xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_scan.c (revision 13b136d3061155363c62c9f6568d25b8b27da8f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright (c) 2017 Datto Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124     uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130 
131 /*
132  * By default zfs will check to ensure it is not over the hard memory
133  * limit before each txg. If finer-grained control of this is needed
134  * this value can be set to 1 to enable checking before scanning each
135  * block.
136  */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138 
139 /*
140  * Maximum number of parallelly executing I/Os per top-level vdev.
141  * Tune with care. Very high settings (hundreds) are known to trigger
142  * some firmware bugs and resets on certain SSDs.
143  */
144 int zfs_top_maxinflight = 32;		/* maximum I/Os per top-level */
145 unsigned int zfs_resilver_delay = 2;	/* number of ticks to delay resilver */
146 unsigned int zfs_scrub_delay = 4;	/* number of ticks to delay scrub */
147 unsigned int zfs_scan_idle = 50;	/* idle window in clock ticks */
148 
149 /*
150  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
151  * to strike a balance here between keeping the vdev queues full of I/Os
152  * at all times and not overflowing the queues to cause long latency,
153  * which would cause long txg sync times. No matter what, we will not
154  * overload the drives with I/O, since that is protected by
155  * zfs_vdev_scrub_max_active.
156  */
157 unsigned long zfs_scan_vdev_limit = 4 << 20;
158 
159 int zfs_scan_issue_strategy = 0;
160 int zfs_scan_legacy = B_FALSE;	/* don't queue & sort zios, go direct */
161 uint64_t zfs_scan_max_ext_gap = 2 << 20;	/* in bytes */
162 
163 unsigned int zfs_scan_checkpoint_intval = 7200;	/* seconds */
164 #define	ZFS_SCAN_CHECKPOINT_INTVAL	SEC_TO_TICK(zfs_scan_checkpoint_intval)
165 
166 /*
167  * fill_weight is non-tunable at runtime, so we copy it at module init from
168  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
169  * break queue sorting.
170  */
171 uint64_t zfs_scan_fill_weight = 3;
172 static uint64_t fill_weight;
173 
174 /* See dsl_scan_should_clear() for details on the memory limit tunables */
175 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
177 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
178 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
179 
180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
182 /* min millisecs to obsolete per txg */
183 unsigned int zfs_obsolete_min_time_ms = 500;
184 /* min millisecs to resilver per txg */
185 unsigned int zfs_resilver_min_time_ms = 3000;
186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
190 /* max number of blocks to free in a single TXG */
191 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
192 
193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
194 
195 /*
196  * We wait a few txgs after importing a pool to begin scanning so that
197  * the import / mounting code isn't held up by scrub / resilver IO.
198  * Unfortunately, it is a bit difficult to determine exactly how long
199  * this will take since userspace will trigger fs mounts asynchronously
200  * and the kernel will create zvol minors asynchronously. As a result,
201  * the value provided here is a bit arbitrary, but represents a
202  * reasonable estimate of how many txgs it will take to finish fully
203  * importing a pool
204  */
205 #define	SCAN_IMPORT_WAIT_TXGS		5
206 
207 
208 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
209 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
210 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
211 
212 extern int zfs_txg_timeout;
213 
214 /*
215  * Enable/disable the processing of the free_bpobj object.
216  */
217 boolean_t zfs_free_bpobj_enabled = B_TRUE;
218 
219 /* the order has to match pool_scan_type */
220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
221 	NULL,
222 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
223 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
224 };
225 
226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
227 typedef struct {
228 	uint64_t	sds_dsobj;
229 	uint64_t	sds_txg;
230 	avl_node_t	sds_node;
231 } scan_ds_t;
232 
233 /*
234  * This controls what conditions are placed on dsl_scan_sync_state():
235  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
236  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
237  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
238  *	write out the scn_phys_cached version.
239  * See dsl_scan_sync_state for details.
240  */
241 typedef enum {
242 	SYNC_OPTIONAL,
243 	SYNC_MANDATORY,
244 	SYNC_CACHED
245 } state_sync_type_t;
246 
247 /*
248  * This struct represents the minimum information needed to reconstruct a
249  * zio for sequential scanning. This is useful because many of these will
250  * accumulate in the sequential IO queues before being issued, so saving
251  * memory matters here.
252  */
253 typedef struct scan_io {
254 	/* fields from blkptr_t */
255 	uint64_t		sio_blk_prop;
256 	uint64_t		sio_phys_birth;
257 	uint64_t		sio_birth;
258 	zio_cksum_t		sio_cksum;
259 	uint32_t		sio_nr_dvas;
260 
261 	/* fields from zio_t */
262 	uint32_t		sio_flags;
263 	zbookmark_phys_t	sio_zb;
264 
265 	/* members for queue sorting */
266 	union {
267 		avl_node_t	sio_addr_node; /* link into issuing queue */
268 		list_node_t	sio_list_node; /* link for issuing to disk */
269 	} sio_nodes;
270 
271 	/*
272 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
273 	 * depending on how many were in the original bp. Only the
274 	 * first DVA is really used for sorting and issuing purposes.
275 	 * The other DVAs (if provided) simply exist so that the zio
276 	 * layer can find additional copies to repair from in the
277 	 * event of an error. This array must go at the end of the
278 	 * struct to allow this for the variable number of elements.
279 	 */
280 	dva_t			sio_dva[0];
281 } scan_io_t;
282 
283 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
284 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
285 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
286 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
287 #define	SIO_GET_END_OFFSET(sio)		\
288 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
289 #define	SIO_GET_MUSED(sio)		\
290 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
291 
292 struct dsl_scan_io_queue {
293 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
294 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
295 
296 	/* trees used for sorting I/Os and extents of I/Os */
297 	range_tree_t	*q_exts_by_addr;
298 	zfs_btree_t		q_exts_by_size;
299 	avl_tree_t	q_sios_by_addr;
300 	uint64_t	q_sio_memused;
301 
302 	/* members for zio rate limiting */
303 	uint64_t	q_maxinflight_bytes;
304 	uint64_t	q_inflight_bytes;
305 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
306 
307 	/* per txg statistics */
308 	uint64_t	q_total_seg_size_this_txg;
309 	uint64_t	q_segs_this_txg;
310 	uint64_t	q_total_zio_size_this_txg;
311 	uint64_t	q_zios_this_txg;
312 };
313 
314 /* private data for dsl_scan_prefetch_cb() */
315 typedef struct scan_prefetch_ctx {
316 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
317 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
318 	boolean_t spc_root;		/* is this prefetch for an objset? */
319 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
320 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
321 } scan_prefetch_ctx_t;
322 
323 /* private data for dsl_scan_prefetch() */
324 typedef struct scan_prefetch_issue_ctx {
325 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
326 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
327 	blkptr_t spic_bp;		/* bp to prefetch */
328 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
329 } scan_prefetch_issue_ctx_t;
330 
331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
332     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
334     scan_io_t *sio);
335 
336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
337 static void scan_io_queues_destroy(dsl_scan_t *scn);
338 
339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
340 
341 /* sio->sio_nr_dvas must be set so we know which cache to free from */
342 static void
343 sio_free(scan_io_t *sio)
344 {
345 	ASSERT3U(sio->sio_nr_dvas, >, 0);
346 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
347 
348 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
349 }
350 
351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
352 static scan_io_t *
353 sio_alloc(unsigned short nr_dvas)
354 {
355 	ASSERT3U(nr_dvas, >, 0);
356 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
357 
358 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
359 }
360 
361 void
362 scan_init(void)
363 {
364 	/*
365 	 * This is used in ext_size_compare() to weight segments
366 	 * based on how sparse they are. This cannot be changed
367 	 * mid-scan and the tree comparison functions don't currently
368 	 * have a mechansim for passing additional context to the
369 	 * compare functions. Thus we store this value globally and
370 	 * we only allow it to be set at module intiailization time
371 	 */
372 	fill_weight = zfs_scan_fill_weight;
373 
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		char name[36];
376 
377 		(void) sprintf(name, "sio_cache_%d", i);
378 		sio_cache[i] = kmem_cache_create(name,
379 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
380 		    0, NULL, NULL, NULL, NULL, NULL, 0);
381 	}
382 }
383 
384 void
385 scan_fini(void)
386 {
387 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
388 		kmem_cache_destroy(sio_cache[i]);
389 	}
390 }
391 
392 static inline boolean_t
393 dsl_scan_is_running(const dsl_scan_t *scn)
394 {
395 	return (scn->scn_phys.scn_state == DSS_SCANNING);
396 }
397 
398 boolean_t
399 dsl_scan_resilvering(dsl_pool_t *dp)
400 {
401 	return (dsl_scan_is_running(dp->dp_scan) &&
402 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
403 }
404 
405 static inline void
406 sio2bp(const scan_io_t *sio, blkptr_t *bp)
407 {
408 	bzero(bp, sizeof (*bp));
409 	bp->blk_prop = sio->sio_blk_prop;
410 	bp->blk_phys_birth = sio->sio_phys_birth;
411 	bp->blk_birth = sio->sio_birth;
412 	bp->blk_fill = 1;	/* we always only work with data pointers */
413 	bp->blk_cksum = sio->sio_cksum;
414 
415 	ASSERT3U(sio->sio_nr_dvas, >, 0);
416 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
417 
418 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
419 }
420 
421 static inline void
422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
423 {
424 	sio->sio_blk_prop = bp->blk_prop;
425 	sio->sio_phys_birth = bp->blk_phys_birth;
426 	sio->sio_birth = bp->blk_birth;
427 	sio->sio_cksum = bp->blk_cksum;
428 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
429 
430 	/*
431 	 * Copy the DVAs to the sio. We need all copies of the block so
432 	 * that the self healing code can use the alternate copies if the
433 	 * first is corrupted. We want the DVA at index dva_i to be first
434 	 * in the sio since this is the primary one that we want to issue.
435 	 */
436 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
437 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
438 	}
439 }
440 
441 int
442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
443 {
444 	int err;
445 	dsl_scan_t *scn;
446 	spa_t *spa = dp->dp_spa;
447 	uint64_t f;
448 
449 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
450 	scn->scn_dp = dp;
451 
452 	/*
453 	 * It's possible that we're resuming a scan after a reboot so
454 	 * make sure that the scan_async_destroying flag is initialized
455 	 * appropriately.
456 	 */
457 	ASSERT(!scn->scn_async_destroying);
458 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
459 	    SPA_FEATURE_ASYNC_DESTROY);
460 
461 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
462 	    offsetof(scan_ds_t, sds_node));
463 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
464 	    sizeof (scan_prefetch_issue_ctx_t),
465 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
466 
467 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
468 	    "scrub_func", sizeof (uint64_t), 1, &f);
469 	if (err == 0) {
470 		/*
471 		 * There was an old-style scrub in progress.  Restart a
472 		 * new-style scrub from the beginning.
473 		 */
474 		scn->scn_restart_txg = txg;
475 		zfs_dbgmsg("old-style scrub was in progress; "
476 		    "restarting new-style scrub in txg %llu",
477 		    (longlong_t)scn->scn_restart_txg);
478 
479 		/*
480 		 * Load the queue obj from the old location so that it
481 		 * can be freed by dsl_scan_done().
482 		 */
483 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484 		    "scrub_queue", sizeof (uint64_t), 1,
485 		    &scn->scn_phys.scn_queue_obj);
486 	} else {
487 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
488 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
489 		    &scn->scn_phys);
490 
491 		/*
492 		 * Detect if the pool contains the signature of #2094.  If it
493 		 * does properly update the scn->scn_phys structure and notify
494 		 * the administrator by setting an errata for the pool.
495 		 */
496 		if (err == EOVERFLOW) {
497 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
498 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
499 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
500 			    (23 * sizeof (uint64_t)));
501 
502 			err = zap_lookup(dp->dp_meta_objset,
503 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
504 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
505 			if (err == 0) {
506 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
507 
508 				if (overflow & ~DSF_VISIT_DS_AGAIN ||
509 				    scn->scn_async_destroying) {
510 					spa->spa_errata =
511 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
512 					return (EOVERFLOW);
513 				}
514 
515 				bcopy(zaptmp, &scn->scn_phys,
516 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
517 				scn->scn_phys.scn_flags = overflow;
518 
519 				/* Required scrub already in progress. */
520 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
521 				    scn->scn_phys.scn_state == DSS_CANCELED)
522 					spa->spa_errata =
523 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
524 			}
525 		}
526 
527 		if (err == ENOENT)
528 			return (0);
529 		else if (err)
530 			return (err);
531 
532 		/*
533 		 * We might be restarting after a reboot, so jump the issued
534 		 * counter to how far we've scanned. We know we're consistent
535 		 * up to here.
536 		 */
537 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
538 
539 		if (dsl_scan_is_running(scn) &&
540 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
541 			/*
542 			 * A new-type scrub was in progress on an old
543 			 * pool, and the pool was accessed by old
544 			 * software.  Restart from the beginning, since
545 			 * the old software may have changed the pool in
546 			 * the meantime.
547 			 */
548 			scn->scn_restart_txg = txg;
549 			zfs_dbgmsg("new-style scrub was modified "
550 			    "by old software; restarting in txg %llu",
551 			    (longlong_t)scn->scn_restart_txg);
552 		}
553 	}
554 
555 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
556 
557 	/* reload the queue into the in-core state */
558 	if (scn->scn_phys.scn_queue_obj != 0) {
559 		zap_cursor_t zc;
560 		zap_attribute_t za;
561 
562 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
563 		    scn->scn_phys.scn_queue_obj);
564 		    zap_cursor_retrieve(&zc, &za) == 0;
565 		    (void) zap_cursor_advance(&zc)) {
566 			scan_ds_queue_insert(scn,
567 			    zfs_strtonum(za.za_name, NULL),
568 			    za.za_first_integer);
569 		}
570 		zap_cursor_fini(&zc);
571 	}
572 
573 	spa_scan_stat_init(spa);
574 	return (0);
575 }
576 
577 void
578 dsl_scan_fini(dsl_pool_t *dp)
579 {
580 	if (dp->dp_scan != NULL) {
581 		dsl_scan_t *scn = dp->dp_scan;
582 
583 		if (scn->scn_taskq != NULL)
584 			taskq_destroy(scn->scn_taskq);
585 		scan_ds_queue_clear(scn);
586 		avl_destroy(&scn->scn_queue);
587 		avl_destroy(&scn->scn_prefetch_queue);
588 
589 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
590 		dp->dp_scan = NULL;
591 	}
592 }
593 
594 static boolean_t
595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
596 {
597 	return (scn->scn_restart_txg != 0 &&
598 	    scn->scn_restart_txg <= tx->tx_txg);
599 }
600 
601 boolean_t
602 dsl_scan_scrubbing(const dsl_pool_t *dp)
603 {
604 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
605 
606 	return (scn_phys->scn_state == DSS_SCANNING &&
607 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
608 }
609 
610 boolean_t
611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
612 {
613 	return (dsl_scan_scrubbing(scn->scn_dp) &&
614 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
615 }
616 
617 /*
618  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
619  * Because we can be running in the block sorting algorithm, we do not always
620  * want to write out the record, only when it is "safe" to do so. This safety
621  * condition is achieved by making sure that the sorting queues are empty
622  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
623  * is inconsistent with how much actual scanning progress has been made. The
624  * kind of sync to be performed is specified by the sync_type argument. If the
625  * sync is optional, we only sync if the queues are empty. If the sync is
626  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
627  * third possible state is a "cached" sync. This is done in response to:
628  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
629  *	destroyed, so we wouldn't be able to restart scanning from it.
630  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
631  *	superseded by a newer snapshot.
632  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
633  *	swapped with its clone.
634  * In all cases, a cached sync simply rewrites the last record we've written,
635  * just slightly modified. For the modifications that are performed to the
636  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
637  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
638  */
639 static void
640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
641 {
642 	int i;
643 	spa_t *spa = scn->scn_dp->dp_spa;
644 
645 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
646 	if (scn->scn_bytes_pending == 0) {
647 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
648 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
649 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
650 
651 			if (q == NULL)
652 				continue;
653 
654 			mutex_enter(&vd->vdev_scan_io_queue_lock);
655 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
656 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
657 			    NULL);
658 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
659 			mutex_exit(&vd->vdev_scan_io_queue_lock);
660 		}
661 
662 		if (scn->scn_phys.scn_queue_obj != 0)
663 			scan_ds_queue_sync(scn, tx);
664 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
665 		    DMU_POOL_DIRECTORY_OBJECT,
666 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
667 		    &scn->scn_phys, tx));
668 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
669 		    sizeof (scn->scn_phys));
670 
671 		if (scn->scn_checkpointing)
672 			zfs_dbgmsg("finish scan checkpoint");
673 
674 		scn->scn_checkpointing = B_FALSE;
675 		scn->scn_last_checkpoint = ddi_get_lbolt();
676 	} else if (sync_type == SYNC_CACHED) {
677 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
678 		    DMU_POOL_DIRECTORY_OBJECT,
679 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
680 		    &scn->scn_phys_cached, tx));
681 	}
682 }
683 
684 /* ARGSUSED */
685 static int
686 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
687 {
688 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
689 
690 	if (dsl_scan_is_running(scn))
691 		return (SET_ERROR(EBUSY));
692 
693 	return (0);
694 }
695 
696 static void
697 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
698 {
699 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
700 	pool_scan_func_t *funcp = arg;
701 	dmu_object_type_t ot = 0;
702 	dsl_pool_t *dp = scn->scn_dp;
703 	spa_t *spa = dp->dp_spa;
704 
705 	ASSERT(!dsl_scan_is_running(scn));
706 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
707 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
708 	scn->scn_phys.scn_func = *funcp;
709 	scn->scn_phys.scn_state = DSS_SCANNING;
710 	scn->scn_phys.scn_min_txg = 0;
711 	scn->scn_phys.scn_max_txg = tx->tx_txg;
712 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
713 	scn->scn_phys.scn_start_time = gethrestime_sec();
714 	scn->scn_phys.scn_errors = 0;
715 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
716 	scn->scn_issued_before_pass = 0;
717 	scn->scn_restart_txg = 0;
718 	scn->scn_done_txg = 0;
719 	scn->scn_last_checkpoint = 0;
720 	scn->scn_checkpointing = B_FALSE;
721 	spa_scan_stat_init(spa);
722 
723 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
724 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
725 
726 		/* rewrite all disk labels */
727 		vdev_config_dirty(spa->spa_root_vdev);
728 
729 		if (vdev_resilver_needed(spa->spa_root_vdev,
730 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
731 			spa_event_notify(spa, NULL, NULL,
732 			    ESC_ZFS_RESILVER_START);
733 		} else {
734 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
735 		}
736 
737 		spa->spa_scrub_started = B_TRUE;
738 		/*
739 		 * If this is an incremental scrub, limit the DDT scrub phase
740 		 * to just the auto-ditto class (for correctness); the rest
741 		 * of the scrub should go faster using top-down pruning.
742 		 */
743 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
744 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
745 
746 	}
747 
748 	/* back to the generic stuff */
749 
750 	if (dp->dp_blkstats == NULL) {
751 		dp->dp_blkstats =
752 		    kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
753 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
754 		    MUTEX_DEFAULT, NULL);
755 	}
756 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
757 
758 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
759 		ot = DMU_OT_ZAP_OTHER;
760 
761 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
762 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
763 
764 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
765 
766 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
767 
768 	spa_history_log_internal(spa, "scan setup", tx,
769 	    "func=%u mintxg=%llu maxtxg=%llu",
770 	    *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
771 }
772 
773 /*
774  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
775  * Can also be called to resume a paused scrub.
776  */
777 int
778 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
779 {
780 	spa_t *spa = dp->dp_spa;
781 	dsl_scan_t *scn = dp->dp_scan;
782 
783 	/*
784 	 * Purge all vdev caches and probe all devices.  We do this here
785 	 * rather than in sync context because this requires a writer lock
786 	 * on the spa_config lock, which we can't do from sync context.  The
787 	 * spa_scrub_reopen flag indicates that vdev_open() should not
788 	 * attempt to start another scrub.
789 	 */
790 	spa_vdev_state_enter(spa, SCL_NONE);
791 	spa->spa_scrub_reopen = B_TRUE;
792 	vdev_reopen(spa->spa_root_vdev);
793 	spa->spa_scrub_reopen = B_FALSE;
794 	(void) spa_vdev_state_exit(spa, NULL, 0);
795 
796 	if (func == POOL_SCAN_RESILVER) {
797 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
798 		return (0);
799 	}
800 
801 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
802 		/* got scrub start cmd, resume paused scrub */
803 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
804 		    POOL_SCRUB_NORMAL);
805 		if (err == 0) {
806 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
807 			return (ECANCELED);
808 		}
809 		return (SET_ERROR(err));
810 	}
811 
812 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
813 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
814 }
815 
816 /*
817  * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns
818  * B_TRUE if we have devices that need to be resilvered and are available to
819  * accept resilver I/Os.
820  */
821 static boolean_t
822 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx)
823 {
824 	boolean_t resilver_needed = B_FALSE;
825 	spa_t *spa = vd->vdev_spa;
826 
827 	for (int c = 0; c < vd->vdev_children; c++) {
828 		resilver_needed |=
829 		    dsl_scan_clear_deferred(vd->vdev_child[c], tx);
830 	}
831 
832 	if (vd == spa->spa_root_vdev &&
833 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
834 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
835 		vdev_config_dirty(vd);
836 		spa->spa_resilver_deferred = B_FALSE;
837 		return (resilver_needed);
838 	}
839 
840 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
841 	    !vd->vdev_ops->vdev_op_leaf)
842 		return (resilver_needed);
843 
844 	if (vd->vdev_resilver_deferred)
845 		vd->vdev_resilver_deferred = B_FALSE;
846 
847 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
848 	    vdev_resilver_needed(vd, NULL, NULL));
849 }
850 
851 /* ARGSUSED */
852 static void
853 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
854 {
855 	static const char *old_names[] = {
856 		"scrub_bookmark",
857 		"scrub_ddt_bookmark",
858 		"scrub_ddt_class_max",
859 		"scrub_queue",
860 		"scrub_min_txg",
861 		"scrub_max_txg",
862 		"scrub_func",
863 		"scrub_errors",
864 		NULL
865 	};
866 
867 	dsl_pool_t *dp = scn->scn_dp;
868 	spa_t *spa = dp->dp_spa;
869 	int i;
870 
871 	/* Remove any remnants of an old-style scrub. */
872 	for (i = 0; old_names[i]; i++) {
873 		(void) zap_remove(dp->dp_meta_objset,
874 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
875 	}
876 
877 	if (scn->scn_phys.scn_queue_obj != 0) {
878 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
879 		    scn->scn_phys.scn_queue_obj, tx));
880 		scn->scn_phys.scn_queue_obj = 0;
881 	}
882 	scan_ds_queue_clear(scn);
883 
884 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
885 
886 	/*
887 	 * If we were "restarted" from a stopped state, don't bother
888 	 * with anything else.
889 	 */
890 	if (!dsl_scan_is_running(scn)) {
891 		ASSERT(!scn->scn_is_sorted);
892 		return;
893 	}
894 
895 	if (scn->scn_is_sorted) {
896 		scan_io_queues_destroy(scn);
897 		scn->scn_is_sorted = B_FALSE;
898 
899 		if (scn->scn_taskq != NULL) {
900 			taskq_destroy(scn->scn_taskq);
901 			scn->scn_taskq = NULL;
902 		}
903 	}
904 
905 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
906 
907 	if (dsl_scan_restarting(scn, tx))
908 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
909 		    "errors=%llu", spa_get_errlog_size(spa));
910 	else if (!complete)
911 		spa_history_log_internal(spa, "scan cancelled", tx,
912 		    "errors=%llu", spa_get_errlog_size(spa));
913 	else
914 		spa_history_log_internal(spa, "scan done", tx,
915 		    "errors=%llu", spa_get_errlog_size(spa));
916 
917 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
918 		spa->spa_scrub_started = B_FALSE;
919 		spa->spa_scrub_active = B_FALSE;
920 
921 		/*
922 		 * If the scrub/resilver completed, update all DTLs to
923 		 * reflect this.  Whether it succeeded or not, vacate
924 		 * all temporary scrub DTLs.
925 		 *
926 		 * As the scrub does not currently support traversing
927 		 * data that have been freed but are part of a checkpoint,
928 		 * we don't mark the scrub as done in the DTLs as faults
929 		 * may still exist in those vdevs.
930 		 */
931 		if (complete &&
932 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
933 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
934 			    scn->scn_phys.scn_max_txg, B_TRUE);
935 
936 			spa_event_notify(spa, NULL, NULL,
937 			    scn->scn_phys.scn_min_txg ?
938 			    ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
939 		} else {
940 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
941 			    0, B_TRUE);
942 		}
943 		spa_errlog_rotate(spa);
944 
945 		/*
946 		 * We may have finished replacing a device.
947 		 * Let the async thread assess this and handle the detach.
948 		 */
949 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
950 
951 		/*
952 		 * Clear any deferred_resilver flags in the config.
953 		 * If there are drives that need resilvering, kick
954 		 * off an asynchronous request to start resilver.
955 		 * dsl_scan_clear_deferred() may update the config
956 		 * before the resilver can restart. In the event of
957 		 * a crash during this period, the spa loading code
958 		 * will find the drives that need to be resilvered
959 		 * when the machine reboots and start the resilver then.
960 		 */
961 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
962 			boolean_t resilver_needed =
963 			    dsl_scan_clear_deferred(spa->spa_root_vdev, tx);
964 			if (resilver_needed) {
965 				spa_history_log_internal(spa,
966 				    "starting deferred resilver", tx,
967 				    "errors=%llu", spa_get_errlog_size(spa));
968 				spa_async_request(spa, SPA_ASYNC_RESILVER);
969 			}
970 		}
971 	}
972 
973 	scn->scn_phys.scn_end_time = gethrestime_sec();
974 
975 	ASSERT(!dsl_scan_is_running(scn));
976 }
977 
978 /* ARGSUSED */
979 static int
980 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
981 {
982 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
983 
984 	if (!dsl_scan_is_running(scn))
985 		return (SET_ERROR(ENOENT));
986 	return (0);
987 }
988 
989 /* ARGSUSED */
990 static void
991 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
992 {
993 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
994 
995 	dsl_scan_done(scn, B_FALSE, tx);
996 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
997 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
998 }
999 
1000 int
1001 dsl_scan_cancel(dsl_pool_t *dp)
1002 {
1003 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1004 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1005 }
1006 
1007 static int
1008 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1009 {
1010 	pool_scrub_cmd_t *cmd = arg;
1011 	dsl_pool_t *dp = dmu_tx_pool(tx);
1012 	dsl_scan_t *scn = dp->dp_scan;
1013 
1014 	if (*cmd == POOL_SCRUB_PAUSE) {
1015 		/* can't pause a scrub when there is no in-progress scrub */
1016 		if (!dsl_scan_scrubbing(dp))
1017 			return (SET_ERROR(ENOENT));
1018 
1019 		/* can't pause a paused scrub */
1020 		if (dsl_scan_is_paused_scrub(scn))
1021 			return (SET_ERROR(EBUSY));
1022 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1023 		return (SET_ERROR(ENOTSUP));
1024 	}
1025 
1026 	return (0);
1027 }
1028 
1029 static void
1030 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1031 {
1032 	pool_scrub_cmd_t *cmd = arg;
1033 	dsl_pool_t *dp = dmu_tx_pool(tx);
1034 	spa_t *spa = dp->dp_spa;
1035 	dsl_scan_t *scn = dp->dp_scan;
1036 
1037 	if (*cmd == POOL_SCRUB_PAUSE) {
1038 		/* can't pause a scrub when there is no in-progress scrub */
1039 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1040 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1041 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1042 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1043 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1044 	} else {
1045 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1046 		if (dsl_scan_is_paused_scrub(scn)) {
1047 			/*
1048 			 * We need to keep track of how much time we spend
1049 			 * paused per pass so that we can adjust the scrub rate
1050 			 * shown in the output of 'zpool status'
1051 			 */
1052 			spa->spa_scan_pass_scrub_spent_paused +=
1053 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1054 			spa->spa_scan_pass_scrub_pause = 0;
1055 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1056 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1057 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  * Set scrub pause/resume state if it makes sense to do so
1064  */
1065 int
1066 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1067 {
1068 	return (dsl_sync_task(spa_name(dp->dp_spa),
1069 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1070 	    ZFS_SPACE_CHECK_RESERVED));
1071 }
1072 
1073 
1074 /* start a new scan, or restart an existing one. */
1075 void
1076 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
1077 {
1078 	if (txg == 0) {
1079 		dmu_tx_t *tx;
1080 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1081 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1082 
1083 		txg = dmu_tx_get_txg(tx);
1084 		dp->dp_scan->scn_restart_txg = txg;
1085 		dmu_tx_commit(tx);
1086 	} else {
1087 		dp->dp_scan->scn_restart_txg = txg;
1088 	}
1089 	zfs_dbgmsg("restarting resilver txg=%llu", txg);
1090 }
1091 
1092 void
1093 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1094 {
1095 	zio_free(dp->dp_spa, txg, bp);
1096 }
1097 
1098 void
1099 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1100 {
1101 	ASSERT(dsl_pool_sync_context(dp));
1102 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1103 }
1104 
1105 static int
1106 scan_ds_queue_compare(const void *a, const void *b)
1107 {
1108 	const scan_ds_t *sds_a = a, *sds_b = b;
1109 
1110 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1111 		return (-1);
1112 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1113 		return (0);
1114 	return (1);
1115 }
1116 
1117 static void
1118 scan_ds_queue_clear(dsl_scan_t *scn)
1119 {
1120 	void *cookie = NULL;
1121 	scan_ds_t *sds;
1122 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1123 		kmem_free(sds, sizeof (*sds));
1124 	}
1125 }
1126 
1127 static boolean_t
1128 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1129 {
1130 	scan_ds_t srch, *sds;
1131 
1132 	srch.sds_dsobj = dsobj;
1133 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1134 	if (sds != NULL && txg != NULL)
1135 		*txg = sds->sds_txg;
1136 	return (sds != NULL);
1137 }
1138 
1139 static void
1140 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1141 {
1142 	scan_ds_t *sds;
1143 	avl_index_t where;
1144 
1145 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1146 	sds->sds_dsobj = dsobj;
1147 	sds->sds_txg = txg;
1148 
1149 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1150 	avl_insert(&scn->scn_queue, sds, where);
1151 }
1152 
1153 static void
1154 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1155 {
1156 	scan_ds_t srch, *sds;
1157 
1158 	srch.sds_dsobj = dsobj;
1159 
1160 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1161 	VERIFY(sds != NULL);
1162 	avl_remove(&scn->scn_queue, sds);
1163 	kmem_free(sds, sizeof (*sds));
1164 }
1165 
1166 static void
1167 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1168 {
1169 	dsl_pool_t *dp = scn->scn_dp;
1170 	spa_t *spa = dp->dp_spa;
1171 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1172 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1173 
1174 	ASSERT0(scn->scn_bytes_pending);
1175 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1176 
1177 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1178 	    scn->scn_phys.scn_queue_obj, tx));
1179 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1180 	    DMU_OT_NONE, 0, tx);
1181 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1182 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1183 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1184 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1185 		    sds->sds_txg, tx));
1186 	}
1187 }
1188 
1189 /*
1190  * Computes the memory limit state that we're currently in. A sorted scan
1191  * needs quite a bit of memory to hold the sorting queue, so we need to
1192  * reasonably constrain the size so it doesn't impact overall system
1193  * performance. We compute two limits:
1194  * 1) Hard memory limit: if the amount of memory used by the sorting
1195  *	queues on a pool gets above this value, we stop the metadata
1196  *	scanning portion and start issuing the queued up and sorted
1197  *	I/Os to reduce memory usage.
1198  *	This limit is calculated as a fraction of physmem (by default 5%).
1199  *	We constrain the lower bound of the hard limit to an absolute
1200  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1201  *	the upper bound to 5% of the total pool size - no chance we'll
1202  *	ever need that much memory, but just to keep the value in check.
1203  * 2) Soft memory limit: once we hit the hard memory limit, we start
1204  *	issuing I/O to reduce queue memory usage, but we don't want to
1205  *	completely empty out the queues, since we might be able to find I/Os
1206  *	that will fill in the gaps of our non-sequential IOs at some point
1207  *	in the future. So we stop the issuing of I/Os once the amount of
1208  *	memory used drops below the soft limit (at which point we stop issuing
1209  *	I/O and start scanning metadata again).
1210  *
1211  *	This limit is calculated by subtracting a fraction of the hard
1212  *	limit from the hard limit. By default this fraction is 5%, so
1213  *	the soft limit is 95% of the hard limit. We cap the size of the
1214  *	difference between the hard and soft limits at an absolute
1215  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1216  *	sufficient to not cause too frequent switching between the
1217  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1218  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1219  *	that should take at least a decent fraction of a second).
1220  */
1221 static boolean_t
1222 dsl_scan_should_clear(dsl_scan_t *scn)
1223 {
1224 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1225 	uint64_t mlim_hard, mlim_soft, mused;
1226 	uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1227 	    scn->scn_dp->dp_spa));
1228 
1229 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1230 	    zfs_scan_mem_lim_min);
1231 	mlim_hard = MIN(mlim_hard, alloc / 20);
1232 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1233 	    zfs_scan_mem_lim_soft_max);
1234 	mused = 0;
1235 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1236 		vdev_t *tvd = rvd->vdev_child[i];
1237 		dsl_scan_io_queue_t *queue;
1238 
1239 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1240 		queue = tvd->vdev_scan_io_queue;
1241 		if (queue != NULL) {
1242 			/* # extents in exts_by_size = # in exts_by_addr */
1243 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1244 			    sizeof (range_seg_gap_t) + queue->q_sio_memused;
1245 		}
1246 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1247 	}
1248 
1249 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1250 
1251 	if (mused == 0)
1252 		ASSERT0(scn->scn_bytes_pending);
1253 
1254 	/*
1255 	 * If we are above our hard limit, we need to clear out memory.
1256 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1257 	 * Otherwise, we should keep doing whatever we are currently doing.
1258 	 */
1259 	if (mused >= mlim_hard)
1260 		return (B_TRUE);
1261 	else if (mused < mlim_soft)
1262 		return (B_FALSE);
1263 	else
1264 		return (scn->scn_clearing);
1265 }
1266 
1267 static boolean_t
1268 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1269 {
1270 	/* we never skip user/group accounting objects */
1271 	if (zb && (int64_t)zb->zb_object < 0)
1272 		return (B_FALSE);
1273 
1274 	if (scn->scn_suspending)
1275 		return (B_TRUE); /* we're already suspending */
1276 
1277 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1278 		return (B_FALSE); /* we're resuming */
1279 
1280 	/* We only know how to resume from level-0 blocks. */
1281 	if (zb && zb->zb_level != 0)
1282 		return (B_FALSE);
1283 
1284 	/*
1285 	 * We suspend if:
1286 	 *  - we have scanned for at least the minimum time (default 1 sec
1287 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1288 	 *    dirty data that we are starting to write more quickly
1289 	 *    (default 30%), or someone is explicitly waiting for this txg
1290 	 *    to complete.
1291 	 *  or
1292 	 *  - the spa is shutting down because this pool is being exported
1293 	 *    or the machine is rebooting.
1294 	 *  or
1295 	 *  - the scan queue has reached its memory use limit
1296 	 */
1297 	hrtime_t curr_time_ns = gethrtime();
1298 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1299 	uint64_t sync_time_ns = curr_time_ns -
1300 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1301 
1302 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1303 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1304 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1305 
1306 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1307 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1308 	    txg_sync_waiting(scn->scn_dp) ||
1309 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1310 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1311 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1312 		if (zb) {
1313 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1314 			    (longlong_t)zb->zb_objset,
1315 			    (longlong_t)zb->zb_object,
1316 			    (longlong_t)zb->zb_level,
1317 			    (longlong_t)zb->zb_blkid);
1318 			scn->scn_phys.scn_bookmark = *zb;
1319 		} else {
1320 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1321 
1322 			dprintf("suspending at DDT bookmark "
1323 			    "%llx/%llx/%llx/%llx\n",
1324 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1325 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1326 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1327 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1328 		}
1329 		scn->scn_suspending = B_TRUE;
1330 		return (B_TRUE);
1331 	}
1332 	return (B_FALSE);
1333 }
1334 
1335 typedef struct zil_scan_arg {
1336 	dsl_pool_t	*zsa_dp;
1337 	zil_header_t	*zsa_zh;
1338 } zil_scan_arg_t;
1339 
1340 /* ARGSUSED */
1341 static int
1342 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1343 {
1344 	zil_scan_arg_t *zsa = arg;
1345 	dsl_pool_t *dp = zsa->zsa_dp;
1346 	dsl_scan_t *scn = dp->dp_scan;
1347 	zil_header_t *zh = zsa->zsa_zh;
1348 	zbookmark_phys_t zb;
1349 
1350 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1351 		return (0);
1352 
1353 	/*
1354 	 * One block ("stubby") can be allocated a long time ago; we
1355 	 * want to visit that one because it has been allocated
1356 	 * (on-disk) even if it hasn't been claimed (even though for
1357 	 * scrub there's nothing to do to it).
1358 	 */
1359 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1360 		return (0);
1361 
1362 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1363 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1364 
1365 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1366 	return (0);
1367 }
1368 
1369 /* ARGSUSED */
1370 static int
1371 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1372 {
1373 	if (lrc->lrc_txtype == TX_WRITE) {
1374 		zil_scan_arg_t *zsa = arg;
1375 		dsl_pool_t *dp = zsa->zsa_dp;
1376 		dsl_scan_t *scn = dp->dp_scan;
1377 		zil_header_t *zh = zsa->zsa_zh;
1378 		lr_write_t *lr = (lr_write_t *)lrc;
1379 		blkptr_t *bp = &lr->lr_blkptr;
1380 		zbookmark_phys_t zb;
1381 
1382 		if (BP_IS_HOLE(bp) ||
1383 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1384 			return (0);
1385 
1386 		/*
1387 		 * birth can be < claim_txg if this record's txg is
1388 		 * already txg sync'ed (but this log block contains
1389 		 * other records that are not synced)
1390 		 */
1391 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1392 			return (0);
1393 
1394 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1395 		    lr->lr_foid, ZB_ZIL_LEVEL,
1396 		    lr->lr_offset / BP_GET_LSIZE(bp));
1397 
1398 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1399 	}
1400 	return (0);
1401 }
1402 
1403 static void
1404 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1405 {
1406 	uint64_t claim_txg = zh->zh_claim_txg;
1407 	zil_scan_arg_t zsa = { dp, zh };
1408 	zilog_t *zilog;
1409 
1410 	ASSERT(spa_writeable(dp->dp_spa));
1411 
1412 	/*
1413 	 * We only want to visit blocks that have been claimed
1414 	 * but not yet replayed.
1415 	 */
1416 	if (claim_txg == 0)
1417 		return;
1418 
1419 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1420 
1421 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1422 	    claim_txg, B_FALSE);
1423 
1424 	zil_free(zilog);
1425 }
1426 
1427 /*
1428  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1429  * here is to sort the AVL tree by the order each block will be needed.
1430  */
1431 static int
1432 scan_prefetch_queue_compare(const void *a, const void *b)
1433 {
1434 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1435 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1436 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1437 
1438 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1439 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1440 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1441 }
1442 
1443 static void
1444 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1445 {
1446 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1447 		zfs_refcount_destroy(&spc->spc_refcnt);
1448 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1449 	}
1450 }
1451 
1452 static scan_prefetch_ctx_t *
1453 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1454 {
1455 	scan_prefetch_ctx_t *spc;
1456 
1457 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1458 	zfs_refcount_create(&spc->spc_refcnt);
1459 	zfs_refcount_add(&spc->spc_refcnt, tag);
1460 	spc->spc_scn = scn;
1461 	if (dnp != NULL) {
1462 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1463 		spc->spc_indblkshift = dnp->dn_indblkshift;
1464 		spc->spc_root = B_FALSE;
1465 	} else {
1466 		spc->spc_datablkszsec = 0;
1467 		spc->spc_indblkshift = 0;
1468 		spc->spc_root = B_TRUE;
1469 	}
1470 
1471 	return (spc);
1472 }
1473 
1474 static void
1475 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1476 {
1477 	zfs_refcount_add(&spc->spc_refcnt, tag);
1478 }
1479 
1480 static boolean_t
1481 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1482     const zbookmark_phys_t *zb)
1483 {
1484 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1485 	dnode_phys_t tmp_dnp;
1486 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1487 
1488 	if (zb->zb_objset != last_zb->zb_objset)
1489 		return (B_TRUE);
1490 	if ((int64_t)zb->zb_object < 0)
1491 		return (B_FALSE);
1492 
1493 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1494 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1495 
1496 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1497 		return (B_TRUE);
1498 
1499 	return (B_FALSE);
1500 }
1501 
1502 static void
1503 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1504 {
1505 	avl_index_t idx;
1506 	dsl_scan_t *scn = spc->spc_scn;
1507 	spa_t *spa = scn->scn_dp->dp_spa;
1508 	scan_prefetch_issue_ctx_t *spic;
1509 
1510 	if (zfs_no_scrub_prefetch)
1511 		return;
1512 
1513 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1514 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1515 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1516 		return;
1517 
1518 	if (dsl_scan_check_prefetch_resume(spc, zb))
1519 		return;
1520 
1521 	scan_prefetch_ctx_add_ref(spc, scn);
1522 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1523 	spic->spic_spc = spc;
1524 	spic->spic_bp = *bp;
1525 	spic->spic_zb = *zb;
1526 
1527 	/*
1528 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1529 	 * prioritize blocks that we will need first for the main traversal
1530 	 * thread.
1531 	 */
1532 	mutex_enter(&spa->spa_scrub_lock);
1533 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1534 		/* this block is already queued for prefetch */
1535 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1536 		scan_prefetch_ctx_rele(spc, scn);
1537 		mutex_exit(&spa->spa_scrub_lock);
1538 		return;
1539 	}
1540 
1541 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1542 	cv_broadcast(&spa->spa_scrub_io_cv);
1543 	mutex_exit(&spa->spa_scrub_lock);
1544 }
1545 
1546 static void
1547 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1548     uint64_t objset, uint64_t object)
1549 {
1550 	int i;
1551 	zbookmark_phys_t zb;
1552 	scan_prefetch_ctx_t *spc;
1553 
1554 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1555 		return;
1556 
1557 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1558 
1559 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1560 
1561 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1562 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1563 		zb.zb_blkid = i;
1564 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1565 	}
1566 
1567 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1568 		zb.zb_level = 0;
1569 		zb.zb_blkid = DMU_SPILL_BLKID;
1570 		dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1571 	}
1572 
1573 	scan_prefetch_ctx_rele(spc, FTAG);
1574 }
1575 
1576 void
1577 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1578     arc_buf_t *buf, void *private)
1579 {
1580 	scan_prefetch_ctx_t *spc = private;
1581 	dsl_scan_t *scn = spc->spc_scn;
1582 	spa_t *spa = scn->scn_dp->dp_spa;
1583 
1584 	/* broadcast that the IO has completed for rate limitting purposes */
1585 	mutex_enter(&spa->spa_scrub_lock);
1586 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1587 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1588 	cv_broadcast(&spa->spa_scrub_io_cv);
1589 	mutex_exit(&spa->spa_scrub_lock);
1590 
1591 	/* if there was an error or we are done prefetching, just cleanup */
1592 	if (buf == NULL || scn->scn_suspending)
1593 		goto out;
1594 
1595 	if (BP_GET_LEVEL(bp) > 0) {
1596 		int i;
1597 		blkptr_t *cbp;
1598 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1599 		zbookmark_phys_t czb;
1600 
1601 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1602 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1603 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1604 			dsl_scan_prefetch(spc, cbp, &czb);
1605 		}
1606 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1607 		dnode_phys_t *cdnp = buf->b_data;
1608 		int i;
1609 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1610 
1611 		for (i = 0, cdnp = buf->b_data; i < epb;
1612 		    i += cdnp->dn_extra_slots + 1,
1613 		    cdnp += cdnp->dn_extra_slots + 1) {
1614 			dsl_scan_prefetch_dnode(scn, cdnp,
1615 			    zb->zb_objset, zb->zb_blkid * epb + i);
1616 		}
1617 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1618 		objset_phys_t *osp = buf->b_data;
1619 
1620 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1621 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1622 
1623 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1624 			dsl_scan_prefetch_dnode(scn,
1625 			    &osp->os_groupused_dnode, zb->zb_objset,
1626 			    DMU_GROUPUSED_OBJECT);
1627 			dsl_scan_prefetch_dnode(scn,
1628 			    &osp->os_userused_dnode, zb->zb_objset,
1629 			    DMU_USERUSED_OBJECT);
1630 		}
1631 	}
1632 
1633 out:
1634 	if (buf != NULL)
1635 		arc_buf_destroy(buf, private);
1636 	scan_prefetch_ctx_rele(spc, scn);
1637 }
1638 
1639 /* ARGSUSED */
1640 static void
1641 dsl_scan_prefetch_thread(void *arg)
1642 {
1643 	dsl_scan_t *scn = arg;
1644 	spa_t *spa = scn->scn_dp->dp_spa;
1645 	vdev_t *rvd = spa->spa_root_vdev;
1646 	uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1647 	scan_prefetch_issue_ctx_t *spic;
1648 
1649 	/* loop until we are told to stop */
1650 	while (!scn->scn_prefetch_stop) {
1651 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1652 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1653 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1654 
1655 		mutex_enter(&spa->spa_scrub_lock);
1656 
1657 		/*
1658 		 * Wait until we have an IO to issue and are not above our
1659 		 * maximum in flight limit.
1660 		 */
1661 		while (!scn->scn_prefetch_stop &&
1662 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1663 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1664 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1665 		}
1666 
1667 		/* recheck if we should stop since we waited for the cv */
1668 		if (scn->scn_prefetch_stop) {
1669 			mutex_exit(&spa->spa_scrub_lock);
1670 			break;
1671 		}
1672 
1673 		/* remove the prefetch IO from the tree */
1674 		spic = avl_first(&scn->scn_prefetch_queue);
1675 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1676 		avl_remove(&scn->scn_prefetch_queue, spic);
1677 
1678 		mutex_exit(&spa->spa_scrub_lock);
1679 
1680 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1681 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1682 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1683 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1684 			zio_flags |= ZIO_FLAG_RAW;
1685 		}
1686 
1687 		/* issue the prefetch asynchronously */
1688 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1689 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1690 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1691 
1692 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1693 	}
1694 
1695 	ASSERT(scn->scn_prefetch_stop);
1696 
1697 	/* free any prefetches we didn't get to complete */
1698 	mutex_enter(&spa->spa_scrub_lock);
1699 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1700 		avl_remove(&scn->scn_prefetch_queue, spic);
1701 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1702 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1703 	}
1704 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1705 	mutex_exit(&spa->spa_scrub_lock);
1706 }
1707 
1708 static boolean_t
1709 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1710     const zbookmark_phys_t *zb)
1711 {
1712 	/*
1713 	 * We never skip over user/group accounting objects (obj<0)
1714 	 */
1715 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1716 	    (int64_t)zb->zb_object >= 0) {
1717 		/*
1718 		 * If we already visited this bp & everything below (in
1719 		 * a prior txg sync), don't bother doing it again.
1720 		 */
1721 		if (zbookmark_subtree_completed(dnp, zb,
1722 		    &scn->scn_phys.scn_bookmark))
1723 			return (B_TRUE);
1724 
1725 		/*
1726 		 * If we found the block we're trying to resume from, or
1727 		 * we went past it to a different object, zero it out to
1728 		 * indicate that it's OK to start checking for suspending
1729 		 * again.
1730 		 */
1731 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1732 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1733 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1734 			    (longlong_t)zb->zb_objset,
1735 			    (longlong_t)zb->zb_object,
1736 			    (longlong_t)zb->zb_level,
1737 			    (longlong_t)zb->zb_blkid);
1738 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1739 		}
1740 	}
1741 	return (B_FALSE);
1742 }
1743 
1744 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1745     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1746     dmu_objset_type_t ostype, dmu_tx_t *tx);
1747 static void dsl_scan_visitdnode(
1748     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1749     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1750 
1751 /*
1752  * Return nonzero on i/o error.
1753  * Return new buf to write out in *bufp.
1754  */
1755 static int
1756 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1757     dnode_phys_t *dnp, const blkptr_t *bp,
1758     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1759 {
1760 	dsl_pool_t *dp = scn->scn_dp;
1761 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1762 	int err;
1763 
1764 	if (BP_GET_LEVEL(bp) > 0) {
1765 		arc_flags_t flags = ARC_FLAG_WAIT;
1766 		int i;
1767 		blkptr_t *cbp;
1768 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1769 		arc_buf_t *buf;
1770 
1771 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1772 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1773 		if (err) {
1774 			scn->scn_phys.scn_errors++;
1775 			return (err);
1776 		}
1777 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1778 			zbookmark_phys_t czb;
1779 
1780 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1781 			    zb->zb_level - 1,
1782 			    zb->zb_blkid * epb + i);
1783 			dsl_scan_visitbp(cbp, &czb, dnp,
1784 			    ds, scn, ostype, tx);
1785 		}
1786 		arc_buf_destroy(buf, &buf);
1787 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1788 		arc_flags_t flags = ARC_FLAG_WAIT;
1789 		dnode_phys_t *cdnp;
1790 		int i;
1791 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1792 		arc_buf_t *buf;
1793 
1794 		if (BP_IS_PROTECTED(bp)) {
1795 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1796 			zio_flags |= ZIO_FLAG_RAW;
1797 		}
1798 
1799 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1800 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1801 		if (err) {
1802 			scn->scn_phys.scn_errors++;
1803 			return (err);
1804 		}
1805 		for (i = 0, cdnp = buf->b_data; i < epb;
1806 		    i += cdnp->dn_extra_slots + 1,
1807 		    cdnp += cdnp->dn_extra_slots + 1) {
1808 			dsl_scan_visitdnode(scn, ds, ostype,
1809 			    cdnp, zb->zb_blkid * epb + i, tx);
1810 		}
1811 
1812 		arc_buf_destroy(buf, &buf);
1813 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1814 		arc_flags_t flags = ARC_FLAG_WAIT;
1815 		objset_phys_t *osp;
1816 		arc_buf_t *buf;
1817 
1818 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1819 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1820 		if (err) {
1821 			scn->scn_phys.scn_errors++;
1822 			return (err);
1823 		}
1824 
1825 		osp = buf->b_data;
1826 
1827 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1828 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1829 
1830 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1831 			/*
1832 			 * We also always visit user/group/project accounting
1833 			 * objects, and never skip them, even if we are
1834 			 * suspending.  This is necessary so that the space
1835 			 * deltas from this txg get integrated.
1836 			 */
1837 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1838 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1839 				    &osp->os_projectused_dnode,
1840 				    DMU_PROJECTUSED_OBJECT, tx);
1841 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1842 			    &osp->os_groupused_dnode,
1843 			    DMU_GROUPUSED_OBJECT, tx);
1844 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1845 			    &osp->os_userused_dnode,
1846 			    DMU_USERUSED_OBJECT, tx);
1847 		}
1848 		arc_buf_destroy(buf, &buf);
1849 	}
1850 
1851 	return (0);
1852 }
1853 
1854 static void
1855 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1856     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1857     uint64_t object, dmu_tx_t *tx)
1858 {
1859 	int j;
1860 
1861 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1862 		zbookmark_phys_t czb;
1863 
1864 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1865 		    dnp->dn_nlevels - 1, j);
1866 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1867 		    &czb, dnp, ds, scn, ostype, tx);
1868 	}
1869 
1870 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1871 		zbookmark_phys_t czb;
1872 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1873 		    0, DMU_SPILL_BLKID);
1874 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1875 		    &czb, dnp, ds, scn, ostype, tx);
1876 	}
1877 }
1878 
1879 /*
1880  * The arguments are in this order because mdb can only print the
1881  * first 5; we want them to be useful.
1882  */
1883 static void
1884 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1885     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1886     dmu_objset_type_t ostype, dmu_tx_t *tx)
1887 {
1888 	dsl_pool_t *dp = scn->scn_dp;
1889 	blkptr_t *bp_toread = NULL;
1890 
1891 	if (dsl_scan_check_suspend(scn, zb))
1892 		return;
1893 
1894 	if (dsl_scan_check_resume(scn, dnp, zb))
1895 		return;
1896 
1897 	scn->scn_visited_this_txg++;
1898 
1899 	/*
1900 	 * This debugging is commented out to conserve stack space.  This
1901 	 * function is called recursively and the debugging addes several
1902 	 * bytes to the stack for each call.  It can be commented back in
1903 	 * if required to debug an issue in dsl_scan_visitbp().
1904 	 *
1905 	 * dprintf_bp(bp,
1906 	 *	"visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1907 	 *	ds, ds ? ds->ds_object : 0,
1908 	 *	zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1909 	 *	bp);
1910 	 */
1911 
1912 	if (BP_IS_HOLE(bp)) {
1913 		scn->scn_holes_this_txg++;
1914 		return;
1915 	}
1916 
1917 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1918 		scn->scn_lt_min_this_txg++;
1919 		return;
1920 	}
1921 
1922 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1923 	*bp_toread = *bp;
1924 
1925 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1926 		goto out;
1927 
1928 	/*
1929 	 * If dsl_scan_ddt() has already visited this block, it will have
1930 	 * already done any translations or scrubbing, so don't call the
1931 	 * callback again.
1932 	 */
1933 	if (ddt_class_contains(dp->dp_spa,
1934 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1935 		scn->scn_ddt_contained_this_txg++;
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * If this block is from the future (after cur_max_txg), then we
1941 	 * are doing this on behalf of a deleted snapshot, and we will
1942 	 * revisit the future block on the next pass of this dataset.
1943 	 * Don't scan it now unless we need to because something
1944 	 * under it was modified.
1945 	 */
1946 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1947 		scn->scn_gt_max_this_txg++;
1948 		goto out;
1949 	}
1950 
1951 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1952 
1953 out:
1954 	kmem_free(bp_toread, sizeof (blkptr_t));
1955 }
1956 
1957 static void
1958 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1959     dmu_tx_t *tx)
1960 {
1961 	zbookmark_phys_t zb;
1962 	scan_prefetch_ctx_t *spc;
1963 
1964 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1965 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1966 
1967 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1968 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1969 		    zb.zb_objset, 0, 0, 0);
1970 	} else {
1971 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1972 	}
1973 
1974 	scn->scn_objsets_visited_this_txg++;
1975 
1976 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1977 	dsl_scan_prefetch(spc, bp, &zb);
1978 	scan_prefetch_ctx_rele(spc, FTAG);
1979 
1980 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1981 
1982 	dprintf_ds(ds, "finished scan%s", "");
1983 }
1984 
1985 static void
1986 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1987 {
1988 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1989 		if (ds->ds_is_snapshot) {
1990 			/*
1991 			 * Note:
1992 			 *  - scn_cur_{min,max}_txg stays the same.
1993 			 *  - Setting the flag is not really necessary if
1994 			 *    scn_cur_max_txg == scn_max_txg, because there
1995 			 *    is nothing after this snapshot that we care
1996 			 *    about.  However, we set it anyway and then
1997 			 *    ignore it when we retraverse it in
1998 			 *    dsl_scan_visitds().
1999 			 */
2000 			scn_phys->scn_bookmark.zb_objset =
2001 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2002 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2003 			    "reset zb_objset to %llu",
2004 			    (u_longlong_t)ds->ds_object,
2005 			    (u_longlong_t)dsl_dataset_phys(ds)->
2006 			    ds_next_snap_obj);
2007 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2008 		} else {
2009 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2010 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2011 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2012 			    "reset bookmark to -1,0,0,0",
2013 			    (u_longlong_t)ds->ds_object);
2014 		}
2015 	}
2016 }
2017 
2018 /*
2019  * Invoked when a dataset is destroyed. We need to make sure that:
2020  *
2021  * 1) If it is the dataset that was currently being scanned, we write
2022  *	a new dsl_scan_phys_t and marking the objset reference in it
2023  *	as destroyed.
2024  * 2) Remove it from the work queue, if it was present.
2025  *
2026  * If the dataset was actually a snapshot, instead of marking the dataset
2027  * as destroyed, we instead substitute the next snapshot in line.
2028  */
2029 void
2030 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2031 {
2032 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2033 	dsl_scan_t *scn = dp->dp_scan;
2034 	uint64_t mintxg;
2035 
2036 	if (!dsl_scan_is_running(scn))
2037 		return;
2038 
2039 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2040 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2041 
2042 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2043 		scan_ds_queue_remove(scn, ds->ds_object);
2044 		if (ds->ds_is_snapshot)
2045 			scan_ds_queue_insert(scn,
2046 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2047 	}
2048 
2049 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2050 	    ds->ds_object, &mintxg) == 0) {
2051 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2052 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2053 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2054 		if (ds->ds_is_snapshot) {
2055 			/*
2056 			 * We keep the same mintxg; it could be >
2057 			 * ds_creation_txg if the previous snapshot was
2058 			 * deleted too.
2059 			 */
2060 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2061 			    scn->scn_phys.scn_queue_obj,
2062 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2063 			    mintxg, tx) == 0);
2064 			zfs_dbgmsg("destroying ds %llu; in queue; "
2065 			    "replacing with %llu",
2066 			    (u_longlong_t)ds->ds_object,
2067 			    (u_longlong_t)dsl_dataset_phys(ds)->
2068 			    ds_next_snap_obj);
2069 		} else {
2070 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2071 			    (u_longlong_t)ds->ds_object);
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * dsl_scan_sync() should be called after this, and should sync
2077 	 * out our changed state, but just to be safe, do it here.
2078 	 */
2079 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2080 }
2081 
2082 static void
2083 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2084 {
2085 	if (scn_bookmark->zb_objset == ds->ds_object) {
2086 		scn_bookmark->zb_objset =
2087 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2088 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2089 		    "reset zb_objset to %llu",
2090 		    (u_longlong_t)ds->ds_object,
2091 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2092 	}
2093 }
2094 
2095 /*
2096  * Called when a dataset is snapshotted. If we were currently traversing
2097  * this snapshot, we reset our bookmark to point at the newly created
2098  * snapshot. We also modify our work queue to remove the old snapshot and
2099  * replace with the new one.
2100  */
2101 void
2102 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2103 {
2104 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2105 	dsl_scan_t *scn = dp->dp_scan;
2106 	uint64_t mintxg;
2107 
2108 	if (!dsl_scan_is_running(scn))
2109 		return;
2110 
2111 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2112 
2113 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2114 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2115 
2116 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2117 		scan_ds_queue_remove(scn, ds->ds_object);
2118 		scan_ds_queue_insert(scn,
2119 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2120 	}
2121 
2122 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2123 	    ds->ds_object, &mintxg) == 0) {
2124 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2125 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2126 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2127 		    scn->scn_phys.scn_queue_obj,
2128 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2129 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2130 		    "replacing with %llu",
2131 		    (u_longlong_t)ds->ds_object,
2132 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2133 	}
2134 
2135 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2136 }
2137 
2138 static void
2139 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2140     zbookmark_phys_t *scn_bookmark)
2141 {
2142 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2143 		scn_bookmark->zb_objset = ds2->ds_object;
2144 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2145 		    "reset zb_objset to %llu",
2146 		    (u_longlong_t)ds1->ds_object,
2147 		    (u_longlong_t)ds2->ds_object);
2148 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2149 		scn_bookmark->zb_objset = ds1->ds_object;
2150 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2151 		    "reset zb_objset to %llu",
2152 		    (u_longlong_t)ds2->ds_object,
2153 		    (u_longlong_t)ds1->ds_object);
2154 	}
2155 }
2156 
2157 /*
2158  * Called when a parent dataset and its clone are swapped. If we were
2159  * currently traversing the dataset, we need to switch to traversing the
2160  * newly promoted parent.
2161  */
2162 void
2163 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2164 {
2165 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2166 	dsl_scan_t *scn = dp->dp_scan;
2167 	uint64_t mintxg;
2168 
2169 	if (!dsl_scan_is_running(scn))
2170 		return;
2171 
2172 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2173 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2174 
2175 	if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2176 		scan_ds_queue_remove(scn, ds1->ds_object);
2177 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2178 	}
2179 	if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2180 		scan_ds_queue_remove(scn, ds2->ds_object);
2181 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2182 	}
2183 
2184 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2185 	    ds1->ds_object, &mintxg) == 0) {
2186 		int err;
2187 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2188 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2189 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2190 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2191 		err = zap_add_int_key(dp->dp_meta_objset,
2192 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2193 		VERIFY(err == 0 || err == EEXIST);
2194 		if (err == EEXIST) {
2195 			/* Both were there to begin with */
2196 			VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2197 			    scn->scn_phys.scn_queue_obj,
2198 			    ds1->ds_object, mintxg, tx));
2199 		}
2200 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2201 		    "replacing with %llu",
2202 		    (u_longlong_t)ds1->ds_object,
2203 		    (u_longlong_t)ds2->ds_object);
2204 	}
2205 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2206 	    ds2->ds_object, &mintxg) == 0) {
2207 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2208 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2209 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2210 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2211 		VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2212 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2213 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2214 		    "replacing with %llu",
2215 		    (u_longlong_t)ds2->ds_object,
2216 		    (u_longlong_t)ds1->ds_object);
2217 	}
2218 
2219 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2220 }
2221 
2222 /* ARGSUSED */
2223 static int
2224 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2225 {
2226 	uint64_t originobj = *(uint64_t *)arg;
2227 	dsl_dataset_t *ds;
2228 	int err;
2229 	dsl_scan_t *scn = dp->dp_scan;
2230 
2231 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2232 		return (0);
2233 
2234 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2235 	if (err)
2236 		return (err);
2237 
2238 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2239 		dsl_dataset_t *prev;
2240 		err = dsl_dataset_hold_obj(dp,
2241 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2242 
2243 		dsl_dataset_rele(ds, FTAG);
2244 		if (err)
2245 			return (err);
2246 		ds = prev;
2247 	}
2248 	scan_ds_queue_insert(scn, ds->ds_object,
2249 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2250 	dsl_dataset_rele(ds, FTAG);
2251 	return (0);
2252 }
2253 
2254 static void
2255 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2256 {
2257 	dsl_pool_t *dp = scn->scn_dp;
2258 	dsl_dataset_t *ds;
2259 
2260 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2261 
2262 	if (scn->scn_phys.scn_cur_min_txg >=
2263 	    scn->scn_phys.scn_max_txg) {
2264 		/*
2265 		 * This can happen if this snapshot was created after the
2266 		 * scan started, and we already completed a previous snapshot
2267 		 * that was created after the scan started.  This snapshot
2268 		 * only references blocks with:
2269 		 *
2270 		 *	birth < our ds_creation_txg
2271 		 *	cur_min_txg is no less than ds_creation_txg.
2272 		 *	We have already visited these blocks.
2273 		 * or
2274 		 *	birth > scn_max_txg
2275 		 *	The scan requested not to visit these blocks.
2276 		 *
2277 		 * Subsequent snapshots (and clones) can reference our
2278 		 * blocks, or blocks with even higher birth times.
2279 		 * Therefore we do not need to visit them either,
2280 		 * so we do not add them to the work queue.
2281 		 *
2282 		 * Note that checking for cur_min_txg >= cur_max_txg
2283 		 * is not sufficient, because in that case we may need to
2284 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2285 		 * which raises cur_min_txg.  In this case we will visit
2286 		 * this dataset but skip all of its blocks, because the
2287 		 * rootbp's birth time is < cur_min_txg.  Then we will
2288 		 * add the next snapshots/clones to the work queue.
2289 		 */
2290 		char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2291 		dsl_dataset_name(ds, dsname);
2292 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2293 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2294 		    (longlong_t)dsobj, dsname,
2295 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2296 		    (longlong_t)scn->scn_phys.scn_max_txg);
2297 		kmem_free(dsname, MAXNAMELEN);
2298 
2299 		goto out;
2300 	}
2301 
2302 	/*
2303 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2304 	 * snapshots can have ZIL block pointers (which may be the same
2305 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2306 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2307 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2308 	 * rather than in scan_recurse(), because the regular snapshot
2309 	 * block-sharing rules don't apply to it.
2310 	 */
2311 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2312 	    (dp->dp_origin_snap == NULL ||
2313 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2314 		objset_t *os;
2315 		if (dmu_objset_from_ds(ds, &os) != 0) {
2316 			goto out;
2317 		}
2318 		dsl_scan_zil(dp, &os->os_zil_header);
2319 	}
2320 
2321 	/*
2322 	 * Iterate over the bps in this ds.
2323 	 */
2324 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2325 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2326 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2327 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2328 
2329 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2330 	dsl_dataset_name(ds, dsname);
2331 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2332 	    "suspending=%u",
2333 	    (longlong_t)dsobj, dsname,
2334 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2335 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2336 	    (int)scn->scn_suspending);
2337 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2338 
2339 	if (scn->scn_suspending)
2340 		goto out;
2341 
2342 	/*
2343 	 * We've finished this pass over this dataset.
2344 	 */
2345 
2346 	/*
2347 	 * If we did not completely visit this dataset, do another pass.
2348 	 */
2349 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2350 		zfs_dbgmsg("incomplete pass; visiting again");
2351 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2352 		scan_ds_queue_insert(scn, ds->ds_object,
2353 		    scn->scn_phys.scn_cur_max_txg);
2354 		goto out;
2355 	}
2356 
2357 	/*
2358 	 * Add descendent datasets to work queue.
2359 	 */
2360 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2361 		scan_ds_queue_insert(scn,
2362 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2363 		    dsl_dataset_phys(ds)->ds_creation_txg);
2364 	}
2365 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2366 		boolean_t usenext = B_FALSE;
2367 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2368 			uint64_t count;
2369 			/*
2370 			 * A bug in a previous version of the code could
2371 			 * cause upgrade_clones_cb() to not set
2372 			 * ds_next_snap_obj when it should, leading to a
2373 			 * missing entry.  Therefore we can only use the
2374 			 * next_clones_obj when its count is correct.
2375 			 */
2376 			int err = zap_count(dp->dp_meta_objset,
2377 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2378 			if (err == 0 &&
2379 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2380 				usenext = B_TRUE;
2381 		}
2382 
2383 		if (usenext) {
2384 			zap_cursor_t zc;
2385 			zap_attribute_t za;
2386 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2387 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2388 			    zap_cursor_retrieve(&zc, &za) == 0;
2389 			    (void) zap_cursor_advance(&zc)) {
2390 				scan_ds_queue_insert(scn,
2391 				    zfs_strtonum(za.za_name, NULL),
2392 				    dsl_dataset_phys(ds)->ds_creation_txg);
2393 			}
2394 			zap_cursor_fini(&zc);
2395 		} else {
2396 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2397 			    enqueue_clones_cb, &ds->ds_object,
2398 			    DS_FIND_CHILDREN));
2399 		}
2400 	}
2401 
2402 out:
2403 	dsl_dataset_rele(ds, FTAG);
2404 }
2405 
2406 /* ARGSUSED */
2407 static int
2408 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2409 {
2410 	dsl_dataset_t *ds;
2411 	int err;
2412 	dsl_scan_t *scn = dp->dp_scan;
2413 
2414 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2415 	if (err)
2416 		return (err);
2417 
2418 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2419 		dsl_dataset_t *prev;
2420 		err = dsl_dataset_hold_obj(dp,
2421 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2422 		if (err) {
2423 			dsl_dataset_rele(ds, FTAG);
2424 			return (err);
2425 		}
2426 
2427 		/*
2428 		 * If this is a clone, we don't need to worry about it for now.
2429 		 */
2430 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2431 			dsl_dataset_rele(ds, FTAG);
2432 			dsl_dataset_rele(prev, FTAG);
2433 			return (0);
2434 		}
2435 		dsl_dataset_rele(ds, FTAG);
2436 		ds = prev;
2437 	}
2438 
2439 	scan_ds_queue_insert(scn, ds->ds_object,
2440 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2441 	dsl_dataset_rele(ds, FTAG);
2442 	return (0);
2443 }
2444 
2445 /* ARGSUSED */
2446 void
2447 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2448     ddt_entry_t *dde, dmu_tx_t *tx)
2449 {
2450 	const ddt_key_t *ddk = &dde->dde_key;
2451 	ddt_phys_t *ddp = dde->dde_phys;
2452 	blkptr_t bp;
2453 	zbookmark_phys_t zb = { 0 };
2454 	int p;
2455 
2456 	if (scn->scn_phys.scn_state != DSS_SCANNING)
2457 		return;
2458 
2459 	/*
2460 	 * This function is special because it is the only thing
2461 	 * that can add scan_io_t's to the vdev scan queues from
2462 	 * outside dsl_scan_sync(). For the most part this is ok
2463 	 * as long as it is called from within syncing context.
2464 	 * However, dsl_scan_sync() expects that no new sio's will
2465 	 * be added between when all the work for a scan is done
2466 	 * and the next txg when the scan is actually marked as
2467 	 * completed. This check ensures we do not issue new sio's
2468 	 * during this period.
2469 	 */
2470 	if (scn->scn_done_txg != 0)
2471 		return;
2472 
2473 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2474 		if (ddp->ddp_phys_birth == 0 ||
2475 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2476 			continue;
2477 		ddt_bp_create(checksum, ddk, ddp, &bp);
2478 
2479 		scn->scn_visited_this_txg++;
2480 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2481 	}
2482 }
2483 
2484 /*
2485  * Scrub/dedup interaction.
2486  *
2487  * If there are N references to a deduped block, we don't want to scrub it
2488  * N times -- ideally, we should scrub it exactly once.
2489  *
2490  * We leverage the fact that the dde's replication class (enum ddt_class)
2491  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2492  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2493  *
2494  * To prevent excess scrubbing, the scrub begins by walking the DDT
2495  * to find all blocks with refcnt > 1, and scrubs each of these once.
2496  * Since there are two replication classes which contain blocks with
2497  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2498  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2499  *
2500  * There would be nothing more to say if a block's refcnt couldn't change
2501  * during a scrub, but of course it can so we must account for changes
2502  * in a block's replication class.
2503  *
2504  * Here's an example of what can occur:
2505  *
2506  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2507  * when visited during the top-down scrub phase, it will be scrubbed twice.
2508  * This negates our scrub optimization, but is otherwise harmless.
2509  *
2510  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2511  * on each visit during the top-down scrub phase, it will never be scrubbed.
2512  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2513  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2514  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2515  * while a scrub is in progress, it scrubs the block right then.
2516  */
2517 static void
2518 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2519 {
2520 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2521 	ddt_entry_t dde = { 0 };
2522 	int error;
2523 	uint64_t n = 0;
2524 
2525 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2526 		ddt_t *ddt;
2527 
2528 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2529 			break;
2530 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2531 		    (longlong_t)ddb->ddb_class,
2532 		    (longlong_t)ddb->ddb_type,
2533 		    (longlong_t)ddb->ddb_checksum,
2534 		    (longlong_t)ddb->ddb_cursor);
2535 
2536 		/* There should be no pending changes to the dedup table */
2537 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2538 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2539 
2540 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2541 		n++;
2542 
2543 		if (dsl_scan_check_suspend(scn, NULL))
2544 			break;
2545 	}
2546 
2547 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2548 	    "suspending=%u", (longlong_t)n,
2549 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2550 
2551 	ASSERT(error == 0 || error == ENOENT);
2552 	ASSERT(error != ENOENT ||
2553 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2554 }
2555 
2556 static uint64_t
2557 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2558 {
2559 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2560 	if (ds->ds_is_snapshot)
2561 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2562 	return (smt);
2563 }
2564 
2565 static void
2566 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2567 {
2568 	scan_ds_t *sds;
2569 	dsl_pool_t *dp = scn->scn_dp;
2570 
2571 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2572 	    scn->scn_phys.scn_ddt_class_max) {
2573 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2574 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2575 		dsl_scan_ddt(scn, tx);
2576 		if (scn->scn_suspending)
2577 			return;
2578 	}
2579 
2580 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2581 		/* First do the MOS & ORIGIN */
2582 
2583 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2584 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2585 		dsl_scan_visit_rootbp(scn, NULL,
2586 		    &dp->dp_meta_rootbp, tx);
2587 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2588 		if (scn->scn_suspending)
2589 			return;
2590 
2591 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2592 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2593 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2594 		} else {
2595 			dsl_scan_visitds(scn,
2596 			    dp->dp_origin_snap->ds_object, tx);
2597 		}
2598 		ASSERT(!scn->scn_suspending);
2599 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2600 	    ZB_DESTROYED_OBJSET) {
2601 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2602 		/*
2603 		 * If we were suspended, continue from here. Note if the
2604 		 * ds we were suspended on was deleted, the zb_objset may
2605 		 * be -1, so we will skip this and find a new objset
2606 		 * below.
2607 		 */
2608 		dsl_scan_visitds(scn, dsobj, tx);
2609 		if (scn->scn_suspending)
2610 			return;
2611 	}
2612 
2613 	/*
2614 	 * In case we suspended right at the end of the ds, zero the
2615 	 * bookmark so we don't think that we're still trying to resume.
2616 	 */
2617 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2618 
2619 	/*
2620 	 * Keep pulling things out of the dataset avl queue. Updates to the
2621 	 * persistent zap-object-as-queue happen only at checkpoints.
2622 	 */
2623 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2624 		dsl_dataset_t *ds;
2625 		uint64_t dsobj = sds->sds_dsobj;
2626 		uint64_t txg = sds->sds_txg;
2627 
2628 		/* dequeue and free the ds from the queue */
2629 		scan_ds_queue_remove(scn, dsobj);
2630 		sds = NULL;	/* must not be touched after removal */
2631 
2632 		/* Set up min / max txg */
2633 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2634 		if (txg != 0) {
2635 			scn->scn_phys.scn_cur_min_txg =
2636 			    MAX(scn->scn_phys.scn_min_txg, txg);
2637 		} else {
2638 			scn->scn_phys.scn_cur_min_txg =
2639 			    MAX(scn->scn_phys.scn_min_txg,
2640 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2641 		}
2642 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2643 		dsl_dataset_rele(ds, FTAG);
2644 
2645 		dsl_scan_visitds(scn, dsobj, tx);
2646 		if (scn->scn_suspending)
2647 			return;
2648 	}
2649 	/* No more objsets to fetch, we're done */
2650 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2651 	ASSERT0(scn->scn_suspending);
2652 }
2653 
2654 static uint64_t
2655 dsl_scan_count_leaves(vdev_t *vd)
2656 {
2657 	uint64_t i, leaves = 0;
2658 
2659 	/* we only count leaves that belong to the main pool and are readable */
2660 	if (vd->vdev_islog || vd->vdev_isspare ||
2661 	    vd->vdev_isl2cache || !vdev_readable(vd))
2662 		return (0);
2663 
2664 	if (vd->vdev_ops->vdev_op_leaf)
2665 		return (1);
2666 
2667 	for (i = 0; i < vd->vdev_children; i++) {
2668 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2669 	}
2670 
2671 	return (leaves);
2672 }
2673 
2674 
2675 static void
2676 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2677 {
2678 	int i;
2679 	uint64_t cur_size = 0;
2680 
2681 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2682 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2683 	}
2684 
2685 	q->q_total_zio_size_this_txg += cur_size;
2686 	q->q_zios_this_txg++;
2687 }
2688 
2689 static void
2690 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2691     uint64_t end)
2692 {
2693 	q->q_total_seg_size_this_txg += end - start;
2694 	q->q_segs_this_txg++;
2695 }
2696 
2697 static boolean_t
2698 scan_io_queue_check_suspend(dsl_scan_t *scn)
2699 {
2700 	/* See comment in dsl_scan_check_suspend() */
2701 	uint64_t curr_time_ns = gethrtime();
2702 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2703 	uint64_t sync_time_ns = curr_time_ns -
2704 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2705 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2706 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2707 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2708 
2709 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2710 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2711 	    txg_sync_waiting(scn->scn_dp) ||
2712 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2713 	    spa_shutting_down(scn->scn_dp->dp_spa));
2714 }
2715 
2716 /*
2717  * Given a list of scan_io_t's in io_list, this issues the io's out to
2718  * disk. This consumes the io_list and frees the scan_io_t's. This is
2719  * called when emptying queues, either when we're up against the memory
2720  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2721  * processing the list before we finished. Any zios that were not issued
2722  * will remain in the io_list.
2723  */
2724 static boolean_t
2725 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2726 {
2727 	dsl_scan_t *scn = queue->q_scn;
2728 	scan_io_t *sio;
2729 	int64_t bytes_issued = 0;
2730 	boolean_t suspended = B_FALSE;
2731 
2732 	while ((sio = list_head(io_list)) != NULL) {
2733 		blkptr_t bp;
2734 
2735 		if (scan_io_queue_check_suspend(scn)) {
2736 			suspended = B_TRUE;
2737 			break;
2738 		}
2739 
2740 		sio2bp(sio, &bp);
2741 		bytes_issued += SIO_GET_ASIZE(sio);
2742 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2743 		    &sio->sio_zb, queue);
2744 		(void) list_remove_head(io_list);
2745 		scan_io_queues_update_zio_stats(queue, &bp);
2746 		sio_free(sio);
2747 	}
2748 
2749 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2750 
2751 	return (suspended);
2752 }
2753 
2754 /*
2755  * Given a range_seg_t (extent) and a list, this function passes over a
2756  * scan queue and gathers up the appropriate ios which fit into that
2757  * scan seg (starting from lowest LBA). At the end, we remove the segment
2758  * from the q_exts_by_addr range tree.
2759  */
2760 static boolean_t
2761 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2762 {
2763 	scan_io_t *srch_sio, *sio, *next_sio;
2764 	avl_index_t idx;
2765 	uint_t num_sios = 0;
2766 	int64_t bytes_issued = 0;
2767 
2768 	ASSERT(rs != NULL);
2769 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2770 
2771 	srch_sio = sio_alloc(1);
2772 	srch_sio->sio_nr_dvas = 1;
2773 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2774 
2775 	/*
2776 	 * The exact start of the extent might not contain any matching zios,
2777 	 * so if that's the case, examine the next one in the tree.
2778 	 */
2779 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2780 	sio_free(srch_sio);
2781 
2782 	if (sio == NULL)
2783 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2784 
2785 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2786 	    queue->q_exts_by_addr) && num_sios <= 32) {
2787 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2788 		    queue->q_exts_by_addr));
2789 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2790 		    queue->q_exts_by_addr));
2791 
2792 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2793 		avl_remove(&queue->q_sios_by_addr, sio);
2794 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2795 
2796 		bytes_issued += SIO_GET_ASIZE(sio);
2797 		num_sios++;
2798 		list_insert_tail(list, sio);
2799 		sio = next_sio;
2800 	}
2801 
2802 	/*
2803 	 * We limit the number of sios we process at once to 32 to avoid
2804 	 * biting off more than we can chew. If we didn't take everything
2805 	 * in the segment we update it to reflect the work we were able to
2806 	 * complete. Otherwise, we remove it from the range tree entirely.
2807 	 */
2808 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2809 	    queue->q_exts_by_addr)) {
2810 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2811 		    -bytes_issued);
2812 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2813 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
2814 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2815 
2816 		return (B_TRUE);
2817 	} else {
2818 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2819 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2820 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2821 		return (B_FALSE);
2822 	}
2823 }
2824 
2825 
2826 /*
2827  * This is called from the queue emptying thread and selects the next
2828  * extent from which we are to issue io's. The behavior of this function
2829  * depends on the state of the scan, the current memory consumption and
2830  * whether or not we are performing a scan shutdown.
2831  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2832  *	needs to perform a checkpoint
2833  * 2) We select the largest available extent if we are up against the
2834  *	memory limit.
2835  * 3) Otherwise we don't select any extents.
2836  */
2837 static const range_seg_t *
2838 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2839 {
2840 	dsl_scan_t *scn = queue->q_scn;
2841 	range_tree_t *rt = queue->q_exts_by_addr;
2842 
2843 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2844 	ASSERT(scn->scn_is_sorted);
2845 
2846 	/* handle tunable overrides */
2847 	if (scn->scn_checkpointing || scn->scn_clearing) {
2848 		if (zfs_scan_issue_strategy == 1) {
2849 			return (range_tree_first(rt));
2850 		} else if (zfs_scan_issue_strategy == 2) {
2851 			/*
2852 			 * We need to get the original entry in the by_addr
2853 			 * tree so we can modify it.
2854 			 */
2855 			range_seg_t *size_rs =
2856 			    zfs_btree_first(&queue->q_exts_by_size, NULL);
2857 			if (size_rs == NULL)
2858 				return (NULL);
2859 			uint64_t start = rs_get_start(size_rs, rt);
2860 			uint64_t size = rs_get_end(size_rs, rt) - start;
2861 			range_seg_t *addr_rs = range_tree_find(rt, start,
2862 			    size);
2863 			ASSERT3P(addr_rs, !=, NULL);
2864 			ASSERT3U(rs_get_start(size_rs, rt), ==,
2865 			    rs_get_start(addr_rs, rt));
2866 			ASSERT3U(rs_get_end(size_rs, rt), ==,
2867 			    rs_get_end(addr_rs, rt));
2868 			return (addr_rs);
2869 		}
2870 	}
2871 
2872 	/*
2873 	 * During normal clearing, we want to issue our largest segments
2874 	 * first, keeping IO as sequential as possible, and leaving the
2875 	 * smaller extents for later with the hope that they might eventually
2876 	 * grow to larger sequential segments. However, when the scan is
2877 	 * checkpointing, no new extents will be added to the sorting queue,
2878 	 * so the way we are sorted now is as good as it will ever get.
2879 	 * In this case, we instead switch to issuing extents in LBA order.
2880 	 */
2881 	if (scn->scn_checkpointing) {
2882 		return (range_tree_first(rt));
2883 	} else if (scn->scn_clearing) {
2884 		/*
2885 		 * We need to get the original entry in the by_addr
2886 		 * tree so we can modify it.
2887 		 */
2888 		range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
2889 		    NULL);
2890 		if (size_rs == NULL)
2891 			return (NULL);
2892 		uint64_t start = rs_get_start(size_rs, rt);
2893 		uint64_t size = rs_get_end(size_rs, rt) - start;
2894 		range_seg_t *addr_rs = range_tree_find(rt, start, size);
2895 		ASSERT3P(addr_rs, !=, NULL);
2896 		ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
2897 		    rt));
2898 		ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
2899 		return (addr_rs);
2900 	} else {
2901 		return (NULL);
2902 	}
2903 }
2904 
2905 static void
2906 scan_io_queues_run_one(void *arg)
2907 {
2908 	dsl_scan_io_queue_t *queue = arg;
2909 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2910 	boolean_t suspended = B_FALSE;
2911 	range_seg_t *rs = NULL;
2912 	scan_io_t *sio = NULL;
2913 	list_t sio_list;
2914 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2915 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2916 
2917 	ASSERT(queue->q_scn->scn_is_sorted);
2918 
2919 	list_create(&sio_list, sizeof (scan_io_t),
2920 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
2921 	mutex_enter(q_lock);
2922 
2923 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
2924 	queue->q_maxinflight_bytes =
2925 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2926 
2927 	/* reset per-queue scan statistics for this txg */
2928 	queue->q_total_seg_size_this_txg = 0;
2929 	queue->q_segs_this_txg = 0;
2930 	queue->q_total_zio_size_this_txg = 0;
2931 	queue->q_zios_this_txg = 0;
2932 
2933 	/* loop until we have run out of time or sios */
2934 	while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2935 		uint64_t seg_start = 0, seg_end = 0;
2936 		boolean_t more_left = B_TRUE;
2937 
2938 		ASSERT(list_is_empty(&sio_list));
2939 
2940 		/* loop while we still have sios left to process in this rs */
2941 		while (more_left) {
2942 			scan_io_t *first_sio, *last_sio;
2943 
2944 			/*
2945 			 * We have selected which extent needs to be
2946 			 * processed next. Gather up the corresponding sios.
2947 			 */
2948 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
2949 			ASSERT(!list_is_empty(&sio_list));
2950 			first_sio = list_head(&sio_list);
2951 			last_sio = list_tail(&sio_list);
2952 
2953 			seg_end = SIO_GET_END_OFFSET(last_sio);
2954 			if (seg_start == 0)
2955 				seg_start = SIO_GET_OFFSET(first_sio);
2956 
2957 			/*
2958 			 * Issuing sios can take a long time so drop the
2959 			 * queue lock. The sio queue won't be updated by
2960 			 * other threads since we're in syncing context so
2961 			 * we can be sure that our trees will remain exactly
2962 			 * as we left them.
2963 			 */
2964 			mutex_exit(q_lock);
2965 			suspended = scan_io_queue_issue(queue, &sio_list);
2966 			mutex_enter(q_lock);
2967 
2968 			if (suspended)
2969 				break;
2970 		}
2971 		/* update statistics for debugging purposes */
2972 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2973 
2974 		if (suspended)
2975 			break;
2976 	}
2977 
2978 
2979 	/*
2980 	 * If we were suspended in the middle of processing,
2981 	 * requeue any unfinished sios and exit.
2982 	 */
2983 	while ((sio = list_head(&sio_list)) != NULL) {
2984 		list_remove(&sio_list, sio);
2985 		scan_io_queue_insert_impl(queue, sio);
2986 	}
2987 
2988 	mutex_exit(q_lock);
2989 	list_destroy(&sio_list);
2990 }
2991 
2992 /*
2993  * Performs an emptying run on all scan queues in the pool. This just
2994  * punches out one thread per top-level vdev, each of which processes
2995  * only that vdev's scan queue. We can parallelize the I/O here because
2996  * we know that each queue's io's only affect its own top-level vdev.
2997  *
2998  * This function waits for the queue runs to complete, and must be
2999  * called from dsl_scan_sync (or in general, syncing context).
3000  */
3001 static void
3002 scan_io_queues_run(dsl_scan_t *scn)
3003 {
3004 	spa_t *spa = scn->scn_dp->dp_spa;
3005 
3006 	ASSERT(scn->scn_is_sorted);
3007 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3008 
3009 	if (scn->scn_bytes_pending == 0)
3010 		return;
3011 
3012 	if (scn->scn_taskq == NULL) {
3013 		char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
3014 		    KM_SLEEP);
3015 		int nthreads = spa->spa_root_vdev->vdev_children;
3016 
3017 		/*
3018 		 * We need to make this taskq *always* execute as many
3019 		 * threads in parallel as we have top-level vdevs and no
3020 		 * less, otherwise strange serialization of the calls to
3021 		 * scan_io_queues_run_one can occur during spa_sync runs
3022 		 * and that significantly impacts performance.
3023 		 */
3024 		(void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
3025 		    "dsl_scan_tq_%s", spa->spa_name);
3026 		scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
3027 		    nthreads, nthreads, TASKQ_PREPOPULATE);
3028 		kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
3029 	}
3030 
3031 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3032 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3033 
3034 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3035 		if (vd->vdev_scan_io_queue != NULL) {
3036 			VERIFY(taskq_dispatch(scn->scn_taskq,
3037 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3038 			    TQ_SLEEP) != TASKQID_INVALID);
3039 		}
3040 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3041 	}
3042 
3043 	/*
3044 	 * Wait for the queues to finish issuing thir IOs for this run
3045 	 * before we return. There may still be IOs in flight at this
3046 	 * point.
3047 	 */
3048 	taskq_wait(scn->scn_taskq);
3049 }
3050 
3051 static boolean_t
3052 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3053 {
3054 	uint64_t elapsed_nanosecs;
3055 
3056 	if (zfs_recover)
3057 		return (B_FALSE);
3058 
3059 	if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
3060 		return (B_TRUE);
3061 
3062 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3063 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3064 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3065 	    txg_sync_waiting(scn->scn_dp)) ||
3066 	    spa_shutting_down(scn->scn_dp->dp_spa));
3067 }
3068 
3069 static int
3070 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3071 {
3072 	dsl_scan_t *scn = arg;
3073 
3074 	if (!scn->scn_is_bptree ||
3075 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3076 		if (dsl_scan_async_block_should_pause(scn))
3077 			return (SET_ERROR(ERESTART));
3078 	}
3079 
3080 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3081 	    dmu_tx_get_txg(tx), bp, 0));
3082 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3083 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3084 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3085 	scn->scn_visited_this_txg++;
3086 	return (0);
3087 }
3088 
3089 static void
3090 dsl_scan_update_stats(dsl_scan_t *scn)
3091 {
3092 	spa_t *spa = scn->scn_dp->dp_spa;
3093 	uint64_t i;
3094 	uint64_t seg_size_total = 0, zio_size_total = 0;
3095 	uint64_t seg_count_total = 0, zio_count_total = 0;
3096 
3097 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3098 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3099 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3100 
3101 		if (queue == NULL)
3102 			continue;
3103 
3104 		seg_size_total += queue->q_total_seg_size_this_txg;
3105 		zio_size_total += queue->q_total_zio_size_this_txg;
3106 		seg_count_total += queue->q_segs_this_txg;
3107 		zio_count_total += queue->q_zios_this_txg;
3108 	}
3109 
3110 	if (seg_count_total == 0 || zio_count_total == 0) {
3111 		scn->scn_avg_seg_size_this_txg = 0;
3112 		scn->scn_avg_zio_size_this_txg = 0;
3113 		scn->scn_segs_this_txg = 0;
3114 		scn->scn_zios_this_txg = 0;
3115 		return;
3116 	}
3117 
3118 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3119 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3120 	scn->scn_segs_this_txg = seg_count_total;
3121 	scn->scn_zios_this_txg = zio_count_total;
3122 }
3123 
3124 static int
3125 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3126 {
3127 	dsl_scan_t *scn = arg;
3128 	const dva_t *dva = &bp->blk_dva[0];
3129 
3130 	if (dsl_scan_async_block_should_pause(scn))
3131 		return (SET_ERROR(ERESTART));
3132 
3133 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3134 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3135 	    DVA_GET_ASIZE(dva), tx);
3136 	scn->scn_visited_this_txg++;
3137 	return (0);
3138 }
3139 
3140 boolean_t
3141 dsl_scan_active(dsl_scan_t *scn)
3142 {
3143 	spa_t *spa = scn->scn_dp->dp_spa;
3144 	uint64_t used = 0, comp, uncomp;
3145 
3146 	if (spa->spa_load_state != SPA_LOAD_NONE)
3147 		return (B_FALSE);
3148 	if (spa_shutting_down(spa))
3149 		return (B_FALSE);
3150 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3151 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3152 		return (B_TRUE);
3153 
3154 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3155 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3156 		    &used, &comp, &uncomp);
3157 	}
3158 	return (used != 0);
3159 }
3160 
3161 static boolean_t
3162 dsl_scan_check_deferred(vdev_t *vd)
3163 {
3164 	boolean_t need_resilver = B_FALSE;
3165 
3166 	for (int c = 0; c < vd->vdev_children; c++) {
3167 		need_resilver |=
3168 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3169 	}
3170 
3171 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3172 	    !vd->vdev_ops->vdev_op_leaf)
3173 		return (need_resilver);
3174 
3175 	if (!vd->vdev_resilver_deferred)
3176 		need_resilver = B_TRUE;
3177 
3178 	return (need_resilver);
3179 }
3180 
3181 static boolean_t
3182 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3183     uint64_t phys_birth)
3184 {
3185 	vdev_t *vd;
3186 
3187 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3188 
3189 	if (vd->vdev_ops == &vdev_indirect_ops) {
3190 		/*
3191 		 * The indirect vdev can point to multiple
3192 		 * vdevs.  For simplicity, always create
3193 		 * the resilver zio_t. zio_vdev_io_start()
3194 		 * will bypass the child resilver i/o's if
3195 		 * they are on vdevs that don't have DTL's.
3196 		 */
3197 		return (B_TRUE);
3198 	}
3199 
3200 	if (DVA_GET_GANG(dva)) {
3201 		/*
3202 		 * Gang members may be spread across multiple
3203 		 * vdevs, so the best estimate we have is the
3204 		 * scrub range, which has already been checked.
3205 		 * XXX -- it would be better to change our
3206 		 * allocation policy to ensure that all
3207 		 * gang members reside on the same vdev.
3208 		 */
3209 		return (B_TRUE);
3210 	}
3211 
3212 	/*
3213 	 * Check if the txg falls within the range which must be
3214 	 * resilvered.  DVAs outside this range can always be skipped.
3215 	 */
3216 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3217 		return (B_FALSE);
3218 
3219 	/*
3220 	 * Check if the top-level vdev must resilver this offset.
3221 	 * When the offset does not intersect with a dirty leaf DTL
3222 	 * then it may be possible to skip the resilver IO.  The psize
3223 	 * is provided instead of asize to simplify the check for RAIDZ.
3224 	 */
3225 	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3226 		return (B_FALSE);
3227 
3228 	/*
3229 	 * Check that this top-level vdev has a device under it which
3230 	 * is resilvering and is not deferred.
3231 	 */
3232 	if (!dsl_scan_check_deferred(vd))
3233 		return (B_FALSE);
3234 
3235 	return (B_TRUE);
3236 }
3237 
3238 static int
3239 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3240 {
3241 	int err = 0;
3242 	dsl_scan_t *scn = dp->dp_scan;
3243 	spa_t *spa = dp->dp_spa;
3244 
3245 	if (spa_suspend_async_destroy(spa))
3246 		return (0);
3247 
3248 	if (zfs_free_bpobj_enabled &&
3249 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3250 		scn->scn_is_bptree = B_FALSE;
3251 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3252 		scn->scn_zio_root = zio_root(spa, NULL,
3253 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3254 		err = bpobj_iterate(&dp->dp_free_bpobj,
3255 		    dsl_scan_free_block_cb, scn, tx);
3256 		VERIFY0(zio_wait(scn->scn_zio_root));
3257 		scn->scn_zio_root = NULL;
3258 
3259 		if (err != 0 && err != ERESTART)
3260 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3261 	}
3262 
3263 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3264 		ASSERT(scn->scn_async_destroying);
3265 		scn->scn_is_bptree = B_TRUE;
3266 		scn->scn_zio_root = zio_root(spa, NULL,
3267 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3268 		err = bptree_iterate(dp->dp_meta_objset,
3269 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3270 		VERIFY0(zio_wait(scn->scn_zio_root));
3271 		scn->scn_zio_root = NULL;
3272 
3273 		if (err == EIO || err == ECKSUM) {
3274 			err = 0;
3275 		} else if (err != 0 && err != ERESTART) {
3276 			zfs_panic_recover("error %u from "
3277 			    "traverse_dataset_destroyed()", err);
3278 		}
3279 
3280 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3281 			/* finished; deactivate async destroy feature */
3282 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3283 			ASSERT(!spa_feature_is_active(spa,
3284 			    SPA_FEATURE_ASYNC_DESTROY));
3285 			VERIFY0(zap_remove(dp->dp_meta_objset,
3286 			    DMU_POOL_DIRECTORY_OBJECT,
3287 			    DMU_POOL_BPTREE_OBJ, tx));
3288 			VERIFY0(bptree_free(dp->dp_meta_objset,
3289 			    dp->dp_bptree_obj, tx));
3290 			dp->dp_bptree_obj = 0;
3291 			scn->scn_async_destroying = B_FALSE;
3292 			scn->scn_async_stalled = B_FALSE;
3293 		} else {
3294 			/*
3295 			 * If we didn't make progress, mark the async
3296 			 * destroy as stalled, so that we will not initiate
3297 			 * a spa_sync() on its behalf.  Note that we only
3298 			 * check this if we are not finished, because if the
3299 			 * bptree had no blocks for us to visit, we can
3300 			 * finish without "making progress".
3301 			 */
3302 			scn->scn_async_stalled =
3303 			    (scn->scn_visited_this_txg == 0);
3304 		}
3305 	}
3306 	if (scn->scn_visited_this_txg) {
3307 		zfs_dbgmsg("freed %llu blocks in %llums from "
3308 		    "free_bpobj/bptree txg %llu; err=%d",
3309 		    (longlong_t)scn->scn_visited_this_txg,
3310 		    (longlong_t)
3311 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3312 		    (longlong_t)tx->tx_txg, err);
3313 		scn->scn_visited_this_txg = 0;
3314 
3315 		/*
3316 		 * Write out changes to the DDT that may be required as a
3317 		 * result of the blocks freed.  This ensures that the DDT
3318 		 * is clean when a scrub/resilver runs.
3319 		 */
3320 		ddt_sync(spa, tx->tx_txg);
3321 	}
3322 	if (err != 0)
3323 		return (err);
3324 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3325 	    zfs_free_leak_on_eio &&
3326 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3327 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3328 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3329 		/*
3330 		 * We have finished background destroying, but there is still
3331 		 * some space left in the dp_free_dir. Transfer this leaked
3332 		 * space to the dp_leak_dir.
3333 		 */
3334 		if (dp->dp_leak_dir == NULL) {
3335 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3336 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3337 			    LEAK_DIR_NAME, tx);
3338 			VERIFY0(dsl_pool_open_special_dir(dp,
3339 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3340 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3341 		}
3342 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3343 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3344 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3345 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3346 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3347 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3348 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3349 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3350 	}
3351 
3352 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3353 		/* finished; verify that space accounting went to zero */
3354 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3355 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3356 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3357 	}
3358 
3359 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3360 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3361 	    DMU_POOL_OBSOLETE_BPOBJ));
3362 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3363 		ASSERT(spa_feature_is_active(dp->dp_spa,
3364 		    SPA_FEATURE_OBSOLETE_COUNTS));
3365 
3366 		scn->scn_is_bptree = B_FALSE;
3367 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3368 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3369 		    dsl_scan_obsolete_block_cb, scn, tx);
3370 		if (err != 0 && err != ERESTART)
3371 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3372 
3373 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3374 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3375 	}
3376 
3377 	return (0);
3378 }
3379 
3380 /*
3381  * This is the primary entry point for scans that is called from syncing
3382  * context. Scans must happen entirely during syncing context so that we
3383  * cna guarantee that blocks we are currently scanning will not change out
3384  * from under us. While a scan is active, this funciton controls how quickly
3385  * transaction groups proceed, instead of the normal handling provided by
3386  * txg_sync_thread().
3387  */
3388 void
3389 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3390 {
3391 	dsl_scan_t *scn = dp->dp_scan;
3392 	spa_t *spa = dp->dp_spa;
3393 	int err = 0;
3394 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3395 
3396 	if (spa->spa_resilver_deferred &&
3397 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3398 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3399 
3400 	/*
3401 	 * Check for scn_restart_txg before checking spa_load_state, so
3402 	 * that we can restart an old-style scan while the pool is being
3403 	 * imported (see dsl_scan_init). We also restart scans if there
3404 	 * is a deferred resilver and the user has manually disabled
3405 	 * deferred resilvers via the tunable.
3406 	 */
3407 	if (dsl_scan_restarting(scn, tx) ||
3408 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3409 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3410 		dsl_scan_done(scn, B_FALSE, tx);
3411 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3412 			func = POOL_SCAN_RESILVER;
3413 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3414 		    func, (longlong_t)tx->tx_txg);
3415 		dsl_scan_setup_sync(&func, tx);
3416 	}
3417 
3418 	/*
3419 	 * Only process scans in sync pass 1.
3420 	 */
3421 	if (spa_sync_pass(dp->dp_spa) > 1)
3422 		return;
3423 
3424 	/*
3425 	 * If the spa is shutting down, then stop scanning. This will
3426 	 * ensure that the scan does not dirty any new data during the
3427 	 * shutdown phase.
3428 	 */
3429 	if (spa_shutting_down(spa))
3430 		return;
3431 
3432 	/*
3433 	 * If the scan is inactive due to a stalled async destroy, try again.
3434 	 */
3435 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3436 		return;
3437 
3438 	/* reset scan statistics */
3439 	scn->scn_visited_this_txg = 0;
3440 	scn->scn_holes_this_txg = 0;
3441 	scn->scn_lt_min_this_txg = 0;
3442 	scn->scn_gt_max_this_txg = 0;
3443 	scn->scn_ddt_contained_this_txg = 0;
3444 	scn->scn_objsets_visited_this_txg = 0;
3445 	scn->scn_avg_seg_size_this_txg = 0;
3446 	scn->scn_segs_this_txg = 0;
3447 	scn->scn_avg_zio_size_this_txg = 0;
3448 	scn->scn_zios_this_txg = 0;
3449 	scn->scn_suspending = B_FALSE;
3450 	scn->scn_sync_start_time = gethrtime();
3451 	spa->spa_scrub_active = B_TRUE;
3452 
3453 	/*
3454 	 * First process the async destroys.  If we pause, don't do
3455 	 * any scrubbing or resilvering.  This ensures that there are no
3456 	 * async destroys while we are scanning, so the scan code doesn't
3457 	 * have to worry about traversing it.  It is also faster to free the
3458 	 * blocks than to scrub them.
3459 	 */
3460 	err = dsl_process_async_destroys(dp, tx);
3461 	if (err != 0)
3462 		return;
3463 
3464 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3465 		return;
3466 
3467 	/*
3468 	 * Wait a few txgs after importing to begin scanning so that
3469 	 * we can get the pool imported quickly.
3470 	 */
3471 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3472 		return;
3473 
3474 	/*
3475 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3476 	 * We don't want to spin the txg_sync thread, so we add a delay
3477 	 * here to simulate the time spent doing a scan. This is mostly
3478 	 * useful for testing and debugging.
3479 	 */
3480 	if (zfs_scan_suspend_progress) {
3481 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3482 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3483 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3484 
3485 		while (zfs_scan_suspend_progress &&
3486 		    !txg_sync_waiting(scn->scn_dp) &&
3487 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3488 		    NSEC2MSEC(scan_time_ns) < mintime) {
3489 			delay(hz);
3490 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3491 		}
3492 		return;
3493 	}
3494 
3495 	/*
3496 	 * It is possible to switch from unsorted to sorted at any time,
3497 	 * but afterwards the scan will remain sorted unless reloaded from
3498 	 * a checkpoint after a reboot.
3499 	 */
3500 	if (!zfs_scan_legacy) {
3501 		scn->scn_is_sorted = B_TRUE;
3502 		if (scn->scn_last_checkpoint == 0)
3503 			scn->scn_last_checkpoint = ddi_get_lbolt();
3504 	}
3505 
3506 	/*
3507 	 * For sorted scans, determine what kind of work we will be doing
3508 	 * this txg based on our memory limitations and whether or not we
3509 	 * need to perform a checkpoint.
3510 	 */
3511 	if (scn->scn_is_sorted) {
3512 		/*
3513 		 * If we are over our checkpoint interval, set scn_clearing
3514 		 * so that we can begin checkpointing immediately. The
3515 		 * checkpoint allows us to save a consisent bookmark
3516 		 * representing how much data we have scrubbed so far.
3517 		 * Otherwise, use the memory limit to determine if we should
3518 		 * scan for metadata or start issue scrub IOs. We accumulate
3519 		 * metadata until we hit our hard memory limit at which point
3520 		 * we issue scrub IOs until we are at our soft memory limit.
3521 		 */
3522 		if (scn->scn_checkpointing ||
3523 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3524 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3525 			if (!scn->scn_checkpointing)
3526 				zfs_dbgmsg("begin scan checkpoint");
3527 
3528 			scn->scn_checkpointing = B_TRUE;
3529 			scn->scn_clearing = B_TRUE;
3530 		} else {
3531 			boolean_t should_clear = dsl_scan_should_clear(scn);
3532 			if (should_clear && !scn->scn_clearing) {
3533 				zfs_dbgmsg("begin scan clearing");
3534 				scn->scn_clearing = B_TRUE;
3535 			} else if (!should_clear && scn->scn_clearing) {
3536 				zfs_dbgmsg("finish scan clearing");
3537 				scn->scn_clearing = B_FALSE;
3538 			}
3539 		}
3540 	} else {
3541 		ASSERT0(scn->scn_checkpointing);
3542 		ASSERT0(scn->scn_clearing);
3543 	}
3544 
3545 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3546 		/* Need to scan metadata for more blocks to scrub */
3547 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3548 		taskqid_t prefetch_tqid;
3549 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3550 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3551 
3552 		/*
3553 		 * Calculate the max number of in-flight bytes for pool-wide
3554 		 * scanning operations (minimum 1MB). Limits for the issuing
3555 		 * phase are done per top-level vdev and are handled separately.
3556 		 */
3557 		scn->scn_maxinflight_bytes =
3558 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3559 
3560 		if (scnp->scn_ddt_bookmark.ddb_class <=
3561 		    scnp->scn_ddt_class_max) {
3562 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3563 			zfs_dbgmsg("doing scan sync txg %llu; "
3564 			    "ddt bm=%llu/%llu/%llu/%llx",
3565 			    (longlong_t)tx->tx_txg,
3566 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3567 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3568 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3569 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3570 		} else {
3571 			zfs_dbgmsg("doing scan sync txg %llu; "
3572 			    "bm=%llu/%llu/%llu/%llu",
3573 			    (longlong_t)tx->tx_txg,
3574 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3575 			    (longlong_t)scnp->scn_bookmark.zb_object,
3576 			    (longlong_t)scnp->scn_bookmark.zb_level,
3577 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3578 		}
3579 
3580 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3581 		    NULL, ZIO_FLAG_CANFAIL);
3582 
3583 		scn->scn_prefetch_stop = B_FALSE;
3584 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3585 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3586 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3587 
3588 		dsl_pool_config_enter(dp, FTAG);
3589 		dsl_scan_visit(scn, tx);
3590 		dsl_pool_config_exit(dp, FTAG);
3591 
3592 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3593 		scn->scn_prefetch_stop = B_TRUE;
3594 		cv_broadcast(&spa->spa_scrub_io_cv);
3595 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3596 
3597 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3598 		(void) zio_wait(scn->scn_zio_root);
3599 		scn->scn_zio_root = NULL;
3600 
3601 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3602 		    "(%llu os's, %llu holes, %llu < mintxg, "
3603 		    "%llu in ddt, %llu > maxtxg)",
3604 		    (longlong_t)scn->scn_visited_this_txg,
3605 		    (longlong_t)NSEC2MSEC(gethrtime() -
3606 		    scn->scn_sync_start_time),
3607 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3608 		    (longlong_t)scn->scn_holes_this_txg,
3609 		    (longlong_t)scn->scn_lt_min_this_txg,
3610 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3611 		    (longlong_t)scn->scn_gt_max_this_txg);
3612 
3613 		if (!scn->scn_suspending) {
3614 			ASSERT0(avl_numnodes(&scn->scn_queue));
3615 			scn->scn_done_txg = tx->tx_txg + 1;
3616 			if (scn->scn_is_sorted) {
3617 				scn->scn_checkpointing = B_TRUE;
3618 				scn->scn_clearing = B_TRUE;
3619 			}
3620 			zfs_dbgmsg("scan complete txg %llu",
3621 			    (longlong_t)tx->tx_txg);
3622 		}
3623 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3624 		ASSERT(scn->scn_clearing);
3625 
3626 		/* need to issue scrubbing IOs from per-vdev queues */
3627 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3628 		    NULL, ZIO_FLAG_CANFAIL);
3629 		scan_io_queues_run(scn);
3630 		(void) zio_wait(scn->scn_zio_root);
3631 		scn->scn_zio_root = NULL;
3632 
3633 		/* calculate and dprintf the current memory usage */
3634 		(void) dsl_scan_should_clear(scn);
3635 		dsl_scan_update_stats(scn);
3636 
3637 		zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3638 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3639 		    (longlong_t)scn->scn_zios_this_txg,
3640 		    (longlong_t)scn->scn_segs_this_txg,
3641 		    (longlong_t)NSEC2MSEC(gethrtime() -
3642 		    scn->scn_sync_start_time),
3643 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3644 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3645 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3646 		/* Finished with everything. Mark the scrub as complete */
3647 		zfs_dbgmsg("scan issuing complete txg %llu",
3648 		    (longlong_t)tx->tx_txg);
3649 		ASSERT3U(scn->scn_done_txg, !=, 0);
3650 		ASSERT0(spa->spa_scrub_inflight);
3651 		ASSERT0(scn->scn_bytes_pending);
3652 		dsl_scan_done(scn, B_TRUE, tx);
3653 		sync_type = SYNC_MANDATORY;
3654 	}
3655 
3656 	dsl_scan_sync_state(scn, tx, sync_type);
3657 }
3658 
3659 static void
3660 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3661 {
3662 	int i;
3663 
3664 	/*
3665 	 * Don't count embedded bp's, since we already did the work of
3666 	 * scanning these when we scanned the containing block.
3667 	 */
3668 	if (BP_IS_EMBEDDED(bp))
3669 		return;
3670 
3671 	/*
3672 	 * Update the spa's stats on how many bytes we have issued.
3673 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3674 	 * of these will include all DVAs for repair purposes, but the
3675 	 * zio code will only try the first one unless there is an issue.
3676 	 * Therefore, we should only count the first DVA for these IOs.
3677 	 */
3678 	if (scn->scn_is_sorted) {
3679 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3680 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3681 	} else {
3682 		spa_t *spa = scn->scn_dp->dp_spa;
3683 
3684 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3685 			atomic_add_64(&spa->spa_scan_pass_issued,
3686 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3687 		}
3688 	}
3689 
3690 	/*
3691 	 * If we resume after a reboot, zab will be NULL; don't record
3692 	 * incomplete stats in that case.
3693 	 */
3694 	if (zab == NULL)
3695 		return;
3696 
3697 	mutex_enter(&zab->zab_lock);
3698 
3699 	for (i = 0; i < 4; i++) {
3700 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3701 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3702 		if (t & DMU_OT_NEWTYPE)
3703 			t = DMU_OT_OTHER;
3704 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3705 		int equal;
3706 
3707 		zb->zb_count++;
3708 		zb->zb_asize += BP_GET_ASIZE(bp);
3709 		zb->zb_lsize += BP_GET_LSIZE(bp);
3710 		zb->zb_psize += BP_GET_PSIZE(bp);
3711 		zb->zb_gangs += BP_COUNT_GANG(bp);
3712 
3713 		switch (BP_GET_NDVAS(bp)) {
3714 		case 2:
3715 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3716 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3717 				zb->zb_ditto_2_of_2_samevdev++;
3718 			break;
3719 		case 3:
3720 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3721 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3722 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3723 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3724 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3725 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3726 			if (equal == 1)
3727 				zb->zb_ditto_2_of_3_samevdev++;
3728 			else if (equal == 3)
3729 				zb->zb_ditto_3_of_3_samevdev++;
3730 			break;
3731 		}
3732 	}
3733 
3734 	mutex_exit(&zab->zab_lock);
3735 }
3736 
3737 static void
3738 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3739 {
3740 	avl_index_t idx;
3741 	int64_t asize = SIO_GET_ASIZE(sio);
3742 	dsl_scan_t *scn = queue->q_scn;
3743 
3744 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3745 
3746 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3747 		/* block is already scheduled for reading */
3748 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3749 		sio_free(sio);
3750 		return;
3751 	}
3752 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3753 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3754 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3755 }
3756 
3757 /*
3758  * Given all the info we got from our metadata scanning process, we
3759  * construct a scan_io_t and insert it into the scan sorting queue. The
3760  * I/O must already be suitable for us to process. This is controlled
3761  * by dsl_scan_enqueue().
3762  */
3763 static void
3764 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3765     int zio_flags, const zbookmark_phys_t *zb)
3766 {
3767 	dsl_scan_t *scn = queue->q_scn;
3768 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3769 
3770 	ASSERT0(BP_IS_GANG(bp));
3771 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3772 
3773 	bp2sio(bp, sio, dva_i);
3774 	sio->sio_flags = zio_flags;
3775 	sio->sio_zb = *zb;
3776 
3777 	/*
3778 	 * Increment the bytes pending counter now so that we can't
3779 	 * get an integer underflow in case the worker processes the
3780 	 * zio before we get to incrementing this counter.
3781 	 */
3782 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3783 
3784 	scan_io_queue_insert_impl(queue, sio);
3785 }
3786 
3787 /*
3788  * Given a set of I/O parameters as discovered by the metadata traversal
3789  * process, attempts to place the I/O into the sorted queues (if allowed),
3790  * or immediately executes the I/O.
3791  */
3792 static void
3793 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3794     const zbookmark_phys_t *zb)
3795 {
3796 	spa_t *spa = dp->dp_spa;
3797 
3798 	ASSERT(!BP_IS_EMBEDDED(bp));
3799 
3800 	/*
3801 	 * Gang blocks are hard to issue sequentially, so we just issue them
3802 	 * here immediately instead of queuing them.
3803 	 */
3804 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3805 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3806 		return;
3807 	}
3808 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3809 		dva_t dva;
3810 		vdev_t *vdev;
3811 
3812 		dva = bp->blk_dva[i];
3813 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3814 		ASSERT(vdev != NULL);
3815 
3816 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3817 		if (vdev->vdev_scan_io_queue == NULL)
3818 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3819 		ASSERT(dp->dp_scan != NULL);
3820 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3821 		    i, zio_flags, zb);
3822 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3823 	}
3824 }
3825 
3826 static int
3827 dsl_scan_scrub_cb(dsl_pool_t *dp,
3828     const blkptr_t *bp, const zbookmark_phys_t *zb)
3829 {
3830 	dsl_scan_t *scn = dp->dp_scan;
3831 	spa_t *spa = dp->dp_spa;
3832 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3833 	size_t psize = BP_GET_PSIZE(bp);
3834 	boolean_t needs_io;
3835 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3836 	int d;
3837 
3838 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3839 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3840 		count_block(scn, dp->dp_blkstats, bp);
3841 		return (0);
3842 	}
3843 
3844 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3845 	ASSERT(!BP_IS_EMBEDDED(bp));
3846 
3847 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3848 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3849 		zio_flags |= ZIO_FLAG_SCRUB;
3850 		needs_io = B_TRUE;
3851 	} else {
3852 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3853 		zio_flags |= ZIO_FLAG_RESILVER;
3854 		needs_io = B_FALSE;
3855 	}
3856 
3857 	/* If it's an intent log block, failure is expected. */
3858 	if (zb->zb_level == ZB_ZIL_LEVEL)
3859 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3860 
3861 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3862 		const dva_t *dva = &bp->blk_dva[d];
3863 
3864 		/*
3865 		 * Keep track of how much data we've examined so that
3866 		 * zpool(1M) status can make useful progress reports.
3867 		 */
3868 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3869 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3870 
3871 		/* if it's a resilver, this may not be in the target range */
3872 		if (!needs_io)
3873 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3874 			    phys_birth);
3875 	}
3876 
3877 	if (needs_io && !zfs_no_scrub_io) {
3878 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3879 	} else {
3880 		count_block(scn, dp->dp_blkstats, bp);
3881 	}
3882 
3883 	/* do not relocate this block */
3884 	return (0);
3885 }
3886 
3887 static void
3888 dsl_scan_scrub_done(zio_t *zio)
3889 {
3890 	spa_t *spa = zio->io_spa;
3891 	blkptr_t *bp = zio->io_bp;
3892 	dsl_scan_io_queue_t *queue = zio->io_private;
3893 
3894 	abd_free(zio->io_abd);
3895 
3896 	if (queue == NULL) {
3897 		mutex_enter(&spa->spa_scrub_lock);
3898 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3899 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3900 		cv_broadcast(&spa->spa_scrub_io_cv);
3901 		mutex_exit(&spa->spa_scrub_lock);
3902 	} else {
3903 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3904 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3905 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3906 		cv_broadcast(&queue->q_zio_cv);
3907 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3908 	}
3909 
3910 	if (zio->io_error && (zio->io_error != ECKSUM ||
3911 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3912 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3913 	}
3914 }
3915 
3916 /*
3917  * Given a scanning zio's information, executes the zio. The zio need
3918  * not necessarily be only sortable, this function simply executes the
3919  * zio, no matter what it is. The optional queue argument allows the
3920  * caller to specify that they want per top level vdev IO rate limiting
3921  * instead of the legacy global limiting.
3922  */
3923 static void
3924 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3925     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3926 {
3927 	spa_t *spa = dp->dp_spa;
3928 	dsl_scan_t *scn = dp->dp_scan;
3929 	size_t size = BP_GET_PSIZE(bp);
3930 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
3931 
3932 	if (queue == NULL) {
3933 		mutex_enter(&spa->spa_scrub_lock);
3934 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3935 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3936 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3937 		mutex_exit(&spa->spa_scrub_lock);
3938 	} else {
3939 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3940 
3941 		mutex_enter(q_lock);
3942 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3943 			cv_wait(&queue->q_zio_cv, q_lock);
3944 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3945 		mutex_exit(q_lock);
3946 	}
3947 
3948 	count_block(dp->dp_scan, dp->dp_blkstats, bp);
3949 	zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3950 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3951 }
3952 
3953 /*
3954  * This is the primary extent sorting algorithm. We balance two parameters:
3955  * 1) how many bytes of I/O are in an extent
3956  * 2) how well the extent is filled with I/O (as a fraction of its total size)
3957  * Since we allow extents to have gaps between their constituent I/Os, it's
3958  * possible to have a fairly large extent that contains the same amount of
3959  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3960  * The algorithm sorts based on a score calculated from the extent's size,
3961  * the relative fill volume (in %) and a "fill weight" parameter that controls
3962  * the split between whether we prefer larger extents or more well populated
3963  * extents:
3964  *
3965  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3966  *
3967  * Example:
3968  * 1) assume extsz = 64 MiB
3969  * 2) assume fill = 32 MiB (extent is half full)
3970  * 3) assume fill_weight = 3
3971  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3972  *	SCORE = 32M + (50 * 3 * 32M) / 100
3973  *	SCORE = 32M + (4800M / 100)
3974  *	SCORE = 32M + 48M
3975  *		^	^
3976  *		|	+--- final total relative fill-based score
3977  *		+--------- final total fill-based score
3978  *	SCORE = 80M
3979  *
3980  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3981  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3982  * Note that as an optimization, we replace multiplication and division by
3983  * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3984  */
3985 static int
3986 ext_size_compare(const void *x, const void *y)
3987 {
3988 	const range_seg_gap_t *rsa = x, *rsb = y;
3989 
3990 	uint64_t sa = rsa->rs_end - rsa->rs_start;
3991 	uint64_t sb = rsb->rs_end - rsb->rs_start;
3992 	uint64_t score_a, score_b;
3993 
3994 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3995 	    fill_weight * rsa->rs_fill) >> 7);
3996 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3997 	    fill_weight * rsb->rs_fill) >> 7);
3998 
3999 	if (score_a > score_b)
4000 		return (-1);
4001 	if (score_a == score_b) {
4002 		if (rsa->rs_start < rsb->rs_start)
4003 			return (-1);
4004 		if (rsa->rs_start == rsb->rs_start)
4005 			return (0);
4006 		return (1);
4007 	}
4008 	return (1);
4009 }
4010 
4011 /*
4012  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4013  * based on LBA-order (from lowest to highest).
4014  */
4015 static int
4016 sio_addr_compare(const void *x, const void *y)
4017 {
4018 	const scan_io_t *a = x, *b = y;
4019 
4020 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4021 }
4022 
4023 /* IO queues are created on demand when they are needed. */
4024 static dsl_scan_io_queue_t *
4025 scan_io_queue_create(vdev_t *vd)
4026 {
4027 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4028 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4029 
4030 	q->q_scn = scn;
4031 	q->q_vd = vd;
4032 	q->q_sio_memused = 0;
4033 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4034 	q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4035 	    &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4036 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
4037 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4038 
4039 	return (q);
4040 }
4041 
4042 /*
4043  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4044  * No further execution of I/O occurs, anything pending in the queue is
4045  * simply freed without being executed.
4046  */
4047 void
4048 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4049 {
4050 	dsl_scan_t *scn = queue->q_scn;
4051 	scan_io_t *sio;
4052 	void *cookie = NULL;
4053 	int64_t bytes_dequeued = 0;
4054 
4055 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4056 
4057 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4058 	    NULL) {
4059 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4060 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4061 		bytes_dequeued += SIO_GET_ASIZE(sio);
4062 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4063 		sio_free(sio);
4064 	}
4065 
4066 	ASSERT0(queue->q_sio_memused);
4067 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4068 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4069 	range_tree_destroy(queue->q_exts_by_addr);
4070 	avl_destroy(&queue->q_sios_by_addr);
4071 	cv_destroy(&queue->q_zio_cv);
4072 
4073 	kmem_free(queue, sizeof (*queue));
4074 }
4075 
4076 /*
4077  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4078  * called on behalf of vdev_top_transfer when creating or destroying
4079  * a mirror vdev due to zpool attach/detach.
4080  */
4081 void
4082 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4083 {
4084 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4085 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4086 
4087 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4088 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4089 	svd->vdev_scan_io_queue = NULL;
4090 	if (tvd->vdev_scan_io_queue != NULL)
4091 		tvd->vdev_scan_io_queue->q_vd = tvd;
4092 
4093 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4094 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4095 }
4096 
4097 static void
4098 scan_io_queues_destroy(dsl_scan_t *scn)
4099 {
4100 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4101 
4102 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4103 		vdev_t *tvd = rvd->vdev_child[i];
4104 
4105 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4106 		if (tvd->vdev_scan_io_queue != NULL)
4107 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4108 		tvd->vdev_scan_io_queue = NULL;
4109 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4110 	}
4111 }
4112 
4113 static void
4114 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4115 {
4116 	dsl_pool_t *dp = spa->spa_dsl_pool;
4117 	dsl_scan_t *scn = dp->dp_scan;
4118 	vdev_t *vdev;
4119 	kmutex_t *q_lock;
4120 	dsl_scan_io_queue_t *queue;
4121 	scan_io_t *srch_sio, *sio;
4122 	avl_index_t idx;
4123 	uint64_t start, size;
4124 
4125 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4126 	ASSERT(vdev != NULL);
4127 	q_lock = &vdev->vdev_scan_io_queue_lock;
4128 	queue = vdev->vdev_scan_io_queue;
4129 
4130 	mutex_enter(q_lock);
4131 	if (queue == NULL) {
4132 		mutex_exit(q_lock);
4133 		return;
4134 	}
4135 
4136 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4137 	bp2sio(bp, srch_sio, dva_i);
4138 	start = SIO_GET_OFFSET(srch_sio);
4139 	size = SIO_GET_ASIZE(srch_sio);
4140 
4141 	/*
4142 	 * We can find the zio in two states:
4143 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4144 	 *	some point in the future. In this case, all we do is
4145 	 *	remove the zio from the q_sios_by_addr tree, decrement
4146 	 *	its data volume from the containing range_seg_t and
4147 	 *	resort the q_exts_by_size tree to reflect that the
4148 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4149 	 *	the range_seg_t - this is usually rare enough not to be
4150 	 *	worth the extra hassle of trying keep track of precise
4151 	 *	extent boundaries.
4152 	 * 2) Hot, where the zio is currently in-flight in
4153 	 *	dsl_scan_issue_ios. In this case, we can't simply
4154 	 *	reach in and stop the in-flight zio's, so we instead
4155 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4156 	 *	be done with issuing the zio's it gathered and will
4157 	 *	signal us.
4158 	 */
4159 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4160 	sio_free(srch_sio);
4161 
4162 	if (sio != NULL) {
4163 		int64_t asize = SIO_GET_ASIZE(sio);
4164 		blkptr_t tmpbp;
4165 
4166 		/* Got it while it was cold in the queue */
4167 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4168 		ASSERT3U(size, ==, asize);
4169 		avl_remove(&queue->q_sios_by_addr, sio);
4170 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4171 
4172 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4173 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4174 
4175 		/*
4176 		 * We only update scn_bytes_pending in the cold path,
4177 		 * otherwise it will already have been accounted for as
4178 		 * part of the zio's execution.
4179 		 */
4180 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4181 
4182 		/* count the block as though we issued it */
4183 		sio2bp(sio, &tmpbp);
4184 		count_block(scn, dp->dp_blkstats, &tmpbp);
4185 
4186 		sio_free(sio);
4187 	}
4188 	mutex_exit(q_lock);
4189 }
4190 
4191 /*
4192  * Callback invoked when a zio_free() zio is executing. This needs to be
4193  * intercepted to prevent the zio from deallocating a particular portion
4194  * of disk space and it then getting reallocated and written to, while we
4195  * still have it queued up for processing.
4196  */
4197 void
4198 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4199 {
4200 	dsl_pool_t *dp = spa->spa_dsl_pool;
4201 	dsl_scan_t *scn = dp->dp_scan;
4202 
4203 	ASSERT(!BP_IS_EMBEDDED(bp));
4204 	ASSERT(scn != NULL);
4205 	if (!dsl_scan_is_running(scn))
4206 		return;
4207 
4208 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4209 		dsl_scan_freed_dva(spa, bp, i);
4210 }
4211