1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_recv.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 60 61 static char *dmu_recv_tag = "dmu_recv_tag"; 62 const char *recv_clone_name = "%recv"; 63 64 static void byteswap_record(dmu_replay_record_t *drr); 65 66 typedef struct dmu_recv_begin_arg { 67 const char *drba_origin; 68 dmu_recv_cookie_t *drba_cookie; 69 cred_t *drba_cred; 70 dsl_crypto_params_t *drba_dcp; 71 } dmu_recv_begin_arg_t; 72 73 static int 74 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 75 uint64_t fromguid, uint64_t featureflags) 76 { 77 uint64_t val; 78 int error; 79 dsl_pool_t *dp = ds->ds_dir->dd_pool; 80 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 81 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 82 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 83 84 /* temporary clone name must not exist */ 85 error = zap_lookup(dp->dp_meta_objset, 86 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 87 8, 1, &val); 88 if (error != ENOENT) 89 return (error == 0 ? EBUSY : error); 90 91 /* new snapshot name must not exist */ 92 error = zap_lookup(dp->dp_meta_objset, 93 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 94 drba->drba_cookie->drc_tosnap, 8, 1, &val); 95 if (error != ENOENT) 96 return (error == 0 ? EEXIST : error); 97 98 /* 99 * Check snapshot limit before receiving. We'll recheck again at the 100 * end, but might as well abort before receiving if we're already over 101 * the limit. 102 * 103 * Note that we do not check the file system limit with 104 * dsl_dir_fscount_check because the temporary %clones don't count 105 * against that limit. 106 */ 107 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 108 NULL, drba->drba_cred); 109 if (error != 0) 110 return (error); 111 112 if (fromguid != 0) { 113 dsl_dataset_t *snap; 114 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 115 116 /* Can't raw receive on top of an unencrypted dataset */ 117 if (!encrypted && raw) 118 return (SET_ERROR(EINVAL)); 119 120 /* Encryption is incompatible with embedded data */ 121 if (encrypted && embed) 122 return (SET_ERROR(EINVAL)); 123 124 /* Find snapshot in this dir that matches fromguid. */ 125 while (obj != 0) { 126 error = dsl_dataset_hold_obj(dp, obj, FTAG, 127 &snap); 128 if (error != 0) 129 return (SET_ERROR(ENODEV)); 130 if (snap->ds_dir != ds->ds_dir) { 131 dsl_dataset_rele(snap, FTAG); 132 return (SET_ERROR(ENODEV)); 133 } 134 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 135 break; 136 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 137 dsl_dataset_rele(snap, FTAG); 138 } 139 if (obj == 0) 140 return (SET_ERROR(ENODEV)); 141 142 if (drba->drba_cookie->drc_force) { 143 drba->drba_cookie->drc_fromsnapobj = obj; 144 } else { 145 /* 146 * If we are not forcing, there must be no 147 * changes since fromsnap. 148 */ 149 if (dsl_dataset_modified_since_snap(ds, snap)) { 150 dsl_dataset_rele(snap, FTAG); 151 return (SET_ERROR(ETXTBSY)); 152 } 153 drba->drba_cookie->drc_fromsnapobj = 154 ds->ds_prev->ds_object; 155 } 156 157 dsl_dataset_rele(snap, FTAG); 158 } else { 159 /* if full, then must be forced */ 160 if (!drba->drba_cookie->drc_force) 161 return (SET_ERROR(EEXIST)); 162 163 /* 164 * We don't support using zfs recv -F to blow away 165 * encrypted filesystems. This would require the 166 * dsl dir to point to the old encryption key and 167 * the new one at the same time during the receive. 168 */ 169 if ((!encrypted && raw) || encrypted) 170 return (SET_ERROR(EINVAL)); 171 172 /* 173 * Perform the same encryption checks we would if 174 * we were creating a new dataset from scratch. 175 */ 176 if (!raw) { 177 boolean_t will_encrypt; 178 179 error = dmu_objset_create_crypt_check( 180 ds->ds_dir->dd_parent, drba->drba_dcp, 181 &will_encrypt); 182 if (error != 0) 183 return (error); 184 185 if (will_encrypt && embed) 186 return (SET_ERROR(EINVAL)); 187 } 188 189 drba->drba_cookie->drc_fromsnapobj = 0; 190 } 191 192 return (0); 193 194 } 195 196 static int 197 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 198 { 199 dmu_recv_begin_arg_t *drba = arg; 200 dsl_pool_t *dp = dmu_tx_pool(tx); 201 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 202 uint64_t fromguid = drrb->drr_fromguid; 203 int flags = drrb->drr_flags; 204 ds_hold_flags_t dsflags = 0; 205 int error; 206 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 207 dsl_dataset_t *ds; 208 const char *tofs = drba->drba_cookie->drc_tofs; 209 210 /* already checked */ 211 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 212 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 213 214 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 215 DMU_COMPOUNDSTREAM || 216 drrb->drr_type >= DMU_OST_NUMTYPES || 217 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 218 return (SET_ERROR(EINVAL)); 219 220 /* Verify pool version supports SA if SA_SPILL feature set */ 221 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 222 spa_version(dp->dp_spa) < SPA_VERSION_SA) 223 return (SET_ERROR(ENOTSUP)); 224 225 if (drba->drba_cookie->drc_resumable && 226 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 227 return (SET_ERROR(ENOTSUP)); 228 229 /* 230 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 231 * record to a plain WRITE record, so the pool must have the 232 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 233 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 234 */ 235 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 236 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 237 return (SET_ERROR(ENOTSUP)); 238 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 239 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 240 return (SET_ERROR(ENOTSUP)); 241 242 /* 243 * The receiving code doesn't know how to translate large blocks 244 * to smaller ones, so the pool must have the LARGE_BLOCKS 245 * feature enabled if the stream has LARGE_BLOCKS. Same with 246 * large dnodes. 247 */ 248 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 249 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 250 return (SET_ERROR(ENOTSUP)); 251 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 252 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 253 return (SET_ERROR(ENOTSUP)); 254 255 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 256 /* raw receives require the encryption feature */ 257 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 258 return (SET_ERROR(ENOTSUP)); 259 260 /* embedded data is incompatible with encryption and raw recv */ 261 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 262 return (SET_ERROR(EINVAL)); 263 264 /* raw receives require spill block allocation flag */ 265 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 266 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 267 } else { 268 dsflags |= DS_HOLD_FLAG_DECRYPT; 269 } 270 271 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 272 if (error == 0) { 273 /* target fs already exists; recv into temp clone */ 274 275 /* Can't recv a clone into an existing fs */ 276 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 277 dsl_dataset_rele_flags(ds, dsflags, FTAG); 278 return (SET_ERROR(EINVAL)); 279 } 280 281 error = recv_begin_check_existing_impl(drba, ds, fromguid, 282 featureflags); 283 dsl_dataset_rele_flags(ds, dsflags, FTAG); 284 } else if (error == ENOENT) { 285 /* target fs does not exist; must be a full backup or clone */ 286 char buf[ZFS_MAX_DATASET_NAME_LEN]; 287 288 /* 289 * If it's a non-clone incremental, we are missing the 290 * target fs, so fail the recv. 291 */ 292 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 293 drba->drba_origin)) 294 return (SET_ERROR(ENOENT)); 295 296 /* 297 * If we're receiving a full send as a clone, and it doesn't 298 * contain all the necessary free records and freeobject 299 * records, reject it. 300 */ 301 if (fromguid == 0 && drba->drba_origin && 302 !(flags & DRR_FLAG_FREERECORDS)) 303 return (SET_ERROR(EINVAL)); 304 305 /* Open the parent of tofs */ 306 ASSERT3U(strlen(tofs), <, sizeof (buf)); 307 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 308 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 309 if (error != 0) 310 return (error); 311 312 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 313 drba->drba_origin == NULL) { 314 boolean_t will_encrypt; 315 316 /* 317 * Check that we aren't breaking any encryption rules 318 * and that we have all the parameters we need to 319 * create an encrypted dataset if necessary. If we are 320 * making an encrypted dataset the stream can't have 321 * embedded data. 322 */ 323 error = dmu_objset_create_crypt_check(ds->ds_dir, 324 drba->drba_dcp, &will_encrypt); 325 if (error != 0) { 326 dsl_dataset_rele(ds, FTAG); 327 return (error); 328 } 329 330 if (will_encrypt && 331 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 332 dsl_dataset_rele(ds, FTAG); 333 return (SET_ERROR(EINVAL)); 334 } 335 } 336 337 /* 338 * Check filesystem and snapshot limits before receiving. We'll 339 * recheck snapshot limits again at the end (we create the 340 * filesystems and increment those counts during begin_sync). 341 */ 342 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 343 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 344 if (error != 0) { 345 dsl_dataset_rele(ds, FTAG); 346 return (error); 347 } 348 349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 350 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 351 if (error != 0) { 352 dsl_dataset_rele(ds, FTAG); 353 return (error); 354 } 355 356 if (drba->drba_origin != NULL) { 357 dsl_dataset_t *origin; 358 359 error = dsl_dataset_hold(dp, drba->drba_origin, 360 FTAG, &origin); 361 if (error != 0) { 362 dsl_dataset_rele(ds, FTAG); 363 return (error); 364 } 365 if (!origin->ds_is_snapshot) { 366 dsl_dataset_rele(origin, FTAG); 367 dsl_dataset_rele(ds, FTAG); 368 return (SET_ERROR(EINVAL)); 369 } 370 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 371 fromguid != 0) { 372 dsl_dataset_rele(origin, FTAG); 373 dsl_dataset_rele(ds, FTAG); 374 return (SET_ERROR(ENODEV)); 375 } 376 if (origin->ds_dir->dd_crypto_obj != 0 && 377 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 378 dsl_dataset_rele(origin, FTAG); 379 dsl_dataset_rele(ds, FTAG); 380 return (SET_ERROR(EINVAL)); 381 } 382 dsl_dataset_rele(origin, FTAG); 383 } 384 dsl_dataset_rele(ds, FTAG); 385 error = 0; 386 } 387 return (error); 388 } 389 390 static void 391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 392 { 393 dmu_recv_begin_arg_t *drba = arg; 394 dsl_pool_t *dp = dmu_tx_pool(tx); 395 objset_t *mos = dp->dp_meta_objset; 396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 397 const char *tofs = drba->drba_cookie->drc_tofs; 398 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 399 dsl_dataset_t *ds, *newds; 400 objset_t *os; 401 uint64_t dsobj; 402 ds_hold_flags_t dsflags = 0; 403 int error; 404 uint64_t crflags = 0; 405 dsl_crypto_params_t dummy_dcp = { 0 }; 406 dsl_crypto_params_t *dcp = drba->drba_dcp; 407 408 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 409 crflags |= DS_FLAG_CI_DATASET; 410 411 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 412 dsflags |= DS_HOLD_FLAG_DECRYPT; 413 414 /* 415 * Raw, non-incremental recvs always use a dummy dcp with 416 * the raw cmd set. Raw incremental recvs do not use a dcp 417 * since the encryption parameters are already set in stone. 418 */ 419 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 && 420 drba->drba_origin == NULL) { 421 ASSERT3P(dcp, ==, NULL); 422 dcp = &dummy_dcp; 423 424 if (featureflags & DMU_BACKUP_FEATURE_RAW) 425 dcp->cp_cmd = DCP_CMD_RAW_RECV; 426 } 427 428 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 429 if (error == 0) { 430 /* create temporary clone */ 431 dsl_dataset_t *snap = NULL; 432 433 if (drba->drba_cookie->drc_fromsnapobj != 0) { 434 VERIFY0(dsl_dataset_hold_obj(dp, 435 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 436 ASSERT3P(dcp, ==, NULL); 437 } 438 439 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 440 snap, crflags, drba->drba_cred, dcp, tx); 441 if (drba->drba_cookie->drc_fromsnapobj != 0) 442 dsl_dataset_rele(snap, FTAG); 443 dsl_dataset_rele_flags(ds, dsflags, FTAG); 444 } else { 445 dsl_dir_t *dd; 446 const char *tail; 447 dsl_dataset_t *origin = NULL; 448 449 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 450 451 if (drba->drba_origin != NULL) { 452 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 453 FTAG, &origin)); 454 ASSERT3P(dcp, ==, NULL); 455 } 456 457 /* Create new dataset. */ 458 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 459 origin, crflags, drba->drba_cred, dcp, tx); 460 if (origin != NULL) 461 dsl_dataset_rele(origin, FTAG); 462 dsl_dir_rele(dd, FTAG); 463 drba->drba_cookie->drc_newfs = B_TRUE; 464 } 465 466 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); 467 VERIFY0(dmu_objset_from_ds(newds, &os)); 468 469 if (drba->drba_cookie->drc_resumable) { 470 dsl_dataset_zapify(newds, tx); 471 if (drrb->drr_fromguid != 0) { 472 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 473 8, 1, &drrb->drr_fromguid, tx)); 474 } 475 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 476 8, 1, &drrb->drr_toguid, tx)); 477 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 478 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 479 uint64_t one = 1; 480 uint64_t zero = 0; 481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 482 8, 1, &one, tx)); 483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 484 8, 1, &zero, tx)); 485 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 486 8, 1, &zero, tx)); 487 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 488 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 489 8, 1, &one, tx)); 490 } 491 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 492 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 493 8, 1, &one, tx)); 494 } 495 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 496 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 497 8, 1, &one, tx)); 498 } 499 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 500 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 501 8, 1, &one, tx)); 502 } 503 } 504 505 /* 506 * Usually the os->os_encrypted value is tied to the presence of a 507 * DSL Crypto Key object in the dd. However, that will not be received 508 * until dmu_recv_stream(), so we set the value manually for now. 509 */ 510 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 511 os->os_encrypted = B_TRUE; 512 drba->drba_cookie->drc_raw = B_TRUE; 513 } 514 515 dmu_buf_will_dirty(newds->ds_dbuf, tx); 516 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 517 518 /* 519 * If we actually created a non-clone, we need to create the objset 520 * in our new dataset. If this is a raw send we postpone this until 521 * dmu_recv_stream() so that we can allocate the metadnode with the 522 * properties from the DRR_BEGIN payload. 523 */ 524 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 525 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 526 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 527 (void) dmu_objset_create_impl(dp->dp_spa, 528 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 529 } 530 rrw_exit(&newds->ds_bp_rwlock, FTAG); 531 532 drba->drba_cookie->drc_ds = newds; 533 534 spa_history_log_internal_ds(newds, "receive", tx, ""); 535 } 536 537 static int 538 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 539 { 540 dmu_recv_begin_arg_t *drba = arg; 541 dsl_pool_t *dp = dmu_tx_pool(tx); 542 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 543 int error; 544 ds_hold_flags_t dsflags = 0; 545 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 546 dsl_dataset_t *ds; 547 const char *tofs = drba->drba_cookie->drc_tofs; 548 549 /* 6 extra bytes for /%recv */ 550 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 551 552 /* already checked */ 553 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 554 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 555 556 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 557 DMU_COMPOUNDSTREAM || 558 drrb->drr_type >= DMU_OST_NUMTYPES) 559 return (SET_ERROR(EINVAL)); 560 561 /* Verify pool version supports SA if SA_SPILL feature set */ 562 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 563 spa_version(dp->dp_spa) < SPA_VERSION_SA) 564 return (SET_ERROR(ENOTSUP)); 565 566 /* 567 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 568 * record to a plain WRITE record, so the pool must have the 569 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 570 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 571 */ 572 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 573 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 574 return (SET_ERROR(ENOTSUP)); 575 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 576 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 577 return (SET_ERROR(ENOTSUP)); 578 579 /* 580 * The receiving code doesn't know how to translate large blocks 581 * to smaller ones, so the pool must have the LARGE_BLOCKS 582 * feature enabled if the stream has LARGE_BLOCKS. Same with 583 * large dnodes. 584 */ 585 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 586 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 587 return (SET_ERROR(ENOTSUP)); 588 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 589 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 590 return (SET_ERROR(ENOTSUP)); 591 592 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 593 tofs, recv_clone_name); 594 595 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 596 /* raw receives require spill block allocation flag */ 597 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 599 } else { 600 dsflags |= DS_HOLD_FLAG_DECRYPT; 601 } 602 603 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 604 /* %recv does not exist; continue in tofs */ 605 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 606 if (error != 0) 607 return (error); 608 } 609 610 /* check that ds is marked inconsistent */ 611 if (!DS_IS_INCONSISTENT(ds)) { 612 dsl_dataset_rele_flags(ds, dsflags, FTAG); 613 return (SET_ERROR(EINVAL)); 614 } 615 616 /* check that there is resuming data, and that the toguid matches */ 617 if (!dsl_dataset_is_zapified(ds)) { 618 dsl_dataset_rele_flags(ds, dsflags, FTAG); 619 return (SET_ERROR(EINVAL)); 620 } 621 uint64_t val; 622 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 623 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 624 if (error != 0 || drrb->drr_toguid != val) { 625 dsl_dataset_rele_flags(ds, dsflags, FTAG); 626 return (SET_ERROR(EINVAL)); 627 } 628 629 /* 630 * Check if the receive is still running. If so, it will be owned. 631 * Note that nothing else can own the dataset (e.g. after the receive 632 * fails) because it will be marked inconsistent. 633 */ 634 if (dsl_dataset_has_owner(ds)) { 635 dsl_dataset_rele_flags(ds, dsflags, FTAG); 636 return (SET_ERROR(EBUSY)); 637 } 638 639 /* There should not be any snapshots of this fs yet. */ 640 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 641 dsl_dataset_rele_flags(ds, dsflags, FTAG); 642 return (SET_ERROR(EINVAL)); 643 } 644 645 /* 646 * Note: resume point will be checked when we process the first WRITE 647 * record. 648 */ 649 650 /* check that the origin matches */ 651 val = 0; 652 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 653 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 654 if (drrb->drr_fromguid != val) { 655 dsl_dataset_rele_flags(ds, dsflags, FTAG); 656 return (SET_ERROR(EINVAL)); 657 } 658 659 dsl_dataset_rele_flags(ds, dsflags, FTAG); 660 return (0); 661 } 662 663 static void 664 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 665 { 666 dmu_recv_begin_arg_t *drba = arg; 667 dsl_pool_t *dp = dmu_tx_pool(tx); 668 const char *tofs = drba->drba_cookie->drc_tofs; 669 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 670 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 671 dsl_dataset_t *ds; 672 objset_t *os; 673 ds_hold_flags_t dsflags = 0; 674 uint64_t dsobj; 675 /* 6 extra bytes for /%recv */ 676 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 677 678 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 679 tofs, recv_clone_name); 680 681 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 682 drba->drba_cookie->drc_raw = B_TRUE; 683 } else { 684 dsflags |= DS_HOLD_FLAG_DECRYPT; 685 } 686 687 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 688 /* %recv does not exist; continue in tofs */ 689 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); 690 drba->drba_cookie->drc_newfs = B_TRUE; 691 } 692 693 /* clear the inconsistent flag so that we can own it */ 694 ASSERT(DS_IS_INCONSISTENT(ds)); 695 dmu_buf_will_dirty(ds->ds_dbuf, tx); 696 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 697 dsobj = ds->ds_object; 698 dsl_dataset_rele_flags(ds, dsflags, FTAG); 699 700 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); 701 VERIFY0(dmu_objset_from_ds(ds, &os)); 702 703 dmu_buf_will_dirty(ds->ds_dbuf, tx); 704 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 705 706 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 707 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 708 drba->drba_cookie->drc_raw); 709 rrw_exit(&ds->ds_bp_rwlock, FTAG); 710 711 drba->drba_cookie->drc_ds = ds; 712 713 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 714 } 715 716 /* 717 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 718 * succeeds; otherwise we will leak the holds on the datasets. 719 */ 720 int 721 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 722 boolean_t force, boolean_t resumable, nvlist_t *localprops, 723 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc) 724 { 725 dmu_recv_begin_arg_t drba = { 0 }; 726 727 bzero(drc, sizeof (dmu_recv_cookie_t)); 728 drc->drc_drr_begin = drr_begin; 729 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 730 drc->drc_tosnap = tosnap; 731 drc->drc_tofs = tofs; 732 drc->drc_force = force; 733 drc->drc_resumable = resumable; 734 drc->drc_cred = CRED(); 735 drc->drc_clone = (origin != NULL); 736 737 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 738 drc->drc_byteswap = B_TRUE; 739 (void) fletcher_4_incremental_byteswap(drr_begin, 740 sizeof (dmu_replay_record_t), &drc->drc_cksum); 741 byteswap_record(drr_begin); 742 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 743 (void) fletcher_4_incremental_native(drr_begin, 744 sizeof (dmu_replay_record_t), &drc->drc_cksum); 745 } else { 746 return (SET_ERROR(EINVAL)); 747 } 748 749 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 750 drc->drc_spill = B_TRUE; 751 752 drba.drba_origin = origin; 753 drba.drba_cookie = drc; 754 drba.drba_cred = CRED(); 755 756 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 757 DMU_BACKUP_FEATURE_RESUMING) { 758 return (dsl_sync_task(tofs, 759 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 760 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 761 } else { 762 int err; 763 764 /* 765 * For non-raw, non-incremental, non-resuming receives the 766 * user can specify encryption parameters on the command line 767 * with "zfs recv -o". For these receives we create a dcp and 768 * pass it to the sync task. Creating the dcp will implicitly 769 * remove the encryption params from the localprops nvlist, 770 * which avoids errors when trying to set these normally 771 * read-only properties. Any other kind of receive that 772 * attempts to set these properties will fail as a result. 773 */ 774 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 775 DMU_BACKUP_FEATURE_RAW) == 0 && 776 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 777 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 778 localprops, hidden_args, &drba.drba_dcp); 779 if (err != 0) 780 return (err); 781 } 782 783 err = dsl_sync_task(tofs, 784 dmu_recv_begin_check, dmu_recv_begin_sync, 785 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 786 dsl_crypto_params_free(drba.drba_dcp, !!err); 787 788 return (err); 789 } 790 } 791 792 struct receive_record_arg { 793 dmu_replay_record_t header; 794 void *payload; /* Pointer to a buffer containing the payload */ 795 /* 796 * If the record is a write, pointer to the arc_buf_t containing the 797 * payload. 798 */ 799 arc_buf_t *arc_buf; 800 int payload_size; 801 uint64_t bytes_read; /* bytes read from stream when record created */ 802 boolean_t eos_marker; /* Marks the end of the stream */ 803 bqueue_node_t node; 804 }; 805 806 struct receive_writer_arg { 807 objset_t *os; 808 boolean_t byteswap; 809 bqueue_t q; 810 811 /* 812 * These three args are used to signal to the main thread that we're 813 * done. 814 */ 815 kmutex_t mutex; 816 kcondvar_t cv; 817 boolean_t done; 818 819 int err; 820 /* A map from guid to dataset to help handle dedup'd streams. */ 821 avl_tree_t *guid_to_ds_map; 822 boolean_t resumable; 823 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 824 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 825 uint64_t last_object; 826 uint64_t last_offset; 827 uint64_t max_object; /* highest object ID referenced in stream */ 828 uint64_t bytes_read; /* bytes read when current record created */ 829 830 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 831 boolean_t or_crypt_params_present; 832 uint64_t or_firstobj; 833 uint64_t or_numslots; 834 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 835 uint8_t or_iv[ZIO_DATA_IV_LEN]; 836 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 837 boolean_t or_byteorder; 838 }; 839 840 struct objlist { 841 list_t list; /* List of struct receive_objnode. */ 842 /* 843 * Last object looked up. Used to assert that objects are being looked 844 * up in ascending order. 845 */ 846 uint64_t last_lookup; 847 }; 848 849 struct receive_objnode { 850 list_node_t node; 851 uint64_t object; 852 }; 853 854 struct receive_arg { 855 objset_t *os; 856 vnode_t *vp; /* The vnode to read the stream from */ 857 uint64_t voff; /* The current offset in the stream */ 858 uint64_t bytes_read; 859 /* 860 * A record that has had its payload read in, but hasn't yet been handed 861 * off to the worker thread. 862 */ 863 struct receive_record_arg *rrd; 864 /* A record that has had its header read in, but not its payload. */ 865 struct receive_record_arg *next_rrd; 866 zio_cksum_t cksum; 867 zio_cksum_t prev_cksum; 868 int err; 869 boolean_t byteswap; 870 boolean_t raw; 871 uint64_t featureflags; 872 /* Sorted list of objects not to issue prefetches for. */ 873 struct objlist ignore_objlist; 874 }; 875 876 typedef struct guid_map_entry { 877 uint64_t guid; 878 boolean_t raw; 879 dsl_dataset_t *gme_ds; 880 avl_node_t avlnode; 881 } guid_map_entry_t; 882 883 static int 884 guid_compare(const void *arg1, const void *arg2) 885 { 886 const guid_map_entry_t *gmep1 = arg1; 887 const guid_map_entry_t *gmep2 = arg2; 888 889 if (gmep1->guid < gmep2->guid) 890 return (-1); 891 else if (gmep1->guid > gmep2->guid) 892 return (1); 893 return (0); 894 } 895 896 static void 897 free_guid_map_onexit(void *arg) 898 { 899 avl_tree_t *ca = arg; 900 void *cookie = NULL; 901 guid_map_entry_t *gmep; 902 903 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 904 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; 905 906 if (gmep->raw) { 907 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; 908 dsflags &= ~DS_HOLD_FLAG_DECRYPT; 909 } 910 911 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); 912 kmem_free(gmep, sizeof (guid_map_entry_t)); 913 } 914 avl_destroy(ca); 915 kmem_free(ca, sizeof (avl_tree_t)); 916 } 917 918 static int 919 receive_read(struct receive_arg *ra, int len, void *buf) 920 { 921 int done = 0; 922 923 /* 924 * The code doesn't rely on this (lengths being multiples of 8). See 925 * comment in dump_bytes. 926 */ 927 ASSERT(len % 8 == 0 || 928 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 929 930 while (done < len) { 931 ssize_t resid; 932 933 ra->err = vn_rdwr(UIO_READ, ra->vp, 934 (char *)buf + done, len - done, 935 ra->voff, UIO_SYSSPACE, FAPPEND, 936 RLIM64_INFINITY, CRED(), &resid); 937 938 if (resid == len - done) { 939 /* 940 * Note: ECKSUM indicates that the receive 941 * was interrupted and can potentially be resumed. 942 */ 943 ra->err = SET_ERROR(ECKSUM); 944 } 945 ra->voff += len - done - resid; 946 done = len - resid; 947 if (ra->err != 0) 948 return (ra->err); 949 } 950 951 ra->bytes_read += len; 952 953 ASSERT3U(done, ==, len); 954 return (0); 955 } 956 957 static void 958 byteswap_record(dmu_replay_record_t *drr) 959 { 960 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 961 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 962 drr->drr_type = BSWAP_32(drr->drr_type); 963 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 964 965 switch (drr->drr_type) { 966 case DRR_BEGIN: 967 DO64(drr_begin.drr_magic); 968 DO64(drr_begin.drr_versioninfo); 969 DO64(drr_begin.drr_creation_time); 970 DO32(drr_begin.drr_type); 971 DO32(drr_begin.drr_flags); 972 DO64(drr_begin.drr_toguid); 973 DO64(drr_begin.drr_fromguid); 974 break; 975 case DRR_OBJECT: 976 DO64(drr_object.drr_object); 977 DO32(drr_object.drr_type); 978 DO32(drr_object.drr_bonustype); 979 DO32(drr_object.drr_blksz); 980 DO32(drr_object.drr_bonuslen); 981 DO32(drr_object.drr_raw_bonuslen); 982 DO64(drr_object.drr_toguid); 983 DO64(drr_object.drr_maxblkid); 984 break; 985 case DRR_FREEOBJECTS: 986 DO64(drr_freeobjects.drr_firstobj); 987 DO64(drr_freeobjects.drr_numobjs); 988 DO64(drr_freeobjects.drr_toguid); 989 break; 990 case DRR_WRITE: 991 DO64(drr_write.drr_object); 992 DO32(drr_write.drr_type); 993 DO64(drr_write.drr_offset); 994 DO64(drr_write.drr_logical_size); 995 DO64(drr_write.drr_toguid); 996 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 997 DO64(drr_write.drr_key.ddk_prop); 998 DO64(drr_write.drr_compressed_size); 999 break; 1000 case DRR_WRITE_BYREF: 1001 DO64(drr_write_byref.drr_object); 1002 DO64(drr_write_byref.drr_offset); 1003 DO64(drr_write_byref.drr_length); 1004 DO64(drr_write_byref.drr_toguid); 1005 DO64(drr_write_byref.drr_refguid); 1006 DO64(drr_write_byref.drr_refobject); 1007 DO64(drr_write_byref.drr_refoffset); 1008 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1009 drr_key.ddk_cksum); 1010 DO64(drr_write_byref.drr_key.ddk_prop); 1011 break; 1012 case DRR_WRITE_EMBEDDED: 1013 DO64(drr_write_embedded.drr_object); 1014 DO64(drr_write_embedded.drr_offset); 1015 DO64(drr_write_embedded.drr_length); 1016 DO64(drr_write_embedded.drr_toguid); 1017 DO32(drr_write_embedded.drr_lsize); 1018 DO32(drr_write_embedded.drr_psize); 1019 break; 1020 case DRR_FREE: 1021 DO64(drr_free.drr_object); 1022 DO64(drr_free.drr_offset); 1023 DO64(drr_free.drr_length); 1024 DO64(drr_free.drr_toguid); 1025 break; 1026 case DRR_SPILL: 1027 DO64(drr_spill.drr_object); 1028 DO64(drr_spill.drr_length); 1029 DO64(drr_spill.drr_toguid); 1030 DO64(drr_spill.drr_compressed_size); 1031 DO32(drr_spill.drr_type); 1032 break; 1033 case DRR_OBJECT_RANGE: 1034 DO64(drr_object_range.drr_firstobj); 1035 DO64(drr_object_range.drr_numslots); 1036 DO64(drr_object_range.drr_toguid); 1037 break; 1038 case DRR_END: 1039 DO64(drr_end.drr_toguid); 1040 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1041 break; 1042 } 1043 1044 if (drr->drr_type != DRR_BEGIN) { 1045 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1046 } 1047 1048 #undef DO64 1049 #undef DO32 1050 } 1051 1052 static inline uint8_t 1053 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1054 { 1055 if (bonus_type == DMU_OT_SA) { 1056 return (1); 1057 } else { 1058 return (1 + 1059 ((DN_OLD_MAX_BONUSLEN - 1060 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1061 } 1062 } 1063 1064 static void 1065 save_resume_state(struct receive_writer_arg *rwa, 1066 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1067 { 1068 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1069 1070 if (!rwa->resumable) 1071 return; 1072 1073 /* 1074 * We use ds_resume_bytes[] != 0 to indicate that we need to 1075 * update this on disk, so it must not be 0. 1076 */ 1077 ASSERT(rwa->bytes_read != 0); 1078 1079 /* 1080 * We only resume from write records, which have a valid 1081 * (non-meta-dnode) object number. 1082 */ 1083 ASSERT(object != 0); 1084 1085 /* 1086 * For resuming to work correctly, we must receive records in order, 1087 * sorted by object,offset. This is checked by the callers, but 1088 * assert it here for good measure. 1089 */ 1090 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1091 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1092 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1093 ASSERT3U(rwa->bytes_read, >=, 1094 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1095 1096 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1097 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1098 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1099 } 1100 1101 int receive_object_delay_frac = 0; 1102 1103 static int 1104 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1105 void *data) 1106 { 1107 dmu_object_info_t doi; 1108 dmu_tx_t *tx; 1109 uint64_t object; 1110 int err; 1111 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1112 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1113 1114 if (receive_object_delay_frac != 0 && 1115 spa_get_random(receive_object_delay_frac) == 0) 1116 delay(1); 1117 1118 if (drro->drr_type == DMU_OT_NONE || 1119 !DMU_OT_IS_VALID(drro->drr_type) || 1120 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1121 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1122 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1123 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1124 drro->drr_blksz < SPA_MINBLOCKSIZE || 1125 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1126 drro->drr_bonuslen > 1127 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1128 dn_slots > 1129 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1130 return (SET_ERROR(EINVAL)); 1131 } 1132 1133 if (rwa->raw) { 1134 /* 1135 * We should have received a DRR_OBJECT_RANGE record 1136 * containing this block and stored it in rwa. 1137 */ 1138 if (drro->drr_object < rwa->or_firstobj || 1139 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1140 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1141 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1142 drro->drr_nlevels > DN_MAX_LEVELS || 1143 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1144 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) < 1145 drro->drr_raw_bonuslen) 1146 return (SET_ERROR(EINVAL)); 1147 } else { 1148 1149 /* 1150 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1151 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1152 */ 1153 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1154 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1155 return (SET_ERROR(EINVAL)); 1156 } 1157 1158 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1159 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1160 return (SET_ERROR(EINVAL)); 1161 } 1162 } 1163 1164 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1165 1166 if (err != 0 && err != ENOENT && err != EEXIST) 1167 return (SET_ERROR(EINVAL)); 1168 1169 if (drro->drr_object > rwa->max_object) 1170 rwa->max_object = drro->drr_object; 1171 1172 /* 1173 * If we are losing blkptrs or changing the block size this must 1174 * be a new file instance. We must clear out the previous file 1175 * contents before we can change this type of metadata in the dnode. 1176 * Raw receives will also check that the indirect structure of the 1177 * dnode hasn't changed. 1178 */ 1179 if (err == 0) { 1180 uint32_t indblksz = drro->drr_indblkshift ? 1181 1ULL << drro->drr_indblkshift : 0; 1182 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1183 drro->drr_bonuslen); 1184 boolean_t did_free = B_FALSE; 1185 1186 object = drro->drr_object; 1187 1188 /* nblkptr should be bounded by the bonus size and type */ 1189 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1190 return (SET_ERROR(EINVAL)); 1191 1192 /* 1193 * Check for indicators that the object was freed and 1194 * reallocated. For all sends, these indicators are: 1195 * - A changed block size 1196 * - A smaller nblkptr 1197 * - A changed dnode size 1198 * For raw sends we also check a few other fields to 1199 * ensure we are preserving the objset structure exactly 1200 * as it was on the receive side: 1201 * - A changed indirect block size 1202 * - A smaller nlevels 1203 */ 1204 if (drro->drr_blksz != doi.doi_data_block_size || 1205 nblkptr < doi.doi_nblkptr || 1206 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || 1207 (rwa->raw && 1208 (indblksz != doi.doi_metadata_block_size || 1209 drro->drr_nlevels < doi.doi_indirection))) { 1210 err = dmu_free_long_range(rwa->os, 1211 drro->drr_object, 0, DMU_OBJECT_END); 1212 if (err != 0) 1213 return (SET_ERROR(EINVAL)); 1214 else 1215 did_free = B_TRUE; 1216 } 1217 1218 /* 1219 * The dmu does not currently support decreasing nlevels 1220 * or changing the number of dnode slots on an object. For 1221 * non-raw sends, this does not matter and the new object 1222 * can just use the previous one's nlevels. For raw sends, 1223 * however, the structure of the received dnode (including 1224 * nlevels and dnode slots) must match that of the send 1225 * side. Therefore, instead of using dmu_object_reclaim(), 1226 * we must free the object completely and call 1227 * dmu_object_claim_dnsize() instead. 1228 */ 1229 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || 1230 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { 1231 err = dmu_free_long_object(rwa->os, drro->drr_object); 1232 if (err != 0) 1233 return (SET_ERROR(EINVAL)); 1234 1235 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1236 object = DMU_NEW_OBJECT; 1237 } 1238 1239 /* 1240 * For raw receives, free everything beyond the new incoming 1241 * maxblkid. Normally this would be done with a DRR_FREE 1242 * record that would come after this DRR_OBJECT record is 1243 * processed. However, for raw receives we manually set the 1244 * maxblkid from the drr_maxblkid and so we must first free 1245 * everything above that blkid to ensure the DMU is always 1246 * consistent with itself. We will never free the first block 1247 * of the object here because a maxblkid of 0 could indicate 1248 * an object with a single block or one with no blocks. This 1249 * free may be skipped when dmu_free_long_range() was called 1250 * above since it covers the entire object's contents. 1251 */ 1252 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) { 1253 err = dmu_free_long_range(rwa->os, drro->drr_object, 1254 (drro->drr_maxblkid + 1) * doi.doi_data_block_size, 1255 DMU_OBJECT_END); 1256 if (err != 0) 1257 return (SET_ERROR(EINVAL)); 1258 } 1259 } else if (err == EEXIST) { 1260 /* 1261 * The object requested is currently an interior slot of a 1262 * multi-slot dnode. This will be resolved when the next txg 1263 * is synced out, since the send stream will have told us 1264 * to free this slot when we freed the associated dnode 1265 * earlier in the stream. 1266 */ 1267 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1268 1269 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1270 return (SET_ERROR(EINVAL)); 1271 1272 /* object was freed and we are about to allocate a new one */ 1273 object = DMU_NEW_OBJECT; 1274 } else { 1275 /* object is free and we are about to allocate a new one */ 1276 object = DMU_NEW_OBJECT; 1277 } 1278 1279 /* 1280 * If this is a multi-slot dnode there is a chance that this 1281 * object will expand into a slot that is already used by 1282 * another object from the previous snapshot. We must free 1283 * these objects before we attempt to allocate the new dnode. 1284 */ 1285 if (dn_slots > 1) { 1286 boolean_t need_sync = B_FALSE; 1287 1288 for (uint64_t slot = drro->drr_object + 1; 1289 slot < drro->drr_object + dn_slots; 1290 slot++) { 1291 dmu_object_info_t slot_doi; 1292 1293 err = dmu_object_info(rwa->os, slot, &slot_doi); 1294 if (err == ENOENT || err == EEXIST) 1295 continue; 1296 else if (err != 0) 1297 return (err); 1298 1299 err = dmu_free_long_object(rwa->os, slot); 1300 1301 if (err != 0) 1302 return (err); 1303 1304 need_sync = B_TRUE; 1305 } 1306 1307 if (need_sync) 1308 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1309 } 1310 1311 tx = dmu_tx_create(rwa->os); 1312 dmu_tx_hold_bonus(tx, object); 1313 dmu_tx_hold_write(tx, object, 0, 0); 1314 err = dmu_tx_assign(tx, TXG_WAIT); 1315 if (err != 0) { 1316 dmu_tx_abort(tx); 1317 return (err); 1318 } 1319 1320 if (object == DMU_NEW_OBJECT) { 1321 /* Currently free, wants to be allocated */ 1322 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1323 drro->drr_type, drro->drr_blksz, 1324 drro->drr_bonustype, drro->drr_bonuslen, 1325 dn_slots << DNODE_SHIFT, tx); 1326 } else if (drro->drr_type != doi.doi_type || 1327 drro->drr_blksz != doi.doi_data_block_size || 1328 drro->drr_bonustype != doi.doi_bonus_type || 1329 drro->drr_bonuslen != doi.doi_bonus_size) { 1330 /* Currently allocated, but with different properties */ 1331 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1332 drro->drr_type, drro->drr_blksz, 1333 drro->drr_bonustype, drro->drr_bonuslen, 1334 dn_slots << DNODE_SHIFT, rwa->spill ? 1335 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1336 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1337 /* 1338 * Currently allocated, the existing version of this object 1339 * may reference a spill block that is no longer allocated 1340 * at the source and needs to be freed. 1341 */ 1342 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1343 } 1344 1345 if (err != 0) { 1346 dmu_tx_commit(tx); 1347 return (SET_ERROR(EINVAL)); 1348 } 1349 1350 if (rwa->or_crypt_params_present) { 1351 /* 1352 * Set the crypt params for the buffer associated with this 1353 * range of dnodes. This causes the blkptr_t to have the 1354 * same crypt params (byteorder, salt, iv, mac) as on the 1355 * sending side. 1356 * 1357 * Since we are committing this tx now, it is possible for 1358 * the dnode block to end up on-disk with the incorrect MAC, 1359 * if subsequent objects in this block are received in a 1360 * different txg. However, since the dataset is marked as 1361 * inconsistent, no code paths will do a non-raw read (or 1362 * decrypt the block / verify the MAC). The receive code and 1363 * scrub code can safely do raw reads and verify the 1364 * checksum. They don't need to verify the MAC. 1365 */ 1366 dmu_buf_t *db = NULL; 1367 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1368 1369 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1370 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1371 if (err != 0) { 1372 dmu_tx_commit(tx); 1373 return (SET_ERROR(EINVAL)); 1374 } 1375 1376 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1377 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1378 1379 dmu_buf_rele(db, FTAG); 1380 1381 rwa->or_crypt_params_present = B_FALSE; 1382 } 1383 1384 dmu_object_set_checksum(rwa->os, drro->drr_object, 1385 drro->drr_checksumtype, tx); 1386 dmu_object_set_compress(rwa->os, drro->drr_object, 1387 drro->drr_compress, tx); 1388 1389 /* handle more restrictive dnode structuring for raw recvs */ 1390 if (rwa->raw) { 1391 /* 1392 * Set the indirect block size, block shift, nlevels. 1393 * This will not fail because we ensured all of the 1394 * blocks were freed earlier if this is a new object. 1395 * For non-new objects block size and indirect block 1396 * shift cannot change and nlevels can only increase. 1397 */ 1398 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1399 drro->drr_blksz, drro->drr_indblkshift, tx)); 1400 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1401 drro->drr_nlevels, tx)); 1402 1403 /* 1404 * Set the maxblkid. This will always succeed because 1405 * we freed all blocks beyond the new maxblkid above. 1406 */ 1407 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1408 drro->drr_maxblkid, tx)); 1409 } 1410 1411 if (data != NULL) { 1412 dmu_buf_t *db; 1413 dnode_t *dn; 1414 uint32_t flags = DMU_READ_NO_PREFETCH; 1415 1416 if (rwa->raw) 1417 flags |= DMU_READ_NO_DECRYPT; 1418 1419 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1420 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1421 1422 dmu_buf_will_dirty(db, tx); 1423 1424 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1425 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1426 1427 /* 1428 * Raw bonus buffers have their byteorder determined by the 1429 * DRR_OBJECT_RANGE record. 1430 */ 1431 if (rwa->byteswap && !rwa->raw) { 1432 dmu_object_byteswap_t byteswap = 1433 DMU_OT_BYTESWAP(drro->drr_bonustype); 1434 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1435 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1436 } 1437 dmu_buf_rele(db, FTAG); 1438 dnode_rele(dn, FTAG); 1439 } 1440 dmu_tx_commit(tx); 1441 1442 return (0); 1443 } 1444 1445 /* ARGSUSED */ 1446 static int 1447 receive_freeobjects(struct receive_writer_arg *rwa, 1448 struct drr_freeobjects *drrfo) 1449 { 1450 uint64_t obj; 1451 int next_err = 0; 1452 1453 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1454 return (SET_ERROR(EINVAL)); 1455 1456 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1457 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 1458 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1459 dmu_object_info_t doi; 1460 int err; 1461 1462 err = dmu_object_info(rwa->os, obj, &doi); 1463 if (err == ENOENT) 1464 continue; 1465 else if (err != 0) 1466 return (err); 1467 1468 err = dmu_free_long_object(rwa->os, obj); 1469 1470 if (err != 0) 1471 return (err); 1472 1473 if (obj > rwa->max_object) 1474 rwa->max_object = obj; 1475 } 1476 if (next_err != ESRCH) 1477 return (next_err); 1478 return (0); 1479 } 1480 1481 static int 1482 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1483 arc_buf_t *abuf) 1484 { 1485 int err; 1486 dmu_tx_t *tx; 1487 dnode_t *dn; 1488 1489 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 1490 !DMU_OT_IS_VALID(drrw->drr_type)) 1491 return (SET_ERROR(EINVAL)); 1492 1493 /* 1494 * For resuming to work, records must be in increasing order 1495 * by (object, offset). 1496 */ 1497 if (drrw->drr_object < rwa->last_object || 1498 (drrw->drr_object == rwa->last_object && 1499 drrw->drr_offset < rwa->last_offset)) { 1500 return (SET_ERROR(EINVAL)); 1501 } 1502 rwa->last_object = drrw->drr_object; 1503 rwa->last_offset = drrw->drr_offset; 1504 1505 if (rwa->last_object > rwa->max_object) 1506 rwa->max_object = rwa->last_object; 1507 1508 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1509 return (SET_ERROR(EINVAL)); 1510 1511 tx = dmu_tx_create(rwa->os); 1512 dmu_tx_hold_write(tx, drrw->drr_object, 1513 drrw->drr_offset, drrw->drr_logical_size); 1514 err = dmu_tx_assign(tx, TXG_WAIT); 1515 if (err != 0) { 1516 dmu_tx_abort(tx); 1517 return (err); 1518 } 1519 1520 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1521 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1522 dmu_object_byteswap_t byteswap = 1523 DMU_OT_BYTESWAP(drrw->drr_type); 1524 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1525 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1526 } 1527 1528 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); 1529 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); 1530 if (err != 0) { 1531 dnode_rele(dn, FTAG); 1532 dmu_tx_commit(tx); 1533 return (err); 1534 } 1535 dnode_rele(dn, FTAG); 1536 1537 /* 1538 * Note: If the receive fails, we want the resume stream to start 1539 * with the same record that we last successfully received (as opposed 1540 * to the next record), so that we can verify that we are 1541 * resuming from the correct location. 1542 */ 1543 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 1544 dmu_tx_commit(tx); 1545 1546 return (0); 1547 } 1548 1549 /* 1550 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1551 * streams to refer to a copy of the data that is already on the 1552 * system because it came in earlier in the stream. This function 1553 * finds the earlier copy of the data, and uses that copy instead of 1554 * data from the stream to fulfill this write. 1555 */ 1556 static int 1557 receive_write_byref(struct receive_writer_arg *rwa, 1558 struct drr_write_byref *drrwbr) 1559 { 1560 dmu_tx_t *tx; 1561 int err; 1562 guid_map_entry_t gmesrch; 1563 guid_map_entry_t *gmep; 1564 avl_index_t where; 1565 objset_t *ref_os = NULL; 1566 int flags = DMU_READ_PREFETCH; 1567 dmu_buf_t *dbp; 1568 1569 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1570 return (SET_ERROR(EINVAL)); 1571 1572 /* 1573 * If the GUID of the referenced dataset is different from the 1574 * GUID of the target dataset, find the referenced dataset. 1575 */ 1576 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1577 gmesrch.guid = drrwbr->drr_refguid; 1578 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1579 &where)) == NULL) { 1580 return (SET_ERROR(EINVAL)); 1581 } 1582 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1583 return (SET_ERROR(EINVAL)); 1584 } else { 1585 ref_os = rwa->os; 1586 } 1587 1588 if (drrwbr->drr_object > rwa->max_object) 1589 rwa->max_object = drrwbr->drr_object; 1590 1591 if (rwa->raw) 1592 flags |= DMU_READ_NO_DECRYPT; 1593 1594 /* may return either a regular db or an encrypted one */ 1595 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1596 drrwbr->drr_refoffset, FTAG, &dbp, flags); 1597 if (err != 0) 1598 return (err); 1599 1600 tx = dmu_tx_create(rwa->os); 1601 1602 dmu_tx_hold_write(tx, drrwbr->drr_object, 1603 drrwbr->drr_offset, drrwbr->drr_length); 1604 err = dmu_tx_assign(tx, TXG_WAIT); 1605 if (err != 0) { 1606 dmu_tx_abort(tx); 1607 return (err); 1608 } 1609 1610 if (rwa->raw) { 1611 dmu_copy_from_buf(rwa->os, drrwbr->drr_object, 1612 drrwbr->drr_offset, dbp, tx); 1613 } else { 1614 dmu_write(rwa->os, drrwbr->drr_object, 1615 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1616 } 1617 dmu_buf_rele(dbp, FTAG); 1618 1619 /* See comment in restore_write. */ 1620 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 1621 dmu_tx_commit(tx); 1622 return (0); 1623 } 1624 1625 static int 1626 receive_write_embedded(struct receive_writer_arg *rwa, 1627 struct drr_write_embedded *drrwe, void *data) 1628 { 1629 dmu_tx_t *tx; 1630 int err; 1631 1632 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 1633 return (EINVAL); 1634 1635 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 1636 return (EINVAL); 1637 1638 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1639 return (EINVAL); 1640 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1641 return (EINVAL); 1642 if (rwa->raw) 1643 return (SET_ERROR(EINVAL)); 1644 1645 if (drrwe->drr_object > rwa->max_object) 1646 rwa->max_object = drrwe->drr_object; 1647 1648 tx = dmu_tx_create(rwa->os); 1649 1650 dmu_tx_hold_write(tx, drrwe->drr_object, 1651 drrwe->drr_offset, drrwe->drr_length); 1652 err = dmu_tx_assign(tx, TXG_WAIT); 1653 if (err != 0) { 1654 dmu_tx_abort(tx); 1655 return (err); 1656 } 1657 1658 dmu_write_embedded(rwa->os, drrwe->drr_object, 1659 drrwe->drr_offset, data, drrwe->drr_etype, 1660 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 1661 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1662 1663 /* See comment in restore_write. */ 1664 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 1665 dmu_tx_commit(tx); 1666 return (0); 1667 } 1668 1669 static int 1670 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1671 arc_buf_t *abuf) 1672 { 1673 dmu_tx_t *tx; 1674 dmu_buf_t *db, *db_spill; 1675 int err; 1676 uint32_t flags = 0; 1677 1678 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1679 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1680 return (SET_ERROR(EINVAL)); 1681 1682 /* 1683 * This is an unmodified spill block which was added to the stream 1684 * to resolve an issue with incorrectly removing spill blocks. It 1685 * should be ignored by current versions of the code which support 1686 * the DRR_FLAG_SPILL_BLOCK flag. 1687 */ 1688 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 1689 dmu_return_arcbuf(abuf); 1690 return (0); 1691 } 1692 1693 if (rwa->raw) { 1694 if (!DMU_OT_IS_VALID(drrs->drr_type) || 1695 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 1696 drrs->drr_compressed_size == 0) 1697 return (SET_ERROR(EINVAL)); 1698 1699 flags |= DMU_READ_NO_DECRYPT; 1700 } 1701 1702 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1703 return (SET_ERROR(EINVAL)); 1704 1705 if (drrs->drr_object > rwa->max_object) 1706 rwa->max_object = drrs->drr_object; 1707 1708 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1709 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 1710 &db_spill)) != 0) { 1711 dmu_buf_rele(db, FTAG); 1712 return (err); 1713 } 1714 1715 tx = dmu_tx_create(rwa->os); 1716 1717 dmu_tx_hold_spill(tx, db->db_object); 1718 1719 err = dmu_tx_assign(tx, TXG_WAIT); 1720 if (err != 0) { 1721 dmu_buf_rele(db, FTAG); 1722 dmu_buf_rele(db_spill, FTAG); 1723 dmu_tx_abort(tx); 1724 return (err); 1725 } 1726 1727 /* 1728 * Spill blocks may both grow and shrink. When a change in size 1729 * occurs any existing dbuf must be updated to match the logical 1730 * size of the provided arc_buf_t. 1731 */ 1732 if (db_spill->db_size != drrs->drr_length) { 1733 dmu_buf_will_fill(db_spill, tx); 1734 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1735 drrs->drr_length, tx)); 1736 } 1737 1738 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1739 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1740 dmu_object_byteswap_t byteswap = 1741 DMU_OT_BYTESWAP(drrs->drr_type); 1742 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1743 DRR_SPILL_PAYLOAD_SIZE(drrs)); 1744 } 1745 1746 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 1747 1748 dmu_buf_rele(db, FTAG); 1749 dmu_buf_rele(db_spill, FTAG); 1750 1751 dmu_tx_commit(tx); 1752 return (0); 1753 } 1754 1755 /* ARGSUSED */ 1756 static int 1757 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1758 { 1759 int err; 1760 1761 if (drrf->drr_length != DMU_OBJECT_END && 1762 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1763 return (SET_ERROR(EINVAL)); 1764 1765 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1766 return (SET_ERROR(EINVAL)); 1767 1768 if (drrf->drr_object > rwa->max_object) 1769 rwa->max_object = drrf->drr_object; 1770 1771 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1772 drrf->drr_offset, drrf->drr_length); 1773 1774 return (err); 1775 } 1776 1777 static int 1778 receive_object_range(struct receive_writer_arg *rwa, 1779 struct drr_object_range *drror) 1780 { 1781 /* 1782 * By default, we assume this block is in our native format 1783 * (ZFS_HOST_BYTEORDER). We then take into account whether 1784 * the send stream is byteswapped (rwa->byteswap). Finally, 1785 * we need to byteswap again if this particular block was 1786 * in non-native format on the send side. 1787 */ 1788 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 1789 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 1790 1791 /* 1792 * Since dnode block sizes are constant, we should not need to worry 1793 * about making sure that the dnode block size is the same on the 1794 * sending and receiving sides for the time being. For non-raw sends, 1795 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 1796 * record at all). Raw sends require this record type because the 1797 * encryption parameters are used to protect an entire block of bonus 1798 * buffers. If the size of dnode blocks ever becomes variable, 1799 * handling will need to be added to ensure that dnode block sizes 1800 * match on the sending and receiving side. 1801 */ 1802 if (drror->drr_numslots != DNODES_PER_BLOCK || 1803 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 1804 !rwa->raw) 1805 return (SET_ERROR(EINVAL)); 1806 1807 if (drror->drr_firstobj > rwa->max_object) 1808 rwa->max_object = drror->drr_firstobj; 1809 1810 /* 1811 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 1812 * so that the block of dnodes is not written out when it's empty, 1813 * and converted to a HOLE BP. 1814 */ 1815 rwa->or_crypt_params_present = B_TRUE; 1816 rwa->or_firstobj = drror->drr_firstobj; 1817 rwa->or_numslots = drror->drr_numslots; 1818 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 1819 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 1820 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 1821 rwa->or_byteorder = byteorder; 1822 1823 return (0); 1824 } 1825 1826 /* used to destroy the drc_ds on error */ 1827 static void 1828 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1829 { 1830 dsl_dataset_t *ds = drc->drc_ds; 1831 ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT; 1832 1833 /* 1834 * Wait for the txg sync before cleaning up the receive. For 1835 * resumable receives, this ensures that our resume state has 1836 * been written out to disk. For raw receives, this ensures 1837 * that the user accounting code will not attempt to do anything 1838 * after we stopped receiving the dataset. 1839 */ 1840 txg_wait_synced(ds->ds_dir->dd_pool, 0); 1841 ds->ds_objset->os_raw_receive = B_FALSE; 1842 1843 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1844 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 1845 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1846 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1847 } else { 1848 char name[ZFS_MAX_DATASET_NAME_LEN]; 1849 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1850 dsl_dataset_name(ds, name); 1851 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1852 (void) dsl_destroy_head(name); 1853 } 1854 } 1855 1856 static void 1857 receive_cksum(struct receive_arg *ra, int len, void *buf) 1858 { 1859 if (ra->byteswap) { 1860 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1861 } else { 1862 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 1863 } 1864 } 1865 1866 /* 1867 * Read the payload into a buffer of size len, and update the current record's 1868 * payload field. 1869 * Allocate ra->next_rrd and read the next record's header into 1870 * ra->next_rrd->header. 1871 * Verify checksum of payload and next record. 1872 */ 1873 static int 1874 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1875 { 1876 int err; 1877 1878 if (len != 0) { 1879 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1880 err = receive_read(ra, len, buf); 1881 if (err != 0) 1882 return (err); 1883 receive_cksum(ra, len, buf); 1884 1885 /* note: rrd is NULL when reading the begin record's payload */ 1886 if (ra->rrd != NULL) { 1887 ra->rrd->payload = buf; 1888 ra->rrd->payload_size = len; 1889 ra->rrd->bytes_read = ra->bytes_read; 1890 } 1891 } 1892 1893 ra->prev_cksum = ra->cksum; 1894 1895 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1896 err = receive_read(ra, sizeof (ra->next_rrd->header), 1897 &ra->next_rrd->header); 1898 ra->next_rrd->bytes_read = ra->bytes_read; 1899 1900 if (err != 0) { 1901 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1902 ra->next_rrd = NULL; 1903 return (err); 1904 } 1905 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 1906 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1907 ra->next_rrd = NULL; 1908 return (SET_ERROR(EINVAL)); 1909 } 1910 1911 /* 1912 * Note: checksum is of everything up to but not including the 1913 * checksum itself. 1914 */ 1915 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1916 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 1917 receive_cksum(ra, 1918 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1919 &ra->next_rrd->header); 1920 1921 zio_cksum_t cksum_orig = 1922 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1923 zio_cksum_t *cksump = 1924 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1925 1926 if (ra->byteswap) 1927 byteswap_record(&ra->next_rrd->header); 1928 1929 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 1930 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 1931 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1932 ra->next_rrd = NULL; 1933 return (SET_ERROR(ECKSUM)); 1934 } 1935 1936 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 1937 1938 return (0); 1939 } 1940 1941 static void 1942 objlist_create(struct objlist *list) 1943 { 1944 list_create(&list->list, sizeof (struct receive_objnode), 1945 offsetof(struct receive_objnode, node)); 1946 list->last_lookup = 0; 1947 } 1948 1949 static void 1950 objlist_destroy(struct objlist *list) 1951 { 1952 for (struct receive_objnode *n = list_remove_head(&list->list); 1953 n != NULL; n = list_remove_head(&list->list)) { 1954 kmem_free(n, sizeof (*n)); 1955 } 1956 list_destroy(&list->list); 1957 } 1958 1959 /* 1960 * This function looks through the objlist to see if the specified object number 1961 * is contained in the objlist. In the process, it will remove all object 1962 * numbers in the list that are smaller than the specified object number. Thus, 1963 * any lookup of an object number smaller than a previously looked up object 1964 * number will always return false; therefore, all lookups should be done in 1965 * ascending order. 1966 */ 1967 static boolean_t 1968 objlist_exists(struct objlist *list, uint64_t object) 1969 { 1970 struct receive_objnode *node = list_head(&list->list); 1971 ASSERT3U(object, >=, list->last_lookup); 1972 list->last_lookup = object; 1973 while (node != NULL && node->object < object) { 1974 VERIFY3P(node, ==, list_remove_head(&list->list)); 1975 kmem_free(node, sizeof (*node)); 1976 node = list_head(&list->list); 1977 } 1978 return (node != NULL && node->object == object); 1979 } 1980 1981 /* 1982 * The objlist is a list of object numbers stored in ascending order. However, 1983 * the insertion of new object numbers does not seek out the correct location to 1984 * store a new object number; instead, it appends it to the list for simplicity. 1985 * Thus, any users must take care to only insert new object numbers in ascending 1986 * order. 1987 */ 1988 static void 1989 objlist_insert(struct objlist *list, uint64_t object) 1990 { 1991 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 1992 node->object = object; 1993 #ifdef ZFS_DEBUG 1994 struct receive_objnode *last_object = list_tail(&list->list); 1995 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 1996 ASSERT3U(node->object, >, last_objnum); 1997 #endif 1998 list_insert_tail(&list->list, node); 1999 } 2000 2001 /* 2002 * Issue the prefetch reads for any necessary indirect blocks. 2003 * 2004 * We use the object ignore list to tell us whether or not to issue prefetches 2005 * for a given object. We do this for both correctness (in case the blocksize 2006 * of an object has changed) and performance (if the object doesn't exist, don't 2007 * needlessly try to issue prefetches). We also trim the list as we go through 2008 * the stream to prevent it from growing to an unbounded size. 2009 * 2010 * The object numbers within will always be in sorted order, and any write 2011 * records we see will also be in sorted order, but they're not sorted with 2012 * respect to each other (i.e. we can get several object records before 2013 * receiving each object's write records). As a result, once we've reached a 2014 * given object number, we can safely remove any reference to lower object 2015 * numbers in the ignore list. In practice, we receive up to 32 object records 2016 * before receiving write records, so the list can have up to 32 nodes in it. 2017 */ 2018 /* ARGSUSED */ 2019 static void 2020 receive_read_prefetch(struct receive_arg *ra, 2021 uint64_t object, uint64_t offset, uint64_t length) 2022 { 2023 if (!objlist_exists(&ra->ignore_objlist, object)) { 2024 dmu_prefetch(ra->os, object, 1, offset, length, 2025 ZIO_PRIORITY_SYNC_READ); 2026 } 2027 } 2028 2029 /* 2030 * Read records off the stream, issuing any necessary prefetches. 2031 */ 2032 static int 2033 receive_read_record(struct receive_arg *ra) 2034 { 2035 int err; 2036 2037 switch (ra->rrd->header.drr_type) { 2038 case DRR_OBJECT: 2039 { 2040 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2041 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2042 void *buf = NULL; 2043 dmu_object_info_t doi; 2044 2045 if (size != 0) 2046 buf = kmem_zalloc(size, KM_SLEEP); 2047 2048 err = receive_read_payload_and_next_header(ra, size, buf); 2049 if (err != 0) { 2050 kmem_free(buf, size); 2051 return (err); 2052 } 2053 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2054 /* 2055 * See receive_read_prefetch for an explanation why we're 2056 * storing this object in the ignore_obj_list. 2057 */ 2058 if (err == ENOENT || err == EEXIST || 2059 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2060 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2061 err = 0; 2062 } 2063 return (err); 2064 } 2065 case DRR_FREEOBJECTS: 2066 { 2067 err = receive_read_payload_and_next_header(ra, 0, NULL); 2068 return (err); 2069 } 2070 case DRR_WRITE: 2071 { 2072 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2073 arc_buf_t *abuf; 2074 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2075 2076 if (ra->raw) { 2077 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2078 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2079 ra->byteswap; 2080 2081 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2082 drrw->drr_object, byteorder, drrw->drr_salt, 2083 drrw->drr_iv, drrw->drr_mac, drrw->drr_type, 2084 drrw->drr_compressed_size, drrw->drr_logical_size, 2085 drrw->drr_compressiontype); 2086 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2087 ASSERT3U(drrw->drr_compressed_size, >, 0); 2088 ASSERT3U(drrw->drr_logical_size, >=, 2089 drrw->drr_compressed_size); 2090 ASSERT(!is_meta); 2091 abuf = arc_loan_compressed_buf( 2092 dmu_objset_spa(ra->os), 2093 drrw->drr_compressed_size, drrw->drr_logical_size, 2094 drrw->drr_compressiontype); 2095 } else { 2096 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2097 is_meta, drrw->drr_logical_size); 2098 } 2099 2100 err = receive_read_payload_and_next_header(ra, 2101 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2102 if (err != 0) { 2103 dmu_return_arcbuf(abuf); 2104 return (err); 2105 } 2106 ra->rrd->arc_buf = abuf; 2107 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2108 drrw->drr_logical_size); 2109 return (err); 2110 } 2111 case DRR_WRITE_BYREF: 2112 { 2113 struct drr_write_byref *drrwb = 2114 &ra->rrd->header.drr_u.drr_write_byref; 2115 err = receive_read_payload_and_next_header(ra, 0, NULL); 2116 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2117 drrwb->drr_length); 2118 return (err); 2119 } 2120 case DRR_WRITE_EMBEDDED: 2121 { 2122 struct drr_write_embedded *drrwe = 2123 &ra->rrd->header.drr_u.drr_write_embedded; 2124 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2125 void *buf = kmem_zalloc(size, KM_SLEEP); 2126 2127 err = receive_read_payload_and_next_header(ra, size, buf); 2128 if (err != 0) { 2129 kmem_free(buf, size); 2130 return (err); 2131 } 2132 2133 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2134 drrwe->drr_length); 2135 return (err); 2136 } 2137 case DRR_FREE: 2138 { 2139 /* 2140 * It might be beneficial to prefetch indirect blocks here, but 2141 * we don't really have the data to decide for sure. 2142 */ 2143 err = receive_read_payload_and_next_header(ra, 0, NULL); 2144 return (err); 2145 } 2146 case DRR_END: 2147 { 2148 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2149 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2150 return (SET_ERROR(ECKSUM)); 2151 return (0); 2152 } 2153 case DRR_SPILL: 2154 { 2155 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2156 arc_buf_t *abuf; 2157 int len = DRR_SPILL_PAYLOAD_SIZE(drrs); 2158 2159 /* DRR_SPILL records are either raw or uncompressed */ 2160 if (ra->raw) { 2161 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2162 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2163 ra->byteswap; 2164 2165 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2166 dmu_objset_id(ra->os), byteorder, drrs->drr_salt, 2167 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2168 drrs->drr_compressed_size, drrs->drr_length, 2169 drrs->drr_compressiontype); 2170 } else { 2171 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2172 DMU_OT_IS_METADATA(drrs->drr_type), 2173 drrs->drr_length); 2174 } 2175 2176 err = receive_read_payload_and_next_header(ra, len, 2177 abuf->b_data); 2178 if (err != 0) { 2179 dmu_return_arcbuf(abuf); 2180 return (err); 2181 } 2182 ra->rrd->arc_buf = abuf; 2183 return (err); 2184 } 2185 case DRR_OBJECT_RANGE: 2186 { 2187 err = receive_read_payload_and_next_header(ra, 0, NULL); 2188 return (err); 2189 } 2190 default: 2191 return (SET_ERROR(EINVAL)); 2192 } 2193 } 2194 2195 /* 2196 * Commit the records to the pool. 2197 */ 2198 static int 2199 receive_process_record(struct receive_writer_arg *rwa, 2200 struct receive_record_arg *rrd) 2201 { 2202 int err; 2203 2204 /* Processing in order, therefore bytes_read should be increasing. */ 2205 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2206 rwa->bytes_read = rrd->bytes_read; 2207 2208 switch (rrd->header.drr_type) { 2209 case DRR_OBJECT: 2210 { 2211 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2212 err = receive_object(rwa, drro, rrd->payload); 2213 kmem_free(rrd->payload, rrd->payload_size); 2214 rrd->payload = NULL; 2215 return (err); 2216 } 2217 case DRR_FREEOBJECTS: 2218 { 2219 struct drr_freeobjects *drrfo = 2220 &rrd->header.drr_u.drr_freeobjects; 2221 return (receive_freeobjects(rwa, drrfo)); 2222 } 2223 case DRR_WRITE: 2224 { 2225 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2226 err = receive_write(rwa, drrw, rrd->arc_buf); 2227 /* if receive_write() is successful, it consumes the arc_buf */ 2228 if (err != 0) 2229 dmu_return_arcbuf(rrd->arc_buf); 2230 rrd->arc_buf = NULL; 2231 rrd->payload = NULL; 2232 return (err); 2233 } 2234 case DRR_WRITE_BYREF: 2235 { 2236 struct drr_write_byref *drrwbr = 2237 &rrd->header.drr_u.drr_write_byref; 2238 return (receive_write_byref(rwa, drrwbr)); 2239 } 2240 case DRR_WRITE_EMBEDDED: 2241 { 2242 struct drr_write_embedded *drrwe = 2243 &rrd->header.drr_u.drr_write_embedded; 2244 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2245 kmem_free(rrd->payload, rrd->payload_size); 2246 rrd->payload = NULL; 2247 return (err); 2248 } 2249 case DRR_FREE: 2250 { 2251 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2252 return (receive_free(rwa, drrf)); 2253 } 2254 case DRR_SPILL: 2255 { 2256 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2257 err = receive_spill(rwa, drrs, rrd->arc_buf); 2258 /* if receive_spill() is successful, it consumes the arc_buf */ 2259 if (err != 0) 2260 dmu_return_arcbuf(rrd->arc_buf); 2261 rrd->arc_buf = NULL; 2262 rrd->payload = NULL; 2263 return (err); 2264 } 2265 case DRR_OBJECT_RANGE: 2266 { 2267 struct drr_object_range *drror = 2268 &rrd->header.drr_u.drr_object_range; 2269 return (receive_object_range(rwa, drror)); 2270 } 2271 default: 2272 return (SET_ERROR(EINVAL)); 2273 } 2274 } 2275 2276 /* 2277 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2278 * receive_process_record When we're done, signal the main thread and exit. 2279 */ 2280 static void 2281 receive_writer_thread(void *arg) 2282 { 2283 struct receive_writer_arg *rwa = arg; 2284 struct receive_record_arg *rrd; 2285 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2286 rrd = bqueue_dequeue(&rwa->q)) { 2287 /* 2288 * If there's an error, the main thread will stop putting things 2289 * on the queue, but we need to clear everything in it before we 2290 * can exit. 2291 */ 2292 if (rwa->err == 0) { 2293 rwa->err = receive_process_record(rwa, rrd); 2294 } else if (rrd->arc_buf != NULL) { 2295 dmu_return_arcbuf(rrd->arc_buf); 2296 rrd->arc_buf = NULL; 2297 rrd->payload = NULL; 2298 } else if (rrd->payload != NULL) { 2299 kmem_free(rrd->payload, rrd->payload_size); 2300 rrd->payload = NULL; 2301 } 2302 kmem_free(rrd, sizeof (*rrd)); 2303 } 2304 kmem_free(rrd, sizeof (*rrd)); 2305 mutex_enter(&rwa->mutex); 2306 rwa->done = B_TRUE; 2307 cv_signal(&rwa->cv); 2308 mutex_exit(&rwa->mutex); 2309 thread_exit(); 2310 } 2311 2312 static int 2313 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2314 { 2315 uint64_t val; 2316 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2317 uint64_t dsobj = dmu_objset_id(ra->os); 2318 uint64_t resume_obj, resume_off; 2319 2320 if (nvlist_lookup_uint64(begin_nvl, 2321 "resume_object", &resume_obj) != 0 || 2322 nvlist_lookup_uint64(begin_nvl, 2323 "resume_offset", &resume_off) != 0) { 2324 return (SET_ERROR(EINVAL)); 2325 } 2326 VERIFY0(zap_lookup(mos, dsobj, 2327 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2328 if (resume_obj != val) 2329 return (SET_ERROR(EINVAL)); 2330 VERIFY0(zap_lookup(mos, dsobj, 2331 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2332 if (resume_off != val) 2333 return (SET_ERROR(EINVAL)); 2334 2335 return (0); 2336 } 2337 2338 /* 2339 * Read in the stream's records, one by one, and apply them to the pool. There 2340 * are two threads involved; the thread that calls this function will spin up a 2341 * worker thread, read the records off the stream one by one, and issue 2342 * prefetches for any necessary indirect blocks. It will then push the records 2343 * onto an internal blocking queue. The worker thread will pull the records off 2344 * the queue, and actually write the data into the DMU. This way, the worker 2345 * thread doesn't have to wait for reads to complete, since everything it needs 2346 * (the indirect blocks) will be prefetched. 2347 * 2348 * NB: callers *must* call dmu_recv_end() if this succeeds. 2349 */ 2350 int 2351 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2352 int cleanup_fd, uint64_t *action_handlep) 2353 { 2354 int err = 0; 2355 struct receive_arg ra = { 0 }; 2356 struct receive_writer_arg rwa = { 0 }; 2357 int featureflags; 2358 nvlist_t *begin_nvl = NULL; 2359 2360 ra.byteswap = drc->drc_byteswap; 2361 ra.raw = drc->drc_raw; 2362 ra.cksum = drc->drc_cksum; 2363 ra.vp = vp; 2364 ra.voff = *voffp; 2365 2366 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2367 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2368 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2369 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2370 } 2371 2372 objlist_create(&ra.ignore_objlist); 2373 2374 /* these were verified in dmu_recv_begin */ 2375 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2376 DMU_SUBSTREAM); 2377 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2378 2379 /* 2380 * Open the objset we are modifying. 2381 */ 2382 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2383 2384 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2385 2386 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2387 ra.featureflags = featureflags; 2388 2389 ASSERT0(ra.os->os_encrypted && 2390 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2391 2392 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2393 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2394 minor_t minor; 2395 2396 if (cleanup_fd == -1) { 2397 err = SET_ERROR(EBADF); 2398 goto out; 2399 } 2400 err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2401 if (err != 0) { 2402 cleanup_fd = -1; 2403 goto out; 2404 } 2405 2406 if (*action_handlep == 0) { 2407 rwa.guid_to_ds_map = 2408 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2409 avl_create(rwa.guid_to_ds_map, guid_compare, 2410 sizeof (guid_map_entry_t), 2411 offsetof(guid_map_entry_t, avlnode)); 2412 err = zfs_onexit_add_cb(minor, 2413 free_guid_map_onexit, rwa.guid_to_ds_map, 2414 action_handlep); 2415 if (err != 0) 2416 goto out; 2417 } else { 2418 err = zfs_onexit_cb_data(minor, *action_handlep, 2419 (void **)&rwa.guid_to_ds_map); 2420 if (err != 0) 2421 goto out; 2422 } 2423 2424 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2425 } 2426 2427 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2428 void *payload = NULL; 2429 if (payloadlen != 0) 2430 payload = kmem_alloc(payloadlen, KM_SLEEP); 2431 2432 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2433 if (err != 0) { 2434 if (payloadlen != 0) 2435 kmem_free(payload, payloadlen); 2436 goto out; 2437 } 2438 if (payloadlen != 0) { 2439 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2440 kmem_free(payload, payloadlen); 2441 if (err != 0) 2442 goto out; 2443 } 2444 2445 /* handle DSL encryption key payload */ 2446 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2447 nvlist_t *keynvl = NULL; 2448 2449 ASSERT(ra.os->os_encrypted); 2450 ASSERT(drc->drc_raw); 2451 2452 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); 2453 if (err != 0) 2454 goto out; 2455 2456 /* 2457 * If this is a new dataset we set the key immediately. 2458 * Otherwise we don't want to change the key until we 2459 * are sure the rest of the receive succeeded so we stash 2460 * the keynvl away until then. 2461 */ 2462 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa), 2463 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2464 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2465 if (err != 0) 2466 goto out; 2467 2468 /* see comment in dmu_recv_end_sync() */ 2469 drc->drc_ivset_guid = 0; 2470 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2471 &drc->drc_ivset_guid); 2472 2473 if (!drc->drc_newfs) 2474 drc->drc_keynvl = fnvlist_dup(keynvl); 2475 } 2476 2477 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2478 err = resume_check(&ra, begin_nvl); 2479 if (err != 0) 2480 goto out; 2481 } 2482 2483 (void) bqueue_init(&rwa.q, 2484 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2485 offsetof(struct receive_record_arg, node)); 2486 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2487 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2488 rwa.os = ra.os; 2489 rwa.byteswap = drc->drc_byteswap; 2490 rwa.resumable = drc->drc_resumable; 2491 rwa.raw = drc->drc_raw; 2492 rwa.spill = drc->drc_spill; 2493 rwa.os->os_raw_receive = drc->drc_raw; 2494 2495 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2496 TS_RUN, minclsyspri); 2497 /* 2498 * We're reading rwa.err without locks, which is safe since we are the 2499 * only reader, and the worker thread is the only writer. It's ok if we 2500 * miss a write for an iteration or two of the loop, since the writer 2501 * thread will keep freeing records we send it until we send it an eos 2502 * marker. 2503 * 2504 * We can leave this loop in 3 ways: First, if rwa.err is 2505 * non-zero. In that case, the writer thread will free the rrd we just 2506 * pushed. Second, if we're interrupted; in that case, either it's the 2507 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2508 * has been handed off to the writer thread who will free it. Finally, 2509 * if receive_read_record fails or we're at the end of the stream, then 2510 * we free ra.rrd and exit. 2511 */ 2512 while (rwa.err == 0) { 2513 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2514 err = SET_ERROR(EINTR); 2515 break; 2516 } 2517 2518 ASSERT3P(ra.rrd, ==, NULL); 2519 ra.rrd = ra.next_rrd; 2520 ra.next_rrd = NULL; 2521 /* Allocates and loads header into ra.next_rrd */ 2522 err = receive_read_record(&ra); 2523 2524 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2525 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2526 ra.rrd = NULL; 2527 break; 2528 } 2529 2530 bqueue_enqueue(&rwa.q, ra.rrd, 2531 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2532 ra.rrd = NULL; 2533 } 2534 ASSERT3P(ra.rrd, ==, NULL); 2535 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP); 2536 ra.rrd->eos_marker = B_TRUE; 2537 bqueue_enqueue(&rwa.q, ra.rrd, 1); 2538 2539 mutex_enter(&rwa.mutex); 2540 while (!rwa.done) { 2541 cv_wait(&rwa.cv, &rwa.mutex); 2542 } 2543 mutex_exit(&rwa.mutex); 2544 2545 /* 2546 * If we are receiving a full stream as a clone, all object IDs which 2547 * are greater than the maximum ID referenced in the stream are 2548 * by definition unused and must be freed. Note that it's possible that 2549 * we've resumed this send and the first record we received was the END 2550 * record. In that case, max_object would be 0, but we shouldn't start 2551 * freeing all objects from there; instead we should start from the 2552 * resumeobj. 2553 */ 2554 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 2555 uint64_t obj; 2556 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 2557 obj = 0; 2558 if (rwa.max_object > obj) 2559 obj = rwa.max_object; 2560 obj++; 2561 int free_err = 0; 2562 int next_err = 0; 2563 2564 while (next_err == 0) { 2565 free_err = dmu_free_long_object(rwa.os, obj); 2566 if (free_err != 0 && free_err != ENOENT) 2567 break; 2568 2569 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 2570 } 2571 2572 if (err == 0) { 2573 if (free_err != 0 && free_err != ENOENT) 2574 err = free_err; 2575 else if (next_err != ESRCH) 2576 err = next_err; 2577 } 2578 } 2579 2580 cv_destroy(&rwa.cv); 2581 mutex_destroy(&rwa.mutex); 2582 bqueue_destroy(&rwa.q); 2583 if (err == 0) 2584 err = rwa.err; 2585 2586 out: 2587 /* 2588 * If we hit an error before we started the receive_writer_thread 2589 * we need to clean up the next_rrd we create by processing the 2590 * DRR_BEGIN record. 2591 */ 2592 if (ra.next_rrd != NULL) 2593 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd)); 2594 2595 nvlist_free(begin_nvl); 2596 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2597 zfs_onexit_fd_rele(cleanup_fd); 2598 2599 if (err != 0) { 2600 /* 2601 * Clean up references. If receive is not resumable, 2602 * destroy what we created, so we don't leave it in 2603 * the inconsistent state. 2604 */ 2605 dmu_recv_cleanup_ds(drc); 2606 nvlist_free(drc->drc_keynvl); 2607 } 2608 2609 *voffp = ra.voff; 2610 objlist_destroy(&ra.ignore_objlist); 2611 return (err); 2612 } 2613 2614 static int 2615 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2616 { 2617 dmu_recv_cookie_t *drc = arg; 2618 dsl_pool_t *dp = dmu_tx_pool(tx); 2619 int error; 2620 2621 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2622 2623 if (!drc->drc_newfs) { 2624 dsl_dataset_t *origin_head; 2625 2626 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2627 if (error != 0) 2628 return (error); 2629 if (drc->drc_force) { 2630 /* 2631 * We will destroy any snapshots in tofs (i.e. before 2632 * origin_head) that are after the origin (which is 2633 * the snap before drc_ds, because drc_ds can not 2634 * have any snaps of its own). 2635 */ 2636 uint64_t obj; 2637 2638 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2639 while (obj != 2640 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2641 dsl_dataset_t *snap; 2642 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2643 &snap); 2644 if (error != 0) 2645 break; 2646 if (snap->ds_dir != origin_head->ds_dir) 2647 error = SET_ERROR(EINVAL); 2648 if (error == 0) { 2649 error = dsl_destroy_snapshot_check_impl( 2650 snap, B_FALSE); 2651 } 2652 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2653 dsl_dataset_rele(snap, FTAG); 2654 if (error != 0) 2655 break; 2656 } 2657 if (error != 0) { 2658 dsl_dataset_rele(origin_head, FTAG); 2659 return (error); 2660 } 2661 } 2662 if (drc->drc_keynvl != NULL) { 2663 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 2664 drc->drc_keynvl, tx); 2665 if (error != 0) { 2666 dsl_dataset_rele(origin_head, FTAG); 2667 return (error); 2668 } 2669 } 2670 2671 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2672 origin_head, drc->drc_force, drc->drc_owner, tx); 2673 if (error != 0) { 2674 dsl_dataset_rele(origin_head, FTAG); 2675 return (error); 2676 } 2677 error = dsl_dataset_snapshot_check_impl(origin_head, 2678 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2679 dsl_dataset_rele(origin_head, FTAG); 2680 if (error != 0) 2681 return (error); 2682 2683 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2684 } else { 2685 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2686 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2687 } 2688 return (error); 2689 } 2690 2691 static void 2692 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2693 { 2694 dmu_recv_cookie_t *drc = arg; 2695 dsl_pool_t *dp = dmu_tx_pool(tx); 2696 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 2697 2698 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2699 tx, "snap=%s", drc->drc_tosnap); 2700 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 2701 2702 if (!drc->drc_newfs) { 2703 dsl_dataset_t *origin_head; 2704 2705 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2706 &origin_head)); 2707 2708 if (drc->drc_force) { 2709 /* 2710 * Destroy any snapshots of drc_tofs (origin_head) 2711 * after the origin (the snap before drc_ds). 2712 */ 2713 uint64_t obj; 2714 2715 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2716 while (obj != 2717 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2718 dsl_dataset_t *snap; 2719 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2720 &snap)); 2721 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2722 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2723 dsl_destroy_snapshot_sync_impl(snap, 2724 B_FALSE, tx); 2725 dsl_dataset_rele(snap, FTAG); 2726 } 2727 } 2728 if (drc->drc_keynvl != NULL) { 2729 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 2730 drc->drc_keynvl, tx); 2731 nvlist_free(drc->drc_keynvl); 2732 drc->drc_keynvl = NULL; 2733 } 2734 2735 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); 2736 2737 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2738 origin_head, tx); 2739 dsl_dataset_snapshot_sync_impl(origin_head, 2740 drc->drc_tosnap, tx); 2741 2742 /* set snapshot's creation time and guid */ 2743 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2744 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2745 drc->drc_drrb->drr_creation_time; 2746 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2747 drc->drc_drrb->drr_toguid; 2748 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2749 ~DS_FLAG_INCONSISTENT; 2750 2751 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2752 dsl_dataset_phys(origin_head)->ds_flags &= 2753 ~DS_FLAG_INCONSISTENT; 2754 2755 drc->drc_newsnapobj = 2756 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2757 2758 dsl_dataset_rele(origin_head, FTAG); 2759 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2760 2761 if (drc->drc_owner != NULL) 2762 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2763 } else { 2764 dsl_dataset_t *ds = drc->drc_ds; 2765 2766 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2767 2768 /* set snapshot's creation time and guid */ 2769 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2770 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2771 drc->drc_drrb->drr_creation_time; 2772 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2773 drc->drc_drrb->drr_toguid; 2774 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2775 ~DS_FLAG_INCONSISTENT; 2776 2777 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2778 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2779 if (dsl_dataset_has_resume_receive_state(ds)) { 2780 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2781 DS_FIELD_RESUME_FROMGUID, tx); 2782 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2783 DS_FIELD_RESUME_OBJECT, tx); 2784 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2785 DS_FIELD_RESUME_OFFSET, tx); 2786 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2787 DS_FIELD_RESUME_BYTES, tx); 2788 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2789 DS_FIELD_RESUME_TOGUID, tx); 2790 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2791 DS_FIELD_RESUME_TONAME, tx); 2792 } 2793 drc->drc_newsnapobj = 2794 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2795 } 2796 2797 /* 2798 * If this is a raw receive, the crypt_keydata nvlist will include 2799 * a to_ivset_guid for us to set on the new snapshot. This value 2800 * will override the value generated by the snapshot code. However, 2801 * this value may not be present, because older implementations of 2802 * the raw send code did not include this value, and we are still 2803 * allowed to receive them if the zfs_disable_ivset_guid_check 2804 * tunable is set, in which case we will leave the newly-generated 2805 * value. 2806 */ 2807 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 2808 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj, 2809 DMU_OT_DSL_DATASET, tx); 2810 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj, 2811 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 2812 &drc->drc_ivset_guid, tx)); 2813 } 2814 2815 /* 2816 * Release the hold from dmu_recv_begin. This must be done before 2817 * we return to open context, so that when we free the dataset's dnode 2818 * we can evict its bonus buffer. Since the dataset may be destroyed 2819 * at this point (and therefore won't have a valid pointer to the spa) 2820 * we release the key mapping manually here while we do have a valid 2821 * pointer, if it exists. 2822 */ 2823 if (!drc->drc_raw && encrypted) { 2824 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 2825 drc->drc_ds->ds_object, drc->drc_ds); 2826 } 2827 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 2828 drc->drc_ds = NULL; 2829 } 2830 2831 static int 2832 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, 2833 boolean_t raw) 2834 { 2835 dsl_pool_t *dp; 2836 dsl_dataset_t *snapds; 2837 guid_map_entry_t *gmep; 2838 objset_t *os; 2839 ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT; 2840 int err; 2841 2842 ASSERT(guid_map != NULL); 2843 2844 err = dsl_pool_hold(name, FTAG, &dp); 2845 if (err != 0) 2846 return (err); 2847 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2848 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); 2849 if (err == 0) { 2850 /* 2851 * If this is a deduplicated raw send stream, we need 2852 * to make sure that we can still read raw blocks from 2853 * earlier datasets in the stream, so we set the 2854 * os_raw_receive flag now. 2855 */ 2856 if (raw) { 2857 err = dmu_objset_from_ds(snapds, &os); 2858 if (err != 0) { 2859 dsl_dataset_disown(snapds, dsflags, FTAG); 2860 dsl_pool_rele(dp, FTAG); 2861 kmem_free(gmep, sizeof (*gmep)); 2862 return (err); 2863 } 2864 os->os_raw_receive = B_TRUE; 2865 } 2866 2867 gmep->raw = raw; 2868 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2869 gmep->gme_ds = snapds; 2870 avl_add(guid_map, gmep); 2871 } else { 2872 kmem_free(gmep, sizeof (*gmep)); 2873 } 2874 2875 dsl_pool_rele(dp, FTAG); 2876 return (err); 2877 } 2878 2879 static int dmu_recv_end_modified_blocks = 3; 2880 2881 static int 2882 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2883 { 2884 #ifdef _KERNEL 2885 /* 2886 * We will be destroying the ds; make sure its origin is unmounted if 2887 * necessary. 2888 */ 2889 char name[ZFS_MAX_DATASET_NAME_LEN]; 2890 dsl_dataset_name(drc->drc_ds, name); 2891 zfs_destroy_unmount_origin(name); 2892 #endif 2893 2894 return (dsl_sync_task(drc->drc_tofs, 2895 dmu_recv_end_check, dmu_recv_end_sync, drc, 2896 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2897 } 2898 2899 static int 2900 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2901 { 2902 return (dsl_sync_task(drc->drc_tofs, 2903 dmu_recv_end_check, dmu_recv_end_sync, drc, 2904 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2905 } 2906 2907 int 2908 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2909 { 2910 int error; 2911 2912 drc->drc_owner = owner; 2913 2914 if (drc->drc_newfs) 2915 error = dmu_recv_new_end(drc); 2916 else 2917 error = dmu_recv_existing_end(drc); 2918 2919 if (error != 0) { 2920 dmu_recv_cleanup_ds(drc); 2921 nvlist_free(drc->drc_keynvl); 2922 } else if (drc->drc_guid_to_ds_map != NULL) { 2923 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, 2924 drc->drc_newsnapobj, drc->drc_raw); 2925 } 2926 return (error); 2927 } 2928 2929 /* 2930 * Return TRUE if this objset is currently being received into. 2931 */ 2932 boolean_t 2933 dmu_objset_is_receiving(objset_t *os) 2934 { 2935 return (os->os_dsl_dataset != NULL && 2936 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2937 } 2938