1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2015 Joyent, Inc. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/time.h> 31 #include <sys/pathname.h> 32 #include <sys/vfs.h> 33 #include <sys/vfs_opreg.h> 34 #include <sys/vnode.h> 35 #include <sys/stat.h> 36 #include <sys/uio.h> 37 #include <sys/stat.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/statvfs.h> 42 #include <sys/mount.h> 43 #include <sys/debug.h> 44 #include <sys/systm.h> 45 #include <sys/mntent.h> 46 #include <fs/fs_subr.h> 47 #include <vm/page.h> 48 #include <vm/anon.h> 49 #include <sys/model.h> 50 #include <sys/policy.h> 51 52 #include <sys/fs/swapnode.h> 53 #include <sys/fs/tmp.h> 54 #include <sys/fs/tmpnode.h> 55 56 static int tmpfsfstype; 57 58 /* 59 * tmpfs vfs operations. 60 */ 61 static int tmpfsinit(int, char *); 62 static int tmp_mount(struct vfs *, struct vnode *, 63 struct mounta *, struct cred *); 64 static int tmp_unmount(struct vfs *, int, struct cred *); 65 static int tmp_root(struct vfs *, struct vnode **); 66 static int tmp_statvfs(struct vfs *, struct statvfs64 *); 67 static int tmp_vget(struct vfs *, struct vnode **, struct fid *); 68 69 /* 70 * Loadable module wrapper 71 */ 72 #include <sys/modctl.h> 73 74 static mntopts_t tmpfs_proto_opttbl; 75 76 static vfsdef_t vfw = { 77 VFSDEF_VERSION, 78 "tmpfs", 79 tmpfsinit, 80 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT, 81 &tmpfs_proto_opttbl 82 }; 83 84 /* 85 * in-kernel mnttab options 86 */ 87 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 88 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 89 90 static mntopt_t tmpfs_options[] = { 91 /* Option name Cancel Opt Arg Flags Data */ 92 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL}, 93 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL}, 94 { "size", NULL, "0", MO_HASVALUE, NULL}, 95 { "mode", NULL, NULL, MO_HASVALUE, NULL} 96 }; 97 98 99 static mntopts_t tmpfs_proto_opttbl = { 100 sizeof (tmpfs_options) / sizeof (mntopt_t), 101 tmpfs_options 102 }; 103 104 /* 105 * Module linkage information 106 */ 107 static struct modlfs modlfs = { 108 &mod_fsops, "filesystem for tmpfs", &vfw 109 }; 110 111 static struct modlinkage modlinkage = { 112 MODREV_1, &modlfs, NULL 113 }; 114 115 int 116 _init() 117 { 118 return (mod_install(&modlinkage)); 119 } 120 121 int 122 _fini() 123 { 124 int error; 125 126 error = mod_remove(&modlinkage); 127 if (error) 128 return (error); 129 /* 130 * Tear down the operations vectors 131 */ 132 (void) vfs_freevfsops_by_type(tmpfsfstype); 133 vn_freevnodeops(tmp_vnodeops); 134 return (0); 135 } 136 137 int 138 _info(struct modinfo *modinfop) 139 { 140 return (mod_info(&modlinkage, modinfop)); 141 } 142 143 /* 144 * The following are patchable variables limiting the amount of system 145 * resources tmpfs can use. 146 * 147 * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory 148 * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries) 149 * It is not determined by setting a hard limit but rather as a percentage of 150 * physical memory which is determined when tmpfs is first used in the system. 151 * 152 * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for 153 * the rest of the system. In other words, if the amount of free swap space 154 * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs 155 * anon allocations will fail. 156 * 157 * There is also a per mount limit on the amount of swap space 158 * (tmount.tm_anonmax) settable via a mount option. 159 */ 160 size_t tmpfs_maxkmem = 0; 161 size_t tmpfs_minfree = 0; 162 size_t tmp_kmemspace; /* bytes of kernel heap used by all tmpfs */ 163 164 static major_t tmpfs_major; 165 static minor_t tmpfs_minor; 166 static kmutex_t tmpfs_minor_lock; 167 168 /* 169 * initialize global tmpfs locks and such 170 * called when loading tmpfs module 171 */ 172 static int 173 tmpfsinit(int fstype, char *name) 174 { 175 static const fs_operation_def_t tmp_vfsops_template[] = { 176 VFSNAME_MOUNT, { .vfs_mount = tmp_mount }, 177 VFSNAME_UNMOUNT, { .vfs_unmount = tmp_unmount }, 178 VFSNAME_ROOT, { .vfs_root = tmp_root }, 179 VFSNAME_STATVFS, { .vfs_statvfs = tmp_statvfs }, 180 VFSNAME_VGET, { .vfs_vget = tmp_vget }, 181 NULL, NULL 182 }; 183 int error; 184 extern void tmpfs_hash_init(); 185 186 tmpfs_hash_init(); 187 tmpfsfstype = fstype; 188 ASSERT(tmpfsfstype != 0); 189 190 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL); 191 if (error != 0) { 192 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template"); 193 return (error); 194 } 195 196 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops); 197 if (error != 0) { 198 (void) vfs_freevfsops_by_type(fstype); 199 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template"); 200 return (error); 201 } 202 203 /* 204 * tmpfs_minfree doesn't need to be some function of configured 205 * swap space since it really is an absolute limit of swap space 206 * which still allows other processes to execute. 207 */ 208 if (tmpfs_minfree == 0) { 209 /* 210 * Set if not patched 211 */ 212 tmpfs_minfree = btopr(TMPMINFREE); 213 } 214 215 /* 216 * The maximum amount of space tmpfs can allocate is 217 * TMPMAXPROCKMEM percent of kernel memory 218 */ 219 if (tmpfs_maxkmem == 0) 220 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM); 221 222 if ((tmpfs_major = getudev()) == (major_t)-1) { 223 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number."); 224 tmpfs_major = 0; 225 } 226 mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL); 227 return (0); 228 } 229 230 static int 231 tmp_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 232 { 233 struct tmount *tm = NULL; 234 struct tmpnode *tp; 235 struct pathname dpn; 236 int error; 237 pgcnt_t anonmax; 238 struct vattr rattr; 239 int got_attrs; 240 boolean_t mode_arg = B_FALSE; 241 mode_t root_mode = 0777; 242 char *argstr; 243 244 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 245 return (error); 246 247 if (mvp->v_type != VDIR) 248 return (ENOTDIR); 249 250 mutex_enter(&mvp->v_lock); 251 if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && 252 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 253 mutex_exit(&mvp->v_lock); 254 return (EBUSY); 255 } 256 mutex_exit(&mvp->v_lock); 257 258 /* 259 * Having the resource be anything but "swap" doesn't make sense. 260 */ 261 vfs_setresource(vfsp, "swap", 0); 262 263 /* 264 * now look for options we understand... 265 */ 266 267 /* tmpfs doesn't support read-only mounts */ 268 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 269 error = EINVAL; 270 goto out; 271 } 272 273 /* 274 * tm_anonmax is set according to the mount arguments 275 * if any. Otherwise, it is set to a maximum value. 276 */ 277 if (vfs_optionisset(vfsp, "size", &argstr)) { 278 if ((error = tmp_convnum(argstr, &anonmax)) != 0) 279 goto out; 280 } else { 281 anonmax = ULONG_MAX; 282 } 283 284 /* 285 * The "mode" mount argument allows the operator to override the 286 * permissions of the root of the tmpfs mount. 287 */ 288 if (vfs_optionisset(vfsp, "mode", &argstr)) { 289 if ((error = tmp_convmode(argstr, &root_mode)) != 0) { 290 goto out; 291 } 292 mode_arg = B_TRUE; 293 } 294 295 if (error = pn_get(uap->dir, 296 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn)) 297 goto out; 298 299 if (uap->flags & MS_REMOUNT) { 300 tm = (struct tmount *)VFSTOTM(vfsp); 301 302 /* 303 * If we change the size so its less than what is currently 304 * being used, we allow that. The file system will simply be 305 * full until enough files have been removed to get below the 306 * new max. 307 */ 308 mutex_enter(&tm->tm_contents); 309 tm->tm_anonmax = anonmax; 310 mutex_exit(&tm->tm_contents); 311 goto out; 312 } 313 314 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) { 315 pn_free(&dpn); 316 error = ENOMEM; 317 goto out; 318 } 319 320 /* 321 * find an available minor device number for this mount 322 */ 323 mutex_enter(&tmpfs_minor_lock); 324 do { 325 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32; 326 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor); 327 } while (vfs_devismounted(tm->tm_dev)); 328 mutex_exit(&tmpfs_minor_lock); 329 330 /* 331 * Set but don't bother entering the mutex 332 * (tmount not on mount list yet) 333 */ 334 mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL); 335 mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL); 336 337 tm->tm_vfsp = vfsp; 338 tm->tm_anonmax = anonmax; 339 340 vfsp->vfs_data = (caddr_t)tm; 341 vfsp->vfs_fstype = tmpfsfstype; 342 vfsp->vfs_dev = tm->tm_dev; 343 vfsp->vfs_bsize = PAGESIZE; 344 vfsp->vfs_flag |= VFS_NOTRUNC; 345 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype); 346 tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE); 347 (void) strcpy(tm->tm_mntpath, dpn.pn_path); 348 349 /* 350 * allocate and initialize root tmpnode structure 351 */ 352 bzero(&rattr, sizeof (struct vattr)); 353 rattr.va_mode = (mode_t)(S_IFDIR | root_mode); 354 rattr.va_type = VDIR; 355 rattr.va_rdev = 0; 356 tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE); 357 tmpnode_init(tm, tp, &rattr, cr); 358 359 /* 360 * Get the mode, uid, and gid from the underlying mount point. 361 */ 362 rattr.va_mask = AT_MODE|AT_UID|AT_GID; /* Hint to getattr */ 363 got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL); 364 365 rw_enter(&tp->tn_rwlock, RW_WRITER); 366 TNTOV(tp)->v_flag |= VROOT; 367 368 /* 369 * If the getattr succeeded, use its results. Otherwise allow 370 * the previously set hardwired defaults to prevail. 371 */ 372 if (got_attrs == 0) { 373 if (!mode_arg) { 374 /* 375 * Only use the underlying mount point for the 376 * mode if the "mode" mount argument was not 377 * provided. 378 */ 379 tp->tn_mode = rattr.va_mode; 380 } 381 tp->tn_uid = rattr.va_uid; 382 tp->tn_gid = rattr.va_gid; 383 } 384 385 /* 386 * initialize linked list of tmpnodes so that the back pointer of 387 * the root tmpnode always points to the last one on the list 388 * and the forward pointer of the last node is null 389 */ 390 tp->tn_back = tp; 391 tp->tn_forw = NULL; 392 tp->tn_nlink = 0; 393 tm->tm_rootnode = tp; 394 395 tdirinit(tp, tp); 396 397 rw_exit(&tp->tn_rwlock); 398 399 pn_free(&dpn); 400 error = 0; 401 402 out: 403 if (error == 0) 404 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 405 406 return (error); 407 } 408 409 static int 410 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr) 411 { 412 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 413 struct tmpnode *tnp, *cancel; 414 struct vnode *vp; 415 int error; 416 417 if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0) 418 return (error); 419 420 /* 421 * forced unmount is not supported by this file system 422 * and thus, ENOTSUP, is being returned. 423 */ 424 if (flag & MS_FORCE) 425 return (ENOTSUP); 426 427 mutex_enter(&tm->tm_contents); 428 429 /* 430 * If there are no open files, only the root node should have 431 * a reference count. 432 * With tm_contents held, nothing can be added or removed. 433 * There may be some dirty pages. To prevent fsflush from 434 * disrupting the unmount, put a hold on each node while scanning. 435 * If we find a previously referenced node, undo the holds we have 436 * placed and fail EBUSY. 437 */ 438 tnp = tm->tm_rootnode; 439 if (TNTOV(tnp)->v_count > 1) { 440 mutex_exit(&tm->tm_contents); 441 return (EBUSY); 442 } 443 444 for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) { 445 if ((vp = TNTOV(tnp))->v_count > 0) { 446 cancel = tm->tm_rootnode->tn_forw; 447 while (cancel != tnp) { 448 vp = TNTOV(cancel); 449 ASSERT(vp->v_count > 0); 450 VN_RELE(vp); 451 cancel = cancel->tn_forw; 452 } 453 mutex_exit(&tm->tm_contents); 454 return (EBUSY); 455 } 456 VN_HOLD(vp); 457 } 458 459 /* 460 * We can drop the mutex now because no one can find this mount 461 */ 462 mutex_exit(&tm->tm_contents); 463 464 /* 465 * Free all kmemalloc'd and anonalloc'd memory associated with 466 * this filesystem. To do this, we go through the file list twice, 467 * once to remove all the directory entries, and then to remove 468 * all the files. We do this because there is useful code in 469 * tmpnode_free which assumes that the directory entry has been 470 * removed before the file. 471 */ 472 /* 473 * Remove all directory entries 474 */ 475 for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) { 476 rw_enter(&tnp->tn_rwlock, RW_WRITER); 477 if (tnp->tn_type == VDIR) 478 tdirtrunc(tnp); 479 if (tnp->tn_vnode->v_flag & V_XATTRDIR) { 480 /* 481 * Account for implicit attrdir reference. 482 */ 483 ASSERT(tnp->tn_nlink > 0); 484 DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock); 485 } 486 rw_exit(&tnp->tn_rwlock); 487 } 488 489 ASSERT(tm->tm_rootnode); 490 491 /* 492 * All links are gone, v_count is keeping nodes in place. 493 * VN_RELE should make the node disappear, unless somebody 494 * is holding pages against it. Nap and retry until it disappears. 495 * 496 * We re-acquire the lock to prevent others who have a HOLD on 497 * a tmpnode via its pages or anon slots from blowing it away 498 * (in tmp_inactive) while we're trying to get to it here. Once 499 * we have a HOLD on it we know it'll stick around. 500 * 501 */ 502 mutex_enter(&tm->tm_contents); 503 /* 504 * Remove all the files (except the rootnode) backwards. 505 */ 506 while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) { 507 mutex_exit(&tm->tm_contents); 508 /* 509 * Inhibit tmp_inactive from touching attribute directory 510 * as all nodes will be released here. 511 * Note we handled the link count in pass 2 above. 512 */ 513 rw_enter(&tnp->tn_rwlock, RW_WRITER); 514 tnp->tn_xattrdp = NULL; 515 rw_exit(&tnp->tn_rwlock); 516 vp = TNTOV(tnp); 517 VN_RELE(vp); 518 mutex_enter(&tm->tm_contents); 519 /* 520 * It's still there after the RELE. Someone else like pageout 521 * has a hold on it so wait a bit and then try again - we know 522 * they'll give it up soon. 523 */ 524 if (tnp == tm->tm_rootnode->tn_back) { 525 VN_HOLD(vp); 526 mutex_exit(&tm->tm_contents); 527 delay(hz / 4); 528 mutex_enter(&tm->tm_contents); 529 } 530 } 531 mutex_exit(&tm->tm_contents); 532 533 tm->tm_rootnode->tn_xattrdp = NULL; 534 VN_RELE(TNTOV(tm->tm_rootnode)); 535 536 ASSERT(tm->tm_mntpath); 537 538 tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1); 539 540 ASSERT(tm->tm_anonmem == 0); 541 542 mutex_destroy(&tm->tm_contents); 543 mutex_destroy(&tm->tm_renamelck); 544 tmp_memfree(tm, sizeof (struct tmount)); 545 546 return (0); 547 } 548 549 /* 550 * return root tmpnode for given vnode 551 */ 552 static int 553 tmp_root(struct vfs *vfsp, struct vnode **vpp) 554 { 555 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 556 struct tmpnode *tp = tm->tm_rootnode; 557 struct vnode *vp; 558 559 ASSERT(tp); 560 561 vp = TNTOV(tp); 562 VN_HOLD(vp); 563 *vpp = vp; 564 return (0); 565 } 566 567 static int 568 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp) 569 { 570 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 571 ulong_t blocks; 572 dev32_t d32; 573 zoneid_t eff_zid; 574 struct zone *zp; 575 576 /* 577 * The file system may have been mounted by the global zone on 578 * behalf of the non-global zone. In that case, the tmount zone_id 579 * will be the global zone. We still want to show the swap cap inside 580 * the zone in this case, even though the file system was mounted by 581 * the global zone. 582 */ 583 if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID) 584 zp = curproc->p_zone; 585 else 586 zp = tm->tm_vfsp->vfs_zone; 587 588 if (zp == NULL) 589 eff_zid = GLOBAL_ZONEUNIQID; 590 else 591 eff_zid = zp->zone_id; 592 593 sbp->f_bsize = PAGESIZE; 594 sbp->f_frsize = PAGESIZE; 595 596 /* 597 * Find the amount of available physical and memory swap 598 */ 599 mutex_enter(&anoninfo_lock); 600 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 601 blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP; 602 mutex_exit(&anoninfo_lock); 603 604 /* 605 * If tm_anonmax for this mount is less than the available swap space 606 * (minus the amount tmpfs can't use), use that instead 607 */ 608 if (blocks > tmpfs_minfree) 609 sbp->f_bfree = MIN(blocks - tmpfs_minfree, 610 tm->tm_anonmax - tm->tm_anonmem); 611 else 612 sbp->f_bfree = 0; 613 614 sbp->f_bavail = sbp->f_bfree; 615 616 /* 617 * Total number of blocks is what's available plus what's been used 618 */ 619 sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem); 620 621 if (eff_zid != GLOBAL_ZONEUNIQID && 622 zp->zone_max_swap_ctl != UINT64_MAX) { 623 /* 624 * If the fs is used by a non-global zone with a swap cap, 625 * then report the capped size. 626 */ 627 rctl_qty_t cap, used; 628 pgcnt_t pgcap, pgused; 629 630 mutex_enter(&zp->zone_mem_lock); 631 cap = zp->zone_max_swap_ctl; 632 used = zp->zone_max_swap; 633 mutex_exit(&zp->zone_mem_lock); 634 635 pgcap = btop(cap); 636 pgused = btop(used); 637 638 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree); 639 sbp->f_bavail = sbp->f_bfree; 640 sbp->f_blocks = MIN(pgcap, sbp->f_blocks); 641 } 642 643 /* 644 * The maximum number of files available is approximately the number 645 * of tmpnodes we can allocate from the remaining kernel memory 646 * available to tmpfs. This is fairly inaccurate since it doesn't 647 * take into account the names stored in the directory entries. 648 */ 649 if (tmpfs_maxkmem > tmp_kmemspace) 650 sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) / 651 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 652 else 653 sbp->f_ffree = 0; 654 655 sbp->f_files = tmpfs_maxkmem / 656 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 657 sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree); 658 (void) cmpldev(&d32, vfsp->vfs_dev); 659 sbp->f_fsid = d32; 660 (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name); 661 (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr)); 662 /* 663 * ensure null termination 664 */ 665 sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0'; 666 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 667 sbp->f_namemax = MAXNAMELEN - 1; 668 return (0); 669 } 670 671 static int 672 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 673 { 674 struct tfid *tfid; 675 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 676 struct tmpnode *tp = NULL; 677 678 tfid = (struct tfid *)fidp; 679 *vpp = NULL; 680 681 mutex_enter(&tm->tm_contents); 682 for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) { 683 mutex_enter(&tp->tn_tlock); 684 if (tp->tn_nodeid == tfid->tfid_ino) { 685 /* 686 * If the gen numbers don't match we know the 687 * file won't be found since only one tmpnode 688 * can have this number at a time. 689 */ 690 if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) { 691 mutex_exit(&tp->tn_tlock); 692 mutex_exit(&tm->tm_contents); 693 return (0); 694 } 695 *vpp = (struct vnode *)TNTOV(tp); 696 697 VN_HOLD(*vpp); 698 699 if ((tp->tn_mode & S_ISVTX) && 700 !(tp->tn_mode & (S_IXUSR | S_IFDIR))) { 701 mutex_enter(&(*vpp)->v_lock); 702 (*vpp)->v_flag |= VISSWAP; 703 mutex_exit(&(*vpp)->v_lock); 704 } 705 mutex_exit(&tp->tn_tlock); 706 mutex_exit(&tm->tm_contents); 707 return (0); 708 } 709 mutex_exit(&tp->tn_tlock); 710 } 711 mutex_exit(&tm->tm_contents); 712 return (0); 713 } 714