1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_recv.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 60 61 static char *dmu_recv_tag = "dmu_recv_tag"; 62 const char *recv_clone_name = "%recv"; 63 64 static void byteswap_record(dmu_replay_record_t *drr); 65 66 typedef struct dmu_recv_begin_arg { 67 const char *drba_origin; 68 dmu_recv_cookie_t *drba_cookie; 69 cred_t *drba_cred; 70 dsl_crypto_params_t *drba_dcp; 71 } dmu_recv_begin_arg_t; 72 73 static int 74 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 75 uint64_t fromguid) 76 { 77 uint64_t val; 78 int error; 79 dsl_pool_t *dp = ds->ds_dir->dd_pool; 80 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 81 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 82 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 83 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 84 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 85 86 /* temporary clone name must not exist */ 87 error = zap_lookup(dp->dp_meta_objset, 88 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 89 8, 1, &val); 90 if (error != ENOENT) 91 return (error == 0 ? EBUSY : error); 92 93 /* new snapshot name must not exist */ 94 error = zap_lookup(dp->dp_meta_objset, 95 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 96 drba->drba_cookie->drc_tosnap, 8, 1, &val); 97 if (error != ENOENT) 98 return (error == 0 ? EEXIST : error); 99 100 /* 101 * Check snapshot limit before receiving. We'll recheck again at the 102 * end, but might as well abort before receiving if we're already over 103 * the limit. 104 * 105 * Note that we do not check the file system limit with 106 * dsl_dir_fscount_check because the temporary %clones don't count 107 * against that limit. 108 */ 109 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 110 NULL, drba->drba_cred); 111 if (error != 0) 112 return (error); 113 114 if (fromguid != 0) { 115 dsl_dataset_t *snap; 116 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 117 118 /* Can't raw receive on top of an unencrypted dataset */ 119 if (!encrypted && raw) 120 return (SET_ERROR(EINVAL)); 121 122 /* Encryption is incompatible with embedded data */ 123 if (encrypted && embed) 124 return (SET_ERROR(EINVAL)); 125 126 /* Find snapshot in this dir that matches fromguid. */ 127 while (obj != 0) { 128 error = dsl_dataset_hold_obj(dp, obj, FTAG, 129 &snap); 130 if (error != 0) 131 return (SET_ERROR(ENODEV)); 132 if (snap->ds_dir != ds->ds_dir) { 133 dsl_dataset_rele(snap, FTAG); 134 return (SET_ERROR(ENODEV)); 135 } 136 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 137 break; 138 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 139 dsl_dataset_rele(snap, FTAG); 140 } 141 if (obj == 0) 142 return (SET_ERROR(ENODEV)); 143 144 if (drba->drba_cookie->drc_force) { 145 drba->drba_cookie->drc_fromsnapobj = obj; 146 } else { 147 /* 148 * If we are not forcing, there must be no 149 * changes since fromsnap. 150 */ 151 if (dsl_dataset_modified_since_snap(ds, snap)) { 152 dsl_dataset_rele(snap, FTAG); 153 return (SET_ERROR(ETXTBSY)); 154 } 155 drba->drba_cookie->drc_fromsnapobj = 156 ds->ds_prev->ds_object; 157 } 158 159 dsl_dataset_rele(snap, FTAG); 160 } else { 161 /* if full, then must be forced */ 162 if (!drba->drba_cookie->drc_force) 163 return (SET_ERROR(EEXIST)); 164 165 /* 166 * We don't support using zfs recv -F to blow away 167 * encrypted filesystems. This would require the 168 * dsl dir to point to the old encryption key and 169 * the new one at the same time during the receive. 170 */ 171 if ((!encrypted && raw) || encrypted) 172 return (SET_ERROR(EINVAL)); 173 174 /* 175 * Perform the same encryption checks we would if 176 * we were creating a new dataset from scratch. 177 */ 178 if (!raw) { 179 boolean_t will_encrypt; 180 181 error = dmu_objset_create_crypt_check( 182 ds->ds_dir->dd_parent, drba->drba_dcp, 183 &will_encrypt); 184 if (error != 0) 185 return (error); 186 187 if (will_encrypt && embed) 188 return (SET_ERROR(EINVAL)); 189 } 190 191 drba->drba_cookie->drc_fromsnapobj = 0; 192 } 193 194 return (0); 195 196 } 197 198 static int 199 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 200 { 201 dmu_recv_begin_arg_t *drba = arg; 202 dsl_pool_t *dp = dmu_tx_pool(tx); 203 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 204 uint64_t fromguid = drrb->drr_fromguid; 205 int flags = drrb->drr_flags; 206 ds_hold_flags_t dsflags = 0; 207 int error; 208 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 209 dsl_dataset_t *ds; 210 const char *tofs = drba->drba_cookie->drc_tofs; 211 212 /* already checked */ 213 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 214 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 215 216 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 217 DMU_COMPOUNDSTREAM || 218 drrb->drr_type >= DMU_OST_NUMTYPES || 219 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 220 return (SET_ERROR(EINVAL)); 221 222 /* Verify pool version supports SA if SA_SPILL feature set */ 223 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 224 spa_version(dp->dp_spa) < SPA_VERSION_SA) 225 return (SET_ERROR(ENOTSUP)); 226 227 if (drba->drba_cookie->drc_resumable && 228 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 229 return (SET_ERROR(ENOTSUP)); 230 231 /* 232 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 233 * record to a plain WRITE record, so the pool must have the 234 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 235 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 236 */ 237 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 238 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 239 return (SET_ERROR(ENOTSUP)); 240 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 241 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 242 return (SET_ERROR(ENOTSUP)); 243 244 /* 245 * The receiving code doesn't know how to translate large blocks 246 * to smaller ones, so the pool must have the LARGE_BLOCKS 247 * feature enabled if the stream has LARGE_BLOCKS. Same with 248 * large dnodes. 249 */ 250 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 251 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 252 return (SET_ERROR(ENOTSUP)); 253 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 254 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 255 return (SET_ERROR(ENOTSUP)); 256 257 if ((featureflags & DMU_BACKUP_FEATURE_RAW)) { 258 /* raw receives require the encryption feature */ 259 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 260 return (SET_ERROR(ENOTSUP)); 261 262 /* embedded data is incompatible with encryption and raw recv */ 263 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 264 return (SET_ERROR(EINVAL)); 265 266 /* raw receives require spill block allocation flag */ 267 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 268 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 269 } else { 270 dsflags |= DS_HOLD_FLAG_DECRYPT; 271 } 272 273 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 274 if (error == 0) { 275 /* target fs already exists; recv into temp clone */ 276 277 /* Can't recv a clone into an existing fs */ 278 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 279 dsl_dataset_rele_flags(ds, dsflags, FTAG); 280 return (SET_ERROR(EINVAL)); 281 } 282 283 error = recv_begin_check_existing_impl(drba, ds, fromguid); 284 dsl_dataset_rele_flags(ds, dsflags, FTAG); 285 } else if (error == ENOENT) { 286 /* target fs does not exist; must be a full backup or clone */ 287 char buf[ZFS_MAX_DATASET_NAME_LEN]; 288 289 /* 290 * If it's a non-clone incremental, we are missing the 291 * target fs, so fail the recv. 292 */ 293 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 294 drba->drba_origin)) 295 return (SET_ERROR(ENOENT)); 296 297 /* 298 * If we're receiving a full send as a clone, and it doesn't 299 * contain all the necessary free records and freeobject 300 * records, reject it. 301 */ 302 if (fromguid == 0 && drba->drba_origin && 303 !(flags & DRR_FLAG_FREERECORDS)) 304 return (SET_ERROR(EINVAL)); 305 306 /* Open the parent of tofs */ 307 ASSERT3U(strlen(tofs), <, sizeof (buf)); 308 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 309 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 310 if (error != 0) 311 return (error); 312 313 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 314 drba->drba_origin == NULL) { 315 boolean_t will_encrypt; 316 317 /* 318 * Check that we aren't breaking any encryption rules 319 * and that we have all the parameters we need to 320 * create an encrypted dataset if necessary. If we are 321 * making an encrypted dataset the stream can't have 322 * embedded data. 323 */ 324 error = dmu_objset_create_crypt_check(ds->ds_dir, 325 drba->drba_dcp, &will_encrypt); 326 if (error != 0) { 327 dsl_dataset_rele(ds, FTAG); 328 return (error); 329 } 330 331 if (will_encrypt && 332 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 333 dsl_dataset_rele(ds, FTAG); 334 return (SET_ERROR(EINVAL)); 335 } 336 } 337 338 /* 339 * Check filesystem and snapshot limits before receiving. We'll 340 * recheck snapshot limits again at the end (we create the 341 * filesystems and increment those counts during begin_sync). 342 */ 343 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 344 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 345 if (error != 0) { 346 dsl_dataset_rele(ds, FTAG); 347 return (error); 348 } 349 350 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 351 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 352 if (error != 0) { 353 dsl_dataset_rele(ds, FTAG); 354 return (error); 355 } 356 357 if (drba->drba_origin != NULL) { 358 dsl_dataset_t *origin; 359 360 error = dsl_dataset_hold(dp, drba->drba_origin, 361 FTAG, &origin); 362 if (error != 0) { 363 dsl_dataset_rele(ds, FTAG); 364 return (error); 365 } 366 if (!origin->ds_is_snapshot) { 367 dsl_dataset_rele(origin, FTAG); 368 dsl_dataset_rele(ds, FTAG); 369 return (SET_ERROR(EINVAL)); 370 } 371 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 372 fromguid != 0) { 373 dsl_dataset_rele(origin, FTAG); 374 dsl_dataset_rele(ds, FTAG); 375 return (SET_ERROR(ENODEV)); 376 } 377 if (origin->ds_dir->dd_crypto_obj != 0 && 378 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 379 dsl_dataset_rele(origin, FTAG); 380 dsl_dataset_rele(ds, FTAG); 381 return (SET_ERROR(EINVAL)); 382 } 383 dsl_dataset_rele(origin, FTAG); 384 } 385 dsl_dataset_rele(ds, FTAG); 386 error = 0; 387 } 388 return (error); 389 } 390 391 static void 392 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 393 { 394 dmu_recv_begin_arg_t *drba = arg; 395 dsl_pool_t *dp = dmu_tx_pool(tx); 396 objset_t *mos = dp->dp_meta_objset; 397 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 398 const char *tofs = drba->drba_cookie->drc_tofs; 399 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 400 dsl_dataset_t *ds, *newds; 401 objset_t *os; 402 uint64_t dsobj; 403 ds_hold_flags_t dsflags = 0; 404 int error; 405 uint64_t crflags = 0; 406 dsl_crypto_params_t dummy_dcp = { 0 }; 407 dsl_crypto_params_t *dcp = drba->drba_dcp; 408 409 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 410 crflags |= DS_FLAG_CI_DATASET; 411 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 412 dsflags |= DS_HOLD_FLAG_DECRYPT; 413 414 /* 415 * Raw, non-incremental recvs always use a dummy dcp with 416 * the raw cmd set. Raw incremental recvs do not use a dcp 417 * since the encryption parameters are already set in stone. 418 */ 419 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 && 420 drba->drba_origin == NULL) { 421 ASSERT3P(dcp, ==, NULL); 422 dcp = &dummy_dcp; 423 424 if (featureflags & DMU_BACKUP_FEATURE_RAW) 425 dcp->cp_cmd = DCP_CMD_RAW_RECV; 426 } 427 428 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 429 if (error == 0) { 430 /* create temporary clone */ 431 dsl_dataset_t *snap = NULL; 432 433 if (drba->drba_cookie->drc_fromsnapobj != 0) { 434 VERIFY0(dsl_dataset_hold_obj(dp, 435 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 436 ASSERT3P(dcp, ==, NULL); 437 } 438 439 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 440 snap, crflags, drba->drba_cred, dcp, tx); 441 if (drba->drba_cookie->drc_fromsnapobj != 0) 442 dsl_dataset_rele(snap, FTAG); 443 dsl_dataset_rele_flags(ds, dsflags, FTAG); 444 } else { 445 dsl_dir_t *dd; 446 const char *tail; 447 dsl_dataset_t *origin = NULL; 448 449 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 450 451 if (drba->drba_origin != NULL) { 452 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 453 FTAG, &origin)); 454 ASSERT3P(dcp, ==, NULL); 455 } 456 457 /* Create new dataset. */ 458 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 459 origin, crflags, drba->drba_cred, dcp, tx); 460 if (origin != NULL) 461 dsl_dataset_rele(origin, FTAG); 462 dsl_dir_rele(dd, FTAG); 463 drba->drba_cookie->drc_newfs = B_TRUE; 464 } 465 466 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); 467 VERIFY0(dmu_objset_from_ds(newds, &os)); 468 469 if (drba->drba_cookie->drc_resumable) { 470 dsl_dataset_zapify(newds, tx); 471 if (drrb->drr_fromguid != 0) { 472 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 473 8, 1, &drrb->drr_fromguid, tx)); 474 } 475 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 476 8, 1, &drrb->drr_toguid, tx)); 477 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 478 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 479 uint64_t one = 1; 480 uint64_t zero = 0; 481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 482 8, 1, &one, tx)); 483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 484 8, 1, &zero, tx)); 485 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 486 8, 1, &zero, tx)); 487 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 488 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 489 8, 1, &one, tx)); 490 } 491 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 492 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 493 8, 1, &one, tx)); 494 } 495 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 496 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 497 8, 1, &one, tx)); 498 } 499 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 500 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 501 8, 1, &one, tx)); 502 } 503 } 504 505 /* 506 * Usually the os->os_encrypted value is tied to the presence of a 507 * DSL Crypto Key object in the dd. However, that will not be received 508 * until dmu_recv_stream(), so we set the value manually for now. 509 */ 510 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 511 os->os_encrypted = B_TRUE; 512 drba->drba_cookie->drc_raw = B_TRUE; 513 } 514 515 dmu_buf_will_dirty(newds->ds_dbuf, tx); 516 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 517 518 /* 519 * If we actually created a non-clone, we need to create the objset 520 * in our new dataset. If this is a raw send we postpone this until 521 * dmu_recv_stream() so that we can allocate the metadnode with the 522 * properties from the DRR_BEGIN payload. 523 */ 524 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 525 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 526 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 527 (void) dmu_objset_create_impl(dp->dp_spa, 528 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 529 } 530 rrw_exit(&newds->ds_bp_rwlock, FTAG); 531 532 drba->drba_cookie->drc_ds = newds; 533 534 spa_history_log_internal_ds(newds, "receive", tx, ""); 535 } 536 537 static int 538 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 539 { 540 dmu_recv_begin_arg_t *drba = arg; 541 dsl_pool_t *dp = dmu_tx_pool(tx); 542 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 543 int error; 544 ds_hold_flags_t dsflags = 0; 545 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 546 dsl_dataset_t *ds; 547 const char *tofs = drba->drba_cookie->drc_tofs; 548 549 /* 6 extra bytes for /%recv */ 550 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 551 552 /* already checked */ 553 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 554 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 555 556 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 557 DMU_COMPOUNDSTREAM || 558 drrb->drr_type >= DMU_OST_NUMTYPES) 559 return (SET_ERROR(EINVAL)); 560 561 /* Verify pool version supports SA if SA_SPILL feature set */ 562 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 563 spa_version(dp->dp_spa) < SPA_VERSION_SA) 564 return (SET_ERROR(ENOTSUP)); 565 566 /* 567 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 568 * record to a plain WRITE record, so the pool must have the 569 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 570 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 571 */ 572 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 573 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 574 return (SET_ERROR(ENOTSUP)); 575 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 576 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 577 return (SET_ERROR(ENOTSUP)); 578 579 /* 580 * The receiving code doesn't know how to translate large blocks 581 * to smaller ones, so the pool must have the LARGE_BLOCKS 582 * feature enabled if the stream has LARGE_BLOCKS. Same with 583 * large dnodes. 584 */ 585 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 586 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 587 return (SET_ERROR(ENOTSUP)); 588 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 589 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 590 return (SET_ERROR(ENOTSUP)); 591 592 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 593 tofs, recv_clone_name); 594 595 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 596 /* raw receives require spill block allocation flag */ 597 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 599 } else { 600 dsflags |= DS_HOLD_FLAG_DECRYPT; 601 } 602 603 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 604 /* %recv does not exist; continue in tofs */ 605 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 606 if (error != 0) 607 return (error); 608 } 609 610 /* check that ds is marked inconsistent */ 611 if (!DS_IS_INCONSISTENT(ds)) { 612 dsl_dataset_rele_flags(ds, dsflags, FTAG); 613 return (SET_ERROR(EINVAL)); 614 } 615 616 /* check that there is resuming data, and that the toguid matches */ 617 if (!dsl_dataset_is_zapified(ds)) { 618 dsl_dataset_rele_flags(ds, dsflags, FTAG); 619 return (SET_ERROR(EINVAL)); 620 } 621 uint64_t val; 622 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 623 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 624 if (error != 0 || drrb->drr_toguid != val) { 625 dsl_dataset_rele_flags(ds, dsflags, FTAG); 626 return (SET_ERROR(EINVAL)); 627 } 628 629 /* 630 * Check if the receive is still running. If so, it will be owned. 631 * Note that nothing else can own the dataset (e.g. after the receive 632 * fails) because it will be marked inconsistent. 633 */ 634 if (dsl_dataset_has_owner(ds)) { 635 dsl_dataset_rele_flags(ds, dsflags, FTAG); 636 return (SET_ERROR(EBUSY)); 637 } 638 639 /* There should not be any snapshots of this fs yet. */ 640 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 641 dsl_dataset_rele_flags(ds, dsflags, FTAG); 642 return (SET_ERROR(EINVAL)); 643 } 644 645 /* 646 * Note: resume point will be checked when we process the first WRITE 647 * record. 648 */ 649 650 /* check that the origin matches */ 651 val = 0; 652 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 653 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 654 if (drrb->drr_fromguid != val) { 655 dsl_dataset_rele_flags(ds, dsflags, FTAG); 656 return (SET_ERROR(EINVAL)); 657 } 658 659 dsl_dataset_rele_flags(ds, dsflags, FTAG); 660 return (0); 661 } 662 663 static void 664 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 665 { 666 dmu_recv_begin_arg_t *drba = arg; 667 dsl_pool_t *dp = dmu_tx_pool(tx); 668 const char *tofs = drba->drba_cookie->drc_tofs; 669 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 670 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 671 dsl_dataset_t *ds; 672 objset_t *os; 673 ds_hold_flags_t dsflags = 0; 674 uint64_t dsobj; 675 /* 6 extra bytes for /%recv */ 676 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 677 678 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 679 tofs, recv_clone_name); 680 681 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 682 drba->drba_cookie->drc_raw = B_TRUE; 683 } else { 684 dsflags |= DS_HOLD_FLAG_DECRYPT; 685 } 686 687 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 688 /* %recv does not exist; continue in tofs */ 689 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); 690 drba->drba_cookie->drc_newfs = B_TRUE; 691 } 692 693 /* clear the inconsistent flag so that we can own it */ 694 ASSERT(DS_IS_INCONSISTENT(ds)); 695 dmu_buf_will_dirty(ds->ds_dbuf, tx); 696 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 697 dsobj = ds->ds_object; 698 dsl_dataset_rele_flags(ds, dsflags, FTAG); 699 700 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); 701 VERIFY0(dmu_objset_from_ds(ds, &os)); 702 703 dmu_buf_will_dirty(ds->ds_dbuf, tx); 704 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 705 706 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 707 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 708 drba->drba_cookie->drc_raw); 709 rrw_exit(&ds->ds_bp_rwlock, FTAG); 710 711 drba->drba_cookie->drc_ds = ds; 712 713 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 714 } 715 716 /* 717 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 718 * succeeds; otherwise we will leak the holds on the datasets. 719 */ 720 int 721 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 722 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 723 { 724 dmu_recv_begin_arg_t drba = { 0 }; 725 726 bzero(drc, sizeof (dmu_recv_cookie_t)); 727 drc->drc_drr_begin = drr_begin; 728 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 729 drc->drc_tosnap = tosnap; 730 drc->drc_tofs = tofs; 731 drc->drc_force = force; 732 drc->drc_resumable = resumable; 733 drc->drc_cred = CRED(); 734 drc->drc_clone = (origin != NULL); 735 736 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 737 drc->drc_byteswap = B_TRUE; 738 (void) fletcher_4_incremental_byteswap(drr_begin, 739 sizeof (dmu_replay_record_t), &drc->drc_cksum); 740 byteswap_record(drr_begin); 741 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 742 (void) fletcher_4_incremental_native(drr_begin, 743 sizeof (dmu_replay_record_t), &drc->drc_cksum); 744 } else { 745 return (SET_ERROR(EINVAL)); 746 } 747 748 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 749 drc->drc_spill = B_TRUE; 750 751 drba.drba_origin = origin; 752 drba.drba_cookie = drc; 753 drba.drba_cred = CRED(); 754 755 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 756 DMU_BACKUP_FEATURE_RESUMING) { 757 return (dsl_sync_task(tofs, 758 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 759 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 760 } else { 761 return (dsl_sync_task(tofs, 762 dmu_recv_begin_check, dmu_recv_begin_sync, 763 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 764 } 765 } 766 767 struct receive_record_arg { 768 dmu_replay_record_t header; 769 void *payload; /* Pointer to a buffer containing the payload */ 770 /* 771 * If the record is a write, pointer to the arc_buf_t containing the 772 * payload. 773 */ 774 arc_buf_t *arc_buf; 775 int payload_size; 776 uint64_t bytes_read; /* bytes read from stream when record created */ 777 boolean_t eos_marker; /* Marks the end of the stream */ 778 bqueue_node_t node; 779 }; 780 781 struct receive_writer_arg { 782 objset_t *os; 783 boolean_t byteswap; 784 bqueue_t q; 785 786 /* 787 * These three args are used to signal to the main thread that we're 788 * done. 789 */ 790 kmutex_t mutex; 791 kcondvar_t cv; 792 boolean_t done; 793 794 int err; 795 /* A map from guid to dataset to help handle dedup'd streams. */ 796 avl_tree_t *guid_to_ds_map; 797 boolean_t resumable; 798 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 799 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 800 uint64_t last_object; 801 uint64_t last_offset; 802 uint64_t max_object; /* highest object ID referenced in stream */ 803 uint64_t bytes_read; /* bytes read when current record created */ 804 805 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 806 boolean_t or_crypt_params_present; 807 uint64_t or_firstobj; 808 uint64_t or_numslots; 809 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 810 uint8_t or_iv[ZIO_DATA_IV_LEN]; 811 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 812 boolean_t or_byteorder; 813 }; 814 815 struct objlist { 816 list_t list; /* List of struct receive_objnode. */ 817 /* 818 * Last object looked up. Used to assert that objects are being looked 819 * up in ascending order. 820 */ 821 uint64_t last_lookup; 822 }; 823 824 struct receive_objnode { 825 list_node_t node; 826 uint64_t object; 827 }; 828 829 struct receive_arg { 830 objset_t *os; 831 vnode_t *vp; /* The vnode to read the stream from */ 832 uint64_t voff; /* The current offset in the stream */ 833 uint64_t bytes_read; 834 /* 835 * A record that has had its payload read in, but hasn't yet been handed 836 * off to the worker thread. 837 */ 838 struct receive_record_arg *rrd; 839 /* A record that has had its header read in, but not its payload. */ 840 struct receive_record_arg *next_rrd; 841 zio_cksum_t cksum; 842 zio_cksum_t prev_cksum; 843 int err; 844 boolean_t byteswap; 845 boolean_t raw; 846 uint64_t featureflags; 847 /* Sorted list of objects not to issue prefetches for. */ 848 struct objlist ignore_objlist; 849 }; 850 851 typedef struct guid_map_entry { 852 uint64_t guid; 853 boolean_t raw; 854 dsl_dataset_t *gme_ds; 855 avl_node_t avlnode; 856 } guid_map_entry_t; 857 858 static int 859 guid_compare(const void *arg1, const void *arg2) 860 { 861 const guid_map_entry_t *gmep1 = arg1; 862 const guid_map_entry_t *gmep2 = arg2; 863 864 if (gmep1->guid < gmep2->guid) 865 return (-1); 866 else if (gmep1->guid > gmep2->guid) 867 return (1); 868 return (0); 869 } 870 871 static void 872 free_guid_map_onexit(void *arg) 873 { 874 avl_tree_t *ca = arg; 875 void *cookie = NULL; 876 guid_map_entry_t *gmep; 877 878 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 879 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; 880 881 if (gmep->raw) { 882 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; 883 dsflags &= ~DS_HOLD_FLAG_DECRYPT; 884 } 885 886 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); 887 kmem_free(gmep, sizeof (guid_map_entry_t)); 888 } 889 avl_destroy(ca); 890 kmem_free(ca, sizeof (avl_tree_t)); 891 } 892 893 static int 894 receive_read(struct receive_arg *ra, int len, void *buf) 895 { 896 int done = 0; 897 898 /* 899 * The code doesn't rely on this (lengths being multiples of 8). See 900 * comment in dump_bytes. 901 */ 902 ASSERT(len % 8 == 0 || 903 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 904 905 while (done < len) { 906 ssize_t resid; 907 908 ra->err = vn_rdwr(UIO_READ, ra->vp, 909 (char *)buf + done, len - done, 910 ra->voff, UIO_SYSSPACE, FAPPEND, 911 RLIM64_INFINITY, CRED(), &resid); 912 913 if (resid == len - done) { 914 /* 915 * Note: ECKSUM indicates that the receive 916 * was interrupted and can potentially be resumed. 917 */ 918 ra->err = SET_ERROR(ECKSUM); 919 } 920 ra->voff += len - done - resid; 921 done = len - resid; 922 if (ra->err != 0) 923 return (ra->err); 924 } 925 926 ra->bytes_read += len; 927 928 ASSERT3U(done, ==, len); 929 return (0); 930 } 931 932 static void 933 byteswap_record(dmu_replay_record_t *drr) 934 { 935 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 936 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 937 drr->drr_type = BSWAP_32(drr->drr_type); 938 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 939 940 switch (drr->drr_type) { 941 case DRR_BEGIN: 942 DO64(drr_begin.drr_magic); 943 DO64(drr_begin.drr_versioninfo); 944 DO64(drr_begin.drr_creation_time); 945 DO32(drr_begin.drr_type); 946 DO32(drr_begin.drr_flags); 947 DO64(drr_begin.drr_toguid); 948 DO64(drr_begin.drr_fromguid); 949 break; 950 case DRR_OBJECT: 951 DO64(drr_object.drr_object); 952 DO32(drr_object.drr_type); 953 DO32(drr_object.drr_bonustype); 954 DO32(drr_object.drr_blksz); 955 DO32(drr_object.drr_bonuslen); 956 DO32(drr_object.drr_raw_bonuslen); 957 DO64(drr_object.drr_toguid); 958 DO64(drr_object.drr_maxblkid); 959 break; 960 case DRR_FREEOBJECTS: 961 DO64(drr_freeobjects.drr_firstobj); 962 DO64(drr_freeobjects.drr_numobjs); 963 DO64(drr_freeobjects.drr_toguid); 964 break; 965 case DRR_WRITE: 966 DO64(drr_write.drr_object); 967 DO32(drr_write.drr_type); 968 DO64(drr_write.drr_offset); 969 DO64(drr_write.drr_logical_size); 970 DO64(drr_write.drr_toguid); 971 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 972 DO64(drr_write.drr_key.ddk_prop); 973 DO64(drr_write.drr_compressed_size); 974 break; 975 case DRR_WRITE_BYREF: 976 DO64(drr_write_byref.drr_object); 977 DO64(drr_write_byref.drr_offset); 978 DO64(drr_write_byref.drr_length); 979 DO64(drr_write_byref.drr_toguid); 980 DO64(drr_write_byref.drr_refguid); 981 DO64(drr_write_byref.drr_refobject); 982 DO64(drr_write_byref.drr_refoffset); 983 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 984 drr_key.ddk_cksum); 985 DO64(drr_write_byref.drr_key.ddk_prop); 986 break; 987 case DRR_WRITE_EMBEDDED: 988 DO64(drr_write_embedded.drr_object); 989 DO64(drr_write_embedded.drr_offset); 990 DO64(drr_write_embedded.drr_length); 991 DO64(drr_write_embedded.drr_toguid); 992 DO32(drr_write_embedded.drr_lsize); 993 DO32(drr_write_embedded.drr_psize); 994 break; 995 case DRR_FREE: 996 DO64(drr_free.drr_object); 997 DO64(drr_free.drr_offset); 998 DO64(drr_free.drr_length); 999 DO64(drr_free.drr_toguid); 1000 break; 1001 case DRR_SPILL: 1002 DO64(drr_spill.drr_object); 1003 DO64(drr_spill.drr_length); 1004 DO64(drr_spill.drr_toguid); 1005 DO64(drr_spill.drr_compressed_size); 1006 DO32(drr_spill.drr_type); 1007 break; 1008 case DRR_OBJECT_RANGE: 1009 DO64(drr_object_range.drr_firstobj); 1010 DO64(drr_object_range.drr_numslots); 1011 DO64(drr_object_range.drr_toguid); 1012 break; 1013 case DRR_END: 1014 DO64(drr_end.drr_toguid); 1015 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1016 break; 1017 } 1018 1019 if (drr->drr_type != DRR_BEGIN) { 1020 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1021 } 1022 1023 #undef DO64 1024 #undef DO32 1025 } 1026 1027 static inline uint8_t 1028 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1029 { 1030 if (bonus_type == DMU_OT_SA) { 1031 return (1); 1032 } else { 1033 return (1 + 1034 ((DN_OLD_MAX_BONUSLEN - 1035 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1036 } 1037 } 1038 1039 static void 1040 save_resume_state(struct receive_writer_arg *rwa, 1041 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1042 { 1043 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1044 1045 if (!rwa->resumable) 1046 return; 1047 1048 /* 1049 * We use ds_resume_bytes[] != 0 to indicate that we need to 1050 * update this on disk, so it must not be 0. 1051 */ 1052 ASSERT(rwa->bytes_read != 0); 1053 1054 /* 1055 * We only resume from write records, which have a valid 1056 * (non-meta-dnode) object number. 1057 */ 1058 ASSERT(object != 0); 1059 1060 /* 1061 * For resuming to work correctly, we must receive records in order, 1062 * sorted by object,offset. This is checked by the callers, but 1063 * assert it here for good measure. 1064 */ 1065 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1066 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1067 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1068 ASSERT3U(rwa->bytes_read, >=, 1069 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1070 1071 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1072 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1073 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1074 } 1075 1076 int receive_object_delay_frac = 0; 1077 1078 static int 1079 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1080 void *data) 1081 { 1082 dmu_object_info_t doi; 1083 dmu_tx_t *tx; 1084 uint64_t object; 1085 int err; 1086 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1087 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1088 1089 if (receive_object_delay_frac != 0 && 1090 spa_get_random(receive_object_delay_frac) == 0) 1091 delay(1); 1092 1093 if (drro->drr_type == DMU_OT_NONE || 1094 !DMU_OT_IS_VALID(drro->drr_type) || 1095 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1096 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1097 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1098 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1099 drro->drr_blksz < SPA_MINBLOCKSIZE || 1100 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1101 drro->drr_bonuslen > 1102 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1103 dn_slots > 1104 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1105 return (SET_ERROR(EINVAL)); 1106 } 1107 1108 if (rwa->raw) { 1109 /* 1110 * We should have received a DRR_OBJECT_RANGE record 1111 * containing this block and stored it in rwa. 1112 */ 1113 if (drro->drr_object < rwa->or_firstobj || 1114 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1115 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1116 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1117 drro->drr_nlevels > DN_MAX_LEVELS || 1118 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1119 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) < 1120 drro->drr_raw_bonuslen) 1121 return (SET_ERROR(EINVAL)); 1122 } else { 1123 1124 /* 1125 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1126 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1127 */ 1128 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1129 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1130 return (SET_ERROR(EINVAL)); 1131 } 1132 1133 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1134 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1135 return (SET_ERROR(EINVAL)); 1136 } 1137 } 1138 1139 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1140 1141 if (err != 0 && err != ENOENT && err != EEXIST) 1142 return (SET_ERROR(EINVAL)); 1143 1144 if (drro->drr_object > rwa->max_object) 1145 rwa->max_object = drro->drr_object; 1146 1147 /* 1148 * If we are losing blkptrs or changing the block size this must 1149 * be a new file instance. We must clear out the previous file 1150 * contents before we can change this type of metadata in the dnode. 1151 * Raw receives will also check that the indirect structure of the 1152 * dnode hasn't changed. 1153 */ 1154 if (err == 0) { 1155 uint32_t indblksz = drro->drr_indblkshift ? 1156 1ULL << drro->drr_indblkshift : 0; 1157 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1158 drro->drr_bonuslen); 1159 boolean_t did_free = B_FALSE; 1160 1161 object = drro->drr_object; 1162 1163 /* nblkptr should be bounded by the bonus size and type */ 1164 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1165 return (SET_ERROR(EINVAL)); 1166 1167 /* 1168 * Check for indicators that the object was freed and 1169 * reallocated. For all sends, these indicators are: 1170 * - A changed block size 1171 * - A smaller nblkptr 1172 * - A changed dnode size 1173 * For raw sends we also check a few other fields to 1174 * ensure we are preserving the objset structure exactly 1175 * as it was on the receive side: 1176 * - A changed indirect block size 1177 * - A smaller nlevels 1178 */ 1179 if (drro->drr_blksz != doi.doi_data_block_size || 1180 nblkptr < doi.doi_nblkptr || 1181 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || 1182 (rwa->raw && 1183 (indblksz != doi.doi_metadata_block_size || 1184 drro->drr_nlevels < doi.doi_indirection))) { 1185 err = dmu_free_long_range(rwa->os, 1186 drro->drr_object, 0, DMU_OBJECT_END); 1187 if (err != 0) 1188 return (SET_ERROR(EINVAL)); 1189 else 1190 did_free = B_TRUE; 1191 } 1192 1193 /* 1194 * The dmu does not currently support decreasing nlevels 1195 * or changing the number of dnode slots on an object. For 1196 * non-raw sends, this does not matter and the new object 1197 * can just use the previous one's nlevels. For raw sends, 1198 * however, the structure of the received dnode (including 1199 * nlevels and dnode slots) must match that of the send 1200 * side. Therefore, instead of using dmu_object_reclaim(), 1201 * we must free the object completely and call 1202 * dmu_object_claim_dnsize() instead. 1203 */ 1204 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || 1205 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { 1206 err = dmu_free_long_object(rwa->os, drro->drr_object); 1207 if (err != 0) 1208 return (SET_ERROR(EINVAL)); 1209 1210 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1211 object = DMU_NEW_OBJECT; 1212 } 1213 1214 /* 1215 * For raw receives, free everything beyond the new incoming 1216 * maxblkid. Normally this would be done with a DRR_FREE 1217 * record that would come after this DRR_OBJECT record is 1218 * processed. However, for raw receives we manually set the 1219 * maxblkid from the drr_maxblkid and so we must first free 1220 * everything above that blkid to ensure the DMU is always 1221 * consistent with itself. We will never free the first block 1222 * of the object here because a maxblkid of 0 could indicate 1223 * an object with a single block or one with no blocks. This 1224 * free may be skipped when dmu_free_long_range() was called 1225 * above since it covers the entire object's contents. 1226 */ 1227 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) { 1228 err = dmu_free_long_range(rwa->os, drro->drr_object, 1229 (drro->drr_maxblkid + 1) * doi.doi_data_block_size, 1230 DMU_OBJECT_END); 1231 if (err != 0) 1232 return (SET_ERROR(EINVAL)); 1233 } 1234 } else if (err == EEXIST) { 1235 /* 1236 * The object requested is currently an interior slot of a 1237 * multi-slot dnode. This will be resolved when the next txg 1238 * is synced out, since the send stream will have told us 1239 * to free this slot when we freed the associated dnode 1240 * earlier in the stream. 1241 */ 1242 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1243 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1244 return (SET_ERROR(EINVAL)); 1245 1246 /* object was freed and we are about to allocate a new one */ 1247 object = DMU_NEW_OBJECT; 1248 } else { 1249 /* object is free and we are about to allocate a new one */ 1250 object = DMU_NEW_OBJECT; 1251 } 1252 1253 /* 1254 * If this is a multi-slot dnode there is a chance that this 1255 * object will expand into a slot that is already used by 1256 * another object from the previous snapshot. We must free 1257 * these objects before we attempt to allocate the new dnode. 1258 */ 1259 if (dn_slots > 1) { 1260 boolean_t need_sync = B_FALSE; 1261 1262 for (uint64_t slot = drro->drr_object + 1; 1263 slot < drro->drr_object + dn_slots; 1264 slot++) { 1265 dmu_object_info_t slot_doi; 1266 1267 err = dmu_object_info(rwa->os, slot, &slot_doi); 1268 if (err == ENOENT || err == EEXIST) 1269 continue; 1270 else if (err != 0) 1271 return (err); 1272 1273 err = dmu_free_long_object(rwa->os, slot); 1274 1275 if (err != 0) 1276 return (err); 1277 1278 need_sync = B_TRUE; 1279 } 1280 1281 if (need_sync) 1282 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1283 } 1284 1285 tx = dmu_tx_create(rwa->os); 1286 dmu_tx_hold_bonus(tx, object); 1287 dmu_tx_hold_write(tx, object, 0, 0); 1288 err = dmu_tx_assign(tx, TXG_WAIT); 1289 if (err != 0) { 1290 dmu_tx_abort(tx); 1291 return (err); 1292 } 1293 1294 if (object == DMU_NEW_OBJECT) { 1295 /* Currently free, wants to be allocated */ 1296 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1297 drro->drr_type, drro->drr_blksz, 1298 drro->drr_bonustype, drro->drr_bonuslen, 1299 dn_slots << DNODE_SHIFT, tx); 1300 } else if (drro->drr_type != doi.doi_type || 1301 drro->drr_blksz != doi.doi_data_block_size || 1302 drro->drr_bonustype != doi.doi_bonus_type || 1303 drro->drr_bonuslen != doi.doi_bonus_size) { 1304 /* Currently allocated, but with different properties */ 1305 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1306 drro->drr_type, drro->drr_blksz, 1307 drro->drr_bonustype, drro->drr_bonuslen, 1308 dn_slots << DNODE_SHIFT, rwa->spill ? 1309 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1310 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1311 /* 1312 * Currently allocated, the existing version of this object 1313 * may reference a spill block that is no longer allocated 1314 * at the source and needs to be freed. 1315 */ 1316 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1317 } 1318 1319 if (err != 0) { 1320 dmu_tx_commit(tx); 1321 return (SET_ERROR(EINVAL)); 1322 } 1323 1324 if (rwa->or_crypt_params_present) { 1325 /* 1326 * Set the crypt params for the buffer associated with this 1327 * range of dnodes. This causes the blkptr_t to have the 1328 * same crypt params (byteorder, salt, iv, mac) as on the 1329 * sending side. 1330 * 1331 * Since we are committing this tx now, it is possible for 1332 * the dnode block to end up on-disk with the incorrect MAC, 1333 * if subsequent objects in this block are received in a 1334 * different txg. However, since the dataset is marked as 1335 * inconsistent, no code paths will do a non-raw read (or 1336 * decrypt the block / verify the MAC). The receive code and 1337 * scrub code can safely do raw reads and verify the 1338 * checksum. They don't need to verify the MAC. 1339 */ 1340 dmu_buf_t *db = NULL; 1341 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1342 1343 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1344 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1345 if (err != 0) { 1346 dmu_tx_commit(tx); 1347 return (SET_ERROR(EINVAL)); 1348 } 1349 1350 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1351 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1352 1353 dmu_buf_rele(db, FTAG); 1354 1355 rwa->or_crypt_params_present = B_FALSE; 1356 } 1357 1358 dmu_object_set_checksum(rwa->os, drro->drr_object, 1359 drro->drr_checksumtype, tx); 1360 dmu_object_set_compress(rwa->os, drro->drr_object, 1361 drro->drr_compress, tx); 1362 1363 /* handle more restrictive dnode structuring for raw recvs */ 1364 if (rwa->raw) { 1365 /* 1366 * Set the indirect block size, block shift, nlevels. 1367 * This will not fail because we ensured all of the 1368 * blocks were freed earlier if this is a new object. 1369 * For non-new objects block size and indirect block 1370 * shift cannot change and nlevels can only increase. 1371 */ 1372 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1373 drro->drr_blksz, drro->drr_indblkshift, tx)); 1374 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1375 drro->drr_nlevels, tx)); 1376 1377 /* 1378 * Set the maxblkid. This will always succeed because 1379 * we freed all blocks beyond the new maxblkid above. 1380 */ 1381 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1382 drro->drr_maxblkid, tx)); 1383 } 1384 1385 if (data != NULL) { 1386 dmu_buf_t *db; 1387 dnode_t *dn; 1388 uint32_t flags = DMU_READ_NO_PREFETCH; 1389 1390 if (rwa->raw) 1391 flags |= DMU_READ_NO_DECRYPT; 1392 1393 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1394 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1395 1396 dmu_buf_will_dirty(db, tx); 1397 1398 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1399 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1400 1401 /* 1402 * Raw bonus buffers have their byteorder determined by the 1403 * DRR_OBJECT_RANGE record. 1404 */ 1405 if (rwa->byteswap && !rwa->raw) { 1406 dmu_object_byteswap_t byteswap = 1407 DMU_OT_BYTESWAP(drro->drr_bonustype); 1408 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1409 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1410 } 1411 dmu_buf_rele(db, FTAG); 1412 dnode_rele(dn, FTAG); 1413 } 1414 dmu_tx_commit(tx); 1415 1416 return (0); 1417 } 1418 1419 /* ARGSUSED */ 1420 static int 1421 receive_freeobjects(struct receive_writer_arg *rwa, 1422 struct drr_freeobjects *drrfo) 1423 { 1424 uint64_t obj; 1425 int next_err = 0; 1426 1427 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1428 return (SET_ERROR(EINVAL)); 1429 1430 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1431 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 1432 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1433 dmu_object_info_t doi; 1434 int err; 1435 1436 err = dmu_object_info(rwa->os, obj, &doi); 1437 if (err == ENOENT) 1438 continue; 1439 else if (err != 0) 1440 return (err); 1441 1442 err = dmu_free_long_object(rwa->os, obj); 1443 1444 if (err != 0) 1445 return (err); 1446 1447 if (obj > rwa->max_object) 1448 rwa->max_object = obj; 1449 } 1450 if (next_err != ESRCH) 1451 return (next_err); 1452 return (0); 1453 } 1454 1455 static int 1456 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1457 arc_buf_t *abuf) 1458 { 1459 int err; 1460 dmu_tx_t *tx; 1461 dnode_t *dn; 1462 1463 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 1464 !DMU_OT_IS_VALID(drrw->drr_type)) 1465 return (SET_ERROR(EINVAL)); 1466 1467 /* 1468 * For resuming to work, records must be in increasing order 1469 * by (object, offset). 1470 */ 1471 if (drrw->drr_object < rwa->last_object || 1472 (drrw->drr_object == rwa->last_object && 1473 drrw->drr_offset < rwa->last_offset)) { 1474 return (SET_ERROR(EINVAL)); 1475 } 1476 rwa->last_object = drrw->drr_object; 1477 rwa->last_offset = drrw->drr_offset; 1478 1479 if (rwa->last_object > rwa->max_object) 1480 rwa->max_object = rwa->last_object; 1481 1482 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1483 return (SET_ERROR(EINVAL)); 1484 1485 tx = dmu_tx_create(rwa->os); 1486 dmu_tx_hold_write(tx, drrw->drr_object, 1487 drrw->drr_offset, drrw->drr_logical_size); 1488 err = dmu_tx_assign(tx, TXG_WAIT); 1489 if (err != 0) { 1490 dmu_tx_abort(tx); 1491 return (err); 1492 } 1493 1494 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1495 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1496 dmu_object_byteswap_t byteswap = 1497 DMU_OT_BYTESWAP(drrw->drr_type); 1498 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1499 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1500 } 1501 1502 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); 1503 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); 1504 if (err != 0) { 1505 dnode_rele(dn, FTAG); 1506 dmu_tx_commit(tx); 1507 return (err); 1508 } 1509 dnode_rele(dn, FTAG); 1510 1511 /* 1512 * Note: If the receive fails, we want the resume stream to start 1513 * with the same record that we last successfully received (as opposed 1514 * to the next record), so that we can verify that we are 1515 * resuming from the correct location. 1516 */ 1517 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 1518 dmu_tx_commit(tx); 1519 1520 return (0); 1521 } 1522 1523 /* 1524 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1525 * streams to refer to a copy of the data that is already on the 1526 * system because it came in earlier in the stream. This function 1527 * finds the earlier copy of the data, and uses that copy instead of 1528 * data from the stream to fulfill this write. 1529 */ 1530 static int 1531 receive_write_byref(struct receive_writer_arg *rwa, 1532 struct drr_write_byref *drrwbr) 1533 { 1534 dmu_tx_t *tx; 1535 int err; 1536 guid_map_entry_t gmesrch; 1537 guid_map_entry_t *gmep; 1538 avl_index_t where; 1539 objset_t *ref_os = NULL; 1540 int flags = DMU_READ_PREFETCH; 1541 dmu_buf_t *dbp; 1542 1543 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1544 return (SET_ERROR(EINVAL)); 1545 1546 /* 1547 * If the GUID of the referenced dataset is different from the 1548 * GUID of the target dataset, find the referenced dataset. 1549 */ 1550 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1551 gmesrch.guid = drrwbr->drr_refguid; 1552 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1553 &where)) == NULL) { 1554 return (SET_ERROR(EINVAL)); 1555 } 1556 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1557 return (SET_ERROR(EINVAL)); 1558 } else { 1559 ref_os = rwa->os; 1560 } 1561 1562 if (drrwbr->drr_object > rwa->max_object) 1563 rwa->max_object = drrwbr->drr_object; 1564 1565 if (rwa->raw) 1566 flags |= DMU_READ_NO_DECRYPT; 1567 1568 /* may return either a regular db or an encrypted one */ 1569 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1570 drrwbr->drr_refoffset, FTAG, &dbp, flags); 1571 if (err != 0) 1572 return (err); 1573 1574 tx = dmu_tx_create(rwa->os); 1575 1576 dmu_tx_hold_write(tx, drrwbr->drr_object, 1577 drrwbr->drr_offset, drrwbr->drr_length); 1578 err = dmu_tx_assign(tx, TXG_WAIT); 1579 if (err != 0) { 1580 dmu_tx_abort(tx); 1581 return (err); 1582 } 1583 1584 if (rwa->raw) { 1585 dmu_copy_from_buf(rwa->os, drrwbr->drr_object, 1586 drrwbr->drr_offset, dbp, tx); 1587 } else { 1588 dmu_write(rwa->os, drrwbr->drr_object, 1589 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1590 } 1591 dmu_buf_rele(dbp, FTAG); 1592 1593 /* See comment in restore_write. */ 1594 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 1595 dmu_tx_commit(tx); 1596 return (0); 1597 } 1598 1599 static int 1600 receive_write_embedded(struct receive_writer_arg *rwa, 1601 struct drr_write_embedded *drrwe, void *data) 1602 { 1603 dmu_tx_t *tx; 1604 int err; 1605 1606 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 1607 return (EINVAL); 1608 1609 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 1610 return (EINVAL); 1611 1612 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1613 return (EINVAL); 1614 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1615 return (EINVAL); 1616 if (rwa->raw) 1617 return (SET_ERROR(EINVAL)); 1618 1619 if (drrwe->drr_object > rwa->max_object) 1620 rwa->max_object = drrwe->drr_object; 1621 1622 tx = dmu_tx_create(rwa->os); 1623 1624 dmu_tx_hold_write(tx, drrwe->drr_object, 1625 drrwe->drr_offset, drrwe->drr_length); 1626 err = dmu_tx_assign(tx, TXG_WAIT); 1627 if (err != 0) { 1628 dmu_tx_abort(tx); 1629 return (err); 1630 } 1631 1632 dmu_write_embedded(rwa->os, drrwe->drr_object, 1633 drrwe->drr_offset, data, drrwe->drr_etype, 1634 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 1635 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1636 1637 /* See comment in restore_write. */ 1638 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 1639 dmu_tx_commit(tx); 1640 return (0); 1641 } 1642 1643 static int 1644 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1645 arc_buf_t *abuf) 1646 { 1647 dmu_tx_t *tx; 1648 dmu_buf_t *db, *db_spill; 1649 int err; 1650 uint32_t flags = 0; 1651 1652 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1653 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1654 return (SET_ERROR(EINVAL)); 1655 1656 /* 1657 * This is an unmodified spill block which was added to the stream 1658 * to resolve an issue with incorrectly removing spill blocks. It 1659 * should be ignored by current versions of the code which support 1660 * the DRR_FLAG_SPILL_BLOCK flag. 1661 */ 1662 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 1663 dmu_return_arcbuf(abuf); 1664 return (0); 1665 } 1666 1667 if (rwa->raw) { 1668 if (!DMU_OT_IS_VALID(drrs->drr_type) || 1669 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 1670 drrs->drr_compressed_size == 0) 1671 return (SET_ERROR(EINVAL)); 1672 1673 flags |= DMU_READ_NO_DECRYPT; 1674 } 1675 1676 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1677 return (SET_ERROR(EINVAL)); 1678 1679 if (drrs->drr_object > rwa->max_object) 1680 rwa->max_object = drrs->drr_object; 1681 1682 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1683 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 1684 &db_spill)) != 0) { 1685 dmu_buf_rele(db, FTAG); 1686 return (err); 1687 } 1688 1689 tx = dmu_tx_create(rwa->os); 1690 1691 dmu_tx_hold_spill(tx, db->db_object); 1692 1693 err = dmu_tx_assign(tx, TXG_WAIT); 1694 if (err != 0) { 1695 dmu_buf_rele(db, FTAG); 1696 dmu_buf_rele(db_spill, FTAG); 1697 dmu_tx_abort(tx); 1698 return (err); 1699 } 1700 1701 /* 1702 * Spill blocks may both grow and shrink. When a change in size 1703 * occurs any existing dbuf must be updated to match the logical 1704 * size of the provided arc_buf_t. 1705 */ 1706 if (db_spill->db_size != drrs->drr_length) { 1707 dmu_buf_will_fill(db_spill, tx); 1708 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1709 drrs->drr_length, tx)); 1710 } 1711 1712 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1713 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1714 dmu_object_byteswap_t byteswap = 1715 DMU_OT_BYTESWAP(drrs->drr_type); 1716 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1717 DRR_SPILL_PAYLOAD_SIZE(drrs)); 1718 } 1719 1720 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 1721 1722 dmu_buf_rele(db, FTAG); 1723 dmu_buf_rele(db_spill, FTAG); 1724 1725 dmu_tx_commit(tx); 1726 return (0); 1727 } 1728 1729 /* ARGSUSED */ 1730 static int 1731 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1732 { 1733 int err; 1734 1735 if (drrf->drr_length != DMU_OBJECT_END && 1736 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1737 return (SET_ERROR(EINVAL)); 1738 1739 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1740 return (SET_ERROR(EINVAL)); 1741 1742 if (drrf->drr_object > rwa->max_object) 1743 rwa->max_object = drrf->drr_object; 1744 1745 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1746 drrf->drr_offset, drrf->drr_length); 1747 1748 return (err); 1749 } 1750 1751 static int 1752 receive_object_range(struct receive_writer_arg *rwa, 1753 struct drr_object_range *drror) 1754 { 1755 /* 1756 * By default, we assume this block is in our native format 1757 * (ZFS_HOST_BYTEORDER). We then take into account whether 1758 * the send stream is byteswapped (rwa->byteswap). Finally, 1759 * we need to byteswap again if this particular block was 1760 * in non-native format on the send side. 1761 */ 1762 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 1763 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 1764 1765 /* 1766 * Since dnode block sizes are constant, we should not need to worry 1767 * about making sure that the dnode block size is the same on the 1768 * sending and receiving sides for the time being. For non-raw sends, 1769 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 1770 * record at all). Raw sends require this record type because the 1771 * encryption parameters are used to protect an entire block of bonus 1772 * buffers. If the size of dnode blocks ever becomes variable, 1773 * handling will need to be added to ensure that dnode block sizes 1774 * match on the sending and receiving side. 1775 */ 1776 if (drror->drr_numslots != DNODES_PER_BLOCK || 1777 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 1778 !rwa->raw) 1779 return (SET_ERROR(EINVAL)); 1780 1781 if (drror->drr_firstobj > rwa->max_object) 1782 rwa->max_object = drror->drr_firstobj; 1783 1784 /* 1785 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 1786 * so that the block of dnodes is not written out when it's empty, 1787 * and converted to a HOLE BP. 1788 */ 1789 rwa->or_crypt_params_present = B_TRUE; 1790 rwa->or_firstobj = drror->drr_firstobj; 1791 rwa->or_numslots = drror->drr_numslots; 1792 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 1793 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 1794 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 1795 rwa->or_byteorder = byteorder; 1796 1797 return (0); 1798 } 1799 1800 /* used to destroy the drc_ds on error */ 1801 static void 1802 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1803 { 1804 dsl_dataset_t *ds = drc->drc_ds; 1805 ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT; 1806 1807 /* 1808 * Wait for the txg sync before cleaning up the receive. For 1809 * resumable receives, this ensures that our resume state has 1810 * been written out to disk. For raw receives, this ensures 1811 * that the user accounting code will not attempt to do anything 1812 * after we stopped receiving the dataset. 1813 */ 1814 txg_wait_synced(ds->ds_dir->dd_pool, 0); 1815 ds->ds_objset->os_raw_receive = B_FALSE; 1816 1817 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1818 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 1819 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1820 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1821 } else { 1822 char name[ZFS_MAX_DATASET_NAME_LEN]; 1823 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1824 dsl_dataset_name(ds, name); 1825 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1826 (void) dsl_destroy_head(name); 1827 } 1828 } 1829 1830 static void 1831 receive_cksum(struct receive_arg *ra, int len, void *buf) 1832 { 1833 if (ra->byteswap) { 1834 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1835 } else { 1836 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 1837 } 1838 } 1839 1840 /* 1841 * Read the payload into a buffer of size len, and update the current record's 1842 * payload field. 1843 * Allocate ra->next_rrd and read the next record's header into 1844 * ra->next_rrd->header. 1845 * Verify checksum of payload and next record. 1846 */ 1847 static int 1848 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1849 { 1850 int err; 1851 1852 if (len != 0) { 1853 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1854 err = receive_read(ra, len, buf); 1855 if (err != 0) 1856 return (err); 1857 receive_cksum(ra, len, buf); 1858 1859 /* note: rrd is NULL when reading the begin record's payload */ 1860 if (ra->rrd != NULL) { 1861 ra->rrd->payload = buf; 1862 ra->rrd->payload_size = len; 1863 ra->rrd->bytes_read = ra->bytes_read; 1864 } 1865 } 1866 1867 ra->prev_cksum = ra->cksum; 1868 1869 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1870 err = receive_read(ra, sizeof (ra->next_rrd->header), 1871 &ra->next_rrd->header); 1872 ra->next_rrd->bytes_read = ra->bytes_read; 1873 1874 if (err != 0) { 1875 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1876 ra->next_rrd = NULL; 1877 return (err); 1878 } 1879 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 1880 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1881 ra->next_rrd = NULL; 1882 return (SET_ERROR(EINVAL)); 1883 } 1884 1885 /* 1886 * Note: checksum is of everything up to but not including the 1887 * checksum itself. 1888 */ 1889 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1890 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 1891 receive_cksum(ra, 1892 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1893 &ra->next_rrd->header); 1894 1895 zio_cksum_t cksum_orig = 1896 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1897 zio_cksum_t *cksump = 1898 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1899 1900 if (ra->byteswap) 1901 byteswap_record(&ra->next_rrd->header); 1902 1903 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 1904 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 1905 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1906 ra->next_rrd = NULL; 1907 return (SET_ERROR(ECKSUM)); 1908 } 1909 1910 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 1911 1912 return (0); 1913 } 1914 1915 static void 1916 objlist_create(struct objlist *list) 1917 { 1918 list_create(&list->list, sizeof (struct receive_objnode), 1919 offsetof(struct receive_objnode, node)); 1920 list->last_lookup = 0; 1921 } 1922 1923 static void 1924 objlist_destroy(struct objlist *list) 1925 { 1926 for (struct receive_objnode *n = list_remove_head(&list->list); 1927 n != NULL; n = list_remove_head(&list->list)) { 1928 kmem_free(n, sizeof (*n)); 1929 } 1930 list_destroy(&list->list); 1931 } 1932 1933 /* 1934 * This function looks through the objlist to see if the specified object number 1935 * is contained in the objlist. In the process, it will remove all object 1936 * numbers in the list that are smaller than the specified object number. Thus, 1937 * any lookup of an object number smaller than a previously looked up object 1938 * number will always return false; therefore, all lookups should be done in 1939 * ascending order. 1940 */ 1941 static boolean_t 1942 objlist_exists(struct objlist *list, uint64_t object) 1943 { 1944 struct receive_objnode *node = list_head(&list->list); 1945 ASSERT3U(object, >=, list->last_lookup); 1946 list->last_lookup = object; 1947 while (node != NULL && node->object < object) { 1948 VERIFY3P(node, ==, list_remove_head(&list->list)); 1949 kmem_free(node, sizeof (*node)); 1950 node = list_head(&list->list); 1951 } 1952 return (node != NULL && node->object == object); 1953 } 1954 1955 /* 1956 * The objlist is a list of object numbers stored in ascending order. However, 1957 * the insertion of new object numbers does not seek out the correct location to 1958 * store a new object number; instead, it appends it to the list for simplicity. 1959 * Thus, any users must take care to only insert new object numbers in ascending 1960 * order. 1961 */ 1962 static void 1963 objlist_insert(struct objlist *list, uint64_t object) 1964 { 1965 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 1966 node->object = object; 1967 #ifdef ZFS_DEBUG 1968 struct receive_objnode *last_object = list_tail(&list->list); 1969 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 1970 ASSERT3U(node->object, >, last_objnum); 1971 #endif 1972 list_insert_tail(&list->list, node); 1973 } 1974 1975 /* 1976 * Issue the prefetch reads for any necessary indirect blocks. 1977 * 1978 * We use the object ignore list to tell us whether or not to issue prefetches 1979 * for a given object. We do this for both correctness (in case the blocksize 1980 * of an object has changed) and performance (if the object doesn't exist, don't 1981 * needlessly try to issue prefetches). We also trim the list as we go through 1982 * the stream to prevent it from growing to an unbounded size. 1983 * 1984 * The object numbers within will always be in sorted order, and any write 1985 * records we see will also be in sorted order, but they're not sorted with 1986 * respect to each other (i.e. we can get several object records before 1987 * receiving each object's write records). As a result, once we've reached a 1988 * given object number, we can safely remove any reference to lower object 1989 * numbers in the ignore list. In practice, we receive up to 32 object records 1990 * before receiving write records, so the list can have up to 32 nodes in it. 1991 */ 1992 /* ARGSUSED */ 1993 static void 1994 receive_read_prefetch(struct receive_arg *ra, 1995 uint64_t object, uint64_t offset, uint64_t length) 1996 { 1997 if (!objlist_exists(&ra->ignore_objlist, object)) { 1998 dmu_prefetch(ra->os, object, 1, offset, length, 1999 ZIO_PRIORITY_SYNC_READ); 2000 } 2001 } 2002 2003 /* 2004 * Read records off the stream, issuing any necessary prefetches. 2005 */ 2006 static int 2007 receive_read_record(struct receive_arg *ra) 2008 { 2009 int err; 2010 2011 switch (ra->rrd->header.drr_type) { 2012 case DRR_OBJECT: 2013 { 2014 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2015 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2016 void *buf = NULL; 2017 dmu_object_info_t doi; 2018 2019 if (size != 0) 2020 buf = kmem_zalloc(size, KM_SLEEP); 2021 2022 err = receive_read_payload_and_next_header(ra, size, buf); 2023 if (err != 0) { 2024 kmem_free(buf, size); 2025 return (err); 2026 } 2027 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2028 /* 2029 * See receive_read_prefetch for an explanation why we're 2030 * storing this object in the ignore_obj_list. 2031 */ 2032 if (err == ENOENT || err == EEXIST || 2033 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2034 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2035 err = 0; 2036 } 2037 return (err); 2038 } 2039 case DRR_FREEOBJECTS: 2040 { 2041 err = receive_read_payload_and_next_header(ra, 0, NULL); 2042 return (err); 2043 } 2044 case DRR_WRITE: 2045 { 2046 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2047 arc_buf_t *abuf; 2048 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2049 2050 if (ra->raw) { 2051 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2052 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2053 ra->byteswap; 2054 2055 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2056 drrw->drr_object, byteorder, drrw->drr_salt, 2057 drrw->drr_iv, drrw->drr_mac, drrw->drr_type, 2058 drrw->drr_compressed_size, drrw->drr_logical_size, 2059 drrw->drr_compressiontype); 2060 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2061 ASSERT3U(drrw->drr_compressed_size, >, 0); 2062 ASSERT3U(drrw->drr_logical_size, >=, 2063 drrw->drr_compressed_size); 2064 ASSERT(!is_meta); 2065 abuf = arc_loan_compressed_buf( 2066 dmu_objset_spa(ra->os), 2067 drrw->drr_compressed_size, drrw->drr_logical_size, 2068 drrw->drr_compressiontype); 2069 } else { 2070 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2071 is_meta, drrw->drr_logical_size); 2072 } 2073 2074 err = receive_read_payload_and_next_header(ra, 2075 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2076 if (err != 0) { 2077 dmu_return_arcbuf(abuf); 2078 return (err); 2079 } 2080 ra->rrd->arc_buf = abuf; 2081 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2082 drrw->drr_logical_size); 2083 return (err); 2084 } 2085 case DRR_WRITE_BYREF: 2086 { 2087 struct drr_write_byref *drrwb = 2088 &ra->rrd->header.drr_u.drr_write_byref; 2089 err = receive_read_payload_and_next_header(ra, 0, NULL); 2090 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2091 drrwb->drr_length); 2092 return (err); 2093 } 2094 case DRR_WRITE_EMBEDDED: 2095 { 2096 struct drr_write_embedded *drrwe = 2097 &ra->rrd->header.drr_u.drr_write_embedded; 2098 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2099 void *buf = kmem_zalloc(size, KM_SLEEP); 2100 2101 err = receive_read_payload_and_next_header(ra, size, buf); 2102 if (err != 0) { 2103 kmem_free(buf, size); 2104 return (err); 2105 } 2106 2107 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2108 drrwe->drr_length); 2109 return (err); 2110 } 2111 case DRR_FREE: 2112 { 2113 /* 2114 * It might be beneficial to prefetch indirect blocks here, but 2115 * we don't really have the data to decide for sure. 2116 */ 2117 err = receive_read_payload_and_next_header(ra, 0, NULL); 2118 return (err); 2119 } 2120 case DRR_END: 2121 { 2122 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2123 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2124 return (SET_ERROR(ECKSUM)); 2125 return (0); 2126 } 2127 case DRR_SPILL: 2128 { 2129 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2130 arc_buf_t *abuf; 2131 int len = DRR_SPILL_PAYLOAD_SIZE(drrs); 2132 2133 /* DRR_SPILL records are either raw or uncompressed */ 2134 if (ra->raw) { 2135 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2136 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2137 ra->byteswap; 2138 2139 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2140 dmu_objset_id(ra->os), byteorder, drrs->drr_salt, 2141 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2142 drrs->drr_compressed_size, drrs->drr_length, 2143 drrs->drr_compressiontype); 2144 } else { 2145 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2146 DMU_OT_IS_METADATA(drrs->drr_type), 2147 drrs->drr_length); 2148 } 2149 2150 err = receive_read_payload_and_next_header(ra, len, 2151 abuf->b_data); 2152 if (err != 0) { 2153 dmu_return_arcbuf(abuf); 2154 return (err); 2155 } 2156 ra->rrd->arc_buf = abuf; 2157 return (err); 2158 } 2159 case DRR_OBJECT_RANGE: 2160 { 2161 err = receive_read_payload_and_next_header(ra, 0, NULL); 2162 return (err); 2163 } 2164 default: 2165 return (SET_ERROR(EINVAL)); 2166 } 2167 } 2168 2169 /* 2170 * Commit the records to the pool. 2171 */ 2172 static int 2173 receive_process_record(struct receive_writer_arg *rwa, 2174 struct receive_record_arg *rrd) 2175 { 2176 int err; 2177 2178 /* Processing in order, therefore bytes_read should be increasing. */ 2179 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2180 rwa->bytes_read = rrd->bytes_read; 2181 2182 switch (rrd->header.drr_type) { 2183 case DRR_OBJECT: 2184 { 2185 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2186 err = receive_object(rwa, drro, rrd->payload); 2187 kmem_free(rrd->payload, rrd->payload_size); 2188 rrd->payload = NULL; 2189 return (err); 2190 } 2191 case DRR_FREEOBJECTS: 2192 { 2193 struct drr_freeobjects *drrfo = 2194 &rrd->header.drr_u.drr_freeobjects; 2195 return (receive_freeobjects(rwa, drrfo)); 2196 } 2197 case DRR_WRITE: 2198 { 2199 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2200 err = receive_write(rwa, drrw, rrd->arc_buf); 2201 /* if receive_write() is successful, it consumes the arc_buf */ 2202 if (err != 0) 2203 dmu_return_arcbuf(rrd->arc_buf); 2204 rrd->arc_buf = NULL; 2205 rrd->payload = NULL; 2206 return (err); 2207 } 2208 case DRR_WRITE_BYREF: 2209 { 2210 struct drr_write_byref *drrwbr = 2211 &rrd->header.drr_u.drr_write_byref; 2212 return (receive_write_byref(rwa, drrwbr)); 2213 } 2214 case DRR_WRITE_EMBEDDED: 2215 { 2216 struct drr_write_embedded *drrwe = 2217 &rrd->header.drr_u.drr_write_embedded; 2218 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2219 kmem_free(rrd->payload, rrd->payload_size); 2220 rrd->payload = NULL; 2221 return (err); 2222 } 2223 case DRR_FREE: 2224 { 2225 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2226 return (receive_free(rwa, drrf)); 2227 } 2228 case DRR_SPILL: 2229 { 2230 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2231 err = receive_spill(rwa, drrs, rrd->arc_buf); 2232 /* if receive_spill() is successful, it consumes the arc_buf */ 2233 if (err != 0) 2234 dmu_return_arcbuf(rrd->arc_buf); 2235 rrd->arc_buf = NULL; 2236 rrd->payload = NULL; 2237 return (err); 2238 } 2239 case DRR_OBJECT_RANGE: 2240 { 2241 struct drr_object_range *drror = 2242 &rrd->header.drr_u.drr_object_range; 2243 return (receive_object_range(rwa, drror)); 2244 } 2245 default: 2246 return (SET_ERROR(EINVAL)); 2247 } 2248 } 2249 2250 /* 2251 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2252 * receive_process_record When we're done, signal the main thread and exit. 2253 */ 2254 static void 2255 receive_writer_thread(void *arg) 2256 { 2257 struct receive_writer_arg *rwa = arg; 2258 struct receive_record_arg *rrd; 2259 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2260 rrd = bqueue_dequeue(&rwa->q)) { 2261 /* 2262 * If there's an error, the main thread will stop putting things 2263 * on the queue, but we need to clear everything in it before we 2264 * can exit. 2265 */ 2266 if (rwa->err == 0) { 2267 rwa->err = receive_process_record(rwa, rrd); 2268 } else if (rrd->arc_buf != NULL) { 2269 dmu_return_arcbuf(rrd->arc_buf); 2270 rrd->arc_buf = NULL; 2271 rrd->payload = NULL; 2272 } else if (rrd->payload != NULL) { 2273 kmem_free(rrd->payload, rrd->payload_size); 2274 rrd->payload = NULL; 2275 } 2276 kmem_free(rrd, sizeof (*rrd)); 2277 } 2278 kmem_free(rrd, sizeof (*rrd)); 2279 mutex_enter(&rwa->mutex); 2280 rwa->done = B_TRUE; 2281 cv_signal(&rwa->cv); 2282 mutex_exit(&rwa->mutex); 2283 thread_exit(); 2284 } 2285 2286 static int 2287 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2288 { 2289 uint64_t val; 2290 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2291 uint64_t dsobj = dmu_objset_id(ra->os); 2292 uint64_t resume_obj, resume_off; 2293 2294 if (nvlist_lookup_uint64(begin_nvl, 2295 "resume_object", &resume_obj) != 0 || 2296 nvlist_lookup_uint64(begin_nvl, 2297 "resume_offset", &resume_off) != 0) { 2298 return (SET_ERROR(EINVAL)); 2299 } 2300 VERIFY0(zap_lookup(mos, dsobj, 2301 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2302 if (resume_obj != val) 2303 return (SET_ERROR(EINVAL)); 2304 VERIFY0(zap_lookup(mos, dsobj, 2305 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2306 if (resume_off != val) 2307 return (SET_ERROR(EINVAL)); 2308 2309 return (0); 2310 } 2311 2312 /* 2313 * Read in the stream's records, one by one, and apply them to the pool. There 2314 * are two threads involved; the thread that calls this function will spin up a 2315 * worker thread, read the records off the stream one by one, and issue 2316 * prefetches for any necessary indirect blocks. It will then push the records 2317 * onto an internal blocking queue. The worker thread will pull the records off 2318 * the queue, and actually write the data into the DMU. This way, the worker 2319 * thread doesn't have to wait for reads to complete, since everything it needs 2320 * (the indirect blocks) will be prefetched. 2321 * 2322 * NB: callers *must* call dmu_recv_end() if this succeeds. 2323 */ 2324 int 2325 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2326 int cleanup_fd, uint64_t *action_handlep) 2327 { 2328 int err = 0; 2329 struct receive_arg ra = { 0 }; 2330 struct receive_writer_arg rwa = { 0 }; 2331 int featureflags; 2332 nvlist_t *begin_nvl = NULL; 2333 2334 ra.byteswap = drc->drc_byteswap; 2335 ra.raw = drc->drc_raw; 2336 ra.cksum = drc->drc_cksum; 2337 ra.vp = vp; 2338 ra.voff = *voffp; 2339 2340 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2341 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2342 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2343 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2344 } 2345 2346 objlist_create(&ra.ignore_objlist); 2347 2348 /* these were verified in dmu_recv_begin */ 2349 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2350 DMU_SUBSTREAM); 2351 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2352 2353 /* 2354 * Open the objset we are modifying. 2355 */ 2356 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2357 2358 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2359 2360 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2361 ra.featureflags = featureflags; 2362 2363 ASSERT0(ra.os->os_encrypted && 2364 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2365 2366 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2367 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2368 minor_t minor; 2369 2370 if (cleanup_fd == -1) { 2371 err = SET_ERROR(EBADF); 2372 goto out; 2373 } 2374 err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2375 if (err != 0) { 2376 cleanup_fd = -1; 2377 goto out; 2378 } 2379 2380 if (*action_handlep == 0) { 2381 rwa.guid_to_ds_map = 2382 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2383 avl_create(rwa.guid_to_ds_map, guid_compare, 2384 sizeof (guid_map_entry_t), 2385 offsetof(guid_map_entry_t, avlnode)); 2386 err = zfs_onexit_add_cb(minor, 2387 free_guid_map_onexit, rwa.guid_to_ds_map, 2388 action_handlep); 2389 if (err != 0) 2390 goto out; 2391 } else { 2392 err = zfs_onexit_cb_data(minor, *action_handlep, 2393 (void **)&rwa.guid_to_ds_map); 2394 if (err != 0) 2395 goto out; 2396 } 2397 2398 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2399 } 2400 2401 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2402 void *payload = NULL; 2403 if (payloadlen != 0) 2404 payload = kmem_alloc(payloadlen, KM_SLEEP); 2405 2406 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2407 if (err != 0) { 2408 if (payloadlen != 0) 2409 kmem_free(payload, payloadlen); 2410 goto out; 2411 } 2412 if (payloadlen != 0) { 2413 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2414 kmem_free(payload, payloadlen); 2415 if (err != 0) 2416 goto out; 2417 } 2418 2419 /* handle DSL encryption key payload */ 2420 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2421 nvlist_t *keynvl = NULL; 2422 2423 ASSERT(ra.os->os_encrypted); 2424 ASSERT(drc->drc_raw); 2425 2426 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); 2427 if (err != 0) 2428 goto out; 2429 2430 /* 2431 * If this is a new dataset we set the key immediately. 2432 * Otherwise we don't want to change the key until we 2433 * are sure the rest of the receive succeeded so we stash 2434 * the keynvl away until then. 2435 */ 2436 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa), 2437 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2438 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2439 if (err != 0) 2440 goto out; 2441 2442 /* see comment in dmu_recv_end_sync() */ 2443 drc->drc_ivset_guid = 0; 2444 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2445 &drc->drc_ivset_guid); 2446 2447 if (!drc->drc_newfs) 2448 drc->drc_keynvl = fnvlist_dup(keynvl); 2449 } 2450 2451 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2452 err = resume_check(&ra, begin_nvl); 2453 if (err != 0) 2454 goto out; 2455 } 2456 2457 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2458 offsetof(struct receive_record_arg, node)); 2459 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2460 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2461 rwa.os = ra.os; 2462 rwa.byteswap = drc->drc_byteswap; 2463 rwa.resumable = drc->drc_resumable; 2464 rwa.raw = drc->drc_raw; 2465 rwa.spill = drc->drc_spill; 2466 rwa.os->os_raw_receive = drc->drc_raw; 2467 2468 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2469 TS_RUN, minclsyspri); 2470 /* 2471 * We're reading rwa.err without locks, which is safe since we are the 2472 * only reader, and the worker thread is the only writer. It's ok if we 2473 * miss a write for an iteration or two of the loop, since the writer 2474 * thread will keep freeing records we send it until we send it an eos 2475 * marker. 2476 * 2477 * We can leave this loop in 3 ways: First, if rwa.err is 2478 * non-zero. In that case, the writer thread will free the rrd we just 2479 * pushed. Second, if we're interrupted; in that case, either it's the 2480 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2481 * has been handed off to the writer thread who will free it. Finally, 2482 * if receive_read_record fails or we're at the end of the stream, then 2483 * we free ra.rrd and exit. 2484 */ 2485 while (rwa.err == 0) { 2486 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2487 err = SET_ERROR(EINTR); 2488 break; 2489 } 2490 2491 ASSERT3P(ra.rrd, ==, NULL); 2492 ra.rrd = ra.next_rrd; 2493 ra.next_rrd = NULL; 2494 /* Allocates and loads header into ra.next_rrd */ 2495 err = receive_read_record(&ra); 2496 2497 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2498 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2499 ra.rrd = NULL; 2500 break; 2501 } 2502 2503 bqueue_enqueue(&rwa.q, ra.rrd, 2504 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2505 ra.rrd = NULL; 2506 } 2507 ASSERT3P(ra.rrd, ==, NULL); 2508 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP); 2509 ra.rrd->eos_marker = B_TRUE; 2510 bqueue_enqueue(&rwa.q, ra.rrd, 1); 2511 2512 mutex_enter(&rwa.mutex); 2513 while (!rwa.done) { 2514 cv_wait(&rwa.cv, &rwa.mutex); 2515 } 2516 mutex_exit(&rwa.mutex); 2517 2518 /* 2519 * If we are receiving a full stream as a clone, all object IDs which 2520 * are greater than the maximum ID referenced in the stream are 2521 * by definition unused and must be freed. Note that it's possible that 2522 * we've resumed this send and the first record we received was the END 2523 * record. In that case, max_object would be 0, but we shouldn't start 2524 * freeing all objects from there; instead we should start from the 2525 * resumeobj. 2526 */ 2527 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 2528 uint64_t obj; 2529 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 2530 obj = 0; 2531 if (rwa.max_object > obj) 2532 obj = rwa.max_object; 2533 obj++; 2534 int free_err = 0; 2535 int next_err = 0; 2536 2537 while (next_err == 0) { 2538 free_err = dmu_free_long_object(rwa.os, obj); 2539 if (free_err != 0 && free_err != ENOENT) 2540 break; 2541 2542 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 2543 } 2544 2545 if (err == 0) { 2546 if (free_err != 0 && free_err != ENOENT) 2547 err = free_err; 2548 else if (next_err != ESRCH) 2549 err = next_err; 2550 } 2551 } 2552 2553 cv_destroy(&rwa.cv); 2554 mutex_destroy(&rwa.mutex); 2555 bqueue_destroy(&rwa.q); 2556 if (err == 0) 2557 err = rwa.err; 2558 2559 out: 2560 /* 2561 * If we hit an error before we started the receive_writer_thread 2562 * we need to clean up the next_rrd we create by processing the 2563 * DRR_BEGIN record. 2564 */ 2565 if (ra.next_rrd != NULL) 2566 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd)); 2567 2568 nvlist_free(begin_nvl); 2569 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2570 zfs_onexit_fd_rele(cleanup_fd); 2571 2572 if (err != 0) { 2573 /* 2574 * Clean up references. If receive is not resumable, 2575 * destroy what we created, so we don't leave it in 2576 * the inconsistent state. 2577 */ 2578 dmu_recv_cleanup_ds(drc); 2579 nvlist_free(drc->drc_keynvl); 2580 } 2581 2582 *voffp = ra.voff; 2583 objlist_destroy(&ra.ignore_objlist); 2584 return (err); 2585 } 2586 2587 static int 2588 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2589 { 2590 dmu_recv_cookie_t *drc = arg; 2591 dsl_pool_t *dp = dmu_tx_pool(tx); 2592 int error; 2593 2594 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2595 2596 if (!drc->drc_newfs) { 2597 dsl_dataset_t *origin_head; 2598 2599 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2600 if (error != 0) 2601 return (error); 2602 if (drc->drc_force) { 2603 /* 2604 * We will destroy any snapshots in tofs (i.e. before 2605 * origin_head) that are after the origin (which is 2606 * the snap before drc_ds, because drc_ds can not 2607 * have any snaps of its own). 2608 */ 2609 uint64_t obj; 2610 2611 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2612 while (obj != 2613 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2614 dsl_dataset_t *snap; 2615 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2616 &snap); 2617 if (error != 0) 2618 break; 2619 if (snap->ds_dir != origin_head->ds_dir) 2620 error = SET_ERROR(EINVAL); 2621 if (error == 0) { 2622 error = dsl_destroy_snapshot_check_impl( 2623 snap, B_FALSE); 2624 } 2625 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2626 dsl_dataset_rele(snap, FTAG); 2627 if (error != 0) 2628 break; 2629 } 2630 if (error != 0) { 2631 dsl_dataset_rele(origin_head, FTAG); 2632 return (error); 2633 } 2634 } 2635 if (drc->drc_keynvl != NULL) { 2636 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 2637 drc->drc_keynvl, tx); 2638 if (error != 0) { 2639 dsl_dataset_rele(origin_head, FTAG); 2640 return (error); 2641 } 2642 } 2643 2644 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2645 origin_head, drc->drc_force, drc->drc_owner, tx); 2646 if (error != 0) { 2647 dsl_dataset_rele(origin_head, FTAG); 2648 return (error); 2649 } 2650 error = dsl_dataset_snapshot_check_impl(origin_head, 2651 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2652 dsl_dataset_rele(origin_head, FTAG); 2653 if (error != 0) 2654 return (error); 2655 2656 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2657 } else { 2658 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2659 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2660 } 2661 return (error); 2662 } 2663 2664 static void 2665 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2666 { 2667 dmu_recv_cookie_t *drc = arg; 2668 dsl_pool_t *dp = dmu_tx_pool(tx); 2669 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 2670 2671 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2672 tx, "snap=%s", drc->drc_tosnap); 2673 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 2674 2675 if (!drc->drc_newfs) { 2676 dsl_dataset_t *origin_head; 2677 2678 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2679 &origin_head)); 2680 2681 if (drc->drc_force) { 2682 /* 2683 * Destroy any snapshots of drc_tofs (origin_head) 2684 * after the origin (the snap before drc_ds). 2685 */ 2686 uint64_t obj; 2687 2688 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2689 while (obj != 2690 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2691 dsl_dataset_t *snap; 2692 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2693 &snap)); 2694 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2695 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2696 dsl_destroy_snapshot_sync_impl(snap, 2697 B_FALSE, tx); 2698 dsl_dataset_rele(snap, FTAG); 2699 } 2700 } 2701 if (drc->drc_keynvl != NULL) { 2702 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 2703 drc->drc_keynvl, tx); 2704 nvlist_free(drc->drc_keynvl); 2705 drc->drc_keynvl = NULL; 2706 } 2707 2708 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); 2709 2710 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2711 origin_head, tx); 2712 dsl_dataset_snapshot_sync_impl(origin_head, 2713 drc->drc_tosnap, tx); 2714 2715 /* set snapshot's creation time and guid */ 2716 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2717 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2718 drc->drc_drrb->drr_creation_time; 2719 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2720 drc->drc_drrb->drr_toguid; 2721 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2722 ~DS_FLAG_INCONSISTENT; 2723 2724 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2725 dsl_dataset_phys(origin_head)->ds_flags &= 2726 ~DS_FLAG_INCONSISTENT; 2727 2728 drc->drc_newsnapobj = 2729 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2730 2731 dsl_dataset_rele(origin_head, FTAG); 2732 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2733 2734 if (drc->drc_owner != NULL) 2735 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2736 } else { 2737 dsl_dataset_t *ds = drc->drc_ds; 2738 2739 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2740 2741 /* set snapshot's creation time and guid */ 2742 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2743 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2744 drc->drc_drrb->drr_creation_time; 2745 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2746 drc->drc_drrb->drr_toguid; 2747 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2748 ~DS_FLAG_INCONSISTENT; 2749 2750 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2751 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2752 if (dsl_dataset_has_resume_receive_state(ds)) { 2753 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2754 DS_FIELD_RESUME_FROMGUID, tx); 2755 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2756 DS_FIELD_RESUME_OBJECT, tx); 2757 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2758 DS_FIELD_RESUME_OFFSET, tx); 2759 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2760 DS_FIELD_RESUME_BYTES, tx); 2761 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2762 DS_FIELD_RESUME_TOGUID, tx); 2763 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2764 DS_FIELD_RESUME_TONAME, tx); 2765 } 2766 drc->drc_newsnapobj = 2767 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2768 } 2769 2770 /* 2771 * If this is a raw receive, the crypt_keydata nvlist will include 2772 * a to_ivset_guid for us to set on the new snapshot. This value 2773 * will override the value generated by the snapshot code. However, 2774 * this value may not be present, because older implementations of 2775 * the raw send code did not include this value, and we are still 2776 * allowed to receive them if the zfs_disable_ivset_guid_check 2777 * tunable is set, in which case we will leave the newly-generated 2778 * value. 2779 */ 2780 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 2781 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj, 2782 DMU_OT_DSL_DATASET, tx); 2783 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj, 2784 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 2785 &drc->drc_ivset_guid, tx)); 2786 } 2787 2788 /* 2789 * Release the hold from dmu_recv_begin. This must be done before 2790 * we return to open context, so that when we free the dataset's dnode 2791 * we can evict its bonus buffer. Since the dataset may be destroyed 2792 * at this point (and therefore won't have a valid pointer to the spa) 2793 * we release the key mapping manually here while we do have a valid 2794 * pointer, if it exists. 2795 */ 2796 if (!drc->drc_raw && encrypted) { 2797 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 2798 drc->drc_ds->ds_object, drc->drc_ds); 2799 } 2800 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 2801 drc->drc_ds = NULL; 2802 } 2803 2804 static int 2805 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, 2806 boolean_t raw) 2807 { 2808 dsl_pool_t *dp; 2809 dsl_dataset_t *snapds; 2810 guid_map_entry_t *gmep; 2811 objset_t *os; 2812 ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT; 2813 int err; 2814 2815 ASSERT(guid_map != NULL); 2816 2817 err = dsl_pool_hold(name, FTAG, &dp); 2818 if (err != 0) 2819 return (err); 2820 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2821 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); 2822 if (err == 0) { 2823 /* 2824 * If this is a deduplicated raw send stream, we need 2825 * to make sure that we can still read raw blocks from 2826 * earlier datasets in the stream, so we set the 2827 * os_raw_receive flag now. 2828 */ 2829 if (raw) { 2830 err = dmu_objset_from_ds(snapds, &os); 2831 if (err != 0) { 2832 dsl_dataset_disown(snapds, dsflags, FTAG); 2833 dsl_pool_rele(dp, FTAG); 2834 kmem_free(gmep, sizeof (*gmep)); 2835 return (err); 2836 } 2837 os->os_raw_receive = B_TRUE; 2838 } 2839 2840 gmep->raw = raw; 2841 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2842 gmep->gme_ds = snapds; 2843 avl_add(guid_map, gmep); 2844 } else { 2845 kmem_free(gmep, sizeof (*gmep)); 2846 } 2847 2848 dsl_pool_rele(dp, FTAG); 2849 return (err); 2850 } 2851 2852 static int dmu_recv_end_modified_blocks = 3; 2853 2854 static int 2855 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2856 { 2857 #ifdef _KERNEL 2858 /* 2859 * We will be destroying the ds; make sure its origin is unmounted if 2860 * necessary. 2861 */ 2862 char name[ZFS_MAX_DATASET_NAME_LEN]; 2863 dsl_dataset_name(drc->drc_ds, name); 2864 zfs_destroy_unmount_origin(name); 2865 #endif 2866 2867 return (dsl_sync_task(drc->drc_tofs, 2868 dmu_recv_end_check, dmu_recv_end_sync, drc, 2869 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2870 } 2871 2872 static int 2873 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2874 { 2875 return (dsl_sync_task(drc->drc_tofs, 2876 dmu_recv_end_check, dmu_recv_end_sync, drc, 2877 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2878 } 2879 2880 int 2881 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2882 { 2883 int error; 2884 2885 drc->drc_owner = owner; 2886 2887 if (drc->drc_newfs) 2888 error = dmu_recv_new_end(drc); 2889 else 2890 error = dmu_recv_existing_end(drc); 2891 2892 if (error != 0) { 2893 dmu_recv_cleanup_ds(drc); 2894 nvlist_free(drc->drc_keynvl); 2895 } else if (drc->drc_guid_to_ds_map != NULL) { 2896 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, 2897 drc->drc_newsnapobj, drc->drc_raw); 2898 } 2899 return (error); 2900 } 2901 2902 /* 2903 * Return TRUE if this objset is currently being received into. 2904 */ 2905 boolean_t 2906 dmu_objset_is_receiving(objset_t *os) 2907 { 2908 return (os->os_dsl_dataset != NULL && 2909 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2910 } 2911