAXPATHLEN, 5879 "%s/%s", poolname, ++cp); 5880 } 5881 VERIFY(nvlist_add_string(config, 5882 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 5883 kmem_free(dsname, MAXPATHLEN); 5884 } 5885 kmem_free(tmpname, MAXPATHLEN); 5886 } 5887 5888 /* 5889 * Add the list of hot spares and level 2 cache devices. 5890 */ 5891 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5892 spa_add_spares(spa, config); 5893 spa_add_l2cache(spa, config); 5894 spa_config_exit(spa, SCL_CONFIG, FTAG); 5895 } 5896 5897 spa_unload(spa); 5898 spa_deactivate(spa); 5899 spa_remove(spa); 5900 mutex_exit(&spa_namespace_lock); 5901 5902 return (config); 5903 } 5904 5905 /* 5906 * Pool export/destroy 5907 * 5908 * The act of destroying or exporting a pool is very simple. We make sure there 5909 * is no more pending I/O and any references to the pool are gone. Then, we 5910 * update the pool state and sync all the labels to disk, removing the 5911 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 5912 * we don't sync the labels or remove the configuration cache. 5913 */ 5914 static int 5915 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5916 boolean_t force, boolean_t hardforce) 5917 { 5918 spa_t *spa; 5919 5920 if (oldconfig) 5921 *oldconfig = NULL; 5922 5923 if (!(spa_mode_global & FWRITE)) 5924 return (SET_ERROR(EROFS)); 5925 5926 mutex_enter(&spa_namespace_lock); 5927 if ((spa = spa_lookup(pool)) == NULL) { 5928 mutex_exit(&spa_namespace_lock); 5929 return (SET_ERROR(ENOENT)); 5930 } 5931 5932 /* 5933 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5934 * reacquire the namespace lock, and see if we can export. 5935 */ 5936 spa_open_ref(spa, FTAG); 5937 mutex_exit(&spa_namespace_lock); 5938 spa_async_suspend(spa); 5939 mutex_enter(&spa_namespace_lock); 5940 spa_close(spa, FTAG); 5941 5942 /* 5943 * The pool will be in core if it's openable, 5944 * in which case we can modify its state. 5945 */ 5946 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5947 5948 /* 5949 * Objsets may be open only because they're dirty, so we 5950 * have to force it to sync before checking spa_refcnt. 5951 */ 5952 txg_wait_synced(spa->spa_dsl_pool, 0); 5953 spa_evicting_os_wait(spa); 5954 5955 /* 5956 * A pool cannot be exported or destroyed if there are active 5957 * references. If we are resetting a pool, allow references by 5958 * fault injection handlers. 5959 */ 5960 if (!spa_refcount_zero(spa) || 5961 (spa->spa_inject_ref != 0 && 5962 new_state != POOL_STATE_UNINITIALIZED)) { 5963 spa_async_resume(spa); 5964 mutex_exit(&spa_namespace_lock); 5965 return (SET_ERROR(EBUSY)); 5966 } 5967 5968 /* 5969 * A pool cannot be exported if it has an active shared spare. 5970 * This is to prevent other pools stealing the active spare 5971 * from an exported pool. At user's own will, such pool can 5972 * be forcedly exported. 5973 */ 5974 if (!force && new_state == POOL_STATE_EXPORTED && 5975 spa_has_active_shared_spare(spa)) { 5976 spa_async_resume(spa); 5977 mutex_exit(&spa_namespace_lock); 5978 return (SET_ERROR(EXDEV)); 5979 } 5980 5981 /* 5982 * We're about to export or destroy this pool. Make sure 5983 * we stop all initialization and trim activity here before 5984 * we set the spa_final_txg. This will ensure that all 5985 * dirty data resulting from the initialization is 5986 * committed to disk before we unload the pool. 5987 */ 5988 if (spa->spa_root_vdev != NULL) { 5989 vdev_t *rvd = spa->spa_root_vdev; 5990 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 5991 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 5992 vdev_autotrim_stop_all(spa); 5993 } 5994 5995 /* 5996 * We want this to be reflected on every label, 5997 * so mark them all dirty. spa_unload() will do the 5998 * final sync that pushes these changes out. 5999 */ 6000 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6001 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6002 spa->spa_state = new_state; 6003 spa->spa_final_txg = spa_last_synced_txg(spa) + 6004 TXG_DEFER_SIZE + 1; 6005 vdev_config_dirty(spa->spa_root_vdev); 6006 spa_config_exit(spa, SCL_ALL, FTAG); 6007 } 6008 } 6009 6010 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6011 6012 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6013 spa_unload(spa); 6014 spa_deactivate(spa); 6015 } 6016 6017 if (oldconfig && spa->spa_config) 6018 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 6019 6020 if (new_state != POOL_STATE_UNINITIALIZED) { 6021 if (!hardforce) 6022 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6023 spa_remove(spa); 6024 } 6025 mutex_exit(&spa_namespace_lock); 6026 6027 return (0); 6028 } 6029 6030 /* 6031 * Destroy a storage pool. 6032 */ 6033 int 6034 spa_destroy(char *pool) 6035 { 6036 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6037 B_FALSE, B_FALSE)); 6038 } 6039 6040 /* 6041 * Export a storage pool. 6042 */ 6043 int 6044 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 6045 boolean_t hardforce) 6046 { 6047 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6048 force, hardforce)); 6049 } 6050 6051 /* 6052 * Similar to spa_export(), this unloads the spa_t without actually removing it 6053 * from the namespace in any way. 6054 */ 6055 int 6056 spa_reset(char *pool) 6057 { 6058 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6059 B_FALSE, B_FALSE)); 6060 } 6061 6062 /* 6063 * ========================================================================== 6064 * Device manipulation 6065 * ========================================================================== 6066 */ 6067 6068 /* 6069 * Add a device to a storage pool. 6070 */ 6071 int 6072 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6073 { 6074 uint64_t txg; 6075 int error; 6076 vdev_t *rvd = spa->spa_root_vdev; 6077 vdev_t *vd, *tvd; 6078 nvlist_t **spares, **l2cache; 6079 uint_t nspares, nl2cache; 6080 6081 ASSERT(spa_writeable(spa)); 6082 6083 txg = spa_vdev_enter(spa); 6084 6085 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6086 VDEV_ALLOC_ADD)) != 0) 6087 return (spa_vdev_exit(spa, NULL, txg, error)); 6088 6089 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6090 6091 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6092 &nspares) != 0) 6093 nspares = 0; 6094 6095 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6096 &nl2cache) != 0) 6097 nl2cache = 0; 6098 6099 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6100 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6101 6102 if (vd->vdev_children != 0 && 6103 (error = vdev_create(vd, txg, B_FALSE)) != 0) 6104 return (spa_vdev_exit(spa, vd, txg, error)); 6105 6106 /* 6107 * We must validate the spares and l2cache devices after checking the 6108 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6109 */ 6110 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6111 return (spa_vdev_exit(spa, vd, txg, error)); 6112 6113 /* 6114 * If we are in the middle of a device removal, we can only add 6115 * devices which match the existing devices in the pool. 6116 * If we are in the middle of a removal, or have some indirect 6117 * vdevs, we can not add raidz toplevels. 6118 */ 6119 if (spa->spa_vdev_removal != NULL || 6120 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6121 for (int c = 0; c < vd->vdev_children; c++) { 6122 tvd = vd->vdev_child[c]; 6123 if (spa->spa_vdev_removal != NULL && 6124 tvd->vdev_ashift != spa->spa_max_ashift) { 6125 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6126 } 6127 /* Fail if top level vdev is raidz */ 6128 if (tvd->vdev_ops == &vdev_raidz_ops) { 6129 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6130 } 6131 /* 6132 * Need the top level mirror to be 6133 * a mirror of leaf vdevs only 6134 */ 6135 if (tvd->vdev_ops == &vdev_mirror_ops) { 6136 for (uint64_t cid = 0; 6137 cid < tvd->vdev_children; cid++) { 6138 vdev_t *cvd = tvd->vdev_child[cid]; 6139 if (!cvd->vdev_ops->vdev_op_leaf) { 6140 return (spa_vdev_exit(spa, vd, 6141 txg, EINVAL)); 6142 } 6143 } 6144 } 6145 } 6146 } 6147 6148 for (int c = 0; c < vd->vdev_children; c++) { 6149 tvd = vd->vdev_child[c]; 6150 vdev_remove_child(vd, tvd); 6151 tvd->vdev_id = rvd->vdev_children; 6152 vdev_add_child(rvd, tvd); 6153 vdev_config_dirty(tvd); 6154 } 6155 6156 if (nspares != 0) { 6157 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6158 ZPOOL_CONFIG_SPARES); 6159 spa_load_spares(spa); 6160 spa->spa_spares.sav_sync = B_TRUE; 6161 } 6162 6163 if (nl2cache != 0) { 6164 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6165 ZPOOL_CONFIG_L2CACHE); 6166 spa_load_l2cache(spa); 6167 spa->spa_l2cache.sav_sync = B_TRUE; 6168 } 6169 6170 /* 6171 * We have to be careful when adding new vdevs to an existing pool. 6172 * If other threads start allocating from these vdevs before we 6173 * sync the config cache, and we lose power, then upon reboot we may 6174 * fail to open the pool because there are DVAs that the config cache 6175 * can't translate. Therefore, we first add the vdevs without 6176 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6177 * and then let spa_config_update() initialize the new metaslabs. 6178 * 6179 * spa_load() checks for added-but-not-initialized vdevs, so that 6180 * if we lose power at any point in this sequence, the remaining 6181 * steps will be completed the next time we load the pool. 6182 */ 6183 (void) spa_vdev_exit(spa, vd, txg, 0); 6184 6185 mutex_enter(&spa_namespace_lock); 6186 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6187 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6188 mutex_exit(&spa_namespace_lock); 6189 6190 return (0); 6191 } 6192 6193 /* 6194 * Attach a device to a mirror. The arguments are the path to any device 6195 * in the mirror, and the nvroot for the new device. If the path specifies 6196 * a device that is not mirrored, we automatically insert the mirror vdev. 6197 * 6198 * If 'replacing' is specified, the new device is intended to replace the 6199 * existing device; in this case the two devices are made into their own 6200 * mirror using the 'replacing' vdev, which is functionally identical to 6201 * the mirror vdev (it actually reuses all the same ops) but has a few 6202 * extra rules: you can't attach to it after it's been created, and upon 6203 * completion of resilvering, the first disk (the one being replaced) 6204 * is automatically detached. 6205 */ 6206 int 6207 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 6208 { 6209 uint64_t txg, dtl_max_txg; 6210 vdev_t *rvd = spa->spa_root_vdev; 6211 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6212 vdev_ops_t *pvops; 6213 char *oldvdpath, *newvdpath; 6214 int newvd_isspare; 6215 int error; 6216 6217 ASSERT(spa_writeable(spa)); 6218 6219 txg = spa_vdev_enter(spa); 6220 6221 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6222 6223 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6224 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6225 error = (spa_has_checkpoint(spa)) ? 6226 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6227 return (spa_vdev_exit(spa, NULL, txg, error)); 6228 } 6229 6230 if (spa->spa_vdev_removal != NULL) 6231 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6232 6233 if (oldvd == NULL) 6234 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6235 6236 if (!oldvd->vdev_ops->vdev_op_leaf) 6237 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6238 6239 pvd = oldvd->vdev_parent; 6240 6241 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6242 VDEV_ALLOC_ATTACH)) != 0) 6243 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6244 6245 if (newrootvd->vdev_children != 1) 6246 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6247 6248 newvd = newrootvd->vdev_child[0]; 6249 6250 if (!newvd->vdev_ops->vdev_op_leaf) 6251 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6252 6253 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6254 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6255 6256 /* 6257 * Spares can't replace logs 6258 */ 6259 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6260 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6261 6262 if (!replacing) { 6263 /* 6264 * For attach, the only allowable parent is a mirror or the root 6265 * vdev. 6266 */ 6267 if (pvd->vdev_ops != &vdev_mirror_ops && 6268 pvd->vdev_ops != &vdev_root_ops) 6269 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6270 6271 pvops = &vdev_mirror_ops; 6272 } else { 6273 /* 6274 * Active hot spares can only be replaced by inactive hot 6275 * spares. 6276 */ 6277 if (pvd->vdev_ops == &vdev_spare_ops && 6278 oldvd->vdev_isspare && 6279 !spa_has_spare(spa, newvd->vdev_guid)) 6280 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6281 6282 /* 6283 * If the source is a hot spare, and the parent isn't already a 6284 * spare, then we want to create a new hot spare. Otherwise, we 6285 * want to create a replacing vdev. The user is not allowed to 6286 * attach to a spared vdev child unless the 'isspare' state is 6287 * the same (spare replaces spare, non-spare replaces 6288 * non-spare). 6289 */ 6290 if (pvd->vdev_ops == &vdev_replacing_ops && 6291 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6292 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6293 } else if (pvd->vdev_ops == &vdev_spare_ops && 6294 newvd->vdev_isspare != oldvd->vdev_isspare) { 6295 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6296 } 6297 6298 if (newvd->vdev_isspare) 6299 pvops = &vdev_spare_ops; 6300 else 6301 pvops = &vdev_replacing_ops; 6302 } 6303 6304 /* 6305 * Make sure the new device is big enough. 6306 */ 6307 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6308 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6309 6310 /* 6311 * The new device cannot have a higher alignment requirement 6312 * than the top-level vdev. 6313 */ 6314 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6315 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 6316 6317 /* 6318 * If this is an in-place replacement, update oldvd's path and devid 6319 * to make it distinguishable from newvd, and unopenable from now on. 6320 */ 6321 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6322 spa_strfree(oldvd->vdev_path); 6323 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6324 KM_SLEEP); 6325 (void) sprintf(oldvd->vdev_path, "%s/%s", 6326 newvd->vdev_path, "old"); 6327 if (oldvd->vdev_devid != NULL) { 6328 spa_strfree(oldvd->vdev_devid); 6329 oldvd->vdev_devid = NULL; 6330 } 6331 } 6332 6333 /* mark the device being resilvered */ 6334 newvd->vdev_resilver_txg = txg; 6335 6336 /* 6337 * If the parent is not a mirror, or if we're replacing, insert the new 6338 * mirror/replacing/spare vdev above oldvd. 6339 */ 6340 if (pvd->vdev_ops != pvops) 6341 pvd = vdev_add_parent(oldvd, pvops); 6342 6343 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6344 ASSERT(pvd->vdev_ops == pvops); 6345 ASSERT(oldvd->vdev_parent == pvd); 6346 6347 /* 6348 * Extract the new device from its root and add it to pvd. 6349 */ 6350 vdev_remove_child(newrootvd, newvd); 6351 newvd->vdev_id = pvd->vdev_children; 6352 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6353 vdev_add_child(pvd, newvd); 6354 6355 tvd = newvd->vdev_top; 6356 ASSERT(pvd->vdev_top == tvd); 6357 ASSERT(tvd->vdev_parent == rvd); 6358 6359 vdev_config_dirty(tvd); 6360 6361 /* 6362 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6363 * for any dmu_sync-ed blocks. It will propagate upward when 6364 * spa_vdev_exit() calls vdev_dtl_reassess(). 6365 */ 6366 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6367 6368 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 6369 dtl_max_txg - TXG_INITIAL); 6370 6371 if (newvd->vdev_isspare) { 6372 spa_spare_activate(newvd); 6373 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6374 } 6375 6376 oldvdpath = spa_strdup(oldvd->vdev_path); 6377 newvdpath = spa_strdup(newvd->vdev_path); 6378 newvd_isspare = newvd->vdev_isspare; 6379 6380 /* 6381 * Mark newvd's DTL dirty in this txg. 6382 */ 6383 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6384 6385 /* 6386 * Schedule the resilver to restart in the future. We do this to 6387 * ensure that dmu_sync-ed blocks have been stitched into the 6388 * respective datasets. We do not do this if resilvers have been 6389 * deferred. 6390 */ 6391 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6392 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 6393 vdev_defer_resilver(newvd); 6394 else 6395 dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg); 6396 6397 if (spa->spa_bootfs) 6398 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6399 6400 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6401 6402 /* 6403 * Commit the config 6404 */ 6405 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6406 6407 spa_history_log_internal(spa, "vdev attach", NULL, 6408 "%s vdev=%s %s vdev=%s", 6409 replacing && newvd_isspare ? "spare in" : 6410 replacing ? "replace" : "attach", newvdpath, 6411 replacing ? "for" : "to", oldvdpath); 6412 6413 spa_strfree(oldvdpath); 6414 spa_strfree(newvdpath); 6415 6416 return (0); 6417 } 6418 6419 /* 6420 * Detach a device from a mirror or replacing vdev. 6421 * 6422 * If 'replace_done' is specified, only detach if the parent 6423 * is a replacing vdev. 6424 */ 6425 int 6426 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6427 { 6428 uint64_t txg; 6429 int error; 6430 vdev_t *rvd = spa->spa_root_vdev; 6431 vdev_t *vd, *pvd, *cvd, *tvd; 6432 boolean_t unspare = B_FALSE; 6433 uint64_t unspare_guid = 0; 6434 char *vdpath; 6435 6436 ASSERT(spa_writeable(spa)); 6437 6438 txg = spa_vdev_enter(spa); 6439 6440 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6441 6442 /* 6443 * Besides being called directly from the userland through the 6444 * ioctl interface, spa_vdev_detach() can be potentially called 6445 * at the end of spa_vdev_resilver_done(). 6446 * 6447 * In the regular case, when we have a checkpoint this shouldn't 6448 * happen as we never empty the DTLs of a vdev during the scrub 6449 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6450 * should never get here when we have a checkpoint. 6451 * 6452 * That said, even in a case when we checkpoint the pool exactly 6453 * as spa_vdev_resilver_done() calls this function everything 6454 * should be fine as the resilver will return right away. 6455 */ 6456 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6457 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6458 error = (spa_has_checkpoint(spa)) ? 6459 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6460 return (spa_vdev_exit(spa, NULL, txg, error)); 6461 } 6462 6463 if (vd == NULL) 6464 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6465 6466 if (!vd->vdev_ops->vdev_op_leaf) 6467 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6468 6469 pvd = vd->vdev_parent; 6470 6471 /* 6472 * If the parent/child relationship is not as expected, don't do it. 6473 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6474 * vdev that's replacing B with C. The user's intent in replacing 6475 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6476 * the replace by detaching C, the expected behavior is to end up 6477 * M(A,B). But suppose that right after deciding to detach C, 6478 * the replacement of B completes. We would have M(A,C), and then 6479 * ask to detach C, which would leave us with just A -- not what 6480 * the user wanted. To prevent this, we make sure that the 6481 * parent/child relationship hasn't changed -- in this example, 6482 * that C's parent is still the replacing vdev R. 6483 */ 6484 if (pvd->vdev_guid != pguid && pguid != 0) 6485 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6486 6487 /* 6488 * Only 'replacing' or 'spare' vdevs can be replaced. 6489 */ 6490 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6491 pvd->vdev_ops != &vdev_spare_ops) 6492 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6493 6494 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6495 spa_version(spa) >= SPA_VERSION_SPARES); 6496 6497 /* 6498 * Only mirror, replacing, and spare vdevs support detach. 6499 */ 6500 if (pvd->vdev_ops != &vdev_replacing_ops && 6501 pvd->vdev_ops != &vdev_mirror_ops && 6502 pvd->vdev_ops != &vdev_spare_ops) 6503 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6504 6505 /* 6506 * If this device has the only valid copy of some data, 6507 * we cannot safely detach it. 6508 */ 6509 if (vdev_dtl_required(vd)) 6510 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6511 6512 ASSERT(pvd->vdev_children >= 2); 6513 6514 /* 6515 * If we are detaching the second disk from a replacing vdev, then 6516 * check to see if we changed the original vdev's path to have "/old" 6517 * at the end in spa_vdev_attach(). If so, undo that change now. 6518 */ 6519 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6520 vd->vdev_path != NULL) { 6521 size_t len = strlen(vd->vdev_path); 6522 6523 for (int c = 0; c < pvd->vdev_children; c++) { 6524 cvd = pvd->vdev_child[c]; 6525 6526 if (cvd == vd || cvd->vdev_path == NULL) 6527 continue; 6528 6529 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6530 strcmp(cvd->vdev_path + len, "/old") == 0) { 6531 spa_strfree(cvd->vdev_path); 6532 cvd->vdev_path = spa_strdup(vd->vdev_path); 6533 break; 6534 } 6535 } 6536 } 6537 6538 /* 6539 * If we are detaching the original disk from a spare, then it implies 6540 * that the spare should become a real disk, and be removed from the 6541 * active spare list for the pool. 6542 */ 6543 if (pvd->vdev_ops == &vdev_spare_ops && 6544 vd->vdev_id == 0 && 6545 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6546 unspare = B_TRUE; 6547 6548 /* 6549 * Erase the disk labels so the disk can be used for other things. 6550 * This must be done after all other error cases are handled, 6551 * but before we disembowel vd (so we can still do I/O to it). 6552 * But if we can't do it, don't treat the error as fatal -- 6553 * it may be that the unwritability of the disk is the reason 6554 * it's being detached! 6555 */ 6556 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6557 6558 /* 6559 * Remove vd from its parent and compact the parent's children. 6560 */ 6561 vdev_remove_child(pvd, vd); 6562 vdev_compact_children(pvd); 6563 6564 /* 6565 * Remember one of the remaining children so we can get tvd below. 6566 */ 6567 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6568 6569 /* 6570 * If we need to remove the remaining child from the list of hot spares, 6571 * do it now, marking the vdev as no longer a spare in the process. 6572 * We must do this before vdev_remove_parent(), because that can 6573 * change the GUID if it creates a new toplevel GUID. For a similar 6574 * reason, we must remove the spare now, in the same txg as the detach; 6575 * otherwise someone could attach a new sibling, change the GUID, and 6576 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6577 */ 6578 if (unspare) { 6579 ASSERT(cvd->vdev_isspare); 6580 spa_spare_remove(cvd); 6581 unspare_guid = cvd->vdev_guid; 6582 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6583 cvd->vdev_unspare = B_TRUE; 6584 } 6585 6586 /* 6587 * If the parent mirror/replacing vdev only has one child, 6588 * the parent is no longer needed. Remove it from the tree. 6589 */ 6590 if (pvd->vdev_children == 1) { 6591 if (pvd->vdev_ops == &vdev_spare_ops) 6592 cvd->vdev_unspare = B_FALSE; 6593 vdev_remove_parent(cvd); 6594 } 6595 6596 /* 6597 * We don't set tvd until now because the parent we just removed 6598 * may have been the previous top-level vdev. 6599 */ 6600 tvd = cvd->vdev_top; 6601 ASSERT(tvd->vdev_parent == rvd); 6602 6603 /* 6604 * Reevaluate the parent vdev state. 6605 */ 6606 vdev_propagate_state(cvd); 6607 6608 /* 6609 * If the 'autoexpand' property is set on the pool then automatically 6610 * try to expand the size of the pool. For example if the device we 6611 * just detached was smaller than the others, it may be possible to 6612 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6613 * first so that we can obtain the updated sizes of the leaf vdevs. 6614 */ 6615 if (spa->spa_autoexpand) { 6616 vdev_reopen(tvd); 6617 vdev_expand(tvd, txg); 6618 } 6619 6620 vdev_config_dirty(tvd); 6621 6622 /* 6623 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6624 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6625 * But first make sure we're not on any *other* txg's DTL list, to 6626 * prevent vd from being accessed after it's freed. 6627 */ 6628 vdpath = spa_strdup(vd->vdev_path); 6629 for (int t = 0; t < TXG_SIZE; t++) 6630 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6631 vd->vdev_detached = B_TRUE; 6632 vdev_dirty(tvd, VDD_DTL, vd, txg); 6633 6634 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 6635 6636 /* hang on to the spa before we release the lock */ 6637 spa_open_ref(spa, FTAG); 6638 6639 error = spa_vdev_exit(spa, vd, txg, 0); 6640 6641 spa_history_log_internal(spa, "detach", NULL, 6642 "vdev=%s", vdpath); 6643 spa_strfree(vdpath); 6644 6645 /* 6646 * If this was the removal of the original device in a hot spare vdev, 6647 * then we want to go through and remove the device from the hot spare 6648 * list of every other pool. 6649 */ 6650 if (unspare) { 6651 spa_t *altspa = NULL; 6652 6653 mutex_enter(&spa_namespace_lock); 6654 while ((altspa = spa_next(altspa)) != NULL) { 6655 if (altspa->spa_state != POOL_STATE_ACTIVE || 6656 altspa == spa) 6657 continue; 6658 6659 spa_open_ref(altspa, FTAG); 6660 mutex_exit(&spa_namespace_lock); 6661 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 6662 mutex_enter(&spa_namespace_lock); 6663 spa_close(altspa, FTAG); 6664 } 6665 mutex_exit(&spa_namespace_lock); 6666 6667 /* search the rest of the vdevs for spares to remove */ 6668 spa_vdev_resilver_done(spa); 6669 } 6670 6671 /* all done with the spa; OK to release */ 6672 mutex_enter(&spa_namespace_lock); 6673 spa_close(spa, FTAG); 6674 mutex_exit(&spa_namespace_lock); 6675 6676 return (error); 6677 } 6678 6679 static int 6680 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 6681 list_t *vd_list) 6682 { 6683 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6684 6685 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6686 6687 /* Look up vdev and ensure it's a leaf. */ 6688 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6689 if (vd == NULL || vd->vdev_detached) { 6690 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6691 return (SET_ERROR(ENODEV)); 6692 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6693 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6694 return (SET_ERROR(EINVAL)); 6695 } else if (!vdev_writeable(vd)) { 6696 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6697 return (SET_ERROR(EROFS)); 6698 } 6699 mutex_enter(&vd->vdev_initialize_lock); 6700 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6701 6702 /* 6703 * When we activate an initialize action we check to see 6704 * if the vdev_initialize_thread is NULL. We do this instead 6705 * of using the vdev_initialize_state since there might be 6706 * a previous initialization process which has completed but 6707 * the thread is not exited. 6708 */ 6709 if (cmd_type == POOL_INITIALIZE_START && 6710 (vd->vdev_initialize_thread != NULL || 6711 vd->vdev_top->vdev_removing)) { 6712 mutex_exit(&vd->vdev_initialize_lock); 6713 return (SET_ERROR(EBUSY)); 6714 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 6715 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 6716 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 6717 mutex_exit(&vd->vdev_initialize_lock); 6718 return (SET_ERROR(ESRCH)); 6719 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 6720 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 6721 mutex_exit(&vd->vdev_initialize_lock); 6722 return (SET_ERROR(ESRCH)); 6723 } 6724 6725 switch (cmd_type) { 6726 case POOL_INITIALIZE_START: 6727 vdev_initialize(vd); 6728 break; 6729 case POOL_INITIALIZE_CANCEL: 6730 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 6731 break; 6732 case POOL_INITIALIZE_SUSPEND: 6733 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 6734 break; 6735 default: 6736 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6737 } 6738 mutex_exit(&vd->vdev_initialize_lock); 6739 6740 return (0); 6741 } 6742 6743 int 6744 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 6745 nvlist_t *vdev_errlist) 6746 { 6747 int total_errors = 0; 6748 list_t vd_list; 6749 6750 list_create(&vd_list, sizeof (vdev_t), 6751 offsetof(vdev_t, vdev_initialize_node)); 6752 6753 /* 6754 * We hold the namespace lock through the whole function 6755 * to prevent any changes to the pool while we're starting or 6756 * stopping initialization. The config and state locks are held so that 6757 * we can properly assess the vdev state before we commit to 6758 * the initializing operation. 6759 */ 6760 mutex_enter(&spa_namespace_lock); 6761 6762 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 6763 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 6764 uint64_t vdev_guid = fnvpair_value_uint64(pair); 6765 6766 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 6767 &vd_list); 6768 if (error != 0) { 6769 char guid_as_str[MAXNAMELEN]; 6770 6771 (void) snprintf(guid_as_str, sizeof (guid_as_str), 6772 "%llu", (unsigned long long)vdev_guid); 6773 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 6774 total_errors++; 6775 } 6776 } 6777 6778 /* Wait for all initialize threads to stop. */ 6779 vdev_initialize_stop_wait(spa, &vd_list); 6780 6781 /* Sync out the initializing state */ 6782 txg_wait_synced(spa->spa_dsl_pool, 0); 6783 mutex_exit(&spa_namespace_lock); 6784 6785 list_destroy(&vd_list); 6786 6787 return (total_errors); 6788 } 6789 6790 static int 6791 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 6792 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 6793 { 6794 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6795 6796 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6797 6798 /* Look up vdev and ensure it's a leaf. */ 6799 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6800 if (vd == NULL || vd->vdev_detached) { 6801 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6802 return (SET_ERROR(ENODEV)); 6803 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6804 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6805 return (SET_ERROR(EINVAL)); 6806 } else if (!vdev_writeable(vd)) { 6807 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6808 return (SET_ERROR(EROFS)); 6809 } else if (!vd->vdev_has_trim) { 6810 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6811 return (SET_ERROR(EOPNOTSUPP)); 6812 } else if (secure && !vd->vdev_has_securetrim) { 6813 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6814 return (SET_ERROR(EOPNOTSUPP)); 6815 } 6816 mutex_enter(&vd->vdev_trim_lock); 6817 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6818 6819 /* 6820 * When we activate a TRIM action we check to see if the 6821 * vdev_trim_thread is NULL. We do this instead of using the 6822 * vdev_trim_state since there might be a previous TRIM process 6823 * which has completed but the thread is not exited. 6824 */ 6825 if (cmd_type == POOL_TRIM_START && 6826 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 6827 mutex_exit(&vd->vdev_trim_lock); 6828 return (SET_ERROR(EBUSY)); 6829 } else if (cmd_type == POOL_TRIM_CANCEL && 6830 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 6831 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 6832 mutex_exit(&vd->vdev_trim_lock); 6833 return (SET_ERROR(ESRCH)); 6834 } else if (cmd_type == POOL_TRIM_SUSPEND && 6835 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 6836 mutex_exit(&vd->vdev_trim_lock); 6837 return (SET_ERROR(ESRCH)); 6838 } 6839 6840 switch (cmd_type) { 6841 case POOL_TRIM_START: 6842 vdev_trim(vd, rate, partial, secure); 6843 break; 6844 case POOL_TRIM_CANCEL: 6845 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 6846 break; 6847 case POOL_TRIM_SUSPEND: 6848 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 6849 break; 6850 default: 6851 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6852 } 6853 mutex_exit(&vd->vdev_trim_lock); 6854 6855 return (0); 6856 } 6857 6858 /* 6859 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 6860 * TRIM threads for each child vdev. These threads pass over all of the free 6861 * space in the vdev's metaslabs and issues TRIM commands for that space. 6862 */ 6863 int 6864 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 6865 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 6866 { 6867 int total_errors = 0; 6868 list_t vd_list; 6869 6870 list_create(&vd_list, sizeof (vdev_t), 6871 offsetof(vdev_t, vdev_trim_node)); 6872 6873 /* 6874 * We hold the namespace lock through the whole function 6875 * to prevent any changes to the pool while we're starting or 6876 * stopping TRIM. The config and state locks are held so that 6877 * we can properly assess the vdev state before we commit to 6878 * the TRIM operation. 6879 */ 6880 mutex_enter(&spa_namespace_lock); 6881 6882 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 6883 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 6884 uint64_t vdev_guid = fnvpair_value_uint64(pair); 6885 6886 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 6887 rate, partial, secure, &vd_list); 6888 if (error != 0) { 6889 char guid_as_str[MAXNAMELEN]; 6890 6891 (void) snprintf(guid_as_str, sizeof (guid_as_str), 6892 "%llu", (unsigned long long)vdev_guid); 6893 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 6894 total_errors++; 6895 } 6896 } 6897 6898 /* Wait for all TRIM threads to stop. */ 6899 vdev_trim_stop_wait(spa, &vd_list); 6900 6901 /* Sync out the TRIM state */ 6902 txg_wait_synced(spa->spa_dsl_pool, 0); 6903 mutex_exit(&spa_namespace_lock); 6904 6905 list_destroy(&vd_list); 6906 6907 return (total_errors); 6908 } 6909 6910 /* 6911 * Split a set of devices from their mirrors, and create a new pool from them. 6912 */ 6913 int 6914 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 6915 nvlist_t *props, boolean_t exp) 6916 { 6917 int error = 0; 6918 uint64_t txg, *glist; 6919 spa_t *newspa; 6920 uint_t c, children, lastlog; 6921 nvlist_t **child, *nvl, *tmp; 6922 dmu_tx_t *tx; 6923 char *altroot = NULL; 6924 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 6925 boolean_t activate_slog; 6926 6927 ASSERT(spa_writeable(spa)); 6928 6929 txg = spa_vdev_enter(spa); 6930 6931 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6932 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6933 error = (spa_has_checkpoint(spa)) ? 6934 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6935 return (spa_vdev_exit(spa, NULL, txg, error)); 6936 } 6937 6938 /* clear the log and flush everything up to now */ 6939 activate_slog = spa_passivate_log(spa); 6940 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6941 error = spa_reset_logs(spa); 6942 txg = spa_vdev_config_enter(spa); 6943 6944 if (activate_slog) 6945 spa_activate_log(spa); 6946 6947 if (error != 0) 6948 return (spa_vdev_exit(spa, NULL, txg, error)); 6949 6950 /* check new spa name before going any further */ 6951 if (spa_lookup(newname) != NULL) 6952 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 6953 6954 /* 6955 * scan through all the children to ensure they're all mirrors 6956 */ 6957 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 6958 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 6959 &children) != 0) 6960 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6961 6962 /* first, check to ensure we've got the right child count */ 6963 rvd = spa->spa_root_vdev; 6964 lastlog = 0; 6965 for (c = 0; c < rvd->vdev_children; c++) { 6966 vdev_t *vd = rvd->vdev_child[c]; 6967 6968 /* don't count the holes & logs as children */ 6969 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 6970 if (lastlog == 0) 6971 lastlog = c; 6972 continue; 6973 } 6974 6975 lastlog = 0; 6976 } 6977 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 6978 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6979 6980 /* next, ensure no spare or cache devices are part of the split */ 6981 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 6982 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 6983 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6984 6985 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 6986 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 6987 6988 /* then, loop over each vdev and validate it */ 6989 for (c = 0; c < children; c++) { 6990 uint64_t is_hole = 0; 6991 6992 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 6993 &is_hole); 6994 6995 if (is_hole != 0) { 6996 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 6997 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 6998 continue; 6999 } else { 7000 error = SET_ERROR(EINVAL); 7001 break; 7002 } 7003 } 7004 7005 /* which disk is going to be split? */ 7006 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7007 &glist[c]) != 0) { 7008 error = SET_ERROR(EINVAL); 7009 break; 7010 } 7011 7012 /* look it up in the spa */ 7013 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7014 if (vml[c] == NULL) { 7015 error = SET_ERROR(ENODEV); 7016 break; 7017 } 7018 7019 /* make sure there's nothing stopping the split */ 7020 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7021 vml[c]->vdev_islog || 7022 !vdev_is_concrete(vml[c]) || 7023 vml[c]->vdev_isspare || 7024 vml[c]->vdev_isl2cache || 7025 !vdev_writeable(vml[c]) || 7026 vml[c]->vdev_children != 0 || 7027 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7028 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7029 error = SET_ERROR(EINVAL); 7030 break; 7031 } 7032 7033 if (vdev_dtl_required(vml[c])) { 7034 error = SET_ERROR(EBUSY); 7035 break; 7036 } 7037 7038 /* we need certain info from the top level */ 7039 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7040 vml[c]->vdev_top->vdev_ms_array) == 0); 7041 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7042 vml[c]->vdev_top->vdev_ms_shift) == 0); 7043 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7044 vml[c]->vdev_top->vdev_asize) == 0); 7045 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7046 vml[c]->vdev_top->vdev_ashift) == 0); 7047 7048 /* transfer per-vdev ZAPs */ 7049 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7050 VERIFY0(nvlist_add_uint64(child[c], 7051 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7052 7053 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7054 VERIFY0(nvlist_add_uint64(child[c], 7055 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7056 vml[c]->vdev_parent->vdev_top_zap)); 7057 } 7058 7059 if (error != 0) { 7060 kmem_free(vml, children * sizeof (vdev_t *)); 7061 kmem_free(glist, children * sizeof (uint64_t)); 7062 return (spa_vdev_exit(spa, NULL, txg, error)); 7063 } 7064 7065 /* stop writers from using the disks */ 7066 for (c = 0; c < children; c++) { 7067 if (vml[c] != NULL) 7068 vml[c]->vdev_offline = B_TRUE; 7069 } 7070 vdev_reopen(spa->spa_root_vdev); 7071 7072 /* 7073 * Temporarily record the splitting vdevs in the spa config. This 7074 * will disappear once the config is regenerated. 7075 */ 7076 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7077 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 7078 glist, children) == 0); 7079 kmem_free(glist, children * sizeof (uint64_t)); 7080 7081 mutex_enter(&spa->spa_props_lock); 7082 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 7083 nvl) == 0); 7084 mutex_exit(&spa->spa_props_lock); 7085 spa->spa_config_splitting = nvl; 7086 vdev_config_dirty(spa->spa_root_vdev); 7087 7088 /* configure and create the new pool */ 7089 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 7090 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7091 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 7092 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7093 spa_version(spa)) == 0); 7094 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 7095 spa->spa_config_txg) == 0); 7096 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7097 spa_generate_guid(NULL)) == 0); 7098 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7099 (void) nvlist_lookup_string(props, 7100 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7101 7102 /* add the new pool to the namespace */ 7103 newspa = spa_add(newname, config, altroot); 7104 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7105 newspa->spa_config_txg = spa->spa_config_txg; 7106 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7107 7108 /* release the spa config lock, retaining the namespace lock */ 7109 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7110 7111 if (zio_injection_enabled) 7112 zio_handle_panic_injection(spa, FTAG, 1); 7113 7114 spa_activate(newspa, spa_mode_global); 7115 spa_async_suspend(newspa); 7116 7117 /* 7118 * Temporarily stop the initializing and TRIM activity. We set the 7119 * state to ACTIVE so that we know to resume initializing or TRIM 7120 * once the split has completed. 7121 */ 7122 list_t vd_initialize_list; 7123 list_create(&vd_initialize_list, sizeof (vdev_t), 7124 offsetof(vdev_t, vdev_initialize_node)); 7125 7126 list_t vd_trim_list; 7127 list_create(&vd_trim_list, sizeof (vdev_t), 7128 offsetof(vdev_t, vdev_trim_node)); 7129 7130 for (c = 0; c < children; c++) { 7131 if (vml[c] != NULL) { 7132 mutex_enter(&vml[c]->vdev_initialize_lock); 7133 vdev_initialize_stop(vml[c], 7134 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7135 mutex_exit(&vml[c]->vdev_initialize_lock); 7136 7137 mutex_enter(&vml[c]->vdev_trim_lock); 7138 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7139 mutex_exit(&vml[c]->vdev_trim_lock); 7140 } 7141 } 7142 7143 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7144 vdev_trim_stop_wait(spa, &vd_trim_list); 7145 7146 list_destroy(&vd_initialize_list); 7147 list_destroy(&vd_trim_list); 7148 7149 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7150 7151 /* create the new pool from the disks of the original pool */ 7152 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7153 if (error) 7154 goto out; 7155 7156 /* if that worked, generate a real config for the new pool */ 7157 if (newspa->spa_root_vdev != NULL) { 7158 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 7159 NV_UNIQUE_NAME, KM_SLEEP) == 0); 7160 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 7161 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 7162 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7163 B_TRUE)); 7164 } 7165 7166 /* set the props */ 7167 if (props != NULL) { 7168 spa_configfile_set(newspa, props, B_FALSE); 7169 error = spa_prop_set(newspa, props); 7170 if (error) 7171 goto out; 7172 } 7173 7174 /* flush everything */ 7175 txg = spa_vdev_config_enter(newspa); 7176 vdev_config_dirty(newspa->spa_root_vdev); 7177 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7178 7179 if (zio_injection_enabled) 7180 zio_handle_panic_injection(spa, FTAG, 2); 7181 7182 spa_async_resume(newspa); 7183 7184 /* finally, update the original pool's config */ 7185 txg = spa_vdev_config_enter(spa); 7186 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7187 error = dmu_tx_assign(tx, TXG_WAIT); 7188 if (error != 0) 7189 dmu_tx_abort(tx); 7190 for (c = 0; c < children; c++) { 7191 if (vml[c] != NULL) { 7192 vdev_split(vml[c]); 7193 if (error == 0) 7194 spa_history_log_internal(spa, "detach", tx, 7195 "vdev=%s", vml[c]->vdev_path); 7196 7197 vdev_free(vml[c]); 7198 } 7199 } 7200 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7201 vdev_config_dirty(spa->spa_root_vdev); 7202 spa->spa_config_splitting = NULL; 7203 nvlist_free(nvl); 7204 if (error == 0) 7205 dmu_tx_commit(tx); 7206 (void) spa_vdev_exit(spa, NULL, txg, 0); 7207 7208 if (zio_injection_enabled) 7209 zio_handle_panic_injection(spa, FTAG, 3); 7210 7211 /* split is complete; log a history record */ 7212 spa_history_log_internal(newspa, "split", NULL, 7213 "from pool %s", spa_name(spa)); 7214 7215 kmem_free(vml, children * sizeof (vdev_t *)); 7216 7217 /* if we're not going to mount the filesystems in userland, export */ 7218 if (exp) 7219 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7220 B_FALSE, B_FALSE); 7221 7222 return (error); 7223 7224 out: 7225 spa_unload(newspa); 7226 spa_deactivate(newspa); 7227 spa_remove(newspa); 7228 7229 txg = spa_vdev_config_enter(spa); 7230 7231 /* re-online all offlined disks */ 7232 for (c = 0; c < children; c++) { 7233 if (vml[c] != NULL) 7234 vml[c]->vdev_offline = B_FALSE; 7235 } 7236 7237 /* restart initializing or trimming disks as necessary */ 7238 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7239 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7240 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7241 7242 vdev_reopen(spa->spa_root_vdev); 7243 7244 nvlist_free(spa->spa_config_splitting); 7245 spa->spa_config_splitting = NULL; 7246 (void) spa_vdev_exit(spa, NULL, txg, error); 7247 7248 kmem_free(vml, children * sizeof (vdev_t *)); 7249 return (error); 7250 } 7251 7252 /* 7253 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7254 * currently spared, so we can detach it. 7255 */ 7256 static vdev_t * 7257 spa_vdev_resilver_done_hunt(vdev_t *vd) 7258 { 7259 vdev_t *newvd, *oldvd; 7260 7261 for (int c = 0; c < vd->vdev_children; c++) { 7262 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7263 if (oldvd != NULL) 7264 return (oldvd); 7265 } 7266 7267 /* 7268 * Check for a completed replacement. We always consider the first 7269 * vdev in the list to be the oldest vdev, and the last one to be 7270 * the newest (see spa_vdev_attach() for how that works). In 7271 * the case where the newest vdev is faulted, we will not automatically 7272 * remove it after a resilver completes. This is OK as it will require 7273 * user intervention to determine which disk the admin wishes to keep. 7274 */ 7275 if (vd->vdev_ops == &vdev_replacing_ops) { 7276 ASSERT(vd->vdev_children > 1); 7277 7278 newvd = vd->vdev_child[vd->vdev_children - 1]; 7279 oldvd = vd->vdev_child[0]; 7280 7281 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7282 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7283 !vdev_dtl_required(oldvd)) 7284 return (oldvd); 7285 } 7286 7287 /* 7288 * Check for a completed resilver with the 'unspare' flag set. 7289 * Also potentially update faulted state. 7290 */ 7291 if (vd->vdev_ops == &vdev_spare_ops) { 7292 vdev_t *first = vd->vdev_child[0]; 7293 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7294 7295 if (last->vdev_unspare) { 7296 oldvd = first; 7297 newvd = last; 7298 } else if (first->vdev_unspare) { 7299 oldvd = last; 7300 newvd = first; 7301 } else { 7302 oldvd = NULL; 7303 } 7304 7305 if (oldvd != NULL && 7306 vdev_dtl_empty(newvd, DTL_MISSING) && 7307 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7308 !vdev_dtl_required(oldvd)) 7309 return (oldvd); 7310 7311 vdev_propagate_state(vd); 7312 7313 /* 7314 * If there are more than two spares attached to a disk, 7315 * and those spares are not required, then we want to 7316 * attempt to free them up now so that they can be used 7317 * by other pools. Once we're back down to a single 7318 * disk+spare, we stop removing them. 7319 */ 7320 if (vd->vdev_children > 2) { 7321 newvd = vd->vdev_child[1]; 7322 7323 if (newvd->vdev_isspare && last->vdev_isspare && 7324 vdev_dtl_empty(last, DTL_MISSING) && 7325 vdev_dtl_empty(last, DTL_OUTAGE) && 7326 !vdev_dtl_required(newvd)) 7327 return (newvd); 7328 } 7329 } 7330 7331 return (NULL); 7332 } 7333 7334 static void 7335 spa_vdev_resilver_done(spa_t *spa) 7336 { 7337 vdev_t *vd, *pvd, *ppvd; 7338 uint64_t guid, sguid, pguid, ppguid; 7339 7340 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7341 7342 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7343 pvd = vd->vdev_parent; 7344 ppvd = pvd->vdev_parent; 7345 guid = vd->vdev_guid; 7346 pguid = pvd->vdev_guid; 7347 ppguid = ppvd->vdev_guid; 7348 sguid = 0; 7349 /* 7350 * If we have just finished replacing a hot spared device, then 7351 * we need to detach the parent's first child (the original hot 7352 * spare) as well. 7353 */ 7354 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7355 ppvd->vdev_children == 2) { 7356 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7357 sguid = ppvd->vdev_child[1]->vdev_guid; 7358 } 7359 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7360 7361 spa_config_exit(spa, SCL_ALL, FTAG); 7362 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7363 return; 7364 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7365 return; 7366 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7367 } 7368 7369 spa_config_exit(spa, SCL_ALL, FTAG); 7370 } 7371 7372 /* 7373 * Update the stored path or FRU for this vdev. 7374 */ 7375 int 7376 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7377 boolean_t ispath) 7378 { 7379 vdev_t *vd; 7380 boolean_t sync = B_FALSE; 7381 7382 ASSERT(spa_writeable(spa)); 7383 7384 spa_vdev_state_enter(spa, SCL_ALL); 7385 7386 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 7387 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 7388 7389 if (!vd->vdev_ops->vdev_op_leaf) 7390 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 7391 7392 if (ispath) { 7393 if (strcmp(value, vd->vdev_path) != 0) { 7394 spa_strfree(vd->vdev_path); 7395 vd->vdev_path = spa_strdup(value); 7396 sync = B_TRUE; 7397 } 7398 } else { 7399 if (vd->vdev_fru == NULL) { 7400 vd->vdev_fru = spa_strdup(value); 7401 sync = B_TRUE; 7402 } else if (strcmp(value, vd->vdev_fru) != 0) { 7403 spa_strfree(vd->vdev_fru); 7404 vd->vdev_fru = spa_strdup(value); 7405 sync = B_TRUE; 7406 } 7407 } 7408 7409 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 7410 } 7411 7412 int 7413 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 7414 { 7415 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 7416 } 7417 7418 int 7419 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 7420 { 7421 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 7422 } 7423 7424 /* 7425 * ========================================================================== 7426 * SPA Scanning 7427 * ========================================================================== 7428 */ 7429 int 7430 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 7431 { 7432 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7433 7434 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7435 return (SET_ERROR(EBUSY)); 7436 7437 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 7438 } 7439 7440 int 7441 spa_scan_stop(spa_t *spa) 7442 { 7443 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7444 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7445 return (SET_ERROR(EBUSY)); 7446 return (dsl_scan_cancel(spa->spa_dsl_pool)); 7447 } 7448 7449 int 7450 spa_scan(spa_t *spa, pool_scan_func_t func) 7451 { 7452 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7453 7454 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7455 return (SET_ERROR(ENOTSUP)); 7456 7457 if (func == POOL_SCAN_RESILVER && 7458 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7459 return (SET_ERROR(ENOTSUP)); 7460 7461 /* 7462 * If a resilver was requested, but there is no DTL on a 7463 * writeable leaf device, we have nothing to do. 7464 */ 7465 if (func == POOL_SCAN_RESILVER && 7466 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7467 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7468 return (0); 7469 } 7470 7471 return (dsl_scan(spa->spa_dsl_pool, func)); 7472 } 7473 7474 /* 7475 * ========================================================================== 7476 * SPA async task processing 7477 * ========================================================================== 7478 */ 7479 7480 static void 7481 spa_async_remove(spa_t *spa, vdev_t *vd) 7482 { 7483 if (vd->vdev_remove_wanted) { 7484 vd->vdev_remove_wanted = B_FALSE; 7485 vd->vdev_delayed_close = B_FALSE; 7486 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7487 7488 /* 7489 * We want to clear the stats, but we don't want to do a full 7490 * vdev_clear() as that will cause us to throw away 7491 * degraded/faulted state as well as attempt to reopen the 7492 * device, all of which is a waste. 7493 */ 7494 vd->vdev_stat.vs_read_errors = 0; 7495 vd->vdev_stat.vs_write_errors = 0; 7496 vd->vdev_stat.vs_checksum_errors = 0; 7497 7498 vdev_state_dirty(vd->vdev_top); 7499 } 7500 7501 for (int c = 0; c < vd->vdev_children; c++) 7502 spa_async_remove(spa, vd->vdev_child[c]); 7503 } 7504 7505 static void 7506 spa_async_probe(spa_t *spa, vdev_t *vd) 7507 { 7508 if (vd->vdev_probe_wanted) { 7509 vd->vdev_probe_wanted = B_FALSE; 7510 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7511 } 7512 7513 for (int c = 0; c < vd->vdev_children; c++) 7514 spa_async_probe(spa, vd->vdev_child[c]); 7515 } 7516 7517 static void 7518 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7519 { 7520 sysevent_id_t eid; 7521 nvlist_t *attr; 7522 char *physpath; 7523 7524 if (!spa->spa_autoexpand) 7525 return; 7526 7527 for (int c = 0; c < vd->vdev_children; c++) { 7528 vdev_t *cvd = vd->vdev_child[c]; 7529 spa_async_autoexpand(spa, cvd); 7530 } 7531 7532 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7533 return; 7534 7535 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 7536 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 7537 7538 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7539 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 7540 7541 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 7542 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 7543 7544 nvlist_free(attr); 7545 kmem_free(physpath, MAXPATHLEN); 7546 } 7547 7548 static void 7549 spa_async_thread(void *arg) 7550 { 7551 spa_t *spa = (spa_t *)arg; 7552 dsl_pool_t *dp = spa->spa_dsl_pool; 7553 int tasks; 7554 7555 ASSERT(spa->spa_sync_on); 7556 7557 mutex_enter(&spa->spa_async_lock); 7558 tasks = spa->spa_async_tasks; 7559 spa->spa_async_tasks = 0; 7560 mutex_exit(&spa->spa_async_lock); 7561 7562 /* 7563 * See if the config needs to be updated. 7564 */ 7565 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7566 uint64_t old_space, new_space; 7567 7568 mutex_enter(&spa_namespace_lock); 7569 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7570 old_space += metaslab_class_get_space(spa_special_class(spa)); 7571 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7572 7573 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7574 7575 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7576 new_space += metaslab_class_get_space(spa_special_class(spa)); 7577 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7578 mutex_exit(&spa_namespace_lock); 7579 7580 /* 7581 * If the pool grew as a result of the config update, 7582 * then log an internal history event. 7583 */ 7584 if (new_space != old_space) { 7585 spa_history_log_internal(spa, "vdev online", NULL, 7586 "pool '%s' size: %llu(+%llu)", 7587 spa_name(spa), new_space, new_space - old_space); 7588 } 7589 } 7590 7591 /* 7592 * See if any devices need to be marked REMOVED. 7593 */ 7594 if (tasks & SPA_ASYNC_REMOVE) { 7595 spa_vdev_state_enter(spa, SCL_NONE); 7596 spa_async_remove(spa, spa->spa_root_vdev); 7597 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7598 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7599 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7600 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7601 (void) spa_vdev_state_exit(spa, NULL, 0); 7602 } 7603 7604 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7605 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7606 spa_async_autoexpand(spa, spa->spa_root_vdev); 7607 spa_config_exit(spa, SCL_CONFIG, FTAG); 7608 } 7609 7610 /* 7611 * See if any devices need to be probed. 7612 */ 7613 if (tasks & SPA_ASYNC_PROBE) { 7614 spa_vdev_state_enter(spa, SCL_NONE); 7615 spa_async_probe(spa, spa->spa_root_vdev); 7616 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7617 spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]); 7618 (void) spa_vdev_state_exit(spa, NULL, 0); 7619 } 7620 7621 /* 7622 * If any devices are done replacing, detach them. 7623 */ 7624 if (tasks & SPA_ASYNC_RESILVER_DONE) 7625 spa_vdev_resilver_done(spa); 7626 7627 /* 7628 * Kick off a resilver. 7629 */ 7630 if (tasks & SPA_ASYNC_RESILVER && 7631 (!dsl_scan_resilvering(dp) || 7632 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 7633 dsl_scan_restart_resilver(dp, 0); 7634 7635 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 7636 mutex_enter(&spa_namespace_lock); 7637 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7638 vdev_initialize_restart(spa->spa_root_vdev); 7639 spa_config_exit(spa, SCL_CONFIG, FTAG); 7640 mutex_exit(&spa_namespace_lock); 7641 } 7642 7643 if (tasks & SPA_ASYNC_TRIM_RESTART) { 7644 mutex_enter(&spa_namespace_lock); 7645 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7646 vdev_trim_restart(spa->spa_root_vdev); 7647 spa_config_exit(spa, SCL_CONFIG, FTAG); 7648 mutex_exit(&spa_namespace_lock); 7649 } 7650 7651 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 7652 mutex_enter(&spa_namespace_lock); 7653 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7654 vdev_autotrim_restart(spa); 7655 spa_config_exit(spa, SCL_CONFIG, FTAG); 7656 mutex_exit(&spa_namespace_lock); 7657 } 7658 7659 /* 7660 * Kick off L2 cache rebuilding. 7661 */ 7662 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 7663 mutex_enter(&spa_namespace_lock); 7664 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 7665 l2arc_spa_rebuild_start(spa); 7666 spa_config_exit(spa, SCL_L2ARC, FTAG); 7667 mutex_exit(&spa_namespace_lock); 7668 } 7669 7670 /* 7671 * Let the world know that we're done. 7672 */ 7673 mutex_enter(&spa->spa_async_lock); 7674 spa->spa_async_thread = NULL; 7675 cv_broadcast(&spa->spa_async_cv); 7676 mutex_exit(&spa->spa_async_lock); 7677 thread_exit(); 7678 } 7679 7680 void 7681 spa_async_suspend(spa_t *spa) 7682 { 7683 mutex_enter(&spa->spa_async_lock); 7684 spa->spa_async_suspended++; 7685 while (spa->spa_async_thread != NULL) 7686 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 7687 mutex_exit(&spa->spa_async_lock); 7688 7689 spa_vdev_remove_suspend(spa); 7690 7691 zthr_t *condense_thread = spa->spa_condense_zthr; 7692 if (condense_thread != NULL) 7693 zthr_cancel(condense_thread); 7694 7695 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7696 if (discard_thread != NULL) 7697 zthr_cancel(discard_thread); 7698 } 7699 7700 void 7701 spa_async_resume(spa_t *spa) 7702 { 7703 mutex_enter(&spa->spa_async_lock); 7704 ASSERT(spa->spa_async_suspended != 0); 7705 spa->spa_async_suspended--; 7706 mutex_exit(&spa->spa_async_lock); 7707 spa_restart_removal(spa); 7708 7709 zthr_t *condense_thread = spa->spa_condense_zthr; 7710 if (condense_thread != NULL) 7711 zthr_resume(condense_thread); 7712 7713 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7714 if (discard_thread != NULL) 7715 zthr_resume(discard_thread); 7716 } 7717 7718 static boolean_t 7719 spa_async_tasks_pending(spa_t *spa) 7720 { 7721 uint_t non_config_tasks; 7722 uint_t config_task; 7723 boolean_t config_task_suspended; 7724 7725 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 7726 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 7727 if (spa->spa_ccw_fail_time == 0) { 7728 config_task_suspended = B_FALSE; 7729 } else { 7730 config_task_suspended = 7731 (gethrtime() - spa->spa_ccw_fail_time) < 7732 (zfs_ccw_retry_interval * NANOSEC); 7733 } 7734 7735 return (non_config_tasks || (config_task && !config_task_suspended)); 7736 } 7737 7738 static void 7739 spa_async_dispatch(spa_t *spa) 7740 { 7741 mutex_enter(&spa->spa_async_lock); 7742 if (spa_async_tasks_pending(spa) && 7743 !spa->spa_async_suspended && 7744 spa->spa_async_thread == NULL && 7745 rootdir != NULL) 7746 spa->spa_async_thread = thread_create(NULL, 0, 7747 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 7748 mutex_exit(&spa->spa_async_lock); 7749 } 7750 7751 void 7752 spa_async_request(spa_t *spa, int task) 7753 { 7754 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 7755 mutex_enter(&spa->spa_async_lock); 7756 spa->spa_async_tasks |= task; 7757 mutex_exit(&spa->spa_async_lock); 7758 } 7759 7760 int 7761 spa_async_tasks(spa_t *spa) 7762 { 7763 return (spa->spa_async_tasks); 7764 } 7765 7766 /* 7767 * ========================================================================== 7768 * SPA syncing routines 7769 * ========================================================================== 7770 */ 7771 7772 static int 7773 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7774 { 7775 bpobj_t *bpo = arg; 7776 bpobj_enqueue(bpo, bp, tx); 7777 return (0); 7778 } 7779 7780 static int 7781 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7782 { 7783 zio_t *zio = arg; 7784 7785 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 7786 zio->io_flags)); 7787 return (0); 7788 } 7789 7790 /* 7791 * Note: this simple function is not inlined to make it easier to dtrace the 7792 * amount of time spent syncing frees. 7793 */ 7794 static void 7795 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 7796 { 7797 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7798 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 7799 VERIFY(zio_wait(zio) == 0); 7800 } 7801 7802 /* 7803 * Note: this simple function is not inlined to make it easier to dtrace the 7804 * amount of time spent syncing deferred frees. 7805 */ 7806 static void 7807 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 7808 { 7809 if (spa_sync_pass(spa) != 1) 7810 return; 7811 7812 /* 7813 * Note: 7814 * If the log space map feature is active, we stop deferring 7815 * frees to the next TXG and therefore running this function 7816 * would be considered a no-op as spa_deferred_bpobj should 7817 * not have any entries. 7818 * 7819 * That said we run this function anyway (instead of returning 7820 * immediately) for the edge-case scenario where we just 7821 * activated the log space map feature in this TXG but we have 7822 * deferred frees from the previous TXG. 7823 */ 7824 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7825 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 7826 spa_free_sync_cb, zio, tx), ==, 0); 7827 VERIFY0(zio_wait(zio)); 7828 } 7829 7830 7831 static void 7832 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 7833 { 7834 char *packed = NULL; 7835 size_t bufsize; 7836 size_t nvsize = 0; 7837 dmu_buf_t *db; 7838 7839 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 7840 7841 /* 7842 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 7843 * information. This avoids the dmu_buf_will_dirty() path and 7844 * saves us a pre-read to get data we don't actually care about. 7845 */ 7846 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 7847 packed = kmem_alloc(bufsize, KM_SLEEP); 7848 7849 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 7850 KM_SLEEP) == 0); 7851 bzero(packed + nvsize, bufsize - nvsize); 7852 7853 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 7854 7855 kmem_free(packed, bufsize); 7856 7857 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 7858 dmu_buf_will_dirty(db, tx); 7859 *(uint64_t *)db->db_data = nvsize; 7860 dmu_buf_rele(db, FTAG); 7861 } 7862 7863 static void 7864 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 7865 const char *config, const char *entry) 7866 { 7867 nvlist_t *nvroot; 7868 nvlist_t **list; 7869 int i; 7870 7871 if (!sav->sav_sync) 7872 return; 7873 7874 /* 7875 * Update the MOS nvlist describing the list of available devices. 7876 * spa_validate_aux() will have already made sure this nvlist is 7877 * valid and the vdevs are labeled appropriately. 7878 */ 7879 if (sav->sav_object == 0) { 7880 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 7881 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 7882 sizeof (uint64_t), tx); 7883 VERIFY(zap_update(spa->spa_meta_objset, 7884 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 7885 &sav->sav_object, tx) == 0); 7886 } 7887 7888 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7889 if (sav->sav_count == 0) { 7890 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 7891 } else { 7892 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 7893 for (i = 0; i < sav->sav_count; i++) 7894 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 7895 B_FALSE, VDEV_CONFIG_L2CACHE); 7896 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 7897 sav->sav_count) == 0); 7898 for (i = 0; i < sav->sav_count; i++) 7899 nvlist_free(list[i]); 7900 kmem_free(list, sav->sav_count * sizeof (void *)); 7901 } 7902 7903 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 7904 nvlist_free(nvroot); 7905 7906 sav->sav_sync = B_FALSE; 7907 } 7908 7909 /* 7910 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 7911 * The all-vdev ZAP must be empty. 7912 */ 7913 static void 7914 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 7915 { 7916 spa_t *spa = vd->vdev_spa; 7917 if (vd->vdev_top_zap != 0) { 7918 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7919 vd->vdev_top_zap, tx)); 7920 } 7921 if (vd->vdev_leaf_zap != 0) { 7922 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7923 vd->vdev_leaf_zap, tx)); 7924 } 7925 for (uint64_t i = 0; i < vd->vdev_children; i++) { 7926 spa_avz_build(vd->vdev_child[i], avz, tx); 7927 } 7928 } 7929 7930 static void 7931 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 7932 { 7933 nvlist_t *config; 7934 7935 /* 7936 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 7937 * its config may not be dirty but we still need to build per-vdev ZAPs. 7938 * Similarly, if the pool is being assembled (e.g. after a split), we 7939 * need to rebuild the AVZ although the config may not be dirty. 7940 */ 7941 if (list_is_empty(&spa->spa_config_dirty_list) && 7942 spa->spa_avz_action == AVZ_ACTION_NONE) 7943 return; 7944 7945 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7946 7947 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 7948 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 7949 spa->spa_all_vdev_zaps != 0); 7950 7951 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 7952 /* Make and build the new AVZ */ 7953 uint64_t new_avz = zap_create(spa->spa_meta_objset, 7954 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 7955 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 7956 7957 /* Diff old AVZ with new one */ 7958 zap_cursor_t zc; 7959 zap_attribute_t za; 7960 7961 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7962 spa->spa_all_vdev_zaps); 7963 zap_cursor_retrieve(&zc, &za) == 0; 7964 zap_cursor_advance(&zc)) { 7965 uint64_t vdzap = za.za_first_integer; 7966 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 7967 vdzap) == ENOENT) { 7968 /* 7969 * ZAP is listed in old AVZ but not in new one; 7970 * destroy it 7971 */ 7972 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 7973 tx)); 7974 } 7975 } 7976 7977 zap_cursor_fini(&zc); 7978 7979 /* Destroy the old AVZ */ 7980 VERIFY0(zap_destroy(spa->spa_meta_objset, 7981 spa->spa_all_vdev_zaps, tx)); 7982 7983 /* Replace the old AVZ in the dir obj with the new one */ 7984 VERIFY0(zap_update(spa->spa_meta_objset, 7985 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 7986 sizeof (new_avz), 1, &new_avz, tx)); 7987 7988 spa->spa_all_vdev_zaps = new_avz; 7989 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 7990 zap_cursor_t zc; 7991 zap_attribute_t za; 7992 7993 /* Walk through the AVZ and destroy all listed ZAPs */ 7994 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7995 spa->spa_all_vdev_zaps); 7996 zap_cursor_retrieve(&zc, &za) == 0; 7997 zap_cursor_advance(&zc)) { 7998 uint64_t zap = za.za_first_integer; 7999 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8000 } 8001 8002 zap_cursor_fini(&zc); 8003 8004 /* Destroy and unlink the AVZ itself */ 8005 VERIFY0(zap_destroy(spa->spa_meta_objset, 8006 spa->spa_all_vdev_zaps, tx)); 8007 VERIFY0(zap_remove(spa->spa_meta_objset, 8008 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8009 spa->spa_all_vdev_zaps = 0; 8010 } 8011 8012 if (spa->spa_all_vdev_zaps == 0) { 8013 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8014 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8015 DMU_POOL_VDEV_ZAP_MAP, tx); 8016 } 8017 spa->spa_avz_action = AVZ_ACTION_NONE; 8018 8019 /* Create ZAPs for vdevs that don't have them. */ 8020 vdev_construct_zaps(spa->spa_root_vdev, tx); 8021 8022 config = spa_config_generate(spa, spa->spa_root_vdev, 8023 dmu_tx_get_txg(tx), B_FALSE); 8024 8025 /* 8026 * If we're upgrading the spa version then make sure that 8027 * the config object gets updated with the correct version. 8028 */ 8029 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8030 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8031 spa->spa_uberblock.ub_version); 8032 8033 spa_config_exit(spa, SCL_STATE, FTAG); 8034 8035 nvlist_free(spa->spa_config_syncing); 8036 spa->spa_config_syncing = config; 8037 8038 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8039 } 8040 8041 static void 8042 spa_sync_version(void *arg, dmu_tx_t *tx) 8043 { 8044 uint64_t *versionp = arg; 8045 uint64_t version = *versionp; 8046 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8047 8048 /* 8049 * Setting the version is special cased when first creating the pool. 8050 */ 8051 ASSERT(tx->tx_txg != TXG_INITIAL); 8052 8053 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8054 ASSERT(version >= spa_version(spa)); 8055 8056 spa->spa_uberblock.ub_version = version; 8057 vdev_config_dirty(spa->spa_root_vdev); 8058 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 8059 } 8060 8061 /* 8062 * Set zpool properties. 8063 */ 8064 static void 8065 spa_sync_props(void *arg, dmu_tx_t *tx) 8066 { 8067 nvlist_t *nvp = arg; 8068 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8069 objset_t *mos = spa->spa_meta_objset; 8070 nvpair_t *elem = NULL; 8071 8072 mutex_enter(&spa->spa_props_lock); 8073 8074 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8075 uint64_t intval; 8076 char *strval, *fname; 8077 zpool_prop_t prop; 8078 const char *propname; 8079 zprop_type_t proptype; 8080 spa_feature_t fid; 8081 8082 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8083 case ZPOOL_PROP_INVAL: 8084 /* 8085 * We checked this earlier in spa_prop_validate(). 8086 */ 8087 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8088 8089 fname = strchr(nvpair_name(elem), '@') + 1; 8090 VERIFY0(zfeature_lookup_name(fname, &fid)); 8091 8092 spa_feature_enable(spa, fid, tx); 8093 spa_history_log_internal(spa, "set", tx, 8094 "%s=enabled", nvpair_name(elem)); 8095 break; 8096 8097 case ZPOOL_PROP_VERSION: 8098 intval = fnvpair_value_uint64(elem); 8099 /* 8100 * The version is synced seperatly before other 8101 * properties and should be correct by now. 8102 */ 8103 ASSERT3U(spa_version(spa), >=, intval); 8104 break; 8105 8106 case ZPOOL_PROP_ALTROOT: 8107 /* 8108 * 'altroot' is a non-persistent property. It should 8109 * have been set temporarily at creation or import time. 8110 */ 8111 ASSERT(spa->spa_root != NULL); 8112 break; 8113 8114 case ZPOOL_PROP_READONLY: 8115 case ZPOOL_PROP_CACHEFILE: 8116 /* 8117 * 'readonly' and 'cachefile' are also non-persisitent 8118 * properties. 8119 */ 8120 break; 8121 case ZPOOL_PROP_COMMENT: 8122 strval = fnvpair_value_string(elem); 8123 if (spa->spa_comment != NULL) 8124 spa_strfree(spa->spa_comment); 8125 spa->spa_comment = spa_strdup(strval); 8126 /* 8127 * We need to dirty the configuration on all the vdevs 8128 * so that their labels get updated. It's unnecessary 8129 * to do this for pool creation since the vdev's 8130 * configuratoin has already been dirtied. 8131 */ 8132 if (tx->tx_txg != TXG_INITIAL) 8133 vdev_config_dirty(spa->spa_root_vdev); 8134 spa_history_log_internal(spa, "set", tx, 8135 "%s=%s", nvpair_name(elem), strval); 8136 break; 8137 default: 8138 /* 8139 * Set pool property values in the poolprops mos object. 8140 */ 8141 if (spa->spa_pool_props_object == 0) { 8142 spa->spa_pool_props_object = 8143 zap_create_link(mos, DMU_OT_POOL_PROPS, 8144 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8145 tx); 8146 } 8147 8148 /* normalize the property name */ 8149 propname = zpool_prop_to_name(prop); 8150 proptype = zpool_prop_get_type(prop); 8151 8152 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8153 ASSERT(proptype == PROP_TYPE_STRING); 8154 strval = fnvpair_value_string(elem); 8155 VERIFY0(zap_update(mos, 8156 spa->spa_pool_props_object, propname, 8157 1, strlen(strval) + 1, strval, tx)); 8158 spa_history_log_internal(spa, "set", tx, 8159 "%s=%s", nvpair_name(elem), strval); 8160 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8161 intval = fnvpair_value_uint64(elem); 8162 8163 if (proptype == PROP_TYPE_INDEX) { 8164 const char *unused; 8165 VERIFY0(zpool_prop_index_to_string( 8166 prop, intval, &unused)); 8167 } 8168 VERIFY0(zap_update(mos, 8169 spa->spa_pool_props_object, propname, 8170 8, 1, &intval, tx)); 8171 spa_history_log_internal(spa, "set", tx, 8172 "%s=%lld", nvpair_name(elem), intval); 8173 } else { 8174 ASSERT(0); /* not allowed */ 8175 } 8176 8177 switch (prop) { 8178 case ZPOOL_PROP_DELEGATION: 8179 spa->spa_delegation = intval; 8180 break; 8181 case ZPOOL_PROP_BOOTFS: 8182 spa->spa_bootfs = intval; 8183 break; 8184 case ZPOOL_PROP_FAILUREMODE: 8185 spa->spa_failmode = intval; 8186 break; 8187 case ZPOOL_PROP_AUTOTRIM: 8188 spa->spa_autotrim = intval; 8189 spa_async_request(spa, 8190 SPA_ASYNC_AUTOTRIM_RESTART); 8191 break; 8192 case ZPOOL_PROP_AUTOEXPAND: 8193 spa->spa_autoexpand = intval; 8194 if (tx->tx_txg != TXG_INITIAL) 8195 spa_async_request(spa, 8196 SPA_ASYNC_AUTOEXPAND); 8197 break; 8198 case ZPOOL_PROP_MULTIHOST: 8199 spa->spa_multihost = intval; 8200 break; 8201 case ZPOOL_PROP_DEDUPDITTO: 8202 spa->spa_dedup_ditto = intval; 8203 break; 8204 default: 8205 break; 8206 } 8207 } 8208 8209 } 8210 8211 mutex_exit(&spa->spa_props_lock); 8212 } 8213 8214 /* 8215 * Perform one-time upgrade on-disk changes. spa_version() does not 8216 * reflect the new version this txg, so there must be no changes this 8217 * txg to anything that the upgrade code depends on after it executes. 8218 * Therefore this must be called after dsl_pool_sync() does the sync 8219 * tasks. 8220 */ 8221 static void 8222 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8223 { 8224 if (spa_sync_pass(spa) != 1) 8225 return; 8226 8227 dsl_pool_t *dp = spa->spa_dsl_pool; 8228 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8229 8230 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8231 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8232 dsl_pool_create_origin(dp, tx); 8233 8234 /* Keeping the origin open increases spa_minref */ 8235 spa->spa_minref += 3; 8236 } 8237 8238 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8239 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8240 dsl_pool_upgrade_clones(dp, tx); 8241 } 8242 8243 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8244 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8245 dsl_pool_upgrade_dir_clones(dp, tx); 8246 8247 /* Keeping the freedir open increases spa_minref */ 8248 spa->spa_minref += 3; 8249 } 8250 8251 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8252 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8253 spa_feature_create_zap_objects(spa, tx); 8254 } 8255 8256 /* 8257 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8258 * when possibility to use lz4 compression for metadata was added 8259 * Old pools that have this feature enabled must be upgraded to have 8260 * this feature active 8261 */ 8262 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8263 boolean_t lz4_en = spa_feature_is_enabled(spa, 8264 SPA_FEATURE_LZ4_COMPRESS); 8265 boolean_t lz4_ac = spa_feature_is_active(spa, 8266 SPA_FEATURE_LZ4_COMPRESS); 8267 8268 if (lz4_en && !lz4_ac) 8269 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8270 } 8271 8272 /* 8273 * If we haven't written the salt, do so now. Note that the 8274 * feature may not be activated yet, but that's fine since 8275 * the presence of this ZAP entry is backwards compatible. 8276 */ 8277 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8278 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8279 VERIFY0(zap_add(spa->spa_meta_objset, 8280 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8281 sizeof (spa->spa_cksum_salt.zcs_bytes), 8282 spa->spa_cksum_salt.zcs_bytes, tx)); 8283 } 8284 8285 rrw_exit(&dp->dp_config_rwlock, FTAG); 8286 } 8287 8288 static void 8289 vdev_indirect_state_sync_verify(vdev_t *vd) 8290 { 8291 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 8292 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 8293 8294 if (vd->vdev_ops == &vdev_indirect_ops) { 8295 ASSERT(vim != NULL); 8296 ASSERT(vib != NULL); 8297 } 8298 8299 if (vdev_obsolete_sm_object(vd) != 0) { 8300 ASSERT(vd->vdev_obsolete_sm != NULL); 8301 ASSERT(vd->vdev_removing || 8302 vd->vdev_ops == &vdev_indirect_ops); 8303 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8304 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8305 8306 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 8307 space_map_object(vd->vdev_obsolete_sm)); 8308 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8309 space_map_allocated(vd->vdev_obsolete_sm)); 8310 } 8311 ASSERT(vd->vdev_obsolete_segments != NULL); 8312 8313 /* 8314 * Since frees / remaps to an indirect vdev can only 8315 * happen in syncing context, the obsolete segments 8316 * tree must be empty when we start syncing. 8317 */ 8318 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 8319 } 8320 8321 /* 8322 * Set the top-level vdev's max queue depth. Evaluate each top-level's 8323 * async write queue depth in case it changed. The max queue depth will 8324 * not change in the middle of syncing out this txg. 8325 */ 8326 static void 8327 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 8328 { 8329 ASSERT(spa_writeable(spa)); 8330 8331 vdev_t *rvd = spa->spa_root_vdev; 8332 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 8333 zfs_vdev_queue_depth_pct / 100; 8334 metaslab_class_t *normal = spa_normal_class(spa); 8335 metaslab_class_t *special = spa_special_class(spa); 8336 metaslab_class_t *dedup = spa_dedup_class(spa); 8337 8338 uint64_t slots_per_allocator = 0; 8339 for (int c = 0; c < rvd->vdev_children; c++) { 8340 vdev_t *tvd = rvd->vdev_child[c]; 8341 8342 metaslab_group_t *mg = tvd->vdev_mg; 8343 if (mg == NULL || !metaslab_group_initialized(mg)) 8344 continue; 8345 8346 metaslab_class_t *mc = mg->mg_class; 8347 if (mc != normal && mc != special && mc != dedup) 8348 continue; 8349 8350 /* 8351 * It is safe to do a lock-free check here because only async 8352 * allocations look at mg_max_alloc_queue_depth, and async 8353 * allocations all happen from spa_sync(). 8354 */ 8355 for (int i = 0; i < spa->spa_alloc_count; i++) 8356 ASSERT0(zfs_refcount_count( 8357 &(mg->mg_alloc_queue_depth[i]))); 8358 mg->mg_max_alloc_queue_depth = max_queue_depth; 8359 8360 for (int i = 0; i < spa->spa_alloc_count; i++) { 8361 mg->mg_cur_max_alloc_queue_depth[i] = 8362 zfs_vdev_def_queue_depth; 8363 } 8364 slots_per_allocator += zfs_vdev_def_queue_depth; 8365 } 8366 8367 for (int i = 0; i < spa->spa_alloc_count; i++) { 8368 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 8369 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 8370 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 8371 normal->mc_alloc_max_slots[i] = slots_per_allocator; 8372 special->mc_alloc_max_slots[i] = slots_per_allocator; 8373 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 8374 } 8375 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8376 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8377 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8378 } 8379 8380 static void 8381 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 8382 { 8383 ASSERT(spa_writeable(spa)); 8384 8385 vdev_t *rvd = spa->spa_root_vdev; 8386 for (int c = 0; c < rvd->vdev_children; c++) { 8387 vdev_t *vd = rvd->vdev_child[c]; 8388 vdev_indirect_state_sync_verify(vd); 8389 8390 if (vdev_indirect_should_condense(vd)) { 8391 spa_condense_indirect_start_sync(vd, tx); 8392 break; 8393 } 8394 } 8395 } 8396 8397 static void 8398 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 8399 { 8400 objset_t *mos = spa->spa_meta_objset; 8401 dsl_pool_t *dp = spa->spa_dsl_pool; 8402 uint64_t txg = tx->tx_txg; 8403 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 8404 8405 do { 8406 int pass = ++spa->spa_sync_pass; 8407 8408 spa_sync_config_object(spa, tx); 8409 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 8410 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 8411 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 8412 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 8413 spa_errlog_sync(spa, txg); 8414 dsl_pool_sync(dp, txg); 8415 8416 if (pass < zfs_sync_pass_deferred_free || 8417 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 8418 /* 8419 * If the log space map feature is active we don't 8420 * care about deferred frees and the deferred bpobj 8421 * as the log space map should effectively have the 8422 * same results (i.e. appending only to one object). 8423 */ 8424 spa_sync_frees(spa, free_bpl, tx); 8425 } else { 8426 /* 8427 * We can not defer frees in pass 1, because 8428 * we sync the deferred frees later in pass 1. 8429 */ 8430 ASSERT3U(pass, >, 1); 8431 bplist_iterate(free_bpl, bpobj_enqueue_cb, 8432 &spa->spa_deferred_bpobj, tx); 8433 } 8434 8435 ddt_sync(spa, txg); 8436 dsl_scan_sync(dp, tx); 8437 svr_sync(spa, tx); 8438 spa_sync_upgrades(spa, tx); 8439 8440 spa_flush_metaslabs(spa, tx); 8441 8442 vdev_t *vd = NULL; 8443 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 8444 != NULL) 8445 vdev_sync(vd, txg); 8446 8447 /* 8448 * Note: We need to check if the MOS is dirty because we could 8449 * have marked the MOS dirty without updating the uberblock 8450 * (e.g. if we have sync tasks but no dirty user data). We need 8451 * to check the uberblock's rootbp because it is updated if we 8452 * have synced out dirty data (though in this case the MOS will 8453 * most likely also be dirty due to second order effects, we 8454 * don't want to rely on that here). 8455 */ 8456 if (pass == 1 && 8457 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 8458 !dmu_objset_is_dirty(mos, txg)) { 8459 /* 8460 * Nothing changed on the first pass, therefore this 8461 * TXG is a no-op. Avoid syncing deferred frees, so 8462 * that we can keep this TXG as a no-op. 8463 */ 8464 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8465 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8466 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 8467 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 8468 break; 8469 } 8470 8471 spa_sync_deferred_frees(spa, tx); 8472 } while (dmu_objset_is_dirty(mos, txg)); 8473 } 8474 8475 /* 8476 * Rewrite the vdev configuration (which includes the uberblock) to 8477 * commit the transaction group. 8478 * 8479 * If there are no dirty vdevs, we sync the uberblock to a few random 8480 * top-level vdevs that are known to be visible in the config cache 8481 * (see spa_vdev_add() for a complete description). If there *are* dirty 8482 * vdevs, sync the uberblock to all vdevs. 8483 */ 8484 static void 8485 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 8486 { 8487 vdev_t *rvd = spa->spa_root_vdev; 8488 uint64_t txg = tx->tx_txg; 8489 8490 for (;;) { 8491 int error = 0; 8492 8493 /* 8494 * We hold SCL_STATE to prevent vdev open/close/etc. 8495 * while we're attempting to write the vdev labels. 8496 */ 8497 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8498 8499 if (list_is_empty(&spa->spa_config_dirty_list)) { 8500 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 8501 int svdcount = 0; 8502 int children = rvd->vdev_children; 8503 int c0 = spa_get_random(children); 8504 8505 for (int c = 0; c < children; c++) { 8506 vdev_t *vd = 8507 rvd->vdev_child[(c0 + c) % children]; 8508 8509 /* Stop when revisiting the first vdev */ 8510 if (c > 0 && svd[0] == vd) 8511 break; 8512 8513 if (vd->vdev_ms_array == 0 || 8514 vd->vdev_islog || 8515 !vdev_is_concrete(vd)) 8516 continue; 8517 8518 svd[svdcount++] = vd; 8519 if (svdcount == SPA_SYNC_MIN_VDEVS) 8520 break; 8521 } 8522 error = vdev_config_sync(svd, svdcount, txg); 8523 } else { 8524 error = vdev_config_sync(rvd->vdev_child, 8525 rvd->vdev_children, txg); 8526 } 8527 8528 if (error == 0) 8529 spa->spa_last_synced_guid = rvd->vdev_guid; 8530 8531 spa_config_exit(spa, SCL_STATE, FTAG); 8532 8533 if (error == 0) 8534 break; 8535 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8536 zio_resume_wait(spa); 8537 } 8538 } 8539 8540 /* 8541 * Sync the specified transaction group. New blocks may be dirtied as 8542 * part of the process, so we iterate until it converges. 8543 */ 8544 void 8545 spa_sync(spa_t *spa, uint64_t txg) 8546 { 8547 vdev_t *vd = NULL; 8548 8549 VERIFY(spa_writeable(spa)); 8550 8551 /* 8552 * Wait for i/os issued in open context that need to complete 8553 * before this txg syncs. 8554 */ 8555 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 8556 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 8557 ZIO_FLAG_CANFAIL); 8558 8559 /* 8560 * Lock out configuration changes. 8561 */ 8562 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8563 8564 spa->spa_syncing_txg = txg; 8565 spa->spa_sync_pass = 0; 8566 8567 for (int i = 0; i < spa->spa_alloc_count; i++) { 8568 mutex_enter(&spa->spa_alloc_locks[i]); 8569 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8570 mutex_exit(&spa->spa_alloc_locks[i]); 8571 } 8572 8573 /* 8574 * If there are any pending vdev state changes, convert them 8575 * into config changes that go out with this transaction group. 8576 */ 8577 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8578 while (list_head(&spa->spa_state_dirty_list) != NULL) { 8579 /* 8580 * We need the write lock here because, for aux vdevs, 8581 * calling vdev_config_dirty() modifies sav_config. 8582 * This is ugly and will become unnecessary when we 8583 * eliminate the aux vdev wart by integrating all vdevs 8584 * into the root vdev tree. 8585 */ 8586 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8587 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 8588 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 8589 vdev_state_clean(vd); 8590 vdev_config_dirty(vd); 8591 } 8592 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8593 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8594 } 8595 spa_config_exit(spa, SCL_STATE, FTAG); 8596 8597 dsl_pool_t *dp = spa->spa_dsl_pool; 8598 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 8599 8600 spa->spa_sync_starttime = gethrtime(); 8601 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 8602 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 8603 8604 /* 8605 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 8606 * set spa_deflate if we have no raid-z vdevs. 8607 */ 8608 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 8609 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 8610 vdev_t *rvd = spa->spa_root_vdev; 8611 8612 int i; 8613 for (i = 0; i < rvd->vdev_children; i++) { 8614 vd = rvd->vdev_child[i]; 8615 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 8616 break; 8617 } 8618 if (i == rvd->vdev_children) { 8619 spa->spa_deflate = TRUE; 8620 VERIFY0(zap_add(spa->spa_meta_objset, 8621 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 8622 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 8623 } 8624 } 8625 8626 spa_sync_adjust_vdev_max_queue_depth(spa); 8627 8628 spa_sync_condense_indirect(spa, tx); 8629 8630 spa_sync_iterate_to_convergence(spa, tx); 8631 8632 #ifdef ZFS_DEBUG 8633 if (!list_is_empty(&spa->spa_config_dirty_list)) { 8634 /* 8635 * Make sure that the number of ZAPs for all the vdevs matches 8636 * the number of ZAPs in the per-vdev ZAP list. This only gets 8637 * called if the config is dirty; otherwise there may be 8638 * outstanding AVZ operations that weren't completed in 8639 * spa_sync_config_object. 8640 */ 8641 uint64_t all_vdev_zap_entry_count; 8642 ASSERT0(zap_count(spa->spa_meta_objset, 8643 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 8644 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 8645 all_vdev_zap_entry_count); 8646 } 8647 #endif 8648 8649 if (spa->spa_vdev_removal != NULL) { 8650 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 8651 } 8652 8653 spa_sync_rewrite_vdev_config(spa, tx); 8654 dmu_tx_commit(tx); 8655 8656 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 8657 8658 /* 8659 * Clear the dirty config list. 8660 */ 8661 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 8662 vdev_config_clean(vd); 8663 8664 /* 8665 * Now that the new config has synced transactionally, 8666 * let it become visible to the config cache. 8667 */ 8668 if (spa->spa_config_syncing != NULL) { 8669 spa_config_set(spa, spa->spa_config_syncing); 8670 spa->spa_config_txg = txg; 8671 spa->spa_config_syncing = NULL; 8672 } 8673 8674 dsl_pool_sync_done(dp, txg); 8675 8676 for (int i = 0; i < spa->spa_alloc_count; i++) { 8677 mutex_enter(&spa->spa_alloc_locks[i]); 8678 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8679 mutex_exit(&spa->spa_alloc_locks[i]); 8680 } 8681 8682 /* 8683 * Update usable space statistics. 8684 */ 8685 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 8686 != NULL) 8687 vdev_sync_done(vd, txg); 8688 8689 metaslab_class_evict_old(spa->spa_normal_class, txg); 8690 metaslab_class_evict_old(spa->spa_log_class, txg); 8691 8692 spa_sync_close_syncing_log_sm(spa); 8693 8694 spa_update_dspace(spa); 8695 8696 /* 8697 * It had better be the case that we didn't dirty anything 8698 * since vdev_config_sync(). 8699 */ 8700 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8701 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8702 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 8703 8704 while (zfs_pause_spa_sync) 8705 delay(1); 8706 8707 spa->spa_sync_pass = 0; 8708 8709 /* 8710 * Update the last synced uberblock here. We want to do this at 8711 * the end of spa_sync() so that consumers of spa_last_synced_txg() 8712 * will be guaranteed that all the processing associated with 8713 * that txg has been completed. 8714 */ 8715 spa->spa_ubsync = spa->spa_uberblock; 8716 spa_config_exit(spa, SCL_CONFIG, FTAG); 8717 8718 spa_handle_ignored_writes(spa); 8719 8720 /* Mark unused spares as needing a health check. */ 8721 if (spa_spare_poll_interval_seconds != 0 && 8722 NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) > 8723 spa_spare_poll_interval_seconds) { 8724 spa_spare_poll(spa); 8725 spa->spa_spares_last_polled = gethrtime(); 8726 } 8727 8728 /* 8729 * If any async tasks have been requested, kick them off. 8730 */ 8731 spa_async_dispatch(spa); 8732 } 8733 8734 /* 8735 * Sync all pools. We don't want to hold the namespace lock across these 8736 * operations, so we take a reference on the spa_t and drop the lock during the 8737 * sync. 8738 */ 8739 void 8740 spa_sync_allpools(void) 8741 { 8742 spa_t *spa = NULL; 8743 mutex_enter(&spa_namespace_lock); 8744 while ((spa = spa_next(spa)) != NULL) { 8745 if (spa_state(spa) != POOL_STATE_ACTIVE || 8746 !spa_writeable(spa) || spa_suspended(spa)) 8747 continue; 8748 spa_open_ref(spa, FTAG); 8749 mutex_exit(&spa_namespace_lock); 8750 txg_wait_synced(spa_get_dsl(spa), 0); 8751 mutex_enter(&spa_namespace_lock); 8752 spa_close(spa, FTAG); 8753 } 8754 mutex_exit(&spa_namespace_lock); 8755 } 8756 8757 /* 8758 * ========================================================================== 8759 * Miscellaneous routines 8760 * ========================================================================== 8761 */ 8762 8763 /* 8764 * Remove all pools in the system. 8765 */ 8766 void 8767 spa_evict_all(void) 8768 { 8769 spa_t *spa; 8770 8771 /* 8772 * Remove all cached state. All pools should be closed now, 8773 * so every spa in the AVL tree should be unreferenced. 8774 */ 8775 mutex_enter(&spa_namespace_lock); 8776 while ((spa = spa_next(NULL)) != NULL) { 8777 /* 8778 * Stop async tasks. The async thread may need to detach 8779 * a device that's been replaced, which requires grabbing 8780 * spa_namespace_lock, so we must drop it here. 8781 */ 8782 spa_open_ref(spa, FTAG); 8783 mutex_exit(&spa_namespace_lock); 8784 spa_async_suspend(spa); 8785 mutex_enter(&spa_namespace_lock); 8786 spa_close(spa, FTAG); 8787 8788 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 8789 spa_unload(spa); 8790 spa_deactivate(spa); 8791 } 8792 spa_remove(spa); 8793 } 8794 mutex_exit(&spa_namespace_lock); 8795 } 8796 8797 vdev_t * 8798 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 8799 { 8800 vdev_t *vd; 8801 int i; 8802 8803 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 8804 return (vd); 8805 8806 if (aux) { 8807 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 8808 vd = spa->spa_l2cache.sav_vdevs[i]; 8809 if (vd->vdev_guid == guid) 8810 return (vd); 8811 } 8812 8813 for (i = 0; i < spa->spa_spares.sav_count; i++) { 8814 vd = spa->spa_spares.sav_vdevs[i]; 8815 if (vd->vdev_guid == guid) 8816 return (vd); 8817 } 8818 } 8819 8820 return (NULL); 8821 } 8822 8823 void 8824 spa_upgrade(spa_t *spa, uint64_t version) 8825 { 8826 ASSERT(spa_writeable(spa)); 8827 8828 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8829 8830 /* 8831 * This should only be called for a non-faulted pool, and since a 8832 * future version would result in an unopenable pool, this shouldn't be 8833 * possible. 8834 */ 8835 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 8836 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 8837 8838 spa->spa_uberblock.ub_version = version; 8839 vdev_config_dirty(spa->spa_root_vdev); 8840 8841 spa_config_exit(spa, SCL_ALL, FTAG); 8842 8843 txg_wait_synced(spa_get_dsl(spa), 0); 8844 } 8845 8846 boolean_t 8847 spa_has_spare(spa_t *spa, uint64_t guid) 8848 { 8849 int i; 8850 uint64_t spareguid; 8851 spa_aux_vdev_t *sav = &spa->spa_spares; 8852 8853 for (i = 0; i < sav->sav_count; i++) 8854 if (sav->sav_vdevs[i]->vdev_guid == guid) 8855 return (B_TRUE); 8856 8857 for (i = 0; i < sav->sav_npending; i++) { 8858 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 8859 &spareguid) == 0 && spareguid == guid) 8860 return (B_TRUE); 8861 } 8862 8863 return (B_FALSE); 8864 } 8865 8866 /* 8867 * Check if a pool has an active shared spare device. 8868 * Note: reference count of an active spare is 2, as a spare and as a replace 8869 */ 8870 static boolean_t 8871 spa_has_active_shared_spare(spa_t *spa) 8872 { 8873 int i, refcnt; 8874 uint64_t pool; 8875 spa_aux_vdev_t *sav = &spa->spa_spares; 8876 8877 for (i = 0; i < sav->sav_count; i++) { 8878 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 8879 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 8880 refcnt > 2) 8881 return (B_TRUE); 8882 } 8883 8884 return (B_FALSE); 8885 } 8886 8887 uint64_t 8888 spa_total_metaslabs(spa_t *spa) 8889 { 8890 vdev_t *rvd = spa->spa_root_vdev; 8891 uint64_t m = 0; 8892 8893 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 8894 vdev_t *vd = rvd->vdev_child[c]; 8895 if (!vdev_is_concrete(vd)) 8896 continue; 8897 m += vd->vdev_ms_count; 8898 } 8899 return (m); 8900 } 8901 8902 sysevent_t * 8903 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8904 { 8905 sysevent_t *ev = NULL; 8906 #ifdef _KERNEL 8907 sysevent_attr_list_t *attr = NULL; 8908 sysevent_value_t value; 8909 8910 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 8911 SE_SLEEP); 8912 ASSERT(ev != NULL); 8913 8914 value.value_type = SE_DATA_TYPE_STRING; 8915 value.value.sv_string = spa_name(spa); 8916 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 8917 goto done; 8918 8919 value.value_type = SE_DATA_TYPE_UINT64; 8920 value.value.sv_uint64 = spa_guid(spa); 8921 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 8922 goto done; 8923 8924 if (vd) { 8925 value.value_type = SE_DATA_TYPE_UINT64; 8926 value.value.sv_uint64 = vd->vdev_guid; 8927 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 8928 SE_SLEEP) != 0) 8929 goto done; 8930 8931 if (vd->vdev_path) { 8932 value.value_type = SE_DATA_TYPE_STRING; 8933 value.value.sv_string = vd->vdev_path; 8934 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 8935 &value, SE_SLEEP) != 0) 8936 goto done; 8937 } 8938 } 8939 8940 if (hist_nvl != NULL) { 8941 fnvlist_merge((nvlist_t *)attr, hist_nvl); 8942 } 8943 8944 if (sysevent_attach_attributes(ev, attr) != 0) 8945 goto done; 8946 attr = NULL; 8947 8948 done: 8949 if (attr) 8950 sysevent_free_attr(attr); 8951 8952 #endif 8953 return (ev); 8954 } 8955 8956 void 8957 spa_event_post(sysevent_t *ev) 8958 { 8959 #ifdef _KERNEL 8960 sysevent_id_t eid; 8961 8962 (void) log_sysevent(ev, SE_SLEEP, &eid); 8963 sysevent_free(ev); 8964 #endif 8965 } 8966 8967 void 8968 spa_event_discard(sysevent_t *ev) 8969 { 8970 #ifdef _KERNEL 8971 sysevent_free(ev); 8972 #endif 8973 } 8974 8975 /* 8976 * Post a sysevent corresponding to the given event. The 'name' must be one of 8977 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 8978 * filled in from the spa and (optionally) the vdev and history nvl. This 8979 * doesn't do anything in the userland libzpool, as we don't want consumers to 8980 * misinterpret ztest or zdb as real changes. 8981 */ 8982 void 8983 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8984 { 8985 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 8986 } 8987