1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2019, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2020, The FreeBSD Foundation [1] 30 * 31 * [1] Portions of this software were developed by Allan Jude 32 * under sponsorship from the FreeBSD Foundation. 33 */ 34 35 /* 36 * DVA-based Adjustable Replacement Cache 37 * 38 * While much of the theory of operation used here is 39 * based on the self-tuning, low overhead replacement cache 40 * presented by Megiddo and Modha at FAST 2003, there are some 41 * significant differences: 42 * 43 * 1. The Megiddo and Modha model assumes any page is evictable. 44 * Pages in its cache cannot be "locked" into memory. This makes 45 * the eviction algorithm simple: evict the last page in the list. 46 * This also make the performance characteristics easy to reason 47 * about. Our cache is not so simple. At any given moment, some 48 * subset of the blocks in the cache are un-evictable because we 49 * have handed out a reference to them. Blocks are only evictable 50 * when there are no external references active. This makes 51 * eviction far more problematic: we choose to evict the evictable 52 * blocks that are the "lowest" in the list. 53 * 54 * There are times when it is not possible to evict the requested 55 * space. In these circumstances we are unable to adjust the cache 56 * size. To prevent the cache growing unbounded at these times we 57 * implement a "cache throttle" that slows the flow of new data 58 * into the cache until we can make space available. 59 * 60 * 2. The Megiddo and Modha model assumes a fixed cache size. 61 * Pages are evicted when the cache is full and there is a cache 62 * miss. Our model has a variable sized cache. It grows with 63 * high use, but also tries to react to memory pressure from the 64 * operating system: decreasing its size when system memory is 65 * tight. 66 * 67 * 3. The Megiddo and Modha model assumes a fixed page size. All 68 * elements of the cache are therefore exactly the same size. So 69 * when adjusting the cache size following a cache miss, its simply 70 * a matter of choosing a single page to evict. In our model, we 71 * have variable sized cache blocks (rangeing from 512 bytes to 72 * 128K bytes). We therefore choose a set of blocks to evict to make 73 * space for a cache miss that approximates as closely as possible 74 * the space used by the new block. 75 * 76 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 77 * by N. Megiddo & D. Modha, FAST 2003 78 */ 79 80 /* 81 * The locking model: 82 * 83 * A new reference to a cache buffer can be obtained in two 84 * ways: 1) via a hash table lookup using the DVA as a key, 85 * or 2) via one of the ARC lists. The arc_read() interface 86 * uses method 1, while the internal ARC algorithms for 87 * adjusting the cache use method 2. We therefore provide two 88 * types of locks: 1) the hash table lock array, and 2) the 89 * ARC list locks. 90 * 91 * Buffers do not have their own mutexes, rather they rely on the 92 * hash table mutexes for the bulk of their protection (i.e. most 93 * fields in the arc_buf_hdr_t are protected by these mutexes). 94 * 95 * buf_hash_find() returns the appropriate mutex (held) when it 96 * locates the requested buffer in the hash table. It returns 97 * NULL for the mutex if the buffer was not in the table. 98 * 99 * buf_hash_remove() expects the appropriate hash mutex to be 100 * already held before it is invoked. 101 * 102 * Each ARC state also has a mutex which is used to protect the 103 * buffer list associated with the state. When attempting to 104 * obtain a hash table lock while holding an ARC list lock you 105 * must use: mutex_tryenter() to avoid deadlock. Also note that 106 * the active state mutex must be held before the ghost state mutex. 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2ad_mtx on each vdev for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 /* 121 * ARC operation: 122 * 123 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 124 * This structure can point either to a block that is still in the cache or to 125 * one that is only accessible in an L2 ARC device, or it can provide 126 * information about a block that was recently evicted. If a block is 127 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 128 * information to retrieve it from the L2ARC device. This information is 129 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 130 * that is in this state cannot access the data directly. 131 * 132 * Blocks that are actively being referenced or have not been evicted 133 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 134 * the arc_buf_hdr_t that will point to the data block in memory. A block can 135 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 136 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 137 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 138 * 139 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 140 * ability to store the physical data (b_pabd) associated with the DVA of the 141 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 142 * it will match its on-disk compression characteristics. This behavior can be 143 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 144 * compressed ARC functionality is disabled, the b_pabd will point to an 145 * uncompressed version of the on-disk data. 146 * 147 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 148 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 149 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 150 * consumer. The ARC will provide references to this data and will keep it 151 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 152 * data block and will evict any arc_buf_t that is no longer referenced. The 153 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 154 * "overhead_size" kstat. 155 * 156 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 157 * compressed form. The typical case is that consumers will want uncompressed 158 * data, and when that happens a new data buffer is allocated where the data is 159 * decompressed for them to use. Currently the only consumer who wants 160 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 161 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 162 * with the arc_buf_hdr_t. 163 * 164 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 165 * first one is owned by a compressed send consumer (and therefore references 166 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 167 * used by any other consumer (and has its own uncompressed copy of the data 168 * buffer). 169 * 170 * arc_buf_hdr_t 171 * +-----------+ 172 * | fields | 173 * | common to | 174 * | L1- and | 175 * | L2ARC | 176 * +-----------+ 177 * | l2arc_buf_hdr_t 178 * | | 179 * +-----------+ 180 * | l1arc_buf_hdr_t 181 * | | arc_buf_t 182 * | b_buf +------------>+-----------+ arc_buf_t 183 * | b_pabd +-+ |b_next +---->+-----------+ 184 * +-----------+ | |-----------| |b_next +-->NULL 185 * | |b_comp = T | +-----------+ 186 * | |b_data +-+ |b_comp = F | 187 * | +-----------+ | |b_data +-+ 188 * +->+------+ | +-----------+ | 189 * compressed | | | | 190 * data | |<--------------+ | uncompressed 191 * +------+ compressed, | data 192 * shared +-->+------+ 193 * data | | 194 * | | 195 * +------+ 196 * 197 * When a consumer reads a block, the ARC must first look to see if the 198 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 199 * arc_buf_t and either copies uncompressed data into a new data buffer from an 200 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 201 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 202 * hdr is compressed and the desired compression characteristics of the 203 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 204 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 205 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 206 * be anywhere in the hdr's list. 207 * 208 * The diagram below shows an example of an uncompressed ARC hdr that is 209 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 210 * the last element in the buf list): 211 * 212 * arc_buf_hdr_t 213 * +-----------+ 214 * | | 215 * | | 216 * | | 217 * +-----------+ 218 * l2arc_buf_hdr_t| | 219 * | | 220 * +-----------+ 221 * l1arc_buf_hdr_t| | 222 * | | arc_buf_t (shared) 223 * | b_buf +------------>+---------+ arc_buf_t 224 * | | |b_next +---->+---------+ 225 * | b_pabd +-+ |---------| |b_next +-->NULL 226 * +-----------+ | | | +---------+ 227 * | |b_data +-+ | | 228 * | +---------+ | |b_data +-+ 229 * +->+------+ | +---------+ | 230 * | | | | 231 * uncompressed | | | | 232 * data +------+ | | 233 * ^ +->+------+ | 234 * | uncompressed | | | 235 * | data | | | 236 * | +------+ | 237 * +---------------------------------+ 238 * 239 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 240 * since the physical block is about to be rewritten. The new data contents 241 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 242 * it may compress the data before writing it to disk. The ARC will be called 243 * with the transformed data and will bcopy the transformed on-disk block into 244 * a newly allocated b_pabd. Writes are always done into buffers which have 245 * either been loaned (and hence are new and don't have other readers) or 246 * buffers which have been released (and hence have their own hdr, if there 247 * were originally other readers of the buf's original hdr). This ensures that 248 * the ARC only needs to update a single buf and its hdr after a write occurs. 249 * 250 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 251 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 252 * that when compressed ARC is enabled that the L2ARC blocks are identical 253 * to the on-disk block in the main data pool. This provides a significant 254 * advantage since the ARC can leverage the bp's checksum when reading from the 255 * L2ARC to determine if the contents are valid. However, if the compressed 256 * ARC is disabled, then the L2ARC's block must be transformed to look 257 * like the physical block in the main data pool before comparing the 258 * checksum and determining its validity. 259 * 260 * The L1ARC has a slightly different system for storing encrypted data. 261 * Raw (encrypted + possibly compressed) data has a few subtle differences from 262 * data that is just compressed. The biggest difference is that it is not 263 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded. 264 * The other difference is that encryption cannot be treated as a suggestion. 265 * If a caller would prefer compressed data, but they actually wind up with 266 * uncompressed data the worst thing that could happen is there might be a 267 * performance hit. If the caller requests encrypted data, however, we must be 268 * sure they actually get it or else secret information could be leaked. Raw 269 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 270 * may have both an encrypted version and a decrypted version of its data at 271 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 272 * copied out of this header. To avoid complications with b_pabd, raw buffers 273 * cannot be shared. 274 */ 275 276 #include <sys/spa.h> 277 #include <sys/zio.h> 278 #include <sys/spa_impl.h> 279 #include <sys/zio_compress.h> 280 #include <sys/zio_checksum.h> 281 #include <sys/zfs_context.h> 282 #include <sys/arc.h> 283 #include <sys/refcount.h> 284 #include <sys/vdev.h> 285 #include <sys/vdev_impl.h> 286 #include <sys/dsl_pool.h> 287 #include <sys/zio_checksum.h> 288 #include <sys/multilist.h> 289 #include <sys/abd.h> 290 #include <sys/zil.h> 291 #include <sys/fm/fs/zfs.h> 292 #ifdef _KERNEL 293 #include <sys/vmsystm.h> 294 #include <vm/anon.h> 295 #include <sys/fs/swapnode.h> 296 #include <sys/dnlc.h> 297 #endif 298 #include <sys/callb.h> 299 #include <sys/kstat.h> 300 #include <sys/zthr.h> 301 #include <zfs_fletcher.h> 302 #include <sys/arc_impl.h> 303 #include <sys/aggsum.h> 304 #include <sys/cityhash.h> 305 #include <sys/param.h> 306 307 #ifndef _KERNEL 308 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 309 boolean_t arc_watch = B_FALSE; 310 int arc_procfd; 311 #endif 312 313 /* 314 * This thread's job is to keep enough free memory in the system, by 315 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 316 * arc_available_memory(). 317 */ 318 static zthr_t *arc_reap_zthr; 319 320 /* 321 * This thread's job is to keep arc_size under arc_c, by calling 322 * arc_adjust(), which improves arc_is_overflowing(). 323 */ 324 static zthr_t *arc_adjust_zthr; 325 326 static kmutex_t arc_adjust_lock; 327 static kcondvar_t arc_adjust_waiters_cv; 328 static boolean_t arc_adjust_needed = B_FALSE; 329 330 uint_t arc_reduce_dnlc_percent = 3; 331 332 /* 333 * The number of headers to evict in arc_evict_state_impl() before 334 * dropping the sublist lock and evicting from another sublist. A lower 335 * value means we're more likely to evict the "correct" header (i.e. the 336 * oldest header in the arc state), but comes with higher overhead 337 * (i.e. more invocations of arc_evict_state_impl()). 338 */ 339 int zfs_arc_evict_batch_limit = 10; 340 341 /* number of seconds before growing cache again */ 342 int arc_grow_retry = 60; 343 344 /* 345 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 346 * be converted to ticks, so with the default hz=100, a setting of 15 ms 347 * will actually wait 2 ticks, or 20ms. 348 */ 349 int arc_kmem_cache_reap_retry_ms = 1000; 350 351 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 352 int zfs_arc_overflow_shift = 8; 353 354 /* shift of arc_c for calculating both min and max arc_p */ 355 int arc_p_min_shift = 4; 356 357 /* log2(fraction of arc to reclaim) */ 358 int arc_shrink_shift = 7; 359 360 /* 361 * log2(fraction of ARC which must be free to allow growing). 362 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 363 * when reading a new block into the ARC, we will evict an equal-sized block 364 * from the ARC. 365 * 366 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 367 * we will still not allow it to grow. 368 */ 369 int arc_no_grow_shift = 5; 370 371 372 /* 373 * minimum lifespan of a prefetch block in clock ticks 374 * (initialized in arc_init()) 375 */ 376 static int zfs_arc_min_prefetch_ms = 1; 377 static int zfs_arc_min_prescient_prefetch_ms = 6; 378 379 /* 380 * If this percent of memory is free, don't throttle. 381 */ 382 int arc_lotsfree_percent = 10; 383 384 static boolean_t arc_initialized; 385 386 /* 387 * The arc has filled available memory and has now warmed up. 388 */ 389 static boolean_t arc_warm; 390 391 /* 392 * log2 fraction of the zio arena to keep free. 393 */ 394 int arc_zio_arena_free_shift = 2; 395 396 /* 397 * These tunables are for performance analysis. 398 */ 399 uint64_t zfs_arc_max; 400 uint64_t zfs_arc_min; 401 uint64_t zfs_arc_meta_limit = 0; 402 uint64_t zfs_arc_meta_min = 0; 403 int zfs_arc_grow_retry = 0; 404 int zfs_arc_shrink_shift = 0; 405 int zfs_arc_p_min_shift = 0; 406 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 407 408 /* 409 * ARC dirty data constraints for arc_tempreserve_space() throttle 410 */ 411 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 412 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 413 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 414 415 boolean_t zfs_compressed_arc_enabled = B_TRUE; 416 417 /* The 6 states: */ 418 static arc_state_t ARC_anon; 419 static arc_state_t ARC_mru; 420 static arc_state_t ARC_mru_ghost; 421 static arc_state_t ARC_mfu; 422 static arc_state_t ARC_mfu_ghost; 423 static arc_state_t ARC_l2c_only; 424 425 arc_stats_t arc_stats = { 426 { "hits", KSTAT_DATA_UINT64 }, 427 { "misses", KSTAT_DATA_UINT64 }, 428 { "demand_data_hits", KSTAT_DATA_UINT64 }, 429 { "demand_data_misses", KSTAT_DATA_UINT64 }, 430 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 431 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 432 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 433 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 434 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 435 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 436 { "mru_hits", KSTAT_DATA_UINT64 }, 437 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 438 { "mfu_hits", KSTAT_DATA_UINT64 }, 439 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 440 { "deleted", KSTAT_DATA_UINT64 }, 441 { "mutex_miss", KSTAT_DATA_UINT64 }, 442 { "access_skip", KSTAT_DATA_UINT64 }, 443 { "evict_skip", KSTAT_DATA_UINT64 }, 444 { "evict_not_enough", KSTAT_DATA_UINT64 }, 445 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 446 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 447 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 448 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 449 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 450 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 451 { "hash_elements", KSTAT_DATA_UINT64 }, 452 { "hash_elements_max", KSTAT_DATA_UINT64 }, 453 { "hash_collisions", KSTAT_DATA_UINT64 }, 454 { "hash_chains", KSTAT_DATA_UINT64 }, 455 { "hash_chain_max", KSTAT_DATA_UINT64 }, 456 { "p", KSTAT_DATA_UINT64 }, 457 { "c", KSTAT_DATA_UINT64 }, 458 { "c_min", KSTAT_DATA_UINT64 }, 459 { "c_max", KSTAT_DATA_UINT64 }, 460 { "size", KSTAT_DATA_UINT64 }, 461 { "compressed_size", KSTAT_DATA_UINT64 }, 462 { "uncompressed_size", KSTAT_DATA_UINT64 }, 463 { "overhead_size", KSTAT_DATA_UINT64 }, 464 { "hdr_size", KSTAT_DATA_UINT64 }, 465 { "data_size", KSTAT_DATA_UINT64 }, 466 { "metadata_size", KSTAT_DATA_UINT64 }, 467 { "other_size", KSTAT_DATA_UINT64 }, 468 { "anon_size", KSTAT_DATA_UINT64 }, 469 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 470 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 471 { "mru_size", KSTAT_DATA_UINT64 }, 472 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 473 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 474 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 475 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 476 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 477 { "mfu_size", KSTAT_DATA_UINT64 }, 478 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 479 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 480 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 481 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 482 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 483 { "l2_hits", KSTAT_DATA_UINT64 }, 484 { "l2_misses", KSTAT_DATA_UINT64 }, 485 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 486 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 487 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 488 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 489 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 490 { "l2_feeds", KSTAT_DATA_UINT64 }, 491 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 492 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 493 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 494 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 495 { "l2_writes_done", KSTAT_DATA_UINT64 }, 496 { "l2_writes_error", KSTAT_DATA_UINT64 }, 497 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 498 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 499 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 500 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 501 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 502 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 503 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 504 { "l2_io_error", KSTAT_DATA_UINT64 }, 505 { "l2_size", KSTAT_DATA_UINT64 }, 506 { "l2_asize", KSTAT_DATA_UINT64 }, 507 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 508 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 509 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 510 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 511 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 512 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 513 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 514 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 515 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 516 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 517 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 518 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 519 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 520 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 521 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 522 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 523 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 524 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 525 { "arc_meta_used", KSTAT_DATA_UINT64 }, 526 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 527 { "arc_meta_max", KSTAT_DATA_UINT64 }, 528 { "arc_meta_min", KSTAT_DATA_UINT64 }, 529 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 530 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 531 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 532 }; 533 534 #define ARCSTAT_MAX(stat, val) { \ 535 uint64_t m; \ 536 while ((val) > (m = arc_stats.stat.value.ui64) && \ 537 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 538 continue; \ 539 } 540 541 #define ARCSTAT_MAXSTAT(stat) \ 542 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 543 544 /* 545 * We define a macro to allow ARC hits/misses to be easily broken down by 546 * two separate conditions, giving a total of four different subtypes for 547 * each of hits and misses (so eight statistics total). 548 */ 549 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 550 if (cond1) { \ 551 if (cond2) { \ 552 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 553 } else { \ 554 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 555 } \ 556 } else { \ 557 if (cond2) { \ 558 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 559 } else { \ 560 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 561 } \ 562 } 563 564 /* 565 * This macro allows us to use kstats as floating averages. Each time we 566 * update this kstat, we first factor it and the update value by 567 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 568 * average. This macro assumes that integer loads and stores are atomic, but 569 * is not safe for multiple writers updating the kstat in parallel (only the 570 * last writer's update will remain). 571 */ 572 #define ARCSTAT_F_AVG_FACTOR 3 573 #define ARCSTAT_F_AVG(stat, value) \ 574 do { \ 575 uint64_t x = ARCSTAT(stat); \ 576 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 577 (value) / ARCSTAT_F_AVG_FACTOR; \ 578 ARCSTAT(stat) = x; \ 579 _NOTE(CONSTCOND) \ 580 } while (0) 581 582 kstat_t *arc_ksp; 583 static arc_state_t *arc_anon; 584 static arc_state_t *arc_mru; 585 static arc_state_t *arc_mru_ghost; 586 static arc_state_t *arc_mfu; 587 static arc_state_t *arc_mfu_ghost; 588 static arc_state_t *arc_l2c_only; 589 590 /* 591 * There are also some ARC variables that we want to export, but that are 592 * updated so often that having the canonical representation be the statistic 593 * variable causes a performance bottleneck. We want to use aggsum_t's for these 594 * instead, but still be able to export the kstat in the same way as before. 595 * The solution is to always use the aggsum version, except in the kstat update 596 * callback. 597 */ 598 aggsum_t arc_size; 599 aggsum_t arc_meta_used; 600 aggsum_t astat_data_size; 601 aggsum_t astat_metadata_size; 602 aggsum_t astat_hdr_size; 603 aggsum_t astat_other_size; 604 aggsum_t astat_l2_hdr_size; 605 606 static int arc_no_grow; /* Don't try to grow cache size */ 607 static hrtime_t arc_growtime; 608 static uint64_t arc_tempreserve; 609 static uint64_t arc_loaned_bytes; 610 611 #define GHOST_STATE(state) \ 612 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 613 (state) == arc_l2c_only) 614 615 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 616 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 617 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 618 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 619 #define HDR_PRESCIENT_PREFETCH(hdr) \ 620 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 621 #define HDR_COMPRESSION_ENABLED(hdr) \ 622 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 623 624 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 625 #define HDR_L2_READING(hdr) \ 626 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 627 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 628 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 629 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 630 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 631 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 632 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 633 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 634 635 #define HDR_ISTYPE_METADATA(hdr) \ 636 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 637 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 638 639 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 640 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 641 #define HDR_HAS_RABD(hdr) \ 642 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 643 (hdr)->b_crypt_hdr.b_rabd != NULL) 644 #define HDR_ENCRYPTED(hdr) \ 645 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 646 #define HDR_AUTHENTICATED(hdr) \ 647 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 648 649 /* For storing compression mode in b_flags */ 650 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 651 652 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 653 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 654 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 655 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 656 657 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 658 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 659 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 660 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 661 662 /* 663 * Other sizes 664 */ 665 666 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 667 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 668 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 669 670 /* 671 * Hash table routines 672 */ 673 674 #define HT_LOCK_PAD 64 675 676 struct ht_lock { 677 kmutex_t ht_lock; 678 #ifdef _KERNEL 679 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 680 #endif 681 }; 682 683 #define BUF_LOCKS 256 684 typedef struct buf_hash_table { 685 uint64_t ht_mask; 686 arc_buf_hdr_t **ht_table; 687 struct ht_lock ht_locks[BUF_LOCKS]; 688 } buf_hash_table_t; 689 690 static buf_hash_table_t buf_hash_table; 691 692 #define BUF_HASH_INDEX(spa, dva, birth) \ 693 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 694 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 695 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 696 #define HDR_LOCK(hdr) \ 697 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 698 699 uint64_t zfs_crc64_table[256]; 700 701 /* 702 * Level 2 ARC 703 */ 704 705 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 706 #define L2ARC_HEADROOM 2 /* num of writes */ 707 /* 708 * If we discover during ARC scan any buffers to be compressed, we boost 709 * our headroom for the next scanning cycle by this percentage multiple. 710 */ 711 #define L2ARC_HEADROOM_BOOST 200 712 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 713 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 714 715 /* 716 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 717 * and each of the state has two types: data and metadata. 718 */ 719 #define L2ARC_FEED_TYPES 4 720 721 722 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 723 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 724 725 /* L2ARC Performance Tunables */ 726 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 727 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 728 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 729 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 730 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 731 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 732 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 733 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 734 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 735 int l2arc_meta_percent = 33; /* limit on headers size */ 736 737 /* 738 * L2ARC Internals 739 */ 740 static list_t L2ARC_dev_list; /* device list */ 741 static list_t *l2arc_dev_list; /* device list pointer */ 742 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 743 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 744 static list_t L2ARC_free_on_write; /* free after write buf list */ 745 static list_t *l2arc_free_on_write; /* free after write list ptr */ 746 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 747 static uint64_t l2arc_ndev; /* number of devices */ 748 749 typedef struct l2arc_read_callback { 750 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 751 blkptr_t l2rcb_bp; /* original blkptr */ 752 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 753 int l2rcb_flags; /* original flags */ 754 abd_t *l2rcb_abd; /* temporary buffer */ 755 } l2arc_read_callback_t; 756 757 typedef struct l2arc_data_free { 758 /* protected by l2arc_free_on_write_mtx */ 759 abd_t *l2df_abd; 760 size_t l2df_size; 761 arc_buf_contents_t l2df_type; 762 list_node_t l2df_list_node; 763 } l2arc_data_free_t; 764 765 static kmutex_t l2arc_feed_thr_lock; 766 static kcondvar_t l2arc_feed_thr_cv; 767 static uint8_t l2arc_thread_exit; 768 769 static kmutex_t l2arc_rebuild_thr_lock; 770 static kcondvar_t l2arc_rebuild_thr_cv; 771 772 enum arc_hdr_alloc_flags { 773 ARC_HDR_ALLOC_RDATA = 0x1, 774 ARC_HDR_DO_ADAPT = 0x2, 775 }; 776 777 778 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 779 typedef enum arc_fill_flags { 780 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 781 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 782 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 783 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 784 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 785 } arc_fill_flags_t; 786 787 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 788 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 789 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 790 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 791 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 792 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t); 793 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int); 794 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 795 static boolean_t arc_is_overflowing(); 796 static void arc_buf_watch(arc_buf_t *); 797 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd); 798 799 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 800 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 801 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 802 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 803 804 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 805 static void l2arc_read_done(zio_t *); 806 static void l2arc_do_free_on_write(void); 807 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 808 boolean_t state_only); 809 810 #define l2arc_hdr_arcstats_increment(hdr) \ 811 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 812 #define l2arc_hdr_arcstats_decrement(hdr) \ 813 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 814 #define l2arc_hdr_arcstats_increment_state(hdr) \ 815 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 816 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 817 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 818 819 /* 820 * The arc_all_memory function is a ZoL enhancement that lives in their OSL 821 * code. In user-space code, which is used primarily for testing, we return 822 * half of all memory. 823 */ 824 uint64_t 825 arc_all_memory(void) 826 { 827 #ifdef _KERNEL 828 return (ptob(physmem)); 829 #else 830 return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2); 831 #endif 832 } 833 834 /* 835 * We use Cityhash for this. It's fast, and has good hash properties without 836 * requiring any large static buffers. 837 */ 838 static uint64_t 839 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 840 { 841 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 842 } 843 844 #define HDR_EMPTY(hdr) \ 845 ((hdr)->b_dva.dva_word[0] == 0 && \ 846 (hdr)->b_dva.dva_word[1] == 0) 847 848 #define HDR_EMPTY_OR_LOCKED(hdr) \ 849 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 850 851 #define HDR_EQUAL(spa, dva, birth, hdr) \ 852 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 853 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 854 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 855 856 static void 857 buf_discard_identity(arc_buf_hdr_t *hdr) 858 { 859 hdr->b_dva.dva_word[0] = 0; 860 hdr->b_dva.dva_word[1] = 0; 861 hdr->b_birth = 0; 862 } 863 864 static arc_buf_hdr_t * 865 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 866 { 867 const dva_t *dva = BP_IDENTITY(bp); 868 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 869 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 870 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 871 arc_buf_hdr_t *hdr; 872 873 mutex_enter(hash_lock); 874 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 875 hdr = hdr->b_hash_next) { 876 if (HDR_EQUAL(spa, dva, birth, hdr)) { 877 *lockp = hash_lock; 878 return (hdr); 879 } 880 } 881 mutex_exit(hash_lock); 882 *lockp = NULL; 883 return (NULL); 884 } 885 886 /* 887 * Insert an entry into the hash table. If there is already an element 888 * equal to elem in the hash table, then the already existing element 889 * will be returned and the new element will not be inserted. 890 * Otherwise returns NULL. 891 * If lockp == NULL, the caller is assumed to already hold the hash lock. 892 */ 893 static arc_buf_hdr_t * 894 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 895 { 896 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 897 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 898 arc_buf_hdr_t *fhdr; 899 uint32_t i; 900 901 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 902 ASSERT(hdr->b_birth != 0); 903 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 904 905 if (lockp != NULL) { 906 *lockp = hash_lock; 907 mutex_enter(hash_lock); 908 } else { 909 ASSERT(MUTEX_HELD(hash_lock)); 910 } 911 912 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 913 fhdr = fhdr->b_hash_next, i++) { 914 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 915 return (fhdr); 916 } 917 918 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 919 buf_hash_table.ht_table[idx] = hdr; 920 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 921 922 /* collect some hash table performance data */ 923 if (i > 0) { 924 ARCSTAT_BUMP(arcstat_hash_collisions); 925 if (i == 1) 926 ARCSTAT_BUMP(arcstat_hash_chains); 927 928 ARCSTAT_MAX(arcstat_hash_chain_max, i); 929 } 930 931 ARCSTAT_BUMP(arcstat_hash_elements); 932 ARCSTAT_MAXSTAT(arcstat_hash_elements); 933 934 return (NULL); 935 } 936 937 static void 938 buf_hash_remove(arc_buf_hdr_t *hdr) 939 { 940 arc_buf_hdr_t *fhdr, **hdrp; 941 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 942 943 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 944 ASSERT(HDR_IN_HASH_TABLE(hdr)); 945 946 hdrp = &buf_hash_table.ht_table[idx]; 947 while ((fhdr = *hdrp) != hdr) { 948 ASSERT3P(fhdr, !=, NULL); 949 hdrp = &fhdr->b_hash_next; 950 } 951 *hdrp = hdr->b_hash_next; 952 hdr->b_hash_next = NULL; 953 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 954 955 /* collect some hash table performance data */ 956 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 957 958 if (buf_hash_table.ht_table[idx] && 959 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 960 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 961 } 962 963 /* 964 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 965 * metadata and data are cached from ARC into L2ARC. 966 */ 967 int l2arc_mfuonly = 0; 968 969 /* 970 * Global data structures and functions for the buf kmem cache. 971 */ 972 973 static kmem_cache_t *hdr_full_cache; 974 static kmem_cache_t *hdr_full_crypt_cache; 975 static kmem_cache_t *hdr_l2only_cache; 976 static kmem_cache_t *buf_cache; 977 978 static void 979 buf_fini(void) 980 { 981 int i; 982 983 kmem_free(buf_hash_table.ht_table, 984 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 985 for (i = 0; i < BUF_LOCKS; i++) 986 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 987 kmem_cache_destroy(hdr_full_cache); 988 kmem_cache_destroy(hdr_full_crypt_cache); 989 kmem_cache_destroy(hdr_l2only_cache); 990 kmem_cache_destroy(buf_cache); 991 } 992 993 /* 994 * Constructor callback - called when the cache is empty 995 * and a new buf is requested. 996 */ 997 /* ARGSUSED */ 998 static int 999 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1000 { 1001 arc_buf_hdr_t *hdr = vbuf; 1002 1003 bzero(hdr, HDR_FULL_SIZE); 1004 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1005 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1006 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1007 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1008 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1009 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1010 1011 return (0); 1012 } 1013 1014 /* ARGSUSED */ 1015 static int 1016 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1017 { 1018 arc_buf_hdr_t *hdr = vbuf; 1019 1020 (void) hdr_full_cons(vbuf, unused, kmflag); 1021 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1022 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1023 1024 return (0); 1025 } 1026 1027 /* ARGSUSED */ 1028 static int 1029 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1030 { 1031 arc_buf_hdr_t *hdr = vbuf; 1032 1033 bzero(hdr, HDR_L2ONLY_SIZE); 1034 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1035 1036 return (0); 1037 } 1038 1039 /* ARGSUSED */ 1040 static int 1041 buf_cons(void *vbuf, void *unused, int kmflag) 1042 { 1043 arc_buf_t *buf = vbuf; 1044 1045 bzero(buf, sizeof (arc_buf_t)); 1046 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1047 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1048 1049 return (0); 1050 } 1051 1052 /* 1053 * Destructor callback - called when a cached buf is 1054 * no longer required. 1055 */ 1056 /* ARGSUSED */ 1057 static void 1058 hdr_full_dest(void *vbuf, void *unused) 1059 { 1060 arc_buf_hdr_t *hdr = vbuf; 1061 1062 ASSERT(HDR_EMPTY(hdr)); 1063 cv_destroy(&hdr->b_l1hdr.b_cv); 1064 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1065 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1066 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1067 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1068 } 1069 1070 /* ARGSUSED */ 1071 static void 1072 hdr_full_crypt_dest(void *vbuf, void *unused) 1073 { 1074 arc_buf_hdr_t *hdr = vbuf; 1075 1076 hdr_full_dest(hdr, unused); 1077 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1078 } 1079 1080 /* ARGSUSED */ 1081 static void 1082 hdr_l2only_dest(void *vbuf, void *unused) 1083 { 1084 arc_buf_hdr_t *hdr = vbuf; 1085 1086 ASSERT(HDR_EMPTY(hdr)); 1087 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1088 } 1089 1090 /* ARGSUSED */ 1091 static void 1092 buf_dest(void *vbuf, void *unused) 1093 { 1094 arc_buf_t *buf = vbuf; 1095 1096 mutex_destroy(&buf->b_evict_lock); 1097 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1098 } 1099 1100 /* 1101 * Reclaim callback -- invoked when memory is low. 1102 */ 1103 /* ARGSUSED */ 1104 static void 1105 hdr_recl(void *unused) 1106 { 1107 dprintf("hdr_recl called\n"); 1108 /* 1109 * umem calls the reclaim func when we destroy the buf cache, 1110 * which is after we do arc_fini(). 1111 */ 1112 if (arc_initialized) 1113 zthr_wakeup(arc_reap_zthr); 1114 } 1115 1116 static void 1117 buf_init(void) 1118 { 1119 uint64_t *ct; 1120 uint64_t hsize = 1ULL << 12; 1121 int i, j; 1122 1123 /* 1124 * The hash table is big enough to fill all of physical memory 1125 * with an average block size of zfs_arc_average_blocksize (default 8K). 1126 * By default, the table will take up 1127 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1128 */ 1129 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1130 hsize <<= 1; 1131 retry: 1132 buf_hash_table.ht_mask = hsize - 1; 1133 buf_hash_table.ht_table = 1134 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1135 if (buf_hash_table.ht_table == NULL) { 1136 ASSERT(hsize > (1ULL << 8)); 1137 hsize >>= 1; 1138 goto retry; 1139 } 1140 1141 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1142 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1143 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1144 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1145 hdr_recl, NULL, NULL, 0); 1146 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1147 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1148 NULL, NULL, 0); 1149 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1150 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1151 1152 for (i = 0; i < 256; i++) 1153 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1154 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1155 1156 for (i = 0; i < BUF_LOCKS; i++) { 1157 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1158 NULL, MUTEX_DEFAULT, NULL); 1159 } 1160 } 1161 1162 /* 1163 * This is the size that the buf occupies in memory. If the buf is compressed, 1164 * it will correspond to the compressed size. You should use this method of 1165 * getting the buf size unless you explicitly need the logical size. 1166 */ 1167 int32_t 1168 arc_buf_size(arc_buf_t *buf) 1169 { 1170 return (ARC_BUF_COMPRESSED(buf) ? 1171 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1172 } 1173 1174 int32_t 1175 arc_buf_lsize(arc_buf_t *buf) 1176 { 1177 return (HDR_GET_LSIZE(buf->b_hdr)); 1178 } 1179 1180 /* 1181 * This function will return B_TRUE if the buffer is encrypted in memory. 1182 * This buffer can be decrypted by calling arc_untransform(). 1183 */ 1184 boolean_t 1185 arc_is_encrypted(arc_buf_t *buf) 1186 { 1187 return (ARC_BUF_ENCRYPTED(buf) != 0); 1188 } 1189 1190 /* 1191 * Returns B_TRUE if the buffer represents data that has not had its MAC 1192 * verified yet. 1193 */ 1194 boolean_t 1195 arc_is_unauthenticated(arc_buf_t *buf) 1196 { 1197 return (HDR_NOAUTH(buf->b_hdr) != 0); 1198 } 1199 1200 void 1201 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1202 uint8_t *iv, uint8_t *mac) 1203 { 1204 arc_buf_hdr_t *hdr = buf->b_hdr; 1205 1206 ASSERT(HDR_PROTECTED(hdr)); 1207 1208 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1209 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1210 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1211 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1212 /* CONSTCOND */ 1213 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1214 } 1215 1216 /* 1217 * Indicates how this buffer is compressed in memory. If it is not compressed 1218 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1219 * arc_untransform() as long as it is also unencrypted. 1220 */ 1221 enum zio_compress 1222 arc_get_compression(arc_buf_t *buf) 1223 { 1224 return (ARC_BUF_COMPRESSED(buf) ? 1225 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1226 } 1227 1228 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1229 1230 /* 1231 * Return the compression algorithm used to store this data in the ARC. If ARC 1232 * compression is enabled or this is an encrypted block, this will be the same 1233 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1234 */ 1235 static inline enum zio_compress 1236 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1237 { 1238 return (HDR_COMPRESSION_ENABLED(hdr) ? 1239 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1240 } 1241 1242 static inline boolean_t 1243 arc_buf_is_shared(arc_buf_t *buf) 1244 { 1245 boolean_t shared = (buf->b_data != NULL && 1246 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1247 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1248 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1249 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1250 IMPLY(shared, ARC_BUF_SHARED(buf)); 1251 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1252 1253 /* 1254 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1255 * already being shared" requirement prevents us from doing that. 1256 */ 1257 1258 return (shared); 1259 } 1260 1261 /* 1262 * Free the checksum associated with this header. If there is no checksum, this 1263 * is a no-op. 1264 */ 1265 static inline void 1266 arc_cksum_free(arc_buf_hdr_t *hdr) 1267 { 1268 ASSERT(HDR_HAS_L1HDR(hdr)); 1269 1270 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1271 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1272 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1273 hdr->b_l1hdr.b_freeze_cksum = NULL; 1274 } 1275 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1276 } 1277 1278 /* 1279 * Return true iff at least one of the bufs on hdr is not compressed. 1280 * Encrypted buffers count as compressed. 1281 */ 1282 static boolean_t 1283 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1284 { 1285 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1286 1287 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1288 if (!ARC_BUF_COMPRESSED(b)) { 1289 return (B_TRUE); 1290 } 1291 } 1292 return (B_FALSE); 1293 } 1294 1295 /* 1296 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1297 * matches the checksum that is stored in the hdr. If there is no checksum, 1298 * or if the buf is compressed, this is a no-op. 1299 */ 1300 static void 1301 arc_cksum_verify(arc_buf_t *buf) 1302 { 1303 arc_buf_hdr_t *hdr = buf->b_hdr; 1304 zio_cksum_t zc; 1305 1306 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1307 return; 1308 1309 if (ARC_BUF_COMPRESSED(buf)) 1310 return; 1311 1312 ASSERT(HDR_HAS_L1HDR(hdr)); 1313 1314 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1315 1316 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1317 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1318 return; 1319 } 1320 1321 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1322 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1323 panic("buffer modified while frozen!"); 1324 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1325 } 1326 1327 /* 1328 * This function makes the assumption that data stored in the L2ARC 1329 * will be transformed exactly as it is in the main pool. Because of 1330 * this we can verify the checksum against the reading process's bp. 1331 */ 1332 static boolean_t 1333 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1334 { 1335 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1336 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1337 1338 /* 1339 * Block pointers always store the checksum for the logical data. 1340 * If the block pointer has the gang bit set, then the checksum 1341 * it represents is for the reconstituted data and not for an 1342 * individual gang member. The zio pipeline, however, must be able to 1343 * determine the checksum of each of the gang constituents so it 1344 * treats the checksum comparison differently than what we need 1345 * for l2arc blocks. This prevents us from using the 1346 * zio_checksum_error() interface directly. Instead we must call the 1347 * zio_checksum_error_impl() so that we can ensure the checksum is 1348 * generated using the correct checksum algorithm and accounts for the 1349 * logical I/O size and not just a gang fragment. 1350 */ 1351 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1352 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1353 zio->io_offset, NULL) == 0); 1354 } 1355 1356 /* 1357 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1358 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1359 * isn't modified later on. If buf is compressed or there is already a checksum 1360 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1361 */ 1362 static void 1363 arc_cksum_compute(arc_buf_t *buf) 1364 { 1365 arc_buf_hdr_t *hdr = buf->b_hdr; 1366 1367 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1368 return; 1369 1370 ASSERT(HDR_HAS_L1HDR(hdr)); 1371 1372 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1373 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1374 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1375 return; 1376 } 1377 1378 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1379 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1380 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1381 KM_SLEEP); 1382 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1383 hdr->b_l1hdr.b_freeze_cksum); 1384 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1385 arc_buf_watch(buf); 1386 } 1387 1388 #ifndef _KERNEL 1389 typedef struct procctl { 1390 long cmd; 1391 prwatch_t prwatch; 1392 } procctl_t; 1393 #endif 1394 1395 /* ARGSUSED */ 1396 static void 1397 arc_buf_unwatch(arc_buf_t *buf) 1398 { 1399 #ifndef _KERNEL 1400 if (arc_watch) { 1401 int result; 1402 procctl_t ctl; 1403 ctl.cmd = PCWATCH; 1404 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1405 ctl.prwatch.pr_size = 0; 1406 ctl.prwatch.pr_wflags = 0; 1407 result = write(arc_procfd, &ctl, sizeof (ctl)); 1408 ASSERT3U(result, ==, sizeof (ctl)); 1409 } 1410 #endif 1411 } 1412 1413 /* ARGSUSED */ 1414 static void 1415 arc_buf_watch(arc_buf_t *buf) 1416 { 1417 #ifndef _KERNEL 1418 if (arc_watch) { 1419 int result; 1420 procctl_t ctl; 1421 ctl.cmd = PCWATCH; 1422 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1423 ctl.prwatch.pr_size = arc_buf_size(buf); 1424 ctl.prwatch.pr_wflags = WA_WRITE; 1425 result = write(arc_procfd, &ctl, sizeof (ctl)); 1426 ASSERT3U(result, ==, sizeof (ctl)); 1427 } 1428 #endif 1429 } 1430 1431 static arc_buf_contents_t 1432 arc_buf_type(arc_buf_hdr_t *hdr) 1433 { 1434 arc_buf_contents_t type; 1435 if (HDR_ISTYPE_METADATA(hdr)) { 1436 type = ARC_BUFC_METADATA; 1437 } else { 1438 type = ARC_BUFC_DATA; 1439 } 1440 VERIFY3U(hdr->b_type, ==, type); 1441 return (type); 1442 } 1443 1444 boolean_t 1445 arc_is_metadata(arc_buf_t *buf) 1446 { 1447 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1448 } 1449 1450 static uint32_t 1451 arc_bufc_to_flags(arc_buf_contents_t type) 1452 { 1453 switch (type) { 1454 case ARC_BUFC_DATA: 1455 /* metadata field is 0 if buffer contains normal data */ 1456 return (0); 1457 case ARC_BUFC_METADATA: 1458 return (ARC_FLAG_BUFC_METADATA); 1459 default: 1460 break; 1461 } 1462 panic("undefined ARC buffer type!"); 1463 return ((uint32_t)-1); 1464 } 1465 1466 void 1467 arc_buf_thaw(arc_buf_t *buf) 1468 { 1469 arc_buf_hdr_t *hdr = buf->b_hdr; 1470 1471 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1472 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1473 1474 arc_cksum_verify(buf); 1475 1476 /* 1477 * Compressed buffers do not manipulate the b_freeze_cksum. 1478 */ 1479 if (ARC_BUF_COMPRESSED(buf)) 1480 return; 1481 1482 ASSERT(HDR_HAS_L1HDR(hdr)); 1483 arc_cksum_free(hdr); 1484 1485 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1486 #ifdef ZFS_DEBUG 1487 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1488 if (hdr->b_l1hdr.b_thawed != NULL) 1489 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1490 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1491 } 1492 #endif 1493 1494 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1495 1496 arc_buf_unwatch(buf); 1497 } 1498 1499 void 1500 arc_buf_freeze(arc_buf_t *buf) 1501 { 1502 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1503 return; 1504 1505 if (ARC_BUF_COMPRESSED(buf)) 1506 return; 1507 1508 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1509 arc_cksum_compute(buf); 1510 } 1511 1512 /* 1513 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1514 * the following functions should be used to ensure that the flags are 1515 * updated in a thread-safe way. When manipulating the flags either 1516 * the hash_lock must be held or the hdr must be undiscoverable. This 1517 * ensures that we're not racing with any other threads when updating 1518 * the flags. 1519 */ 1520 static inline void 1521 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1522 { 1523 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1524 hdr->b_flags |= flags; 1525 } 1526 1527 static inline void 1528 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1529 { 1530 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1531 hdr->b_flags &= ~flags; 1532 } 1533 1534 /* 1535 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1536 * done in a special way since we have to clear and set bits 1537 * at the same time. Consumers that wish to set the compression bits 1538 * must use this function to ensure that the flags are updated in 1539 * thread-safe manner. 1540 */ 1541 static void 1542 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1543 { 1544 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1545 1546 /* 1547 * Holes and embedded blocks will always have a psize = 0 so 1548 * we ignore the compression of the blkptr and set the 1549 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1550 * Holes and embedded blocks remain anonymous so we don't 1551 * want to uncompress them. Mark them as uncompressed. 1552 */ 1553 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1554 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1555 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1556 } else { 1557 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1558 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1559 } 1560 1561 HDR_SET_COMPRESS(hdr, cmp); 1562 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1563 } 1564 1565 /* 1566 * Looks for another buf on the same hdr which has the data decompressed, copies 1567 * from it, and returns true. If no such buf exists, returns false. 1568 */ 1569 static boolean_t 1570 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1571 { 1572 arc_buf_hdr_t *hdr = buf->b_hdr; 1573 boolean_t copied = B_FALSE; 1574 1575 ASSERT(HDR_HAS_L1HDR(hdr)); 1576 ASSERT3P(buf->b_data, !=, NULL); 1577 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1578 1579 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1580 from = from->b_next) { 1581 /* can't use our own data buffer */ 1582 if (from == buf) { 1583 continue; 1584 } 1585 1586 if (!ARC_BUF_COMPRESSED(from)) { 1587 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1588 copied = B_TRUE; 1589 break; 1590 } 1591 } 1592 1593 /* 1594 * Note: With encryption support, the following assertion is no longer 1595 * necessarily valid. If we receive two back to back raw snapshots 1596 * (send -w), the second receive can use a hdr with a cksum already 1597 * calculated. This happens via: 1598 * dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf() 1599 * The rsend/send_mixed_raw test case exercises this code path. 1600 * 1601 * There were no decompressed bufs, so there should not be a 1602 * checksum on the hdr either. 1603 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1604 */ 1605 1606 return (copied); 1607 } 1608 1609 /* 1610 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1611 */ 1612 static uint64_t 1613 arc_hdr_size(arc_buf_hdr_t *hdr) 1614 { 1615 uint64_t size; 1616 1617 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1618 HDR_GET_PSIZE(hdr) > 0) { 1619 size = HDR_GET_PSIZE(hdr); 1620 } else { 1621 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1622 size = HDR_GET_LSIZE(hdr); 1623 } 1624 return (size); 1625 } 1626 1627 static int 1628 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1629 { 1630 int ret; 1631 uint64_t csize; 1632 uint64_t lsize = HDR_GET_LSIZE(hdr); 1633 uint64_t psize = HDR_GET_PSIZE(hdr); 1634 void *tmpbuf = NULL; 1635 abd_t *abd = hdr->b_l1hdr.b_pabd; 1636 1637 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1638 ASSERT(HDR_AUTHENTICATED(hdr)); 1639 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1640 1641 /* 1642 * The MAC is calculated on the compressed data that is stored on disk. 1643 * However, if compressed arc is disabled we will only have the 1644 * decompressed data available to us now. Compress it into a temporary 1645 * abd so we can verify the MAC. The performance overhead of this will 1646 * be relatively low, since most objects in an encrypted objset will 1647 * be encrypted (instead of authenticated) anyway. 1648 */ 1649 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1650 !HDR_COMPRESSION_ENABLED(hdr)) { 1651 tmpbuf = zio_buf_alloc(lsize); 1652 abd = abd_get_from_buf(tmpbuf, lsize); 1653 abd_take_ownership_of_buf(abd, B_TRUE); 1654 1655 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1656 hdr->b_l1hdr.b_pabd, tmpbuf, lsize); 1657 ASSERT3U(csize, <=, psize); 1658 abd_zero_off(abd, csize, psize - csize); 1659 } 1660 1661 /* 1662 * Authentication is best effort. We authenticate whenever the key is 1663 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1664 */ 1665 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1666 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1667 ASSERT3U(lsize, ==, psize); 1668 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1669 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1670 } else { 1671 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1672 hdr->b_crypt_hdr.b_mac); 1673 } 1674 1675 if (ret == 0) 1676 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1677 else if (ret != ENOENT) 1678 goto error; 1679 1680 if (tmpbuf != NULL) 1681 abd_free(abd); 1682 1683 return (0); 1684 1685 error: 1686 if (tmpbuf != NULL) 1687 abd_free(abd); 1688 1689 return (ret); 1690 } 1691 1692 /* 1693 * This function will take a header that only has raw encrypted data in 1694 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1695 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1696 * also decompress the data. 1697 */ 1698 static int 1699 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1700 { 1701 int ret; 1702 abd_t *cabd = NULL; 1703 void *tmp = NULL; 1704 boolean_t no_crypt = B_FALSE; 1705 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1706 1707 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1708 ASSERT(HDR_ENCRYPTED(hdr)); 1709 1710 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 1711 1712 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1713 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1714 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1715 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1716 if (ret != 0) 1717 goto error; 1718 1719 if (no_crypt) { 1720 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1721 HDR_GET_PSIZE(hdr)); 1722 } 1723 1724 /* 1725 * If this header has disabled arc compression but the b_pabd is 1726 * compressed after decrypting it, we need to decompress the newly 1727 * decrypted data. 1728 */ 1729 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1730 !HDR_COMPRESSION_ENABLED(hdr)) { 1731 /* 1732 * We want to make sure that we are correctly honoring the 1733 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1734 * and then loan a buffer from it, rather than allocating a 1735 * linear buffer and wrapping it in an abd later. 1736 */ 1737 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1738 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1739 1740 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1741 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1742 HDR_GET_LSIZE(hdr)); 1743 if (ret != 0) { 1744 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1745 goto error; 1746 } 1747 1748 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1749 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1750 arc_hdr_size(hdr), hdr); 1751 hdr->b_l1hdr.b_pabd = cabd; 1752 } 1753 1754 return (0); 1755 1756 error: 1757 arc_hdr_free_pabd(hdr, B_FALSE); 1758 if (cabd != NULL) 1759 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1760 1761 return (ret); 1762 } 1763 1764 /* 1765 * This function is called during arc_buf_fill() to prepare the header's 1766 * abd plaintext pointer for use. This involves authenticated protected 1767 * data and decrypting encrypted data into the plaintext abd. 1768 */ 1769 static int 1770 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1771 const zbookmark_phys_t *zb, boolean_t noauth) 1772 { 1773 int ret; 1774 1775 ASSERT(HDR_PROTECTED(hdr)); 1776 1777 if (hash_lock != NULL) 1778 mutex_enter(hash_lock); 1779 1780 if (HDR_NOAUTH(hdr) && !noauth) { 1781 /* 1782 * The caller requested authenticated data but our data has 1783 * not been authenticated yet. Verify the MAC now if we can. 1784 */ 1785 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1786 if (ret != 0) 1787 goto error; 1788 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1789 /* 1790 * If we only have the encrypted version of the data, but the 1791 * unencrypted version was requested we take this opportunity 1792 * to store the decrypted version in the header for future use. 1793 */ 1794 ret = arc_hdr_decrypt(hdr, spa, zb); 1795 if (ret != 0) 1796 goto error; 1797 } 1798 1799 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1800 1801 if (hash_lock != NULL) 1802 mutex_exit(hash_lock); 1803 1804 return (0); 1805 1806 error: 1807 if (hash_lock != NULL) 1808 mutex_exit(hash_lock); 1809 1810 return (ret); 1811 } 1812 1813 /* 1814 * This function is used by the dbuf code to decrypt bonus buffers in place. 1815 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1816 * block, so we use the hash lock here to protect against concurrent calls to 1817 * arc_buf_fill(). 1818 */ 1819 /* ARGSUSED */ 1820 static void 1821 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1822 { 1823 arc_buf_hdr_t *hdr = buf->b_hdr; 1824 1825 ASSERT(HDR_ENCRYPTED(hdr)); 1826 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1827 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1828 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1829 1830 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1831 arc_buf_size(buf)); 1832 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1833 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1834 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1835 } 1836 1837 /* 1838 * Given a buf that has a data buffer attached to it, this function will 1839 * efficiently fill the buf with data of the specified compression setting from 1840 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1841 * are already sharing a data buf, no copy is performed. 1842 * 1843 * If the buf is marked as compressed but uncompressed data was requested, this 1844 * will allocate a new data buffer for the buf, remove that flag, and fill the 1845 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1846 * uncompressed data, and (since we haven't added support for it yet) if you 1847 * want compressed data your buf must already be marked as compressed and have 1848 * the correct-sized data buffer. 1849 */ 1850 static int 1851 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1852 arc_fill_flags_t flags) 1853 { 1854 int error = 0; 1855 arc_buf_hdr_t *hdr = buf->b_hdr; 1856 boolean_t hdr_compressed = 1857 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1858 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1859 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1860 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1861 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1862 1863 ASSERT3P(buf->b_data, !=, NULL); 1864 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1865 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1866 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1867 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1868 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1869 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1870 1871 /* 1872 * If the caller wanted encrypted data we just need to copy it from 1873 * b_rabd and potentially byteswap it. We won't be able to do any 1874 * further transforms on it. 1875 */ 1876 if (encrypted) { 1877 ASSERT(HDR_HAS_RABD(hdr)); 1878 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 1879 HDR_GET_PSIZE(hdr)); 1880 goto byteswap; 1881 } 1882 1883 /* 1884 * Adjust encrypted and authenticated headers to accomodate 1885 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 1886 * allowed to fail decryption due to keys not being loaded 1887 * without being marked as an IO error. 1888 */ 1889 if (HDR_PROTECTED(hdr)) { 1890 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 1891 zb, !!(flags & ARC_FILL_NOAUTH)); 1892 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 1893 return (error); 1894 } else if (error != 0) { 1895 if (hash_lock != NULL) 1896 mutex_enter(hash_lock); 1897 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 1898 if (hash_lock != NULL) 1899 mutex_exit(hash_lock); 1900 return (error); 1901 } 1902 } 1903 1904 /* 1905 * There is a special case here for dnode blocks which are 1906 * decrypting their bonus buffers. These blocks may request to 1907 * be decrypted in-place. This is necessary because there may 1908 * be many dnodes pointing into this buffer and there is 1909 * currently no method to synchronize replacing the backing 1910 * b_data buffer and updating all of the pointers. Here we use 1911 * the hash lock to ensure there are no races. If the need 1912 * arises for other types to be decrypted in-place, they must 1913 * add handling here as well. 1914 */ 1915 if ((flags & ARC_FILL_IN_PLACE) != 0) { 1916 ASSERT(!hdr_compressed); 1917 ASSERT(!compressed); 1918 ASSERT(!encrypted); 1919 1920 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 1921 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1922 1923 if (hash_lock != NULL) 1924 mutex_enter(hash_lock); 1925 arc_buf_untransform_in_place(buf, hash_lock); 1926 if (hash_lock != NULL) 1927 mutex_exit(hash_lock); 1928 1929 /* Compute the hdr's checksum if necessary */ 1930 arc_cksum_compute(buf); 1931 } 1932 1933 return (0); 1934 } 1935 1936 if (hdr_compressed == compressed) { 1937 if (!arc_buf_is_shared(buf)) { 1938 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1939 arc_buf_size(buf)); 1940 } 1941 } else { 1942 ASSERT(hdr_compressed); 1943 ASSERT(!compressed); 1944 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1945 1946 /* 1947 * If the buf is sharing its data with the hdr, unlink it and 1948 * allocate a new data buffer for the buf. 1949 */ 1950 if (arc_buf_is_shared(buf)) { 1951 ASSERT(ARC_BUF_COMPRESSED(buf)); 1952 1953 /* We need to give the buf its own b_data */ 1954 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1955 buf->b_data = 1956 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1957 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1958 1959 /* Previously overhead was 0; just add new overhead */ 1960 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1961 } else if (ARC_BUF_COMPRESSED(buf)) { 1962 /* We need to reallocate the buf's b_data */ 1963 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1964 buf); 1965 buf->b_data = 1966 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1967 1968 /* We increased the size of b_data; update overhead */ 1969 ARCSTAT_INCR(arcstat_overhead_size, 1970 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1971 } 1972 1973 /* 1974 * Regardless of the buf's previous compression settings, it 1975 * should not be compressed at the end of this function. 1976 */ 1977 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1978 1979 /* 1980 * Try copying the data from another buf which already has a 1981 * decompressed version. If that's not possible, it's time to 1982 * bite the bullet and decompress the data from the hdr. 1983 */ 1984 if (arc_buf_try_copy_decompressed_data(buf)) { 1985 /* Skip byteswapping and checksumming (already done) */ 1986 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1987 return (0); 1988 } else { 1989 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1990 hdr->b_l1hdr.b_pabd, buf->b_data, 1991 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1992 1993 /* 1994 * Absent hardware errors or software bugs, this should 1995 * be impossible, but log it anyway so we can debug it. 1996 */ 1997 if (error != 0) { 1998 zfs_dbgmsg( 1999 "hdr %p, compress %d, psize %d, lsize %d", 2000 hdr, arc_hdr_get_compress(hdr), 2001 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2002 if (hash_lock != NULL) 2003 mutex_enter(hash_lock); 2004 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2005 if (hash_lock != NULL) 2006 mutex_exit(hash_lock); 2007 return (SET_ERROR(EIO)); 2008 } 2009 } 2010 } 2011 2012 byteswap: 2013 /* Byteswap the buf's data if necessary */ 2014 if (bswap != DMU_BSWAP_NUMFUNCS) { 2015 ASSERT(!HDR_SHARED_DATA(hdr)); 2016 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2017 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2018 } 2019 2020 /* Compute the hdr's checksum if necessary */ 2021 arc_cksum_compute(buf); 2022 2023 return (0); 2024 } 2025 2026 /* 2027 * If this function is being called to decrypt an encrypted buffer or verify an 2028 * authenticated one, the key must be loaded and a mapping must be made 2029 * available in the keystore via spa_keystore_create_mapping() or one of its 2030 * callers. 2031 */ 2032 int 2033 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2034 boolean_t in_place) 2035 { 2036 int ret; 2037 arc_fill_flags_t flags = 0; 2038 2039 if (in_place) 2040 flags |= ARC_FILL_IN_PLACE; 2041 2042 ret = arc_buf_fill(buf, spa, zb, flags); 2043 if (ret == ECKSUM) { 2044 /* 2045 * Convert authentication and decryption errors to EIO 2046 * (and generate an ereport) before leaving the ARC. 2047 */ 2048 ret = SET_ERROR(EIO); 2049 spa_log_error(spa, zb); 2050 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2051 spa, NULL, zb, NULL, 0, 0); 2052 } 2053 2054 return (ret); 2055 } 2056 2057 /* 2058 * Increment the amount of evictable space in the arc_state_t's refcount. 2059 * We account for the space used by the hdr and the arc buf individually 2060 * so that we can add and remove them from the refcount individually. 2061 */ 2062 static void 2063 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2064 { 2065 arc_buf_contents_t type = arc_buf_type(hdr); 2066 2067 ASSERT(HDR_HAS_L1HDR(hdr)); 2068 2069 if (GHOST_STATE(state)) { 2070 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2071 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2072 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2073 ASSERT(!HDR_HAS_RABD(hdr)); 2074 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2075 HDR_GET_LSIZE(hdr), hdr); 2076 return; 2077 } 2078 2079 ASSERT(!GHOST_STATE(state)); 2080 if (hdr->b_l1hdr.b_pabd != NULL) { 2081 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2082 arc_hdr_size(hdr), hdr); 2083 } 2084 if (HDR_HAS_RABD(hdr)) { 2085 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2086 HDR_GET_PSIZE(hdr), hdr); 2087 } 2088 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2089 buf = buf->b_next) { 2090 if (arc_buf_is_shared(buf)) 2091 continue; 2092 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2093 arc_buf_size(buf), buf); 2094 } 2095 } 2096 2097 /* 2098 * Decrement the amount of evictable space in the arc_state_t's refcount. 2099 * We account for the space used by the hdr and the arc buf individually 2100 * so that we can add and remove them from the refcount individually. 2101 */ 2102 static void 2103 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2104 { 2105 arc_buf_contents_t type = arc_buf_type(hdr); 2106 2107 ASSERT(HDR_HAS_L1HDR(hdr)); 2108 2109 if (GHOST_STATE(state)) { 2110 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2111 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2112 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2113 ASSERT(!HDR_HAS_RABD(hdr)); 2114 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2115 HDR_GET_LSIZE(hdr), hdr); 2116 return; 2117 } 2118 2119 ASSERT(!GHOST_STATE(state)); 2120 if (hdr->b_l1hdr.b_pabd != NULL) { 2121 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2122 arc_hdr_size(hdr), hdr); 2123 } 2124 if (HDR_HAS_RABD(hdr)) { 2125 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2126 HDR_GET_PSIZE(hdr), hdr); 2127 } 2128 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2129 buf = buf->b_next) { 2130 if (arc_buf_is_shared(buf)) 2131 continue; 2132 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2133 arc_buf_size(buf), buf); 2134 } 2135 } 2136 2137 /* 2138 * Add a reference to this hdr indicating that someone is actively 2139 * referencing that memory. When the refcount transitions from 0 to 1, 2140 * we remove it from the respective arc_state_t list to indicate that 2141 * it is not evictable. 2142 */ 2143 static void 2144 add_reference(arc_buf_hdr_t *hdr, void *tag) 2145 { 2146 ASSERT(HDR_HAS_L1HDR(hdr)); 2147 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2148 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2149 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2150 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2151 } 2152 2153 arc_state_t *state = hdr->b_l1hdr.b_state; 2154 2155 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2156 (state != arc_anon)) { 2157 /* We don't use the L2-only state list. */ 2158 if (state != arc_l2c_only) { 2159 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2160 hdr); 2161 arc_evictable_space_decrement(hdr, state); 2162 } 2163 /* remove the prefetch flag if we get a reference */ 2164 if (HDR_HAS_L2HDR(hdr)) 2165 l2arc_hdr_arcstats_decrement_state(hdr); 2166 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2167 if (HDR_HAS_L2HDR(hdr)) 2168 l2arc_hdr_arcstats_increment_state(hdr); 2169 } 2170 } 2171 2172 /* 2173 * Remove a reference from this hdr. When the reference transitions from 2174 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2175 * list making it eligible for eviction. 2176 */ 2177 static int 2178 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2179 { 2180 int cnt; 2181 arc_state_t *state = hdr->b_l1hdr.b_state; 2182 2183 ASSERT(HDR_HAS_L1HDR(hdr)); 2184 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2185 ASSERT(!GHOST_STATE(state)); 2186 2187 /* 2188 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2189 * check to prevent usage of the arc_l2c_only list. 2190 */ 2191 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2192 (state != arc_anon)) { 2193 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2194 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2195 arc_evictable_space_increment(hdr, state); 2196 } 2197 return (cnt); 2198 } 2199 2200 /* 2201 * Move the supplied buffer to the indicated state. The hash lock 2202 * for the buffer must be held by the caller. 2203 */ 2204 static void 2205 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2206 kmutex_t *hash_lock) 2207 { 2208 arc_state_t *old_state; 2209 int64_t refcnt; 2210 uint32_t bufcnt; 2211 boolean_t update_old, update_new; 2212 arc_buf_contents_t buftype = arc_buf_type(hdr); 2213 2214 /* 2215 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2216 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2217 * L1 hdr doesn't always exist when we change state to arc_anon before 2218 * destroying a header, in which case reallocating to add the L1 hdr is 2219 * pointless. 2220 */ 2221 if (HDR_HAS_L1HDR(hdr)) { 2222 old_state = hdr->b_l1hdr.b_state; 2223 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2224 bufcnt = hdr->b_l1hdr.b_bufcnt; 2225 2226 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2227 HDR_HAS_RABD(hdr)); 2228 } else { 2229 old_state = arc_l2c_only; 2230 refcnt = 0; 2231 bufcnt = 0; 2232 update_old = B_FALSE; 2233 } 2234 update_new = update_old; 2235 2236 ASSERT(MUTEX_HELD(hash_lock)); 2237 ASSERT3P(new_state, !=, old_state); 2238 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2239 ASSERT(old_state != arc_anon || bufcnt <= 1); 2240 2241 /* 2242 * If this buffer is evictable, transfer it from the 2243 * old state list to the new state list. 2244 */ 2245 if (refcnt == 0) { 2246 if (old_state != arc_anon && old_state != arc_l2c_only) { 2247 ASSERT(HDR_HAS_L1HDR(hdr)); 2248 multilist_remove(old_state->arcs_list[buftype], hdr); 2249 2250 if (GHOST_STATE(old_state)) { 2251 ASSERT0(bufcnt); 2252 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2253 update_old = B_TRUE; 2254 } 2255 arc_evictable_space_decrement(hdr, old_state); 2256 } 2257 if (new_state != arc_anon && new_state != arc_l2c_only) { 2258 2259 /* 2260 * An L1 header always exists here, since if we're 2261 * moving to some L1-cached state (i.e. not l2c_only or 2262 * anonymous), we realloc the header to add an L1hdr 2263 * beforehand. 2264 */ 2265 ASSERT(HDR_HAS_L1HDR(hdr)); 2266 multilist_insert(new_state->arcs_list[buftype], hdr); 2267 2268 if (GHOST_STATE(new_state)) { 2269 ASSERT0(bufcnt); 2270 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2271 update_new = B_TRUE; 2272 } 2273 arc_evictable_space_increment(hdr, new_state); 2274 } 2275 } 2276 2277 ASSERT(!HDR_EMPTY(hdr)); 2278 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2279 buf_hash_remove(hdr); 2280 2281 /* adjust state sizes (ignore arc_l2c_only) */ 2282 2283 if (update_new && new_state != arc_l2c_only) { 2284 ASSERT(HDR_HAS_L1HDR(hdr)); 2285 if (GHOST_STATE(new_state)) { 2286 ASSERT0(bufcnt); 2287 2288 /* 2289 * When moving a header to a ghost state, we first 2290 * remove all arc buffers. Thus, we'll have a 2291 * bufcnt of zero, and no arc buffer to use for 2292 * the reference. As a result, we use the arc 2293 * header pointer for the reference. 2294 */ 2295 (void) zfs_refcount_add_many(&new_state->arcs_size, 2296 HDR_GET_LSIZE(hdr), hdr); 2297 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2298 ASSERT(!HDR_HAS_RABD(hdr)); 2299 } else { 2300 uint32_t buffers = 0; 2301 2302 /* 2303 * Each individual buffer holds a unique reference, 2304 * thus we must remove each of these references one 2305 * at a time. 2306 */ 2307 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2308 buf = buf->b_next) { 2309 ASSERT3U(bufcnt, !=, 0); 2310 buffers++; 2311 2312 /* 2313 * When the arc_buf_t is sharing the data 2314 * block with the hdr, the owner of the 2315 * reference belongs to the hdr. Only 2316 * add to the refcount if the arc_buf_t is 2317 * not shared. 2318 */ 2319 if (arc_buf_is_shared(buf)) 2320 continue; 2321 2322 (void) zfs_refcount_add_many( 2323 &new_state->arcs_size, 2324 arc_buf_size(buf), buf); 2325 } 2326 ASSERT3U(bufcnt, ==, buffers); 2327 2328 if (hdr->b_l1hdr.b_pabd != NULL) { 2329 (void) zfs_refcount_add_many( 2330 &new_state->arcs_size, 2331 arc_hdr_size(hdr), hdr); 2332 } 2333 2334 if (HDR_HAS_RABD(hdr)) { 2335 (void) zfs_refcount_add_many( 2336 &new_state->arcs_size, 2337 HDR_GET_PSIZE(hdr), hdr); 2338 } 2339 } 2340 } 2341 2342 if (update_old && old_state != arc_l2c_only) { 2343 ASSERT(HDR_HAS_L1HDR(hdr)); 2344 if (GHOST_STATE(old_state)) { 2345 ASSERT0(bufcnt); 2346 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2347 ASSERT(!HDR_HAS_RABD(hdr)); 2348 2349 /* 2350 * When moving a header off of a ghost state, 2351 * the header will not contain any arc buffers. 2352 * We use the arc header pointer for the reference 2353 * which is exactly what we did when we put the 2354 * header on the ghost state. 2355 */ 2356 2357 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2358 HDR_GET_LSIZE(hdr), hdr); 2359 } else { 2360 uint32_t buffers = 0; 2361 2362 /* 2363 * Each individual buffer holds a unique reference, 2364 * thus we must remove each of these references one 2365 * at a time. 2366 */ 2367 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2368 buf = buf->b_next) { 2369 ASSERT3U(bufcnt, !=, 0); 2370 buffers++; 2371 2372 /* 2373 * When the arc_buf_t is sharing the data 2374 * block with the hdr, the owner of the 2375 * reference belongs to the hdr. Only 2376 * add to the refcount if the arc_buf_t is 2377 * not shared. 2378 */ 2379 if (arc_buf_is_shared(buf)) 2380 continue; 2381 2382 (void) zfs_refcount_remove_many( 2383 &old_state->arcs_size, arc_buf_size(buf), 2384 buf); 2385 } 2386 ASSERT3U(bufcnt, ==, buffers); 2387 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2388 HDR_HAS_RABD(hdr)); 2389 2390 if (hdr->b_l1hdr.b_pabd != NULL) { 2391 (void) zfs_refcount_remove_many( 2392 &old_state->arcs_size, arc_hdr_size(hdr), 2393 hdr); 2394 } 2395 2396 if (HDR_HAS_RABD(hdr)) { 2397 (void) zfs_refcount_remove_many( 2398 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2399 hdr); 2400 } 2401 } 2402 } 2403 2404 if (HDR_HAS_L1HDR(hdr)) { 2405 hdr->b_l1hdr.b_state = new_state; 2406 2407 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2408 l2arc_hdr_arcstats_decrement_state(hdr); 2409 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2410 l2arc_hdr_arcstats_increment_state(hdr); 2411 } 2412 } 2413 2414 /* 2415 * L2 headers should never be on the L2 state list since they don't 2416 * have L1 headers allocated. 2417 */ 2418 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2419 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2420 } 2421 2422 void 2423 arc_space_consume(uint64_t space, arc_space_type_t type) 2424 { 2425 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2426 2427 switch (type) { 2428 case ARC_SPACE_DATA: 2429 aggsum_add(&astat_data_size, space); 2430 break; 2431 case ARC_SPACE_META: 2432 aggsum_add(&astat_metadata_size, space); 2433 break; 2434 case ARC_SPACE_OTHER: 2435 aggsum_add(&astat_other_size, space); 2436 break; 2437 case ARC_SPACE_HDRS: 2438 aggsum_add(&astat_hdr_size, space); 2439 break; 2440 case ARC_SPACE_L2HDRS: 2441 aggsum_add(&astat_l2_hdr_size, space); 2442 break; 2443 } 2444 2445 if (type != ARC_SPACE_DATA) 2446 aggsum_add(&arc_meta_used, space); 2447 2448 aggsum_add(&arc_size, space); 2449 } 2450 2451 void 2452 arc_space_return(uint64_t space, arc_space_type_t type) 2453 { 2454 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2455 2456 switch (type) { 2457 case ARC_SPACE_DATA: 2458 aggsum_add(&astat_data_size, -space); 2459 break; 2460 case ARC_SPACE_META: 2461 aggsum_add(&astat_metadata_size, -space); 2462 break; 2463 case ARC_SPACE_OTHER: 2464 aggsum_add(&astat_other_size, -space); 2465 break; 2466 case ARC_SPACE_HDRS: 2467 aggsum_add(&astat_hdr_size, -space); 2468 break; 2469 case ARC_SPACE_L2HDRS: 2470 aggsum_add(&astat_l2_hdr_size, -space); 2471 break; 2472 } 2473 2474 if (type != ARC_SPACE_DATA) { 2475 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2476 /* 2477 * We use the upper bound here rather than the precise value 2478 * because the arc_meta_max value doesn't need to be 2479 * precise. It's only consumed by humans via arcstats. 2480 */ 2481 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2482 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2483 aggsum_add(&arc_meta_used, -space); 2484 } 2485 2486 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2487 aggsum_add(&arc_size, -space); 2488 } 2489 2490 /* 2491 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2492 * with the hdr's b_pabd. 2493 */ 2494 static boolean_t 2495 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2496 { 2497 /* 2498 * The criteria for sharing a hdr's data are: 2499 * 1. the buffer is not encrypted 2500 * 2. the hdr's compression matches the buf's compression 2501 * 3. the hdr doesn't need to be byteswapped 2502 * 4. the hdr isn't already being shared 2503 * 5. the buf is either compressed or it is the last buf in the hdr list 2504 * 2505 * Criterion #5 maintains the invariant that shared uncompressed 2506 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2507 * might ask, "if a compressed buf is allocated first, won't that be the 2508 * last thing in the list?", but in that case it's impossible to create 2509 * a shared uncompressed buf anyway (because the hdr must be compressed 2510 * to have the compressed buf). You might also think that #3 is 2511 * sufficient to make this guarantee, however it's possible 2512 * (specifically in the rare L2ARC write race mentioned in 2513 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2514 * is sharable, but wasn't at the time of its allocation. Rather than 2515 * allow a new shared uncompressed buf to be created and then shuffle 2516 * the list around to make it the last element, this simply disallows 2517 * sharing if the new buf isn't the first to be added. 2518 */ 2519 ASSERT3P(buf->b_hdr, ==, hdr); 2520 boolean_t hdr_compressed = arc_hdr_get_compress(hdr) != 2521 ZIO_COMPRESS_OFF; 2522 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2523 return (!ARC_BUF_ENCRYPTED(buf) && 2524 buf_compressed == hdr_compressed && 2525 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2526 !HDR_SHARED_DATA(hdr) && 2527 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2528 } 2529 2530 /* 2531 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2532 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2533 * copy was made successfully, or an error code otherwise. 2534 */ 2535 static int 2536 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2537 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2538 boolean_t fill, arc_buf_t **ret) 2539 { 2540 arc_buf_t *buf; 2541 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2542 2543 ASSERT(HDR_HAS_L1HDR(hdr)); 2544 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2545 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2546 hdr->b_type == ARC_BUFC_METADATA); 2547 ASSERT3P(ret, !=, NULL); 2548 ASSERT3P(*ret, ==, NULL); 2549 IMPLY(encrypted, compressed); 2550 2551 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2552 buf->b_hdr = hdr; 2553 buf->b_data = NULL; 2554 buf->b_next = hdr->b_l1hdr.b_buf; 2555 buf->b_flags = 0; 2556 2557 add_reference(hdr, tag); 2558 2559 /* 2560 * We're about to change the hdr's b_flags. We must either 2561 * hold the hash_lock or be undiscoverable. 2562 */ 2563 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2564 2565 /* 2566 * Only honor requests for compressed bufs if the hdr is actually 2567 * compressed. This must be overriden if the buffer is encrypted since 2568 * encrypted buffers cannot be decompressed. 2569 */ 2570 if (encrypted) { 2571 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2572 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2573 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2574 } else if (compressed && 2575 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2576 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2577 flags |= ARC_FILL_COMPRESSED; 2578 } 2579 2580 if (noauth) { 2581 ASSERT0(encrypted); 2582 flags |= ARC_FILL_NOAUTH; 2583 } 2584 2585 /* 2586 * If the hdr's data can be shared then we share the data buffer and 2587 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2588 * allocate a new buffer to store the buf's data. 2589 * 2590 * There are two additional restrictions here because we're sharing 2591 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2592 * actively involved in an L2ARC write, because if this buf is used by 2593 * an arc_write() then the hdr's data buffer will be released when the 2594 * write completes, even though the L2ARC write might still be using it. 2595 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2596 * need to be ABD-aware. 2597 */ 2598 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2599 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd); 2600 2601 /* Set up b_data and sharing */ 2602 if (can_share) { 2603 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2604 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2605 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2606 } else { 2607 buf->b_data = 2608 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2609 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2610 } 2611 VERIFY3P(buf->b_data, !=, NULL); 2612 2613 hdr->b_l1hdr.b_buf = buf; 2614 hdr->b_l1hdr.b_bufcnt += 1; 2615 if (encrypted) 2616 hdr->b_crypt_hdr.b_ebufcnt += 1; 2617 2618 /* 2619 * If the user wants the data from the hdr, we need to either copy or 2620 * decompress the data. 2621 */ 2622 if (fill) { 2623 ASSERT3P(zb, !=, NULL); 2624 return (arc_buf_fill(buf, spa, zb, flags)); 2625 } 2626 2627 return (0); 2628 } 2629 2630 static char *arc_onloan_tag = "onloan"; 2631 2632 static inline void 2633 arc_loaned_bytes_update(int64_t delta) 2634 { 2635 atomic_add_64(&arc_loaned_bytes, delta); 2636 2637 /* assert that it did not wrap around */ 2638 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2639 } 2640 2641 /* 2642 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2643 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2644 * buffers must be returned to the arc before they can be used by the DMU or 2645 * freed. 2646 */ 2647 arc_buf_t * 2648 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2649 { 2650 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2651 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2652 2653 arc_loaned_bytes_update(arc_buf_size(buf)); 2654 2655 return (buf); 2656 } 2657 2658 arc_buf_t * 2659 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2660 enum zio_compress compression_type) 2661 { 2662 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2663 psize, lsize, compression_type); 2664 2665 arc_loaned_bytes_update(arc_buf_size(buf)); 2666 2667 return (buf); 2668 } 2669 2670 arc_buf_t * 2671 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2672 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2673 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2674 enum zio_compress compression_type) 2675 { 2676 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2677 byteorder, salt, iv, mac, ot, psize, lsize, compression_type); 2678 2679 atomic_add_64(&arc_loaned_bytes, psize); 2680 return (buf); 2681 } 2682 2683 /* 2684 * Performance tuning of L2ARC persistence: 2685 * 2686 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 2687 * an L2ARC device (either at pool import or later) will attempt 2688 * to rebuild L2ARC buffer contents. 2689 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 2690 * whether log blocks are written to the L2ARC device. If the L2ARC 2691 * device is less than 1GB, the amount of data l2arc_evict() 2692 * evicts is significant compared to the amount of restored L2ARC 2693 * data. In this case do not write log blocks in L2ARC in order 2694 * not to waste space. 2695 */ 2696 int l2arc_rebuild_enabled = B_TRUE; 2697 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 2698 2699 /* L2ARC persistence rebuild control routines. */ 2700 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 2701 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev); 2702 static int l2arc_rebuild(l2arc_dev_t *dev); 2703 2704 /* L2ARC persistence read I/O routines. */ 2705 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 2706 static int l2arc_log_blk_read(l2arc_dev_t *dev, 2707 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 2708 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 2709 zio_t *this_io, zio_t **next_io); 2710 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 2711 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 2712 static void l2arc_log_blk_fetch_abort(zio_t *zio); 2713 2714 /* L2ARC persistence block restoration routines. */ 2715 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 2716 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 2717 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 2718 l2arc_dev_t *dev); 2719 2720 /* L2ARC persistence write I/O routines. */ 2721 static void l2arc_dev_hdr_update(l2arc_dev_t *dev); 2722 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 2723 l2arc_write_callback_t *cb); 2724 2725 /* L2ARC persistence auxilliary routines. */ 2726 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 2727 const l2arc_log_blkptr_t *lbp); 2728 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 2729 const arc_buf_hdr_t *ab); 2730 boolean_t l2arc_range_check_overlap(uint64_t bottom, 2731 uint64_t top, uint64_t check); 2732 static void l2arc_blk_fetch_done(zio_t *zio); 2733 static inline uint64_t 2734 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 2735 2736 /* 2737 * Return a loaned arc buffer to the arc. 2738 */ 2739 void 2740 arc_return_buf(arc_buf_t *buf, void *tag) 2741 { 2742 arc_buf_hdr_t *hdr = buf->b_hdr; 2743 2744 ASSERT3P(buf->b_data, !=, NULL); 2745 ASSERT(HDR_HAS_L1HDR(hdr)); 2746 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2747 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2748 2749 arc_loaned_bytes_update(-arc_buf_size(buf)); 2750 } 2751 2752 /* Detach an arc_buf from a dbuf (tag) */ 2753 void 2754 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2755 { 2756 arc_buf_hdr_t *hdr = buf->b_hdr; 2757 2758 ASSERT3P(buf->b_data, !=, NULL); 2759 ASSERT(HDR_HAS_L1HDR(hdr)); 2760 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2761 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2762 2763 arc_loaned_bytes_update(arc_buf_size(buf)); 2764 } 2765 2766 static void 2767 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2768 { 2769 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2770 2771 df->l2df_abd = abd; 2772 df->l2df_size = size; 2773 df->l2df_type = type; 2774 mutex_enter(&l2arc_free_on_write_mtx); 2775 list_insert_head(l2arc_free_on_write, df); 2776 mutex_exit(&l2arc_free_on_write_mtx); 2777 } 2778 2779 static void 2780 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2781 { 2782 arc_state_t *state = hdr->b_l1hdr.b_state; 2783 arc_buf_contents_t type = arc_buf_type(hdr); 2784 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2785 2786 /* protected by hash lock, if in the hash table */ 2787 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2788 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2789 ASSERT(state != arc_anon && state != arc_l2c_only); 2790 2791 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2792 size, hdr); 2793 } 2794 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2795 if (type == ARC_BUFC_METADATA) { 2796 arc_space_return(size, ARC_SPACE_META); 2797 } else { 2798 ASSERT(type == ARC_BUFC_DATA); 2799 arc_space_return(size, ARC_SPACE_DATA); 2800 } 2801 2802 if (free_rdata) { 2803 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2804 } else { 2805 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2806 } 2807 } 2808 2809 /* 2810 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2811 * data buffer, we transfer the refcount ownership to the hdr and update 2812 * the appropriate kstats. 2813 */ 2814 static void 2815 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2816 { 2817 /* LINTED */ 2818 arc_state_t *state = hdr->b_l1hdr.b_state; 2819 2820 ASSERT(arc_can_share(hdr, buf)); 2821 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2822 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2823 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2824 2825 /* 2826 * Start sharing the data buffer. We transfer the 2827 * refcount ownership to the hdr since it always owns 2828 * the refcount whenever an arc_buf_t is shared. 2829 */ 2830 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2831 arc_hdr_size(hdr), buf, hdr); 2832 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2833 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2834 HDR_ISTYPE_METADATA(hdr)); 2835 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2836 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2837 2838 /* 2839 * Since we've transferred ownership to the hdr we need 2840 * to increment its compressed and uncompressed kstats and 2841 * decrement the overhead size. 2842 */ 2843 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2844 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2845 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2846 } 2847 2848 static void 2849 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2850 { 2851 /* LINTED */ 2852 arc_state_t *state = hdr->b_l1hdr.b_state; 2853 2854 ASSERT(arc_buf_is_shared(buf)); 2855 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2856 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2857 2858 /* 2859 * We are no longer sharing this buffer so we need 2860 * to transfer its ownership to the rightful owner. 2861 */ 2862 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2863 arc_hdr_size(hdr), hdr, buf); 2864 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2865 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2866 abd_put(hdr->b_l1hdr.b_pabd); 2867 hdr->b_l1hdr.b_pabd = NULL; 2868 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2869 2870 /* 2871 * Since the buffer is no longer shared between 2872 * the arc buf and the hdr, count it as overhead. 2873 */ 2874 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2875 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2876 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2877 } 2878 2879 /* 2880 * Remove an arc_buf_t from the hdr's buf list and return the last 2881 * arc_buf_t on the list. If no buffers remain on the list then return 2882 * NULL. 2883 */ 2884 static arc_buf_t * 2885 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2886 { 2887 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2888 arc_buf_t *lastbuf = NULL; 2889 2890 ASSERT(HDR_HAS_L1HDR(hdr)); 2891 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2892 2893 /* 2894 * Remove the buf from the hdr list and locate the last 2895 * remaining buffer on the list. 2896 */ 2897 while (*bufp != NULL) { 2898 if (*bufp == buf) 2899 *bufp = buf->b_next; 2900 2901 /* 2902 * If we've removed a buffer in the middle of 2903 * the list then update the lastbuf and update 2904 * bufp. 2905 */ 2906 if (*bufp != NULL) { 2907 lastbuf = *bufp; 2908 bufp = &(*bufp)->b_next; 2909 } 2910 } 2911 buf->b_next = NULL; 2912 ASSERT3P(lastbuf, !=, buf); 2913 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2914 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2915 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2916 2917 return (lastbuf); 2918 } 2919 2920 /* 2921 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2922 * list and free it. 2923 */ 2924 static void 2925 arc_buf_destroy_impl(arc_buf_t *buf) 2926 { 2927 arc_buf_hdr_t *hdr = buf->b_hdr; 2928 2929 /* 2930 * Free up the data associated with the buf but only if we're not 2931 * sharing this with the hdr. If we are sharing it with the hdr, the 2932 * hdr is responsible for doing the free. 2933 */ 2934 if (buf->b_data != NULL) { 2935 /* 2936 * We're about to change the hdr's b_flags. We must either 2937 * hold the hash_lock or be undiscoverable. 2938 */ 2939 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2940 2941 arc_cksum_verify(buf); 2942 arc_buf_unwatch(buf); 2943 2944 if (arc_buf_is_shared(buf)) { 2945 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2946 } else { 2947 uint64_t size = arc_buf_size(buf); 2948 arc_free_data_buf(hdr, buf->b_data, size, buf); 2949 ARCSTAT_INCR(arcstat_overhead_size, -size); 2950 } 2951 buf->b_data = NULL; 2952 2953 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2954 hdr->b_l1hdr.b_bufcnt -= 1; 2955 2956 if (ARC_BUF_ENCRYPTED(buf)) { 2957 hdr->b_crypt_hdr.b_ebufcnt -= 1; 2958 2959 /* 2960 * If we have no more encrypted buffers and we've 2961 * already gotten a copy of the decrypted data we can 2962 * free b_rabd to save some space. 2963 */ 2964 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 2965 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 2966 !HDR_IO_IN_PROGRESS(hdr)) { 2967 arc_hdr_free_pabd(hdr, B_TRUE); 2968 } 2969 } 2970 } 2971 2972 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2973 2974 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2975 /* 2976 * If the current arc_buf_t is sharing its data buffer with the 2977 * hdr, then reassign the hdr's b_pabd to share it with the new 2978 * buffer at the end of the list. The shared buffer is always 2979 * the last one on the hdr's buffer list. 2980 * 2981 * There is an equivalent case for compressed bufs, but since 2982 * they aren't guaranteed to be the last buf in the list and 2983 * that is an exceedingly rare case, we just allow that space be 2984 * wasted temporarily. We must also be careful not to share 2985 * encrypted buffers, since they cannot be shared. 2986 */ 2987 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 2988 /* Only one buf can be shared at once */ 2989 VERIFY(!arc_buf_is_shared(lastbuf)); 2990 /* hdr is uncompressed so can't have compressed buf */ 2991 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2992 2993 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2994 arc_hdr_free_pabd(hdr, B_FALSE); 2995 2996 /* 2997 * We must setup a new shared block between the 2998 * last buffer and the hdr. The data would have 2999 * been allocated by the arc buf so we need to transfer 3000 * ownership to the hdr since it's now being shared. 3001 */ 3002 arc_share_buf(hdr, lastbuf); 3003 } 3004 } else if (HDR_SHARED_DATA(hdr)) { 3005 /* 3006 * Uncompressed shared buffers are always at the end 3007 * of the list. Compressed buffers don't have the 3008 * same requirements. This makes it hard to 3009 * simply assert that the lastbuf is shared so 3010 * we rely on the hdr's compression flags to determine 3011 * if we have a compressed, shared buffer. 3012 */ 3013 ASSERT3P(lastbuf, !=, NULL); 3014 ASSERT(arc_buf_is_shared(lastbuf) || 3015 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3016 } 3017 3018 /* 3019 * Free the checksum if we're removing the last uncompressed buf from 3020 * this hdr. 3021 */ 3022 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3023 arc_cksum_free(hdr); 3024 } 3025 3026 /* clean up the buf */ 3027 buf->b_hdr = NULL; 3028 kmem_cache_free(buf_cache, buf); 3029 } 3030 3031 static void 3032 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags) 3033 { 3034 uint64_t size; 3035 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3036 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3037 3038 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3039 ASSERT(HDR_HAS_L1HDR(hdr)); 3040 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3041 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3042 3043 if (alloc_rdata) { 3044 size = HDR_GET_PSIZE(hdr); 3045 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3046 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3047 do_adapt); 3048 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3049 } else { 3050 size = arc_hdr_size(hdr); 3051 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3052 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3053 do_adapt); 3054 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3055 } 3056 3057 ARCSTAT_INCR(arcstat_compressed_size, size); 3058 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3059 } 3060 3061 static void 3062 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3063 { 3064 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3065 3066 ASSERT(HDR_HAS_L1HDR(hdr)); 3067 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3068 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3069 3070 3071 /* 3072 * If the hdr is currently being written to the l2arc then 3073 * we defer freeing the data by adding it to the l2arc_free_on_write 3074 * list. The l2arc will free the data once it's finished 3075 * writing it to the l2arc device. 3076 */ 3077 if (HDR_L2_WRITING(hdr)) { 3078 arc_hdr_free_on_write(hdr, free_rdata); 3079 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3080 } else if (free_rdata) { 3081 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3082 } else { 3083 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 3084 size, hdr); 3085 } 3086 3087 if (free_rdata) { 3088 hdr->b_crypt_hdr.b_rabd = NULL; 3089 } else { 3090 hdr->b_l1hdr.b_pabd = NULL; 3091 } 3092 3093 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3094 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3095 3096 ARCSTAT_INCR(arcstat_compressed_size, -size); 3097 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3098 } 3099 3100 static arc_buf_hdr_t * 3101 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3102 boolean_t protected, enum zio_compress compression_type, 3103 arc_buf_contents_t type, boolean_t alloc_rdata) 3104 { 3105 arc_buf_hdr_t *hdr; 3106 int flags = ARC_HDR_DO_ADAPT; 3107 3108 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3109 if (protected) { 3110 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3111 } else { 3112 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3113 } 3114 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3115 ASSERT(HDR_EMPTY(hdr)); 3116 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3117 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 3118 HDR_SET_PSIZE(hdr, psize); 3119 HDR_SET_LSIZE(hdr, lsize); 3120 hdr->b_spa = spa; 3121 hdr->b_type = type; 3122 hdr->b_flags = 0; 3123 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3124 arc_hdr_set_compress(hdr, compression_type); 3125 if (protected) 3126 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3127 3128 hdr->b_l1hdr.b_state = arc_anon; 3129 hdr->b_l1hdr.b_arc_access = 0; 3130 hdr->b_l1hdr.b_bufcnt = 0; 3131 hdr->b_l1hdr.b_buf = NULL; 3132 3133 /* 3134 * Allocate the hdr's buffer. This will contain either 3135 * the compressed or uncompressed data depending on the block 3136 * it references and compressed arc enablement. 3137 */ 3138 arc_hdr_alloc_pabd(hdr, flags); 3139 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3140 3141 return (hdr); 3142 } 3143 3144 /* 3145 * Transition between the two allocation states for the arc_buf_hdr struct. 3146 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3147 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3148 * version is used when a cache buffer is only in the L2ARC in order to reduce 3149 * memory usage. 3150 */ 3151 static arc_buf_hdr_t * 3152 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3153 { 3154 ASSERT(HDR_HAS_L2HDR(hdr)); 3155 3156 arc_buf_hdr_t *nhdr; 3157 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3158 3159 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3160 (old == hdr_l2only_cache && new == hdr_full_cache)); 3161 3162 /* 3163 * if the caller wanted a new full header and the header is to be 3164 * encrypted we will actually allocate the header from the full crypt 3165 * cache instead. The same applies to freeing from the old cache. 3166 */ 3167 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3168 new = hdr_full_crypt_cache; 3169 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3170 old = hdr_full_crypt_cache; 3171 3172 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3173 3174 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3175 buf_hash_remove(hdr); 3176 3177 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3178 3179 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3180 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3181 /* 3182 * arc_access and arc_change_state need to be aware that a 3183 * header has just come out of L2ARC, so we set its state to 3184 * l2c_only even though it's about to change. 3185 */ 3186 nhdr->b_l1hdr.b_state = arc_l2c_only; 3187 3188 /* Verify previous threads set to NULL before freeing */ 3189 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3190 ASSERT(!HDR_HAS_RABD(hdr)); 3191 } else { 3192 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3193 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3194 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3195 3196 /* 3197 * If we've reached here, We must have been called from 3198 * arc_evict_hdr(), as such we should have already been 3199 * removed from any ghost list we were previously on 3200 * (which protects us from racing with arc_evict_state), 3201 * thus no locking is needed during this check. 3202 */ 3203 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3204 3205 /* 3206 * A buffer must not be moved into the arc_l2c_only 3207 * state if it's not finished being written out to the 3208 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3209 * might try to be accessed, even though it was removed. 3210 */ 3211 VERIFY(!HDR_L2_WRITING(hdr)); 3212 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3213 ASSERT(!HDR_HAS_RABD(hdr)); 3214 3215 #ifdef ZFS_DEBUG 3216 if (hdr->b_l1hdr.b_thawed != NULL) { 3217 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3218 hdr->b_l1hdr.b_thawed = NULL; 3219 } 3220 #endif 3221 3222 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3223 } 3224 /* 3225 * The header has been reallocated so we need to re-insert it into any 3226 * lists it was on. 3227 */ 3228 (void) buf_hash_insert(nhdr, NULL); 3229 3230 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3231 3232 mutex_enter(&dev->l2ad_mtx); 3233 3234 /* 3235 * We must place the realloc'ed header back into the list at 3236 * the same spot. Otherwise, if it's placed earlier in the list, 3237 * l2arc_write_buffers() could find it during the function's 3238 * write phase, and try to write it out to the l2arc. 3239 */ 3240 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3241 list_remove(&dev->l2ad_buflist, hdr); 3242 3243 mutex_exit(&dev->l2ad_mtx); 3244 3245 /* 3246 * Since we're using the pointer address as the tag when 3247 * incrementing and decrementing the l2ad_alloc refcount, we 3248 * must remove the old pointer (that we're about to destroy) and 3249 * add the new pointer to the refcount. Otherwise we'd remove 3250 * the wrong pointer address when calling arc_hdr_destroy() later. 3251 */ 3252 3253 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3254 hdr); 3255 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), 3256 nhdr); 3257 3258 buf_discard_identity(hdr); 3259 kmem_cache_free(old, hdr); 3260 3261 return (nhdr); 3262 } 3263 3264 /* 3265 * This function allows an L1 header to be reallocated as a crypt 3266 * header and vice versa. If we are going to a crypt header, the 3267 * new fields will be zeroed out. 3268 */ 3269 static arc_buf_hdr_t * 3270 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3271 { 3272 arc_buf_hdr_t *nhdr; 3273 arc_buf_t *buf; 3274 kmem_cache_t *ncache, *ocache; 3275 3276 ASSERT(HDR_HAS_L1HDR(hdr)); 3277 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3278 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3279 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3280 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3281 ASSERT3P(hdr->b_hash_next, ==, NULL); 3282 3283 if (need_crypt) { 3284 ncache = hdr_full_crypt_cache; 3285 ocache = hdr_full_cache; 3286 } else { 3287 ncache = hdr_full_cache; 3288 ocache = hdr_full_crypt_cache; 3289 } 3290 3291 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3292 3293 /* 3294 * Copy all members that aren't locks or condvars to the new header. 3295 * No lists are pointing to us (as we asserted above), so we don't 3296 * need to worry about the list nodes. 3297 */ 3298 nhdr->b_dva = hdr->b_dva; 3299 nhdr->b_birth = hdr->b_birth; 3300 nhdr->b_type = hdr->b_type; 3301 nhdr->b_flags = hdr->b_flags; 3302 nhdr->b_psize = hdr->b_psize; 3303 nhdr->b_lsize = hdr->b_lsize; 3304 nhdr->b_spa = hdr->b_spa; 3305 nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev; 3306 nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr; 3307 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3308 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3309 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3310 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3311 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3312 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3313 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3314 #ifdef ZFS_DEBUG 3315 if (hdr->b_l1hdr.b_thawed != NULL) { 3316 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed; 3317 hdr->b_l1hdr.b_thawed = NULL; 3318 } 3319 #endif 3320 3321 /* 3322 * This refcount_add() exists only to ensure that the individual 3323 * arc buffers always point to a header that is referenced, avoiding 3324 * a small race condition that could trigger ASSERTs. 3325 */ 3326 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3327 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3328 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3329 mutex_enter(&buf->b_evict_lock); 3330 buf->b_hdr = nhdr; 3331 mutex_exit(&buf->b_evict_lock); 3332 } 3333 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3334 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3335 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3336 3337 if (need_crypt) { 3338 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3339 } else { 3340 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3341 } 3342 3343 /* unset all members of the original hdr */ 3344 bzero(&hdr->b_dva, sizeof (dva_t)); 3345 hdr->b_birth = 0; 3346 hdr->b_type = ARC_BUFC_INVALID; 3347 hdr->b_flags = 0; 3348 hdr->b_psize = 0; 3349 hdr->b_lsize = 0; 3350 hdr->b_spa = 0; 3351 hdr->b_l2hdr.b_dev = NULL; 3352 hdr->b_l2hdr.b_daddr = 0; 3353 hdr->b_l1hdr.b_freeze_cksum = NULL; 3354 hdr->b_l1hdr.b_buf = NULL; 3355 hdr->b_l1hdr.b_bufcnt = 0; 3356 hdr->b_l1hdr.b_byteswap = 0; 3357 hdr->b_l1hdr.b_state = NULL; 3358 hdr->b_l1hdr.b_arc_access = 0; 3359 hdr->b_l1hdr.b_acb = NULL; 3360 hdr->b_l1hdr.b_pabd = NULL; 3361 3362 if (ocache == hdr_full_crypt_cache) { 3363 ASSERT(!HDR_HAS_RABD(hdr)); 3364 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3365 hdr->b_crypt_hdr.b_ebufcnt = 0; 3366 hdr->b_crypt_hdr.b_dsobj = 0; 3367 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3368 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3369 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3370 } 3371 3372 buf_discard_identity(hdr); 3373 kmem_cache_free(ocache, hdr); 3374 3375 return (nhdr); 3376 } 3377 3378 /* 3379 * This function is used by the send / receive code to convert a newly 3380 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3381 * is also used to allow the root objset block to be uupdated without altering 3382 * its embedded MACs. Both block types will always be uncompressed so we do not 3383 * have to worry about compression type or psize. 3384 */ 3385 void 3386 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3387 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3388 const uint8_t *mac) 3389 { 3390 arc_buf_hdr_t *hdr = buf->b_hdr; 3391 3392 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3393 ASSERT(HDR_HAS_L1HDR(hdr)); 3394 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3395 3396 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3397 if (!HDR_PROTECTED(hdr)) 3398 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3399 hdr->b_crypt_hdr.b_dsobj = dsobj; 3400 hdr->b_crypt_hdr.b_ot = ot; 3401 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3402 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3403 if (!arc_hdr_has_uncompressed_buf(hdr)) 3404 arc_cksum_free(hdr); 3405 3406 if (salt != NULL) 3407 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3408 if (iv != NULL) 3409 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3410 if (mac != NULL) 3411 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3412 } 3413 3414 /* 3415 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3416 * The buf is returned thawed since we expect the consumer to modify it. 3417 */ 3418 arc_buf_t * 3419 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3420 { 3421 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3422 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE); 3423 3424 arc_buf_t *buf = NULL; 3425 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3426 B_FALSE, B_FALSE, &buf)); 3427 arc_buf_thaw(buf); 3428 3429 return (buf); 3430 } 3431 3432 /* 3433 * Allocates an ARC buf header that's in an evicted & L2-cached state. 3434 * This is used during l2arc reconstruction to make empty ARC buffers 3435 * which circumvent the regular disk->arc->l2arc path and instead come 3436 * into being in the reverse order, i.e. l2arc->arc. 3437 */ 3438 arc_buf_hdr_t * 3439 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 3440 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 3441 enum zio_compress compress, boolean_t protected, 3442 boolean_t prefetch, arc_state_type_t arcs_state) 3443 { 3444 arc_buf_hdr_t *hdr; 3445 3446 ASSERT(size != 0); 3447 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 3448 hdr->b_birth = birth; 3449 hdr->b_type = type; 3450 hdr->b_flags = 0; 3451 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 3452 HDR_SET_LSIZE(hdr, size); 3453 HDR_SET_PSIZE(hdr, psize); 3454 arc_hdr_set_compress(hdr, compress); 3455 if (protected) 3456 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3457 if (prefetch) 3458 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 3459 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 3460 3461 hdr->b_dva = dva; 3462 3463 hdr->b_l2hdr.b_dev = dev; 3464 hdr->b_l2hdr.b_daddr = daddr; 3465 hdr->b_l2hdr.b_arcs_state = arcs_state; 3466 3467 return (hdr); 3468 } 3469 3470 /* 3471 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3472 * for bufs containing metadata. 3473 */ 3474 arc_buf_t * 3475 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3476 enum zio_compress compression_type) 3477 { 3478 ASSERT3U(lsize, >, 0); 3479 ASSERT3U(lsize, >=, psize); 3480 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3481 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3482 3483 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3484 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE); 3485 3486 arc_buf_t *buf = NULL; 3487 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3488 B_TRUE, B_FALSE, B_FALSE, &buf)); 3489 arc_buf_thaw(buf); 3490 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3491 3492 if (!arc_buf_is_shared(buf)) { 3493 /* 3494 * To ensure that the hdr has the correct data in it if we call 3495 * arc_untransform() on this buf before it's been written to 3496 * disk, it's easiest if we just set up sharing between the 3497 * buf and the hdr. 3498 */ 3499 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3500 arc_hdr_free_pabd(hdr, B_FALSE); 3501 arc_share_buf(hdr, buf); 3502 } 3503 3504 return (buf); 3505 } 3506 3507 arc_buf_t * 3508 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3509 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3510 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3511 enum zio_compress compression_type) 3512 { 3513 arc_buf_hdr_t *hdr; 3514 arc_buf_t *buf; 3515 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3516 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3517 3518 ASSERT3U(lsize, >, 0); 3519 ASSERT3U(lsize, >=, psize); 3520 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3521 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3522 3523 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3524 compression_type, type, B_TRUE); 3525 3526 hdr->b_crypt_hdr.b_dsobj = dsobj; 3527 hdr->b_crypt_hdr.b_ot = ot; 3528 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3529 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3530 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3531 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3532 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3533 3534 /* 3535 * This buffer will be considered encrypted even if the ot is not an 3536 * encrypted type. It will become authenticated instead in 3537 * arc_write_ready(). 3538 */ 3539 buf = NULL; 3540 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3541 B_FALSE, B_FALSE, &buf)); 3542 arc_buf_thaw(buf); 3543 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3544 3545 return (buf); 3546 } 3547 3548 static void 3549 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3550 boolean_t state_only) 3551 { 3552 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3553 l2arc_dev_t *dev = l2hdr->b_dev; 3554 uint64_t lsize = HDR_GET_LSIZE(hdr); 3555 uint64_t psize = HDR_GET_PSIZE(hdr); 3556 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3557 arc_buf_contents_t type = hdr->b_type; 3558 int64_t lsize_s; 3559 int64_t psize_s; 3560 int64_t asize_s; 3561 3562 if (incr) { 3563 lsize_s = lsize; 3564 psize_s = psize; 3565 asize_s = asize; 3566 } else { 3567 lsize_s = -lsize; 3568 psize_s = -psize; 3569 asize_s = -asize; 3570 } 3571 3572 /* If the buffer is a prefetch, count it as such. */ 3573 if (HDR_PREFETCH(hdr)) { 3574 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3575 } else { 3576 /* 3577 * We use the value stored in the L2 header upon initial 3578 * caching in L2ARC. This value will be updated in case 3579 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3580 * metadata (log entry) cannot currently be updated. Having 3581 * the ARC state in the L2 header solves the problem of a 3582 * possibly absent L1 header (apparent in buffers restored 3583 * from persistent L2ARC). 3584 */ 3585 switch (hdr->b_l2hdr.b_arcs_state) { 3586 case ARC_STATE_MRU_GHOST: 3587 case ARC_STATE_MRU: 3588 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3589 break; 3590 case ARC_STATE_MFU_GHOST: 3591 case ARC_STATE_MFU: 3592 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3593 break; 3594 default: 3595 break; 3596 } 3597 } 3598 3599 if (state_only) 3600 return; 3601 3602 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3603 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3604 3605 switch (type) { 3606 case ARC_BUFC_DATA: 3607 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3608 break; 3609 case ARC_BUFC_METADATA: 3610 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3611 break; 3612 default: 3613 break; 3614 } 3615 } 3616 3617 3618 static void 3619 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3620 { 3621 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3622 l2arc_dev_t *dev = l2hdr->b_dev; 3623 uint64_t psize = HDR_GET_PSIZE(hdr); 3624 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3625 3626 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3627 ASSERT(HDR_HAS_L2HDR(hdr)); 3628 3629 list_remove(&dev->l2ad_buflist, hdr); 3630 3631 l2arc_hdr_arcstats_decrement(hdr); 3632 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3633 3634 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3635 hdr); 3636 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3637 } 3638 3639 static void 3640 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3641 { 3642 if (HDR_HAS_L1HDR(hdr)) { 3643 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3644 hdr->b_l1hdr.b_bufcnt > 0); 3645 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3646 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3647 } 3648 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3649 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3650 3651 if (HDR_HAS_L2HDR(hdr)) { 3652 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3653 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3654 3655 if (!buflist_held) 3656 mutex_enter(&dev->l2ad_mtx); 3657 3658 /* 3659 * Even though we checked this conditional above, we 3660 * need to check this again now that we have the 3661 * l2ad_mtx. This is because we could be racing with 3662 * another thread calling l2arc_evict() which might have 3663 * destroyed this header's L2 portion as we were waiting 3664 * to acquire the l2ad_mtx. If that happens, we don't 3665 * want to re-destroy the header's L2 portion. 3666 */ 3667 if (HDR_HAS_L2HDR(hdr)) 3668 arc_hdr_l2hdr_destroy(hdr); 3669 3670 if (!buflist_held) 3671 mutex_exit(&dev->l2ad_mtx); 3672 } 3673 3674 /* 3675 * The header's identity can only be safely discarded once it is no 3676 * longer discoverable. This requires removing it from the hash table 3677 * and the l2arc header list. After this point the hash lock can not 3678 * be used to protect the header. 3679 */ 3680 if (!HDR_EMPTY(hdr)) 3681 buf_discard_identity(hdr); 3682 3683 if (HDR_HAS_L1HDR(hdr)) { 3684 arc_cksum_free(hdr); 3685 3686 while (hdr->b_l1hdr.b_buf != NULL) 3687 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3688 3689 #ifdef ZFS_DEBUG 3690 if (hdr->b_l1hdr.b_thawed != NULL) { 3691 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3692 hdr->b_l1hdr.b_thawed = NULL; 3693 } 3694 #endif 3695 3696 if (hdr->b_l1hdr.b_pabd != NULL) 3697 arc_hdr_free_pabd(hdr, B_FALSE); 3698 3699 if (HDR_HAS_RABD(hdr)) 3700 arc_hdr_free_pabd(hdr, B_TRUE); 3701 } 3702 3703 ASSERT3P(hdr->b_hash_next, ==, NULL); 3704 if (HDR_HAS_L1HDR(hdr)) { 3705 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3706 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3707 3708 if (!HDR_PROTECTED(hdr)) { 3709 kmem_cache_free(hdr_full_cache, hdr); 3710 } else { 3711 kmem_cache_free(hdr_full_crypt_cache, hdr); 3712 } 3713 } else { 3714 kmem_cache_free(hdr_l2only_cache, hdr); 3715 } 3716 } 3717 3718 void 3719 arc_buf_destroy(arc_buf_t *buf, void* tag) 3720 { 3721 arc_buf_hdr_t *hdr = buf->b_hdr; 3722 3723 if (hdr->b_l1hdr.b_state == arc_anon) { 3724 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3725 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3726 VERIFY0(remove_reference(hdr, NULL, tag)); 3727 arc_hdr_destroy(hdr); 3728 return; 3729 } 3730 3731 kmutex_t *hash_lock = HDR_LOCK(hdr); 3732 mutex_enter(hash_lock); 3733 3734 ASSERT3P(hdr, ==, buf->b_hdr); 3735 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3736 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3737 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3738 ASSERT3P(buf->b_data, !=, NULL); 3739 3740 (void) remove_reference(hdr, hash_lock, tag); 3741 arc_buf_destroy_impl(buf); 3742 mutex_exit(hash_lock); 3743 } 3744 3745 /* 3746 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3747 * state of the header is dependent on its state prior to entering this 3748 * function. The following transitions are possible: 3749 * 3750 * - arc_mru -> arc_mru_ghost 3751 * - arc_mfu -> arc_mfu_ghost 3752 * - arc_mru_ghost -> arc_l2c_only 3753 * - arc_mru_ghost -> deleted 3754 * - arc_mfu_ghost -> arc_l2c_only 3755 * - arc_mfu_ghost -> deleted 3756 */ 3757 static int64_t 3758 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3759 { 3760 arc_state_t *evicted_state, *state; 3761 int64_t bytes_evicted = 0; 3762 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3763 zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms; 3764 3765 ASSERT(MUTEX_HELD(hash_lock)); 3766 ASSERT(HDR_HAS_L1HDR(hdr)); 3767 3768 state = hdr->b_l1hdr.b_state; 3769 if (GHOST_STATE(state)) { 3770 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3771 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3772 3773 /* 3774 * l2arc_write_buffers() relies on a header's L1 portion 3775 * (i.e. its b_pabd field) during its write phase. 3776 * Thus, we cannot push a header onto the arc_l2c_only 3777 * state (removing its L1 piece) until the header is 3778 * done being written to the l2arc. 3779 */ 3780 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3781 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3782 return (bytes_evicted); 3783 } 3784 3785 ARCSTAT_BUMP(arcstat_deleted); 3786 bytes_evicted += HDR_GET_LSIZE(hdr); 3787 3788 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3789 3790 if (HDR_HAS_L2HDR(hdr)) { 3791 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3792 ASSERT(!HDR_HAS_RABD(hdr)); 3793 /* 3794 * This buffer is cached on the 2nd Level ARC; 3795 * don't destroy the header. 3796 */ 3797 arc_change_state(arc_l2c_only, hdr, hash_lock); 3798 /* 3799 * dropping from L1+L2 cached to L2-only, 3800 * realloc to remove the L1 header. 3801 */ 3802 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3803 hdr_l2only_cache); 3804 } else { 3805 arc_change_state(arc_anon, hdr, hash_lock); 3806 arc_hdr_destroy(hdr); 3807 } 3808 return (bytes_evicted); 3809 } 3810 3811 ASSERT(state == arc_mru || state == arc_mfu); 3812 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3813 3814 /* prefetch buffers have a minimum lifespan */ 3815 if (HDR_IO_IN_PROGRESS(hdr) || 3816 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3817 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) { 3818 ARCSTAT_BUMP(arcstat_evict_skip); 3819 return (bytes_evicted); 3820 } 3821 3822 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3823 while (hdr->b_l1hdr.b_buf) { 3824 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3825 if (!mutex_tryenter(&buf->b_evict_lock)) { 3826 ARCSTAT_BUMP(arcstat_mutex_miss); 3827 break; 3828 } 3829 if (buf->b_data != NULL) 3830 bytes_evicted += HDR_GET_LSIZE(hdr); 3831 mutex_exit(&buf->b_evict_lock); 3832 arc_buf_destroy_impl(buf); 3833 } 3834 3835 if (HDR_HAS_L2HDR(hdr)) { 3836 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3837 } else { 3838 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3839 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3840 HDR_GET_LSIZE(hdr)); 3841 3842 switch (state->arcs_state) { 3843 case ARC_STATE_MRU: 3844 ARCSTAT_INCR( 3845 arcstat_evict_l2_eligible_mru, 3846 HDR_GET_LSIZE(hdr)); 3847 break; 3848 case ARC_STATE_MFU: 3849 ARCSTAT_INCR( 3850 arcstat_evict_l2_eligible_mfu, 3851 HDR_GET_LSIZE(hdr)); 3852 break; 3853 default: 3854 break; 3855 } 3856 } else { 3857 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3858 HDR_GET_LSIZE(hdr)); 3859 } 3860 } 3861 3862 if (hdr->b_l1hdr.b_bufcnt == 0) { 3863 arc_cksum_free(hdr); 3864 3865 bytes_evicted += arc_hdr_size(hdr); 3866 3867 /* 3868 * If this hdr is being evicted and has a compressed 3869 * buffer then we discard it here before we change states. 3870 * This ensures that the accounting is updated correctly 3871 * in arc_free_data_impl(). 3872 */ 3873 if (hdr->b_l1hdr.b_pabd != NULL) 3874 arc_hdr_free_pabd(hdr, B_FALSE); 3875 3876 if (HDR_HAS_RABD(hdr)) 3877 arc_hdr_free_pabd(hdr, B_TRUE); 3878 3879 arc_change_state(evicted_state, hdr, hash_lock); 3880 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3881 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3882 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3883 } 3884 3885 return (bytes_evicted); 3886 } 3887 3888 static uint64_t 3889 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3890 uint64_t spa, int64_t bytes) 3891 { 3892 multilist_sublist_t *mls; 3893 uint64_t bytes_evicted = 0; 3894 arc_buf_hdr_t *hdr; 3895 kmutex_t *hash_lock; 3896 int evict_count = 0; 3897 3898 ASSERT3P(marker, !=, NULL); 3899 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3900 3901 mls = multilist_sublist_lock(ml, idx); 3902 3903 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3904 hdr = multilist_sublist_prev(mls, marker)) { 3905 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3906 (evict_count >= zfs_arc_evict_batch_limit)) 3907 break; 3908 3909 /* 3910 * To keep our iteration location, move the marker 3911 * forward. Since we're not holding hdr's hash lock, we 3912 * must be very careful and not remove 'hdr' from the 3913 * sublist. Otherwise, other consumers might mistake the 3914 * 'hdr' as not being on a sublist when they call the 3915 * multilist_link_active() function (they all rely on 3916 * the hash lock protecting concurrent insertions and 3917 * removals). multilist_sublist_move_forward() was 3918 * specifically implemented to ensure this is the case 3919 * (only 'marker' will be removed and re-inserted). 3920 */ 3921 multilist_sublist_move_forward(mls, marker); 3922 3923 /* 3924 * The only case where the b_spa field should ever be 3925 * zero, is the marker headers inserted by 3926 * arc_evict_state(). It's possible for multiple threads 3927 * to be calling arc_evict_state() concurrently (e.g. 3928 * dsl_pool_close() and zio_inject_fault()), so we must 3929 * skip any markers we see from these other threads. 3930 */ 3931 if (hdr->b_spa == 0) 3932 continue; 3933 3934 /* we're only interested in evicting buffers of a certain spa */ 3935 if (spa != 0 && hdr->b_spa != spa) { 3936 ARCSTAT_BUMP(arcstat_evict_skip); 3937 continue; 3938 } 3939 3940 hash_lock = HDR_LOCK(hdr); 3941 3942 /* 3943 * We aren't calling this function from any code path 3944 * that would already be holding a hash lock, so we're 3945 * asserting on this assumption to be defensive in case 3946 * this ever changes. Without this check, it would be 3947 * possible to incorrectly increment arcstat_mutex_miss 3948 * below (e.g. if the code changed such that we called 3949 * this function with a hash lock held). 3950 */ 3951 ASSERT(!MUTEX_HELD(hash_lock)); 3952 3953 if (mutex_tryenter(hash_lock)) { 3954 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3955 mutex_exit(hash_lock); 3956 3957 bytes_evicted += evicted; 3958 3959 /* 3960 * If evicted is zero, arc_evict_hdr() must have 3961 * decided to skip this header, don't increment 3962 * evict_count in this case. 3963 */ 3964 if (evicted != 0) 3965 evict_count++; 3966 3967 /* 3968 * If arc_size isn't overflowing, signal any 3969 * threads that might happen to be waiting. 3970 * 3971 * For each header evicted, we wake up a single 3972 * thread. If we used cv_broadcast, we could 3973 * wake up "too many" threads causing arc_size 3974 * to significantly overflow arc_c; since 3975 * arc_get_data_impl() doesn't check for overflow 3976 * when it's woken up (it doesn't because it's 3977 * possible for the ARC to be overflowing while 3978 * full of un-evictable buffers, and the 3979 * function should proceed in this case). 3980 * 3981 * If threads are left sleeping, due to not 3982 * using cv_broadcast here, they will be woken 3983 * up via cv_broadcast in arc_adjust_cb() just 3984 * before arc_adjust_zthr sleeps. 3985 */ 3986 mutex_enter(&arc_adjust_lock); 3987 if (!arc_is_overflowing()) 3988 cv_signal(&arc_adjust_waiters_cv); 3989 mutex_exit(&arc_adjust_lock); 3990 } else { 3991 ARCSTAT_BUMP(arcstat_mutex_miss); 3992 } 3993 } 3994 3995 multilist_sublist_unlock(mls); 3996 3997 return (bytes_evicted); 3998 } 3999 4000 /* 4001 * Evict buffers from the given arc state, until we've removed the 4002 * specified number of bytes. Move the removed buffers to the 4003 * appropriate evict state. 4004 * 4005 * This function makes a "best effort". It skips over any buffers 4006 * it can't get a hash_lock on, and so, may not catch all candidates. 4007 * It may also return without evicting as much space as requested. 4008 * 4009 * If bytes is specified using the special value ARC_EVICT_ALL, this 4010 * will evict all available (i.e. unlocked and evictable) buffers from 4011 * the given arc state; which is used by arc_flush(). 4012 */ 4013 static uint64_t 4014 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4015 arc_buf_contents_t type) 4016 { 4017 uint64_t total_evicted = 0; 4018 multilist_t *ml = state->arcs_list[type]; 4019 int num_sublists; 4020 arc_buf_hdr_t **markers; 4021 4022 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4023 4024 num_sublists = multilist_get_num_sublists(ml); 4025 4026 /* 4027 * If we've tried to evict from each sublist, made some 4028 * progress, but still have not hit the target number of bytes 4029 * to evict, we want to keep trying. The markers allow us to 4030 * pick up where we left off for each individual sublist, rather 4031 * than starting from the tail each time. 4032 */ 4033 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4034 for (int i = 0; i < num_sublists; i++) { 4035 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4036 4037 /* 4038 * A b_spa of 0 is used to indicate that this header is 4039 * a marker. This fact is used in arc_adjust_type() and 4040 * arc_evict_state_impl(). 4041 */ 4042 markers[i]->b_spa = 0; 4043 4044 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4045 multilist_sublist_insert_tail(mls, markers[i]); 4046 multilist_sublist_unlock(mls); 4047 } 4048 4049 /* 4050 * While we haven't hit our target number of bytes to evict, or 4051 * we're evicting all available buffers. 4052 */ 4053 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4054 /* 4055 * Start eviction using a randomly selected sublist, 4056 * this is to try and evenly balance eviction across all 4057 * sublists. Always starting at the same sublist 4058 * (e.g. index 0) would cause evictions to favor certain 4059 * sublists over others. 4060 */ 4061 int sublist_idx = multilist_get_random_index(ml); 4062 uint64_t scan_evicted = 0; 4063 4064 for (int i = 0; i < num_sublists; i++) { 4065 uint64_t bytes_remaining; 4066 uint64_t bytes_evicted; 4067 4068 if (bytes == ARC_EVICT_ALL) 4069 bytes_remaining = ARC_EVICT_ALL; 4070 else if (total_evicted < bytes) 4071 bytes_remaining = bytes - total_evicted; 4072 else 4073 break; 4074 4075 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4076 markers[sublist_idx], spa, bytes_remaining); 4077 4078 scan_evicted += bytes_evicted; 4079 total_evicted += bytes_evicted; 4080 4081 /* we've reached the end, wrap to the beginning */ 4082 if (++sublist_idx >= num_sublists) 4083 sublist_idx = 0; 4084 } 4085 4086 /* 4087 * If we didn't evict anything during this scan, we have 4088 * no reason to believe we'll evict more during another 4089 * scan, so break the loop. 4090 */ 4091 if (scan_evicted == 0) { 4092 /* This isn't possible, let's make that obvious */ 4093 ASSERT3S(bytes, !=, 0); 4094 4095 /* 4096 * When bytes is ARC_EVICT_ALL, the only way to 4097 * break the loop is when scan_evicted is zero. 4098 * In that case, we actually have evicted enough, 4099 * so we don't want to increment the kstat. 4100 */ 4101 if (bytes != ARC_EVICT_ALL) { 4102 ASSERT3S(total_evicted, <, bytes); 4103 ARCSTAT_BUMP(arcstat_evict_not_enough); 4104 } 4105 4106 break; 4107 } 4108 } 4109 4110 for (int i = 0; i < num_sublists; i++) { 4111 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4112 multilist_sublist_remove(mls, markers[i]); 4113 multilist_sublist_unlock(mls); 4114 4115 kmem_cache_free(hdr_full_cache, markers[i]); 4116 } 4117 kmem_free(markers, sizeof (*markers) * num_sublists); 4118 4119 return (total_evicted); 4120 } 4121 4122 /* 4123 * Flush all "evictable" data of the given type from the arc state 4124 * specified. This will not evict any "active" buffers (i.e. referenced). 4125 * 4126 * When 'retry' is set to B_FALSE, the function will make a single pass 4127 * over the state and evict any buffers that it can. Since it doesn't 4128 * continually retry the eviction, it might end up leaving some buffers 4129 * in the ARC due to lock misses. 4130 * 4131 * When 'retry' is set to B_TRUE, the function will continually retry the 4132 * eviction until *all* evictable buffers have been removed from the 4133 * state. As a result, if concurrent insertions into the state are 4134 * allowed (e.g. if the ARC isn't shutting down), this function might 4135 * wind up in an infinite loop, continually trying to evict buffers. 4136 */ 4137 static uint64_t 4138 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4139 boolean_t retry) 4140 { 4141 uint64_t evicted = 0; 4142 4143 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4144 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4145 4146 if (!retry) 4147 break; 4148 } 4149 4150 return (evicted); 4151 } 4152 4153 /* 4154 * Evict the specified number of bytes from the state specified, 4155 * restricting eviction to the spa and type given. This function 4156 * prevents us from trying to evict more from a state's list than 4157 * is "evictable", and to skip evicting altogether when passed a 4158 * negative value for "bytes". In contrast, arc_evict_state() will 4159 * evict everything it can, when passed a negative value for "bytes". 4160 */ 4161 static uint64_t 4162 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4163 arc_buf_contents_t type) 4164 { 4165 int64_t delta; 4166 4167 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4168 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4169 bytes); 4170 return (arc_evict_state(state, spa, delta, type)); 4171 } 4172 4173 return (0); 4174 } 4175 4176 /* 4177 * Evict metadata buffers from the cache, such that arc_meta_used is 4178 * capped by the arc_meta_limit tunable. 4179 */ 4180 static uint64_t 4181 arc_adjust_meta(uint64_t meta_used) 4182 { 4183 uint64_t total_evicted = 0; 4184 int64_t target; 4185 4186 /* 4187 * If we're over the meta limit, we want to evict enough 4188 * metadata to get back under the meta limit. We don't want to 4189 * evict so much that we drop the MRU below arc_p, though. If 4190 * we're over the meta limit more than we're over arc_p, we 4191 * evict some from the MRU here, and some from the MFU below. 4192 */ 4193 target = MIN((int64_t)(meta_used - arc_meta_limit), 4194 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4195 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4196 4197 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4198 4199 /* 4200 * Similar to the above, we want to evict enough bytes to get us 4201 * below the meta limit, but not so much as to drop us below the 4202 * space allotted to the MFU (which is defined as arc_c - arc_p). 4203 */ 4204 target = MIN((int64_t)(meta_used - arc_meta_limit), 4205 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4206 (arc_c - arc_p))); 4207 4208 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4209 4210 return (total_evicted); 4211 } 4212 4213 /* 4214 * Return the type of the oldest buffer in the given arc state 4215 * 4216 * This function will select a random sublist of type ARC_BUFC_DATA and 4217 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4218 * is compared, and the type which contains the "older" buffer will be 4219 * returned. 4220 */ 4221 static arc_buf_contents_t 4222 arc_adjust_type(arc_state_t *state) 4223 { 4224 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4225 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4226 int data_idx = multilist_get_random_index(data_ml); 4227 int meta_idx = multilist_get_random_index(meta_ml); 4228 multilist_sublist_t *data_mls; 4229 multilist_sublist_t *meta_mls; 4230 arc_buf_contents_t type; 4231 arc_buf_hdr_t *data_hdr; 4232 arc_buf_hdr_t *meta_hdr; 4233 4234 /* 4235 * We keep the sublist lock until we're finished, to prevent 4236 * the headers from being destroyed via arc_evict_state(). 4237 */ 4238 data_mls = multilist_sublist_lock(data_ml, data_idx); 4239 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4240 4241 /* 4242 * These two loops are to ensure we skip any markers that 4243 * might be at the tail of the lists due to arc_evict_state(). 4244 */ 4245 4246 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4247 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4248 if (data_hdr->b_spa != 0) 4249 break; 4250 } 4251 4252 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4253 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4254 if (meta_hdr->b_spa != 0) 4255 break; 4256 } 4257 4258 if (data_hdr == NULL && meta_hdr == NULL) { 4259 type = ARC_BUFC_DATA; 4260 } else if (data_hdr == NULL) { 4261 ASSERT3P(meta_hdr, !=, NULL); 4262 type = ARC_BUFC_METADATA; 4263 } else if (meta_hdr == NULL) { 4264 ASSERT3P(data_hdr, !=, NULL); 4265 type = ARC_BUFC_DATA; 4266 } else { 4267 ASSERT3P(data_hdr, !=, NULL); 4268 ASSERT3P(meta_hdr, !=, NULL); 4269 4270 /* The headers can't be on the sublist without an L1 header */ 4271 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4272 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4273 4274 if (data_hdr->b_l1hdr.b_arc_access < 4275 meta_hdr->b_l1hdr.b_arc_access) { 4276 type = ARC_BUFC_DATA; 4277 } else { 4278 type = ARC_BUFC_METADATA; 4279 } 4280 } 4281 4282 multilist_sublist_unlock(meta_mls); 4283 multilist_sublist_unlock(data_mls); 4284 4285 return (type); 4286 } 4287 4288 /* 4289 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4290 */ 4291 static uint64_t 4292 arc_adjust(void) 4293 { 4294 uint64_t total_evicted = 0; 4295 uint64_t bytes; 4296 int64_t target; 4297 uint64_t asize = aggsum_value(&arc_size); 4298 uint64_t ameta = aggsum_value(&arc_meta_used); 4299 4300 /* 4301 * If we're over arc_meta_limit, we want to correct that before 4302 * potentially evicting data buffers below. 4303 */ 4304 total_evicted += arc_adjust_meta(ameta); 4305 4306 /* 4307 * Adjust MRU size 4308 * 4309 * If we're over the target cache size, we want to evict enough 4310 * from the list to get back to our target size. We don't want 4311 * to evict too much from the MRU, such that it drops below 4312 * arc_p. So, if we're over our target cache size more than 4313 * the MRU is over arc_p, we'll evict enough to get back to 4314 * arc_p here, and then evict more from the MFU below. 4315 */ 4316 target = MIN((int64_t)(asize - arc_c), 4317 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4318 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4319 4320 /* 4321 * If we're below arc_meta_min, always prefer to evict data. 4322 * Otherwise, try to satisfy the requested number of bytes to 4323 * evict from the type which contains older buffers; in an 4324 * effort to keep newer buffers in the cache regardless of their 4325 * type. If we cannot satisfy the number of bytes from this 4326 * type, spill over into the next type. 4327 */ 4328 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 4329 ameta > arc_meta_min) { 4330 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4331 total_evicted += bytes; 4332 4333 /* 4334 * If we couldn't evict our target number of bytes from 4335 * metadata, we try to get the rest from data. 4336 */ 4337 target -= bytes; 4338 4339 total_evicted += 4340 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4341 } else { 4342 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4343 total_evicted += bytes; 4344 4345 /* 4346 * If we couldn't evict our target number of bytes from 4347 * data, we try to get the rest from metadata. 4348 */ 4349 target -= bytes; 4350 4351 total_evicted += 4352 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4353 } 4354 4355 /* 4356 * Adjust MFU size 4357 * 4358 * Now that we've tried to evict enough from the MRU to get its 4359 * size back to arc_p, if we're still above the target cache 4360 * size, we evict the rest from the MFU. 4361 */ 4362 target = asize - arc_c; 4363 4364 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 4365 ameta > arc_meta_min) { 4366 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4367 total_evicted += bytes; 4368 4369 /* 4370 * If we couldn't evict our target number of bytes from 4371 * metadata, we try to get the rest from data. 4372 */ 4373 target -= bytes; 4374 4375 total_evicted += 4376 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4377 } else { 4378 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4379 total_evicted += bytes; 4380 4381 /* 4382 * If we couldn't evict our target number of bytes from 4383 * data, we try to get the rest from data. 4384 */ 4385 target -= bytes; 4386 4387 total_evicted += 4388 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4389 } 4390 4391 /* 4392 * Adjust ghost lists 4393 * 4394 * In addition to the above, the ARC also defines target values 4395 * for the ghost lists. The sum of the mru list and mru ghost 4396 * list should never exceed the target size of the cache, and 4397 * the sum of the mru list, mfu list, mru ghost list, and mfu 4398 * ghost list should never exceed twice the target size of the 4399 * cache. The following logic enforces these limits on the ghost 4400 * caches, and evicts from them as needed. 4401 */ 4402 target = zfs_refcount_count(&arc_mru->arcs_size) + 4403 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4404 4405 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4406 total_evicted += bytes; 4407 4408 target -= bytes; 4409 4410 total_evicted += 4411 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4412 4413 /* 4414 * We assume the sum of the mru list and mfu list is less than 4415 * or equal to arc_c (we enforced this above), which means we 4416 * can use the simpler of the two equations below: 4417 * 4418 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4419 * mru ghost + mfu ghost <= arc_c 4420 */ 4421 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4422 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4423 4424 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4425 total_evicted += bytes; 4426 4427 target -= bytes; 4428 4429 total_evicted += 4430 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4431 4432 return (total_evicted); 4433 } 4434 4435 void 4436 arc_flush(spa_t *spa, boolean_t retry) 4437 { 4438 uint64_t guid = 0; 4439 4440 /* 4441 * If retry is B_TRUE, a spa must not be specified since we have 4442 * no good way to determine if all of a spa's buffers have been 4443 * evicted from an arc state. 4444 */ 4445 ASSERT(!retry || spa == 0); 4446 4447 if (spa != NULL) 4448 guid = spa_load_guid(spa); 4449 4450 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4451 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4452 4453 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4454 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4455 4456 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4457 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4458 4459 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4460 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4461 } 4462 4463 static void 4464 arc_reduce_target_size(int64_t to_free) 4465 { 4466 uint64_t asize = aggsum_value(&arc_size); 4467 if (arc_c > arc_c_min) { 4468 4469 if (arc_c > arc_c_min + to_free) 4470 atomic_add_64(&arc_c, -to_free); 4471 else 4472 arc_c = arc_c_min; 4473 4474 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4475 if (asize < arc_c) 4476 arc_c = MAX(asize, arc_c_min); 4477 if (arc_p > arc_c) 4478 arc_p = (arc_c >> 1); 4479 ASSERT(arc_c >= arc_c_min); 4480 ASSERT((int64_t)arc_p >= 0); 4481 } 4482 4483 if (asize > arc_c) { 4484 /* See comment in arc_adjust_cb_check() on why lock+flag */ 4485 mutex_enter(&arc_adjust_lock); 4486 arc_adjust_needed = B_TRUE; 4487 mutex_exit(&arc_adjust_lock); 4488 zthr_wakeup(arc_adjust_zthr); 4489 } 4490 } 4491 4492 typedef enum free_memory_reason_t { 4493 FMR_UNKNOWN, 4494 FMR_NEEDFREE, 4495 FMR_LOTSFREE, 4496 FMR_SWAPFS_MINFREE, 4497 FMR_PAGES_PP_MAXIMUM, 4498 FMR_HEAP_ARENA, 4499 FMR_ZIO_ARENA, 4500 } free_memory_reason_t; 4501 4502 int64_t last_free_memory; 4503 free_memory_reason_t last_free_reason; 4504 4505 /* 4506 * Additional reserve of pages for pp_reserve. 4507 */ 4508 int64_t arc_pages_pp_reserve = 64; 4509 4510 /* 4511 * Additional reserve of pages for swapfs. 4512 */ 4513 int64_t arc_swapfs_reserve = 64; 4514 4515 /* 4516 * Return the amount of memory that can be consumed before reclaim will be 4517 * needed. Positive if there is sufficient free memory, negative indicates 4518 * the amount of memory that needs to be freed up. 4519 */ 4520 static int64_t 4521 arc_available_memory(void) 4522 { 4523 int64_t lowest = INT64_MAX; 4524 int64_t n; 4525 free_memory_reason_t r = FMR_UNKNOWN; 4526 4527 #ifdef _KERNEL 4528 if (needfree > 0) { 4529 n = PAGESIZE * (-needfree); 4530 if (n < lowest) { 4531 lowest = n; 4532 r = FMR_NEEDFREE; 4533 } 4534 } 4535 4536 /* 4537 * check that we're out of range of the pageout scanner. It starts to 4538 * schedule paging if freemem is less than lotsfree and needfree. 4539 * lotsfree is the high-water mark for pageout, and needfree is the 4540 * number of needed free pages. We add extra pages here to make sure 4541 * the scanner doesn't start up while we're freeing memory. 4542 */ 4543 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 4544 if (n < lowest) { 4545 lowest = n; 4546 r = FMR_LOTSFREE; 4547 } 4548 4549 /* 4550 * check to make sure that swapfs has enough space so that anon 4551 * reservations can still succeed. anon_resvmem() checks that the 4552 * availrmem is greater than swapfs_minfree, and the number of reserved 4553 * swap pages. We also add a bit of extra here just to prevent 4554 * circumstances from getting really dire. 4555 */ 4556 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4557 desfree - arc_swapfs_reserve); 4558 if (n < lowest) { 4559 lowest = n; 4560 r = FMR_SWAPFS_MINFREE; 4561 } 4562 4563 4564 /* 4565 * Check that we have enough availrmem that memory locking (e.g., via 4566 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4567 * stores the number of pages that cannot be locked; when availrmem 4568 * drops below pages_pp_maximum, page locking mechanisms such as 4569 * page_pp_lock() will fail.) 4570 */ 4571 n = PAGESIZE * (availrmem - pages_pp_maximum - 4572 arc_pages_pp_reserve); 4573 if (n < lowest) { 4574 lowest = n; 4575 r = FMR_PAGES_PP_MAXIMUM; 4576 } 4577 4578 4579 /* 4580 * If zio data pages are being allocated out of a separate heap segment, 4581 * then enforce that the size of available vmem for this arena remains 4582 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4583 * 4584 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4585 * memory (in the zio_arena) free, which can avoid memory 4586 * fragmentation issues. 4587 */ 4588 if (zio_arena != NULL) { 4589 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4590 (vmem_size(zio_arena, VMEM_ALLOC) >> 4591 arc_zio_arena_free_shift); 4592 if (n < lowest) { 4593 lowest = n; 4594 r = FMR_ZIO_ARENA; 4595 } 4596 } 4597 #else 4598 /* Every 100 calls, free a small amount */ 4599 if (spa_get_random(100) == 0) 4600 lowest = -1024; 4601 #endif 4602 4603 last_free_memory = lowest; 4604 last_free_reason = r; 4605 4606 return (lowest); 4607 } 4608 4609 4610 /* 4611 * Determine if the system is under memory pressure and is asking 4612 * to reclaim memory. A return value of B_TRUE indicates that the system 4613 * is under memory pressure and that the arc should adjust accordingly. 4614 */ 4615 static boolean_t 4616 arc_reclaim_needed(void) 4617 { 4618 return (arc_available_memory() < 0); 4619 } 4620 4621 static void 4622 arc_kmem_reap_soon(void) 4623 { 4624 size_t i; 4625 kmem_cache_t *prev_cache = NULL; 4626 kmem_cache_t *prev_data_cache = NULL; 4627 extern kmem_cache_t *zio_buf_cache[]; 4628 extern kmem_cache_t *zio_data_buf_cache[]; 4629 extern kmem_cache_t *zfs_btree_leaf_cache; 4630 extern kmem_cache_t *abd_chunk_cache; 4631 4632 #ifdef _KERNEL 4633 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4634 /* 4635 * We are exceeding our meta-data cache limit. 4636 * Purge some DNLC entries to release holds on meta-data. 4637 */ 4638 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4639 } 4640 #endif 4641 4642 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4643 if (zio_buf_cache[i] != prev_cache) { 4644 prev_cache = zio_buf_cache[i]; 4645 kmem_cache_reap_soon(zio_buf_cache[i]); 4646 } 4647 if (zio_data_buf_cache[i] != prev_data_cache) { 4648 prev_data_cache = zio_data_buf_cache[i]; 4649 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4650 } 4651 } 4652 kmem_cache_reap_soon(abd_chunk_cache); 4653 kmem_cache_reap_soon(buf_cache); 4654 kmem_cache_reap_soon(hdr_full_cache); 4655 kmem_cache_reap_soon(hdr_l2only_cache); 4656 kmem_cache_reap_soon(zfs_btree_leaf_cache); 4657 4658 if (zio_arena != NULL) { 4659 /* 4660 * Ask the vmem arena to reclaim unused memory from its 4661 * quantum caches. 4662 */ 4663 vmem_qcache_reap(zio_arena); 4664 } 4665 } 4666 4667 /* ARGSUSED */ 4668 static boolean_t 4669 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4670 { 4671 /* 4672 * This is necessary in order for the mdb ::arc dcmd to 4673 * show up to date information. Since the ::arc command 4674 * does not call the kstat's update function, without 4675 * this call, the command may show stale stats for the 4676 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4677 * with this change, the data might be up to 1 second 4678 * out of date(the arc_adjust_zthr has a maximum sleep 4679 * time of 1 second); but that should suffice. The 4680 * arc_state_t structures can be queried directly if more 4681 * accurate information is needed. 4682 */ 4683 if (arc_ksp != NULL) 4684 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4685 4686 /* 4687 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4688 * rather than checking if we are overflowing here, so that we are 4689 * sure to not leave arc_get_data_impl() waiting on 4690 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4691 * arc_get_data_impl() checked, we need to wake it up. We could 4692 * broadcast the CV here, but arc_get_data_impl() may have not yet 4693 * gone to sleep. We would need to use a mutex to ensure that this 4694 * function doesn't broadcast until arc_get_data_impl() has gone to 4695 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4696 * such a lock would necessarily be incorrect with respect to the 4697 * zthr_lock, which is held before this function is called, and is 4698 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4699 */ 4700 return (arc_adjust_needed); 4701 } 4702 4703 /* 4704 * Keep arc_size under arc_c by running arc_adjust which evicts data 4705 * from the ARC. 4706 */ 4707 /* ARGSUSED */ 4708 static void 4709 arc_adjust_cb(void *arg, zthr_t *zthr) 4710 { 4711 uint64_t evicted = 0; 4712 4713 /* Evict from cache */ 4714 evicted = arc_adjust(); 4715 4716 /* 4717 * If evicted is zero, we couldn't evict anything 4718 * via arc_adjust(). This could be due to hash lock 4719 * collisions, but more likely due to the majority of 4720 * arc buffers being unevictable. Therefore, even if 4721 * arc_size is above arc_c, another pass is unlikely to 4722 * be helpful and could potentially cause us to enter an 4723 * infinite loop. Additionally, zthr_iscancelled() is 4724 * checked here so that if the arc is shutting down, the 4725 * broadcast will wake any remaining arc adjust waiters. 4726 */ 4727 mutex_enter(&arc_adjust_lock); 4728 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4729 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4730 if (!arc_adjust_needed) { 4731 /* 4732 * We're either no longer overflowing, or we 4733 * can't evict anything more, so we should wake 4734 * up any waiters. 4735 */ 4736 cv_broadcast(&arc_adjust_waiters_cv); 4737 } 4738 mutex_exit(&arc_adjust_lock); 4739 } 4740 4741 /* ARGSUSED */ 4742 static boolean_t 4743 arc_reap_cb_check(void *arg, zthr_t *zthr) 4744 { 4745 int64_t free_memory = arc_available_memory(); 4746 4747 /* 4748 * If a kmem reap is already active, don't schedule more. We must 4749 * check for this because kmem_cache_reap_soon() won't actually 4750 * block on the cache being reaped (this is to prevent callers from 4751 * becoming implicitly blocked by a system-wide kmem reap -- which, 4752 * on a system with many, many full magazines, can take minutes). 4753 */ 4754 if (!kmem_cache_reap_active() && 4755 free_memory < 0) { 4756 arc_no_grow = B_TRUE; 4757 arc_warm = B_TRUE; 4758 /* 4759 * Wait at least zfs_grow_retry (default 60) seconds 4760 * before considering growing. 4761 */ 4762 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4763 return (B_TRUE); 4764 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4765 arc_no_grow = B_TRUE; 4766 } else if (gethrtime() >= arc_growtime) { 4767 arc_no_grow = B_FALSE; 4768 } 4769 4770 return (B_FALSE); 4771 } 4772 4773 /* 4774 * Keep enough free memory in the system by reaping the ARC's kmem 4775 * caches. To cause more slabs to be reapable, we may reduce the 4776 * target size of the cache (arc_c), causing the arc_adjust_cb() 4777 * to free more buffers. 4778 */ 4779 /* ARGSUSED */ 4780 static void 4781 arc_reap_cb(void *arg, zthr_t *zthr) 4782 { 4783 int64_t free_memory; 4784 4785 /* 4786 * Kick off asynchronous kmem_reap()'s of all our caches. 4787 */ 4788 arc_kmem_reap_soon(); 4789 4790 /* 4791 * Wait at least arc_kmem_cache_reap_retry_ms between 4792 * arc_kmem_reap_soon() calls. Without this check it is possible to 4793 * end up in a situation where we spend lots of time reaping 4794 * caches, while we're near arc_c_min. Waiting here also gives the 4795 * subsequent free memory check a chance of finding that the 4796 * asynchronous reap has already freed enough memory, and we don't 4797 * need to call arc_reduce_target_size(). 4798 */ 4799 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4800 4801 /* 4802 * Reduce the target size as needed to maintain the amount of free 4803 * memory in the system at a fraction of the arc_size (1/128th by 4804 * default). If oversubscribed (free_memory < 0) then reduce the 4805 * target arc_size by the deficit amount plus the fractional 4806 * amount. If free memory is positive but less then the fractional 4807 * amount, reduce by what is needed to hit the fractional amount. 4808 */ 4809 free_memory = arc_available_memory(); 4810 4811 int64_t to_free = 4812 (arc_c >> arc_shrink_shift) - free_memory; 4813 if (to_free > 0) { 4814 #ifdef _KERNEL 4815 to_free = MAX(to_free, ptob(needfree)); 4816 #endif 4817 arc_reduce_target_size(to_free); 4818 } 4819 } 4820 4821 /* 4822 * Adapt arc info given the number of bytes we are trying to add and 4823 * the state that we are coming from. This function is only called 4824 * when we are adding new content to the cache. 4825 */ 4826 static void 4827 arc_adapt(int bytes, arc_state_t *state) 4828 { 4829 int mult; 4830 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4831 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4832 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4833 4834 ASSERT(bytes > 0); 4835 /* 4836 * Adapt the target size of the MRU list: 4837 * - if we just hit in the MRU ghost list, then increase 4838 * the target size of the MRU list. 4839 * - if we just hit in the MFU ghost list, then increase 4840 * the target size of the MFU list by decreasing the 4841 * target size of the MRU list. 4842 */ 4843 if (state == arc_mru_ghost) { 4844 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4845 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4846 4847 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4848 } else if (state == arc_mfu_ghost) { 4849 uint64_t delta; 4850 4851 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4852 mult = MIN(mult, 10); 4853 4854 delta = MIN(bytes * mult, arc_p); 4855 arc_p = MAX(arc_p_min, arc_p - delta); 4856 } 4857 ASSERT((int64_t)arc_p >= 0); 4858 4859 /* 4860 * Wake reap thread if we do not have any available memory 4861 */ 4862 if (arc_reclaim_needed()) { 4863 zthr_wakeup(arc_reap_zthr); 4864 return; 4865 } 4866 4867 4868 if (arc_no_grow) 4869 return; 4870 4871 if (arc_c >= arc_c_max) 4872 return; 4873 4874 /* 4875 * If we're within (2 * maxblocksize) bytes of the target 4876 * cache size, increment the target cache size 4877 */ 4878 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4879 0) { 4880 atomic_add_64(&arc_c, (int64_t)bytes); 4881 if (arc_c > arc_c_max) 4882 arc_c = arc_c_max; 4883 else if (state == arc_anon) 4884 atomic_add_64(&arc_p, (int64_t)bytes); 4885 if (arc_p > arc_c) 4886 arc_p = arc_c; 4887 } 4888 ASSERT((int64_t)arc_p >= 0); 4889 } 4890 4891 /* 4892 * Check if arc_size has grown past our upper threshold, determined by 4893 * zfs_arc_overflow_shift. 4894 */ 4895 static boolean_t 4896 arc_is_overflowing(void) 4897 { 4898 /* Always allow at least one block of overflow */ 4899 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4900 arc_c >> zfs_arc_overflow_shift); 4901 4902 /* 4903 * We just compare the lower bound here for performance reasons. Our 4904 * primary goals are to make sure that the arc never grows without 4905 * bound, and that it can reach its maximum size. This check 4906 * accomplishes both goals. The maximum amount we could run over by is 4907 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4908 * in the ARC. In practice, that's in the tens of MB, which is low 4909 * enough to be safe. 4910 */ 4911 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4912 } 4913 4914 static abd_t * 4915 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4916 boolean_t do_adapt) 4917 { 4918 arc_buf_contents_t type = arc_buf_type(hdr); 4919 4920 arc_get_data_impl(hdr, size, tag, do_adapt); 4921 if (type == ARC_BUFC_METADATA) { 4922 return (abd_alloc(size, B_TRUE)); 4923 } else { 4924 ASSERT(type == ARC_BUFC_DATA); 4925 return (abd_alloc(size, B_FALSE)); 4926 } 4927 } 4928 4929 static void * 4930 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4931 { 4932 arc_buf_contents_t type = arc_buf_type(hdr); 4933 4934 arc_get_data_impl(hdr, size, tag, B_TRUE); 4935 if (type == ARC_BUFC_METADATA) { 4936 return (zio_buf_alloc(size)); 4937 } else { 4938 ASSERT(type == ARC_BUFC_DATA); 4939 return (zio_data_buf_alloc(size)); 4940 } 4941 } 4942 4943 /* 4944 * Allocate a block and return it to the caller. If we are hitting the 4945 * hard limit for the cache size, we must sleep, waiting for the eviction 4946 * thread to catch up. If we're past the target size but below the hard 4947 * limit, we'll only signal the reclaim thread and continue on. 4948 */ 4949 static void 4950 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4951 boolean_t do_adapt) 4952 { 4953 arc_state_t *state = hdr->b_l1hdr.b_state; 4954 arc_buf_contents_t type = arc_buf_type(hdr); 4955 4956 if (do_adapt) 4957 arc_adapt(size, state); 4958 4959 /* 4960 * If arc_size is currently overflowing, and has grown past our 4961 * upper limit, we must be adding data faster than the evict 4962 * thread can evict. Thus, to ensure we don't compound the 4963 * problem by adding more data and forcing arc_size to grow even 4964 * further past its target size, we halt and wait for the 4965 * eviction thread to catch up. 4966 * 4967 * It's also possible that the reclaim thread is unable to evict 4968 * enough buffers to get arc_size below the overflow limit (e.g. 4969 * due to buffers being un-evictable, or hash lock collisions). 4970 * In this case, we want to proceed regardless if we're 4971 * overflowing; thus we don't use a while loop here. 4972 */ 4973 if (arc_is_overflowing()) { 4974 mutex_enter(&arc_adjust_lock); 4975 4976 /* 4977 * Now that we've acquired the lock, we may no longer be 4978 * over the overflow limit, lets check. 4979 * 4980 * We're ignoring the case of spurious wake ups. If that 4981 * were to happen, it'd let this thread consume an ARC 4982 * buffer before it should have (i.e. before we're under 4983 * the overflow limit and were signalled by the reclaim 4984 * thread). As long as that is a rare occurrence, it 4985 * shouldn't cause any harm. 4986 */ 4987 if (arc_is_overflowing()) { 4988 arc_adjust_needed = B_TRUE; 4989 zthr_wakeup(arc_adjust_zthr); 4990 (void) cv_wait(&arc_adjust_waiters_cv, 4991 &arc_adjust_lock); 4992 } 4993 mutex_exit(&arc_adjust_lock); 4994 } 4995 4996 VERIFY3U(hdr->b_type, ==, type); 4997 if (type == ARC_BUFC_METADATA) { 4998 arc_space_consume(size, ARC_SPACE_META); 4999 } else { 5000 arc_space_consume(size, ARC_SPACE_DATA); 5001 } 5002 5003 /* 5004 * Update the state size. Note that ghost states have a 5005 * "ghost size" and so don't need to be updated. 5006 */ 5007 if (!GHOST_STATE(state)) { 5008 5009 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5010 5011 /* 5012 * If this is reached via arc_read, the link is 5013 * protected by the hash lock. If reached via 5014 * arc_buf_alloc, the header should not be accessed by 5015 * any other thread. And, if reached via arc_read_done, 5016 * the hash lock will protect it if it's found in the 5017 * hash table; otherwise no other thread should be 5018 * trying to [add|remove]_reference it. 5019 */ 5020 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5021 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5022 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5023 size, tag); 5024 } 5025 5026 /* 5027 * If we are growing the cache, and we are adding anonymous 5028 * data, and we have outgrown arc_p, update arc_p 5029 */ 5030 if (aggsum_compare(&arc_size, arc_c) < 0 && 5031 hdr->b_l1hdr.b_state == arc_anon && 5032 (zfs_refcount_count(&arc_anon->arcs_size) + 5033 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5034 arc_p = MIN(arc_c, arc_p + size); 5035 } 5036 } 5037 5038 static void 5039 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5040 { 5041 arc_free_data_impl(hdr, size, tag); 5042 abd_free(abd); 5043 } 5044 5045 static void 5046 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5047 { 5048 arc_buf_contents_t type = arc_buf_type(hdr); 5049 5050 arc_free_data_impl(hdr, size, tag); 5051 if (type == ARC_BUFC_METADATA) { 5052 zio_buf_free(buf, size); 5053 } else { 5054 ASSERT(type == ARC_BUFC_DATA); 5055 zio_data_buf_free(buf, size); 5056 } 5057 } 5058 5059 /* 5060 * Free the arc data buffer. 5061 */ 5062 static void 5063 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5064 { 5065 arc_state_t *state = hdr->b_l1hdr.b_state; 5066 arc_buf_contents_t type = arc_buf_type(hdr); 5067 5068 /* protected by hash lock, if in the hash table */ 5069 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5070 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5071 ASSERT(state != arc_anon && state != arc_l2c_only); 5072 5073 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5074 size, tag); 5075 } 5076 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5077 5078 VERIFY3U(hdr->b_type, ==, type); 5079 if (type == ARC_BUFC_METADATA) { 5080 arc_space_return(size, ARC_SPACE_META); 5081 } else { 5082 ASSERT(type == ARC_BUFC_DATA); 5083 arc_space_return(size, ARC_SPACE_DATA); 5084 } 5085 } 5086 5087 /* 5088 * This routine is called whenever a buffer is accessed. 5089 * NOTE: the hash lock is dropped in this function. 5090 */ 5091 static void 5092 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5093 { 5094 clock_t now; 5095 5096 ASSERT(MUTEX_HELD(hash_lock)); 5097 ASSERT(HDR_HAS_L1HDR(hdr)); 5098 5099 if (hdr->b_l1hdr.b_state == arc_anon) { 5100 /* 5101 * This buffer is not in the cache, and does not 5102 * appear in our "ghost" list. Add the new buffer 5103 * to the MRU state. 5104 */ 5105 5106 ASSERT0(hdr->b_l1hdr.b_arc_access); 5107 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5108 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5109 arc_change_state(arc_mru, hdr, hash_lock); 5110 5111 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5112 now = ddi_get_lbolt(); 5113 5114 /* 5115 * If this buffer is here because of a prefetch, then either: 5116 * - clear the flag if this is a "referencing" read 5117 * (any subsequent access will bump this into the MFU state). 5118 * or 5119 * - move the buffer to the head of the list if this is 5120 * another prefetch (to make it less likely to be evicted). 5121 */ 5122 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5123 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5124 /* link protected by hash lock */ 5125 ASSERT(multilist_link_active( 5126 &hdr->b_l1hdr.b_arc_node)); 5127 } else { 5128 if (HDR_HAS_L2HDR(hdr)) 5129 l2arc_hdr_arcstats_decrement_state(hdr); 5130 arc_hdr_clear_flags(hdr, 5131 ARC_FLAG_PREFETCH | 5132 ARC_FLAG_PRESCIENT_PREFETCH); 5133 ARCSTAT_BUMP(arcstat_mru_hits); 5134 if (HDR_HAS_L2HDR(hdr)) 5135 l2arc_hdr_arcstats_increment_state(hdr); 5136 } 5137 hdr->b_l1hdr.b_arc_access = now; 5138 return; 5139 } 5140 5141 /* 5142 * This buffer has been "accessed" only once so far, 5143 * but it is still in the cache. Move it to the MFU 5144 * state. 5145 */ 5146 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 5147 /* 5148 * More than 125ms have passed since we 5149 * instantiated this buffer. Move it to the 5150 * most frequently used state. 5151 */ 5152 hdr->b_l1hdr.b_arc_access = now; 5153 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5154 arc_change_state(arc_mfu, hdr, hash_lock); 5155 } 5156 ARCSTAT_BUMP(arcstat_mru_hits); 5157 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5158 arc_state_t *new_state; 5159 /* 5160 * This buffer has been "accessed" recently, but 5161 * was evicted from the cache. Move it to the 5162 * MFU state. 5163 */ 5164 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5165 new_state = arc_mru; 5166 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5167 if (HDR_HAS_L2HDR(hdr)) 5168 l2arc_hdr_arcstats_decrement_state(hdr); 5169 arc_hdr_clear_flags(hdr, 5170 ARC_FLAG_PREFETCH | 5171 ARC_FLAG_PRESCIENT_PREFETCH); 5172 if (HDR_HAS_L2HDR(hdr)) 5173 l2arc_hdr_arcstats_increment_state(hdr); 5174 } 5175 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5176 } else { 5177 new_state = arc_mfu; 5178 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5179 } 5180 5181 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5182 arc_change_state(new_state, hdr, hash_lock); 5183 5184 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5185 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5186 /* 5187 * This buffer has been accessed more than once and is 5188 * still in the cache. Keep it in the MFU state. 5189 * 5190 * NOTE: an add_reference() that occurred when we did 5191 * the arc_read() will have kicked this off the list. 5192 * If it was a prefetch, we will explicitly move it to 5193 * the head of the list now. 5194 */ 5195 ARCSTAT_BUMP(arcstat_mfu_hits); 5196 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5197 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5198 arc_state_t *new_state = arc_mfu; 5199 /* 5200 * This buffer has been accessed more than once but has 5201 * been evicted from the cache. Move it back to the 5202 * MFU state. 5203 */ 5204 5205 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5206 /* 5207 * This is a prefetch access... 5208 * move this block back to the MRU state. 5209 */ 5210 new_state = arc_mru; 5211 } 5212 5213 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5214 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5215 arc_change_state(new_state, hdr, hash_lock); 5216 5217 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5218 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5219 /* 5220 * This buffer is on the 2nd Level ARC. 5221 */ 5222 5223 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5224 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5225 arc_change_state(arc_mfu, hdr, hash_lock); 5226 } else { 5227 ASSERT(!"invalid arc state"); 5228 } 5229 } 5230 5231 /* 5232 * This routine is called by dbuf_hold() to update the arc_access() state 5233 * which otherwise would be skipped for entries in the dbuf cache. 5234 */ 5235 void 5236 arc_buf_access(arc_buf_t *buf) 5237 { 5238 mutex_enter(&buf->b_evict_lock); 5239 arc_buf_hdr_t *hdr = buf->b_hdr; 5240 5241 /* 5242 * Avoid taking the hash_lock when possible as an optimization. 5243 * The header must be checked again under the hash_lock in order 5244 * to handle the case where it is concurrently being released. 5245 */ 5246 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5247 mutex_exit(&buf->b_evict_lock); 5248 return; 5249 } 5250 5251 kmutex_t *hash_lock = HDR_LOCK(hdr); 5252 mutex_enter(hash_lock); 5253 5254 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5255 mutex_exit(hash_lock); 5256 mutex_exit(&buf->b_evict_lock); 5257 ARCSTAT_BUMP(arcstat_access_skip); 5258 return; 5259 } 5260 5261 mutex_exit(&buf->b_evict_lock); 5262 5263 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5264 hdr->b_l1hdr.b_state == arc_mfu); 5265 5266 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5267 arc_access(hdr, hash_lock); 5268 mutex_exit(hash_lock); 5269 5270 ARCSTAT_BUMP(arcstat_hits); 5271 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5272 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5273 } 5274 5275 /* a generic arc_read_done_func_t which you can use */ 5276 /* ARGSUSED */ 5277 void 5278 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5279 arc_buf_t *buf, void *arg) 5280 { 5281 if (buf == NULL) 5282 return; 5283 5284 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5285 arc_buf_destroy(buf, arg); 5286 } 5287 5288 /* a generic arc_read_done_func_t */ 5289 void 5290 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5291 arc_buf_t *buf, void *arg) 5292 { 5293 arc_buf_t **bufp = arg; 5294 5295 if (buf == NULL) { 5296 ASSERT(zio == NULL || zio->io_error != 0); 5297 *bufp = NULL; 5298 } else { 5299 ASSERT(zio == NULL || zio->io_error == 0); 5300 *bufp = buf; 5301 ASSERT(buf->b_data != NULL); 5302 } 5303 } 5304 5305 static void 5306 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp) 5307 { 5308 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5309 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5310 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5311 } else { 5312 if (HDR_COMPRESSION_ENABLED(hdr)) { 5313 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5314 BP_GET_COMPRESS(bp)); 5315 } 5316 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5317 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5318 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5319 } 5320 } 5321 5322 /* 5323 * XXX this should be changed to return an error, and callers 5324 * re-read from disk on failure (on nondebug bits). 5325 */ 5326 static void 5327 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp) 5328 { 5329 arc_hdr_verify(hdr, bp); 5330 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 5331 return; 5332 int err = 0; 5333 abd_t *abd = NULL; 5334 if (BP_IS_ENCRYPTED(bp)) { 5335 if (HDR_HAS_RABD(hdr)) { 5336 abd = hdr->b_crypt_hdr.b_rabd; 5337 } 5338 } else if (HDR_COMPRESSION_ENABLED(hdr)) { 5339 abd = hdr->b_l1hdr.b_pabd; 5340 } 5341 if (abd != NULL) { 5342 /* 5343 * The offset is only used for labels, which are not 5344 * cached in the ARC, so it doesn't matter what we 5345 * pass for the offset parameter. 5346 */ 5347 int psize = HDR_GET_PSIZE(hdr); 5348 err = zio_checksum_error_impl(spa, bp, 5349 BP_GET_CHECKSUM(bp), abd, psize, 0, NULL); 5350 if (err != 0) { 5351 /* 5352 * Use abd_copy_to_buf() rather than 5353 * abd_borrow_buf_copy() so that we are sure to 5354 * include the buf in crash dumps. 5355 */ 5356 void *buf = kmem_alloc(psize, KM_SLEEP); 5357 abd_copy_to_buf(buf, abd, psize); 5358 panic("checksum of cached data doesn't match BP " 5359 "err=%u hdr=%p bp=%p abd=%p buf=%p", 5360 err, (void *)hdr, (void *)bp, (void *)abd, buf); 5361 } 5362 } 5363 } 5364 5365 static void 5366 arc_read_done(zio_t *zio) 5367 { 5368 blkptr_t *bp = zio->io_bp; 5369 arc_buf_hdr_t *hdr = zio->io_private; 5370 kmutex_t *hash_lock = NULL; 5371 arc_callback_t *callback_list; 5372 arc_callback_t *acb; 5373 boolean_t freeable = B_FALSE; 5374 5375 /* 5376 * The hdr was inserted into hash-table and removed from lists 5377 * prior to starting I/O. We should find this header, since 5378 * it's in the hash table, and it should be legit since it's 5379 * not possible to evict it during the I/O. The only possible 5380 * reason for it not to be found is if we were freed during the 5381 * read. 5382 */ 5383 if (HDR_IN_HASH_TABLE(hdr)) { 5384 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5385 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5386 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5387 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5388 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5389 5390 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 5391 &hash_lock); 5392 5393 ASSERT((found == hdr && 5394 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5395 (found == hdr && HDR_L2_READING(hdr))); 5396 ASSERT3P(hash_lock, !=, NULL); 5397 } 5398 5399 if (BP_IS_PROTECTED(bp)) { 5400 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5401 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5402 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5403 hdr->b_crypt_hdr.b_iv); 5404 5405 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5406 void *tmpbuf; 5407 5408 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5409 sizeof (zil_chain_t)); 5410 zio_crypt_decode_mac_zil(tmpbuf, 5411 hdr->b_crypt_hdr.b_mac); 5412 abd_return_buf(zio->io_abd, tmpbuf, 5413 sizeof (zil_chain_t)); 5414 } else { 5415 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5416 } 5417 } 5418 5419 if (zio->io_error == 0) { 5420 /* byteswap if necessary */ 5421 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5422 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5423 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5424 } else { 5425 hdr->b_l1hdr.b_byteswap = 5426 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5427 } 5428 } else { 5429 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5430 } 5431 } 5432 5433 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5434 5435 callback_list = hdr->b_l1hdr.b_acb; 5436 ASSERT3P(callback_list, !=, NULL); 5437 5438 if (hash_lock && zio->io_error == 0 && 5439 hdr->b_l1hdr.b_state == arc_anon) { 5440 /* 5441 * Only call arc_access on anonymous buffers. This is because 5442 * if we've issued an I/O for an evicted buffer, we've already 5443 * called arc_access (to prevent any simultaneous readers from 5444 * getting confused). 5445 */ 5446 arc_access(hdr, hash_lock); 5447 } 5448 5449 /* 5450 * If a read request has a callback (i.e. acb_done is not NULL), then we 5451 * make a buf containing the data according to the parameters which were 5452 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5453 * aren't needlessly decompressing the data multiple times. 5454 */ 5455 int callback_cnt = 0; 5456 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5457 if (!acb->acb_done) 5458 continue; 5459 5460 callback_cnt++; 5461 5462 if (zio->io_error != 0) 5463 continue; 5464 5465 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5466 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5467 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5468 &acb->acb_buf); 5469 5470 /* 5471 * Assert non-speculative zios didn't fail because an 5472 * encryption key wasn't loaded 5473 */ 5474 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5475 error != EACCES); 5476 5477 /* 5478 * If we failed to decrypt, report an error now (as the zio 5479 * layer would have done if it had done the transforms). 5480 */ 5481 if (error == ECKSUM) { 5482 ASSERT(BP_IS_PROTECTED(bp)); 5483 error = SET_ERROR(EIO); 5484 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5485 spa_log_error(zio->io_spa, &acb->acb_zb); 5486 (void) zfs_ereport_post( 5487 FM_EREPORT_ZFS_AUTHENTICATION, 5488 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5489 } 5490 } 5491 5492 if (error != 0) { 5493 /* 5494 * Decompression failed. Set io_error 5495 * so that when we call acb_done (below), 5496 * we will indicate that the read failed. 5497 * Note that in the unusual case where one 5498 * callback is compressed and another 5499 * uncompressed, we will mark all of them 5500 * as failed, even though the uncompressed 5501 * one can't actually fail. In this case, 5502 * the hdr will not be anonymous, because 5503 * if there are multiple callbacks, it's 5504 * because multiple threads found the same 5505 * arc buf in the hash table. 5506 */ 5507 zio->io_error = error; 5508 } 5509 } 5510 5511 /* 5512 * If there are multiple callbacks, we must have the hash lock, 5513 * because the only way for multiple threads to find this hdr is 5514 * in the hash table. This ensures that if there are multiple 5515 * callbacks, the hdr is not anonymous. If it were anonymous, 5516 * we couldn't use arc_buf_destroy() in the error case below. 5517 */ 5518 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5519 5520 hdr->b_l1hdr.b_acb = NULL; 5521 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5522 if (callback_cnt == 0) 5523 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5524 5525 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5526 callback_list != NULL); 5527 5528 if (zio->io_error == 0) { 5529 arc_hdr_verify(hdr, zio->io_bp); 5530 } else { 5531 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5532 if (hdr->b_l1hdr.b_state != arc_anon) 5533 arc_change_state(arc_anon, hdr, hash_lock); 5534 if (HDR_IN_HASH_TABLE(hdr)) 5535 buf_hash_remove(hdr); 5536 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5537 } 5538 5539 /* 5540 * Broadcast before we drop the hash_lock to avoid the possibility 5541 * that the hdr (and hence the cv) might be freed before we get to 5542 * the cv_broadcast(). 5543 */ 5544 cv_broadcast(&hdr->b_l1hdr.b_cv); 5545 5546 if (hash_lock != NULL) { 5547 mutex_exit(hash_lock); 5548 } else { 5549 /* 5550 * This block was freed while we waited for the read to 5551 * complete. It has been removed from the hash table and 5552 * moved to the anonymous state (so that it won't show up 5553 * in the cache). 5554 */ 5555 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5556 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5557 } 5558 5559 /* execute each callback and free its structure */ 5560 while ((acb = callback_list) != NULL) { 5561 5562 if (acb->acb_done != NULL) { 5563 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5564 /* 5565 * If arc_buf_alloc_impl() fails during 5566 * decompression, the buf will still be 5567 * allocated, and needs to be freed here. 5568 */ 5569 arc_buf_destroy(acb->acb_buf, acb->acb_private); 5570 acb->acb_buf = NULL; 5571 } 5572 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5573 acb->acb_buf, acb->acb_private); 5574 } 5575 5576 if (acb->acb_zio_dummy != NULL) { 5577 acb->acb_zio_dummy->io_error = zio->io_error; 5578 zio_nowait(acb->acb_zio_dummy); 5579 } 5580 5581 callback_list = acb->acb_next; 5582 kmem_free(acb, sizeof (arc_callback_t)); 5583 } 5584 5585 if (freeable) 5586 arc_hdr_destroy(hdr); 5587 } 5588 5589 /* 5590 * "Read" the block at the specified DVA (in bp) via the 5591 * cache. If the block is found in the cache, invoke the provided 5592 * callback immediately and return. Note that the `zio' parameter 5593 * in the callback will be NULL in this case, since no IO was 5594 * required. If the block is not in the cache pass the read request 5595 * on to the spa with a substitute callback function, so that the 5596 * requested block will be added to the cache. 5597 * 5598 * If a read request arrives for a block that has a read in-progress, 5599 * either wait for the in-progress read to complete (and return the 5600 * results); or, if this is a read with a "done" func, add a record 5601 * to the read to invoke the "done" func when the read completes, 5602 * and return; or just return. 5603 * 5604 * arc_read_done() will invoke all the requested "done" functions 5605 * for readers of this block. 5606 */ 5607 int 5608 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, 5609 void *private, zio_priority_t priority, int zio_flags, 5610 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5611 { 5612 arc_buf_hdr_t *hdr = NULL; 5613 kmutex_t *hash_lock = NULL; 5614 zio_t *rzio; 5615 uint64_t guid = spa_load_guid(spa); 5616 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5617 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5618 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5619 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5620 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5621 int rc = 0; 5622 5623 ASSERT(!BP_IS_EMBEDDED(bp) || 5624 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5625 5626 top: 5627 if (!BP_IS_EMBEDDED(bp)) { 5628 /* 5629 * Embedded BP's have no DVA and require no I/O to "read". 5630 * Create an anonymous arc buf to back it. 5631 */ 5632 hdr = buf_hash_find(guid, bp, &hash_lock); 5633 } 5634 5635 /* 5636 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5637 * we maintain encrypted data seperately from compressed / uncompressed 5638 * data. If the user is requesting raw encrypted data and we don't have 5639 * that in the header we will read from disk to guarantee that we can 5640 * get it even if the encryption keys aren't loaded. 5641 */ 5642 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5643 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5644 arc_buf_t *buf = NULL; 5645 *arc_flags |= ARC_FLAG_CACHED; 5646 5647 if (HDR_IO_IN_PROGRESS(hdr)) { 5648 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5649 5650 ASSERT3P(head_zio, !=, NULL); 5651 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5652 priority == ZIO_PRIORITY_SYNC_READ) { 5653 /* 5654 * This is a sync read that needs to wait for 5655 * an in-flight async read. Request that the 5656 * zio have its priority upgraded. 5657 */ 5658 zio_change_priority(head_zio, priority); 5659 DTRACE_PROBE1(arc__async__upgrade__sync, 5660 arc_buf_hdr_t *, hdr); 5661 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5662 } 5663 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5664 arc_hdr_clear_flags(hdr, 5665 ARC_FLAG_PREDICTIVE_PREFETCH); 5666 } 5667 5668 if (*arc_flags & ARC_FLAG_WAIT) { 5669 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5670 mutex_exit(hash_lock); 5671 goto top; 5672 } 5673 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5674 5675 if (done) { 5676 arc_callback_t *acb = NULL; 5677 5678 acb = kmem_zalloc(sizeof (arc_callback_t), 5679 KM_SLEEP); 5680 acb->acb_done = done; 5681 acb->acb_private = private; 5682 acb->acb_compressed = compressed_read; 5683 acb->acb_encrypted = encrypted_read; 5684 acb->acb_noauth = noauth_read; 5685 acb->acb_zb = *zb; 5686 if (pio != NULL) 5687 acb->acb_zio_dummy = zio_null(pio, 5688 spa, NULL, NULL, NULL, zio_flags); 5689 5690 ASSERT3P(acb->acb_done, !=, NULL); 5691 acb->acb_zio_head = head_zio; 5692 acb->acb_next = hdr->b_l1hdr.b_acb; 5693 hdr->b_l1hdr.b_acb = acb; 5694 mutex_exit(hash_lock); 5695 return (0); 5696 } 5697 mutex_exit(hash_lock); 5698 return (0); 5699 } 5700 5701 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5702 hdr->b_l1hdr.b_state == arc_mfu); 5703 5704 if (done) { 5705 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5706 /* 5707 * This is a demand read which does not have to 5708 * wait for i/o because we did a predictive 5709 * prefetch i/o for it, which has completed. 5710 */ 5711 DTRACE_PROBE1( 5712 arc__demand__hit__predictive__prefetch, 5713 arc_buf_hdr_t *, hdr); 5714 ARCSTAT_BUMP( 5715 arcstat_demand_hit_predictive_prefetch); 5716 arc_hdr_clear_flags(hdr, 5717 ARC_FLAG_PREDICTIVE_PREFETCH); 5718 } 5719 5720 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5721 ARCSTAT_BUMP( 5722 arcstat_demand_hit_prescient_prefetch); 5723 arc_hdr_clear_flags(hdr, 5724 ARC_FLAG_PRESCIENT_PREFETCH); 5725 } 5726 5727 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5728 5729 arc_hdr_verify_checksum(spa, hdr, bp); 5730 5731 /* Get a buf with the desired data in it. */ 5732 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5733 encrypted_read, compressed_read, noauth_read, 5734 B_TRUE, &buf); 5735 if (rc == ECKSUM) { 5736 /* 5737 * Convert authentication and decryption errors 5738 * to EIO (and generate an ereport if needed) 5739 * before leaving the ARC. 5740 */ 5741 rc = SET_ERROR(EIO); 5742 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5743 spa_log_error(spa, zb); 5744 (void) zfs_ereport_post( 5745 FM_EREPORT_ZFS_AUTHENTICATION, 5746 spa, NULL, zb, NULL, 0, 0); 5747 } 5748 } 5749 if (rc != 0) { 5750 (void) remove_reference(hdr, hash_lock, 5751 private); 5752 arc_buf_destroy_impl(buf); 5753 buf = NULL; 5754 } 5755 /* assert any errors weren't due to unloaded keys */ 5756 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5757 rc != EACCES); 5758 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5759 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5760 if (HDR_HAS_L2HDR(hdr)) 5761 l2arc_hdr_arcstats_decrement_state(hdr); 5762 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5763 if (HDR_HAS_L2HDR(hdr)) 5764 l2arc_hdr_arcstats_increment_state(hdr); 5765 } 5766 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5767 arc_access(hdr, hash_lock); 5768 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5769 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5770 if (*arc_flags & ARC_FLAG_L2CACHE) 5771 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5772 mutex_exit(hash_lock); 5773 ARCSTAT_BUMP(arcstat_hits); 5774 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5775 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5776 data, metadata, hits); 5777 5778 if (done) 5779 done(NULL, zb, bp, buf, private); 5780 } else { 5781 uint64_t lsize = BP_GET_LSIZE(bp); 5782 uint64_t psize = BP_GET_PSIZE(bp); 5783 arc_callback_t *acb; 5784 vdev_t *vd = NULL; 5785 uint64_t addr = 0; 5786 boolean_t devw = B_FALSE; 5787 uint64_t size; 5788 abd_t *hdr_abd; 5789 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5790 5791 if (hdr == NULL) { 5792 /* this block is not in the cache */ 5793 arc_buf_hdr_t *exists = NULL; 5794 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5795 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5796 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type, 5797 encrypted_read); 5798 5799 if (!BP_IS_EMBEDDED(bp)) { 5800 hdr->b_dva = *BP_IDENTITY(bp); 5801 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5802 exists = buf_hash_insert(hdr, &hash_lock); 5803 } 5804 if (exists != NULL) { 5805 /* somebody beat us to the hash insert */ 5806 mutex_exit(hash_lock); 5807 buf_discard_identity(hdr); 5808 arc_hdr_destroy(hdr); 5809 goto top; /* restart the IO request */ 5810 } 5811 } else { 5812 /* 5813 * This block is in the ghost cache or encrypted data 5814 * was requested and we didn't have it. If it was 5815 * L2-only (and thus didn't have an L1 hdr), 5816 * we realloc the header to add an L1 hdr. 5817 */ 5818 if (!HDR_HAS_L1HDR(hdr)) { 5819 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5820 hdr_full_cache); 5821 } 5822 5823 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5824 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5825 ASSERT(!HDR_HAS_RABD(hdr)); 5826 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5827 ASSERT0(zfs_refcount_count( 5828 &hdr->b_l1hdr.b_refcnt)); 5829 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5830 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5831 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5832 /* 5833 * If this header already had an IO in progress 5834 * and we are performing another IO to fetch 5835 * encrypted data we must wait until the first 5836 * IO completes so as not to confuse 5837 * arc_read_done(). This should be very rare 5838 * and so the performance impact shouldn't 5839 * matter. 5840 */ 5841 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5842 mutex_exit(hash_lock); 5843 goto top; 5844 } 5845 5846 /* 5847 * This is a delicate dance that we play here. 5848 * This hdr might be in the ghost list so we access 5849 * it to move it out of the ghost list before we 5850 * initiate the read. If it's a prefetch then 5851 * it won't have a callback so we'll remove the 5852 * reference that arc_buf_alloc_impl() created. We 5853 * do this after we've called arc_access() to 5854 * avoid hitting an assert in remove_reference(). 5855 */ 5856 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 5857 arc_access(hdr, hash_lock); 5858 arc_hdr_alloc_pabd(hdr, alloc_flags); 5859 } 5860 5861 if (encrypted_read) { 5862 ASSERT(HDR_HAS_RABD(hdr)); 5863 size = HDR_GET_PSIZE(hdr); 5864 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5865 zio_flags |= ZIO_FLAG_RAW; 5866 } else { 5867 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5868 size = arc_hdr_size(hdr); 5869 hdr_abd = hdr->b_l1hdr.b_pabd; 5870 5871 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5872 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5873 } 5874 5875 /* 5876 * For authenticated bp's, we do not ask the ZIO layer 5877 * to authenticate them since this will cause the entire 5878 * IO to fail if the key isn't loaded. Instead, we 5879 * defer authentication until arc_buf_fill(), which will 5880 * verify the data when the key is available. 5881 */ 5882 if (BP_IS_AUTHENTICATED(bp)) 5883 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5884 } 5885 5886 if (*arc_flags & ARC_FLAG_PREFETCH && 5887 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5888 if (HDR_HAS_L2HDR(hdr)) 5889 l2arc_hdr_arcstats_decrement_state(hdr); 5890 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5891 if (HDR_HAS_L2HDR(hdr)) 5892 l2arc_hdr_arcstats_increment_state(hdr); 5893 } 5894 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5895 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5896 5897 if (*arc_flags & ARC_FLAG_L2CACHE) 5898 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5899 if (BP_IS_AUTHENTICATED(bp)) 5900 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5901 if (BP_GET_LEVEL(bp) > 0) 5902 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5903 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5904 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5905 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5906 5907 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5908 acb->acb_done = done; 5909 acb->acb_private = private; 5910 acb->acb_compressed = compressed_read; 5911 acb->acb_encrypted = encrypted_read; 5912 acb->acb_noauth = noauth_read; 5913 acb->acb_zb = *zb; 5914 5915 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5916 hdr->b_l1hdr.b_acb = acb; 5917 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5918 5919 if (HDR_HAS_L2HDR(hdr) && 5920 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5921 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5922 addr = hdr->b_l2hdr.b_daddr; 5923 /* 5924 * Lock out L2ARC device removal. 5925 */ 5926 if (vdev_is_dead(vd) || 5927 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5928 vd = NULL; 5929 } 5930 5931 /* 5932 * We count both async reads and scrub IOs as asynchronous so 5933 * that both can be upgraded in the event of a cache hit while 5934 * the read IO is still in-flight. 5935 */ 5936 if (priority == ZIO_PRIORITY_ASYNC_READ || 5937 priority == ZIO_PRIORITY_SCRUB) 5938 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5939 else 5940 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5941 5942 /* 5943 * At this point, we have a level 1 cache miss. Try again in 5944 * L2ARC if possible. 5945 */ 5946 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5947 5948 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5949 uint64_t, lsize, zbookmark_phys_t *, zb); 5950 ARCSTAT_BUMP(arcstat_misses); 5951 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5952 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5953 data, metadata, misses); 5954 5955 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5956 /* 5957 * Read from the L2ARC if the following are true: 5958 * 1. The L2ARC vdev was previously cached. 5959 * 2. This buffer still has L2ARC metadata. 5960 * 3. This buffer isn't currently writing to the L2ARC. 5961 * 4. The L2ARC entry wasn't evicted, which may 5962 * also have invalidated the vdev. 5963 * 5. This isn't prefetch or l2arc_noprefetch is 0. 5964 */ 5965 if (HDR_HAS_L2HDR(hdr) && 5966 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5967 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5968 l2arc_read_callback_t *cb; 5969 abd_t *abd; 5970 uint64_t asize; 5971 5972 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5973 ARCSTAT_BUMP(arcstat_l2_hits); 5974 5975 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5976 KM_SLEEP); 5977 cb->l2rcb_hdr = hdr; 5978 cb->l2rcb_bp = *bp; 5979 cb->l2rcb_zb = *zb; 5980 cb->l2rcb_flags = zio_flags; 5981 5982 /* 5983 * When Compressed ARC is disabled, but the 5984 * L2ARC block is compressed, arc_hdr_size() 5985 * will have returned LSIZE rather than PSIZE. 5986 */ 5987 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 5988 !HDR_COMPRESSION_ENABLED(hdr) && 5989 HDR_GET_PSIZE(hdr) != 0) { 5990 size = HDR_GET_PSIZE(hdr); 5991 } 5992 5993 asize = vdev_psize_to_asize(vd, size); 5994 if (asize != size) { 5995 abd = abd_alloc_for_io(asize, 5996 HDR_ISTYPE_METADATA(hdr)); 5997 cb->l2rcb_abd = abd; 5998 } else { 5999 abd = hdr_abd; 6000 } 6001 6002 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6003 addr + asize <= vd->vdev_psize - 6004 VDEV_LABEL_END_SIZE); 6005 6006 /* 6007 * l2arc read. The SCL_L2ARC lock will be 6008 * released by l2arc_read_done(). 6009 * Issue a null zio if the underlying buffer 6010 * was squashed to zero size by compression. 6011 */ 6012 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6013 ZIO_COMPRESS_EMPTY); 6014 rzio = zio_read_phys(pio, vd, addr, 6015 asize, abd, 6016 ZIO_CHECKSUM_OFF, 6017 l2arc_read_done, cb, priority, 6018 zio_flags | ZIO_FLAG_DONT_CACHE | 6019 ZIO_FLAG_CANFAIL | 6020 ZIO_FLAG_DONT_PROPAGATE | 6021 ZIO_FLAG_DONT_RETRY, B_FALSE); 6022 acb->acb_zio_head = rzio; 6023 6024 if (hash_lock != NULL) 6025 mutex_exit(hash_lock); 6026 6027 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6028 zio_t *, rzio); 6029 ARCSTAT_INCR(arcstat_l2_read_bytes, 6030 HDR_GET_PSIZE(hdr)); 6031 6032 if (*arc_flags & ARC_FLAG_NOWAIT) { 6033 zio_nowait(rzio); 6034 return (0); 6035 } 6036 6037 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6038 if (zio_wait(rzio) == 0) 6039 return (0); 6040 6041 /* l2arc read error; goto zio_read() */ 6042 if (hash_lock != NULL) 6043 mutex_enter(hash_lock); 6044 } else { 6045 DTRACE_PROBE1(l2arc__miss, 6046 arc_buf_hdr_t *, hdr); 6047 ARCSTAT_BUMP(arcstat_l2_misses); 6048 if (HDR_L2_WRITING(hdr)) 6049 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6050 spa_config_exit(spa, SCL_L2ARC, vd); 6051 } 6052 } else { 6053 if (vd != NULL) 6054 spa_config_exit(spa, SCL_L2ARC, vd); 6055 if (l2arc_ndev != 0) { 6056 DTRACE_PROBE1(l2arc__miss, 6057 arc_buf_hdr_t *, hdr); 6058 ARCSTAT_BUMP(arcstat_l2_misses); 6059 } 6060 } 6061 6062 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6063 arc_read_done, hdr, priority, zio_flags, zb); 6064 acb->acb_zio_head = rzio; 6065 6066 if (hash_lock != NULL) 6067 mutex_exit(hash_lock); 6068 6069 if (*arc_flags & ARC_FLAG_WAIT) 6070 return (zio_wait(rzio)); 6071 6072 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6073 zio_nowait(rzio); 6074 } 6075 return (rc); 6076 } 6077 6078 /* 6079 * Notify the arc that a block was freed, and thus will never be used again. 6080 */ 6081 void 6082 arc_freed(spa_t *spa, const blkptr_t *bp) 6083 { 6084 arc_buf_hdr_t *hdr; 6085 kmutex_t *hash_lock; 6086 uint64_t guid = spa_load_guid(spa); 6087 6088 ASSERT(!BP_IS_EMBEDDED(bp)); 6089 6090 hdr = buf_hash_find(guid, bp, &hash_lock); 6091 if (hdr == NULL) 6092 return; 6093 6094 /* 6095 * We might be trying to free a block that is still doing I/O 6096 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6097 * dmu_sync-ed block). If this block is being prefetched, then it 6098 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6099 * until the I/O completes. A block may also have a reference if it is 6100 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6101 * have written the new block to its final resting place on disk but 6102 * without the dedup flag set. This would have left the hdr in the MRU 6103 * state and discoverable. When the txg finally syncs it detects that 6104 * the block was overridden in open context and issues an override I/O. 6105 * Since this is a dedup block, the override I/O will determine if the 6106 * block is already in the DDT. If so, then it will replace the io_bp 6107 * with the bp from the DDT and allow the I/O to finish. When the I/O 6108 * reaches the done callback, dbuf_write_override_done, it will 6109 * check to see if the io_bp and io_bp_override are identical. 6110 * If they are not, then it indicates that the bp was replaced with 6111 * the bp in the DDT and the override bp is freed. This allows 6112 * us to arrive here with a reference on a block that is being 6113 * freed. So if we have an I/O in progress, or a reference to 6114 * this hdr, then we don't destroy the hdr. 6115 */ 6116 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6117 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6118 arc_change_state(arc_anon, hdr, hash_lock); 6119 arc_hdr_destroy(hdr); 6120 mutex_exit(hash_lock); 6121 } else { 6122 mutex_exit(hash_lock); 6123 } 6124 6125 } 6126 6127 /* 6128 * Release this buffer from the cache, making it an anonymous buffer. This 6129 * must be done after a read and prior to modifying the buffer contents. 6130 * If the buffer has more than one reference, we must make 6131 * a new hdr for the buffer. 6132 */ 6133 void 6134 arc_release(arc_buf_t *buf, void *tag) 6135 { 6136 /* 6137 * It would be nice to assert that if its DMU metadata (level > 6138 * 0 || it's the dnode file), then it must be syncing context. 6139 * But we don't know that information at this level. 6140 */ 6141 6142 mutex_enter(&buf->b_evict_lock); 6143 6144 arc_buf_hdr_t *hdr = buf->b_hdr; 6145 6146 ASSERT(HDR_HAS_L1HDR(hdr)); 6147 6148 /* 6149 * We don't grab the hash lock prior to this check, because if 6150 * the buffer's header is in the arc_anon state, it won't be 6151 * linked into the hash table. 6152 */ 6153 if (hdr->b_l1hdr.b_state == arc_anon) { 6154 mutex_exit(&buf->b_evict_lock); 6155 /* 6156 * If we are called from dmu_convert_mdn_block_to_raw(), 6157 * a write might be in progress. This is OK because 6158 * the caller won't change the content of this buffer, 6159 * only the flags (via arc_convert_to_raw()). 6160 */ 6161 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */ 6162 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6163 ASSERT(!HDR_HAS_L2HDR(hdr)); 6164 ASSERT(HDR_EMPTY(hdr)); 6165 6166 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6167 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6168 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6169 6170 hdr->b_l1hdr.b_arc_access = 0; 6171 6172 /* 6173 * If the buf is being overridden then it may already 6174 * have a hdr that is not empty. 6175 */ 6176 buf_discard_identity(hdr); 6177 arc_buf_thaw(buf); 6178 6179 return; 6180 } 6181 6182 kmutex_t *hash_lock = HDR_LOCK(hdr); 6183 mutex_enter(hash_lock); 6184 6185 /* 6186 * Wait for any other IO for this hdr, as additional 6187 * buf(s) could be about to appear, in which case 6188 * we would not want to transition hdr to arc_anon. 6189 */ 6190 while (HDR_IO_IN_PROGRESS(hdr)) { 6191 DTRACE_PROBE1(arc_release__io, arc_buf_hdr_t *, hdr); 6192 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6193 } 6194 6195 /* 6196 * This assignment is only valid as long as the hash_lock is 6197 * held, we must be careful not to reference state or the 6198 * b_state field after dropping the lock. 6199 */ 6200 arc_state_t *state = hdr->b_l1hdr.b_state; 6201 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6202 ASSERT3P(state, !=, arc_anon); 6203 6204 /* this buffer is not on any list */ 6205 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6206 6207 if (HDR_HAS_L2HDR(hdr)) { 6208 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6209 6210 /* 6211 * We have to recheck this conditional again now that 6212 * we're holding the l2ad_mtx to prevent a race with 6213 * another thread which might be concurrently calling 6214 * l2arc_evict(). In that case, l2arc_evict() might have 6215 * destroyed the header's L2 portion as we were waiting 6216 * to acquire the l2ad_mtx. 6217 */ 6218 if (HDR_HAS_L2HDR(hdr)) 6219 arc_hdr_l2hdr_destroy(hdr); 6220 6221 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6222 } 6223 6224 /* 6225 * Do we have more than one buf? 6226 */ 6227 if (hdr->b_l1hdr.b_bufcnt > 1) { 6228 arc_buf_hdr_t *nhdr; 6229 uint64_t spa = hdr->b_spa; 6230 uint64_t psize = HDR_GET_PSIZE(hdr); 6231 uint64_t lsize = HDR_GET_LSIZE(hdr); 6232 boolean_t protected = HDR_PROTECTED(hdr); 6233 enum zio_compress compress = arc_hdr_get_compress(hdr); 6234 arc_buf_contents_t type = arc_buf_type(hdr); 6235 VERIFY3U(hdr->b_type, ==, type); 6236 6237 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6238 (void) remove_reference(hdr, hash_lock, tag); 6239 6240 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6241 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6242 ASSERT(ARC_BUF_LAST(buf)); 6243 } 6244 6245 /* 6246 * Pull the data off of this hdr and attach it to 6247 * a new anonymous hdr. Also find the last buffer 6248 * in the hdr's buffer list. 6249 */ 6250 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6251 ASSERT3P(lastbuf, !=, NULL); 6252 6253 /* 6254 * If the current arc_buf_t and the hdr are sharing their data 6255 * buffer, then we must stop sharing that block. 6256 */ 6257 if (arc_buf_is_shared(buf)) { 6258 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6259 VERIFY(!arc_buf_is_shared(lastbuf)); 6260 6261 /* 6262 * First, sever the block sharing relationship between 6263 * buf and the arc_buf_hdr_t. 6264 */ 6265 arc_unshare_buf(hdr, buf); 6266 6267 /* 6268 * Now we need to recreate the hdr's b_pabd. Since we 6269 * have lastbuf handy, we try to share with it, but if 6270 * we can't then we allocate a new b_pabd and copy the 6271 * data from buf into it. 6272 */ 6273 if (arc_can_share(hdr, lastbuf)) { 6274 arc_share_buf(hdr, lastbuf); 6275 } else { 6276 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6277 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6278 buf->b_data, psize); 6279 } 6280 VERIFY3P(lastbuf->b_data, !=, NULL); 6281 } else if (HDR_SHARED_DATA(hdr)) { 6282 /* 6283 * Uncompressed shared buffers are always at the end 6284 * of the list. Compressed buffers don't have the 6285 * same requirements. This makes it hard to 6286 * simply assert that the lastbuf is shared so 6287 * we rely on the hdr's compression flags to determine 6288 * if we have a compressed, shared buffer. 6289 */ 6290 ASSERT(arc_buf_is_shared(lastbuf) || 6291 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6292 ASSERT(!ARC_BUF_SHARED(buf)); 6293 } 6294 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6295 ASSERT3P(state, !=, arc_l2c_only); 6296 6297 (void) zfs_refcount_remove_many(&state->arcs_size, 6298 arc_buf_size(buf), buf); 6299 6300 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6301 ASSERT3P(state, !=, arc_l2c_only); 6302 (void) zfs_refcount_remove_many( 6303 &state->arcs_esize[type], 6304 arc_buf_size(buf), buf); 6305 } 6306 6307 hdr->b_l1hdr.b_bufcnt -= 1; 6308 if (ARC_BUF_ENCRYPTED(buf)) 6309 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6310 6311 arc_cksum_verify(buf); 6312 arc_buf_unwatch(buf); 6313 6314 /* if this is the last uncompressed buf free the checksum */ 6315 if (!arc_hdr_has_uncompressed_buf(hdr)) 6316 arc_cksum_free(hdr); 6317 6318 mutex_exit(hash_lock); 6319 6320 /* 6321 * Allocate a new hdr. The new hdr will contain a b_pabd 6322 * buffer which will be freed in arc_write(). 6323 */ 6324 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6325 compress, type, HDR_HAS_RABD(hdr)); 6326 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6327 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6328 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6329 VERIFY3U(nhdr->b_type, ==, type); 6330 ASSERT(!HDR_SHARED_DATA(nhdr)); 6331 6332 nhdr->b_l1hdr.b_buf = buf; 6333 nhdr->b_l1hdr.b_bufcnt = 1; 6334 if (ARC_BUF_ENCRYPTED(buf)) 6335 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6336 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6337 buf->b_hdr = nhdr; 6338 6339 mutex_exit(&buf->b_evict_lock); 6340 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6341 arc_buf_size(buf), buf); 6342 } else { 6343 mutex_exit(&buf->b_evict_lock); 6344 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6345 /* protected by hash lock, or hdr is on arc_anon */ 6346 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6347 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6348 arc_change_state(arc_anon, hdr, hash_lock); 6349 hdr->b_l1hdr.b_arc_access = 0; 6350 6351 mutex_exit(hash_lock); 6352 buf_discard_identity(hdr); 6353 arc_buf_thaw(buf); 6354 } 6355 } 6356 6357 int 6358 arc_released(arc_buf_t *buf) 6359 { 6360 int released; 6361 6362 mutex_enter(&buf->b_evict_lock); 6363 released = (buf->b_data != NULL && 6364 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6365 mutex_exit(&buf->b_evict_lock); 6366 return (released); 6367 } 6368 6369 #ifdef ZFS_DEBUG 6370 int 6371 arc_referenced(arc_buf_t *buf) 6372 { 6373 int referenced; 6374 6375 mutex_enter(&buf->b_evict_lock); 6376 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6377 mutex_exit(&buf->b_evict_lock); 6378 return (referenced); 6379 } 6380 #endif 6381 6382 static void 6383 arc_write_ready(zio_t *zio) 6384 { 6385 arc_write_callback_t *callback = zio->io_private; 6386 arc_buf_t *buf = callback->awcb_buf; 6387 arc_buf_hdr_t *hdr = buf->b_hdr; 6388 blkptr_t *bp = zio->io_bp; 6389 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6390 6391 ASSERT(HDR_HAS_L1HDR(hdr)); 6392 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6393 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6394 6395 /* 6396 * If we're reexecuting this zio because the pool suspended, then 6397 * cleanup any state that was previously set the first time the 6398 * callback was invoked. 6399 */ 6400 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6401 arc_cksum_free(hdr); 6402 arc_buf_unwatch(buf); 6403 if (hdr->b_l1hdr.b_pabd != NULL) { 6404 if (arc_buf_is_shared(buf)) { 6405 arc_unshare_buf(hdr, buf); 6406 } else { 6407 arc_hdr_free_pabd(hdr, B_FALSE); 6408 } 6409 } 6410 6411 if (HDR_HAS_RABD(hdr)) 6412 arc_hdr_free_pabd(hdr, B_TRUE); 6413 } 6414 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6415 ASSERT(!HDR_HAS_RABD(hdr)); 6416 ASSERT(!HDR_SHARED_DATA(hdr)); 6417 ASSERT(!arc_buf_is_shared(buf)); 6418 6419 callback->awcb_ready(zio, buf, callback->awcb_private); 6420 6421 if (HDR_IO_IN_PROGRESS(hdr)) 6422 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6423 6424 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6425 6426 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6427 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6428 6429 if (BP_IS_PROTECTED(bp)) { 6430 /* ZIL blocks are written through zio_rewrite */ 6431 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6432 ASSERT(HDR_PROTECTED(hdr)); 6433 6434 if (BP_SHOULD_BYTESWAP(bp)) { 6435 if (BP_GET_LEVEL(bp) > 0) { 6436 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6437 } else { 6438 hdr->b_l1hdr.b_byteswap = 6439 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6440 } 6441 } else { 6442 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6443 } 6444 6445 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6446 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6447 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6448 hdr->b_crypt_hdr.b_iv); 6449 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6450 } 6451 6452 /* 6453 * If this block was written for raw encryption but the zio layer 6454 * ended up only authenticating it, adjust the buffer flags now. 6455 */ 6456 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6457 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6458 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6459 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6460 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6461 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6462 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6463 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6464 } 6465 6466 /* this must be done after the buffer flags are adjusted */ 6467 arc_cksum_compute(buf); 6468 6469 enum zio_compress compress; 6470 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6471 compress = ZIO_COMPRESS_OFF; 6472 } else { 6473 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6474 compress = BP_GET_COMPRESS(bp); 6475 } 6476 HDR_SET_PSIZE(hdr, psize); 6477 arc_hdr_set_compress(hdr, compress); 6478 6479 if (zio->io_error != 0 || psize == 0) 6480 goto out; 6481 6482 /* 6483 * Fill the hdr with data. If the buffer is encrypted we have no choice 6484 * but to copy the data into b_rabd. If the hdr is compressed, the data 6485 * we want is available from the zio, otherwise we can take it from 6486 * the buf. 6487 * 6488 * We might be able to share the buf's data with the hdr here. However, 6489 * doing so would cause the ARC to be full of linear ABDs if we write a 6490 * lot of shareable data. As a compromise, we check whether scattered 6491 * ABDs are allowed, and assume that if they are then the user wants 6492 * the ARC to be primarily filled with them regardless of the data being 6493 * written. Therefore, if they're allowed then we allocate one and copy 6494 * the data into it; otherwise, we share the data directly if we can. 6495 */ 6496 if (ARC_BUF_ENCRYPTED(buf)) { 6497 ASSERT3U(psize, >, 0); 6498 ASSERT(ARC_BUF_COMPRESSED(buf)); 6499 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6500 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6501 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6502 /* 6503 * Ideally, we would always copy the io_abd into b_pabd, but the 6504 * user may have disabled compressed ARC, thus we must check the 6505 * hdr's compression setting rather than the io_bp's. 6506 */ 6507 if (BP_IS_ENCRYPTED(bp)) { 6508 ASSERT3U(psize, >, 0); 6509 arc_hdr_alloc_pabd(hdr, 6510 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6511 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6512 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6513 !ARC_BUF_COMPRESSED(buf)) { 6514 ASSERT3U(psize, >, 0); 6515 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6516 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6517 } else { 6518 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6519 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6520 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6521 arc_buf_size(buf)); 6522 } 6523 } else { 6524 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6525 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6526 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6527 arc_share_buf(hdr, buf); 6528 } 6529 6530 out: 6531 arc_hdr_verify(hdr, bp); 6532 } 6533 6534 static void 6535 arc_write_children_ready(zio_t *zio) 6536 { 6537 arc_write_callback_t *callback = zio->io_private; 6538 arc_buf_t *buf = callback->awcb_buf; 6539 6540 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6541 } 6542 6543 /* 6544 * The SPA calls this callback for each physical write that happens on behalf 6545 * of a logical write. See the comment in dbuf_write_physdone() for details. 6546 */ 6547 static void 6548 arc_write_physdone(zio_t *zio) 6549 { 6550 arc_write_callback_t *cb = zio->io_private; 6551 if (cb->awcb_physdone != NULL) 6552 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6553 } 6554 6555 static void 6556 arc_write_done(zio_t *zio) 6557 { 6558 arc_write_callback_t *callback = zio->io_private; 6559 arc_buf_t *buf = callback->awcb_buf; 6560 arc_buf_hdr_t *hdr = buf->b_hdr; 6561 6562 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6563 6564 if (zio->io_error == 0) { 6565 arc_hdr_verify(hdr, zio->io_bp); 6566 6567 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6568 buf_discard_identity(hdr); 6569 } else { 6570 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6571 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6572 } 6573 } else { 6574 ASSERT(HDR_EMPTY(hdr)); 6575 } 6576 6577 /* 6578 * If the block to be written was all-zero or compressed enough to be 6579 * embedded in the BP, no write was performed so there will be no 6580 * dva/birth/checksum. The buffer must therefore remain anonymous 6581 * (and uncached). 6582 */ 6583 if (!HDR_EMPTY(hdr)) { 6584 arc_buf_hdr_t *exists; 6585 kmutex_t *hash_lock; 6586 6587 ASSERT3U(zio->io_error, ==, 0); 6588 6589 arc_cksum_verify(buf); 6590 6591 exists = buf_hash_insert(hdr, &hash_lock); 6592 if (exists != NULL) { 6593 /* 6594 * This can only happen if we overwrite for 6595 * sync-to-convergence, because we remove 6596 * buffers from the hash table when we arc_free(). 6597 */ 6598 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6599 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6600 panic("bad overwrite, hdr=%p exists=%p", 6601 (void *)hdr, (void *)exists); 6602 ASSERT(zfs_refcount_is_zero( 6603 &exists->b_l1hdr.b_refcnt)); 6604 arc_change_state(arc_anon, exists, hash_lock); 6605 arc_hdr_destroy(exists); 6606 mutex_exit(hash_lock); 6607 exists = buf_hash_insert(hdr, &hash_lock); 6608 ASSERT3P(exists, ==, NULL); 6609 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6610 /* nopwrite */ 6611 ASSERT(zio->io_prop.zp_nopwrite); 6612 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6613 panic("bad nopwrite, hdr=%p exists=%p", 6614 (void *)hdr, (void *)exists); 6615 } else { 6616 /* Dedup */ 6617 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6618 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6619 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6620 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6621 } 6622 } 6623 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6624 /* if it's not anon, we are doing a scrub */ 6625 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6626 arc_access(hdr, hash_lock); 6627 mutex_exit(hash_lock); 6628 } else { 6629 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6630 } 6631 6632 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6633 callback->awcb_done(zio, buf, callback->awcb_private); 6634 6635 abd_put(zio->io_abd); 6636 kmem_free(callback, sizeof (arc_write_callback_t)); 6637 } 6638 6639 zio_t * 6640 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 6641 boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, 6642 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6643 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6644 int zio_flags, const zbookmark_phys_t *zb) 6645 { 6646 arc_buf_hdr_t *hdr = buf->b_hdr; 6647 arc_write_callback_t *callback; 6648 zio_t *zio; 6649 zio_prop_t localprop = *zp; 6650 6651 ASSERT3P(ready, !=, NULL); 6652 ASSERT3P(done, !=, NULL); 6653 ASSERT(!HDR_IO_ERROR(hdr)); 6654 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6655 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6656 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6657 if (l2arc) 6658 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6659 6660 if (ARC_BUF_ENCRYPTED(buf)) { 6661 ASSERT(ARC_BUF_COMPRESSED(buf)); 6662 localprop.zp_encrypt = B_TRUE; 6663 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6664 /* CONSTCOND */ 6665 localprop.zp_byteorder = 6666 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6667 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6668 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6669 ZIO_DATA_SALT_LEN); 6670 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6671 ZIO_DATA_IV_LEN); 6672 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6673 ZIO_DATA_MAC_LEN); 6674 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6675 localprop.zp_nopwrite = B_FALSE; 6676 localprop.zp_copies = 6677 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6678 } 6679 zio_flags |= ZIO_FLAG_RAW; 6680 } else if (ARC_BUF_COMPRESSED(buf)) { 6681 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6682 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6683 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6684 } 6685 6686 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6687 callback->awcb_ready = ready; 6688 callback->awcb_children_ready = children_ready; 6689 callback->awcb_physdone = physdone; 6690 callback->awcb_done = done; 6691 callback->awcb_private = private; 6692 callback->awcb_buf = buf; 6693 6694 /* 6695 * The hdr's b_pabd is now stale, free it now. A new data block 6696 * will be allocated when the zio pipeline calls arc_write_ready(). 6697 */ 6698 if (hdr->b_l1hdr.b_pabd != NULL) { 6699 /* 6700 * If the buf is currently sharing the data block with 6701 * the hdr then we need to break that relationship here. 6702 * The hdr will remain with a NULL data pointer and the 6703 * buf will take sole ownership of the block. 6704 */ 6705 if (arc_buf_is_shared(buf)) { 6706 arc_unshare_buf(hdr, buf); 6707 } else { 6708 arc_hdr_free_pabd(hdr, B_FALSE); 6709 } 6710 VERIFY3P(buf->b_data, !=, NULL); 6711 } 6712 6713 if (HDR_HAS_RABD(hdr)) 6714 arc_hdr_free_pabd(hdr, B_TRUE); 6715 6716 if (!(zio_flags & ZIO_FLAG_RAW)) 6717 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6718 6719 ASSERT(!arc_buf_is_shared(buf)); 6720 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6721 6722 zio = zio_write(pio, spa, txg, bp, 6723 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6724 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6725 (children_ready != NULL) ? arc_write_children_ready : NULL, 6726 arc_write_physdone, arc_write_done, callback, 6727 priority, zio_flags, zb); 6728 6729 return (zio); 6730 } 6731 6732 static int 6733 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) 6734 { 6735 #ifdef _KERNEL 6736 uint64_t available_memory = ptob(freemem); 6737 6738 6739 if (freemem > physmem * arc_lotsfree_percent / 100) 6740 return (0); 6741 6742 if (txg > spa->spa_lowmem_last_txg) { 6743 spa->spa_lowmem_last_txg = txg; 6744 spa->spa_lowmem_page_load = 0; 6745 } 6746 /* 6747 * If we are in pageout, we know that memory is already tight, 6748 * the arc is already going to be evicting, so we just want to 6749 * continue to let page writes occur as quickly as possible. 6750 */ 6751 if (curproc == proc_pageout) { 6752 if (spa->spa_lowmem_page_load > 6753 MAX(ptob(minfree), available_memory) / 4) 6754 return (SET_ERROR(ERESTART)); 6755 /* Note: reserve is inflated, so we deflate */ 6756 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); 6757 return (0); 6758 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { 6759 /* memory is low, delay before restarting */ 6760 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 6761 return (SET_ERROR(EAGAIN)); 6762 } 6763 spa->spa_lowmem_page_load = 0; 6764 #endif /* _KERNEL */ 6765 return (0); 6766 } 6767 6768 void 6769 arc_tempreserve_clear(uint64_t reserve) 6770 { 6771 atomic_add_64(&arc_tempreserve, -reserve); 6772 ASSERT((int64_t)arc_tempreserve >= 0); 6773 } 6774 6775 int 6776 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6777 { 6778 int error; 6779 uint64_t anon_size; 6780 6781 if (reserve > arc_c/4 && !arc_no_grow) 6782 arc_c = MIN(arc_c_max, reserve * 4); 6783 if (reserve > arc_c) 6784 return (SET_ERROR(ENOMEM)); 6785 6786 /* 6787 * Don't count loaned bufs as in flight dirty data to prevent long 6788 * network delays from blocking transactions that are ready to be 6789 * assigned to a txg. 6790 */ 6791 6792 /* assert that it has not wrapped around */ 6793 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6794 6795 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 6796 arc_loaned_bytes), 0); 6797 6798 /* 6799 * Writes will, almost always, require additional memory allocations 6800 * in order to compress/encrypt/etc the data. We therefore need to 6801 * make sure that there is sufficient available memory for this. 6802 */ 6803 error = arc_memory_throttle(spa, reserve, txg); 6804 if (error != 0) 6805 return (error); 6806 6807 /* 6808 * Throttle writes when the amount of dirty data in the cache 6809 * gets too large. We try to keep the cache less than half full 6810 * of dirty blocks so that our sync times don't grow too large. 6811 * 6812 * In the case of one pool being built on another pool, we want 6813 * to make sure we don't end up throttling the lower (backing) 6814 * pool when the upper pool is the majority contributor to dirty 6815 * data. To insure we make forward progress during throttling, we 6816 * also check the current pool's net dirty data and only throttle 6817 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6818 * data in the cache. 6819 * 6820 * Note: if two requests come in concurrently, we might let them 6821 * both succeed, when one of them should fail. Not a huge deal. 6822 */ 6823 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6824 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6825 6826 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 6827 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 6828 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6829 uint64_t meta_esize = 6830 zfs_refcount_count( 6831 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6832 uint64_t data_esize = 6833 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6834 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6835 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 6836 arc_tempreserve >> 10, meta_esize >> 10, 6837 data_esize >> 10, reserve >> 10, arc_c >> 10); 6838 return (SET_ERROR(ERESTART)); 6839 } 6840 atomic_add_64(&arc_tempreserve, reserve); 6841 return (0); 6842 } 6843 6844 static void 6845 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6846 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6847 { 6848 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 6849 evict_data->value.ui64 = 6850 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6851 evict_metadata->value.ui64 = 6852 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6853 } 6854 6855 static int 6856 arc_kstat_update(kstat_t *ksp, int rw) 6857 { 6858 arc_stats_t *as = ksp->ks_data; 6859 6860 if (rw == KSTAT_WRITE) { 6861 return (EACCES); 6862 } else { 6863 arc_kstat_update_state(arc_anon, 6864 &as->arcstat_anon_size, 6865 &as->arcstat_anon_evictable_data, 6866 &as->arcstat_anon_evictable_metadata); 6867 arc_kstat_update_state(arc_mru, 6868 &as->arcstat_mru_size, 6869 &as->arcstat_mru_evictable_data, 6870 &as->arcstat_mru_evictable_metadata); 6871 arc_kstat_update_state(arc_mru_ghost, 6872 &as->arcstat_mru_ghost_size, 6873 &as->arcstat_mru_ghost_evictable_data, 6874 &as->arcstat_mru_ghost_evictable_metadata); 6875 arc_kstat_update_state(arc_mfu, 6876 &as->arcstat_mfu_size, 6877 &as->arcstat_mfu_evictable_data, 6878 &as->arcstat_mfu_evictable_metadata); 6879 arc_kstat_update_state(arc_mfu_ghost, 6880 &as->arcstat_mfu_ghost_size, 6881 &as->arcstat_mfu_ghost_evictable_data, 6882 &as->arcstat_mfu_ghost_evictable_metadata); 6883 6884 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 6885 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 6886 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 6887 ARCSTAT(arcstat_metadata_size) = 6888 aggsum_value(&astat_metadata_size); 6889 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 6890 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 6891 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 6892 } 6893 6894 return (0); 6895 } 6896 6897 /* 6898 * This function *must* return indices evenly distributed between all 6899 * sublists of the multilist. This is needed due to how the ARC eviction 6900 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6901 * distributed between all sublists and uses this assumption when 6902 * deciding which sublist to evict from and how much to evict from it. 6903 */ 6904 unsigned int 6905 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6906 { 6907 arc_buf_hdr_t *hdr = obj; 6908 6909 /* 6910 * We rely on b_dva to generate evenly distributed index 6911 * numbers using buf_hash below. So, as an added precaution, 6912 * let's make sure we never add empty buffers to the arc lists. 6913 */ 6914 ASSERT(!HDR_EMPTY(hdr)); 6915 6916 /* 6917 * The assumption here, is the hash value for a given 6918 * arc_buf_hdr_t will remain constant throughout its lifetime 6919 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 6920 * Thus, we don't need to store the header's sublist index 6921 * on insertion, as this index can be recalculated on removal. 6922 * 6923 * Also, the low order bits of the hash value are thought to be 6924 * distributed evenly. Otherwise, in the case that the multilist 6925 * has a power of two number of sublists, each sublists' usage 6926 * would not be evenly distributed. 6927 */ 6928 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6929 multilist_get_num_sublists(ml)); 6930 } 6931 6932 static void 6933 arc_state_init(void) 6934 { 6935 arc_anon = &ARC_anon; 6936 arc_mru = &ARC_mru; 6937 arc_mru_ghost = &ARC_mru_ghost; 6938 arc_mfu = &ARC_mfu; 6939 arc_mfu_ghost = &ARC_mfu_ghost; 6940 arc_l2c_only = &ARC_l2c_only; 6941 6942 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6943 multilist_create(sizeof (arc_buf_hdr_t), 6944 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6945 arc_state_multilist_index_func); 6946 arc_mru->arcs_list[ARC_BUFC_DATA] = 6947 multilist_create(sizeof (arc_buf_hdr_t), 6948 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6949 arc_state_multilist_index_func); 6950 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6951 multilist_create(sizeof (arc_buf_hdr_t), 6952 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6953 arc_state_multilist_index_func); 6954 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6955 multilist_create(sizeof (arc_buf_hdr_t), 6956 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6957 arc_state_multilist_index_func); 6958 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6959 multilist_create(sizeof (arc_buf_hdr_t), 6960 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6961 arc_state_multilist_index_func); 6962 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6963 multilist_create(sizeof (arc_buf_hdr_t), 6964 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6965 arc_state_multilist_index_func); 6966 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 6967 multilist_create(sizeof (arc_buf_hdr_t), 6968 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6969 arc_state_multilist_index_func); 6970 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 6971 multilist_create(sizeof (arc_buf_hdr_t), 6972 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6973 arc_state_multilist_index_func); 6974 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 6975 multilist_create(sizeof (arc_buf_hdr_t), 6976 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6977 arc_state_multilist_index_func); 6978 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 6979 multilist_create(sizeof (arc_buf_hdr_t), 6980 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6981 arc_state_multilist_index_func); 6982 6983 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6984 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6985 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6986 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6987 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6988 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6989 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6990 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6991 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6992 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6993 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6994 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6995 6996 zfs_refcount_create(&arc_anon->arcs_size); 6997 zfs_refcount_create(&arc_mru->arcs_size); 6998 zfs_refcount_create(&arc_mru_ghost->arcs_size); 6999 zfs_refcount_create(&arc_mfu->arcs_size); 7000 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7001 zfs_refcount_create(&arc_l2c_only->arcs_size); 7002 7003 aggsum_init(&arc_meta_used, 0); 7004 aggsum_init(&arc_size, 0); 7005 aggsum_init(&astat_data_size, 0); 7006 aggsum_init(&astat_metadata_size, 0); 7007 aggsum_init(&astat_hdr_size, 0); 7008 aggsum_init(&astat_other_size, 0); 7009 aggsum_init(&astat_l2_hdr_size, 0); 7010 7011 arc_anon->arcs_state = ARC_STATE_ANON; 7012 arc_mru->arcs_state = ARC_STATE_MRU; 7013 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7014 arc_mfu->arcs_state = ARC_STATE_MFU; 7015 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7016 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7017 } 7018 7019 static void 7020 arc_state_fini(void) 7021 { 7022 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7023 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7024 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7025 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7026 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7027 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7028 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7029 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7030 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7031 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7032 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7033 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7034 7035 zfs_refcount_destroy(&arc_anon->arcs_size); 7036 zfs_refcount_destroy(&arc_mru->arcs_size); 7037 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7038 zfs_refcount_destroy(&arc_mfu->arcs_size); 7039 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7040 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7041 7042 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7043 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7044 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7045 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7046 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7047 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7048 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7049 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7050 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7051 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7052 7053 aggsum_fini(&arc_meta_used); 7054 aggsum_fini(&arc_size); 7055 aggsum_fini(&astat_data_size); 7056 aggsum_fini(&astat_metadata_size); 7057 aggsum_fini(&astat_hdr_size); 7058 aggsum_fini(&astat_other_size); 7059 aggsum_fini(&astat_l2_hdr_size); 7060 7061 } 7062 7063 uint64_t 7064 arc_max_bytes(void) 7065 { 7066 return (arc_c_max); 7067 } 7068 7069 void 7070 arc_init(void) 7071 { 7072 /* 7073 * allmem is "all memory that we could possibly use". 7074 */ 7075 #ifdef _KERNEL 7076 uint64_t allmem = ptob(physmem - swapfs_minfree); 7077 #else 7078 uint64_t allmem = (physmem * PAGESIZE) / 2; 7079 #endif 7080 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 7081 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 7082 7083 /* 7084 * Set the minimum cache size to 1/64 of all memory, with a hard 7085 * minimum of 64MB. 7086 */ 7087 arc_c_min = MAX(allmem / 64, 64 << 20); 7088 /* 7089 * In a system with a lot of physical memory this will still result in 7090 * an ARC size floor that is quite large in absolute terms. Cap the 7091 * growth of the value at 1GB. 7092 */ 7093 arc_c_min = MIN(arc_c_min, 1 << 30); 7094 7095 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 7096 if (allmem >= 1 << 30) 7097 arc_c_max = allmem - (1 << 30); 7098 else 7099 arc_c_max = arc_c_min; 7100 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 7101 7102 /* 7103 * In userland, there's only the memory pressure that we artificially 7104 * create (see arc_available_memory()). Don't let arc_c get too 7105 * small, because it can cause transactions to be larger than 7106 * arc_c, causing arc_tempreserve_space() to fail. 7107 */ 7108 #ifndef _KERNEL 7109 arc_c_min = arc_c_max / 2; 7110 #endif 7111 7112 /* 7113 * Allow the tunables to override our calculations if they are 7114 * reasonable (ie. over 64MB) 7115 */ 7116 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 7117 arc_c_max = zfs_arc_max; 7118 arc_c_min = MIN(arc_c_min, arc_c_max); 7119 } 7120 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 7121 arc_c_min = zfs_arc_min; 7122 7123 arc_c = arc_c_max; 7124 arc_p = (arc_c >> 1); 7125 7126 /* limit meta-data to 1/4 of the arc capacity */ 7127 arc_meta_limit = arc_c_max / 4; 7128 7129 #ifdef _KERNEL 7130 /* 7131 * Metadata is stored in the kernel's heap. Don't let us 7132 * use more than half the heap for the ARC. 7133 */ 7134 arc_meta_limit = MIN(arc_meta_limit, 7135 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 7136 #endif 7137 7138 /* Allow the tunable to override if it is reasonable */ 7139 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 7140 arc_meta_limit = zfs_arc_meta_limit; 7141 7142 if (zfs_arc_meta_min > 0) { 7143 arc_meta_min = zfs_arc_meta_min; 7144 } else { 7145 arc_meta_min = arc_c_min / 2; 7146 } 7147 7148 if (zfs_arc_grow_retry > 0) 7149 arc_grow_retry = zfs_arc_grow_retry; 7150 7151 if (zfs_arc_shrink_shift > 0) 7152 arc_shrink_shift = zfs_arc_shrink_shift; 7153 7154 /* 7155 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 7156 */ 7157 if (arc_no_grow_shift >= arc_shrink_shift) 7158 arc_no_grow_shift = arc_shrink_shift - 1; 7159 7160 if (zfs_arc_p_min_shift > 0) 7161 arc_p_min_shift = zfs_arc_p_min_shift; 7162 7163 /* if kmem_flags are set, lets try to use less memory */ 7164 if (kmem_debugging()) 7165 arc_c = arc_c / 2; 7166 if (arc_c < arc_c_min) 7167 arc_c = arc_c_min; 7168 7169 arc_state_init(); 7170 7171 /* 7172 * The arc must be "uninitialized", so that hdr_recl() (which is 7173 * registered by buf_init()) will not access arc_reap_zthr before 7174 * it is created. 7175 */ 7176 ASSERT(!arc_initialized); 7177 buf_init(); 7178 7179 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7180 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7181 7182 if (arc_ksp != NULL) { 7183 arc_ksp->ks_data = &arc_stats; 7184 arc_ksp->ks_update = arc_kstat_update; 7185 kstat_install(arc_ksp); 7186 } 7187 7188 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 7189 arc_adjust_cb, NULL); 7190 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 7191 arc_reap_cb, NULL, SEC2NSEC(1)); 7192 7193 arc_initialized = B_TRUE; 7194 arc_warm = B_FALSE; 7195 7196 /* 7197 * Calculate maximum amount of dirty data per pool. 7198 * 7199 * If it has been set by /etc/system, take that. 7200 * Otherwise, use a percentage of physical memory defined by 7201 * zfs_dirty_data_max_percent (default 10%) with a cap at 7202 * zfs_dirty_data_max_max (default 4GB). 7203 */ 7204 if (zfs_dirty_data_max == 0) { 7205 zfs_dirty_data_max = physmem * PAGESIZE * 7206 zfs_dirty_data_max_percent / 100; 7207 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7208 zfs_dirty_data_max_max); 7209 } 7210 } 7211 7212 void 7213 arc_fini(void) 7214 { 7215 /* Use B_TRUE to ensure *all* buffers are evicted */ 7216 arc_flush(NULL, B_TRUE); 7217 7218 arc_initialized = B_FALSE; 7219 7220 if (arc_ksp != NULL) { 7221 kstat_delete(arc_ksp); 7222 arc_ksp = NULL; 7223 } 7224 7225 (void) zthr_cancel(arc_adjust_zthr); 7226 zthr_destroy(arc_adjust_zthr); 7227 7228 (void) zthr_cancel(arc_reap_zthr); 7229 zthr_destroy(arc_reap_zthr); 7230 7231 mutex_destroy(&arc_adjust_lock); 7232 cv_destroy(&arc_adjust_waiters_cv); 7233 7234 /* 7235 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7236 * trigger the release of kmem magazines, which can callback to 7237 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7238 */ 7239 buf_fini(); 7240 arc_state_fini(); 7241 7242 ASSERT0(arc_loaned_bytes); 7243 } 7244 7245 /* 7246 * Level 2 ARC 7247 * 7248 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7249 * It uses dedicated storage devices to hold cached data, which are populated 7250 * using large infrequent writes. The main role of this cache is to boost 7251 * the performance of random read workloads. The intended L2ARC devices 7252 * include short-stroked disks, solid state disks, and other media with 7253 * substantially faster read latency than disk. 7254 * 7255 * +-----------------------+ 7256 * | ARC | 7257 * +-----------------------+ 7258 * | ^ ^ 7259 * | | | 7260 * l2arc_feed_thread() arc_read() 7261 * | | | 7262 * | l2arc read | 7263 * V | | 7264 * +---------------+ | 7265 * | L2ARC | | 7266 * +---------------+ | 7267 * | ^ | 7268 * l2arc_write() | | 7269 * | | | 7270 * V | | 7271 * +-------+ +-------+ 7272 * | vdev | | vdev | 7273 * | cache | | cache | 7274 * +-------+ +-------+ 7275 * +=========+ .-----. 7276 * : L2ARC : |-_____-| 7277 * : devices : | Disks | 7278 * +=========+ `-_____-' 7279 * 7280 * Read requests are satisfied from the following sources, in order: 7281 * 7282 * 1) ARC 7283 * 2) vdev cache of L2ARC devices 7284 * 3) L2ARC devices 7285 * 4) vdev cache of disks 7286 * 5) disks 7287 * 7288 * Some L2ARC device types exhibit extremely slow write performance. 7289 * To accommodate for this there are some significant differences between 7290 * the L2ARC and traditional cache design: 7291 * 7292 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7293 * the ARC behave as usual, freeing buffers and placing headers on ghost 7294 * lists. The ARC does not send buffers to the L2ARC during eviction as 7295 * this would add inflated write latencies for all ARC memory pressure. 7296 * 7297 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7298 * It does this by periodically scanning buffers from the eviction-end of 7299 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7300 * not already there. It scans until a headroom of buffers is satisfied, 7301 * which itself is a buffer for ARC eviction. If a compressible buffer is 7302 * found during scanning and selected for writing to an L2ARC device, we 7303 * temporarily boost scanning headroom during the next scan cycle to make 7304 * sure we adapt to compression effects (which might significantly reduce 7305 * the data volume we write to L2ARC). The thread that does this is 7306 * l2arc_feed_thread(), illustrated below; example sizes are included to 7307 * provide a better sense of ratio than this diagram: 7308 * 7309 * head --> tail 7310 * +---------------------+----------+ 7311 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7312 * +---------------------+----------+ | o L2ARC eligible 7313 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7314 * +---------------------+----------+ | 7315 * 15.9 Gbytes ^ 32 Mbytes | 7316 * headroom | 7317 * l2arc_feed_thread() 7318 * | 7319 * l2arc write hand <--[oooo]--' 7320 * | 8 Mbyte 7321 * | write max 7322 * V 7323 * +==============================+ 7324 * L2ARC dev |####|#|###|###| |####| ... | 7325 * +==============================+ 7326 * 32 Gbytes 7327 * 7328 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7329 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7330 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7331 * safe to say that this is an uncommon case, since buffers at the end of 7332 * the ARC lists have moved there due to inactivity. 7333 * 7334 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7335 * then the L2ARC simply misses copying some buffers. This serves as a 7336 * pressure valve to prevent heavy read workloads from both stalling the ARC 7337 * with waits and clogging the L2ARC with writes. This also helps prevent 7338 * the potential for the L2ARC to churn if it attempts to cache content too 7339 * quickly, such as during backups of the entire pool. 7340 * 7341 * 5. After system boot and before the ARC has filled main memory, there are 7342 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7343 * lists can remain mostly static. Instead of searching from tail of these 7344 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7345 * for eligible buffers, greatly increasing its chance of finding them. 7346 * 7347 * The L2ARC device write speed is also boosted during this time so that 7348 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7349 * there are no L2ARC reads, and no fear of degrading read performance 7350 * through increased writes. 7351 * 7352 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7353 * the vdev queue can aggregate them into larger and fewer writes. Each 7354 * device is written to in a rotor fashion, sweeping writes through 7355 * available space then repeating. 7356 * 7357 * 7. The L2ARC does not store dirty content. It never needs to flush 7358 * write buffers back to disk based storage. 7359 * 7360 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7361 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7362 * 7363 * The performance of the L2ARC can be tweaked by a number of tunables, which 7364 * may be necessary for different workloads: 7365 * 7366 * l2arc_write_max max write bytes per interval 7367 * l2arc_write_boost extra write bytes during device warmup 7368 * l2arc_noprefetch skip caching prefetched buffers 7369 * l2arc_headroom number of max device writes to precache 7370 * l2arc_headroom_boost when we find compressed buffers during ARC 7371 * scanning, we multiply headroom by this 7372 * percentage factor for the next scan cycle, 7373 * since more compressed buffers are likely to 7374 * be present 7375 * l2arc_feed_secs seconds between L2ARC writing 7376 * 7377 * Tunables may be removed or added as future performance improvements are 7378 * integrated, and also may become zpool properties. 7379 * 7380 * There are three key functions that control how the L2ARC warms up: 7381 * 7382 * l2arc_write_eligible() check if a buffer is eligible to cache 7383 * l2arc_write_size() calculate how much to write 7384 * l2arc_write_interval() calculate sleep delay between writes 7385 * 7386 * These three functions determine what to write, how much, and how quickly 7387 * to send writes. 7388 * 7389 * L2ARC persistence: 7390 * 7391 * When writing buffers to L2ARC, we periodically add some metadata to 7392 * make sure we can pick them up after reboot, thus dramatically reducing 7393 * the impact that any downtime has on the performance of storage systems 7394 * with large caches. 7395 * 7396 * The implementation works fairly simply by integrating the following two 7397 * modifications: 7398 * 7399 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7400 * which is an additional piece of metadata which describes what's been 7401 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7402 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7403 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7404 * time-wise and offset-wise interleaved, but that is an optimization rather 7405 * than for correctness. The log block also includes a pointer to the 7406 * previous block in its chain. 7407 * 7408 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7409 * for our header bookkeeping purposes. This contains a device header, 7410 * which contains our top-level reference structures. We update it each 7411 * time we write a new log block, so that we're able to locate it in the 7412 * L2ARC device. If this write results in an inconsistent device header 7413 * (e.g. due to power failure), we detect this by verifying the header's 7414 * checksum and simply fail to reconstruct the L2ARC after reboot. 7415 * 7416 * Implementation diagram: 7417 * 7418 * +=== L2ARC device (not to scale) ======================================+ 7419 * | ___two newest log block pointers__.__________ | 7420 * | / \dh_start_lbps[1] | 7421 * | / \ \dh_start_lbps[0]| 7422 * |.___/__. V V | 7423 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7424 * || hdr| ^ /^ /^ / / | 7425 * |+------+ ...--\-------/ \-----/--\------/ / | 7426 * | \--------------/ \--------------/ | 7427 * +======================================================================+ 7428 * 7429 * As can be seen on the diagram, rather than using a simple linked list, 7430 * we use a pair of linked lists with alternating elements. This is a 7431 * performance enhancement due to the fact that we only find out the 7432 * address of the next log block access once the current block has been 7433 * completely read in. Obviously, this hurts performance, because we'd be 7434 * keeping the device's I/O queue at only a 1 operation deep, thus 7435 * incurring a large amount of I/O round-trip latency. Having two lists 7436 * allows us to fetch two log blocks ahead of where we are currently 7437 * rebuilding L2ARC buffers. 7438 * 7439 * On-device data structures: 7440 * 7441 * L2ARC device header: l2arc_dev_hdr_phys_t 7442 * L2ARC log block: l2arc_log_blk_phys_t 7443 * 7444 * L2ARC reconstruction: 7445 * 7446 * When writing data, we simply write in the standard rotary fashion, 7447 * evicting buffers as we go and simply writing new data over them (writing 7448 * a new log block every now and then). This obviously means that once we 7449 * loop around the end of the device, we will start cutting into an already 7450 * committed log block (and its referenced data buffers), like so: 7451 * 7452 * current write head__ __old tail 7453 * \ / 7454 * V V 7455 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7456 * ^ ^^^^^^^^^___________________________________ 7457 * | \ 7458 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7459 * 7460 * When importing the pool, we detect this situation and use it to stop 7461 * our scanning process (see l2arc_rebuild). 7462 * 7463 * There is one significant caveat to consider when rebuilding ARC contents 7464 * from an L2ARC device: what about invalidated buffers? Given the above 7465 * construction, we cannot update blocks which we've already written to amend 7466 * them to remove buffers which were invalidated. Thus, during reconstruction, 7467 * we might be populating the cache with buffers for data that's not on the 7468 * main pool anymore, or may have been overwritten! 7469 * 7470 * As it turns out, this isn't a problem. Every arc_read request includes 7471 * both the DVA and, crucially, the birth TXG of the BP the caller is 7472 * looking for. So even if the cache were populated by completely rotten 7473 * blocks for data that had been long deleted and/or overwritten, we'll 7474 * never actually return bad data from the cache, since the DVA with the 7475 * birth TXG uniquely identify a block in space and time - once created, 7476 * a block is immutable on disk. The worst thing we have done is wasted 7477 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7478 * entries that will get dropped from the l2arc as it is being updated 7479 * with new blocks. 7480 * 7481 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7482 * hand are not restored. This is done by saving the offset (in bytes) 7483 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7484 * into account when restoring buffers. 7485 */ 7486 7487 static boolean_t 7488 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7489 { 7490 /* 7491 * A buffer is *not* eligible for the L2ARC if it: 7492 * 1. belongs to a different spa. 7493 * 2. is already cached on the L2ARC. 7494 * 3. has an I/O in progress (it may be an incomplete read). 7495 * 4. is flagged not eligible (zfs property). 7496 * 5. is a prefetch and l2arc_noprefetch is set. 7497 */ 7498 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7499 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) || 7500 (l2arc_noprefetch && HDR_PREFETCH(hdr))) 7501 return (B_FALSE); 7502 7503 return (B_TRUE); 7504 } 7505 7506 static uint64_t 7507 l2arc_write_size(l2arc_dev_t *dev) 7508 { 7509 uint64_t size, dev_size; 7510 7511 /* 7512 * Make sure our globals have meaningful values in case the user 7513 * altered them. 7514 */ 7515 size = l2arc_write_max; 7516 if (size == 0) { 7517 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7518 "be greater than zero, resetting it to the default (%d)", 7519 L2ARC_WRITE_SIZE); 7520 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7521 } 7522 7523 if (arc_warm == B_FALSE) 7524 size += l2arc_write_boost; 7525 7526 /* 7527 * Make sure the write size does not exceed the size of the cache 7528 * device. This is important in l2arc_evict(), otherwise infinite 7529 * iteration can occur. 7530 */ 7531 dev_size = dev->l2ad_end - dev->l2ad_start; 7532 if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) { 7533 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7534 "plus the overhead of log blocks (persistent L2ARC, " 7535 "%" PRIu64 " bytes) exceeds the size of the cache device " 7536 "(guid %" PRIu64 "), resetting them to the default (%d)", 7537 l2arc_log_blk_overhead(size, dev), 7538 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7539 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7540 7541 if (arc_warm == B_FALSE) 7542 size += l2arc_write_boost; 7543 } 7544 7545 return (size); 7546 7547 } 7548 7549 static clock_t 7550 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7551 { 7552 clock_t interval, next, now; 7553 7554 /* 7555 * If the ARC lists are busy, increase our write rate; if the 7556 * lists are stale, idle back. This is achieved by checking 7557 * how much we previously wrote - if it was more than half of 7558 * what we wanted, schedule the next write much sooner. 7559 */ 7560 if (l2arc_feed_again && wrote > (wanted / 2)) 7561 interval = (hz * l2arc_feed_min_ms) / 1000; 7562 else 7563 interval = hz * l2arc_feed_secs; 7564 7565 now = ddi_get_lbolt(); 7566 next = MAX(now, MIN(now + interval, began + interval)); 7567 7568 return (next); 7569 } 7570 7571 /* 7572 * Cycle through L2ARC devices. This is how L2ARC load balances. 7573 * If a device is returned, this also returns holding the spa config lock. 7574 */ 7575 static l2arc_dev_t * 7576 l2arc_dev_get_next(void) 7577 { 7578 l2arc_dev_t *first, *next = NULL; 7579 7580 /* 7581 * Lock out the removal of spas (spa_namespace_lock), then removal 7582 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7583 * both locks will be dropped and a spa config lock held instead. 7584 */ 7585 mutex_enter(&spa_namespace_lock); 7586 mutex_enter(&l2arc_dev_mtx); 7587 7588 /* if there are no vdevs, there is nothing to do */ 7589 if (l2arc_ndev == 0) 7590 goto out; 7591 7592 first = NULL; 7593 next = l2arc_dev_last; 7594 do { 7595 /* loop around the list looking for a non-faulted vdev */ 7596 if (next == NULL) { 7597 next = list_head(l2arc_dev_list); 7598 } else { 7599 next = list_next(l2arc_dev_list, next); 7600 if (next == NULL) 7601 next = list_head(l2arc_dev_list); 7602 } 7603 7604 /* if we have come back to the start, bail out */ 7605 if (first == NULL) 7606 first = next; 7607 else if (next == first) 7608 break; 7609 7610 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild); 7611 7612 /* if we were unable to find any usable vdevs, return NULL */ 7613 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild) 7614 next = NULL; 7615 7616 l2arc_dev_last = next; 7617 7618 out: 7619 mutex_exit(&l2arc_dev_mtx); 7620 7621 /* 7622 * Grab the config lock to prevent the 'next' device from being 7623 * removed while we are writing to it. 7624 */ 7625 if (next != NULL) 7626 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7627 mutex_exit(&spa_namespace_lock); 7628 7629 return (next); 7630 } 7631 7632 /* 7633 * Free buffers that were tagged for destruction. 7634 */ 7635 static void 7636 l2arc_do_free_on_write() 7637 { 7638 list_t *buflist; 7639 l2arc_data_free_t *df, *df_prev; 7640 7641 mutex_enter(&l2arc_free_on_write_mtx); 7642 buflist = l2arc_free_on_write; 7643 7644 for (df = list_tail(buflist); df; df = df_prev) { 7645 df_prev = list_prev(buflist, df); 7646 ASSERT3P(df->l2df_abd, !=, NULL); 7647 abd_free(df->l2df_abd); 7648 list_remove(buflist, df); 7649 kmem_free(df, sizeof (l2arc_data_free_t)); 7650 } 7651 7652 mutex_exit(&l2arc_free_on_write_mtx); 7653 } 7654 7655 /* 7656 * A write to a cache device has completed. Update all headers to allow 7657 * reads from these buffers to begin. 7658 */ 7659 static void 7660 l2arc_write_done(zio_t *zio) 7661 { 7662 l2arc_write_callback_t *cb; 7663 l2arc_lb_abd_buf_t *abd_buf; 7664 l2arc_lb_ptr_buf_t *lb_ptr_buf; 7665 l2arc_dev_t *dev; 7666 l2arc_dev_hdr_phys_t *l2dhdr; 7667 list_t *buflist; 7668 arc_buf_hdr_t *head, *hdr, *hdr_prev; 7669 kmutex_t *hash_lock; 7670 int64_t bytes_dropped = 0; 7671 7672 cb = zio->io_private; 7673 ASSERT3P(cb, !=, NULL); 7674 dev = cb->l2wcb_dev; 7675 l2dhdr = dev->l2ad_dev_hdr; 7676 ASSERT3P(dev, !=, NULL); 7677 head = cb->l2wcb_head; 7678 ASSERT3P(head, !=, NULL); 7679 buflist = &dev->l2ad_buflist; 7680 ASSERT3P(buflist, !=, NULL); 7681 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 7682 l2arc_write_callback_t *, cb); 7683 7684 /* 7685 * All writes completed, or an error was hit. 7686 */ 7687 top: 7688 mutex_enter(&dev->l2ad_mtx); 7689 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 7690 hdr_prev = list_prev(buflist, hdr); 7691 7692 hash_lock = HDR_LOCK(hdr); 7693 7694 /* 7695 * We cannot use mutex_enter or else we can deadlock 7696 * with l2arc_write_buffers (due to swapping the order 7697 * the hash lock and l2ad_mtx are taken). 7698 */ 7699 if (!mutex_tryenter(hash_lock)) { 7700 /* 7701 * Missed the hash lock. We must retry so we 7702 * don't leave the ARC_FLAG_L2_WRITING bit set. 7703 */ 7704 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 7705 7706 /* 7707 * We don't want to rescan the headers we've 7708 * already marked as having been written out, so 7709 * we reinsert the head node so we can pick up 7710 * where we left off. 7711 */ 7712 list_remove(buflist, head); 7713 list_insert_after(buflist, hdr, head); 7714 7715 mutex_exit(&dev->l2ad_mtx); 7716 7717 /* 7718 * We wait for the hash lock to become available 7719 * to try and prevent busy waiting, and increase 7720 * the chance we'll be able to acquire the lock 7721 * the next time around. 7722 */ 7723 mutex_enter(hash_lock); 7724 mutex_exit(hash_lock); 7725 goto top; 7726 } 7727 7728 /* 7729 * We could not have been moved into the arc_l2c_only 7730 * state while in-flight due to our ARC_FLAG_L2_WRITING 7731 * bit being set. Let's just ensure that's being enforced. 7732 */ 7733 ASSERT(HDR_HAS_L1HDR(hdr)); 7734 7735 if (zio->io_error != 0) { 7736 /* 7737 * Error - drop L2ARC entry. 7738 */ 7739 list_remove(buflist, hdr); 7740 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 7741 7742 uint64_t psize = HDR_GET_PSIZE(hdr); 7743 l2arc_hdr_arcstats_decrement(hdr); 7744 7745 bytes_dropped += 7746 vdev_psize_to_asize(dev->l2ad_vdev, psize); 7747 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 7748 arc_hdr_size(hdr), hdr); 7749 } 7750 7751 /* 7752 * Allow ARC to begin reads and ghost list evictions to 7753 * this L2ARC entry. 7754 */ 7755 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 7756 7757 mutex_exit(hash_lock); 7758 } 7759 7760 /* 7761 * Free the allocated abd buffers for writing the log blocks. 7762 * If the zio failed reclaim the allocated space and remove the 7763 * pointers to these log blocks from the log block pointer list 7764 * of the L2ARC device. 7765 */ 7766 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 7767 abd_free(abd_buf->abd); 7768 zio_buf_free(abd_buf, sizeof (*abd_buf)); 7769 if (zio->io_error != 0) { 7770 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 7771 /* 7772 * L2BLK_GET_PSIZE returns aligned size for log 7773 * blocks. 7774 */ 7775 uint64_t asize = 7776 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 7777 bytes_dropped += asize; 7778 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 7779 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 7780 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 7781 lb_ptr_buf); 7782 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 7783 kmem_free(lb_ptr_buf->lb_ptr, 7784 sizeof (l2arc_log_blkptr_t)); 7785 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 7786 } 7787 } 7788 list_destroy(&cb->l2wcb_abd_list); 7789 7790 if (zio->io_error != 0) { 7791 ARCSTAT_BUMP(arcstat_l2_writes_error); 7792 7793 /* 7794 * Restore the lbps array in the header to its previous state. 7795 * If the list of log block pointers is empty, zero out the 7796 * log block pointers in the device header. 7797 */ 7798 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 7799 for (int i = 0; i < 2; i++) { 7800 if (lb_ptr_buf == NULL) { 7801 /* 7802 * If the list is empty zero out the device 7803 * header. Otherwise zero out the second log 7804 * block pointer in the header. 7805 */ 7806 if (i == 0) { 7807 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 7808 } else { 7809 bzero(&l2dhdr->dh_start_lbps[i], 7810 sizeof (l2arc_log_blkptr_t)); 7811 } 7812 break; 7813 } 7814 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 7815 sizeof (l2arc_log_blkptr_t)); 7816 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 7817 lb_ptr_buf); 7818 } 7819 } 7820 7821 atomic_inc_64(&l2arc_writes_done); 7822 list_remove(buflist, head); 7823 ASSERT(!HDR_HAS_L1HDR(head)); 7824 kmem_cache_free(hdr_l2only_cache, head); 7825 mutex_exit(&dev->l2ad_mtx); 7826 7827 ASSERT(dev->l2ad_vdev != NULL); 7828 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 7829 7830 l2arc_do_free_on_write(); 7831 7832 kmem_free(cb, sizeof (l2arc_write_callback_t)); 7833 } 7834 7835 static int 7836 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 7837 { 7838 int ret; 7839 spa_t *spa = zio->io_spa; 7840 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 7841 blkptr_t *bp = zio->io_bp; 7842 uint8_t salt[ZIO_DATA_SALT_LEN]; 7843 uint8_t iv[ZIO_DATA_IV_LEN]; 7844 uint8_t mac[ZIO_DATA_MAC_LEN]; 7845 boolean_t no_crypt = B_FALSE; 7846 7847 /* 7848 * ZIL data is never be written to the L2ARC, so we don't need 7849 * special handling for its unique MAC storage. 7850 */ 7851 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 7852 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 7853 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7854 7855 /* 7856 * If the data was encrypted, decrypt it now. Note that 7857 * we must check the bp here and not the hdr, since the 7858 * hdr does not have its encryption parameters updated 7859 * until arc_read_done(). 7860 */ 7861 if (BP_IS_ENCRYPTED(bp)) { 7862 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7863 B_TRUE); 7864 7865 zio_crypt_decode_params_bp(bp, salt, iv); 7866 zio_crypt_decode_mac_bp(bp, mac); 7867 7868 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 7869 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 7870 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 7871 hdr->b_l1hdr.b_pabd, &no_crypt); 7872 if (ret != 0) { 7873 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7874 goto error; 7875 } 7876 7877 /* 7878 * If we actually performed decryption, replace b_pabd 7879 * with the decrypted data. Otherwise we can just throw 7880 * our decryption buffer away. 7881 */ 7882 if (!no_crypt) { 7883 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7884 arc_hdr_size(hdr), hdr); 7885 hdr->b_l1hdr.b_pabd = eabd; 7886 zio->io_abd = eabd; 7887 } else { 7888 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7889 } 7890 } 7891 7892 /* 7893 * If the L2ARC block was compressed, but ARC compression 7894 * is disabled we decompress the data into a new buffer and 7895 * replace the existing data. 7896 */ 7897 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 7898 !HDR_COMPRESSION_ENABLED(hdr)) { 7899 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7900 B_TRUE); 7901 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 7902 7903 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 7904 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 7905 HDR_GET_LSIZE(hdr)); 7906 if (ret != 0) { 7907 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7908 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 7909 goto error; 7910 } 7911 7912 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7913 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7914 arc_hdr_size(hdr), hdr); 7915 hdr->b_l1hdr.b_pabd = cabd; 7916 zio->io_abd = cabd; 7917 zio->io_size = HDR_GET_LSIZE(hdr); 7918 } 7919 7920 return (0); 7921 7922 error: 7923 return (ret); 7924 } 7925 7926 7927 /* 7928 * A read to a cache device completed. Validate buffer contents before 7929 * handing over to the regular ARC routines. 7930 */ 7931 static void 7932 l2arc_read_done(zio_t *zio) 7933 { 7934 int tfm_error = 0; 7935 l2arc_read_callback_t *cb = zio->io_private; 7936 arc_buf_hdr_t *hdr; 7937 kmutex_t *hash_lock; 7938 boolean_t valid_cksum; 7939 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 7940 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 7941 7942 ASSERT3P(zio->io_vd, !=, NULL); 7943 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 7944 7945 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 7946 7947 ASSERT3P(cb, !=, NULL); 7948 hdr = cb->l2rcb_hdr; 7949 ASSERT3P(hdr, !=, NULL); 7950 7951 hash_lock = HDR_LOCK(hdr); 7952 mutex_enter(hash_lock); 7953 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 7954 7955 /* 7956 * If the data was read into a temporary buffer, 7957 * move it and free the buffer. 7958 */ 7959 if (cb->l2rcb_abd != NULL) { 7960 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 7961 if (zio->io_error == 0) { 7962 if (using_rdata) { 7963 abd_copy(hdr->b_crypt_hdr.b_rabd, 7964 cb->l2rcb_abd, arc_hdr_size(hdr)); 7965 } else { 7966 abd_copy(hdr->b_l1hdr.b_pabd, 7967 cb->l2rcb_abd, arc_hdr_size(hdr)); 7968 } 7969 } 7970 7971 /* 7972 * The following must be done regardless of whether 7973 * there was an error: 7974 * - free the temporary buffer 7975 * - point zio to the real ARC buffer 7976 * - set zio size accordingly 7977 * These are required because zio is either re-used for 7978 * an I/O of the block in the case of the error 7979 * or the zio is passed to arc_read_done() and it 7980 * needs real data. 7981 */ 7982 abd_free(cb->l2rcb_abd); 7983 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 7984 7985 if (using_rdata) { 7986 ASSERT(HDR_HAS_RABD(hdr)); 7987 zio->io_abd = zio->io_orig_abd = 7988 hdr->b_crypt_hdr.b_rabd; 7989 } else { 7990 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7991 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 7992 } 7993 } 7994 7995 ASSERT3P(zio->io_abd, !=, NULL); 7996 7997 /* 7998 * Check this survived the L2ARC journey. 7999 */ 8000 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8001 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8002 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8003 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8004 8005 valid_cksum = arc_cksum_is_equal(hdr, zio); 8006 8007 /* 8008 * b_rabd will always match the data as it exists on disk if it is 8009 * being used. Therefore if we are reading into b_rabd we do not 8010 * attempt to untransform the data. 8011 */ 8012 if (valid_cksum && !using_rdata) 8013 tfm_error = l2arc_untransform(zio, cb); 8014 8015 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8016 !HDR_L2_EVICTED(hdr)) { 8017 mutex_exit(hash_lock); 8018 zio->io_private = hdr; 8019 arc_read_done(zio); 8020 } else { 8021 /* 8022 * Buffer didn't survive caching. Increment stats and 8023 * reissue to the original storage device. 8024 */ 8025 if (zio->io_error != 0) { 8026 ARCSTAT_BUMP(arcstat_l2_io_error); 8027 } else { 8028 zio->io_error = SET_ERROR(EIO); 8029 } 8030 if (!valid_cksum || tfm_error != 0) 8031 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8032 8033 /* 8034 * If there's no waiter, issue an async i/o to the primary 8035 * storage now. If there *is* a waiter, the caller must 8036 * issue the i/o in a context where it's OK to block. 8037 */ 8038 if (zio->io_waiter == NULL) { 8039 zio_t *pio = zio_unique_parent(zio); 8040 void *abd = (using_rdata) ? 8041 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8042 8043 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8044 8045 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8046 abd, zio->io_size, arc_read_done, 8047 hdr, zio->io_priority, cb->l2rcb_flags, 8048 &cb->l2rcb_zb); 8049 8050 /* 8051 * Original ZIO will be freed, so we need to update 8052 * ARC header with the new ZIO pointer to be used 8053 * by zio_change_priority() in arc_read(). 8054 */ 8055 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8056 acb != NULL; acb = acb->acb_next) 8057 acb->acb_zio_head = zio; 8058 8059 mutex_exit(hash_lock); 8060 zio_nowait(zio); 8061 } else { 8062 mutex_exit(hash_lock); 8063 } 8064 } 8065 8066 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8067 } 8068 8069 /* 8070 * This is the list priority from which the L2ARC will search for pages to 8071 * cache. This is used within loops (0..3) to cycle through lists in the 8072 * desired order. This order can have a significant effect on cache 8073 * performance. 8074 * 8075 * Currently the metadata lists are hit first, MFU then MRU, followed by 8076 * the data lists. This function returns a locked list, and also returns 8077 * the lock pointer. 8078 */ 8079 static multilist_sublist_t * 8080 l2arc_sublist_lock(int list_num) 8081 { 8082 multilist_t *ml = NULL; 8083 unsigned int idx; 8084 8085 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8086 8087 switch (list_num) { 8088 case 0: 8089 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8090 break; 8091 case 1: 8092 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8093 break; 8094 case 2: 8095 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8096 break; 8097 case 3: 8098 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8099 break; 8100 default: 8101 return (NULL); 8102 } 8103 8104 /* 8105 * Return a randomly-selected sublist. This is acceptable 8106 * because the caller feeds only a little bit of data for each 8107 * call (8MB). Subsequent calls will result in different 8108 * sublists being selected. 8109 */ 8110 idx = multilist_get_random_index(ml); 8111 return (multilist_sublist_lock(ml, idx)); 8112 } 8113 8114 /* 8115 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8116 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8117 * overhead in processing to make sure there is enough headroom available 8118 * when writing buffers. 8119 */ 8120 static inline uint64_t 8121 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8122 { 8123 if (dev->l2ad_log_entries == 0) { 8124 return (0); 8125 } else { 8126 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8127 8128 uint64_t log_blocks = (log_entries + 8129 dev->l2ad_log_entries - 1) / 8130 dev->l2ad_log_entries; 8131 8132 return (vdev_psize_to_asize(dev->l2ad_vdev, 8133 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8134 } 8135 } 8136 8137 /* 8138 * Evict buffers from the device write hand to the distance specified in 8139 * bytes. This distance may span populated buffers, it may span nothing. 8140 * This is clearing a region on the L2ARC device ready for writing. 8141 * If the 'all' boolean is set, every buffer is evicted. 8142 */ 8143 static void 8144 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8145 { 8146 list_t *buflist; 8147 arc_buf_hdr_t *hdr, *hdr_prev; 8148 kmutex_t *hash_lock; 8149 uint64_t taddr; 8150 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8151 boolean_t rerun; 8152 8153 buflist = &dev->l2ad_buflist; 8154 8155 /* 8156 * We need to add in the worst case scenario of log block overhead. 8157 */ 8158 distance += l2arc_log_blk_overhead(distance, dev); 8159 8160 top: 8161 rerun = B_FALSE; 8162 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8163 /* 8164 * When there is no space to accommodate upcoming writes, 8165 * evict to the end. Then bump the write and evict hands 8166 * to the start and iterate. This iteration does not 8167 * happen indefinitely as we make sure in 8168 * l2arc_write_size() that when the write hand is reset, 8169 * the write size does not exceed the end of the device. 8170 */ 8171 rerun = B_TRUE; 8172 taddr = dev->l2ad_end; 8173 } else { 8174 taddr = dev->l2ad_hand + distance; 8175 } 8176 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8177 uint64_t, taddr, boolean_t, all); 8178 8179 /* 8180 * This check has to be placed after deciding whether to iterate 8181 * (rerun). 8182 */ 8183 if (!all && dev->l2ad_first) { 8184 /* 8185 * This is the first sweep through the device. There is 8186 * nothing to evict. 8187 */ 8188 goto out; 8189 } 8190 8191 /* 8192 * When rebuilding L2ARC we retrieve the evict hand from the header of 8193 * the device. Of note, l2arc_evict() does not actually delete buffers 8194 * from the cache device, but keeping track of the evict hand will be 8195 * useful when TRIM is implemented. 8196 */ 8197 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8198 8199 retry: 8200 mutex_enter(&dev->l2ad_mtx); 8201 /* 8202 * We have to account for evicted log blocks. Run vdev_space_update() 8203 * on log blocks whose offset (in bytes) is before the evicted offset 8204 * (in bytes) by searching in the list of pointers to log blocks 8205 * present in the L2ARC device. 8206 */ 8207 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8208 lb_ptr_buf = lb_ptr_buf_prev) { 8209 8210 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8211 8212 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8213 uint64_t asize = L2BLK_GET_PSIZE( 8214 (lb_ptr_buf->lb_ptr)->lbp_prop); 8215 8216 /* 8217 * We don't worry about log blocks left behind (ie 8218 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8219 * will never write more than l2arc_evict() evicts. 8220 */ 8221 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8222 break; 8223 } else { 8224 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 8225 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8226 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8227 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8228 lb_ptr_buf); 8229 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8230 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8231 kmem_free(lb_ptr_buf->lb_ptr, 8232 sizeof (l2arc_log_blkptr_t)); 8233 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8234 } 8235 } 8236 8237 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8238 hdr_prev = list_prev(buflist, hdr); 8239 8240 ASSERT(!HDR_EMPTY(hdr)); 8241 hash_lock = HDR_LOCK(hdr); 8242 8243 /* 8244 * We cannot use mutex_enter or else we can deadlock 8245 * with l2arc_write_buffers (due to swapping the order 8246 * the hash lock and l2ad_mtx are taken). 8247 */ 8248 if (!mutex_tryenter(hash_lock)) { 8249 /* 8250 * Missed the hash lock. Retry. 8251 */ 8252 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8253 mutex_exit(&dev->l2ad_mtx); 8254 mutex_enter(hash_lock); 8255 mutex_exit(hash_lock); 8256 goto retry; 8257 } 8258 8259 /* 8260 * A header can't be on this list if it doesn't have L2 header. 8261 */ 8262 ASSERT(HDR_HAS_L2HDR(hdr)); 8263 8264 /* Ensure this header has finished being written. */ 8265 ASSERT(!HDR_L2_WRITING(hdr)); 8266 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8267 8268 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8269 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8270 /* 8271 * We've evicted to the target address, 8272 * or the end of the device. 8273 */ 8274 mutex_exit(hash_lock); 8275 break; 8276 } 8277 8278 if (!HDR_HAS_L1HDR(hdr)) { 8279 ASSERT(!HDR_L2_READING(hdr)); 8280 /* 8281 * This doesn't exist in the ARC. Destroy. 8282 * arc_hdr_destroy() will call list_remove() 8283 * and decrement arcstat_l2_lsize. 8284 */ 8285 arc_change_state(arc_anon, hdr, hash_lock); 8286 arc_hdr_destroy(hdr); 8287 } else { 8288 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8289 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8290 /* 8291 * Invalidate issued or about to be issued 8292 * reads, since we may be about to write 8293 * over this location. 8294 */ 8295 if (HDR_L2_READING(hdr)) { 8296 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8297 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8298 } 8299 8300 arc_hdr_l2hdr_destroy(hdr); 8301 } 8302 mutex_exit(hash_lock); 8303 } 8304 mutex_exit(&dev->l2ad_mtx); 8305 8306 out: 8307 /* 8308 * We need to check if we evict all buffers, otherwise we may iterate 8309 * unnecessarily. 8310 */ 8311 if (!all && rerun) { 8312 /* 8313 * Bump device hand to the device start if it is approaching the 8314 * end. l2arc_evict() has already evicted ahead for this case. 8315 */ 8316 dev->l2ad_hand = dev->l2ad_start; 8317 dev->l2ad_evict = dev->l2ad_start; 8318 dev->l2ad_first = B_FALSE; 8319 goto top; 8320 } 8321 8322 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8323 if (!dev->l2ad_first) 8324 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8325 } 8326 8327 /* 8328 * Handle any abd transforms that might be required for writing to the L2ARC. 8329 * If successful, this function will always return an abd with the data 8330 * transformed as it is on disk in a new abd of asize bytes. 8331 */ 8332 static int 8333 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8334 abd_t **abd_out) 8335 { 8336 int ret; 8337 void *tmp = NULL; 8338 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8339 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8340 uint64_t psize = HDR_GET_PSIZE(hdr); 8341 uint64_t size = arc_hdr_size(hdr); 8342 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8343 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8344 dsl_crypto_key_t *dck = NULL; 8345 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8346 boolean_t no_crypt = B_FALSE; 8347 8348 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8349 !HDR_COMPRESSION_ENABLED(hdr)) || 8350 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8351 ASSERT3U(psize, <=, asize); 8352 8353 /* 8354 * If this data simply needs its own buffer, we simply allocate it 8355 * and copy the data. This may be done to eliminate a dependency on a 8356 * shared buffer or to reallocate the buffer to match asize. 8357 */ 8358 if (HDR_HAS_RABD(hdr) && asize != psize) { 8359 ASSERT3U(asize, >=, psize); 8360 to_write = abd_alloc_for_io(asize, ismd); 8361 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8362 if (psize != asize) 8363 abd_zero_off(to_write, psize, asize - psize); 8364 goto out; 8365 } 8366 8367 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8368 !HDR_ENCRYPTED(hdr)) { 8369 ASSERT3U(size, ==, psize); 8370 to_write = abd_alloc_for_io(asize, ismd); 8371 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8372 if (size != asize) 8373 abd_zero_off(to_write, size, asize - size); 8374 goto out; 8375 } 8376 8377 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8378 cabd = abd_alloc_for_io(asize, ismd); 8379 tmp = abd_borrow_buf(cabd, asize); 8380 8381 psize = zio_compress_data(compress, to_write, tmp, size); 8382 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8383 if (psize < asize) 8384 bzero((char *)tmp + psize, asize - psize); 8385 psize = HDR_GET_PSIZE(hdr); 8386 abd_return_buf_copy(cabd, tmp, asize); 8387 to_write = cabd; 8388 } 8389 8390 if (HDR_ENCRYPTED(hdr)) { 8391 eabd = abd_alloc_for_io(asize, ismd); 8392 8393 /* 8394 * If the dataset was disowned before the buffer 8395 * made it to this point, the key to re-encrypt 8396 * it won't be available. In this case we simply 8397 * won't write the buffer to the L2ARC. 8398 */ 8399 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8400 FTAG, &dck); 8401 if (ret != 0) 8402 goto error; 8403 8404 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8405 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8406 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8407 &no_crypt); 8408 if (ret != 0) 8409 goto error; 8410 8411 if (no_crypt) 8412 abd_copy(eabd, to_write, psize); 8413 8414 if (psize != asize) 8415 abd_zero_off(eabd, psize, asize - psize); 8416 8417 /* assert that the MAC we got here matches the one we saved */ 8418 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8419 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8420 8421 if (to_write == cabd) 8422 abd_free(cabd); 8423 8424 to_write = eabd; 8425 } 8426 8427 out: 8428 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8429 *abd_out = to_write; 8430 return (0); 8431 8432 error: 8433 if (dck != NULL) 8434 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8435 if (cabd != NULL) 8436 abd_free(cabd); 8437 if (eabd != NULL) 8438 abd_free(eabd); 8439 8440 *abd_out = NULL; 8441 return (ret); 8442 } 8443 8444 static void 8445 l2arc_blk_fetch_done(zio_t *zio) 8446 { 8447 l2arc_read_callback_t *cb; 8448 8449 cb = zio->io_private; 8450 if (cb->l2rcb_abd != NULL) 8451 abd_put(cb->l2rcb_abd); 8452 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8453 } 8454 8455 /* 8456 * Find and write ARC buffers to the L2ARC device. 8457 * 8458 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8459 * for reading until they have completed writing. 8460 * The headroom_boost is an in-out parameter used to maintain headroom boost 8461 * state between calls to this function. 8462 * 8463 * Returns the number of bytes actually written (which may be smaller than 8464 * the delta by which the device hand has changed due to alignment and the 8465 * writing of log blocks). 8466 */ 8467 static uint64_t 8468 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8469 { 8470 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8471 uint64_t write_asize, write_psize, write_lsize, headroom; 8472 boolean_t full; 8473 l2arc_write_callback_t *cb = NULL; 8474 zio_t *pio, *wzio; 8475 uint64_t guid = spa_load_guid(spa); 8476 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 8477 8478 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8479 8480 pio = NULL; 8481 write_lsize = write_asize = write_psize = 0; 8482 full = B_FALSE; 8483 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8484 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8485 8486 /* 8487 * Copy buffers for L2ARC writing. 8488 */ 8489 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8490 /* 8491 * If try == 1 or 3, we cache MRU metadata and data 8492 * respectively. 8493 */ 8494 if (l2arc_mfuonly) { 8495 if (try == 1 || try == 3) 8496 continue; 8497 } 8498 8499 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8500 uint64_t passed_sz = 0; 8501 8502 VERIFY3P(mls, !=, NULL); 8503 8504 /* 8505 * L2ARC fast warmup. 8506 * 8507 * Until the ARC is warm and starts to evict, read from the 8508 * head of the ARC lists rather than the tail. 8509 */ 8510 if (arc_warm == B_FALSE) 8511 hdr = multilist_sublist_head(mls); 8512 else 8513 hdr = multilist_sublist_tail(mls); 8514 8515 headroom = target_sz * l2arc_headroom; 8516 if (zfs_compressed_arc_enabled) 8517 headroom = (headroom * l2arc_headroom_boost) / 100; 8518 8519 for (; hdr; hdr = hdr_prev) { 8520 kmutex_t *hash_lock; 8521 abd_t *to_write = NULL; 8522 8523 if (arc_warm == B_FALSE) 8524 hdr_prev = multilist_sublist_next(mls, hdr); 8525 else 8526 hdr_prev = multilist_sublist_prev(mls, hdr); 8527 8528 hash_lock = HDR_LOCK(hdr); 8529 if (!mutex_tryenter(hash_lock)) { 8530 /* 8531 * Skip this buffer rather than waiting. 8532 */ 8533 continue; 8534 } 8535 8536 passed_sz += HDR_GET_LSIZE(hdr); 8537 if (l2arc_headroom != 0 && passed_sz > headroom) { 8538 /* 8539 * Searched too far. 8540 */ 8541 mutex_exit(hash_lock); 8542 break; 8543 } 8544 8545 if (!l2arc_write_eligible(guid, hdr)) { 8546 mutex_exit(hash_lock); 8547 continue; 8548 } 8549 8550 ASSERT(HDR_HAS_L1HDR(hdr)); 8551 8552 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8553 ASSERT3U(arc_hdr_size(hdr), >, 0); 8554 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8555 HDR_HAS_RABD(hdr)); 8556 uint64_t psize = HDR_GET_PSIZE(hdr); 8557 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8558 psize); 8559 8560 if ((write_asize + asize) > target_sz) { 8561 full = B_TRUE; 8562 mutex_exit(hash_lock); 8563 break; 8564 } 8565 8566 /* 8567 * We rely on the L1 portion of the header below, so 8568 * it's invalid for this header to have been evicted out 8569 * of the ghost cache, prior to being written out. The 8570 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8571 */ 8572 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8573 8574 /* 8575 * If this header has b_rabd, we can use this since it 8576 * must always match the data exactly as it exists on 8577 * disk. Otherwise, the L2ARC can normally use the 8578 * hdr's data, but if we're sharing data between the 8579 * hdr and one of its bufs, L2ARC needs its own copy of 8580 * the data so that the ZIO below can't race with the 8581 * buf consumer. To ensure that this copy will be 8582 * available for the lifetime of the ZIO and be cleaned 8583 * up afterwards, we add it to the l2arc_free_on_write 8584 * queue. If we need to apply any transforms to the 8585 * data (compression, encryption) we will also need the 8586 * extra buffer. 8587 */ 8588 if (HDR_HAS_RABD(hdr) && psize == asize) { 8589 to_write = hdr->b_crypt_hdr.b_rabd; 8590 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 8591 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 8592 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 8593 psize == asize) { 8594 to_write = hdr->b_l1hdr.b_pabd; 8595 } else { 8596 int ret; 8597 arc_buf_contents_t type = arc_buf_type(hdr); 8598 8599 ret = l2arc_apply_transforms(spa, hdr, asize, 8600 &to_write); 8601 if (ret != 0) { 8602 arc_hdr_clear_flags(hdr, 8603 ARC_FLAG_L2_WRITING); 8604 mutex_exit(hash_lock); 8605 continue; 8606 } 8607 8608 l2arc_free_abd_on_write(to_write, asize, type); 8609 } 8610 8611 if (pio == NULL) { 8612 /* 8613 * Insert a dummy header on the buflist so 8614 * l2arc_write_done() can find where the 8615 * write buffers begin without searching. 8616 */ 8617 mutex_enter(&dev->l2ad_mtx); 8618 list_insert_head(&dev->l2ad_buflist, head); 8619 mutex_exit(&dev->l2ad_mtx); 8620 8621 cb = kmem_alloc( 8622 sizeof (l2arc_write_callback_t), KM_SLEEP); 8623 cb->l2wcb_dev = dev; 8624 cb->l2wcb_head = head; 8625 /* 8626 * Create a list to save allocated abd buffers 8627 * for l2arc_log_blk_commit(). 8628 */ 8629 list_create(&cb->l2wcb_abd_list, 8630 sizeof (l2arc_lb_abd_buf_t), 8631 offsetof(l2arc_lb_abd_buf_t, node)); 8632 pio = zio_root(spa, l2arc_write_done, cb, 8633 ZIO_FLAG_CANFAIL); 8634 } 8635 8636 hdr->b_l2hdr.b_dev = dev; 8637 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 8638 hdr->b_l2hdr.b_arcs_state = 8639 hdr->b_l1hdr.b_state->arcs_state; 8640 arc_hdr_set_flags(hdr, 8641 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 8642 8643 mutex_enter(&dev->l2ad_mtx); 8644 list_insert_head(&dev->l2ad_buflist, hdr); 8645 mutex_exit(&dev->l2ad_mtx); 8646 8647 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 8648 arc_hdr_size(hdr), hdr); 8649 8650 wzio = zio_write_phys(pio, dev->l2ad_vdev, 8651 hdr->b_l2hdr.b_daddr, asize, to_write, 8652 ZIO_CHECKSUM_OFF, NULL, hdr, 8653 ZIO_PRIORITY_ASYNC_WRITE, 8654 ZIO_FLAG_CANFAIL, B_FALSE); 8655 8656 write_lsize += HDR_GET_LSIZE(hdr); 8657 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 8658 zio_t *, wzio); 8659 8660 write_psize += psize; 8661 write_asize += asize; 8662 dev->l2ad_hand += asize; 8663 l2arc_hdr_arcstats_increment(hdr); 8664 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 8665 8666 mutex_exit(hash_lock); 8667 8668 /* 8669 * Append buf info to current log and commit if full. 8670 * arcstat_l2_{size,asize} kstats are updated 8671 * internally. 8672 */ 8673 if (l2arc_log_blk_insert(dev, hdr)) 8674 l2arc_log_blk_commit(dev, pio, cb); 8675 8676 (void) zio_nowait(wzio); 8677 } 8678 8679 multilist_sublist_unlock(mls); 8680 8681 if (full == B_TRUE) 8682 break; 8683 } 8684 8685 /* No buffers selected for writing? */ 8686 if (pio == NULL) { 8687 ASSERT0(write_lsize); 8688 ASSERT(!HDR_HAS_L1HDR(head)); 8689 kmem_cache_free(hdr_l2only_cache, head); 8690 8691 /* 8692 * Although we did not write any buffers l2ad_evict may 8693 * have advanced. 8694 */ 8695 if (dev->l2ad_evict != l2dhdr->dh_evict) 8696 l2arc_dev_hdr_update(dev); 8697 8698 return (0); 8699 } 8700 8701 if (!dev->l2ad_first) 8702 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8703 8704 ASSERT3U(write_asize, <=, target_sz); 8705 ARCSTAT_BUMP(arcstat_l2_writes_sent); 8706 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 8707 8708 dev->l2ad_writing = B_TRUE; 8709 (void) zio_wait(pio); 8710 dev->l2ad_writing = B_FALSE; 8711 8712 /* 8713 * Update the device header after the zio completes as 8714 * l2arc_write_done() may have updated the memory holding the log block 8715 * pointers in the device header. 8716 */ 8717 l2arc_dev_hdr_update(dev); 8718 8719 return (write_asize); 8720 } 8721 8722 static boolean_t 8723 l2arc_hdr_limit_reached(void) 8724 { 8725 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 8726 8727 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 8728 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 8729 } 8730 8731 /* 8732 * This thread feeds the L2ARC at regular intervals. This is the beating 8733 * heart of the L2ARC. 8734 */ 8735 /* ARGSUSED */ 8736 static void 8737 l2arc_feed_thread(void *unused) 8738 { 8739 callb_cpr_t cpr; 8740 l2arc_dev_t *dev; 8741 spa_t *spa; 8742 uint64_t size, wrote; 8743 clock_t begin, next = ddi_get_lbolt(); 8744 8745 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 8746 8747 mutex_enter(&l2arc_feed_thr_lock); 8748 8749 while (l2arc_thread_exit == 0) { 8750 CALLB_CPR_SAFE_BEGIN(&cpr); 8751 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 8752 next); 8753 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 8754 next = ddi_get_lbolt() + hz; 8755 8756 /* 8757 * Quick check for L2ARC devices. 8758 */ 8759 mutex_enter(&l2arc_dev_mtx); 8760 if (l2arc_ndev == 0) { 8761 mutex_exit(&l2arc_dev_mtx); 8762 continue; 8763 } 8764 mutex_exit(&l2arc_dev_mtx); 8765 begin = ddi_get_lbolt(); 8766 8767 /* 8768 * This selects the next l2arc device to write to, and in 8769 * doing so the next spa to feed from: dev->l2ad_spa. This 8770 * will return NULL if there are now no l2arc devices or if 8771 * they are all faulted. 8772 * 8773 * If a device is returned, its spa's config lock is also 8774 * held to prevent device removal. l2arc_dev_get_next() 8775 * will grab and release l2arc_dev_mtx. 8776 */ 8777 if ((dev = l2arc_dev_get_next()) == NULL) 8778 continue; 8779 8780 spa = dev->l2ad_spa; 8781 ASSERT3P(spa, !=, NULL); 8782 8783 /* 8784 * If the pool is read-only then force the feed thread to 8785 * sleep a little longer. 8786 */ 8787 if (!spa_writeable(spa)) { 8788 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 8789 spa_config_exit(spa, SCL_L2ARC, dev); 8790 continue; 8791 } 8792 8793 /* 8794 * Avoid contributing to memory pressure. 8795 */ 8796 if (l2arc_hdr_limit_reached()) { 8797 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 8798 spa_config_exit(spa, SCL_L2ARC, dev); 8799 continue; 8800 } 8801 8802 ARCSTAT_BUMP(arcstat_l2_feeds); 8803 8804 size = l2arc_write_size(dev); 8805 8806 /* 8807 * Evict L2ARC buffers that will be overwritten. 8808 */ 8809 l2arc_evict(dev, size, B_FALSE); 8810 8811 /* 8812 * Write ARC buffers. 8813 */ 8814 wrote = l2arc_write_buffers(spa, dev, size); 8815 8816 /* 8817 * Calculate interval between writes. 8818 */ 8819 next = l2arc_write_interval(begin, size, wrote); 8820 spa_config_exit(spa, SCL_L2ARC, dev); 8821 } 8822 8823 l2arc_thread_exit = 0; 8824 cv_broadcast(&l2arc_feed_thr_cv); 8825 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 8826 thread_exit(); 8827 } 8828 8829 boolean_t 8830 l2arc_vdev_present(vdev_t *vd) 8831 { 8832 return (l2arc_vdev_get(vd) != NULL); 8833 } 8834 8835 /* 8836 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 8837 * the vdev_t isn't an L2ARC device. 8838 */ 8839 static l2arc_dev_t * 8840 l2arc_vdev_get(vdev_t *vd) 8841 { 8842 l2arc_dev_t *dev; 8843 8844 mutex_enter(&l2arc_dev_mtx); 8845 for (dev = list_head(l2arc_dev_list); dev != NULL; 8846 dev = list_next(l2arc_dev_list, dev)) { 8847 if (dev->l2ad_vdev == vd) 8848 break; 8849 } 8850 mutex_exit(&l2arc_dev_mtx); 8851 8852 return (dev); 8853 } 8854 8855 /* 8856 * Add a vdev for use by the L2ARC. By this point the spa has already 8857 * validated the vdev and opened it. 8858 */ 8859 void 8860 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 8861 { 8862 l2arc_dev_t *adddev; 8863 uint64_t l2dhdr_asize; 8864 8865 ASSERT(!l2arc_vdev_present(vd)); 8866 8867 /* 8868 * Create a new l2arc device entry. 8869 */ 8870 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 8871 adddev->l2ad_spa = spa; 8872 adddev->l2ad_vdev = vd; 8873 /* leave extra size for an l2arc device header */ 8874 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 8875 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 8876 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 8877 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 8878 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 8879 adddev->l2ad_hand = adddev->l2ad_start; 8880 adddev->l2ad_evict = adddev->l2ad_start; 8881 adddev->l2ad_first = B_TRUE; 8882 adddev->l2ad_writing = B_FALSE; 8883 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 8884 8885 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 8886 /* 8887 * This is a list of all ARC buffers that are still valid on the 8888 * device. 8889 */ 8890 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 8891 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 8892 8893 /* 8894 * This is a list of pointers to log blocks that are still present 8895 * on the device. 8896 */ 8897 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 8898 offsetof(l2arc_lb_ptr_buf_t, node)); 8899 8900 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 8901 zfs_refcount_create(&adddev->l2ad_alloc); 8902 zfs_refcount_create(&adddev->l2ad_lb_asize); 8903 zfs_refcount_create(&adddev->l2ad_lb_count); 8904 8905 /* 8906 * Add device to global list 8907 */ 8908 mutex_enter(&l2arc_dev_mtx); 8909 list_insert_head(l2arc_dev_list, adddev); 8910 atomic_inc_64(&l2arc_ndev); 8911 mutex_exit(&l2arc_dev_mtx); 8912 8913 /* 8914 * Decide if vdev is eligible for L2ARC rebuild 8915 */ 8916 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 8917 } 8918 8919 void 8920 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 8921 { 8922 l2arc_dev_t *dev = NULL; 8923 l2arc_dev_hdr_phys_t *l2dhdr; 8924 uint64_t l2dhdr_asize; 8925 spa_t *spa; 8926 8927 dev = l2arc_vdev_get(vd); 8928 ASSERT3P(dev, !=, NULL); 8929 spa = dev->l2ad_spa; 8930 l2dhdr = dev->l2ad_dev_hdr; 8931 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 8932 8933 /* 8934 * The L2ARC has to hold at least the payload of one log block for 8935 * them to be restored (persistent L2ARC). The payload of a log block 8936 * depends on the amount of its log entries. We always write log blocks 8937 * with 1022 entries. How many of them are committed or restored depends 8938 * on the size of the L2ARC device. Thus the maximum payload of 8939 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 8940 * is less than that, we reduce the amount of committed and restored 8941 * log entries per block so as to enable persistence. 8942 */ 8943 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 8944 dev->l2ad_log_entries = 0; 8945 } else { 8946 dev->l2ad_log_entries = MIN((dev->l2ad_end - 8947 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 8948 L2ARC_LOG_BLK_MAX_ENTRIES); 8949 } 8950 8951 /* 8952 * Read the device header, if an error is returned do not rebuild L2ARC. 8953 */ 8954 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 8955 /* 8956 * If we are onlining a cache device (vdev_reopen) that was 8957 * still present (l2arc_vdev_present()) and rebuild is enabled, 8958 * we should evict all ARC buffers and pointers to log blocks 8959 * and reclaim their space before restoring its contents to 8960 * L2ARC. 8961 */ 8962 if (reopen) { 8963 if (!l2arc_rebuild_enabled) { 8964 return; 8965 } else { 8966 l2arc_evict(dev, 0, B_TRUE); 8967 /* start a new log block */ 8968 dev->l2ad_log_ent_idx = 0; 8969 dev->l2ad_log_blk_payload_asize = 0; 8970 dev->l2ad_log_blk_payload_start = 0; 8971 } 8972 } 8973 /* 8974 * Just mark the device as pending for a rebuild. We won't 8975 * be starting a rebuild in line here as it would block pool 8976 * import. Instead spa_load_impl will hand that off to an 8977 * async task which will call l2arc_spa_rebuild_start. 8978 */ 8979 dev->l2ad_rebuild = B_TRUE; 8980 } else if (spa_writeable(spa)) { 8981 /* 8982 * In this case create a new header. We zero out the memory 8983 * holding the header to reset dh_start_lbps. 8984 */ 8985 bzero(l2dhdr, l2dhdr_asize); 8986 l2arc_dev_hdr_update(dev); 8987 } 8988 } 8989 8990 /* 8991 * Remove a vdev from the L2ARC. 8992 */ 8993 void 8994 l2arc_remove_vdev(vdev_t *vd) 8995 { 8996 l2arc_dev_t *remdev = NULL; 8997 8998 /* 8999 * Find the device by vdev 9000 */ 9001 remdev = l2arc_vdev_get(vd); 9002 ASSERT3P(remdev, !=, NULL); 9003 9004 /* 9005 * Cancel any ongoing or scheduled rebuild. 9006 */ 9007 mutex_enter(&l2arc_rebuild_thr_lock); 9008 if (remdev->l2ad_rebuild_began == B_TRUE) { 9009 remdev->l2ad_rebuild_cancel = B_TRUE; 9010 while (remdev->l2ad_rebuild == B_TRUE) 9011 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9012 } 9013 mutex_exit(&l2arc_rebuild_thr_lock); 9014 9015 /* 9016 * Remove device from global list 9017 */ 9018 mutex_enter(&l2arc_dev_mtx); 9019 list_remove(l2arc_dev_list, remdev); 9020 l2arc_dev_last = NULL; /* may have been invalidated */ 9021 atomic_dec_64(&l2arc_ndev); 9022 mutex_exit(&l2arc_dev_mtx); 9023 9024 /* 9025 * Clear all buflists and ARC references. L2ARC device flush. 9026 */ 9027 l2arc_evict(remdev, 0, B_TRUE); 9028 list_destroy(&remdev->l2ad_buflist); 9029 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9030 list_destroy(&remdev->l2ad_lbptr_list); 9031 mutex_destroy(&remdev->l2ad_mtx); 9032 zfs_refcount_destroy(&remdev->l2ad_alloc); 9033 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9034 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9035 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9036 kmem_free(remdev, sizeof (l2arc_dev_t)); 9037 } 9038 9039 void 9040 l2arc_init(void) 9041 { 9042 l2arc_thread_exit = 0; 9043 l2arc_ndev = 0; 9044 l2arc_writes_sent = 0; 9045 l2arc_writes_done = 0; 9046 9047 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9048 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9049 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9050 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9051 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9052 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9053 9054 l2arc_dev_list = &L2ARC_dev_list; 9055 l2arc_free_on_write = &L2ARC_free_on_write; 9056 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9057 offsetof(l2arc_dev_t, l2ad_node)); 9058 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9059 offsetof(l2arc_data_free_t, l2df_list_node)); 9060 } 9061 9062 void 9063 l2arc_fini(void) 9064 { 9065 /* 9066 * This is called from dmu_fini(), which is called from spa_fini(); 9067 * Because of this, we can assume that all l2arc devices have 9068 * already been removed when the pools themselves were removed. 9069 */ 9070 9071 l2arc_do_free_on_write(); 9072 9073 mutex_destroy(&l2arc_feed_thr_lock); 9074 cv_destroy(&l2arc_feed_thr_cv); 9075 mutex_destroy(&l2arc_rebuild_thr_lock); 9076 cv_destroy(&l2arc_rebuild_thr_cv); 9077 mutex_destroy(&l2arc_dev_mtx); 9078 mutex_destroy(&l2arc_free_on_write_mtx); 9079 9080 list_destroy(l2arc_dev_list); 9081 list_destroy(l2arc_free_on_write); 9082 } 9083 9084 void 9085 l2arc_start(void) 9086 { 9087 if (!(spa_mode_global & FWRITE)) 9088 return; 9089 9090 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9091 TS_RUN, minclsyspri); 9092 } 9093 9094 void 9095 l2arc_stop(void) 9096 { 9097 if (!(spa_mode_global & FWRITE)) 9098 return; 9099 9100 mutex_enter(&l2arc_feed_thr_lock); 9101 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9102 l2arc_thread_exit = 1; 9103 while (l2arc_thread_exit != 0) 9104 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9105 mutex_exit(&l2arc_feed_thr_lock); 9106 } 9107 9108 /* 9109 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9110 * be called after pool import from the spa async thread, since starting 9111 * these threads directly from spa_import() will make them part of the 9112 * "zpool import" context and delay process exit (and thus pool import). 9113 */ 9114 void 9115 l2arc_spa_rebuild_start(spa_t *spa) 9116 { 9117 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9118 9119 /* 9120 * Locate the spa's l2arc devices and kick off rebuild threads. 9121 */ 9122 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9123 l2arc_dev_t *dev = 9124 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9125 if (dev == NULL) { 9126 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9127 continue; 9128 } 9129 mutex_enter(&l2arc_rebuild_thr_lock); 9130 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9131 dev->l2ad_rebuild_began = B_TRUE; 9132 (void) thread_create(NULL, 0, 9133 (void (*)(void *))l2arc_dev_rebuild_start, 9134 dev, 0, &p0, TS_RUN, minclsyspri); 9135 } 9136 mutex_exit(&l2arc_rebuild_thr_lock); 9137 } 9138 } 9139 9140 /* 9141 * Main entry point for L2ARC rebuilding. 9142 */ 9143 static void 9144 l2arc_dev_rebuild_start(l2arc_dev_t *dev) 9145 { 9146 VERIFY(!dev->l2ad_rebuild_cancel); 9147 VERIFY(dev->l2ad_rebuild); 9148 (void) l2arc_rebuild(dev); 9149 mutex_enter(&l2arc_rebuild_thr_lock); 9150 dev->l2ad_rebuild_began = B_FALSE; 9151 dev->l2ad_rebuild = B_FALSE; 9152 mutex_exit(&l2arc_rebuild_thr_lock); 9153 9154 thread_exit(); 9155 } 9156 9157 /* 9158 * This function implements the actual L2ARC metadata rebuild. It: 9159 * starts reading the log block chain and restores each block's contents 9160 * to memory (reconstructing arc_buf_hdr_t's). 9161 * 9162 * Operation stops under any of the following conditions: 9163 * 9164 * 1) We reach the end of the log block chain. 9165 * 2) We encounter *any* error condition (cksum errors, io errors) 9166 */ 9167 static int 9168 l2arc_rebuild(l2arc_dev_t *dev) 9169 { 9170 vdev_t *vd = dev->l2ad_vdev; 9171 spa_t *spa = vd->vdev_spa; 9172 int err = 0; 9173 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9174 l2arc_log_blk_phys_t *this_lb, *next_lb; 9175 zio_t *this_io = NULL, *next_io = NULL; 9176 l2arc_log_blkptr_t lbps[2]; 9177 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9178 boolean_t lock_held; 9179 9180 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9181 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9182 9183 /* 9184 * We prevent device removal while issuing reads to the device, 9185 * then during the rebuilding phases we drop this lock again so 9186 * that a spa_unload or device remove can be initiated - this is 9187 * safe, because the spa will signal us to stop before removing 9188 * our device and wait for us to stop. 9189 */ 9190 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9191 lock_held = B_TRUE; 9192 9193 /* 9194 * Retrieve the persistent L2ARC device state. 9195 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9196 */ 9197 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9198 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9199 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9200 dev->l2ad_start); 9201 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9202 9203 /* 9204 * In case the zfs module parameter l2arc_rebuild_enabled is false 9205 * we do not start the rebuild process. 9206 */ 9207 if (!l2arc_rebuild_enabled) 9208 goto out; 9209 9210 /* Prepare the rebuild process */ 9211 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9212 9213 /* Start the rebuild process */ 9214 for (;;) { 9215 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9216 break; 9217 9218 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9219 this_lb, next_lb, this_io, &next_io)) != 0) 9220 goto out; 9221 9222 /* 9223 * Our memory pressure valve. If the system is running low 9224 * on memory, rather than swamping memory with new ARC buf 9225 * hdrs, we opt not to rebuild the L2ARC. At this point, 9226 * however, we have already set up our L2ARC dev to chain in 9227 * new metadata log blocks, so the user may choose to offline/ 9228 * online the L2ARC dev at a later time (or re-import the pool) 9229 * to reconstruct it (when there's less memory pressure). 9230 */ 9231 if (l2arc_hdr_limit_reached()) { 9232 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9233 cmn_err(CE_NOTE, "System running low on memory, " 9234 "aborting L2ARC rebuild."); 9235 err = SET_ERROR(ENOMEM); 9236 goto out; 9237 } 9238 9239 spa_config_exit(spa, SCL_L2ARC, vd); 9240 lock_held = B_FALSE; 9241 9242 /* 9243 * Now that we know that the next_lb checks out alright, we 9244 * can start reconstruction from this log block. 9245 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9246 */ 9247 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9248 l2arc_log_blk_restore(dev, this_lb, asize); 9249 9250 /* 9251 * log block restored, include its pointer in the list of 9252 * pointers to log blocks present in the L2ARC device. 9253 */ 9254 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9255 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9256 KM_SLEEP); 9257 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9258 sizeof (l2arc_log_blkptr_t)); 9259 mutex_enter(&dev->l2ad_mtx); 9260 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9261 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9262 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9263 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9264 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9265 mutex_exit(&dev->l2ad_mtx); 9266 vdev_space_update(vd, asize, 0, 0); 9267 9268 /* BEGIN CSTYLED */ 9269 /* 9270 * Protection against loops of log blocks: 9271 * 9272 * l2ad_hand l2ad_evict 9273 * V V 9274 * l2ad_start |=======================================| l2ad_end 9275 * -----|||----|||---|||----||| 9276 * (3) (2) (1) (0) 9277 * ---|||---|||----|||---||| 9278 * (7) (6) (5) (4) 9279 * 9280 * In this situation the pointer of log block (4) passes 9281 * l2arc_log_blkptr_valid() but the log block should not be 9282 * restored as it is overwritten by the payload of log block 9283 * (0). Only log blocks (0)-(3) should be restored. We check 9284 * whether l2ad_evict lies in between the payload starting 9285 * offset of the next log block (lbps[1].lbp_payload_start) 9286 * and the payload starting offset of the present log block 9287 * (lbps[0].lbp_payload_start). If true and this isn't the 9288 * first pass, we are looping from the beginning and we should 9289 * stop. 9290 */ 9291 /* END CSTYLED */ 9292 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9293 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9294 !dev->l2ad_first) 9295 goto out; 9296 9297 for (;;) { 9298 mutex_enter(&l2arc_rebuild_thr_lock); 9299 if (dev->l2ad_rebuild_cancel) { 9300 dev->l2ad_rebuild = B_FALSE; 9301 cv_signal(&l2arc_rebuild_thr_cv); 9302 mutex_exit(&l2arc_rebuild_thr_lock); 9303 err = SET_ERROR(ECANCELED); 9304 goto out; 9305 } 9306 mutex_exit(&l2arc_rebuild_thr_lock); 9307 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9308 RW_READER)) { 9309 lock_held = B_TRUE; 9310 break; 9311 } 9312 /* 9313 * L2ARC config lock held by somebody in writer, 9314 * possibly due to them trying to remove us. They'll 9315 * likely to want us to shut down, so after a little 9316 * delay, we check l2ad_rebuild_cancel and retry 9317 * the lock again. 9318 */ 9319 delay(1); 9320 } 9321 9322 /* 9323 * Continue with the next log block. 9324 */ 9325 lbps[0] = lbps[1]; 9326 lbps[1] = this_lb->lb_prev_lbp; 9327 PTR_SWAP(this_lb, next_lb); 9328 this_io = next_io; 9329 next_io = NULL; 9330 } 9331 9332 if (this_io != NULL) 9333 l2arc_log_blk_fetch_abort(this_io); 9334 out: 9335 if (next_io != NULL) 9336 l2arc_log_blk_fetch_abort(next_io); 9337 kmem_free(this_lb, sizeof (*this_lb)); 9338 kmem_free(next_lb, sizeof (*next_lb)); 9339 9340 if (!l2arc_rebuild_enabled) { 9341 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9342 "disabled"); 9343 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9344 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9345 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9346 "successful, restored %llu blocks", 9347 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9348 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9349 /* 9350 * No error but also nothing restored, meaning the lbps array 9351 * in the device header points to invalid/non-present log 9352 * blocks. Reset the header. 9353 */ 9354 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9355 "no valid log blocks"); 9356 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9357 l2arc_dev_hdr_update(dev); 9358 } else if (err == ECANCELED) { 9359 /* 9360 * In case the rebuild was canceled do not log to spa history 9361 * log as the pool may be in the process of being removed. 9362 */ 9363 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9364 zfs_refcount_count(&dev->l2ad_lb_count)); 9365 } else if (err != 0) { 9366 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9367 "aborted, restored %llu blocks", 9368 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9369 } 9370 9371 if (lock_held) 9372 spa_config_exit(spa, SCL_L2ARC, vd); 9373 9374 return (err); 9375 } 9376 9377 /* 9378 * Attempts to read the device header on the provided L2ARC device and writes 9379 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9380 * error code is returned. 9381 */ 9382 static int 9383 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9384 { 9385 int err; 9386 uint64_t guid; 9387 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9388 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9389 abd_t *abd; 9390 9391 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9392 9393 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9394 9395 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9396 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9397 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 9398 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9399 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9400 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9401 9402 abd_put(abd); 9403 9404 if (err != 0) { 9405 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9406 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9407 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9408 return (err); 9409 } 9410 9411 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9412 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9413 9414 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9415 l2dhdr->dh_spa_guid != guid || 9416 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9417 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9418 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9419 l2dhdr->dh_end != dev->l2ad_end || 9420 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9421 l2dhdr->dh_evict)) { 9422 /* 9423 * Attempt to rebuild a device containing no actual dev hdr 9424 * or containing a header from some other pool or from another 9425 * version of persistent L2ARC. 9426 */ 9427 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9428 return (SET_ERROR(ENOTSUP)); 9429 } 9430 9431 return (0); 9432 } 9433 9434 /* 9435 * Reads L2ARC log blocks from storage and validates their contents. 9436 * 9437 * This function implements a simple fetcher to make sure that while 9438 * we're processing one buffer the L2ARC is already fetching the next 9439 * one in the chain. 9440 * 9441 * The arguments this_lp and next_lp point to the current and next log block 9442 * address in the block chain. Similarly, this_lb and next_lb hold the 9443 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9444 * 9445 * The `this_io' and `next_io' arguments are used for block fetching. 9446 * When issuing the first blk IO during rebuild, you should pass NULL for 9447 * `this_io'. This function will then issue a sync IO to read the block and 9448 * also issue an async IO to fetch the next block in the block chain. The 9449 * fetched IO is returned in `next_io'. On subsequent calls to this 9450 * function, pass the value returned in `next_io' from the previous call 9451 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9452 * Prior to the call, you should initialize your `next_io' pointer to be 9453 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9454 * 9455 * On success, this function returns 0, otherwise it returns an appropriate 9456 * error code. On error the fetching IO is aborted and cleared before 9457 * returning from this function. Therefore, if we return `success', the 9458 * caller can assume that we have taken care of cleanup of fetch IOs. 9459 */ 9460 static int 9461 l2arc_log_blk_read(l2arc_dev_t *dev, 9462 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9463 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9464 zio_t *this_io, zio_t **next_io) 9465 { 9466 int err = 0; 9467 zio_cksum_t cksum; 9468 abd_t *abd = NULL; 9469 uint64_t asize; 9470 9471 ASSERT(this_lbp != NULL && next_lbp != NULL); 9472 ASSERT(this_lb != NULL && next_lb != NULL); 9473 ASSERT(next_io != NULL && *next_io == NULL); 9474 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9475 9476 /* 9477 * Check to see if we have issued the IO for this log block in a 9478 * previous run. If not, this is the first call, so issue it now. 9479 */ 9480 if (this_io == NULL) { 9481 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9482 this_lb); 9483 } 9484 9485 /* 9486 * Peek to see if we can start issuing the next IO immediately. 9487 */ 9488 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9489 /* 9490 * Start issuing IO for the next log block early - this 9491 * should help keep the L2ARC device busy while we 9492 * decompress and restore this log block. 9493 */ 9494 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9495 next_lb); 9496 } 9497 9498 /* Wait for the IO to read this log block to complete */ 9499 if ((err = zio_wait(this_io)) != 0) { 9500 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9501 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9502 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9503 dev->l2ad_vdev->vdev_guid); 9504 goto cleanup; 9505 } 9506 9507 /* 9508 * Make sure the buffer checks out. 9509 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9510 */ 9511 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9512 fletcher_4_native(this_lb, asize, NULL, &cksum); 9513 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9514 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9515 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9516 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9517 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9518 dev->l2ad_hand, dev->l2ad_evict); 9519 err = SET_ERROR(ECKSUM); 9520 goto cleanup; 9521 } 9522 9523 /* Now we can take our time decoding this buffer */ 9524 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9525 case ZIO_COMPRESS_OFF: 9526 break; 9527 case ZIO_COMPRESS_LZ4: 9528 abd = abd_alloc_for_io(asize, B_TRUE); 9529 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9530 if ((err = zio_decompress_data( 9531 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9532 abd, this_lb, asize, sizeof (*this_lb))) != 0) { 9533 err = SET_ERROR(EINVAL); 9534 goto cleanup; 9535 } 9536 break; 9537 default: 9538 err = SET_ERROR(EINVAL); 9539 goto cleanup; 9540 } 9541 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9542 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9543 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9544 err = SET_ERROR(EINVAL); 9545 goto cleanup; 9546 } 9547 cleanup: 9548 /* Abort an in-flight fetch I/O in case of error */ 9549 if (err != 0 && *next_io != NULL) { 9550 l2arc_log_blk_fetch_abort(*next_io); 9551 *next_io = NULL; 9552 } 9553 if (abd != NULL) 9554 abd_free(abd); 9555 return (err); 9556 } 9557 9558 /* 9559 * Restores the payload of a log block to ARC. This creates empty ARC hdr 9560 * entries which only contain an l2arc hdr, essentially restoring the 9561 * buffers to their L2ARC evicted state. This function also updates space 9562 * usage on the L2ARC vdev to make sure it tracks restored buffers. 9563 */ 9564 static void 9565 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 9566 uint64_t lb_asize) 9567 { 9568 uint64_t size = 0, asize = 0; 9569 uint64_t log_entries = dev->l2ad_log_entries; 9570 9571 /* 9572 * Usually arc_adapt() is called only for data, not headers, but 9573 * since we may allocate significant amount of memory here, let ARC 9574 * grow its arc_c. 9575 */ 9576 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 9577 9578 for (int i = log_entries - 1; i >= 0; i--) { 9579 /* 9580 * Restore goes in the reverse temporal direction to preserve 9581 * correct temporal ordering of buffers in the l2ad_buflist. 9582 * l2arc_hdr_restore also does a list_insert_tail instead of 9583 * list_insert_head on the l2ad_buflist: 9584 * 9585 * LIST l2ad_buflist LIST 9586 * HEAD <------ (time) ------ TAIL 9587 * direction +-----+-----+-----+-----+-----+ direction 9588 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 9589 * fill +-----+-----+-----+-----+-----+ 9590 * ^ ^ 9591 * | | 9592 * | | 9593 * l2arc_feed_thread l2arc_rebuild 9594 * will place new bufs here restores bufs here 9595 * 9596 * During l2arc_rebuild() the device is not used by 9597 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 9598 */ 9599 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 9600 asize += vdev_psize_to_asize(dev->l2ad_vdev, 9601 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 9602 l2arc_hdr_restore(&lb->lb_entries[i], dev); 9603 } 9604 9605 /* 9606 * Record rebuild stats: 9607 * size Logical size of restored buffers in the L2ARC 9608 * asize Aligned size of restored buffers in the L2ARC 9609 */ 9610 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 9611 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 9612 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 9613 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 9614 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 9615 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 9616 } 9617 9618 /* 9619 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 9620 * into a state indicating that it has been evicted to L2ARC. 9621 */ 9622 static void 9623 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 9624 { 9625 arc_buf_hdr_t *hdr, *exists; 9626 kmutex_t *hash_lock; 9627 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 9628 uint64_t asize; 9629 9630 /* 9631 * Do all the allocation before grabbing any locks, this lets us 9632 * sleep if memory is full and we don't have to deal with failed 9633 * allocations. 9634 */ 9635 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 9636 dev, le->le_dva, le->le_daddr, 9637 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 9638 L2BLK_GET_COMPRESS((le)->le_prop), 9639 L2BLK_GET_PROTECTED((le)->le_prop), 9640 L2BLK_GET_PREFETCH((le)->le_prop), 9641 L2BLK_GET_STATE((le)->le_prop)); 9642 asize = vdev_psize_to_asize(dev->l2ad_vdev, 9643 L2BLK_GET_PSIZE((le)->le_prop)); 9644 9645 /* 9646 * vdev_space_update() has to be called before arc_hdr_destroy() to 9647 * avoid underflow since the latter also calls vdev_space_update(). 9648 */ 9649 l2arc_hdr_arcstats_increment(hdr); 9650 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9651 9652 mutex_enter(&dev->l2ad_mtx); 9653 list_insert_tail(&dev->l2ad_buflist, hdr); 9654 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 9655 mutex_exit(&dev->l2ad_mtx); 9656 9657 exists = buf_hash_insert(hdr, &hash_lock); 9658 if (exists) { 9659 /* Buffer was already cached, no need to restore it. */ 9660 arc_hdr_destroy(hdr); 9661 /* 9662 * If the buffer is already cached, check whether it has 9663 * L2ARC metadata. If not, enter them and update the flag. 9664 * This is important is case of onlining a cache device, since 9665 * we previously evicted all L2ARC metadata from ARC. 9666 */ 9667 if (!HDR_HAS_L2HDR(exists)) { 9668 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 9669 exists->b_l2hdr.b_dev = dev; 9670 exists->b_l2hdr.b_daddr = le->le_daddr; 9671 exists->b_l2hdr.b_arcs_state = 9672 L2BLK_GET_STATE((le)->le_prop); 9673 mutex_enter(&dev->l2ad_mtx); 9674 list_insert_tail(&dev->l2ad_buflist, exists); 9675 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9676 arc_hdr_size(exists), exists); 9677 mutex_exit(&dev->l2ad_mtx); 9678 l2arc_hdr_arcstats_increment(exists); 9679 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9680 } 9681 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 9682 } 9683 9684 mutex_exit(hash_lock); 9685 } 9686 9687 /* 9688 * Starts an asynchronous read IO to read a log block. This is used in log 9689 * block reconstruction to start reading the next block before we are done 9690 * decoding and reconstructing the current block, to keep the l2arc device 9691 * nice and hot with read IO to process. 9692 * The returned zio will contain newly allocated memory buffers for the IO 9693 * data which should then be freed by the caller once the zio is no longer 9694 * needed (i.e. due to it having completed). If you wish to abort this 9695 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 9696 * care of disposing of the allocated buffers correctly. 9697 */ 9698 static zio_t * 9699 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 9700 l2arc_log_blk_phys_t *lb) 9701 { 9702 uint32_t asize; 9703 zio_t *pio; 9704 l2arc_read_callback_t *cb; 9705 9706 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9707 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9708 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 9709 9710 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 9711 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 9712 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 9713 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 9714 ZIO_FLAG_DONT_RETRY); 9715 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 9716 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9717 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9718 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 9719 9720 return (pio); 9721 } 9722 9723 /* 9724 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 9725 * buffers allocated for it. 9726 */ 9727 static void 9728 l2arc_log_blk_fetch_abort(zio_t *zio) 9729 { 9730 (void) zio_wait(zio); 9731 } 9732 9733 /* 9734 * Creates a zio to update the device header on an l2arc device. 9735 */ 9736 static void 9737 l2arc_dev_hdr_update(l2arc_dev_t *dev) 9738 { 9739 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9740 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9741 abd_t *abd; 9742 int err; 9743 9744 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 9745 9746 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 9747 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 9748 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9749 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 9750 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 9751 l2dhdr->dh_evict = dev->l2ad_evict; 9752 l2dhdr->dh_start = dev->l2ad_start; 9753 l2dhdr->dh_end = dev->l2ad_end; 9754 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 9755 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 9756 l2dhdr->dh_flags = 0; 9757 if (dev->l2ad_first) 9758 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 9759 9760 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9761 9762 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 9763 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 9764 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 9765 9766 abd_put(abd); 9767 9768 if (err != 0) { 9769 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 9770 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9771 } 9772 } 9773 9774 /* 9775 * Commits a log block to the L2ARC device. This routine is invoked from 9776 * l2arc_write_buffers when the log block fills up. 9777 * This function allocates some memory to temporarily hold the serialized 9778 * buffer to be written. This is then released in l2arc_write_done. 9779 */ 9780 static void 9781 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 9782 { 9783 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9784 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9785 uint64_t psize, asize; 9786 zio_t *wzio; 9787 l2arc_lb_abd_buf_t *abd_buf; 9788 uint8_t *tmpbuf; 9789 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9790 9791 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 9792 9793 tmpbuf = zio_buf_alloc(sizeof (*lb)); 9794 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 9795 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 9796 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9797 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 9798 9799 /* link the buffer into the block chain */ 9800 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 9801 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 9802 9803 /* 9804 * l2arc_log_blk_commit() may be called multiple times during a single 9805 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 9806 * so we can free them in l2arc_write_done() later on. 9807 */ 9808 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 9809 9810 /* try to compress the buffer */ 9811 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 9812 abd_buf->abd, tmpbuf, sizeof (*lb)); 9813 9814 /* a log block is never entirely zero */ 9815 ASSERT(psize != 0); 9816 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 9817 ASSERT(asize <= sizeof (*lb)); 9818 9819 /* 9820 * Update the start log block pointer in the device header to point 9821 * to the log block we're about to write. 9822 */ 9823 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 9824 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 9825 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 9826 dev->l2ad_log_blk_payload_asize; 9827 l2dhdr->dh_start_lbps[0].lbp_payload_start = 9828 dev->l2ad_log_blk_payload_start; 9829 _NOTE(CONSTCOND) 9830 L2BLK_SET_LSIZE( 9831 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 9832 L2BLK_SET_PSIZE( 9833 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 9834 L2BLK_SET_CHECKSUM( 9835 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9836 ZIO_CHECKSUM_FLETCHER_4); 9837 if (asize < sizeof (*lb)) { 9838 /* compression succeeded */ 9839 bzero(tmpbuf + psize, asize - psize); 9840 L2BLK_SET_COMPRESS( 9841 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9842 ZIO_COMPRESS_LZ4); 9843 } else { 9844 /* compression failed */ 9845 bcopy(lb, tmpbuf, sizeof (*lb)); 9846 L2BLK_SET_COMPRESS( 9847 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9848 ZIO_COMPRESS_OFF); 9849 } 9850 9851 /* checksum what we're about to write */ 9852 fletcher_4_native(tmpbuf, asize, NULL, 9853 &l2dhdr->dh_start_lbps[0].lbp_cksum); 9854 9855 abd_put(abd_buf->abd); 9856 9857 /* perform the write itself */ 9858 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 9859 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 9860 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 9861 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9862 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 9863 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 9864 (void) zio_nowait(wzio); 9865 9866 dev->l2ad_hand += asize; 9867 /* 9868 * Include the committed log block's pointer in the list of pointers 9869 * to log blocks present in the L2ARC device. 9870 */ 9871 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 9872 sizeof (l2arc_log_blkptr_t)); 9873 mutex_enter(&dev->l2ad_mtx); 9874 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 9875 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9876 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9877 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9878 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9879 mutex_exit(&dev->l2ad_mtx); 9880 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9881 9882 /* bump the kstats */ 9883 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 9884 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 9885 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 9886 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 9887 dev->l2ad_log_blk_payload_asize / asize); 9888 9889 /* start a new log block */ 9890 dev->l2ad_log_ent_idx = 0; 9891 dev->l2ad_log_blk_payload_asize = 0; 9892 dev->l2ad_log_blk_payload_start = 0; 9893 } 9894 9895 /* 9896 * Validates an L2ARC log block address to make sure that it can be read 9897 * from the provided L2ARC device. 9898 */ 9899 boolean_t 9900 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 9901 { 9902 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9903 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9904 uint64_t end = lbp->lbp_daddr + asize - 1; 9905 uint64_t start = lbp->lbp_payload_start; 9906 boolean_t evicted = B_FALSE; 9907 9908 /* BEGIN CSTYLED */ 9909 /* 9910 * A log block is valid if all of the following conditions are true: 9911 * - it fits entirely (including its payload) between l2ad_start and 9912 * l2ad_end 9913 * - it has a valid size 9914 * - neither the log block itself nor part of its payload was evicted 9915 * by l2arc_evict(): 9916 * 9917 * l2ad_hand l2ad_evict 9918 * | | lbp_daddr 9919 * | start | | end 9920 * | | | | | 9921 * V V V V V 9922 * l2ad_start ============================================ l2ad_end 9923 * --------------------------|||| 9924 * ^ ^ 9925 * | log block 9926 * payload 9927 */ 9928 /* END CSTYLED */ 9929 evicted = 9930 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 9931 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 9932 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 9933 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 9934 9935 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 9936 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 9937 (!evicted || dev->l2ad_first)); 9938 } 9939 9940 /* 9941 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 9942 * the device. The buffer being inserted must be present in L2ARC. 9943 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 9944 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 9945 */ 9946 static boolean_t 9947 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 9948 { 9949 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9950 l2arc_log_ent_phys_t *le; 9951 9952 if (dev->l2ad_log_entries == 0) 9953 return (B_FALSE); 9954 9955 int index = dev->l2ad_log_ent_idx++; 9956 9957 ASSERT3S(index, <, dev->l2ad_log_entries); 9958 ASSERT(HDR_HAS_L2HDR(hdr)); 9959 9960 le = &lb->lb_entries[index]; 9961 bzero(le, sizeof (*le)); 9962 le->le_dva = hdr->b_dva; 9963 le->le_birth = hdr->b_birth; 9964 le->le_daddr = hdr->b_l2hdr.b_daddr; 9965 if (index == 0) 9966 dev->l2ad_log_blk_payload_start = le->le_daddr; 9967 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 9968 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 9969 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 9970 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 9971 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 9972 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 9973 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 9974 9975 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 9976 HDR_GET_PSIZE(hdr)); 9977 9978 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 9979 } 9980 9981 /* 9982 * Checks whether a given L2ARC device address sits in a time-sequential 9983 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 9984 * just do a range comparison, we need to handle the situation in which the 9985 * range wraps around the end of the L2ARC device. Arguments: 9986 * bottom -- Lower end of the range to check (written to earlier). 9987 * top -- Upper end of the range to check (written to later). 9988 * check -- The address for which we want to determine if it sits in 9989 * between the top and bottom. 9990 * 9991 * The 3-way conditional below represents the following cases: 9992 * 9993 * bottom < top : Sequentially ordered case: 9994 * <check>--------+-------------------+ 9995 * | (overlap here?) | 9996 * L2ARC dev V V 9997 * |---------------<bottom>============<top>--------------| 9998 * 9999 * bottom > top: Looped-around case: 10000 * <check>--------+------------------+ 10001 * | (overlap here?) | 10002 * L2ARC dev V V 10003 * |===============<top>---------------<bottom>===========| 10004 * ^ ^ 10005 * | (or here?) | 10006 * +---------------+---------<check> 10007 * 10008 * top == bottom : Just a single address comparison. 10009 */ 10010 boolean_t 10011 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10012 { 10013 if (bottom < top) 10014 return (bottom <= check && check <= top); 10015 else if (bottom > top) 10016 return (check <= top || bottom <= check); 10017 else 10018 return (check == top); 10019 } 10020