1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 14 * Copyright (c) 2016 by Delphix. All rights reserved. 15 */ 16 17 /* 18 * ARC buffer data (ABD). 19 * 20 * ABDs are an abstract data structure for the ARC which can use two 21 * different ways of storing the underlying data: 22 * 23 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 24 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 25 * 26 * +-------------------+ 27 * | ABD (linear) | 28 * | abd_flags = ... | 29 * | abd_size = ... | +--------------------------------+ 30 * | abd_buf ------------->| raw buffer of size abd_size | 31 * +-------------------+ +--------------------------------+ 32 * no abd_chunks 33 * 34 * (b) Scattered buffer. In this case, the data in the ABD is split into 35 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 36 * to the chunks recorded in an array at the end of the ABD structure. 37 * 38 * +-------------------+ 39 * | ABD (scattered) | 40 * | abd_flags = ... | 41 * | abd_size = ... | 42 * | abd_offset = 0 | +-----------+ 43 * | abd_chunks[0] ----------------------------->| chunk 0 | 44 * | abd_chunks[1] ---------------------+ +-----------+ 45 * | ... | | +-----------+ 46 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 47 * +-------------------+ | +-----------+ 48 * | ... 49 * | +-----------+ 50 * +----------------->| chunk N-1 | 51 * +-----------+ 52 * 53 * Using a large proportion of scattered ABDs decreases ARC fragmentation since 54 * when we are at the limit of allocatable space, using equal-size chunks will 55 * allow us to quickly reclaim enough space for a new large allocation (assuming 56 * it is also scattered). 57 * 58 * In addition to directly allocating a linear or scattered ABD, it is also 59 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 60 * within an existing ABD. In linear buffers this is simple (set abd_buf of 61 * the new ABD to the starting point within the original raw buffer), but 62 * scattered ABDs are a little more complex. The new ABD makes a copy of the 63 * relevant abd_chunks pointers (but not the underlying data). However, to 64 * provide arbitrary rather than only chunk-aligned starting offsets, it also 65 * tracks an abd_offset field which represents the starting point of the data 66 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 67 * creating an offset ABD marks the original ABD as the offset's parent, and the 68 * original ABD's abd_children refcount is incremented. This data allows us to 69 * ensure the root ABD isn't deleted before its children. 70 * 71 * Most consumers should never need to know what type of ABD they're using -- 72 * the ABD public API ensures that it's possible to transparently switch from 73 * using a linear ABD to a scattered one when doing so would be beneficial. 74 * 75 * If you need to use the data within an ABD directly, if you know it's linear 76 * (because you allocated it) you can use abd_to_buf() to access the underlying 77 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 78 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 79 * functions to return any raw buffers that are no longer necessary when you're 80 * done using them. 81 * 82 * There are a variety of ABD APIs that implement basic buffer operations: 83 * compare, copy, read, write, and fill with zeroes. If you need a custom 84 * function which progressively accesses the whole ABD, use the abd_iterate_* 85 * functions. 86 */ 87 88 #include <sys/abd.h> 89 #include <sys/param.h> 90 #include <sys/zio.h> 91 #include <sys/zfs_context.h> 92 #include <sys/zfs_znode.h> 93 94 typedef struct abd_stats { 95 kstat_named_t abdstat_struct_size; 96 kstat_named_t abdstat_scatter_cnt; 97 kstat_named_t abdstat_scatter_data_size; 98 kstat_named_t abdstat_scatter_chunk_waste; 99 kstat_named_t abdstat_linear_cnt; 100 kstat_named_t abdstat_linear_data_size; 101 } abd_stats_t; 102 103 static abd_stats_t abd_stats = { 104 /* Amount of memory occupied by all of the abd_t struct allocations */ 105 { "struct_size", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of scatter ABDs which are currently allocated, excluding 108 * ABDs which don't own their data (for instance the ones which were 109 * allocated through abd_get_offset()). 110 */ 111 { "scatter_cnt", KSTAT_DATA_UINT64 }, 112 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 113 { "scatter_data_size", KSTAT_DATA_UINT64 }, 114 /* 115 * The amount of space wasted at the end of the last chunk across all 116 * scatter ABDs tracked by scatter_cnt. 117 */ 118 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 119 /* 120 * The number of linear ABDs which are currently allocated, excluding 121 * ABDs which don't own their data (for instance the ones which were 122 * allocated through abd_get_offset() and abd_get_from_buf()). If an 123 * ABD takes ownership of its buf then it will become tracked. 124 */ 125 { "linear_cnt", KSTAT_DATA_UINT64 }, 126 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 127 { "linear_data_size", KSTAT_DATA_UINT64 }, 128 }; 129 130 #define ABDSTAT(stat) (abd_stats.stat.value.ui64) 131 #define ABDSTAT_INCR(stat, val) \ 132 atomic_add_64(&abd_stats.stat.value.ui64, (val)) 133 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1) 134 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1) 135 136 /* 137 * It is possible to make all future ABDs be linear by setting this to B_FALSE. 138 * Otherwise, ABDs are allocated scattered by default unless the caller uses 139 * abd_alloc_linear(). 140 */ 141 boolean_t zfs_abd_scatter_enabled = B_TRUE; 142 143 /* 144 * The size of the chunks ABD allocates. Because the sizes allocated from the 145 * kmem_cache can't change, this tunable can only be modified at boot. Changing 146 * it at runtime would cause ABD iteration to work incorrectly for ABDs which 147 * were allocated with the old size, so a safeguard has been put in place which 148 * will cause the machine to panic if you change it and try to access the data 149 * within a scattered ABD. 150 */ 151 size_t zfs_abd_chunk_size = 4096; 152 153 #ifdef _KERNEL 154 extern vmem_t *zio_alloc_arena; 155 #endif 156 157 kmem_cache_t *abd_chunk_cache; 158 static kstat_t *abd_ksp; 159 160 extern inline boolean_t abd_is_linear(abd_t *abd); 161 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size); 162 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size); 163 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size); 164 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size); 165 extern inline void abd_zero(abd_t *abd, size_t size); 166 167 static void * 168 abd_alloc_chunk() 169 { 170 void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE); 171 ASSERT3P(c, !=, NULL); 172 return (c); 173 } 174 175 static void 176 abd_free_chunk(void *c) 177 { 178 kmem_cache_free(abd_chunk_cache, c); 179 } 180 181 void 182 abd_init(void) 183 { 184 vmem_t *data_alloc_arena = NULL; 185 186 #ifdef _KERNEL 187 data_alloc_arena = zio_alloc_arena; 188 #endif 189 190 /* 191 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH 192 * so that no allocator metadata is stored with the buffers. 193 */ 194 abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0, 195 NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH); 196 197 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 198 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 199 if (abd_ksp != NULL) { 200 abd_ksp->ks_data = &abd_stats; 201 kstat_install(abd_ksp); 202 } 203 } 204 205 void 206 abd_fini(void) 207 { 208 if (abd_ksp != NULL) { 209 kstat_delete(abd_ksp); 210 abd_ksp = NULL; 211 } 212 213 kmem_cache_destroy(abd_chunk_cache); 214 abd_chunk_cache = NULL; 215 } 216 217 static inline size_t 218 abd_chunkcnt_for_bytes(size_t size) 219 { 220 return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size); 221 } 222 223 static inline size_t 224 abd_scatter_chunkcnt(abd_t *abd) 225 { 226 ASSERT(!abd_is_linear(abd)); 227 return (abd_chunkcnt_for_bytes( 228 abd->abd_u.abd_scatter.abd_offset + abd->abd_size)); 229 } 230 231 static inline void 232 abd_verify(abd_t *abd) 233 { 234 ASSERT3U(abd->abd_size, >, 0); 235 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 236 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 237 ABD_FLAG_OWNER | ABD_FLAG_META)); 238 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 239 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 240 if (abd_is_linear(abd)) { 241 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL); 242 } else { 243 ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <, 244 zfs_abd_chunk_size); 245 size_t n = abd_scatter_chunkcnt(abd); 246 for (int i = 0; i < n; i++) { 247 ASSERT3P( 248 abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL); 249 } 250 } 251 } 252 253 static inline abd_t * 254 abd_alloc_struct(size_t chunkcnt) 255 { 256 size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 257 abd_t *abd = kmem_alloc(size, KM_PUSHPAGE); 258 ASSERT3P(abd, !=, NULL); 259 ABDSTAT_INCR(abdstat_struct_size, size); 260 261 return (abd); 262 } 263 264 static inline void 265 abd_free_struct(abd_t *abd) 266 { 267 size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); 268 int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 269 kmem_free(abd, size); 270 ABDSTAT_INCR(abdstat_struct_size, -size); 271 } 272 273 /* 274 * Allocate an ABD, along with its own underlying data buffers. Use this if you 275 * don't care whether the ABD is linear or not. 276 */ 277 abd_t * 278 abd_alloc(size_t size, boolean_t is_metadata) 279 { 280 if (!zfs_abd_scatter_enabled) 281 return (abd_alloc_linear(size, is_metadata)); 282 283 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 284 285 size_t n = abd_chunkcnt_for_bytes(size); 286 abd_t *abd = abd_alloc_struct(n); 287 288 abd->abd_flags = ABD_FLAG_OWNER; 289 if (is_metadata) { 290 abd->abd_flags |= ABD_FLAG_META; 291 } 292 abd->abd_size = size; 293 abd->abd_parent = NULL; 294 zfs_refcount_create(&abd->abd_children); 295 296 abd->abd_u.abd_scatter.abd_offset = 0; 297 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 298 299 for (int i = 0; i < n; i++) { 300 void *c = abd_alloc_chunk(); 301 ASSERT3P(c, !=, NULL); 302 abd->abd_u.abd_scatter.abd_chunks[i] = c; 303 } 304 305 ABDSTAT_BUMP(abdstat_scatter_cnt); 306 ABDSTAT_INCR(abdstat_scatter_data_size, size); 307 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 308 n * zfs_abd_chunk_size - size); 309 310 return (abd); 311 } 312 313 static void 314 abd_free_scatter(abd_t *abd) 315 { 316 size_t n = abd_scatter_chunkcnt(abd); 317 for (int i = 0; i < n; i++) { 318 abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]); 319 } 320 321 zfs_refcount_destroy(&abd->abd_children); 322 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 323 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 324 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 325 abd->abd_size - n * zfs_abd_chunk_size); 326 327 abd_free_struct(abd); 328 } 329 330 /* 331 * Allocate an ABD that must be linear, along with its own underlying data 332 * buffer. Only use this when it would be very annoying to write your ABD 333 * consumer with a scattered ABD. 334 */ 335 abd_t * 336 abd_alloc_linear(size_t size, boolean_t is_metadata) 337 { 338 abd_t *abd = abd_alloc_struct(0); 339 340 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 341 342 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 343 if (is_metadata) { 344 abd->abd_flags |= ABD_FLAG_META; 345 } 346 abd->abd_size = size; 347 abd->abd_parent = NULL; 348 zfs_refcount_create(&abd->abd_children); 349 350 if (is_metadata) { 351 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size); 352 } else { 353 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size); 354 } 355 356 ABDSTAT_BUMP(abdstat_linear_cnt); 357 ABDSTAT_INCR(abdstat_linear_data_size, size); 358 359 return (abd); 360 } 361 362 static void 363 abd_free_linear(abd_t *abd) 364 { 365 if (abd->abd_flags & ABD_FLAG_META) { 366 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 367 } else { 368 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 369 } 370 371 zfs_refcount_destroy(&abd->abd_children); 372 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 373 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 374 375 abd_free_struct(abd); 376 } 377 378 /* 379 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or 380 * abd_alloc_linear(). 381 */ 382 void 383 abd_free(abd_t *abd) 384 { 385 abd_verify(abd); 386 ASSERT3P(abd->abd_parent, ==, NULL); 387 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 388 if (abd_is_linear(abd)) 389 abd_free_linear(abd); 390 else 391 abd_free_scatter(abd); 392 } 393 394 /* 395 * Allocate an ABD of the same format (same metadata flag, same scatterize 396 * setting) as another ABD. 397 */ 398 abd_t * 399 abd_alloc_sametype(abd_t *sabd, size_t size) 400 { 401 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 402 if (abd_is_linear(sabd)) { 403 return (abd_alloc_linear(size, is_metadata)); 404 } else { 405 return (abd_alloc(size, is_metadata)); 406 } 407 } 408 409 /* 410 * If we're going to use this ABD for doing I/O using the block layer, the 411 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 412 * plan to store this ABD in memory for a long period of time, we should 413 * allocate the ABD type that requires the least data copying to do the I/O. 414 * 415 * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os 416 * using a scatter/gather list we should switch to that and replace this call 417 * with vanilla abd_alloc(). 418 */ 419 abd_t * 420 abd_alloc_for_io(size_t size, boolean_t is_metadata) 421 { 422 return (abd_alloc_linear(size, is_metadata)); 423 } 424 425 /* 426 * Allocate a new ABD to point to offset off of sabd. It shares the underlying 427 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while 428 * any derived ABDs exist. 429 */ 430 /* ARGSUSED */ 431 static inline abd_t * 432 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size) 433 { 434 abd_t *abd; 435 436 abd_verify(sabd); 437 ASSERT3U(off, <=, sabd->abd_size); 438 439 if (abd_is_linear(sabd)) { 440 abd = abd_alloc_struct(0); 441 442 /* 443 * Even if this buf is filesystem metadata, we only track that 444 * if we own the underlying data buffer, which is not true in 445 * this case. Therefore, we don't ever use ABD_FLAG_META here. 446 */ 447 abd->abd_flags = ABD_FLAG_LINEAR; 448 449 abd->abd_u.abd_linear.abd_buf = 450 (char *)sabd->abd_u.abd_linear.abd_buf + off; 451 } else { 452 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off; 453 size_t chunkcnt = abd_scatter_chunkcnt(sabd) - 454 (new_offset / zfs_abd_chunk_size); 455 456 abd = abd_alloc_struct(chunkcnt); 457 458 /* 459 * Even if this buf is filesystem metadata, we only track that 460 * if we own the underlying data buffer, which is not true in 461 * this case. Therefore, we don't ever use ABD_FLAG_META here. 462 */ 463 abd->abd_flags = 0; 464 465 abd->abd_u.abd_scatter.abd_offset = 466 new_offset % zfs_abd_chunk_size; 467 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 468 469 /* Copy the scatterlist starting at the correct offset */ 470 (void) memcpy(&abd->abd_u.abd_scatter.abd_chunks, 471 &sabd->abd_u.abd_scatter.abd_chunks[new_offset / 472 zfs_abd_chunk_size], 473 chunkcnt * sizeof (void *)); 474 } 475 476 abd->abd_size = sabd->abd_size - off; 477 abd->abd_parent = sabd; 478 zfs_refcount_create(&abd->abd_children); 479 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 480 481 return (abd); 482 } 483 484 abd_t * 485 abd_get_offset(abd_t *sabd, size_t off) 486 { 487 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 488 489 VERIFY3U(size, >, 0); 490 491 return (abd_get_offset_impl(sabd, off, size)); 492 } 493 494 abd_t * 495 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 496 { 497 ASSERT3U(off + size, <=, sabd->abd_size); 498 499 return (abd_get_offset_impl(sabd, off, size)); 500 } 501 502 503 /* 504 * Allocate a linear ABD structure for buf. You must free this with abd_put() 505 * since the resulting ABD doesn't own its own buffer. 506 */ 507 abd_t * 508 abd_get_from_buf(void *buf, size_t size) 509 { 510 abd_t *abd = abd_alloc_struct(0); 511 512 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 513 514 /* 515 * Even if this buf is filesystem metadata, we only track that if we 516 * own the underlying data buffer, which is not true in this case. 517 * Therefore, we don't ever use ABD_FLAG_META here. 518 */ 519 abd->abd_flags = ABD_FLAG_LINEAR; 520 abd->abd_size = size; 521 abd->abd_parent = NULL; 522 zfs_refcount_create(&abd->abd_children); 523 524 abd->abd_u.abd_linear.abd_buf = buf; 525 526 return (abd); 527 } 528 529 /* 530 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not 531 * free the underlying scatterlist or buffer. 532 */ 533 void 534 abd_put(abd_t *abd) 535 { 536 abd_verify(abd); 537 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 538 539 if (abd->abd_parent != NULL) { 540 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 541 abd->abd_size, abd); 542 } 543 544 zfs_refcount_destroy(&abd->abd_children); 545 abd_free_struct(abd); 546 } 547 548 /* 549 * Get the raw buffer associated with a linear ABD. 550 */ 551 void * 552 abd_to_buf(abd_t *abd) 553 { 554 ASSERT(abd_is_linear(abd)); 555 abd_verify(abd); 556 return (abd->abd_u.abd_linear.abd_buf); 557 } 558 559 /* 560 * Borrow a raw buffer from an ABD without copying the contents of the ABD 561 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 562 * whose contents are undefined. To copy over the existing data in the ABD, use 563 * abd_borrow_buf_copy() instead. 564 */ 565 void * 566 abd_borrow_buf(abd_t *abd, size_t n) 567 { 568 void *buf; 569 abd_verify(abd); 570 ASSERT3U(abd->abd_size, >=, n); 571 if (abd_is_linear(abd)) { 572 buf = abd_to_buf(abd); 573 } else { 574 buf = zio_buf_alloc(n); 575 } 576 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 577 578 return (buf); 579 } 580 581 void * 582 abd_borrow_buf_copy(abd_t *abd, size_t n) 583 { 584 void *buf = abd_borrow_buf(abd, n); 585 if (!abd_is_linear(abd)) { 586 abd_copy_to_buf(buf, abd, n); 587 } 588 return (buf); 589 } 590 591 /* 592 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 593 * not change the contents of the ABD and will ASSERT that you didn't modify 594 * the buffer since it was borrowed. If you want any changes you made to buf to 595 * be copied back to abd, use abd_return_buf_copy() instead. 596 */ 597 void 598 abd_return_buf(abd_t *abd, void *buf, size_t n) 599 { 600 abd_verify(abd); 601 ASSERT3U(abd->abd_size, >=, n); 602 if (abd_is_linear(abd)) { 603 ASSERT3P(buf, ==, abd_to_buf(abd)); 604 } else { 605 ASSERT0(abd_cmp_buf(abd, buf, n)); 606 zio_buf_free(buf, n); 607 } 608 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 609 } 610 611 void 612 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 613 { 614 if (!abd_is_linear(abd)) { 615 abd_copy_from_buf(abd, buf, n); 616 } 617 abd_return_buf(abd, buf, n); 618 } 619 620 /* 621 * Give this ABD ownership of the buffer that it's storing. Can only be used on 622 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 623 * with abd_alloc_linear() which subsequently released ownership of their buf 624 * with abd_release_ownership_of_buf(). 625 */ 626 void 627 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 628 { 629 ASSERT(abd_is_linear(abd)); 630 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 631 abd_verify(abd); 632 633 abd->abd_flags |= ABD_FLAG_OWNER; 634 if (is_metadata) { 635 abd->abd_flags |= ABD_FLAG_META; 636 } 637 638 ABDSTAT_BUMP(abdstat_linear_cnt); 639 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 640 } 641 642 void 643 abd_release_ownership_of_buf(abd_t *abd) 644 { 645 ASSERT(abd_is_linear(abd)); 646 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 647 abd_verify(abd); 648 649 abd->abd_flags &= ~ABD_FLAG_OWNER; 650 /* Disable this flag since we no longer own the data buffer */ 651 abd->abd_flags &= ~ABD_FLAG_META; 652 653 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 654 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 655 } 656 657 struct abd_iter { 658 abd_t *iter_abd; /* ABD being iterated through */ 659 size_t iter_pos; /* position (relative to abd_offset) */ 660 void *iter_mapaddr; /* addr corresponding to iter_pos */ 661 size_t iter_mapsize; /* length of data valid at mapaddr */ 662 }; 663 664 static inline size_t 665 abd_iter_scatter_chunk_offset(struct abd_iter *aiter) 666 { 667 ASSERT(!abd_is_linear(aiter->iter_abd)); 668 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 669 aiter->iter_pos) % zfs_abd_chunk_size); 670 } 671 672 static inline size_t 673 abd_iter_scatter_chunk_index(struct abd_iter *aiter) 674 { 675 ASSERT(!abd_is_linear(aiter->iter_abd)); 676 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 677 aiter->iter_pos) / zfs_abd_chunk_size); 678 } 679 680 /* 681 * Initialize the abd_iter. 682 */ 683 static void 684 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 685 { 686 abd_verify(abd); 687 aiter->iter_abd = abd; 688 aiter->iter_pos = 0; 689 aiter->iter_mapaddr = NULL; 690 aiter->iter_mapsize = 0; 691 } 692 693 /* 694 * Advance the iterator by a certain amount. Cannot be called when a chunk is 695 * in use. This can be safely called when the aiter has already exhausted, in 696 * which case this does nothing. 697 */ 698 static void 699 abd_iter_advance(struct abd_iter *aiter, size_t amount) 700 { 701 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 702 ASSERT0(aiter->iter_mapsize); 703 704 /* There's nothing left to advance to, so do nothing */ 705 if (aiter->iter_pos == aiter->iter_abd->abd_size) 706 return; 707 708 aiter->iter_pos += amount; 709 } 710 711 /* 712 * Map the current chunk into aiter. This can be safely called when the aiter 713 * has already exhausted, in which case this does nothing. 714 */ 715 static void 716 abd_iter_map(struct abd_iter *aiter) 717 { 718 void *paddr; 719 size_t offset = 0; 720 721 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 722 ASSERT0(aiter->iter_mapsize); 723 724 /* Panic if someone has changed zfs_abd_chunk_size */ 725 IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size == 726 aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size); 727 728 /* There's nothing left to iterate over, so do nothing */ 729 if (aiter->iter_pos == aiter->iter_abd->abd_size) 730 return; 731 732 if (abd_is_linear(aiter->iter_abd)) { 733 offset = aiter->iter_pos; 734 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 735 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf; 736 } else { 737 size_t index = abd_iter_scatter_chunk_index(aiter); 738 offset = abd_iter_scatter_chunk_offset(aiter); 739 aiter->iter_mapsize = zfs_abd_chunk_size - offset; 740 paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]; 741 } 742 aiter->iter_mapaddr = (char *)paddr + offset; 743 } 744 745 /* 746 * Unmap the current chunk from aiter. This can be safely called when the aiter 747 * has already exhausted, in which case this does nothing. 748 */ 749 static void 750 abd_iter_unmap(struct abd_iter *aiter) 751 { 752 /* There's nothing left to unmap, so do nothing */ 753 if (aiter->iter_pos == aiter->iter_abd->abd_size) 754 return; 755 756 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 757 ASSERT3U(aiter->iter_mapsize, >, 0); 758 759 aiter->iter_mapaddr = NULL; 760 aiter->iter_mapsize = 0; 761 } 762 763 int 764 abd_iterate_func(abd_t *abd, size_t off, size_t size, 765 abd_iter_func_t *func, void *private) 766 { 767 int ret = 0; 768 struct abd_iter aiter; 769 770 abd_verify(abd); 771 ASSERT3U(off + size, <=, abd->abd_size); 772 773 abd_iter_init(&aiter, abd); 774 abd_iter_advance(&aiter, off); 775 776 while (size > 0) { 777 abd_iter_map(&aiter); 778 779 size_t len = MIN(aiter.iter_mapsize, size); 780 ASSERT3U(len, >, 0); 781 782 ret = func(aiter.iter_mapaddr, len, private); 783 784 abd_iter_unmap(&aiter); 785 786 if (ret != 0) 787 break; 788 789 size -= len; 790 abd_iter_advance(&aiter, len); 791 } 792 793 return (ret); 794 } 795 796 struct buf_arg { 797 void *arg_buf; 798 }; 799 800 static int 801 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 802 { 803 struct buf_arg *ba_ptr = private; 804 805 (void) memcpy(ba_ptr->arg_buf, buf, size); 806 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 807 808 return (0); 809 } 810 811 /* 812 * Copy abd to buf. (off is the offset in abd.) 813 */ 814 void 815 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 816 { 817 struct buf_arg ba_ptr = { buf }; 818 819 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 820 &ba_ptr); 821 } 822 823 static int 824 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 825 { 826 int ret; 827 struct buf_arg *ba_ptr = private; 828 829 ret = memcmp(buf, ba_ptr->arg_buf, size); 830 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 831 832 return (ret); 833 } 834 835 /* 836 * Compare the contents of abd to buf. (off is the offset in abd.) 837 */ 838 int 839 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 840 { 841 struct buf_arg ba_ptr = { (void *) buf }; 842 843 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 844 } 845 846 static int 847 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 848 { 849 struct buf_arg *ba_ptr = private; 850 851 (void) memcpy(buf, ba_ptr->arg_buf, size); 852 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 853 854 return (0); 855 } 856 857 /* 858 * Copy from buf to abd. (off is the offset in abd.) 859 */ 860 void 861 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 862 { 863 struct buf_arg ba_ptr = { (void *) buf }; 864 865 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 866 &ba_ptr); 867 } 868 869 /*ARGSUSED*/ 870 static int 871 abd_zero_off_cb(void *buf, size_t size, void *private) 872 { 873 (void) memset(buf, 0, size); 874 return (0); 875 } 876 877 /* 878 * Zero out the abd from a particular offset to the end. 879 */ 880 void 881 abd_zero_off(abd_t *abd, size_t off, size_t size) 882 { 883 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 884 } 885 886 /* 887 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 888 * equal-sized chunks (passed to func as raw buffers). func could be called many 889 * times during this iteration. 890 */ 891 int 892 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 893 size_t size, abd_iter_func2_t *func, void *private) 894 { 895 int ret = 0; 896 struct abd_iter daiter, saiter; 897 898 abd_verify(dabd); 899 abd_verify(sabd); 900 901 ASSERT3U(doff + size, <=, dabd->abd_size); 902 ASSERT3U(soff + size, <=, sabd->abd_size); 903 904 abd_iter_init(&daiter, dabd); 905 abd_iter_init(&saiter, sabd); 906 abd_iter_advance(&daiter, doff); 907 abd_iter_advance(&saiter, soff); 908 909 while (size > 0) { 910 abd_iter_map(&daiter); 911 abd_iter_map(&saiter); 912 913 size_t dlen = MIN(daiter.iter_mapsize, size); 914 size_t slen = MIN(saiter.iter_mapsize, size); 915 size_t len = MIN(dlen, slen); 916 ASSERT(dlen > 0 || slen > 0); 917 918 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 919 private); 920 921 abd_iter_unmap(&saiter); 922 abd_iter_unmap(&daiter); 923 924 if (ret != 0) 925 break; 926 927 size -= len; 928 abd_iter_advance(&daiter, len); 929 abd_iter_advance(&saiter, len); 930 } 931 932 return (ret); 933 } 934 935 /*ARGSUSED*/ 936 static int 937 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 938 { 939 (void) memcpy(dbuf, sbuf, size); 940 return (0); 941 } 942 943 /* 944 * Copy from sabd to dabd starting from soff and doff. 945 */ 946 void 947 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 948 { 949 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 950 abd_copy_off_cb, NULL); 951 } 952 953 /*ARGSUSED*/ 954 static int 955 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 956 { 957 return (memcmp(bufa, bufb, size)); 958 } 959 960 /* 961 * Compares the first size bytes of two ABDs. 962 */ 963 int 964 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size) 965 { 966 return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL)); 967 } 968