xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision d0698e0d179f97729cacdbc2f13446a6b0a3f22a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * DVA-based Adjustable Replacement Cache
27  *
28  * While much of the theory of operation used here is
29  * based on the self-tuning, low overhead replacement cache
30  * presented by Megiddo and Modha at FAST 2003, there are some
31  * significant differences:
32  *
33  * 1. The Megiddo and Modha model assumes any page is evictable.
34  * Pages in its cache cannot be "locked" into memory.  This makes
35  * the eviction algorithm simple: evict the last page in the list.
36  * This also make the performance characteristics easy to reason
37  * about.  Our cache is not so simple.  At any given moment, some
38  * subset of the blocks in the cache are un-evictable because we
39  * have handed out a reference to them.  Blocks are only evictable
40  * when there are no external references active.  This makes
41  * eviction far more problematic:  we choose to evict the evictable
42  * blocks that are the "lowest" in the list.
43  *
44  * There are times when it is not possible to evict the requested
45  * space.  In these circumstances we are unable to adjust the cache
46  * size.  To prevent the cache growing unbounded at these times we
47  * implement a "cache throttle" that slows the flow of new data
48  * into the cache until we can make space available.
49  *
50  * 2. The Megiddo and Modha model assumes a fixed cache size.
51  * Pages are evicted when the cache is full and there is a cache
52  * miss.  Our model has a variable sized cache.  It grows with
53  * high use, but also tries to react to memory pressure from the
54  * operating system: decreasing its size when system memory is
55  * tight.
56  *
57  * 3. The Megiddo and Modha model assumes a fixed page size. All
58  * elements of the cache are therefor exactly the same size.  So
59  * when adjusting the cache size following a cache miss, its simply
60  * a matter of choosing a single page to evict.  In our model, we
61  * have variable sized cache blocks (rangeing from 512 bytes to
62  * 128K bytes).  We therefor choose a set of blocks to evict to make
63  * space for a cache miss that approximates as closely as possible
64  * the space used by the new block.
65  *
66  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67  * by N. Megiddo & D. Modha, FAST 2003
68  */
69 
70 /*
71  * The locking model:
72  *
73  * A new reference to a cache buffer can be obtained in two
74  * ways: 1) via a hash table lookup using the DVA as a key,
75  * or 2) via one of the ARC lists.  The arc_read() interface
76  * uses method 1, while the internal arc algorithms for
77  * adjusting the cache use method 2.  We therefor provide two
78  * types of locks: 1) the hash table lock array, and 2) the
79  * arc list locks.
80  *
81  * Buffers do not have their own mutexs, rather they rely on the
82  * hash table mutexs for the bulk of their protection (i.e. most
83  * fields in the arc_buf_hdr_t are protected by these mutexs).
84  *
85  * buf_hash_find() returns the appropriate mutex (held) when it
86  * locates the requested buffer in the hash table.  It returns
87  * NULL for the mutex if the buffer was not in the table.
88  *
89  * buf_hash_remove() expects the appropriate hash mutex to be
90  * already held before it is invoked.
91  *
92  * Each arc state also has a mutex which is used to protect the
93  * buffer list associated with the state.  When attempting to
94  * obtain a hash table lock while holding an arc list lock you
95  * must use: mutex_tryenter() to avoid deadlock.  Also note that
96  * the active state mutex must be held before the ghost state mutex.
97  *
98  * Arc buffers may have an associated eviction callback function.
99  * This function will be invoked prior to removing the buffer (e.g.
100  * in arc_do_user_evicts()).  Note however that the data associated
101  * with the buffer may be evicted prior to the callback.  The callback
102  * must be made with *no locks held* (to prevent deadlock).  Additionally,
103  * the users of callbacks must ensure that their private data is
104  * protected from simultaneous callbacks from arc_buf_evict()
105  * and arc_do_user_evicts().
106  *
107  * Note that the majority of the performance stats are manipulated
108  * with atomic operations.
109  *
110  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
111  *
112  *	- L2ARC buflist creation
113  *	- L2ARC buflist eviction
114  *	- L2ARC write completion, which walks L2ARC buflists
115  *	- ARC header destruction, as it removes from L2ARC buflists
116  *	- ARC header release, as it removes from L2ARC buflists
117  */
118 
119 #include <sys/spa.h>
120 #include <sys/zio.h>
121 #include <sys/zfs_context.h>
122 #include <sys/arc.h>
123 #include <sys/refcount.h>
124 #include <sys/vdev.h>
125 #include <sys/vdev_impl.h>
126 #ifdef _KERNEL
127 #include <sys/vmsystm.h>
128 #include <vm/anon.h>
129 #include <sys/fs/swapnode.h>
130 #include <sys/dnlc.h>
131 #endif
132 #include <sys/callb.h>
133 #include <sys/kstat.h>
134 #include <zfs_fletcher.h>
135 
136 static kmutex_t		arc_reclaim_thr_lock;
137 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
138 static uint8_t		arc_thread_exit;
139 
140 extern int zfs_write_limit_shift;
141 extern uint64_t zfs_write_limit_max;
142 extern kmutex_t zfs_write_limit_lock;
143 
144 #define	ARC_REDUCE_DNLC_PERCENT	3
145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146 
147 typedef enum arc_reclaim_strategy {
148 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
149 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
150 } arc_reclaim_strategy_t;
151 
152 /* number of seconds before growing cache again */
153 static int		arc_grow_retry = 60;
154 
155 /* shift of arc_c for calculating both min and max arc_p */
156 static int		arc_p_min_shift = 4;
157 
158 /* log2(fraction of arc to reclaim) */
159 static int		arc_shrink_shift = 5;
160 
161 /*
162  * minimum lifespan of a prefetch block in clock ticks
163  * (initialized in arc_init())
164  */
165 static int		arc_min_prefetch_lifespan;
166 
167 static int arc_dead;
168 
169 /*
170  * The arc has filled available memory and has now warmed up.
171  */
172 static boolean_t arc_warm;
173 
174 /*
175  * These tunables are for performance analysis.
176  */
177 uint64_t zfs_arc_max;
178 uint64_t zfs_arc_min;
179 uint64_t zfs_arc_meta_limit = 0;
180 int zfs_arc_grow_retry = 0;
181 int zfs_arc_shrink_shift = 0;
182 int zfs_arc_p_min_shift = 0;
183 
184 /*
185  * Note that buffers can be in one of 6 states:
186  *	ARC_anon	- anonymous (discussed below)
187  *	ARC_mru		- recently used, currently cached
188  *	ARC_mru_ghost	- recentely used, no longer in cache
189  *	ARC_mfu		- frequently used, currently cached
190  *	ARC_mfu_ghost	- frequently used, no longer in cache
191  *	ARC_l2c_only	- exists in L2ARC but not other states
192  * When there are no active references to the buffer, they are
193  * are linked onto a list in one of these arc states.  These are
194  * the only buffers that can be evicted or deleted.  Within each
195  * state there are multiple lists, one for meta-data and one for
196  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
197  * etc.) is tracked separately so that it can be managed more
198  * explicitly: favored over data, limited explicitly.
199  *
200  * Anonymous buffers are buffers that are not associated with
201  * a DVA.  These are buffers that hold dirty block copies
202  * before they are written to stable storage.  By definition,
203  * they are "ref'd" and are considered part of arc_mru
204  * that cannot be freed.  Generally, they will aquire a DVA
205  * as they are written and migrate onto the arc_mru list.
206  *
207  * The ARC_l2c_only state is for buffers that are in the second
208  * level ARC but no longer in any of the ARC_m* lists.  The second
209  * level ARC itself may also contain buffers that are in any of
210  * the ARC_m* states - meaning that a buffer can exist in two
211  * places.  The reason for the ARC_l2c_only state is to keep the
212  * buffer header in the hash table, so that reads that hit the
213  * second level ARC benefit from these fast lookups.
214  */
215 
216 typedef struct arc_state {
217 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
218 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
219 	uint64_t arcs_size;	/* total amount of data in this state */
220 	kmutex_t arcs_mtx;
221 } arc_state_t;
222 
223 /* The 6 states: */
224 static arc_state_t ARC_anon;
225 static arc_state_t ARC_mru;
226 static arc_state_t ARC_mru_ghost;
227 static arc_state_t ARC_mfu;
228 static arc_state_t ARC_mfu_ghost;
229 static arc_state_t ARC_l2c_only;
230 
231 typedef struct arc_stats {
232 	kstat_named_t arcstat_hits;
233 	kstat_named_t arcstat_misses;
234 	kstat_named_t arcstat_demand_data_hits;
235 	kstat_named_t arcstat_demand_data_misses;
236 	kstat_named_t arcstat_demand_metadata_hits;
237 	kstat_named_t arcstat_demand_metadata_misses;
238 	kstat_named_t arcstat_prefetch_data_hits;
239 	kstat_named_t arcstat_prefetch_data_misses;
240 	kstat_named_t arcstat_prefetch_metadata_hits;
241 	kstat_named_t arcstat_prefetch_metadata_misses;
242 	kstat_named_t arcstat_mru_hits;
243 	kstat_named_t arcstat_mru_ghost_hits;
244 	kstat_named_t arcstat_mfu_hits;
245 	kstat_named_t arcstat_mfu_ghost_hits;
246 	kstat_named_t arcstat_deleted;
247 	kstat_named_t arcstat_recycle_miss;
248 	kstat_named_t arcstat_mutex_miss;
249 	kstat_named_t arcstat_evict_skip;
250 	kstat_named_t arcstat_evict_l2_cached;
251 	kstat_named_t arcstat_evict_l2_eligible;
252 	kstat_named_t arcstat_evict_l2_ineligible;
253 	kstat_named_t arcstat_hash_elements;
254 	kstat_named_t arcstat_hash_elements_max;
255 	kstat_named_t arcstat_hash_collisions;
256 	kstat_named_t arcstat_hash_chains;
257 	kstat_named_t arcstat_hash_chain_max;
258 	kstat_named_t arcstat_p;
259 	kstat_named_t arcstat_c;
260 	kstat_named_t arcstat_c_min;
261 	kstat_named_t arcstat_c_max;
262 	kstat_named_t arcstat_size;
263 	kstat_named_t arcstat_hdr_size;
264 	kstat_named_t arcstat_data_size;
265 	kstat_named_t arcstat_other_size;
266 	kstat_named_t arcstat_l2_hits;
267 	kstat_named_t arcstat_l2_misses;
268 	kstat_named_t arcstat_l2_feeds;
269 	kstat_named_t arcstat_l2_rw_clash;
270 	kstat_named_t arcstat_l2_read_bytes;
271 	kstat_named_t arcstat_l2_write_bytes;
272 	kstat_named_t arcstat_l2_writes_sent;
273 	kstat_named_t arcstat_l2_writes_done;
274 	kstat_named_t arcstat_l2_writes_error;
275 	kstat_named_t arcstat_l2_writes_hdr_miss;
276 	kstat_named_t arcstat_l2_evict_lock_retry;
277 	kstat_named_t arcstat_l2_evict_reading;
278 	kstat_named_t arcstat_l2_free_on_write;
279 	kstat_named_t arcstat_l2_abort_lowmem;
280 	kstat_named_t arcstat_l2_cksum_bad;
281 	kstat_named_t arcstat_l2_io_error;
282 	kstat_named_t arcstat_l2_size;
283 	kstat_named_t arcstat_l2_hdr_size;
284 	kstat_named_t arcstat_memory_throttle_count;
285 } arc_stats_t;
286 
287 static arc_stats_t arc_stats = {
288 	{ "hits",			KSTAT_DATA_UINT64 },
289 	{ "misses",			KSTAT_DATA_UINT64 },
290 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
291 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
292 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
293 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
294 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
295 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
296 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
297 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
298 	{ "mru_hits",			KSTAT_DATA_UINT64 },
299 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
300 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
301 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
302 	{ "deleted",			KSTAT_DATA_UINT64 },
303 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
304 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
305 	{ "evict_skip",			KSTAT_DATA_UINT64 },
306 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
307 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
308 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
309 	{ "hash_elements",		KSTAT_DATA_UINT64 },
310 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
311 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
312 	{ "hash_chains",		KSTAT_DATA_UINT64 },
313 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
314 	{ "p",				KSTAT_DATA_UINT64 },
315 	{ "c",				KSTAT_DATA_UINT64 },
316 	{ "c_min",			KSTAT_DATA_UINT64 },
317 	{ "c_max",			KSTAT_DATA_UINT64 },
318 	{ "size",			KSTAT_DATA_UINT64 },
319 	{ "hdr_size",			KSTAT_DATA_UINT64 },
320 	{ "data_size",			KSTAT_DATA_UINT64 },
321 	{ "other_size",			KSTAT_DATA_UINT64 },
322 	{ "l2_hits",			KSTAT_DATA_UINT64 },
323 	{ "l2_misses",			KSTAT_DATA_UINT64 },
324 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
325 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
326 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
327 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
328 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
329 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
332 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
333 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
334 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
335 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
336 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
337 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
338 	{ "l2_size",			KSTAT_DATA_UINT64 },
339 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
340 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
341 };
342 
343 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
344 
345 #define	ARCSTAT_INCR(stat, val) \
346 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
347 
348 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
349 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
350 
351 #define	ARCSTAT_MAX(stat, val) {					\
352 	uint64_t m;							\
353 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
354 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
355 		continue;						\
356 }
357 
358 #define	ARCSTAT_MAXSTAT(stat) \
359 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
360 
361 /*
362  * We define a macro to allow ARC hits/misses to be easily broken down by
363  * two separate conditions, giving a total of four different subtypes for
364  * each of hits and misses (so eight statistics total).
365  */
366 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
367 	if (cond1) {							\
368 		if (cond2) {						\
369 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
370 		} else {						\
371 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
372 		}							\
373 	} else {							\
374 		if (cond2) {						\
375 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
376 		} else {						\
377 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
378 		}							\
379 	}
380 
381 kstat_t			*arc_ksp;
382 static arc_state_t	*arc_anon;
383 static arc_state_t	*arc_mru;
384 static arc_state_t	*arc_mru_ghost;
385 static arc_state_t	*arc_mfu;
386 static arc_state_t	*arc_mfu_ghost;
387 static arc_state_t	*arc_l2c_only;
388 
389 /*
390  * There are several ARC variables that are critical to export as kstats --
391  * but we don't want to have to grovel around in the kstat whenever we wish to
392  * manipulate them.  For these variables, we therefore define them to be in
393  * terms of the statistic variable.  This assures that we are not introducing
394  * the possibility of inconsistency by having shadow copies of the variables,
395  * while still allowing the code to be readable.
396  */
397 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
398 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
399 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
400 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
401 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
402 
403 static int		arc_no_grow;	/* Don't try to grow cache size */
404 static uint64_t		arc_tempreserve;
405 static uint64_t		arc_loaned_bytes;
406 static uint64_t		arc_meta_used;
407 static uint64_t		arc_meta_limit;
408 static uint64_t		arc_meta_max = 0;
409 
410 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
411 
412 typedef struct arc_callback arc_callback_t;
413 
414 struct arc_callback {
415 	void			*acb_private;
416 	arc_done_func_t		*acb_done;
417 	arc_buf_t		*acb_buf;
418 	zio_t			*acb_zio_dummy;
419 	arc_callback_t		*acb_next;
420 };
421 
422 typedef struct arc_write_callback arc_write_callback_t;
423 
424 struct arc_write_callback {
425 	void		*awcb_private;
426 	arc_done_func_t	*awcb_ready;
427 	arc_done_func_t	*awcb_done;
428 	arc_buf_t	*awcb_buf;
429 };
430 
431 struct arc_buf_hdr {
432 	/* protected by hash lock */
433 	dva_t			b_dva;
434 	uint64_t		b_birth;
435 	uint64_t		b_cksum0;
436 
437 	kmutex_t		b_freeze_lock;
438 	zio_cksum_t		*b_freeze_cksum;
439 	void			*b_thawed;
440 
441 	arc_buf_hdr_t		*b_hash_next;
442 	arc_buf_t		*b_buf;
443 	uint32_t		b_flags;
444 	uint32_t		b_datacnt;
445 
446 	arc_callback_t		*b_acb;
447 	kcondvar_t		b_cv;
448 
449 	/* immutable */
450 	arc_buf_contents_t	b_type;
451 	uint64_t		b_size;
452 	uint64_t		b_spa;
453 
454 	/* protected by arc state mutex */
455 	arc_state_t		*b_state;
456 	list_node_t		b_arc_node;
457 
458 	/* updated atomically */
459 	clock_t			b_arc_access;
460 
461 	/* self protecting */
462 	refcount_t		b_refcnt;
463 
464 	l2arc_buf_hdr_t		*b_l2hdr;
465 	list_node_t		b_l2node;
466 };
467 
468 static arc_buf_t *arc_eviction_list;
469 static kmutex_t arc_eviction_mtx;
470 static arc_buf_hdr_t arc_eviction_hdr;
471 static void arc_get_data_buf(arc_buf_t *buf);
472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473 static int arc_evict_needed(arc_buf_contents_t type);
474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
475 
476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477 
478 #define	GHOST_STATE(state)	\
479 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
480 	(state) == arc_l2c_only)
481 
482 /*
483  * Private ARC flags.  These flags are private ARC only flags that will show up
484  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
485  * be passed in as arc_flags in things like arc_read.  However, these flags
486  * should never be passed and should only be set by ARC code.  When adding new
487  * public flags, make sure not to smash the private ones.
488  */
489 
490 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
491 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
492 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
493 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
494 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
495 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
496 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
497 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
498 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
499 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
500 
501 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
502 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
504 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
505 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
506 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
507 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
508 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
509 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
510 				    (hdr)->b_l2hdr != NULL)
511 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
512 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
513 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514 
515 /*
516  * Other sizes
517  */
518 
519 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521 
522 /*
523  * Hash table routines
524  */
525 
526 #define	HT_LOCK_PAD	64
527 
528 struct ht_lock {
529 	kmutex_t	ht_lock;
530 #ifdef _KERNEL
531 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532 #endif
533 };
534 
535 #define	BUF_LOCKS 256
536 typedef struct buf_hash_table {
537 	uint64_t ht_mask;
538 	arc_buf_hdr_t **ht_table;
539 	struct ht_lock ht_locks[BUF_LOCKS];
540 } buf_hash_table_t;
541 
542 static buf_hash_table_t buf_hash_table;
543 
544 #define	BUF_HASH_INDEX(spa, dva, birth) \
545 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
548 #define	HDR_LOCK(hdr) \
549 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
550 
551 uint64_t zfs_crc64_table[256];
552 
553 /*
554  * Level 2 ARC
555  */
556 
557 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
558 #define	L2ARC_HEADROOM		2		/* num of writes */
559 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
560 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
561 
562 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
563 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
564 
565 /*
566  * L2ARC Performance Tunables
567  */
568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
570 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
573 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
574 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
575 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
576 
577 /*
578  * L2ARC Internals
579  */
580 typedef struct l2arc_dev {
581 	vdev_t			*l2ad_vdev;	/* vdev */
582 	spa_t			*l2ad_spa;	/* spa */
583 	uint64_t		l2ad_hand;	/* next write location */
584 	uint64_t		l2ad_write;	/* desired write size, bytes */
585 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
586 	uint64_t		l2ad_start;	/* first addr on device */
587 	uint64_t		l2ad_end;	/* last addr on device */
588 	uint64_t		l2ad_evict;	/* last addr eviction reached */
589 	boolean_t		l2ad_first;	/* first sweep through */
590 	boolean_t		l2ad_writing;	/* currently writing */
591 	list_t			*l2ad_buflist;	/* buffer list */
592 	list_node_t		l2ad_node;	/* device list node */
593 } l2arc_dev_t;
594 
595 static list_t L2ARC_dev_list;			/* device list */
596 static list_t *l2arc_dev_list;			/* device list pointer */
597 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
598 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
599 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
600 static list_t L2ARC_free_on_write;		/* free after write buf list */
601 static list_t *l2arc_free_on_write;		/* free after write list ptr */
602 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
603 static uint64_t l2arc_ndev;			/* number of devices */
604 
605 typedef struct l2arc_read_callback {
606 	arc_buf_t	*l2rcb_buf;		/* read buffer */
607 	spa_t		*l2rcb_spa;		/* spa */
608 	blkptr_t	l2rcb_bp;		/* original blkptr */
609 	zbookmark_t	l2rcb_zb;		/* original bookmark */
610 	int		l2rcb_flags;		/* original flags */
611 } l2arc_read_callback_t;
612 
613 typedef struct l2arc_write_callback {
614 	l2arc_dev_t	*l2wcb_dev;		/* device info */
615 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
616 } l2arc_write_callback_t;
617 
618 struct l2arc_buf_hdr {
619 	/* protected by arc_buf_hdr  mutex */
620 	l2arc_dev_t	*b_dev;			/* L2ARC device */
621 	uint64_t	b_daddr;		/* disk address, offset byte */
622 };
623 
624 typedef struct l2arc_data_free {
625 	/* protected by l2arc_free_on_write_mtx */
626 	void		*l2df_data;
627 	size_t		l2df_size;
628 	void		(*l2df_func)(void *, size_t);
629 	list_node_t	l2df_list_node;
630 } l2arc_data_free_t;
631 
632 static kmutex_t l2arc_feed_thr_lock;
633 static kcondvar_t l2arc_feed_thr_cv;
634 static uint8_t l2arc_thread_exit;
635 
636 static void l2arc_read_done(zio_t *zio);
637 static void l2arc_hdr_stat_add(void);
638 static void l2arc_hdr_stat_remove(void);
639 
640 static uint64_t
641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
642 {
643 	uint8_t *vdva = (uint8_t *)dva;
644 	uint64_t crc = -1ULL;
645 	int i;
646 
647 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648 
649 	for (i = 0; i < sizeof (dva_t); i++)
650 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651 
652 	crc ^= (spa>>8) ^ birth;
653 
654 	return (crc);
655 }
656 
657 #define	BUF_EMPTY(buf)						\
658 	((buf)->b_dva.dva_word[0] == 0 &&			\
659 	(buf)->b_dva.dva_word[1] == 0 &&			\
660 	(buf)->b_birth == 0)
661 
662 #define	BUF_EQUAL(spa, dva, birth, buf)				\
663 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
664 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
665 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666 
667 static void
668 buf_discard_identity(arc_buf_hdr_t *hdr)
669 {
670 	hdr->b_dva.dva_word[0] = 0;
671 	hdr->b_dva.dva_word[1] = 0;
672 	hdr->b_birth = 0;
673 	hdr->b_cksum0 = 0;
674 }
675 
676 static arc_buf_hdr_t *
677 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
678 {
679 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
680 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
681 	arc_buf_hdr_t *buf;
682 
683 	mutex_enter(hash_lock);
684 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
685 	    buf = buf->b_hash_next) {
686 		if (BUF_EQUAL(spa, dva, birth, buf)) {
687 			*lockp = hash_lock;
688 			return (buf);
689 		}
690 	}
691 	mutex_exit(hash_lock);
692 	*lockp = NULL;
693 	return (NULL);
694 }
695 
696 /*
697  * Insert an entry into the hash table.  If there is already an element
698  * equal to elem in the hash table, then the already existing element
699  * will be returned and the new element will not be inserted.
700  * Otherwise returns NULL.
701  */
702 static arc_buf_hdr_t *
703 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
704 {
705 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
706 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
707 	arc_buf_hdr_t *fbuf;
708 	uint32_t i;
709 
710 	ASSERT(!HDR_IN_HASH_TABLE(buf));
711 	*lockp = hash_lock;
712 	mutex_enter(hash_lock);
713 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
714 	    fbuf = fbuf->b_hash_next, i++) {
715 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
716 			return (fbuf);
717 	}
718 
719 	buf->b_hash_next = buf_hash_table.ht_table[idx];
720 	buf_hash_table.ht_table[idx] = buf;
721 	buf->b_flags |= ARC_IN_HASH_TABLE;
722 
723 	/* collect some hash table performance data */
724 	if (i > 0) {
725 		ARCSTAT_BUMP(arcstat_hash_collisions);
726 		if (i == 1)
727 			ARCSTAT_BUMP(arcstat_hash_chains);
728 
729 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
730 	}
731 
732 	ARCSTAT_BUMP(arcstat_hash_elements);
733 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
734 
735 	return (NULL);
736 }
737 
738 static void
739 buf_hash_remove(arc_buf_hdr_t *buf)
740 {
741 	arc_buf_hdr_t *fbuf, **bufp;
742 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
743 
744 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
745 	ASSERT(HDR_IN_HASH_TABLE(buf));
746 
747 	bufp = &buf_hash_table.ht_table[idx];
748 	while ((fbuf = *bufp) != buf) {
749 		ASSERT(fbuf != NULL);
750 		bufp = &fbuf->b_hash_next;
751 	}
752 	*bufp = buf->b_hash_next;
753 	buf->b_hash_next = NULL;
754 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
755 
756 	/* collect some hash table performance data */
757 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
758 
759 	if (buf_hash_table.ht_table[idx] &&
760 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
761 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
762 }
763 
764 /*
765  * Global data structures and functions for the buf kmem cache.
766  */
767 static kmem_cache_t *hdr_cache;
768 static kmem_cache_t *buf_cache;
769 
770 static void
771 buf_fini(void)
772 {
773 	int i;
774 
775 	kmem_free(buf_hash_table.ht_table,
776 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
777 	for (i = 0; i < BUF_LOCKS; i++)
778 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
779 	kmem_cache_destroy(hdr_cache);
780 	kmem_cache_destroy(buf_cache);
781 }
782 
783 /*
784  * Constructor callback - called when the cache is empty
785  * and a new buf is requested.
786  */
787 /* ARGSUSED */
788 static int
789 hdr_cons(void *vbuf, void *unused, int kmflag)
790 {
791 	arc_buf_hdr_t *buf = vbuf;
792 
793 	bzero(buf, sizeof (arc_buf_hdr_t));
794 	refcount_create(&buf->b_refcnt);
795 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
796 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
797 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
798 
799 	return (0);
800 }
801 
802 /* ARGSUSED */
803 static int
804 buf_cons(void *vbuf, void *unused, int kmflag)
805 {
806 	arc_buf_t *buf = vbuf;
807 
808 	bzero(buf, sizeof (arc_buf_t));
809 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
810 	rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
811 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
812 
813 	return (0);
814 }
815 
816 /*
817  * Destructor callback - called when a cached buf is
818  * no longer required.
819  */
820 /* ARGSUSED */
821 static void
822 hdr_dest(void *vbuf, void *unused)
823 {
824 	arc_buf_hdr_t *buf = vbuf;
825 
826 	ASSERT(BUF_EMPTY(buf));
827 	refcount_destroy(&buf->b_refcnt);
828 	cv_destroy(&buf->b_cv);
829 	mutex_destroy(&buf->b_freeze_lock);
830 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
831 }
832 
833 /* ARGSUSED */
834 static void
835 buf_dest(void *vbuf, void *unused)
836 {
837 	arc_buf_t *buf = vbuf;
838 
839 	mutex_destroy(&buf->b_evict_lock);
840 	rw_destroy(&buf->b_data_lock);
841 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
842 }
843 
844 /*
845  * Reclaim callback -- invoked when memory is low.
846  */
847 /* ARGSUSED */
848 static void
849 hdr_recl(void *unused)
850 {
851 	dprintf("hdr_recl called\n");
852 	/*
853 	 * umem calls the reclaim func when we destroy the buf cache,
854 	 * which is after we do arc_fini().
855 	 */
856 	if (!arc_dead)
857 		cv_signal(&arc_reclaim_thr_cv);
858 }
859 
860 static void
861 buf_init(void)
862 {
863 	uint64_t *ct;
864 	uint64_t hsize = 1ULL << 12;
865 	int i, j;
866 
867 	/*
868 	 * The hash table is big enough to fill all of physical memory
869 	 * with an average 64K block size.  The table will take up
870 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
871 	 */
872 	while (hsize * 65536 < physmem * PAGESIZE)
873 		hsize <<= 1;
874 retry:
875 	buf_hash_table.ht_mask = hsize - 1;
876 	buf_hash_table.ht_table =
877 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
878 	if (buf_hash_table.ht_table == NULL) {
879 		ASSERT(hsize > (1ULL << 8));
880 		hsize >>= 1;
881 		goto retry;
882 	}
883 
884 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
885 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
886 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
887 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
888 
889 	for (i = 0; i < 256; i++)
890 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
891 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
892 
893 	for (i = 0; i < BUF_LOCKS; i++) {
894 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
895 		    NULL, MUTEX_DEFAULT, NULL);
896 	}
897 }
898 
899 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
900 
901 static void
902 arc_cksum_verify(arc_buf_t *buf)
903 {
904 	zio_cksum_t zc;
905 
906 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
907 		return;
908 
909 	mutex_enter(&buf->b_hdr->b_freeze_lock);
910 	if (buf->b_hdr->b_freeze_cksum == NULL ||
911 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
912 		mutex_exit(&buf->b_hdr->b_freeze_lock);
913 		return;
914 	}
915 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
916 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
917 		panic("buffer modified while frozen!");
918 	mutex_exit(&buf->b_hdr->b_freeze_lock);
919 }
920 
921 static int
922 arc_cksum_equal(arc_buf_t *buf)
923 {
924 	zio_cksum_t zc;
925 	int equal;
926 
927 	mutex_enter(&buf->b_hdr->b_freeze_lock);
928 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
929 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
930 	mutex_exit(&buf->b_hdr->b_freeze_lock);
931 
932 	return (equal);
933 }
934 
935 static void
936 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
937 {
938 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
939 		return;
940 
941 	mutex_enter(&buf->b_hdr->b_freeze_lock);
942 	if (buf->b_hdr->b_freeze_cksum != NULL) {
943 		mutex_exit(&buf->b_hdr->b_freeze_lock);
944 		return;
945 	}
946 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
947 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
948 	    buf->b_hdr->b_freeze_cksum);
949 	mutex_exit(&buf->b_hdr->b_freeze_lock);
950 }
951 
952 void
953 arc_buf_thaw(arc_buf_t *buf)
954 {
955 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
956 		if (buf->b_hdr->b_state != arc_anon)
957 			panic("modifying non-anon buffer!");
958 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
959 			panic("modifying buffer while i/o in progress!");
960 		arc_cksum_verify(buf);
961 	}
962 
963 	mutex_enter(&buf->b_hdr->b_freeze_lock);
964 	if (buf->b_hdr->b_freeze_cksum != NULL) {
965 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
966 		buf->b_hdr->b_freeze_cksum = NULL;
967 	}
968 
969 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
970 		if (buf->b_hdr->b_thawed)
971 			kmem_free(buf->b_hdr->b_thawed, 1);
972 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
973 	}
974 
975 	mutex_exit(&buf->b_hdr->b_freeze_lock);
976 }
977 
978 void
979 arc_buf_freeze(arc_buf_t *buf)
980 {
981 	kmutex_t *hash_lock;
982 
983 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
984 		return;
985 
986 	hash_lock = HDR_LOCK(buf->b_hdr);
987 	mutex_enter(hash_lock);
988 
989 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
990 	    buf->b_hdr->b_state == arc_anon);
991 	arc_cksum_compute(buf, B_FALSE);
992 	mutex_exit(hash_lock);
993 }
994 
995 static void
996 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
997 {
998 	ASSERT(MUTEX_HELD(hash_lock));
999 
1000 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1001 	    (ab->b_state != arc_anon)) {
1002 		uint64_t delta = ab->b_size * ab->b_datacnt;
1003 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1004 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1005 
1006 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1007 		mutex_enter(&ab->b_state->arcs_mtx);
1008 		ASSERT(list_link_active(&ab->b_arc_node));
1009 		list_remove(list, ab);
1010 		if (GHOST_STATE(ab->b_state)) {
1011 			ASSERT3U(ab->b_datacnt, ==, 0);
1012 			ASSERT3P(ab->b_buf, ==, NULL);
1013 			delta = ab->b_size;
1014 		}
1015 		ASSERT(delta > 0);
1016 		ASSERT3U(*size, >=, delta);
1017 		atomic_add_64(size, -delta);
1018 		mutex_exit(&ab->b_state->arcs_mtx);
1019 		/* remove the prefetch flag if we get a reference */
1020 		if (ab->b_flags & ARC_PREFETCH)
1021 			ab->b_flags &= ~ARC_PREFETCH;
1022 	}
1023 }
1024 
1025 static int
1026 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1027 {
1028 	int cnt;
1029 	arc_state_t *state = ab->b_state;
1030 
1031 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1032 	ASSERT(!GHOST_STATE(state));
1033 
1034 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1035 	    (state != arc_anon)) {
1036 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1037 
1038 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1039 		mutex_enter(&state->arcs_mtx);
1040 		ASSERT(!list_link_active(&ab->b_arc_node));
1041 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1042 		ASSERT(ab->b_datacnt > 0);
1043 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1044 		mutex_exit(&state->arcs_mtx);
1045 	}
1046 	return (cnt);
1047 }
1048 
1049 /*
1050  * Move the supplied buffer to the indicated state.  The mutex
1051  * for the buffer must be held by the caller.
1052  */
1053 static void
1054 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1055 {
1056 	arc_state_t *old_state = ab->b_state;
1057 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1058 	uint64_t from_delta, to_delta;
1059 
1060 	ASSERT(MUTEX_HELD(hash_lock));
1061 	ASSERT(new_state != old_state);
1062 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1063 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1064 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1065 
1066 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1067 
1068 	/*
1069 	 * If this buffer is evictable, transfer it from the
1070 	 * old state list to the new state list.
1071 	 */
1072 	if (refcnt == 0) {
1073 		if (old_state != arc_anon) {
1074 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1075 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1076 
1077 			if (use_mutex)
1078 				mutex_enter(&old_state->arcs_mtx);
1079 
1080 			ASSERT(list_link_active(&ab->b_arc_node));
1081 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1082 
1083 			/*
1084 			 * If prefetching out of the ghost cache,
1085 			 * we will have a non-zero datacnt.
1086 			 */
1087 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1088 				/* ghost elements have a ghost size */
1089 				ASSERT(ab->b_buf == NULL);
1090 				from_delta = ab->b_size;
1091 			}
1092 			ASSERT3U(*size, >=, from_delta);
1093 			atomic_add_64(size, -from_delta);
1094 
1095 			if (use_mutex)
1096 				mutex_exit(&old_state->arcs_mtx);
1097 		}
1098 		if (new_state != arc_anon) {
1099 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1100 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1101 
1102 			if (use_mutex)
1103 				mutex_enter(&new_state->arcs_mtx);
1104 
1105 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1106 
1107 			/* ghost elements have a ghost size */
1108 			if (GHOST_STATE(new_state)) {
1109 				ASSERT(ab->b_datacnt == 0);
1110 				ASSERT(ab->b_buf == NULL);
1111 				to_delta = ab->b_size;
1112 			}
1113 			atomic_add_64(size, to_delta);
1114 
1115 			if (use_mutex)
1116 				mutex_exit(&new_state->arcs_mtx);
1117 		}
1118 	}
1119 
1120 	ASSERT(!BUF_EMPTY(ab));
1121 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1122 		buf_hash_remove(ab);
1123 
1124 	/* adjust state sizes */
1125 	if (to_delta)
1126 		atomic_add_64(&new_state->arcs_size, to_delta);
1127 	if (from_delta) {
1128 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1129 		atomic_add_64(&old_state->arcs_size, -from_delta);
1130 	}
1131 	ab->b_state = new_state;
1132 
1133 	/* adjust l2arc hdr stats */
1134 	if (new_state == arc_l2c_only)
1135 		l2arc_hdr_stat_add();
1136 	else if (old_state == arc_l2c_only)
1137 		l2arc_hdr_stat_remove();
1138 }
1139 
1140 void
1141 arc_space_consume(uint64_t space, arc_space_type_t type)
1142 {
1143 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1144 
1145 	switch (type) {
1146 	case ARC_SPACE_DATA:
1147 		ARCSTAT_INCR(arcstat_data_size, space);
1148 		break;
1149 	case ARC_SPACE_OTHER:
1150 		ARCSTAT_INCR(arcstat_other_size, space);
1151 		break;
1152 	case ARC_SPACE_HDRS:
1153 		ARCSTAT_INCR(arcstat_hdr_size, space);
1154 		break;
1155 	case ARC_SPACE_L2HDRS:
1156 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1157 		break;
1158 	}
1159 
1160 	atomic_add_64(&arc_meta_used, space);
1161 	atomic_add_64(&arc_size, space);
1162 }
1163 
1164 void
1165 arc_space_return(uint64_t space, arc_space_type_t type)
1166 {
1167 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1168 
1169 	switch (type) {
1170 	case ARC_SPACE_DATA:
1171 		ARCSTAT_INCR(arcstat_data_size, -space);
1172 		break;
1173 	case ARC_SPACE_OTHER:
1174 		ARCSTAT_INCR(arcstat_other_size, -space);
1175 		break;
1176 	case ARC_SPACE_HDRS:
1177 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1178 		break;
1179 	case ARC_SPACE_L2HDRS:
1180 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1181 		break;
1182 	}
1183 
1184 	ASSERT(arc_meta_used >= space);
1185 	if (arc_meta_max < arc_meta_used)
1186 		arc_meta_max = arc_meta_used;
1187 	atomic_add_64(&arc_meta_used, -space);
1188 	ASSERT(arc_size >= space);
1189 	atomic_add_64(&arc_size, -space);
1190 }
1191 
1192 void *
1193 arc_data_buf_alloc(uint64_t size)
1194 {
1195 	if (arc_evict_needed(ARC_BUFC_DATA))
1196 		cv_signal(&arc_reclaim_thr_cv);
1197 	atomic_add_64(&arc_size, size);
1198 	return (zio_data_buf_alloc(size));
1199 }
1200 
1201 void
1202 arc_data_buf_free(void *buf, uint64_t size)
1203 {
1204 	zio_data_buf_free(buf, size);
1205 	ASSERT(arc_size >= size);
1206 	atomic_add_64(&arc_size, -size);
1207 }
1208 
1209 arc_buf_t *
1210 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1211 {
1212 	arc_buf_hdr_t *hdr;
1213 	arc_buf_t *buf;
1214 
1215 	ASSERT3U(size, >, 0);
1216 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1217 	ASSERT(BUF_EMPTY(hdr));
1218 	hdr->b_size = size;
1219 	hdr->b_type = type;
1220 	hdr->b_spa = spa_guid(spa);
1221 	hdr->b_state = arc_anon;
1222 	hdr->b_arc_access = 0;
1223 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1224 	buf->b_hdr = hdr;
1225 	buf->b_data = NULL;
1226 	buf->b_efunc = NULL;
1227 	buf->b_private = NULL;
1228 	buf->b_next = NULL;
1229 	hdr->b_buf = buf;
1230 	arc_get_data_buf(buf);
1231 	hdr->b_datacnt = 1;
1232 	hdr->b_flags = 0;
1233 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1234 	(void) refcount_add(&hdr->b_refcnt, tag);
1235 
1236 	return (buf);
1237 }
1238 
1239 static char *arc_onloan_tag = "onloan";
1240 
1241 /*
1242  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1243  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1244  * buffers must be returned to the arc before they can be used by the DMU or
1245  * freed.
1246  */
1247 arc_buf_t *
1248 arc_loan_buf(spa_t *spa, int size)
1249 {
1250 	arc_buf_t *buf;
1251 
1252 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1253 
1254 	atomic_add_64(&arc_loaned_bytes, size);
1255 	return (buf);
1256 }
1257 
1258 /*
1259  * Return a loaned arc buffer to the arc.
1260  */
1261 void
1262 arc_return_buf(arc_buf_t *buf, void *tag)
1263 {
1264 	arc_buf_hdr_t *hdr = buf->b_hdr;
1265 
1266 	ASSERT(buf->b_data != NULL);
1267 	(void) refcount_add(&hdr->b_refcnt, tag);
1268 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1269 
1270 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1271 }
1272 
1273 /* Detach an arc_buf from a dbuf (tag) */
1274 void
1275 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1276 {
1277 	arc_buf_hdr_t *hdr;
1278 
1279 	ASSERT(buf->b_data != NULL);
1280 	hdr = buf->b_hdr;
1281 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1282 	(void) refcount_remove(&hdr->b_refcnt, tag);
1283 	buf->b_efunc = NULL;
1284 	buf->b_private = NULL;
1285 
1286 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1287 }
1288 
1289 static arc_buf_t *
1290 arc_buf_clone(arc_buf_t *from)
1291 {
1292 	arc_buf_t *buf;
1293 	arc_buf_hdr_t *hdr = from->b_hdr;
1294 	uint64_t size = hdr->b_size;
1295 
1296 	ASSERT(hdr->b_state != arc_anon);
1297 
1298 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1299 	buf->b_hdr = hdr;
1300 	buf->b_data = NULL;
1301 	buf->b_efunc = NULL;
1302 	buf->b_private = NULL;
1303 	buf->b_next = hdr->b_buf;
1304 	hdr->b_buf = buf;
1305 	arc_get_data_buf(buf);
1306 	bcopy(from->b_data, buf->b_data, size);
1307 	hdr->b_datacnt += 1;
1308 	return (buf);
1309 }
1310 
1311 void
1312 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1313 {
1314 	arc_buf_hdr_t *hdr;
1315 	kmutex_t *hash_lock;
1316 
1317 	/*
1318 	 * Check to see if this buffer is evicted.  Callers
1319 	 * must verify b_data != NULL to know if the add_ref
1320 	 * was successful.
1321 	 */
1322 	mutex_enter(&buf->b_evict_lock);
1323 	if (buf->b_data == NULL) {
1324 		mutex_exit(&buf->b_evict_lock);
1325 		return;
1326 	}
1327 	hash_lock = HDR_LOCK(buf->b_hdr);
1328 	mutex_enter(hash_lock);
1329 	hdr = buf->b_hdr;
1330 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1331 	mutex_exit(&buf->b_evict_lock);
1332 
1333 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1334 	add_reference(hdr, hash_lock, tag);
1335 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1336 	arc_access(hdr, hash_lock);
1337 	mutex_exit(hash_lock);
1338 	ARCSTAT_BUMP(arcstat_hits);
1339 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1340 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1341 	    data, metadata, hits);
1342 }
1343 
1344 /*
1345  * Free the arc data buffer.  If it is an l2arc write in progress,
1346  * the buffer is placed on l2arc_free_on_write to be freed later.
1347  */
1348 static void
1349 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1350     void *data, size_t size)
1351 {
1352 	if (HDR_L2_WRITING(hdr)) {
1353 		l2arc_data_free_t *df;
1354 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1355 		df->l2df_data = data;
1356 		df->l2df_size = size;
1357 		df->l2df_func = free_func;
1358 		mutex_enter(&l2arc_free_on_write_mtx);
1359 		list_insert_head(l2arc_free_on_write, df);
1360 		mutex_exit(&l2arc_free_on_write_mtx);
1361 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1362 	} else {
1363 		free_func(data, size);
1364 	}
1365 }
1366 
1367 static void
1368 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1369 {
1370 	arc_buf_t **bufp;
1371 
1372 	/* free up data associated with the buf */
1373 	if (buf->b_data) {
1374 		arc_state_t *state = buf->b_hdr->b_state;
1375 		uint64_t size = buf->b_hdr->b_size;
1376 		arc_buf_contents_t type = buf->b_hdr->b_type;
1377 
1378 		arc_cksum_verify(buf);
1379 
1380 		if (!recycle) {
1381 			if (type == ARC_BUFC_METADATA) {
1382 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1383 				    buf->b_data, size);
1384 				arc_space_return(size, ARC_SPACE_DATA);
1385 			} else {
1386 				ASSERT(type == ARC_BUFC_DATA);
1387 				arc_buf_data_free(buf->b_hdr,
1388 				    zio_data_buf_free, buf->b_data, size);
1389 				ARCSTAT_INCR(arcstat_data_size, -size);
1390 				atomic_add_64(&arc_size, -size);
1391 			}
1392 		}
1393 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1394 			uint64_t *cnt = &state->arcs_lsize[type];
1395 
1396 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1397 			ASSERT(state != arc_anon);
1398 
1399 			ASSERT3U(*cnt, >=, size);
1400 			atomic_add_64(cnt, -size);
1401 		}
1402 		ASSERT3U(state->arcs_size, >=, size);
1403 		atomic_add_64(&state->arcs_size, -size);
1404 		buf->b_data = NULL;
1405 		ASSERT(buf->b_hdr->b_datacnt > 0);
1406 		buf->b_hdr->b_datacnt -= 1;
1407 	}
1408 
1409 	/* only remove the buf if requested */
1410 	if (!all)
1411 		return;
1412 
1413 	/* remove the buf from the hdr list */
1414 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1415 		continue;
1416 	*bufp = buf->b_next;
1417 	buf->b_next = NULL;
1418 
1419 	ASSERT(buf->b_efunc == NULL);
1420 
1421 	/* clean up the buf */
1422 	buf->b_hdr = NULL;
1423 	kmem_cache_free(buf_cache, buf);
1424 }
1425 
1426 static void
1427 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1428 {
1429 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1430 	ASSERT3P(hdr->b_state, ==, arc_anon);
1431 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1432 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1433 
1434 	if (l2hdr != NULL) {
1435 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1436 		/*
1437 		 * To prevent arc_free() and l2arc_evict() from
1438 		 * attempting to free the same buffer at the same time,
1439 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1440 		 * give it priority.  l2arc_evict() can't destroy this
1441 		 * header while we are waiting on l2arc_buflist_mtx.
1442 		 *
1443 		 * The hdr may be removed from l2ad_buflist before we
1444 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1445 		 */
1446 		if (!buflist_held) {
1447 			mutex_enter(&l2arc_buflist_mtx);
1448 			l2hdr = hdr->b_l2hdr;
1449 		}
1450 
1451 		if (l2hdr != NULL) {
1452 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1453 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1454 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1455 			if (hdr->b_state == arc_l2c_only)
1456 				l2arc_hdr_stat_remove();
1457 			hdr->b_l2hdr = NULL;
1458 		}
1459 
1460 		if (!buflist_held)
1461 			mutex_exit(&l2arc_buflist_mtx);
1462 	}
1463 
1464 	if (!BUF_EMPTY(hdr)) {
1465 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1466 		buf_discard_identity(hdr);
1467 	}
1468 	while (hdr->b_buf) {
1469 		arc_buf_t *buf = hdr->b_buf;
1470 
1471 		if (buf->b_efunc) {
1472 			mutex_enter(&arc_eviction_mtx);
1473 			mutex_enter(&buf->b_evict_lock);
1474 			ASSERT(buf->b_hdr != NULL);
1475 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1476 			hdr->b_buf = buf->b_next;
1477 			buf->b_hdr = &arc_eviction_hdr;
1478 			buf->b_next = arc_eviction_list;
1479 			arc_eviction_list = buf;
1480 			mutex_exit(&buf->b_evict_lock);
1481 			mutex_exit(&arc_eviction_mtx);
1482 		} else {
1483 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1484 		}
1485 	}
1486 	if (hdr->b_freeze_cksum != NULL) {
1487 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1488 		hdr->b_freeze_cksum = NULL;
1489 	}
1490 	if (hdr->b_thawed) {
1491 		kmem_free(hdr->b_thawed, 1);
1492 		hdr->b_thawed = NULL;
1493 	}
1494 
1495 	ASSERT(!list_link_active(&hdr->b_arc_node));
1496 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1497 	ASSERT3P(hdr->b_acb, ==, NULL);
1498 	kmem_cache_free(hdr_cache, hdr);
1499 }
1500 
1501 void
1502 arc_buf_free(arc_buf_t *buf, void *tag)
1503 {
1504 	arc_buf_hdr_t *hdr = buf->b_hdr;
1505 	int hashed = hdr->b_state != arc_anon;
1506 
1507 	ASSERT(buf->b_efunc == NULL);
1508 	ASSERT(buf->b_data != NULL);
1509 
1510 	if (hashed) {
1511 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1512 
1513 		mutex_enter(hash_lock);
1514 		hdr = buf->b_hdr;
1515 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1516 
1517 		(void) remove_reference(hdr, hash_lock, tag);
1518 		if (hdr->b_datacnt > 1) {
1519 			arc_buf_destroy(buf, FALSE, TRUE);
1520 		} else {
1521 			ASSERT(buf == hdr->b_buf);
1522 			ASSERT(buf->b_efunc == NULL);
1523 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1524 		}
1525 		mutex_exit(hash_lock);
1526 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1527 		int destroy_hdr;
1528 		/*
1529 		 * We are in the middle of an async write.  Don't destroy
1530 		 * this buffer unless the write completes before we finish
1531 		 * decrementing the reference count.
1532 		 */
1533 		mutex_enter(&arc_eviction_mtx);
1534 		(void) remove_reference(hdr, NULL, tag);
1535 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1536 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1537 		mutex_exit(&arc_eviction_mtx);
1538 		if (destroy_hdr)
1539 			arc_hdr_destroy(hdr);
1540 	} else {
1541 		if (remove_reference(hdr, NULL, tag) > 0)
1542 			arc_buf_destroy(buf, FALSE, TRUE);
1543 		else
1544 			arc_hdr_destroy(hdr);
1545 	}
1546 }
1547 
1548 int
1549 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1550 {
1551 	arc_buf_hdr_t *hdr = buf->b_hdr;
1552 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1553 	int no_callback = (buf->b_efunc == NULL);
1554 
1555 	if (hdr->b_state == arc_anon) {
1556 		ASSERT(hdr->b_datacnt == 1);
1557 		arc_buf_free(buf, tag);
1558 		return (no_callback);
1559 	}
1560 
1561 	mutex_enter(hash_lock);
1562 	hdr = buf->b_hdr;
1563 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1564 	ASSERT(hdr->b_state != arc_anon);
1565 	ASSERT(buf->b_data != NULL);
1566 
1567 	(void) remove_reference(hdr, hash_lock, tag);
1568 	if (hdr->b_datacnt > 1) {
1569 		if (no_callback)
1570 			arc_buf_destroy(buf, FALSE, TRUE);
1571 	} else if (no_callback) {
1572 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1573 		ASSERT(buf->b_efunc == NULL);
1574 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1575 	}
1576 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1577 	    refcount_is_zero(&hdr->b_refcnt));
1578 	mutex_exit(hash_lock);
1579 	return (no_callback);
1580 }
1581 
1582 int
1583 arc_buf_size(arc_buf_t *buf)
1584 {
1585 	return (buf->b_hdr->b_size);
1586 }
1587 
1588 /*
1589  * Evict buffers from list until we've removed the specified number of
1590  * bytes.  Move the removed buffers to the appropriate evict state.
1591  * If the recycle flag is set, then attempt to "recycle" a buffer:
1592  * - look for a buffer to evict that is `bytes' long.
1593  * - return the data block from this buffer rather than freeing it.
1594  * This flag is used by callers that are trying to make space for a
1595  * new buffer in a full arc cache.
1596  *
1597  * This function makes a "best effort".  It skips over any buffers
1598  * it can't get a hash_lock on, and so may not catch all candidates.
1599  * It may also return without evicting as much space as requested.
1600  */
1601 static void *
1602 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1603     arc_buf_contents_t type)
1604 {
1605 	arc_state_t *evicted_state;
1606 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1607 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1608 	list_t *list = &state->arcs_list[type];
1609 	kmutex_t *hash_lock;
1610 	boolean_t have_lock;
1611 	void *stolen = NULL;
1612 
1613 	ASSERT(state == arc_mru || state == arc_mfu);
1614 
1615 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1616 
1617 	mutex_enter(&state->arcs_mtx);
1618 	mutex_enter(&evicted_state->arcs_mtx);
1619 
1620 	for (ab = list_tail(list); ab; ab = ab_prev) {
1621 		ab_prev = list_prev(list, ab);
1622 		/* prefetch buffers have a minimum lifespan */
1623 		if (HDR_IO_IN_PROGRESS(ab) ||
1624 		    (spa && ab->b_spa != spa) ||
1625 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1626 		    ddi_get_lbolt() - ab->b_arc_access <
1627 		    arc_min_prefetch_lifespan)) {
1628 			skipped++;
1629 			continue;
1630 		}
1631 		/* "lookahead" for better eviction candidate */
1632 		if (recycle && ab->b_size != bytes &&
1633 		    ab_prev && ab_prev->b_size == bytes)
1634 			continue;
1635 		hash_lock = HDR_LOCK(ab);
1636 		have_lock = MUTEX_HELD(hash_lock);
1637 		if (have_lock || mutex_tryenter(hash_lock)) {
1638 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1639 			ASSERT(ab->b_datacnt > 0);
1640 			while (ab->b_buf) {
1641 				arc_buf_t *buf = ab->b_buf;
1642 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1643 					missed += 1;
1644 					break;
1645 				}
1646 				if (buf->b_data) {
1647 					bytes_evicted += ab->b_size;
1648 					if (recycle && ab->b_type == type &&
1649 					    ab->b_size == bytes &&
1650 					    !HDR_L2_WRITING(ab)) {
1651 						stolen = buf->b_data;
1652 						recycle = FALSE;
1653 					}
1654 				}
1655 				if (buf->b_efunc) {
1656 					mutex_enter(&arc_eviction_mtx);
1657 					arc_buf_destroy(buf,
1658 					    buf->b_data == stolen, FALSE);
1659 					ab->b_buf = buf->b_next;
1660 					buf->b_hdr = &arc_eviction_hdr;
1661 					buf->b_next = arc_eviction_list;
1662 					arc_eviction_list = buf;
1663 					mutex_exit(&arc_eviction_mtx);
1664 					mutex_exit(&buf->b_evict_lock);
1665 				} else {
1666 					mutex_exit(&buf->b_evict_lock);
1667 					arc_buf_destroy(buf,
1668 					    buf->b_data == stolen, TRUE);
1669 				}
1670 			}
1671 
1672 			if (ab->b_l2hdr) {
1673 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1674 				    ab->b_size);
1675 			} else {
1676 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1677 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1678 					    ab->b_size);
1679 				} else {
1680 					ARCSTAT_INCR(
1681 					    arcstat_evict_l2_ineligible,
1682 					    ab->b_size);
1683 				}
1684 			}
1685 
1686 			if (ab->b_datacnt == 0) {
1687 				arc_change_state(evicted_state, ab, hash_lock);
1688 				ASSERT(HDR_IN_HASH_TABLE(ab));
1689 				ab->b_flags |= ARC_IN_HASH_TABLE;
1690 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1691 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1692 			}
1693 			if (!have_lock)
1694 				mutex_exit(hash_lock);
1695 			if (bytes >= 0 && bytes_evicted >= bytes)
1696 				break;
1697 		} else {
1698 			missed += 1;
1699 		}
1700 	}
1701 
1702 	mutex_exit(&evicted_state->arcs_mtx);
1703 	mutex_exit(&state->arcs_mtx);
1704 
1705 	if (bytes_evicted < bytes)
1706 		dprintf("only evicted %lld bytes from %x",
1707 		    (longlong_t)bytes_evicted, state);
1708 
1709 	if (skipped)
1710 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1711 
1712 	if (missed)
1713 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1714 
1715 	/*
1716 	 * We have just evicted some date into the ghost state, make
1717 	 * sure we also adjust the ghost state size if necessary.
1718 	 */
1719 	if (arc_no_grow &&
1720 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1721 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1722 		    arc_mru_ghost->arcs_size - arc_c;
1723 
1724 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1725 			int64_t todelete =
1726 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1727 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1728 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1729 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1730 			    arc_mru_ghost->arcs_size +
1731 			    arc_mfu_ghost->arcs_size - arc_c);
1732 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1733 		}
1734 	}
1735 
1736 	return (stolen);
1737 }
1738 
1739 /*
1740  * Remove buffers from list until we've removed the specified number of
1741  * bytes.  Destroy the buffers that are removed.
1742  */
1743 static void
1744 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1745 {
1746 	arc_buf_hdr_t *ab, *ab_prev;
1747 	arc_buf_hdr_t marker = { 0 };
1748 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1749 	kmutex_t *hash_lock;
1750 	uint64_t bytes_deleted = 0;
1751 	uint64_t bufs_skipped = 0;
1752 
1753 	ASSERT(GHOST_STATE(state));
1754 top:
1755 	mutex_enter(&state->arcs_mtx);
1756 	for (ab = list_tail(list); ab; ab = ab_prev) {
1757 		ab_prev = list_prev(list, ab);
1758 		if (spa && ab->b_spa != spa)
1759 			continue;
1760 
1761 		/* ignore markers */
1762 		if (ab->b_spa == 0)
1763 			continue;
1764 
1765 		hash_lock = HDR_LOCK(ab);
1766 		/* caller may be trying to modify this buffer, skip it */
1767 		if (MUTEX_HELD(hash_lock))
1768 			continue;
1769 		if (mutex_tryenter(hash_lock)) {
1770 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1771 			ASSERT(ab->b_buf == NULL);
1772 			ARCSTAT_BUMP(arcstat_deleted);
1773 			bytes_deleted += ab->b_size;
1774 
1775 			if (ab->b_l2hdr != NULL) {
1776 				/*
1777 				 * This buffer is cached on the 2nd Level ARC;
1778 				 * don't destroy the header.
1779 				 */
1780 				arc_change_state(arc_l2c_only, ab, hash_lock);
1781 				mutex_exit(hash_lock);
1782 			} else {
1783 				arc_change_state(arc_anon, ab, hash_lock);
1784 				mutex_exit(hash_lock);
1785 				arc_hdr_destroy(ab);
1786 			}
1787 
1788 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1789 			if (bytes >= 0 && bytes_deleted >= bytes)
1790 				break;
1791 		} else if (bytes < 0) {
1792 			/*
1793 			 * Insert a list marker and then wait for the
1794 			 * hash lock to become available. Once its
1795 			 * available, restart from where we left off.
1796 			 */
1797 			list_insert_after(list, ab, &marker);
1798 			mutex_exit(&state->arcs_mtx);
1799 			mutex_enter(hash_lock);
1800 			mutex_exit(hash_lock);
1801 			mutex_enter(&state->arcs_mtx);
1802 			ab_prev = list_prev(list, &marker);
1803 			list_remove(list, &marker);
1804 		} else
1805 			bufs_skipped += 1;
1806 	}
1807 	mutex_exit(&state->arcs_mtx);
1808 
1809 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1810 	    (bytes < 0 || bytes_deleted < bytes)) {
1811 		list = &state->arcs_list[ARC_BUFC_METADATA];
1812 		goto top;
1813 	}
1814 
1815 	if (bufs_skipped) {
1816 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1817 		ASSERT(bytes >= 0);
1818 	}
1819 
1820 	if (bytes_deleted < bytes)
1821 		dprintf("only deleted %lld bytes from %p",
1822 		    (longlong_t)bytes_deleted, state);
1823 }
1824 
1825 static void
1826 arc_adjust(void)
1827 {
1828 	int64_t adjustment, delta;
1829 
1830 	/*
1831 	 * Adjust MRU size
1832 	 */
1833 
1834 	adjustment = MIN((int64_t)(arc_size - arc_c),
1835 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1836 	    arc_p));
1837 
1838 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1839 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1840 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1841 		adjustment -= delta;
1842 	}
1843 
1844 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1845 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1846 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1847 		    ARC_BUFC_METADATA);
1848 	}
1849 
1850 	/*
1851 	 * Adjust MFU size
1852 	 */
1853 
1854 	adjustment = arc_size - arc_c;
1855 
1856 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1857 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1858 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1859 		adjustment -= delta;
1860 	}
1861 
1862 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1863 		int64_t delta = MIN(adjustment,
1864 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1865 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1866 		    ARC_BUFC_METADATA);
1867 	}
1868 
1869 	/*
1870 	 * Adjust ghost lists
1871 	 */
1872 
1873 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1874 
1875 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1876 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1877 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1878 	}
1879 
1880 	adjustment =
1881 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1882 
1883 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1884 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1885 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1886 	}
1887 }
1888 
1889 static void
1890 arc_do_user_evicts(void)
1891 {
1892 	mutex_enter(&arc_eviction_mtx);
1893 	while (arc_eviction_list != NULL) {
1894 		arc_buf_t *buf = arc_eviction_list;
1895 		arc_eviction_list = buf->b_next;
1896 		mutex_enter(&buf->b_evict_lock);
1897 		buf->b_hdr = NULL;
1898 		mutex_exit(&buf->b_evict_lock);
1899 		mutex_exit(&arc_eviction_mtx);
1900 
1901 		if (buf->b_efunc != NULL)
1902 			VERIFY(buf->b_efunc(buf) == 0);
1903 
1904 		buf->b_efunc = NULL;
1905 		buf->b_private = NULL;
1906 		kmem_cache_free(buf_cache, buf);
1907 		mutex_enter(&arc_eviction_mtx);
1908 	}
1909 	mutex_exit(&arc_eviction_mtx);
1910 }
1911 
1912 /*
1913  * Flush all *evictable* data from the cache for the given spa.
1914  * NOTE: this will not touch "active" (i.e. referenced) data.
1915  */
1916 void
1917 arc_flush(spa_t *spa)
1918 {
1919 	uint64_t guid = 0;
1920 
1921 	if (spa)
1922 		guid = spa_guid(spa);
1923 
1924 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1925 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1926 		if (spa)
1927 			break;
1928 	}
1929 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1930 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1931 		if (spa)
1932 			break;
1933 	}
1934 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1935 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1936 		if (spa)
1937 			break;
1938 	}
1939 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1940 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1941 		if (spa)
1942 			break;
1943 	}
1944 
1945 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1946 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1947 
1948 	mutex_enter(&arc_reclaim_thr_lock);
1949 	arc_do_user_evicts();
1950 	mutex_exit(&arc_reclaim_thr_lock);
1951 	ASSERT(spa || arc_eviction_list == NULL);
1952 }
1953 
1954 void
1955 arc_shrink(void)
1956 {
1957 	if (arc_c > arc_c_min) {
1958 		uint64_t to_free;
1959 
1960 #ifdef _KERNEL
1961 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1962 #else
1963 		to_free = arc_c >> arc_shrink_shift;
1964 #endif
1965 		if (arc_c > arc_c_min + to_free)
1966 			atomic_add_64(&arc_c, -to_free);
1967 		else
1968 			arc_c = arc_c_min;
1969 
1970 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1971 		if (arc_c > arc_size)
1972 			arc_c = MAX(arc_size, arc_c_min);
1973 		if (arc_p > arc_c)
1974 			arc_p = (arc_c >> 1);
1975 		ASSERT(arc_c >= arc_c_min);
1976 		ASSERT((int64_t)arc_p >= 0);
1977 	}
1978 
1979 	if (arc_size > arc_c)
1980 		arc_adjust();
1981 }
1982 
1983 static int
1984 arc_reclaim_needed(void)
1985 {
1986 	uint64_t extra;
1987 
1988 #ifdef _KERNEL
1989 
1990 	if (needfree)
1991 		return (1);
1992 
1993 	/*
1994 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1995 	 */
1996 	extra = desfree;
1997 
1998 	/*
1999 	 * check that we're out of range of the pageout scanner.  It starts to
2000 	 * schedule paging if freemem is less than lotsfree and needfree.
2001 	 * lotsfree is the high-water mark for pageout, and needfree is the
2002 	 * number of needed free pages.  We add extra pages here to make sure
2003 	 * the scanner doesn't start up while we're freeing memory.
2004 	 */
2005 	if (freemem < lotsfree + needfree + extra)
2006 		return (1);
2007 
2008 	/*
2009 	 * check to make sure that swapfs has enough space so that anon
2010 	 * reservations can still succeed. anon_resvmem() checks that the
2011 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2012 	 * swap pages.  We also add a bit of extra here just to prevent
2013 	 * circumstances from getting really dire.
2014 	 */
2015 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2016 		return (1);
2017 
2018 #if defined(__i386)
2019 	/*
2020 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2021 	 * kernel heap space before we ever run out of available physical
2022 	 * memory.  Most checks of the size of the heap_area compare against
2023 	 * tune.t_minarmem, which is the minimum available real memory that we
2024 	 * can have in the system.  However, this is generally fixed at 25 pages
2025 	 * which is so low that it's useless.  In this comparison, we seek to
2026 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2027 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2028 	 * free)
2029 	 */
2030 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2031 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2032 		return (1);
2033 #endif
2034 
2035 #else
2036 	if (spa_get_random(100) == 0)
2037 		return (1);
2038 #endif
2039 	return (0);
2040 }
2041 
2042 static void
2043 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2044 {
2045 	size_t			i;
2046 	kmem_cache_t		*prev_cache = NULL;
2047 	kmem_cache_t		*prev_data_cache = NULL;
2048 	extern kmem_cache_t	*zio_buf_cache[];
2049 	extern kmem_cache_t	*zio_data_buf_cache[];
2050 
2051 #ifdef _KERNEL
2052 	if (arc_meta_used >= arc_meta_limit) {
2053 		/*
2054 		 * We are exceeding our meta-data cache limit.
2055 		 * Purge some DNLC entries to release holds on meta-data.
2056 		 */
2057 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2058 	}
2059 #if defined(__i386)
2060 	/*
2061 	 * Reclaim unused memory from all kmem caches.
2062 	 */
2063 	kmem_reap();
2064 #endif
2065 #endif
2066 
2067 	/*
2068 	 * An aggressive reclamation will shrink the cache size as well as
2069 	 * reap free buffers from the arc kmem caches.
2070 	 */
2071 	if (strat == ARC_RECLAIM_AGGR)
2072 		arc_shrink();
2073 
2074 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2075 		if (zio_buf_cache[i] != prev_cache) {
2076 			prev_cache = zio_buf_cache[i];
2077 			kmem_cache_reap_now(zio_buf_cache[i]);
2078 		}
2079 		if (zio_data_buf_cache[i] != prev_data_cache) {
2080 			prev_data_cache = zio_data_buf_cache[i];
2081 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2082 		}
2083 	}
2084 	kmem_cache_reap_now(buf_cache);
2085 	kmem_cache_reap_now(hdr_cache);
2086 }
2087 
2088 static void
2089 arc_reclaim_thread(void)
2090 {
2091 	clock_t			growtime = 0;
2092 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2093 	callb_cpr_t		cpr;
2094 
2095 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2096 
2097 	mutex_enter(&arc_reclaim_thr_lock);
2098 	while (arc_thread_exit == 0) {
2099 		if (arc_reclaim_needed()) {
2100 
2101 			if (arc_no_grow) {
2102 				if (last_reclaim == ARC_RECLAIM_CONS) {
2103 					last_reclaim = ARC_RECLAIM_AGGR;
2104 				} else {
2105 					last_reclaim = ARC_RECLAIM_CONS;
2106 				}
2107 			} else {
2108 				arc_no_grow = TRUE;
2109 				last_reclaim = ARC_RECLAIM_AGGR;
2110 				membar_producer();
2111 			}
2112 
2113 			/* reset the growth delay for every reclaim */
2114 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2115 
2116 			arc_kmem_reap_now(last_reclaim);
2117 			arc_warm = B_TRUE;
2118 
2119 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2120 			arc_no_grow = FALSE;
2121 		}
2122 
2123 		arc_adjust();
2124 
2125 		if (arc_eviction_list != NULL)
2126 			arc_do_user_evicts();
2127 
2128 		/* block until needed, or one second, whichever is shorter */
2129 		CALLB_CPR_SAFE_BEGIN(&cpr);
2130 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2131 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2132 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2133 	}
2134 
2135 	arc_thread_exit = 0;
2136 	cv_broadcast(&arc_reclaim_thr_cv);
2137 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2138 	thread_exit();
2139 }
2140 
2141 /*
2142  * Adapt arc info given the number of bytes we are trying to add and
2143  * the state that we are comming from.  This function is only called
2144  * when we are adding new content to the cache.
2145  */
2146 static void
2147 arc_adapt(int bytes, arc_state_t *state)
2148 {
2149 	int mult;
2150 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2151 
2152 	if (state == arc_l2c_only)
2153 		return;
2154 
2155 	ASSERT(bytes > 0);
2156 	/*
2157 	 * Adapt the target size of the MRU list:
2158 	 *	- if we just hit in the MRU ghost list, then increase
2159 	 *	  the target size of the MRU list.
2160 	 *	- if we just hit in the MFU ghost list, then increase
2161 	 *	  the target size of the MFU list by decreasing the
2162 	 *	  target size of the MRU list.
2163 	 */
2164 	if (state == arc_mru_ghost) {
2165 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2166 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2167 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2168 
2169 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2170 	} else if (state == arc_mfu_ghost) {
2171 		uint64_t delta;
2172 
2173 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2174 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2175 		mult = MIN(mult, 10);
2176 
2177 		delta = MIN(bytes * mult, arc_p);
2178 		arc_p = MAX(arc_p_min, arc_p - delta);
2179 	}
2180 	ASSERT((int64_t)arc_p >= 0);
2181 
2182 	if (arc_reclaim_needed()) {
2183 		cv_signal(&arc_reclaim_thr_cv);
2184 		return;
2185 	}
2186 
2187 	if (arc_no_grow)
2188 		return;
2189 
2190 	if (arc_c >= arc_c_max)
2191 		return;
2192 
2193 	/*
2194 	 * If we're within (2 * maxblocksize) bytes of the target
2195 	 * cache size, increment the target cache size
2196 	 */
2197 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2198 		atomic_add_64(&arc_c, (int64_t)bytes);
2199 		if (arc_c > arc_c_max)
2200 			arc_c = arc_c_max;
2201 		else if (state == arc_anon)
2202 			atomic_add_64(&arc_p, (int64_t)bytes);
2203 		if (arc_p > arc_c)
2204 			arc_p = arc_c;
2205 	}
2206 	ASSERT((int64_t)arc_p >= 0);
2207 }
2208 
2209 /*
2210  * Check if the cache has reached its limits and eviction is required
2211  * prior to insert.
2212  */
2213 static int
2214 arc_evict_needed(arc_buf_contents_t type)
2215 {
2216 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2217 		return (1);
2218 
2219 #ifdef _KERNEL
2220 	/*
2221 	 * If zio data pages are being allocated out of a separate heap segment,
2222 	 * then enforce that the size of available vmem for this area remains
2223 	 * above about 1/32nd free.
2224 	 */
2225 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2226 	    vmem_size(zio_arena, VMEM_FREE) <
2227 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2228 		return (1);
2229 #endif
2230 
2231 	if (arc_reclaim_needed())
2232 		return (1);
2233 
2234 	return (arc_size > arc_c);
2235 }
2236 
2237 /*
2238  * The buffer, supplied as the first argument, needs a data block.
2239  * So, if we are at cache max, determine which cache should be victimized.
2240  * We have the following cases:
2241  *
2242  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2243  * In this situation if we're out of space, but the resident size of the MFU is
2244  * under the limit, victimize the MFU cache to satisfy this insertion request.
2245  *
2246  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2247  * Here, we've used up all of the available space for the MRU, so we need to
2248  * evict from our own cache instead.  Evict from the set of resident MRU
2249  * entries.
2250  *
2251  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2252  * c minus p represents the MFU space in the cache, since p is the size of the
2253  * cache that is dedicated to the MRU.  In this situation there's still space on
2254  * the MFU side, so the MRU side needs to be victimized.
2255  *
2256  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2257  * MFU's resident set is consuming more space than it has been allotted.  In
2258  * this situation, we must victimize our own cache, the MFU, for this insertion.
2259  */
2260 static void
2261 arc_get_data_buf(arc_buf_t *buf)
2262 {
2263 	arc_state_t		*state = buf->b_hdr->b_state;
2264 	uint64_t		size = buf->b_hdr->b_size;
2265 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2266 
2267 	arc_adapt(size, state);
2268 
2269 	/*
2270 	 * We have not yet reached cache maximum size,
2271 	 * just allocate a new buffer.
2272 	 */
2273 	if (!arc_evict_needed(type)) {
2274 		if (type == ARC_BUFC_METADATA) {
2275 			buf->b_data = zio_buf_alloc(size);
2276 			arc_space_consume(size, ARC_SPACE_DATA);
2277 		} else {
2278 			ASSERT(type == ARC_BUFC_DATA);
2279 			buf->b_data = zio_data_buf_alloc(size);
2280 			ARCSTAT_INCR(arcstat_data_size, size);
2281 			atomic_add_64(&arc_size, size);
2282 		}
2283 		goto out;
2284 	}
2285 
2286 	/*
2287 	 * If we are prefetching from the mfu ghost list, this buffer
2288 	 * will end up on the mru list; so steal space from there.
2289 	 */
2290 	if (state == arc_mfu_ghost)
2291 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2292 	else if (state == arc_mru_ghost)
2293 		state = arc_mru;
2294 
2295 	if (state == arc_mru || state == arc_anon) {
2296 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2297 		state = (arc_mfu->arcs_lsize[type] >= size &&
2298 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2299 	} else {
2300 		/* MFU cases */
2301 		uint64_t mfu_space = arc_c - arc_p;
2302 		state =  (arc_mru->arcs_lsize[type] >= size &&
2303 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2304 	}
2305 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2306 		if (type == ARC_BUFC_METADATA) {
2307 			buf->b_data = zio_buf_alloc(size);
2308 			arc_space_consume(size, ARC_SPACE_DATA);
2309 		} else {
2310 			ASSERT(type == ARC_BUFC_DATA);
2311 			buf->b_data = zio_data_buf_alloc(size);
2312 			ARCSTAT_INCR(arcstat_data_size, size);
2313 			atomic_add_64(&arc_size, size);
2314 		}
2315 		ARCSTAT_BUMP(arcstat_recycle_miss);
2316 	}
2317 	ASSERT(buf->b_data != NULL);
2318 out:
2319 	/*
2320 	 * Update the state size.  Note that ghost states have a
2321 	 * "ghost size" and so don't need to be updated.
2322 	 */
2323 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2324 		arc_buf_hdr_t *hdr = buf->b_hdr;
2325 
2326 		atomic_add_64(&hdr->b_state->arcs_size, size);
2327 		if (list_link_active(&hdr->b_arc_node)) {
2328 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2329 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2330 		}
2331 		/*
2332 		 * If we are growing the cache, and we are adding anonymous
2333 		 * data, and we have outgrown arc_p, update arc_p
2334 		 */
2335 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2336 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2337 			arc_p = MIN(arc_c, arc_p + size);
2338 	}
2339 }
2340 
2341 /*
2342  * This routine is called whenever a buffer is accessed.
2343  * NOTE: the hash lock is dropped in this function.
2344  */
2345 static void
2346 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2347 {
2348 	clock_t now;
2349 
2350 	ASSERT(MUTEX_HELD(hash_lock));
2351 
2352 	if (buf->b_state == arc_anon) {
2353 		/*
2354 		 * This buffer is not in the cache, and does not
2355 		 * appear in our "ghost" list.  Add the new buffer
2356 		 * to the MRU state.
2357 		 */
2358 
2359 		ASSERT(buf->b_arc_access == 0);
2360 		buf->b_arc_access = ddi_get_lbolt();
2361 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2362 		arc_change_state(arc_mru, buf, hash_lock);
2363 
2364 	} else if (buf->b_state == arc_mru) {
2365 		now = ddi_get_lbolt();
2366 
2367 		/*
2368 		 * If this buffer is here because of a prefetch, then either:
2369 		 * - clear the flag if this is a "referencing" read
2370 		 *   (any subsequent access will bump this into the MFU state).
2371 		 * or
2372 		 * - move the buffer to the head of the list if this is
2373 		 *   another prefetch (to make it less likely to be evicted).
2374 		 */
2375 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2376 			if (refcount_count(&buf->b_refcnt) == 0) {
2377 				ASSERT(list_link_active(&buf->b_arc_node));
2378 			} else {
2379 				buf->b_flags &= ~ARC_PREFETCH;
2380 				ARCSTAT_BUMP(arcstat_mru_hits);
2381 			}
2382 			buf->b_arc_access = now;
2383 			return;
2384 		}
2385 
2386 		/*
2387 		 * This buffer has been "accessed" only once so far,
2388 		 * but it is still in the cache. Move it to the MFU
2389 		 * state.
2390 		 */
2391 		if (now > buf->b_arc_access + ARC_MINTIME) {
2392 			/*
2393 			 * More than 125ms have passed since we
2394 			 * instantiated this buffer.  Move it to the
2395 			 * most frequently used state.
2396 			 */
2397 			buf->b_arc_access = now;
2398 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2399 			arc_change_state(arc_mfu, buf, hash_lock);
2400 		}
2401 		ARCSTAT_BUMP(arcstat_mru_hits);
2402 	} else if (buf->b_state == arc_mru_ghost) {
2403 		arc_state_t	*new_state;
2404 		/*
2405 		 * This buffer has been "accessed" recently, but
2406 		 * was evicted from the cache.  Move it to the
2407 		 * MFU state.
2408 		 */
2409 
2410 		if (buf->b_flags & ARC_PREFETCH) {
2411 			new_state = arc_mru;
2412 			if (refcount_count(&buf->b_refcnt) > 0)
2413 				buf->b_flags &= ~ARC_PREFETCH;
2414 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2415 		} else {
2416 			new_state = arc_mfu;
2417 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2418 		}
2419 
2420 		buf->b_arc_access = ddi_get_lbolt();
2421 		arc_change_state(new_state, buf, hash_lock);
2422 
2423 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2424 	} else if (buf->b_state == arc_mfu) {
2425 		/*
2426 		 * This buffer has been accessed more than once and is
2427 		 * still in the cache.  Keep it in the MFU state.
2428 		 *
2429 		 * NOTE: an add_reference() that occurred when we did
2430 		 * the arc_read() will have kicked this off the list.
2431 		 * If it was a prefetch, we will explicitly move it to
2432 		 * the head of the list now.
2433 		 */
2434 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2435 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2436 			ASSERT(list_link_active(&buf->b_arc_node));
2437 		}
2438 		ARCSTAT_BUMP(arcstat_mfu_hits);
2439 		buf->b_arc_access = ddi_get_lbolt();
2440 	} else if (buf->b_state == arc_mfu_ghost) {
2441 		arc_state_t	*new_state = arc_mfu;
2442 		/*
2443 		 * This buffer has been accessed more than once but has
2444 		 * been evicted from the cache.  Move it back to the
2445 		 * MFU state.
2446 		 */
2447 
2448 		if (buf->b_flags & ARC_PREFETCH) {
2449 			/*
2450 			 * This is a prefetch access...
2451 			 * move this block back to the MRU state.
2452 			 */
2453 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2454 			new_state = arc_mru;
2455 		}
2456 
2457 		buf->b_arc_access = ddi_get_lbolt();
2458 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2459 		arc_change_state(new_state, buf, hash_lock);
2460 
2461 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2462 	} else if (buf->b_state == arc_l2c_only) {
2463 		/*
2464 		 * This buffer is on the 2nd Level ARC.
2465 		 */
2466 
2467 		buf->b_arc_access = ddi_get_lbolt();
2468 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2469 		arc_change_state(arc_mfu, buf, hash_lock);
2470 	} else {
2471 		ASSERT(!"invalid arc state");
2472 	}
2473 }
2474 
2475 /* a generic arc_done_func_t which you can use */
2476 /* ARGSUSED */
2477 void
2478 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2479 {
2480 	if (zio == NULL || zio->io_error == 0)
2481 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2482 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2483 }
2484 
2485 /* a generic arc_done_func_t */
2486 void
2487 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2488 {
2489 	arc_buf_t **bufp = arg;
2490 	if (zio && zio->io_error) {
2491 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2492 		*bufp = NULL;
2493 	} else {
2494 		*bufp = buf;
2495 		ASSERT(buf->b_data);
2496 	}
2497 }
2498 
2499 static void
2500 arc_read_done(zio_t *zio)
2501 {
2502 	arc_buf_hdr_t	*hdr, *found;
2503 	arc_buf_t	*buf;
2504 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2505 	kmutex_t	*hash_lock;
2506 	arc_callback_t	*callback_list, *acb;
2507 	int		freeable = FALSE;
2508 
2509 	buf = zio->io_private;
2510 	hdr = buf->b_hdr;
2511 
2512 	/*
2513 	 * The hdr was inserted into hash-table and removed from lists
2514 	 * prior to starting I/O.  We should find this header, since
2515 	 * it's in the hash table, and it should be legit since it's
2516 	 * not possible to evict it during the I/O.  The only possible
2517 	 * reason for it not to be found is if we were freed during the
2518 	 * read.
2519 	 */
2520 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2521 	    &hash_lock);
2522 
2523 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2524 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2525 	    (found == hdr && HDR_L2_READING(hdr)));
2526 
2527 	hdr->b_flags &= ~ARC_L2_EVICTED;
2528 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2529 		hdr->b_flags &= ~ARC_L2CACHE;
2530 
2531 	/* byteswap if necessary */
2532 	callback_list = hdr->b_acb;
2533 	ASSERT(callback_list != NULL);
2534 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2535 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2536 		    byteswap_uint64_array :
2537 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2538 		func(buf->b_data, hdr->b_size);
2539 	}
2540 
2541 	arc_cksum_compute(buf, B_FALSE);
2542 
2543 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2544 		/*
2545 		 * Only call arc_access on anonymous buffers.  This is because
2546 		 * if we've issued an I/O for an evicted buffer, we've already
2547 		 * called arc_access (to prevent any simultaneous readers from
2548 		 * getting confused).
2549 		 */
2550 		arc_access(hdr, hash_lock);
2551 	}
2552 
2553 	/* create copies of the data buffer for the callers */
2554 	abuf = buf;
2555 	for (acb = callback_list; acb; acb = acb->acb_next) {
2556 		if (acb->acb_done) {
2557 			if (abuf == NULL)
2558 				abuf = arc_buf_clone(buf);
2559 			acb->acb_buf = abuf;
2560 			abuf = NULL;
2561 		}
2562 	}
2563 	hdr->b_acb = NULL;
2564 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2565 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2566 	if (abuf == buf) {
2567 		ASSERT(buf->b_efunc == NULL);
2568 		ASSERT(hdr->b_datacnt == 1);
2569 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2570 	}
2571 
2572 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2573 
2574 	if (zio->io_error != 0) {
2575 		hdr->b_flags |= ARC_IO_ERROR;
2576 		if (hdr->b_state != arc_anon)
2577 			arc_change_state(arc_anon, hdr, hash_lock);
2578 		if (HDR_IN_HASH_TABLE(hdr))
2579 			buf_hash_remove(hdr);
2580 		freeable = refcount_is_zero(&hdr->b_refcnt);
2581 	}
2582 
2583 	/*
2584 	 * Broadcast before we drop the hash_lock to avoid the possibility
2585 	 * that the hdr (and hence the cv) might be freed before we get to
2586 	 * the cv_broadcast().
2587 	 */
2588 	cv_broadcast(&hdr->b_cv);
2589 
2590 	if (hash_lock) {
2591 		mutex_exit(hash_lock);
2592 	} else {
2593 		/*
2594 		 * This block was freed while we waited for the read to
2595 		 * complete.  It has been removed from the hash table and
2596 		 * moved to the anonymous state (so that it won't show up
2597 		 * in the cache).
2598 		 */
2599 		ASSERT3P(hdr->b_state, ==, arc_anon);
2600 		freeable = refcount_is_zero(&hdr->b_refcnt);
2601 	}
2602 
2603 	/* execute each callback and free its structure */
2604 	while ((acb = callback_list) != NULL) {
2605 		if (acb->acb_done)
2606 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2607 
2608 		if (acb->acb_zio_dummy != NULL) {
2609 			acb->acb_zio_dummy->io_error = zio->io_error;
2610 			zio_nowait(acb->acb_zio_dummy);
2611 		}
2612 
2613 		callback_list = acb->acb_next;
2614 		kmem_free(acb, sizeof (arc_callback_t));
2615 	}
2616 
2617 	if (freeable)
2618 		arc_hdr_destroy(hdr);
2619 }
2620 
2621 /*
2622  * "Read" the block block at the specified DVA (in bp) via the
2623  * cache.  If the block is found in the cache, invoke the provided
2624  * callback immediately and return.  Note that the `zio' parameter
2625  * in the callback will be NULL in this case, since no IO was
2626  * required.  If the block is not in the cache pass the read request
2627  * on to the spa with a substitute callback function, so that the
2628  * requested block will be added to the cache.
2629  *
2630  * If a read request arrives for a block that has a read in-progress,
2631  * either wait for the in-progress read to complete (and return the
2632  * results); or, if this is a read with a "done" func, add a record
2633  * to the read to invoke the "done" func when the read completes,
2634  * and return; or just return.
2635  *
2636  * arc_read_done() will invoke all the requested "done" functions
2637  * for readers of this block.
2638  *
2639  * Normal callers should use arc_read and pass the arc buffer and offset
2640  * for the bp.  But if you know you don't need locking, you can use
2641  * arc_read_bp.
2642  */
2643 int
2644 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2645     arc_done_func_t *done, void *private, int priority, int zio_flags,
2646     uint32_t *arc_flags, const zbookmark_t *zb)
2647 {
2648 	int err;
2649 
2650 	if (pbuf == NULL) {
2651 		/*
2652 		 * XXX This happens from traverse callback funcs, for
2653 		 * the objset_phys_t block.
2654 		 */
2655 		return (arc_read_nolock(pio, spa, bp, done, private, priority,
2656 		    zio_flags, arc_flags, zb));
2657 	}
2658 
2659 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2660 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2661 	rw_enter(&pbuf->b_data_lock, RW_READER);
2662 
2663 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2664 	    zio_flags, arc_flags, zb);
2665 	rw_exit(&pbuf->b_data_lock);
2666 
2667 	return (err);
2668 }
2669 
2670 int
2671 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2672     arc_done_func_t *done, void *private, int priority, int zio_flags,
2673     uint32_t *arc_flags, const zbookmark_t *zb)
2674 {
2675 	arc_buf_hdr_t *hdr;
2676 	arc_buf_t *buf;
2677 	kmutex_t *hash_lock;
2678 	zio_t *rzio;
2679 	uint64_t guid = spa_guid(spa);
2680 
2681 top:
2682 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2683 	    &hash_lock);
2684 	if (hdr && hdr->b_datacnt > 0) {
2685 
2686 		*arc_flags |= ARC_CACHED;
2687 
2688 		if (HDR_IO_IN_PROGRESS(hdr)) {
2689 
2690 			if (*arc_flags & ARC_WAIT) {
2691 				cv_wait(&hdr->b_cv, hash_lock);
2692 				mutex_exit(hash_lock);
2693 				goto top;
2694 			}
2695 			ASSERT(*arc_flags & ARC_NOWAIT);
2696 
2697 			if (done) {
2698 				arc_callback_t	*acb = NULL;
2699 
2700 				acb = kmem_zalloc(sizeof (arc_callback_t),
2701 				    KM_SLEEP);
2702 				acb->acb_done = done;
2703 				acb->acb_private = private;
2704 				if (pio != NULL)
2705 					acb->acb_zio_dummy = zio_null(pio,
2706 					    spa, NULL, NULL, NULL, zio_flags);
2707 
2708 				ASSERT(acb->acb_done != NULL);
2709 				acb->acb_next = hdr->b_acb;
2710 				hdr->b_acb = acb;
2711 				add_reference(hdr, hash_lock, private);
2712 				mutex_exit(hash_lock);
2713 				return (0);
2714 			}
2715 			mutex_exit(hash_lock);
2716 			return (0);
2717 		}
2718 
2719 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2720 
2721 		if (done) {
2722 			add_reference(hdr, hash_lock, private);
2723 			/*
2724 			 * If this block is already in use, create a new
2725 			 * copy of the data so that we will be guaranteed
2726 			 * that arc_release() will always succeed.
2727 			 */
2728 			buf = hdr->b_buf;
2729 			ASSERT(buf);
2730 			ASSERT(buf->b_data);
2731 			if (HDR_BUF_AVAILABLE(hdr)) {
2732 				ASSERT(buf->b_efunc == NULL);
2733 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2734 			} else {
2735 				buf = arc_buf_clone(buf);
2736 			}
2737 
2738 		} else if (*arc_flags & ARC_PREFETCH &&
2739 		    refcount_count(&hdr->b_refcnt) == 0) {
2740 			hdr->b_flags |= ARC_PREFETCH;
2741 		}
2742 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2743 		arc_access(hdr, hash_lock);
2744 		if (*arc_flags & ARC_L2CACHE)
2745 			hdr->b_flags |= ARC_L2CACHE;
2746 		mutex_exit(hash_lock);
2747 		ARCSTAT_BUMP(arcstat_hits);
2748 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2749 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2750 		    data, metadata, hits);
2751 
2752 		if (done)
2753 			done(NULL, buf, private);
2754 	} else {
2755 		uint64_t size = BP_GET_LSIZE(bp);
2756 		arc_callback_t	*acb;
2757 		vdev_t *vd = NULL;
2758 		uint64_t addr;
2759 		boolean_t devw = B_FALSE;
2760 
2761 		if (hdr == NULL) {
2762 			/* this block is not in the cache */
2763 			arc_buf_hdr_t	*exists;
2764 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2765 			buf = arc_buf_alloc(spa, size, private, type);
2766 			hdr = buf->b_hdr;
2767 			hdr->b_dva = *BP_IDENTITY(bp);
2768 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2769 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2770 			exists = buf_hash_insert(hdr, &hash_lock);
2771 			if (exists) {
2772 				/* somebody beat us to the hash insert */
2773 				mutex_exit(hash_lock);
2774 				buf_discard_identity(hdr);
2775 				(void) arc_buf_remove_ref(buf, private);
2776 				goto top; /* restart the IO request */
2777 			}
2778 			/* if this is a prefetch, we don't have a reference */
2779 			if (*arc_flags & ARC_PREFETCH) {
2780 				(void) remove_reference(hdr, hash_lock,
2781 				    private);
2782 				hdr->b_flags |= ARC_PREFETCH;
2783 			}
2784 			if (*arc_flags & ARC_L2CACHE)
2785 				hdr->b_flags |= ARC_L2CACHE;
2786 			if (BP_GET_LEVEL(bp) > 0)
2787 				hdr->b_flags |= ARC_INDIRECT;
2788 		} else {
2789 			/* this block is in the ghost cache */
2790 			ASSERT(GHOST_STATE(hdr->b_state));
2791 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2792 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2793 			ASSERT(hdr->b_buf == NULL);
2794 
2795 			/* if this is a prefetch, we don't have a reference */
2796 			if (*arc_flags & ARC_PREFETCH)
2797 				hdr->b_flags |= ARC_PREFETCH;
2798 			else
2799 				add_reference(hdr, hash_lock, private);
2800 			if (*arc_flags & ARC_L2CACHE)
2801 				hdr->b_flags |= ARC_L2CACHE;
2802 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2803 			buf->b_hdr = hdr;
2804 			buf->b_data = NULL;
2805 			buf->b_efunc = NULL;
2806 			buf->b_private = NULL;
2807 			buf->b_next = NULL;
2808 			hdr->b_buf = buf;
2809 			ASSERT(hdr->b_datacnt == 0);
2810 			hdr->b_datacnt = 1;
2811 			arc_get_data_buf(buf);
2812 			arc_access(hdr, hash_lock);
2813 		}
2814 
2815 		ASSERT(!GHOST_STATE(hdr->b_state));
2816 
2817 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2818 		acb->acb_done = done;
2819 		acb->acb_private = private;
2820 
2821 		ASSERT(hdr->b_acb == NULL);
2822 		hdr->b_acb = acb;
2823 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2824 
2825 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2826 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2827 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2828 			addr = hdr->b_l2hdr->b_daddr;
2829 			/*
2830 			 * Lock out device removal.
2831 			 */
2832 			if (vdev_is_dead(vd) ||
2833 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2834 				vd = NULL;
2835 		}
2836 
2837 		mutex_exit(hash_lock);
2838 
2839 		ASSERT3U(hdr->b_size, ==, size);
2840 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2841 		    uint64_t, size, zbookmark_t *, zb);
2842 		ARCSTAT_BUMP(arcstat_misses);
2843 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2844 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2845 		    data, metadata, misses);
2846 
2847 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2848 			/*
2849 			 * Read from the L2ARC if the following are true:
2850 			 * 1. The L2ARC vdev was previously cached.
2851 			 * 2. This buffer still has L2ARC metadata.
2852 			 * 3. This buffer isn't currently writing to the L2ARC.
2853 			 * 4. The L2ARC entry wasn't evicted, which may
2854 			 *    also have invalidated the vdev.
2855 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2856 			 */
2857 			if (hdr->b_l2hdr != NULL &&
2858 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2859 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2860 				l2arc_read_callback_t *cb;
2861 
2862 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2863 				ARCSTAT_BUMP(arcstat_l2_hits);
2864 
2865 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2866 				    KM_SLEEP);
2867 				cb->l2rcb_buf = buf;
2868 				cb->l2rcb_spa = spa;
2869 				cb->l2rcb_bp = *bp;
2870 				cb->l2rcb_zb = *zb;
2871 				cb->l2rcb_flags = zio_flags;
2872 
2873 				/*
2874 				 * l2arc read.  The SCL_L2ARC lock will be
2875 				 * released by l2arc_read_done().
2876 				 */
2877 				rzio = zio_read_phys(pio, vd, addr, size,
2878 				    buf->b_data, ZIO_CHECKSUM_OFF,
2879 				    l2arc_read_done, cb, priority, zio_flags |
2880 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2881 				    ZIO_FLAG_DONT_PROPAGATE |
2882 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2883 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2884 				    zio_t *, rzio);
2885 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2886 
2887 				if (*arc_flags & ARC_NOWAIT) {
2888 					zio_nowait(rzio);
2889 					return (0);
2890 				}
2891 
2892 				ASSERT(*arc_flags & ARC_WAIT);
2893 				if (zio_wait(rzio) == 0)
2894 					return (0);
2895 
2896 				/* l2arc read error; goto zio_read() */
2897 			} else {
2898 				DTRACE_PROBE1(l2arc__miss,
2899 				    arc_buf_hdr_t *, hdr);
2900 				ARCSTAT_BUMP(arcstat_l2_misses);
2901 				if (HDR_L2_WRITING(hdr))
2902 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2903 				spa_config_exit(spa, SCL_L2ARC, vd);
2904 			}
2905 		} else {
2906 			if (vd != NULL)
2907 				spa_config_exit(spa, SCL_L2ARC, vd);
2908 			if (l2arc_ndev != 0) {
2909 				DTRACE_PROBE1(l2arc__miss,
2910 				    arc_buf_hdr_t *, hdr);
2911 				ARCSTAT_BUMP(arcstat_l2_misses);
2912 			}
2913 		}
2914 
2915 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2916 		    arc_read_done, buf, priority, zio_flags, zb);
2917 
2918 		if (*arc_flags & ARC_WAIT)
2919 			return (zio_wait(rzio));
2920 
2921 		ASSERT(*arc_flags & ARC_NOWAIT);
2922 		zio_nowait(rzio);
2923 	}
2924 	return (0);
2925 }
2926 
2927 void
2928 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2929 {
2930 	ASSERT(buf->b_hdr != NULL);
2931 	ASSERT(buf->b_hdr->b_state != arc_anon);
2932 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2933 	ASSERT(buf->b_efunc == NULL);
2934 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2935 
2936 	buf->b_efunc = func;
2937 	buf->b_private = private;
2938 }
2939 
2940 /*
2941  * This is used by the DMU to let the ARC know that a buffer is
2942  * being evicted, so the ARC should clean up.  If this arc buf
2943  * is not yet in the evicted state, it will be put there.
2944  */
2945 int
2946 arc_buf_evict(arc_buf_t *buf)
2947 {
2948 	arc_buf_hdr_t *hdr;
2949 	kmutex_t *hash_lock;
2950 	arc_buf_t **bufp;
2951 
2952 	mutex_enter(&buf->b_evict_lock);
2953 	hdr = buf->b_hdr;
2954 	if (hdr == NULL) {
2955 		/*
2956 		 * We are in arc_do_user_evicts().
2957 		 */
2958 		ASSERT(buf->b_data == NULL);
2959 		mutex_exit(&buf->b_evict_lock);
2960 		return (0);
2961 	} else if (buf->b_data == NULL) {
2962 		arc_buf_t copy = *buf; /* structure assignment */
2963 		/*
2964 		 * We are on the eviction list; process this buffer now
2965 		 * but let arc_do_user_evicts() do the reaping.
2966 		 */
2967 		buf->b_efunc = NULL;
2968 		mutex_exit(&buf->b_evict_lock);
2969 		VERIFY(copy.b_efunc(&copy) == 0);
2970 		return (1);
2971 	}
2972 	hash_lock = HDR_LOCK(hdr);
2973 	mutex_enter(hash_lock);
2974 	hdr = buf->b_hdr;
2975 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2976 
2977 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2978 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2979 
2980 	/*
2981 	 * Pull this buffer off of the hdr
2982 	 */
2983 	bufp = &hdr->b_buf;
2984 	while (*bufp != buf)
2985 		bufp = &(*bufp)->b_next;
2986 	*bufp = buf->b_next;
2987 
2988 	ASSERT(buf->b_data != NULL);
2989 	arc_buf_destroy(buf, FALSE, FALSE);
2990 
2991 	if (hdr->b_datacnt == 0) {
2992 		arc_state_t *old_state = hdr->b_state;
2993 		arc_state_t *evicted_state;
2994 
2995 		ASSERT(hdr->b_buf == NULL);
2996 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2997 
2998 		evicted_state =
2999 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3000 
3001 		mutex_enter(&old_state->arcs_mtx);
3002 		mutex_enter(&evicted_state->arcs_mtx);
3003 
3004 		arc_change_state(evicted_state, hdr, hash_lock);
3005 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3006 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3007 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3008 
3009 		mutex_exit(&evicted_state->arcs_mtx);
3010 		mutex_exit(&old_state->arcs_mtx);
3011 	}
3012 	mutex_exit(hash_lock);
3013 	mutex_exit(&buf->b_evict_lock);
3014 
3015 	VERIFY(buf->b_efunc(buf) == 0);
3016 	buf->b_efunc = NULL;
3017 	buf->b_private = NULL;
3018 	buf->b_hdr = NULL;
3019 	buf->b_next = NULL;
3020 	kmem_cache_free(buf_cache, buf);
3021 	return (1);
3022 }
3023 
3024 /*
3025  * Release this buffer from the cache.  This must be done
3026  * after a read and prior to modifying the buffer contents.
3027  * If the buffer has more than one reference, we must make
3028  * a new hdr for the buffer.
3029  */
3030 void
3031 arc_release(arc_buf_t *buf, void *tag)
3032 {
3033 	arc_buf_hdr_t *hdr;
3034 	kmutex_t *hash_lock = NULL;
3035 	l2arc_buf_hdr_t *l2hdr;
3036 	uint64_t buf_size;
3037 
3038 	/*
3039 	 * It would be nice to assert that if it's DMU metadata (level >
3040 	 * 0 || it's the dnode file), then it must be syncing context.
3041 	 * But we don't know that information at this level.
3042 	 */
3043 
3044 	mutex_enter(&buf->b_evict_lock);
3045 	hdr = buf->b_hdr;
3046 
3047 	/* this buffer is not on any list */
3048 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3049 
3050 	if (hdr->b_state == arc_anon) {
3051 		/* this buffer is already released */
3052 		ASSERT(buf->b_efunc == NULL);
3053 	} else {
3054 		hash_lock = HDR_LOCK(hdr);
3055 		mutex_enter(hash_lock);
3056 		hdr = buf->b_hdr;
3057 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3058 	}
3059 
3060 	l2hdr = hdr->b_l2hdr;
3061 	if (l2hdr) {
3062 		mutex_enter(&l2arc_buflist_mtx);
3063 		hdr->b_l2hdr = NULL;
3064 		buf_size = hdr->b_size;
3065 	}
3066 
3067 	/*
3068 	 * Do we have more than one buf?
3069 	 */
3070 	if (hdr->b_datacnt > 1) {
3071 		arc_buf_hdr_t *nhdr;
3072 		arc_buf_t **bufp;
3073 		uint64_t blksz = hdr->b_size;
3074 		uint64_t spa = hdr->b_spa;
3075 		arc_buf_contents_t type = hdr->b_type;
3076 		uint32_t flags = hdr->b_flags;
3077 
3078 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3079 		/*
3080 		 * Pull the data off of this hdr and attach it to
3081 		 * a new anonymous hdr.
3082 		 */
3083 		(void) remove_reference(hdr, hash_lock, tag);
3084 		bufp = &hdr->b_buf;
3085 		while (*bufp != buf)
3086 			bufp = &(*bufp)->b_next;
3087 		*bufp = buf->b_next;
3088 		buf->b_next = NULL;
3089 
3090 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3091 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3092 		if (refcount_is_zero(&hdr->b_refcnt)) {
3093 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3094 			ASSERT3U(*size, >=, hdr->b_size);
3095 			atomic_add_64(size, -hdr->b_size);
3096 		}
3097 		hdr->b_datacnt -= 1;
3098 		arc_cksum_verify(buf);
3099 
3100 		mutex_exit(hash_lock);
3101 
3102 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3103 		nhdr->b_size = blksz;
3104 		nhdr->b_spa = spa;
3105 		nhdr->b_type = type;
3106 		nhdr->b_buf = buf;
3107 		nhdr->b_state = arc_anon;
3108 		nhdr->b_arc_access = 0;
3109 		nhdr->b_flags = flags & ARC_L2_WRITING;
3110 		nhdr->b_l2hdr = NULL;
3111 		nhdr->b_datacnt = 1;
3112 		nhdr->b_freeze_cksum = NULL;
3113 		(void) refcount_add(&nhdr->b_refcnt, tag);
3114 		buf->b_hdr = nhdr;
3115 		mutex_exit(&buf->b_evict_lock);
3116 		atomic_add_64(&arc_anon->arcs_size, blksz);
3117 	} else {
3118 		mutex_exit(&buf->b_evict_lock);
3119 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3120 		ASSERT(!list_link_active(&hdr->b_arc_node));
3121 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3122 		if (hdr->b_state != arc_anon)
3123 			arc_change_state(arc_anon, hdr, hash_lock);
3124 		hdr->b_arc_access = 0;
3125 		if (hash_lock)
3126 			mutex_exit(hash_lock);
3127 
3128 		buf_discard_identity(hdr);
3129 		arc_buf_thaw(buf);
3130 	}
3131 	buf->b_efunc = NULL;
3132 	buf->b_private = NULL;
3133 
3134 	if (l2hdr) {
3135 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3136 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3137 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3138 		mutex_exit(&l2arc_buflist_mtx);
3139 	}
3140 }
3141 
3142 /*
3143  * Release this buffer.  If it does not match the provided BP, fill it
3144  * with that block's contents.
3145  */
3146 /* ARGSUSED */
3147 int
3148 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3149     zbookmark_t *zb)
3150 {
3151 	arc_release(buf, tag);
3152 	return (0);
3153 }
3154 
3155 int
3156 arc_released(arc_buf_t *buf)
3157 {
3158 	int released;
3159 
3160 	mutex_enter(&buf->b_evict_lock);
3161 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3162 	mutex_exit(&buf->b_evict_lock);
3163 	return (released);
3164 }
3165 
3166 int
3167 arc_has_callback(arc_buf_t *buf)
3168 {
3169 	int callback;
3170 
3171 	mutex_enter(&buf->b_evict_lock);
3172 	callback = (buf->b_efunc != NULL);
3173 	mutex_exit(&buf->b_evict_lock);
3174 	return (callback);
3175 }
3176 
3177 #ifdef ZFS_DEBUG
3178 int
3179 arc_referenced(arc_buf_t *buf)
3180 {
3181 	int referenced;
3182 
3183 	mutex_enter(&buf->b_evict_lock);
3184 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3185 	mutex_exit(&buf->b_evict_lock);
3186 	return (referenced);
3187 }
3188 #endif
3189 
3190 static void
3191 arc_write_ready(zio_t *zio)
3192 {
3193 	arc_write_callback_t *callback = zio->io_private;
3194 	arc_buf_t *buf = callback->awcb_buf;
3195 	arc_buf_hdr_t *hdr = buf->b_hdr;
3196 
3197 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3198 	callback->awcb_ready(zio, buf, callback->awcb_private);
3199 
3200 	/*
3201 	 * If the IO is already in progress, then this is a re-write
3202 	 * attempt, so we need to thaw and re-compute the cksum.
3203 	 * It is the responsibility of the callback to handle the
3204 	 * accounting for any re-write attempt.
3205 	 */
3206 	if (HDR_IO_IN_PROGRESS(hdr)) {
3207 		mutex_enter(&hdr->b_freeze_lock);
3208 		if (hdr->b_freeze_cksum != NULL) {
3209 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3210 			hdr->b_freeze_cksum = NULL;
3211 		}
3212 		mutex_exit(&hdr->b_freeze_lock);
3213 	}
3214 	arc_cksum_compute(buf, B_FALSE);
3215 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3216 }
3217 
3218 static void
3219 arc_write_done(zio_t *zio)
3220 {
3221 	arc_write_callback_t *callback = zio->io_private;
3222 	arc_buf_t *buf = callback->awcb_buf;
3223 	arc_buf_hdr_t *hdr = buf->b_hdr;
3224 
3225 	ASSERT(hdr->b_acb == NULL);
3226 
3227 	if (zio->io_error == 0) {
3228 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3229 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3230 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3231 	} else {
3232 		ASSERT(BUF_EMPTY(hdr));
3233 	}
3234 
3235 	/*
3236 	 * If the block to be written was all-zero, we may have
3237 	 * compressed it away.  In this case no write was performed
3238 	 * so there will be no dva/birth/checksum.  The buffer must
3239 	 * therefore remain anonymous (and uncached).
3240 	 */
3241 	if (!BUF_EMPTY(hdr)) {
3242 		arc_buf_hdr_t *exists;
3243 		kmutex_t *hash_lock;
3244 
3245 		ASSERT(zio->io_error == 0);
3246 
3247 		arc_cksum_verify(buf);
3248 
3249 		exists = buf_hash_insert(hdr, &hash_lock);
3250 		if (exists) {
3251 			/*
3252 			 * This can only happen if we overwrite for
3253 			 * sync-to-convergence, because we remove
3254 			 * buffers from the hash table when we arc_free().
3255 			 */
3256 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3257 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3258 					panic("bad overwrite, hdr=%p exists=%p",
3259 					    (void *)hdr, (void *)exists);
3260 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3261 				arc_change_state(arc_anon, exists, hash_lock);
3262 				mutex_exit(hash_lock);
3263 				arc_hdr_destroy(exists);
3264 				exists = buf_hash_insert(hdr, &hash_lock);
3265 				ASSERT3P(exists, ==, NULL);
3266 			} else {
3267 				/* Dedup */
3268 				ASSERT(hdr->b_datacnt == 1);
3269 				ASSERT(hdr->b_state == arc_anon);
3270 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3271 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3272 			}
3273 		}
3274 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3275 		/* if it's not anon, we are doing a scrub */
3276 		if (!exists && hdr->b_state == arc_anon)
3277 			arc_access(hdr, hash_lock);
3278 		mutex_exit(hash_lock);
3279 	} else {
3280 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3281 	}
3282 
3283 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3284 	callback->awcb_done(zio, buf, callback->awcb_private);
3285 
3286 	kmem_free(callback, sizeof (arc_write_callback_t));
3287 }
3288 
3289 zio_t *
3290 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3291     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3292     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3293     int priority, int zio_flags, const zbookmark_t *zb)
3294 {
3295 	arc_buf_hdr_t *hdr = buf->b_hdr;
3296 	arc_write_callback_t *callback;
3297 	zio_t *zio;
3298 
3299 	ASSERT(ready != NULL);
3300 	ASSERT(done != NULL);
3301 	ASSERT(!HDR_IO_ERROR(hdr));
3302 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3303 	ASSERT(hdr->b_acb == NULL);
3304 	if (l2arc)
3305 		hdr->b_flags |= ARC_L2CACHE;
3306 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3307 	callback->awcb_ready = ready;
3308 	callback->awcb_done = done;
3309 	callback->awcb_private = private;
3310 	callback->awcb_buf = buf;
3311 
3312 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3313 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3314 
3315 	return (zio);
3316 }
3317 
3318 static int
3319 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3320 {
3321 #ifdef _KERNEL
3322 	uint64_t available_memory = ptob(freemem);
3323 	static uint64_t page_load = 0;
3324 	static uint64_t last_txg = 0;
3325 
3326 #if defined(__i386)
3327 	available_memory =
3328 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3329 #endif
3330 	if (available_memory >= zfs_write_limit_max)
3331 		return (0);
3332 
3333 	if (txg > last_txg) {
3334 		last_txg = txg;
3335 		page_load = 0;
3336 	}
3337 	/*
3338 	 * If we are in pageout, we know that memory is already tight,
3339 	 * the arc is already going to be evicting, so we just want to
3340 	 * continue to let page writes occur as quickly as possible.
3341 	 */
3342 	if (curproc == proc_pageout) {
3343 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3344 			return (ERESTART);
3345 		/* Note: reserve is inflated, so we deflate */
3346 		page_load += reserve / 8;
3347 		return (0);
3348 	} else if (page_load > 0 && arc_reclaim_needed()) {
3349 		/* memory is low, delay before restarting */
3350 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3351 		return (EAGAIN);
3352 	}
3353 	page_load = 0;
3354 
3355 	if (arc_size > arc_c_min) {
3356 		uint64_t evictable_memory =
3357 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3358 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3359 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3360 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3361 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3362 	}
3363 
3364 	if (inflight_data > available_memory / 4) {
3365 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3366 		return (ERESTART);
3367 	}
3368 #endif
3369 	return (0);
3370 }
3371 
3372 void
3373 arc_tempreserve_clear(uint64_t reserve)
3374 {
3375 	atomic_add_64(&arc_tempreserve, -reserve);
3376 	ASSERT((int64_t)arc_tempreserve >= 0);
3377 }
3378 
3379 int
3380 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3381 {
3382 	int error;
3383 	uint64_t anon_size;
3384 
3385 #ifdef ZFS_DEBUG
3386 	/*
3387 	 * Once in a while, fail for no reason.  Everything should cope.
3388 	 */
3389 	if (spa_get_random(10000) == 0) {
3390 		dprintf("forcing random failure\n");
3391 		return (ERESTART);
3392 	}
3393 #endif
3394 	if (reserve > arc_c/4 && !arc_no_grow)
3395 		arc_c = MIN(arc_c_max, reserve * 4);
3396 	if (reserve > arc_c)
3397 		return (ENOMEM);
3398 
3399 	/*
3400 	 * Don't count loaned bufs as in flight dirty data to prevent long
3401 	 * network delays from blocking transactions that are ready to be
3402 	 * assigned to a txg.
3403 	 */
3404 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3405 
3406 	/*
3407 	 * Writes will, almost always, require additional memory allocations
3408 	 * in order to compress/encrypt/etc the data.  We therefor need to
3409 	 * make sure that there is sufficient available memory for this.
3410 	 */
3411 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3412 		return (error);
3413 
3414 	/*
3415 	 * Throttle writes when the amount of dirty data in the cache
3416 	 * gets too large.  We try to keep the cache less than half full
3417 	 * of dirty blocks so that our sync times don't grow too large.
3418 	 * Note: if two requests come in concurrently, we might let them
3419 	 * both succeed, when one of them should fail.  Not a huge deal.
3420 	 */
3421 
3422 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3423 	    anon_size > arc_c / 4) {
3424 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3425 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3426 		    arc_tempreserve>>10,
3427 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3428 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3429 		    reserve>>10, arc_c>>10);
3430 		return (ERESTART);
3431 	}
3432 	atomic_add_64(&arc_tempreserve, reserve);
3433 	return (0);
3434 }
3435 
3436 void
3437 arc_init(void)
3438 {
3439 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3440 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3441 
3442 	/* Convert seconds to clock ticks */
3443 	arc_min_prefetch_lifespan = 1 * hz;
3444 
3445 	/* Start out with 1/8 of all memory */
3446 	arc_c = physmem * PAGESIZE / 8;
3447 
3448 #ifdef _KERNEL
3449 	/*
3450 	 * On architectures where the physical memory can be larger
3451 	 * than the addressable space (intel in 32-bit mode), we may
3452 	 * need to limit the cache to 1/8 of VM size.
3453 	 */
3454 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3455 #endif
3456 
3457 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3458 	arc_c_min = MAX(arc_c / 4, 64<<20);
3459 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3460 	if (arc_c * 8 >= 1<<30)
3461 		arc_c_max = (arc_c * 8) - (1<<30);
3462 	else
3463 		arc_c_max = arc_c_min;
3464 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3465 
3466 	/*
3467 	 * Allow the tunables to override our calculations if they are
3468 	 * reasonable (ie. over 64MB)
3469 	 */
3470 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3471 		arc_c_max = zfs_arc_max;
3472 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3473 		arc_c_min = zfs_arc_min;
3474 
3475 	arc_c = arc_c_max;
3476 	arc_p = (arc_c >> 1);
3477 
3478 	/* limit meta-data to 1/4 of the arc capacity */
3479 	arc_meta_limit = arc_c_max / 4;
3480 
3481 	/* Allow the tunable to override if it is reasonable */
3482 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3483 		arc_meta_limit = zfs_arc_meta_limit;
3484 
3485 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3486 		arc_c_min = arc_meta_limit / 2;
3487 
3488 	if (zfs_arc_grow_retry > 0)
3489 		arc_grow_retry = zfs_arc_grow_retry;
3490 
3491 	if (zfs_arc_shrink_shift > 0)
3492 		arc_shrink_shift = zfs_arc_shrink_shift;
3493 
3494 	if (zfs_arc_p_min_shift > 0)
3495 		arc_p_min_shift = zfs_arc_p_min_shift;
3496 
3497 	/* if kmem_flags are set, lets try to use less memory */
3498 	if (kmem_debugging())
3499 		arc_c = arc_c / 2;
3500 	if (arc_c < arc_c_min)
3501 		arc_c = arc_c_min;
3502 
3503 	arc_anon = &ARC_anon;
3504 	arc_mru = &ARC_mru;
3505 	arc_mru_ghost = &ARC_mru_ghost;
3506 	arc_mfu = &ARC_mfu;
3507 	arc_mfu_ghost = &ARC_mfu_ghost;
3508 	arc_l2c_only = &ARC_l2c_only;
3509 	arc_size = 0;
3510 
3511 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3512 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3513 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3514 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3515 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3516 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3517 
3518 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3519 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3520 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3521 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3522 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3523 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3524 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3525 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3526 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3527 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3528 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3529 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3530 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3531 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3532 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3533 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3534 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3535 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3536 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3537 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3538 
3539 	buf_init();
3540 
3541 	arc_thread_exit = 0;
3542 	arc_eviction_list = NULL;
3543 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3544 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3545 
3546 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3547 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3548 
3549 	if (arc_ksp != NULL) {
3550 		arc_ksp->ks_data = &arc_stats;
3551 		kstat_install(arc_ksp);
3552 	}
3553 
3554 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3555 	    TS_RUN, minclsyspri);
3556 
3557 	arc_dead = FALSE;
3558 	arc_warm = B_FALSE;
3559 
3560 	if (zfs_write_limit_max == 0)
3561 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3562 	else
3563 		zfs_write_limit_shift = 0;
3564 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3565 }
3566 
3567 void
3568 arc_fini(void)
3569 {
3570 	mutex_enter(&arc_reclaim_thr_lock);
3571 	arc_thread_exit = 1;
3572 	while (arc_thread_exit != 0)
3573 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3574 	mutex_exit(&arc_reclaim_thr_lock);
3575 
3576 	arc_flush(NULL);
3577 
3578 	arc_dead = TRUE;
3579 
3580 	if (arc_ksp != NULL) {
3581 		kstat_delete(arc_ksp);
3582 		arc_ksp = NULL;
3583 	}
3584 
3585 	mutex_destroy(&arc_eviction_mtx);
3586 	mutex_destroy(&arc_reclaim_thr_lock);
3587 	cv_destroy(&arc_reclaim_thr_cv);
3588 
3589 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3590 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3591 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3592 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3593 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3594 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3595 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3596 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3597 
3598 	mutex_destroy(&arc_anon->arcs_mtx);
3599 	mutex_destroy(&arc_mru->arcs_mtx);
3600 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3601 	mutex_destroy(&arc_mfu->arcs_mtx);
3602 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3603 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3604 
3605 	mutex_destroy(&zfs_write_limit_lock);
3606 
3607 	buf_fini();
3608 
3609 	ASSERT(arc_loaned_bytes == 0);
3610 }
3611 
3612 /*
3613  * Level 2 ARC
3614  *
3615  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3616  * It uses dedicated storage devices to hold cached data, which are populated
3617  * using large infrequent writes.  The main role of this cache is to boost
3618  * the performance of random read workloads.  The intended L2ARC devices
3619  * include short-stroked disks, solid state disks, and other media with
3620  * substantially faster read latency than disk.
3621  *
3622  *                 +-----------------------+
3623  *                 |         ARC           |
3624  *                 +-----------------------+
3625  *                    |         ^     ^
3626  *                    |         |     |
3627  *      l2arc_feed_thread()    arc_read()
3628  *                    |         |     |
3629  *                    |  l2arc read   |
3630  *                    V         |     |
3631  *               +---------------+    |
3632  *               |     L2ARC     |    |
3633  *               +---------------+    |
3634  *                   |    ^           |
3635  *          l2arc_write() |           |
3636  *                   |    |           |
3637  *                   V    |           |
3638  *                 +-------+      +-------+
3639  *                 | vdev  |      | vdev  |
3640  *                 | cache |      | cache |
3641  *                 +-------+      +-------+
3642  *                 +=========+     .-----.
3643  *                 :  L2ARC  :    |-_____-|
3644  *                 : devices :    | Disks |
3645  *                 +=========+    `-_____-'
3646  *
3647  * Read requests are satisfied from the following sources, in order:
3648  *
3649  *	1) ARC
3650  *	2) vdev cache of L2ARC devices
3651  *	3) L2ARC devices
3652  *	4) vdev cache of disks
3653  *	5) disks
3654  *
3655  * Some L2ARC device types exhibit extremely slow write performance.
3656  * To accommodate for this there are some significant differences between
3657  * the L2ARC and traditional cache design:
3658  *
3659  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3660  * the ARC behave as usual, freeing buffers and placing headers on ghost
3661  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3662  * this would add inflated write latencies for all ARC memory pressure.
3663  *
3664  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3665  * It does this by periodically scanning buffers from the eviction-end of
3666  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3667  * not already there.  It scans until a headroom of buffers is satisfied,
3668  * which itself is a buffer for ARC eviction.  The thread that does this is
3669  * l2arc_feed_thread(), illustrated below; example sizes are included to
3670  * provide a better sense of ratio than this diagram:
3671  *
3672  *	       head -->                        tail
3673  *	        +---------------------+----------+
3674  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3675  *	        +---------------------+----------+   |   o L2ARC eligible
3676  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3677  *	        +---------------------+----------+   |
3678  *	             15.9 Gbytes      ^ 32 Mbytes    |
3679  *	                           headroom          |
3680  *	                                      l2arc_feed_thread()
3681  *	                                             |
3682  *	                 l2arc write hand <--[oooo]--'
3683  *	                         |           8 Mbyte
3684  *	                         |          write max
3685  *	                         V
3686  *		  +==============================+
3687  *	L2ARC dev |####|#|###|###|    |####| ... |
3688  *	          +==============================+
3689  *	                     32 Gbytes
3690  *
3691  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3692  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3693  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3694  * safe to say that this is an uncommon case, since buffers at the end of
3695  * the ARC lists have moved there due to inactivity.
3696  *
3697  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3698  * then the L2ARC simply misses copying some buffers.  This serves as a
3699  * pressure valve to prevent heavy read workloads from both stalling the ARC
3700  * with waits and clogging the L2ARC with writes.  This also helps prevent
3701  * the potential for the L2ARC to churn if it attempts to cache content too
3702  * quickly, such as during backups of the entire pool.
3703  *
3704  * 5. After system boot and before the ARC has filled main memory, there are
3705  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3706  * lists can remain mostly static.  Instead of searching from tail of these
3707  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3708  * for eligible buffers, greatly increasing its chance of finding them.
3709  *
3710  * The L2ARC device write speed is also boosted during this time so that
3711  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3712  * there are no L2ARC reads, and no fear of degrading read performance
3713  * through increased writes.
3714  *
3715  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3716  * the vdev queue can aggregate them into larger and fewer writes.  Each
3717  * device is written to in a rotor fashion, sweeping writes through
3718  * available space then repeating.
3719  *
3720  * 7. The L2ARC does not store dirty content.  It never needs to flush
3721  * write buffers back to disk based storage.
3722  *
3723  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3724  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3725  *
3726  * The performance of the L2ARC can be tweaked by a number of tunables, which
3727  * may be necessary for different workloads:
3728  *
3729  *	l2arc_write_max		max write bytes per interval
3730  *	l2arc_write_boost	extra write bytes during device warmup
3731  *	l2arc_noprefetch	skip caching prefetched buffers
3732  *	l2arc_headroom		number of max device writes to precache
3733  *	l2arc_feed_secs		seconds between L2ARC writing
3734  *
3735  * Tunables may be removed or added as future performance improvements are
3736  * integrated, and also may become zpool properties.
3737  *
3738  * There are three key functions that control how the L2ARC warms up:
3739  *
3740  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3741  *	l2arc_write_size()	calculate how much to write
3742  *	l2arc_write_interval()	calculate sleep delay between writes
3743  *
3744  * These three functions determine what to write, how much, and how quickly
3745  * to send writes.
3746  */
3747 
3748 static boolean_t
3749 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3750 {
3751 	/*
3752 	 * A buffer is *not* eligible for the L2ARC if it:
3753 	 * 1. belongs to a different spa.
3754 	 * 2. is already cached on the L2ARC.
3755 	 * 3. has an I/O in progress (it may be an incomplete read).
3756 	 * 4. is flagged not eligible (zfs property).
3757 	 */
3758 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3759 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3760 		return (B_FALSE);
3761 
3762 	return (B_TRUE);
3763 }
3764 
3765 static uint64_t
3766 l2arc_write_size(l2arc_dev_t *dev)
3767 {
3768 	uint64_t size;
3769 
3770 	size = dev->l2ad_write;
3771 
3772 	if (arc_warm == B_FALSE)
3773 		size += dev->l2ad_boost;
3774 
3775 	return (size);
3776 
3777 }
3778 
3779 static clock_t
3780 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3781 {
3782 	clock_t interval, next, now;
3783 
3784 	/*
3785 	 * If the ARC lists are busy, increase our write rate; if the
3786 	 * lists are stale, idle back.  This is achieved by checking
3787 	 * how much we previously wrote - if it was more than half of
3788 	 * what we wanted, schedule the next write much sooner.
3789 	 */
3790 	if (l2arc_feed_again && wrote > (wanted / 2))
3791 		interval = (hz * l2arc_feed_min_ms) / 1000;
3792 	else
3793 		interval = hz * l2arc_feed_secs;
3794 
3795 	now = ddi_get_lbolt();
3796 	next = MAX(now, MIN(now + interval, began + interval));
3797 
3798 	return (next);
3799 }
3800 
3801 static void
3802 l2arc_hdr_stat_add(void)
3803 {
3804 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3805 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3806 }
3807 
3808 static void
3809 l2arc_hdr_stat_remove(void)
3810 {
3811 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3812 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3813 }
3814 
3815 /*
3816  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3817  * If a device is returned, this also returns holding the spa config lock.
3818  */
3819 static l2arc_dev_t *
3820 l2arc_dev_get_next(void)
3821 {
3822 	l2arc_dev_t *first, *next = NULL;
3823 
3824 	/*
3825 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3826 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3827 	 * both locks will be dropped and a spa config lock held instead.
3828 	 */
3829 	mutex_enter(&spa_namespace_lock);
3830 	mutex_enter(&l2arc_dev_mtx);
3831 
3832 	/* if there are no vdevs, there is nothing to do */
3833 	if (l2arc_ndev == 0)
3834 		goto out;
3835 
3836 	first = NULL;
3837 	next = l2arc_dev_last;
3838 	do {
3839 		/* loop around the list looking for a non-faulted vdev */
3840 		if (next == NULL) {
3841 			next = list_head(l2arc_dev_list);
3842 		} else {
3843 			next = list_next(l2arc_dev_list, next);
3844 			if (next == NULL)
3845 				next = list_head(l2arc_dev_list);
3846 		}
3847 
3848 		/* if we have come back to the start, bail out */
3849 		if (first == NULL)
3850 			first = next;
3851 		else if (next == first)
3852 			break;
3853 
3854 	} while (vdev_is_dead(next->l2ad_vdev));
3855 
3856 	/* if we were unable to find any usable vdevs, return NULL */
3857 	if (vdev_is_dead(next->l2ad_vdev))
3858 		next = NULL;
3859 
3860 	l2arc_dev_last = next;
3861 
3862 out:
3863 	mutex_exit(&l2arc_dev_mtx);
3864 
3865 	/*
3866 	 * Grab the config lock to prevent the 'next' device from being
3867 	 * removed while we are writing to it.
3868 	 */
3869 	if (next != NULL)
3870 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3871 	mutex_exit(&spa_namespace_lock);
3872 
3873 	return (next);
3874 }
3875 
3876 /*
3877  * Free buffers that were tagged for destruction.
3878  */
3879 static void
3880 l2arc_do_free_on_write()
3881 {
3882 	list_t *buflist;
3883 	l2arc_data_free_t *df, *df_prev;
3884 
3885 	mutex_enter(&l2arc_free_on_write_mtx);
3886 	buflist = l2arc_free_on_write;
3887 
3888 	for (df = list_tail(buflist); df; df = df_prev) {
3889 		df_prev = list_prev(buflist, df);
3890 		ASSERT(df->l2df_data != NULL);
3891 		ASSERT(df->l2df_func != NULL);
3892 		df->l2df_func(df->l2df_data, df->l2df_size);
3893 		list_remove(buflist, df);
3894 		kmem_free(df, sizeof (l2arc_data_free_t));
3895 	}
3896 
3897 	mutex_exit(&l2arc_free_on_write_mtx);
3898 }
3899 
3900 /*
3901  * A write to a cache device has completed.  Update all headers to allow
3902  * reads from these buffers to begin.
3903  */
3904 static void
3905 l2arc_write_done(zio_t *zio)
3906 {
3907 	l2arc_write_callback_t *cb;
3908 	l2arc_dev_t *dev;
3909 	list_t *buflist;
3910 	arc_buf_hdr_t *head, *ab, *ab_prev;
3911 	l2arc_buf_hdr_t *abl2;
3912 	kmutex_t *hash_lock;
3913 
3914 	cb = zio->io_private;
3915 	ASSERT(cb != NULL);
3916 	dev = cb->l2wcb_dev;
3917 	ASSERT(dev != NULL);
3918 	head = cb->l2wcb_head;
3919 	ASSERT(head != NULL);
3920 	buflist = dev->l2ad_buflist;
3921 	ASSERT(buflist != NULL);
3922 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3923 	    l2arc_write_callback_t *, cb);
3924 
3925 	if (zio->io_error != 0)
3926 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3927 
3928 	mutex_enter(&l2arc_buflist_mtx);
3929 
3930 	/*
3931 	 * All writes completed, or an error was hit.
3932 	 */
3933 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3934 		ab_prev = list_prev(buflist, ab);
3935 
3936 		hash_lock = HDR_LOCK(ab);
3937 		if (!mutex_tryenter(hash_lock)) {
3938 			/*
3939 			 * This buffer misses out.  It may be in a stage
3940 			 * of eviction.  Its ARC_L2_WRITING flag will be
3941 			 * left set, denying reads to this buffer.
3942 			 */
3943 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3944 			continue;
3945 		}
3946 
3947 		if (zio->io_error != 0) {
3948 			/*
3949 			 * Error - drop L2ARC entry.
3950 			 */
3951 			list_remove(buflist, ab);
3952 			abl2 = ab->b_l2hdr;
3953 			ab->b_l2hdr = NULL;
3954 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3955 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3956 		}
3957 
3958 		/*
3959 		 * Allow ARC to begin reads to this L2ARC entry.
3960 		 */
3961 		ab->b_flags &= ~ARC_L2_WRITING;
3962 
3963 		mutex_exit(hash_lock);
3964 	}
3965 
3966 	atomic_inc_64(&l2arc_writes_done);
3967 	list_remove(buflist, head);
3968 	kmem_cache_free(hdr_cache, head);
3969 	mutex_exit(&l2arc_buflist_mtx);
3970 
3971 	l2arc_do_free_on_write();
3972 
3973 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3974 }
3975 
3976 /*
3977  * A read to a cache device completed.  Validate buffer contents before
3978  * handing over to the regular ARC routines.
3979  */
3980 static void
3981 l2arc_read_done(zio_t *zio)
3982 {
3983 	l2arc_read_callback_t *cb;
3984 	arc_buf_hdr_t *hdr;
3985 	arc_buf_t *buf;
3986 	kmutex_t *hash_lock;
3987 	int equal;
3988 
3989 	ASSERT(zio->io_vd != NULL);
3990 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3991 
3992 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3993 
3994 	cb = zio->io_private;
3995 	ASSERT(cb != NULL);
3996 	buf = cb->l2rcb_buf;
3997 	ASSERT(buf != NULL);
3998 
3999 	hash_lock = HDR_LOCK(buf->b_hdr);
4000 	mutex_enter(hash_lock);
4001 	hdr = buf->b_hdr;
4002 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4003 
4004 	/*
4005 	 * Check this survived the L2ARC journey.
4006 	 */
4007 	equal = arc_cksum_equal(buf);
4008 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4009 		mutex_exit(hash_lock);
4010 		zio->io_private = buf;
4011 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4012 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4013 		arc_read_done(zio);
4014 	} else {
4015 		mutex_exit(hash_lock);
4016 		/*
4017 		 * Buffer didn't survive caching.  Increment stats and
4018 		 * reissue to the original storage device.
4019 		 */
4020 		if (zio->io_error != 0) {
4021 			ARCSTAT_BUMP(arcstat_l2_io_error);
4022 		} else {
4023 			zio->io_error = EIO;
4024 		}
4025 		if (!equal)
4026 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4027 
4028 		/*
4029 		 * If there's no waiter, issue an async i/o to the primary
4030 		 * storage now.  If there *is* a waiter, the caller must
4031 		 * issue the i/o in a context where it's OK to block.
4032 		 */
4033 		if (zio->io_waiter == NULL) {
4034 			zio_t *pio = zio_unique_parent(zio);
4035 
4036 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4037 
4038 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4039 			    buf->b_data, zio->io_size, arc_read_done, buf,
4040 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4041 		}
4042 	}
4043 
4044 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4045 }
4046 
4047 /*
4048  * This is the list priority from which the L2ARC will search for pages to
4049  * cache.  This is used within loops (0..3) to cycle through lists in the
4050  * desired order.  This order can have a significant effect on cache
4051  * performance.
4052  *
4053  * Currently the metadata lists are hit first, MFU then MRU, followed by
4054  * the data lists.  This function returns a locked list, and also returns
4055  * the lock pointer.
4056  */
4057 static list_t *
4058 l2arc_list_locked(int list_num, kmutex_t **lock)
4059 {
4060 	list_t *list;
4061 
4062 	ASSERT(list_num >= 0 && list_num <= 3);
4063 
4064 	switch (list_num) {
4065 	case 0:
4066 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4067 		*lock = &arc_mfu->arcs_mtx;
4068 		break;
4069 	case 1:
4070 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4071 		*lock = &arc_mru->arcs_mtx;
4072 		break;
4073 	case 2:
4074 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4075 		*lock = &arc_mfu->arcs_mtx;
4076 		break;
4077 	case 3:
4078 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4079 		*lock = &arc_mru->arcs_mtx;
4080 		break;
4081 	}
4082 
4083 	ASSERT(!(MUTEX_HELD(*lock)));
4084 	mutex_enter(*lock);
4085 	return (list);
4086 }
4087 
4088 /*
4089  * Evict buffers from the device write hand to the distance specified in
4090  * bytes.  This distance may span populated buffers, it may span nothing.
4091  * This is clearing a region on the L2ARC device ready for writing.
4092  * If the 'all' boolean is set, every buffer is evicted.
4093  */
4094 static void
4095 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4096 {
4097 	list_t *buflist;
4098 	l2arc_buf_hdr_t *abl2;
4099 	arc_buf_hdr_t *ab, *ab_prev;
4100 	kmutex_t *hash_lock;
4101 	uint64_t taddr;
4102 
4103 	buflist = dev->l2ad_buflist;
4104 
4105 	if (buflist == NULL)
4106 		return;
4107 
4108 	if (!all && dev->l2ad_first) {
4109 		/*
4110 		 * This is the first sweep through the device.  There is
4111 		 * nothing to evict.
4112 		 */
4113 		return;
4114 	}
4115 
4116 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4117 		/*
4118 		 * When nearing the end of the device, evict to the end
4119 		 * before the device write hand jumps to the start.
4120 		 */
4121 		taddr = dev->l2ad_end;
4122 	} else {
4123 		taddr = dev->l2ad_hand + distance;
4124 	}
4125 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4126 	    uint64_t, taddr, boolean_t, all);
4127 
4128 top:
4129 	mutex_enter(&l2arc_buflist_mtx);
4130 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4131 		ab_prev = list_prev(buflist, ab);
4132 
4133 		hash_lock = HDR_LOCK(ab);
4134 		if (!mutex_tryenter(hash_lock)) {
4135 			/*
4136 			 * Missed the hash lock.  Retry.
4137 			 */
4138 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4139 			mutex_exit(&l2arc_buflist_mtx);
4140 			mutex_enter(hash_lock);
4141 			mutex_exit(hash_lock);
4142 			goto top;
4143 		}
4144 
4145 		if (HDR_L2_WRITE_HEAD(ab)) {
4146 			/*
4147 			 * We hit a write head node.  Leave it for
4148 			 * l2arc_write_done().
4149 			 */
4150 			list_remove(buflist, ab);
4151 			mutex_exit(hash_lock);
4152 			continue;
4153 		}
4154 
4155 		if (!all && ab->b_l2hdr != NULL &&
4156 		    (ab->b_l2hdr->b_daddr > taddr ||
4157 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4158 			/*
4159 			 * We've evicted to the target address,
4160 			 * or the end of the device.
4161 			 */
4162 			mutex_exit(hash_lock);
4163 			break;
4164 		}
4165 
4166 		if (HDR_FREE_IN_PROGRESS(ab)) {
4167 			/*
4168 			 * Already on the path to destruction.
4169 			 */
4170 			mutex_exit(hash_lock);
4171 			continue;
4172 		}
4173 
4174 		if (ab->b_state == arc_l2c_only) {
4175 			ASSERT(!HDR_L2_READING(ab));
4176 			/*
4177 			 * This doesn't exist in the ARC.  Destroy.
4178 			 * arc_hdr_destroy() will call list_remove()
4179 			 * and decrement arcstat_l2_size.
4180 			 */
4181 			arc_change_state(arc_anon, ab, hash_lock);
4182 			arc_hdr_destroy(ab);
4183 		} else {
4184 			/*
4185 			 * Invalidate issued or about to be issued
4186 			 * reads, since we may be about to write
4187 			 * over this location.
4188 			 */
4189 			if (HDR_L2_READING(ab)) {
4190 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4191 				ab->b_flags |= ARC_L2_EVICTED;
4192 			}
4193 
4194 			/*
4195 			 * Tell ARC this no longer exists in L2ARC.
4196 			 */
4197 			if (ab->b_l2hdr != NULL) {
4198 				abl2 = ab->b_l2hdr;
4199 				ab->b_l2hdr = NULL;
4200 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4201 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4202 			}
4203 			list_remove(buflist, ab);
4204 
4205 			/*
4206 			 * This may have been leftover after a
4207 			 * failed write.
4208 			 */
4209 			ab->b_flags &= ~ARC_L2_WRITING;
4210 		}
4211 		mutex_exit(hash_lock);
4212 	}
4213 	mutex_exit(&l2arc_buflist_mtx);
4214 
4215 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4216 	dev->l2ad_evict = taddr;
4217 }
4218 
4219 /*
4220  * Find and write ARC buffers to the L2ARC device.
4221  *
4222  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4223  * for reading until they have completed writing.
4224  */
4225 static uint64_t
4226 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4227 {
4228 	arc_buf_hdr_t *ab, *ab_prev, *head;
4229 	l2arc_buf_hdr_t *hdrl2;
4230 	list_t *list;
4231 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4232 	void *buf_data;
4233 	kmutex_t *hash_lock, *list_lock;
4234 	boolean_t have_lock, full;
4235 	l2arc_write_callback_t *cb;
4236 	zio_t *pio, *wzio;
4237 	uint64_t guid = spa_guid(spa);
4238 
4239 	ASSERT(dev->l2ad_vdev != NULL);
4240 
4241 	pio = NULL;
4242 	write_sz = 0;
4243 	full = B_FALSE;
4244 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4245 	head->b_flags |= ARC_L2_WRITE_HEAD;
4246 
4247 	/*
4248 	 * Copy buffers for L2ARC writing.
4249 	 */
4250 	mutex_enter(&l2arc_buflist_mtx);
4251 	for (int try = 0; try <= 3; try++) {
4252 		list = l2arc_list_locked(try, &list_lock);
4253 		passed_sz = 0;
4254 
4255 		/*
4256 		 * L2ARC fast warmup.
4257 		 *
4258 		 * Until the ARC is warm and starts to evict, read from the
4259 		 * head of the ARC lists rather than the tail.
4260 		 */
4261 		headroom = target_sz * l2arc_headroom;
4262 		if (arc_warm == B_FALSE)
4263 			ab = list_head(list);
4264 		else
4265 			ab = list_tail(list);
4266 
4267 		for (; ab; ab = ab_prev) {
4268 			if (arc_warm == B_FALSE)
4269 				ab_prev = list_next(list, ab);
4270 			else
4271 				ab_prev = list_prev(list, ab);
4272 
4273 			hash_lock = HDR_LOCK(ab);
4274 			have_lock = MUTEX_HELD(hash_lock);
4275 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4276 				/*
4277 				 * Skip this buffer rather than waiting.
4278 				 */
4279 				continue;
4280 			}
4281 
4282 			passed_sz += ab->b_size;
4283 			if (passed_sz > headroom) {
4284 				/*
4285 				 * Searched too far.
4286 				 */
4287 				mutex_exit(hash_lock);
4288 				break;
4289 			}
4290 
4291 			if (!l2arc_write_eligible(guid, ab)) {
4292 				mutex_exit(hash_lock);
4293 				continue;
4294 			}
4295 
4296 			if ((write_sz + ab->b_size) > target_sz) {
4297 				full = B_TRUE;
4298 				mutex_exit(hash_lock);
4299 				break;
4300 			}
4301 
4302 			if (pio == NULL) {
4303 				/*
4304 				 * Insert a dummy header on the buflist so
4305 				 * l2arc_write_done() can find where the
4306 				 * write buffers begin without searching.
4307 				 */
4308 				list_insert_head(dev->l2ad_buflist, head);
4309 
4310 				cb = kmem_alloc(
4311 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4312 				cb->l2wcb_dev = dev;
4313 				cb->l2wcb_head = head;
4314 				pio = zio_root(spa, l2arc_write_done, cb,
4315 				    ZIO_FLAG_CANFAIL);
4316 			}
4317 
4318 			/*
4319 			 * Create and add a new L2ARC header.
4320 			 */
4321 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4322 			hdrl2->b_dev = dev;
4323 			hdrl2->b_daddr = dev->l2ad_hand;
4324 
4325 			ab->b_flags |= ARC_L2_WRITING;
4326 			ab->b_l2hdr = hdrl2;
4327 			list_insert_head(dev->l2ad_buflist, ab);
4328 			buf_data = ab->b_buf->b_data;
4329 			buf_sz = ab->b_size;
4330 
4331 			/*
4332 			 * Compute and store the buffer cksum before
4333 			 * writing.  On debug the cksum is verified first.
4334 			 */
4335 			arc_cksum_verify(ab->b_buf);
4336 			arc_cksum_compute(ab->b_buf, B_TRUE);
4337 
4338 			mutex_exit(hash_lock);
4339 
4340 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4341 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4342 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4343 			    ZIO_FLAG_CANFAIL, B_FALSE);
4344 
4345 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4346 			    zio_t *, wzio);
4347 			(void) zio_nowait(wzio);
4348 
4349 			/*
4350 			 * Keep the clock hand suitably device-aligned.
4351 			 */
4352 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4353 
4354 			write_sz += buf_sz;
4355 			dev->l2ad_hand += buf_sz;
4356 		}
4357 
4358 		mutex_exit(list_lock);
4359 
4360 		if (full == B_TRUE)
4361 			break;
4362 	}
4363 	mutex_exit(&l2arc_buflist_mtx);
4364 
4365 	if (pio == NULL) {
4366 		ASSERT3U(write_sz, ==, 0);
4367 		kmem_cache_free(hdr_cache, head);
4368 		return (0);
4369 	}
4370 
4371 	ASSERT3U(write_sz, <=, target_sz);
4372 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4373 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4374 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4375 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4376 
4377 	/*
4378 	 * Bump device hand to the device start if it is approaching the end.
4379 	 * l2arc_evict() will already have evicted ahead for this case.
4380 	 */
4381 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4382 		vdev_space_update(dev->l2ad_vdev,
4383 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4384 		dev->l2ad_hand = dev->l2ad_start;
4385 		dev->l2ad_evict = dev->l2ad_start;
4386 		dev->l2ad_first = B_FALSE;
4387 	}
4388 
4389 	dev->l2ad_writing = B_TRUE;
4390 	(void) zio_wait(pio);
4391 	dev->l2ad_writing = B_FALSE;
4392 
4393 	return (write_sz);
4394 }
4395 
4396 /*
4397  * This thread feeds the L2ARC at regular intervals.  This is the beating
4398  * heart of the L2ARC.
4399  */
4400 static void
4401 l2arc_feed_thread(void)
4402 {
4403 	callb_cpr_t cpr;
4404 	l2arc_dev_t *dev;
4405 	spa_t *spa;
4406 	uint64_t size, wrote;
4407 	clock_t begin, next = ddi_get_lbolt();
4408 
4409 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4410 
4411 	mutex_enter(&l2arc_feed_thr_lock);
4412 
4413 	while (l2arc_thread_exit == 0) {
4414 		CALLB_CPR_SAFE_BEGIN(&cpr);
4415 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4416 		    next);
4417 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4418 		next = ddi_get_lbolt() + hz;
4419 
4420 		/*
4421 		 * Quick check for L2ARC devices.
4422 		 */
4423 		mutex_enter(&l2arc_dev_mtx);
4424 		if (l2arc_ndev == 0) {
4425 			mutex_exit(&l2arc_dev_mtx);
4426 			continue;
4427 		}
4428 		mutex_exit(&l2arc_dev_mtx);
4429 		begin = ddi_get_lbolt();
4430 
4431 		/*
4432 		 * This selects the next l2arc device to write to, and in
4433 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4434 		 * will return NULL if there are now no l2arc devices or if
4435 		 * they are all faulted.
4436 		 *
4437 		 * If a device is returned, its spa's config lock is also
4438 		 * held to prevent device removal.  l2arc_dev_get_next()
4439 		 * will grab and release l2arc_dev_mtx.
4440 		 */
4441 		if ((dev = l2arc_dev_get_next()) == NULL)
4442 			continue;
4443 
4444 		spa = dev->l2ad_spa;
4445 		ASSERT(spa != NULL);
4446 
4447 		/*
4448 		 * If the pool is read-only then force the feed thread to
4449 		 * sleep a little longer.
4450 		 */
4451 		if (!spa_writeable(spa)) {
4452 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4453 			spa_config_exit(spa, SCL_L2ARC, dev);
4454 			continue;
4455 		}
4456 
4457 		/*
4458 		 * Avoid contributing to memory pressure.
4459 		 */
4460 		if (arc_reclaim_needed()) {
4461 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4462 			spa_config_exit(spa, SCL_L2ARC, dev);
4463 			continue;
4464 		}
4465 
4466 		ARCSTAT_BUMP(arcstat_l2_feeds);
4467 
4468 		size = l2arc_write_size(dev);
4469 
4470 		/*
4471 		 * Evict L2ARC buffers that will be overwritten.
4472 		 */
4473 		l2arc_evict(dev, size, B_FALSE);
4474 
4475 		/*
4476 		 * Write ARC buffers.
4477 		 */
4478 		wrote = l2arc_write_buffers(spa, dev, size);
4479 
4480 		/*
4481 		 * Calculate interval between writes.
4482 		 */
4483 		next = l2arc_write_interval(begin, size, wrote);
4484 		spa_config_exit(spa, SCL_L2ARC, dev);
4485 	}
4486 
4487 	l2arc_thread_exit = 0;
4488 	cv_broadcast(&l2arc_feed_thr_cv);
4489 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4490 	thread_exit();
4491 }
4492 
4493 boolean_t
4494 l2arc_vdev_present(vdev_t *vd)
4495 {
4496 	l2arc_dev_t *dev;
4497 
4498 	mutex_enter(&l2arc_dev_mtx);
4499 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4500 	    dev = list_next(l2arc_dev_list, dev)) {
4501 		if (dev->l2ad_vdev == vd)
4502 			break;
4503 	}
4504 	mutex_exit(&l2arc_dev_mtx);
4505 
4506 	return (dev != NULL);
4507 }
4508 
4509 /*
4510  * Add a vdev for use by the L2ARC.  By this point the spa has already
4511  * validated the vdev and opened it.
4512  */
4513 void
4514 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4515 {
4516 	l2arc_dev_t *adddev;
4517 
4518 	ASSERT(!l2arc_vdev_present(vd));
4519 
4520 	/*
4521 	 * Create a new l2arc device entry.
4522 	 */
4523 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4524 	adddev->l2ad_spa = spa;
4525 	adddev->l2ad_vdev = vd;
4526 	adddev->l2ad_write = l2arc_write_max;
4527 	adddev->l2ad_boost = l2arc_write_boost;
4528 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4529 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4530 	adddev->l2ad_hand = adddev->l2ad_start;
4531 	adddev->l2ad_evict = adddev->l2ad_start;
4532 	adddev->l2ad_first = B_TRUE;
4533 	adddev->l2ad_writing = B_FALSE;
4534 	ASSERT3U(adddev->l2ad_write, >, 0);
4535 
4536 	/*
4537 	 * This is a list of all ARC buffers that are still valid on the
4538 	 * device.
4539 	 */
4540 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4541 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4542 	    offsetof(arc_buf_hdr_t, b_l2node));
4543 
4544 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4545 
4546 	/*
4547 	 * Add device to global list
4548 	 */
4549 	mutex_enter(&l2arc_dev_mtx);
4550 	list_insert_head(l2arc_dev_list, adddev);
4551 	atomic_inc_64(&l2arc_ndev);
4552 	mutex_exit(&l2arc_dev_mtx);
4553 }
4554 
4555 /*
4556  * Remove a vdev from the L2ARC.
4557  */
4558 void
4559 l2arc_remove_vdev(vdev_t *vd)
4560 {
4561 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4562 
4563 	/*
4564 	 * Find the device by vdev
4565 	 */
4566 	mutex_enter(&l2arc_dev_mtx);
4567 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4568 		nextdev = list_next(l2arc_dev_list, dev);
4569 		if (vd == dev->l2ad_vdev) {
4570 			remdev = dev;
4571 			break;
4572 		}
4573 	}
4574 	ASSERT(remdev != NULL);
4575 
4576 	/*
4577 	 * Remove device from global list
4578 	 */
4579 	list_remove(l2arc_dev_list, remdev);
4580 	l2arc_dev_last = NULL;		/* may have been invalidated */
4581 	atomic_dec_64(&l2arc_ndev);
4582 	mutex_exit(&l2arc_dev_mtx);
4583 
4584 	/*
4585 	 * Clear all buflists and ARC references.  L2ARC device flush.
4586 	 */
4587 	l2arc_evict(remdev, 0, B_TRUE);
4588 	list_destroy(remdev->l2ad_buflist);
4589 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4590 	kmem_free(remdev, sizeof (l2arc_dev_t));
4591 }
4592 
4593 void
4594 l2arc_init(void)
4595 {
4596 	l2arc_thread_exit = 0;
4597 	l2arc_ndev = 0;
4598 	l2arc_writes_sent = 0;
4599 	l2arc_writes_done = 0;
4600 
4601 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4602 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4603 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4604 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4605 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4606 
4607 	l2arc_dev_list = &L2ARC_dev_list;
4608 	l2arc_free_on_write = &L2ARC_free_on_write;
4609 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4610 	    offsetof(l2arc_dev_t, l2ad_node));
4611 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4612 	    offsetof(l2arc_data_free_t, l2df_list_node));
4613 }
4614 
4615 void
4616 l2arc_fini(void)
4617 {
4618 	/*
4619 	 * This is called from dmu_fini(), which is called from spa_fini();
4620 	 * Because of this, we can assume that all l2arc devices have
4621 	 * already been removed when the pools themselves were removed.
4622 	 */
4623 
4624 	l2arc_do_free_on_write();
4625 
4626 	mutex_destroy(&l2arc_feed_thr_lock);
4627 	cv_destroy(&l2arc_feed_thr_cv);
4628 	mutex_destroy(&l2arc_dev_mtx);
4629 	mutex_destroy(&l2arc_buflist_mtx);
4630 	mutex_destroy(&l2arc_free_on_write_mtx);
4631 
4632 	list_destroy(l2arc_dev_list);
4633 	list_destroy(l2arc_free_on_write);
4634 }
4635 
4636 void
4637 l2arc_start(void)
4638 {
4639 	if (!(spa_mode_global & FWRITE))
4640 		return;
4641 
4642 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4643 	    TS_RUN, minclsyspri);
4644 }
4645 
4646 void
4647 l2arc_stop(void)
4648 {
4649 	if (!(spa_mode_global & FWRITE))
4650 		return;
4651 
4652 	mutex_enter(&l2arc_feed_thr_lock);
4653 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4654 	l2arc_thread_exit = 1;
4655 	while (l2arc_thread_exit != 0)
4656 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4657 	mutex_exit(&l2arc_feed_thr_lock);
4658 }
4659