1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2022 Garrett D'Amore 29 * Copyright 2024 Oxide Computer Company 30 */ 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/conf.h> 38 #include <sys/cred.h> 39 #include <sys/kmem.h> 40 #include <sys/sysmacros.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/debug.h> 44 #include <sys/errno.h> 45 #include <sys/time.h> 46 #include <sys/file.h> 47 #include <sys/user.h> 48 #include <sys/stream.h> 49 #include <sys/strsubr.h> 50 #include <sys/strsun.h> 51 #include <sys/sunddi.h> 52 #include <sys/esunddi.h> 53 #include <sys/flock.h> 54 #include <sys/modctl.h> 55 #include <sys/cmn_err.h> 56 #include <sys/vmsystm.h> 57 #include <sys/policy.h> 58 #include <sys/limits.h> 59 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 63 #include <sys/isa_defs.h> 64 #include <sys/inttypes.h> 65 #include <sys/systm.h> 66 #include <sys/cpuvar.h> 67 #include <sys/filio.h> 68 #include <sys/sendfile.h> 69 #include <sys/ddi.h> 70 #include <vm/seg.h> 71 #include <vm/seg_map.h> 72 #include <vm/seg_kpm.h> 73 74 #include <fs/sockfs/sockcommon.h> 75 #include <fs/sockfs/sockfilter_impl.h> 76 #include <fs/sockfs/socktpi.h> 77 78 #ifdef SOCK_TEST 79 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 80 #else 81 #define do_useracc 1 82 #endif /* SOCK_TEST */ 83 84 extern int xnet_truncate_print; 85 86 /* 87 * This constitutes the known flags that are allowed to be passed in the upper 88 * bits of a socket type either for socket() or accept4(). 89 */ 90 #define SOCK_KNOWN_FLAGS (SOCK_CLOEXEC | SOCK_NDELAY | SOCK_NONBLOCK | \ 91 SOCK_CLOFORK) 92 93 /* 94 * Kernel component of socket creation. 95 * 96 * The socket library determines which version number to use. 97 * First the library calls this with a NULL devpath. If this fails 98 * to find a transport (using solookup) the library will look in /etc/netconfig 99 * for the appropriate transport. If one is found it will pass in the 100 * devpath for the kernel to use. 101 */ 102 int 103 so_socket(int family, int type_w_flags, int protocol, char *devpath, 104 int version) 105 { 106 struct sonode *so; 107 vnode_t *vp; 108 struct file *fp; 109 int fd; 110 int error; 111 int type; 112 113 type = type_w_flags & SOCK_TYPE_MASK; 114 type_w_flags &= ~SOCK_TYPE_MASK; 115 if (type_w_flags & ~SOCK_KNOWN_FLAGS) 116 return (set_errno(EINVAL)); 117 118 if (devpath != NULL) { 119 char *buf; 120 size_t kdevpathlen = 0; 121 122 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 123 if ((error = copyinstr(devpath, buf, 124 MAXPATHLEN, &kdevpathlen)) != 0) { 125 kmem_free(buf, MAXPATHLEN); 126 return (set_errno(error)); 127 } 128 so = socket_create(family, type, protocol, buf, NULL, 129 SOCKET_SLEEP, version, CRED(), &error); 130 kmem_free(buf, MAXPATHLEN); 131 } else { 132 so = socket_create(family, type, protocol, NULL, NULL, 133 SOCKET_SLEEP, version, CRED(), &error); 134 } 135 if (so == NULL) 136 return (set_errno(error)); 137 138 /* Allocate a file descriptor for the socket */ 139 vp = SOTOV(so); 140 error = falloc(vp, FWRITE|FREAD, &fp, &fd); 141 if (error != 0) { 142 (void) socket_close(so, 0, CRED()); 143 socket_destroy(so); 144 return (set_errno(error)); 145 } 146 147 /* 148 * Now fill in the entries that falloc reserved 149 */ 150 if (type_w_flags & SOCK_NDELAY) { 151 so->so_state |= SS_NDELAY; 152 fp->f_flag |= FNDELAY; 153 } 154 if (type_w_flags & SOCK_NONBLOCK) { 155 so->so_state |= SS_NONBLOCK; 156 fp->f_flag |= FNONBLOCK; 157 } 158 mutex_exit(&fp->f_tlock); 159 setf(fd, fp); 160 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 161 f_setfd_or(fd, FD_CLOEXEC); 162 } 163 if ((type_w_flags & SOCK_CLOFORK) != 0) { 164 f_setfd_or(fd, FD_CLOFORK); 165 } 166 167 return (fd); 168 } 169 170 /* 171 * Map from a file descriptor to a socket node. 172 * Returns with the file descriptor held i.e. the caller has to 173 * use releasef when done with the file descriptor. 174 */ 175 struct sonode * 176 getsonode(int sock, int *errorp, file_t **fpp) 177 { 178 file_t *fp; 179 vnode_t *vp; 180 struct sonode *so; 181 182 if ((fp = getf(sock)) == NULL) { 183 *errorp = EBADF; 184 eprintline(*errorp); 185 return (NULL); 186 } 187 vp = fp->f_vnode; 188 /* Check if it is a socket */ 189 if (vp->v_type != VSOCK) { 190 releasef(sock); 191 *errorp = ENOTSOCK; 192 eprintline(*errorp); 193 return (NULL); 194 } 195 /* 196 * Use the stream head to find the real socket vnode. 197 * This is needed when namefs sits above sockfs. 198 */ 199 if (vp->v_stream) { 200 ASSERT(vp->v_stream->sd_vnode); 201 vp = vp->v_stream->sd_vnode; 202 203 so = VTOSO(vp); 204 if (so->so_version == SOV_STREAM) { 205 releasef(sock); 206 *errorp = ENOTSOCK; 207 eprintsoline(so, *errorp); 208 return (NULL); 209 } 210 } else { 211 so = VTOSO(vp); 212 } 213 if (fpp) 214 *fpp = fp; 215 return (so); 216 } 217 218 /* 219 * Allocate and copyin a sockaddr. 220 * Ensures NULL termination for AF_UNIX addresses by extending them 221 * with one NULL byte if need be. Verifies that the length is not 222 * excessive to prevent an application from consuming all of kernel 223 * memory. Returns NULL when an error occurred. 224 */ 225 static struct sockaddr * 226 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 227 int *errorp) 228 { 229 char *faddr; 230 size_t namelen = (size_t)*namelenp; 231 232 ASSERT(namelen != 0); 233 if (namelen > SO_MAXARGSIZE) { 234 *errorp = EINVAL; 235 eprintsoline(so, *errorp); 236 return (NULL); 237 } 238 239 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 240 if (copyin(name, faddr, namelen)) { 241 kmem_free(faddr, namelen); 242 *errorp = EFAULT; 243 eprintsoline(so, *errorp); 244 return (NULL); 245 } 246 247 /* 248 * Add space for NULL termination if needed. 249 * Do a quick check if the last byte is NUL. 250 */ 251 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 252 /* Check if there is any NULL termination */ 253 size_t i; 254 int foundnull = 0; 255 256 for (i = sizeof (name->sa_family); i < namelen; i++) { 257 if (faddr[i] == '\0') { 258 foundnull = 1; 259 break; 260 } 261 } 262 if (!foundnull) { 263 /* Add extra byte for NUL padding */ 264 char *nfaddr; 265 266 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 267 bcopy(faddr, nfaddr, namelen); 268 kmem_free(faddr, namelen); 269 270 /* NUL terminate */ 271 nfaddr[namelen] = '\0'; 272 namelen++; 273 ASSERT((socklen_t)namelen == namelen); 274 *namelenp = (socklen_t)namelen; 275 faddr = nfaddr; 276 } 277 } 278 return ((struct sockaddr *)faddr); 279 } 280 281 /* 282 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 283 */ 284 static int 285 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 286 socklen_t klen) 287 { 288 if (uaddr != NULL) { 289 if (ulen > klen) 290 ulen = klen; 291 292 if (ulen != 0) { 293 if (copyout(kaddr, uaddr, ulen)) 294 return (EFAULT); 295 } 296 } else 297 ulen = 0; 298 299 if (ulenp != NULL) { 300 if (copyout(&ulen, ulenp, sizeof (ulen))) 301 return (EFAULT); 302 } 303 return (0); 304 } 305 306 /* 307 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 308 * If klen is greater than ulen it still uses the non-truncated 309 * klen to update ulenp. 310 */ 311 static int 312 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 313 socklen_t klen) 314 { 315 if (uaddr != NULL) { 316 if (ulen >= klen) 317 ulen = klen; 318 else if (ulen != 0 && xnet_truncate_print) { 319 printf("sockfs: truncating copyout of address using " 320 "XNET semantics for pid = %d. Lengths %d, %d\n", 321 curproc->p_pid, klen, ulen); 322 } 323 324 if (ulen != 0) { 325 if (copyout(kaddr, uaddr, ulen)) 326 return (EFAULT); 327 } else 328 klen = 0; 329 } else 330 klen = 0; 331 332 if (ulenp != NULL) { 333 if (copyout(&klen, ulenp, sizeof (klen))) 334 return (EFAULT); 335 } 336 return (0); 337 } 338 339 /* 340 * The socketpair() code in libsocket creates two sockets (using 341 * the /etc/netconfig fallback if needed) before calling this routine 342 * to connect the two sockets together. 343 * 344 * For a SOCK_STREAM socketpair a listener is needed - in that case this 345 * routine will create a new file descriptor as part of accepting the 346 * connection. The library socketpair() will check if svs[2] has changed 347 * in which case it will close the changed fd. 348 * 349 * Note that this code could use the TPI feature of accepting the connection 350 * on the listening endpoint. However, that would require significant changes 351 * to soaccept. 352 */ 353 int 354 so_socketpair(int sv[2]) 355 { 356 int svs[2]; 357 struct sonode *so1, *so2; 358 int error; 359 int orig_flags; 360 struct sockaddr_ux *name; 361 size_t namelen; 362 sotpi_info_t *sti1; 363 sotpi_info_t *sti2; 364 365 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 366 367 error = useracc(sv, sizeof (svs), B_WRITE); 368 if (error && do_useracc) 369 return (set_errno(EFAULT)); 370 371 if (copyin(sv, svs, sizeof (svs))) 372 return (set_errno(EFAULT)); 373 374 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 375 return (set_errno(error)); 376 377 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 378 releasef(svs[0]); 379 return (set_errno(error)); 380 } 381 382 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 383 error = EOPNOTSUPP; 384 goto done; 385 } 386 387 sti1 = SOTOTPI(so1); 388 sti2 = SOTOTPI(so2); 389 390 /* 391 * The code below makes assumptions about the "sockfs" implementation. 392 * So make sure that the correct implementation is really used. 393 */ 394 ASSERT(so1->so_ops == &sotpi_sonodeops); 395 ASSERT(so2->so_ops == &sotpi_sonodeops); 396 397 if (so1->so_type == SOCK_DGRAM) { 398 /* 399 * Bind both sockets and connect them with each other. 400 * Need to allocate name/namelen for soconnect. 401 */ 402 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 403 if (error) { 404 eprintsoline(so1, error); 405 goto done; 406 } 407 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 408 if (error) { 409 eprintsoline(so2, error); 410 goto done; 411 } 412 namelen = sizeof (struct sockaddr_ux); 413 name = kmem_alloc(namelen, KM_SLEEP); 414 name->sou_family = AF_UNIX; 415 name->sou_addr = sti2->sti_ux_laddr; 416 error = socket_connect(so1, 417 (struct sockaddr *)name, 418 (socklen_t)namelen, 419 0, _SOCONNECT_NOXLATE, CRED()); 420 if (error) { 421 kmem_free(name, namelen); 422 eprintsoline(so1, error); 423 goto done; 424 } 425 name->sou_addr = sti1->sti_ux_laddr; 426 error = socket_connect(so2, 427 (struct sockaddr *)name, 428 (socklen_t)namelen, 429 0, _SOCONNECT_NOXLATE, CRED()); 430 kmem_free(name, namelen); 431 if (error) { 432 eprintsoline(so2, error); 433 goto done; 434 } 435 releasef(svs[0]); 436 releasef(svs[1]); 437 } else { 438 /* 439 * Bind both sockets, with so1 being a listener. 440 * Connect so2 to so1 - nonblocking to avoid waiting for 441 * soaccept to complete. 442 * Accept a connection on so1. Pass out the new fd as sv[0]. 443 * The library will detect the changed fd and close 444 * the original one. 445 */ 446 struct sonode *nso; 447 struct vnode *nvp; 448 struct file *nfp; 449 int nfd; 450 451 /* 452 * We could simply call socket_listen() here (which would do the 453 * binding automatically) if the code didn't rely on passing 454 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 455 */ 456 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 457 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 458 CRED()); 459 if (error) { 460 eprintsoline(so1, error); 461 goto done; 462 } 463 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 464 if (error) { 465 eprintsoline(so2, error); 466 goto done; 467 } 468 469 namelen = sizeof (struct sockaddr_ux); 470 name = kmem_alloc(namelen, KM_SLEEP); 471 name->sou_family = AF_UNIX; 472 name->sou_addr = sti1->sti_ux_laddr; 473 error = socket_connect(so2, 474 (struct sockaddr *)name, 475 (socklen_t)namelen, 476 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 477 kmem_free(name, namelen); 478 if (error) { 479 if (error != EINPROGRESS) { 480 eprintsoline(so2, error); goto done; 481 } 482 } 483 484 error = socket_accept(so1, 0, CRED(), &nso); 485 if (error) { 486 eprintsoline(so1, error); 487 goto done; 488 } 489 490 /* wait for so2 being SS_CONNECTED ignoring signals */ 491 mutex_enter(&so2->so_lock); 492 error = sowaitconnected(so2, 0, 1); 493 mutex_exit(&so2->so_lock); 494 if (error != 0) { 495 (void) socket_close(nso, 0, CRED()); 496 socket_destroy(nso); 497 eprintsoline(so2, error); 498 goto done; 499 } 500 501 nvp = SOTOV(nso); 502 error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd); 503 if (error != 0) { 504 (void) socket_close(nso, 0, CRED()); 505 socket_destroy(nso); 506 eprintsoline(nso, error); 507 goto done; 508 } 509 /* 510 * copy over FNONBLOCK and FNDELAY flags should they exist 511 */ 512 if (so1->so_state & SS_NONBLOCK) 513 nfp->f_flag |= FNONBLOCK; 514 if (so1->so_state & SS_NDELAY) 515 nfp->f_flag |= FNDELAY; 516 517 /* 518 * fill in the entries that falloc reserved 519 */ 520 mutex_exit(&nfp->f_tlock); 521 setf(nfd, nfp); 522 523 /* 524 * get the original flags before we release 525 */ 526 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 527 528 releasef(svs[0]); 529 releasef(svs[1]); 530 531 /* 532 * If FD_CLOEXEC or FD_CLOFORK was set on the file descriptor 533 * we're swapping out, we should set it on the new one too. 534 */ 535 if (orig_flags & (FD_CLOEXEC | FD_CLOFORK)) { 536 f_setfd_or(nfd, orig_flags & (FD_CLOEXEC | FD_CLOFORK)); 537 } 538 539 /* 540 * The socketpair library routine will close the original 541 * svs[0] when this code passes out a different file 542 * descriptor. 543 */ 544 svs[0] = nfd; 545 546 if (copyout(svs, sv, sizeof (svs))) { 547 (void) closeandsetf(nfd, NULL); 548 eprintline(EFAULT); 549 return (set_errno(EFAULT)); 550 } 551 } 552 return (0); 553 554 done: 555 releasef(svs[0]); 556 releasef(svs[1]); 557 return (set_errno(error)); 558 } 559 560 int 561 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 562 { 563 struct sonode *so; 564 int error; 565 566 dprint(1, ("bind(%d, %p, %d)\n", 567 sock, (void *)name, namelen)); 568 569 if ((so = getsonode(sock, &error, NULL)) == NULL) 570 return (set_errno(error)); 571 572 /* Allocate and copyin name */ 573 /* 574 * X/Open test does not expect EFAULT with NULL name and non-zero 575 * namelen. 576 */ 577 if (name != NULL && namelen != 0) { 578 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 579 name = copyin_name(so, name, &namelen, &error); 580 if (name == NULL) { 581 releasef(sock); 582 return (set_errno(error)); 583 } 584 } else { 585 name = NULL; 586 namelen = 0; 587 } 588 589 switch (version) { 590 default: 591 error = socket_bind(so, name, namelen, 0, CRED()); 592 break; 593 case SOV_XPG4_2: 594 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 595 break; 596 case SOV_SOCKBSD: 597 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 598 break; 599 } 600 601 releasef(sock); 602 if (name != NULL) 603 kmem_free(name, (size_t)namelen); 604 605 if (error) 606 return (set_errno(error)); 607 return (0); 608 } 609 610 /* ARGSUSED2 */ 611 int 612 listen(int sock, int backlog, int version) 613 { 614 struct sonode *so; 615 int error; 616 617 dprint(1, ("listen(%d, %d)\n", 618 sock, backlog)); 619 620 if ((so = getsonode(sock, &error, NULL)) == NULL) 621 return (set_errno(error)); 622 623 error = socket_listen(so, backlog, CRED()); 624 625 releasef(sock); 626 if (error) 627 return (set_errno(error)); 628 return (0); 629 } 630 631 /*ARGSUSED3*/ 632 int 633 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 634 int flags) 635 { 636 struct sonode *so; 637 file_t *fp; 638 int error; 639 socklen_t namelen; 640 struct sonode *nso; 641 struct vnode *nvp; 642 struct file *nfp; 643 int nfd; 644 int ssflags; 645 struct sockaddr *addrp; 646 socklen_t addrlen; 647 648 dprint(1, ("accept(%d, %p, %p)\n", 649 sock, (void *)name, (void *)namelenp)); 650 651 if (flags & ~SOCK_KNOWN_FLAGS) { 652 return (set_errno(EINVAL)); 653 } 654 655 /* Translate SOCK_ flags to their SS_ variant */ 656 ssflags = 0; 657 if (flags & SOCK_NONBLOCK) 658 ssflags |= SS_NONBLOCK; 659 if (flags & SOCK_NDELAY) 660 ssflags |= SS_NDELAY; 661 662 if ((so = getsonode(sock, &error, &fp)) == NULL) 663 return (set_errno(error)); 664 665 if (name != NULL) { 666 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 667 if (copyin(namelenp, &namelen, sizeof (namelen))) { 668 releasef(sock); 669 return (set_errno(EFAULT)); 670 } 671 if (namelen != 0) { 672 error = useracc(name, (size_t)namelen, B_WRITE); 673 if (error && do_useracc) { 674 releasef(sock); 675 return (set_errno(EFAULT)); 676 } 677 } else 678 name = NULL; 679 } else { 680 namelen = 0; 681 } 682 683 /* 684 * Allocate the user fd before socket_accept() in order to 685 * catch EMFILE errors before calling socket_accept(). 686 */ 687 if ((nfd = ufalloc(0)) == -1) { 688 eprintsoline(so, EMFILE); 689 releasef(sock); 690 return (set_errno(EMFILE)); 691 } 692 error = socket_accept(so, fp->f_flag, CRED(), &nso); 693 if (error) { 694 setf(nfd, NULL); 695 releasef(sock); 696 return (set_errno(error)); 697 } 698 699 nvp = SOTOV(nso); 700 701 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 702 if (namelen != 0) { 703 addrlen = so->so_max_addr_len; 704 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 705 706 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 707 &addrlen, B_TRUE, CRED())) == 0) { 708 error = copyout_name(name, namelen, namelenp, 709 addrp, addrlen); 710 } else { 711 ASSERT(error == EINVAL || error == ENOTCONN); 712 error = ECONNABORTED; 713 } 714 kmem_free(addrp, so->so_max_addr_len); 715 } 716 717 if (error) { 718 setf(nfd, NULL); 719 (void) socket_close(nso, 0, CRED()); 720 socket_destroy(nso); 721 releasef(sock); 722 return (set_errno(error)); 723 } 724 error = falloc(NULL, FWRITE|FREAD, &nfp, NULL); 725 if (error != 0) { 726 setf(nfd, NULL); 727 (void) socket_close(nso, 0, CRED()); 728 socket_destroy(nso); 729 eprintsoline(so, error); 730 releasef(sock); 731 return (set_errno(error)); 732 } 733 /* 734 * fill in the entries that falloc reserved 735 */ 736 nfp->f_vnode = nvp; 737 mutex_exit(&nfp->f_tlock); 738 setf(nfd, nfp); 739 740 /* 741 * Act on SOCK_CLOEXEC and SOCK_CLOFORK from flags 742 */ 743 if (flags & SOCK_CLOEXEC) { 744 f_setfd_or(nfd, FD_CLOEXEC); 745 } 746 747 if (flags & SOCK_CLOFORK) { 748 f_setfd_or(nfd, FD_CLOFORK); 749 } 750 751 /* 752 * Copy FNDELAY and FNONBLOCK from listener to acceptor 753 * and from ssflags 754 */ 755 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 756 uint_t oflag = nfp->f_flag; 757 int arg = 0; 758 759 if ((ssflags | so->so_state) & SS_NONBLOCK) 760 arg |= FNONBLOCK; 761 else if ((ssflags | so->so_state) & SS_NDELAY) 762 arg |= FNDELAY; 763 764 /* 765 * This code is a simplification of the F_SETFL code in fcntl() 766 * Ignore any errors from VOP_SETFL. 767 */ 768 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 769 != 0) { 770 eprintsoline(so, error); 771 error = 0; 772 } else { 773 mutex_enter(&nfp->f_tlock); 774 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 775 nfp->f_flag |= arg; 776 mutex_exit(&nfp->f_tlock); 777 } 778 } 779 releasef(sock); 780 return (nfd); 781 } 782 783 int 784 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 785 { 786 struct sonode *so; 787 file_t *fp; 788 int error; 789 790 dprint(1, ("connect(%d, %p, %d)\n", 791 sock, (void *)name, namelen)); 792 793 if ((so = getsonode(sock, &error, &fp)) == NULL) 794 return (set_errno(error)); 795 796 /* Allocate and copyin name */ 797 if (namelen != 0) { 798 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 799 name = copyin_name(so, name, &namelen, &error); 800 if (name == NULL) { 801 releasef(sock); 802 return (set_errno(error)); 803 } 804 } else 805 name = NULL; 806 807 error = socket_connect(so, name, namelen, fp->f_flag, 808 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 809 releasef(sock); 810 if (name) 811 kmem_free(name, (size_t)namelen); 812 if (error) 813 return (set_errno(error)); 814 return (0); 815 } 816 817 /*ARGSUSED2*/ 818 int 819 shutdown(int sock, int how, int version) 820 { 821 struct sonode *so; 822 int error; 823 824 dprint(1, ("shutdown(%d, %d)\n", 825 sock, how)); 826 827 if ((so = getsonode(sock, &error, NULL)) == NULL) 828 return (set_errno(error)); 829 830 error = socket_shutdown(so, how, CRED()); 831 832 releasef(sock); 833 if (error) 834 return (set_errno(error)); 835 return (0); 836 } 837 838 /* 839 * Common receive routine. 840 */ 841 static ssize_t 842 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags, 843 socklen_t *namelenp, socklen_t *controllenp, int *flagsp) 844 { 845 struct sonode *so; 846 file_t *fp; 847 void *name; 848 socklen_t namelen; 849 void *control; 850 socklen_t controllen, free_controllen; 851 ssize_t len; 852 int error; 853 854 if ((so = getsonode(sock, &error, &fp)) == NULL) 855 return (set_errno(error)); 856 857 len = uiop->uio_resid; 858 uiop->uio_fmode = fp->f_flag; 859 uiop->uio_extflg = UIO_COPY_CACHED; 860 861 name = msg->msg_name; 862 namelen = msg->msg_namelen; 863 control = msg->msg_control; 864 controllen = msg->msg_controllen; 865 866 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 867 MSG_DONTWAIT | MSG_XPG4_2 | MSG_CMSG_CLOEXEC | MSG_CMSG_CLOFORK); 868 869 error = socket_recvmsg(so, msg, uiop, CRED()); 870 if (error) { 871 releasef(sock); 872 return (set_errno(error)); 873 } 874 lwp_stat_update(LWP_STAT_MSGRCV, 1); 875 releasef(sock); 876 877 free_controllen = msg->msg_controllen; 878 879 error = copyout_name(name, namelen, namelenp, 880 msg->msg_name, msg->msg_namelen); 881 if (error) 882 goto err; 883 884 if (flagsp != NULL) { 885 /* 886 * Clear internal flag. We also clear the CMSG flags out of 887 * paranoia, though they should have been cleared by our 888 * sop_recvmsg. 889 */ 890 msg->msg_flags &= ~(MSG_XPG4_2 | MSG_CMSG_CLOEXEC | 891 MSG_CMSG_CLOFORK); 892 893 /* 894 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 895 * when controllen is zero and there is control data to 896 * copy out. 897 */ 898 if (controllen != 0 && 899 (msg->msg_controllen > controllen || control == NULL)) { 900 dprint(1, ("recvit: CTRUNC %d %d %p\n", 901 msg->msg_controllen, controllen, control)); 902 903 msg->msg_flags |= MSG_CTRUNC; 904 } 905 if (copyout(&msg->msg_flags, flagsp, 906 sizeof (msg->msg_flags))) { 907 error = EFAULT; 908 goto err; 909 } 910 } 911 912 if (controllen != 0) { 913 if (!(flags & MSG_XPG4_2)) { 914 /* 915 * Good old msg_accrights can only return a multiple 916 * of 4 bytes. 917 */ 918 controllen &= ~((int)sizeof (uint32_t) - 1); 919 } 920 921 if (msg->msg_controllen > controllen || control == NULL) { 922 /* 923 * If the truncated part contains file descriptors, 924 * then they must be closed in the kernel as they 925 * will not be included in the data returned to 926 * user space. Close them now so that the header size 927 * can be safely adjusted prior to copyout. In case of 928 * an error during copyout, the remaining file 929 * descriptors will be closed in the error handler 930 * below. 931 */ 932 so_closefds(msg->msg_control, msg->msg_controllen, 933 !(flags & MSG_XPG4_2), 934 control == NULL ? 0 : controllen); 935 936 /* 937 * In the case of a truncated control message, the last 938 * cmsg header that fits into the available buffer 939 * space must be adjusted to reflect the actual amount 940 * of associated data that will be returned. This only 941 * needs to be done for XPG4 messages as non-XPG4 942 * messages are not structured (they are just a 943 * buffer and a length - msg_accrights(len)). 944 */ 945 if (control != NULL && (flags & MSG_XPG4_2)) { 946 so_truncatecmsg(msg->msg_control, 947 msg->msg_controllen, controllen); 948 msg->msg_controllen = controllen; 949 } 950 } 951 952 error = copyout_arg(control, controllen, controllenp, 953 msg->msg_control, msg->msg_controllen); 954 955 if (error) 956 goto err; 957 958 } 959 if (msg->msg_namelen != 0) 960 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 961 if (free_controllen != 0) 962 kmem_free(msg->msg_control, (size_t)free_controllen); 963 return (len - uiop->uio_resid); 964 965 err: 966 /* 967 * If we fail and the control part contains file descriptors 968 * we have to close them. For a truncated control message, the 969 * descriptors which were cut off have already been closed and the 970 * length adjusted so that they will not be closed again. 971 */ 972 if (msg->msg_controllen != 0) 973 so_closefds(msg->msg_control, msg->msg_controllen, 974 !(flags & MSG_XPG4_2), 0); 975 if (msg->msg_namelen != 0) 976 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 977 if (free_controllen != 0) 978 kmem_free(msg->msg_control, (size_t)free_controllen); 979 return (set_errno(error)); 980 } 981 982 /* 983 * Native system call 984 */ 985 ssize_t 986 recv(int sock, void *buffer, size_t len, int flags) 987 { 988 struct nmsghdr lmsg; 989 struct uio auio; 990 struct iovec aiov[1]; 991 992 dprint(1, ("recv(%d, %p, %ld, %d)\n", 993 sock, buffer, len, flags)); 994 995 if ((ssize_t)len < 0) { 996 return (set_errno(EINVAL)); 997 } 998 999 aiov[0].iov_base = buffer; 1000 aiov[0].iov_len = len; 1001 auio.uio_loffset = 0; 1002 auio.uio_iov = aiov; 1003 auio.uio_iovcnt = 1; 1004 auio.uio_resid = len; 1005 auio.uio_segflg = UIO_USERSPACE; 1006 auio.uio_limit = 0; 1007 1008 lmsg.msg_namelen = 0; 1009 lmsg.msg_controllen = 0; 1010 lmsg.msg_flags = 0; 1011 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 1012 } 1013 1014 ssize_t 1015 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name, 1016 socklen_t *namelenp) 1017 { 1018 struct nmsghdr lmsg; 1019 struct uio auio; 1020 struct iovec aiov[1]; 1021 1022 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 1023 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 1024 1025 if ((ssize_t)len < 0) { 1026 return (set_errno(EINVAL)); 1027 } 1028 1029 aiov[0].iov_base = buffer; 1030 aiov[0].iov_len = len; 1031 auio.uio_loffset = 0; 1032 auio.uio_iov = aiov; 1033 auio.uio_iovcnt = 1; 1034 auio.uio_resid = len; 1035 auio.uio_segflg = UIO_USERSPACE; 1036 auio.uio_limit = 0; 1037 1038 lmsg.msg_name = (char *)name; 1039 if (namelenp != NULL) { 1040 if (copyin(namelenp, &lmsg.msg_namelen, 1041 sizeof (lmsg.msg_namelen))) 1042 return (set_errno(EFAULT)); 1043 } else { 1044 lmsg.msg_namelen = 0; 1045 } 1046 lmsg.msg_controllen = 0; 1047 lmsg.msg_flags = 0; 1048 1049 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1050 } 1051 1052 /* 1053 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1054 * struct omsghdr or struct nmsghdr. 1055 */ 1056 ssize_t 1057 recvmsg(int sock, struct nmsghdr *msg, int flags) 1058 { 1059 STRUCT_DECL(nmsghdr, u_lmsg); 1060 STRUCT_HANDLE(nmsghdr, umsgptr); 1061 struct nmsghdr lmsg; 1062 struct uio auio; 1063 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1064 ssize_t iovsize = 0; 1065 int iovcnt; 1066 ssize_t len, rval; 1067 int i; 1068 int *flagsp; 1069 model_t model; 1070 1071 dprint(1, ("recvmsg(%d, %p, %d)\n", 1072 sock, (void *)msg, flags)); 1073 1074 model = get_udatamodel(); 1075 STRUCT_INIT(u_lmsg, model); 1076 STRUCT_SET_HANDLE(umsgptr, model, msg); 1077 1078 if (flags & MSG_XPG4_2) { 1079 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1080 return (set_errno(EFAULT)); 1081 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1082 } else { 1083 /* 1084 * Assumes that nmsghdr and omsghdr are identically shaped 1085 * except for the added msg_flags field. 1086 */ 1087 if (copyin(msg, STRUCT_BUF(u_lmsg), 1088 SIZEOF_STRUCT(omsghdr, model))) 1089 return (set_errno(EFAULT)); 1090 STRUCT_FSET(u_lmsg, msg_flags, 0); 1091 flagsp = NULL; 1092 } 1093 1094 /* 1095 * Code below us will kmem_alloc memory and hang it 1096 * off msg_control and msg_name fields. This forces 1097 * us to copy the structure to its native form. 1098 */ 1099 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1100 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1101 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1102 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1103 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1104 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1105 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1106 1107 iovcnt = lmsg.msg_iovlen; 1108 1109 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1110 return (set_errno(EMSGSIZE)); 1111 } 1112 1113 if (iovcnt > IOV_MAX_STACK) { 1114 iovsize = iovcnt * sizeof (struct iovec); 1115 aiov = kmem_alloc(iovsize, KM_SLEEP); 1116 } 1117 1118 #ifdef _SYSCALL32_IMPL 1119 /* 1120 * 32-bit callers need to have their iovec expanded, while ensuring 1121 * that they can't move more than 2Gbytes of data in a single call. 1122 */ 1123 if (model == DATAMODEL_ILP32) { 1124 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1125 ssize_t iov32size; 1126 ssize32_t count32; 1127 1128 iov32size = iovcnt * sizeof (struct iovec32); 1129 if (iovsize != 0) 1130 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1131 1132 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1133 if (iovsize != 0) { 1134 kmem_free(aiov32, iov32size); 1135 kmem_free(aiov, iovsize); 1136 } 1137 1138 return (set_errno(EFAULT)); 1139 } 1140 1141 count32 = 0; 1142 for (i = 0; i < iovcnt; i++) { 1143 ssize32_t iovlen32; 1144 1145 iovlen32 = aiov32[i].iov_len; 1146 count32 += iovlen32; 1147 if (iovlen32 < 0 || count32 < 0) { 1148 if (iovsize != 0) { 1149 kmem_free(aiov32, iov32size); 1150 kmem_free(aiov, iovsize); 1151 } 1152 1153 return (set_errno(EINVAL)); 1154 } 1155 1156 aiov[i].iov_len = iovlen32; 1157 aiov[i].iov_base = 1158 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1159 } 1160 1161 if (iovsize != 0) 1162 kmem_free(aiov32, iov32size); 1163 } else 1164 #endif /* _SYSCALL32_IMPL */ 1165 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1166 if (iovsize != 0) 1167 kmem_free(aiov, iovsize); 1168 1169 return (set_errno(EFAULT)); 1170 } 1171 len = 0; 1172 for (i = 0; i < iovcnt; i++) { 1173 ssize_t iovlen = aiov[i].iov_len; 1174 len += iovlen; 1175 if (iovlen < 0 || len < 0) { 1176 if (iovsize != 0) 1177 kmem_free(aiov, iovsize); 1178 1179 return (set_errno(EINVAL)); 1180 } 1181 } 1182 auio.uio_loffset = 0; 1183 auio.uio_iov = aiov; 1184 auio.uio_iovcnt = iovcnt; 1185 auio.uio_resid = len; 1186 auio.uio_segflg = UIO_USERSPACE; 1187 auio.uio_limit = 0; 1188 1189 if (lmsg.msg_control != NULL && 1190 (do_useracc == 0 || 1191 useracc(lmsg.msg_control, lmsg.msg_controllen, 1192 B_WRITE) != 0)) { 1193 if (iovsize != 0) 1194 kmem_free(aiov, iovsize); 1195 1196 return (set_errno(EFAULT)); 1197 } 1198 1199 rval = recvit(sock, &lmsg, &auio, flags, 1200 STRUCT_FADDR(umsgptr, msg_namelen), 1201 STRUCT_FADDR(umsgptr, msg_controllen), flagsp); 1202 1203 if (iovsize != 0) 1204 kmem_free(aiov, iovsize); 1205 1206 return (rval); 1207 } 1208 1209 /* 1210 * Common send function. 1211 */ 1212 static ssize_t 1213 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1214 { 1215 struct sonode *so; 1216 file_t *fp; 1217 void *name; 1218 socklen_t namelen; 1219 void *control; 1220 socklen_t controllen; 1221 ssize_t len; 1222 int error; 1223 1224 if ((so = getsonode(sock, &error, &fp)) == NULL) 1225 return (set_errno(error)); 1226 1227 uiop->uio_fmode = fp->f_flag; 1228 1229 if (so->so_family == AF_UNIX) 1230 uiop->uio_extflg = UIO_COPY_CACHED; 1231 else 1232 uiop->uio_extflg = UIO_COPY_DEFAULT; 1233 1234 len = uiop->uio_resid; 1235 1236 /* Allocate and copyin name and control */ 1237 name = msg->msg_name; 1238 namelen = msg->msg_namelen; 1239 if (name != NULL && namelen != 0) { 1240 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1241 name = copyin_name(so, 1242 (struct sockaddr *)name, 1243 &namelen, &error); 1244 if (name == NULL) 1245 goto done3; 1246 /* copyin_name null terminates addresses for AF_UNIX */ 1247 msg->msg_namelen = namelen; 1248 msg->msg_name = name; 1249 } else { 1250 msg->msg_name = name = NULL; 1251 msg->msg_namelen = namelen = 0; 1252 } 1253 1254 control = msg->msg_control; 1255 controllen = msg->msg_controllen; 1256 if ((control != NULL) && (controllen != 0)) { 1257 /* 1258 * Verify that the length is not excessive to prevent 1259 * an application from consuming all of kernel memory. 1260 */ 1261 if (controllen > SO_MAXARGSIZE) { 1262 error = EINVAL; 1263 goto done2; 1264 } 1265 control = kmem_alloc(controllen, KM_SLEEP); 1266 1267 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1268 if (copyin(msg->msg_control, control, controllen)) { 1269 error = EFAULT; 1270 goto done1; 1271 } 1272 msg->msg_control = control; 1273 } else { 1274 msg->msg_control = control = NULL; 1275 msg->msg_controllen = controllen = 0; 1276 } 1277 1278 msg->msg_flags = flags; 1279 1280 error = socket_sendmsg(so, msg, uiop, CRED()); 1281 done1: 1282 if (control != NULL) 1283 kmem_free(control, controllen); 1284 done2: 1285 if (name != NULL) 1286 kmem_free(name, namelen); 1287 done3: 1288 if (error != 0) { 1289 releasef(sock); 1290 return (set_errno(error)); 1291 } 1292 lwp_stat_update(LWP_STAT_MSGSND, 1); 1293 releasef(sock); 1294 return (len - uiop->uio_resid); 1295 } 1296 1297 /* 1298 * Native system call 1299 */ 1300 ssize_t 1301 send(int sock, void *buffer, size_t len, int flags) 1302 { 1303 struct nmsghdr lmsg; 1304 struct uio auio; 1305 struct iovec aiov[1]; 1306 1307 dprint(1, ("send(%d, %p, %ld, %d)\n", 1308 sock, buffer, len, flags)); 1309 1310 if ((ssize_t)len < 0) { 1311 return (set_errno(EINVAL)); 1312 } 1313 1314 aiov[0].iov_base = buffer; 1315 aiov[0].iov_len = len; 1316 auio.uio_loffset = 0; 1317 auio.uio_iov = aiov; 1318 auio.uio_iovcnt = 1; 1319 auio.uio_resid = len; 1320 auio.uio_segflg = UIO_USERSPACE; 1321 auio.uio_limit = 0; 1322 1323 lmsg.msg_name = NULL; 1324 lmsg.msg_control = NULL; 1325 if (!(flags & MSG_XPG4_2)) { 1326 /* 1327 * In order to be compatible with the libsocket/sockmod 1328 * implementation we set EOR for all send* calls. 1329 */ 1330 flags |= MSG_EOR; 1331 } 1332 return (sendit(sock, &lmsg, &auio, flags)); 1333 } 1334 1335 /* 1336 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1337 * struct omsghdr or struct nmsghdr. 1338 */ 1339 ssize_t 1340 sendmsg(int sock, struct nmsghdr *msg, int flags) 1341 { 1342 struct nmsghdr lmsg; 1343 STRUCT_DECL(nmsghdr, u_lmsg); 1344 struct uio auio; 1345 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1346 ssize_t iovsize = 0; 1347 int iovcnt; 1348 ssize_t len, rval; 1349 int i; 1350 model_t model; 1351 1352 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1353 1354 model = get_udatamodel(); 1355 STRUCT_INIT(u_lmsg, model); 1356 1357 if (flags & MSG_XPG4_2) { 1358 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1359 STRUCT_SIZE(u_lmsg))) 1360 return (set_errno(EFAULT)); 1361 } else { 1362 /* 1363 * Assumes that nmsghdr and omsghdr are identically shaped 1364 * except for the added msg_flags field. 1365 */ 1366 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1367 SIZEOF_STRUCT(omsghdr, model))) 1368 return (set_errno(EFAULT)); 1369 /* 1370 * In order to be compatible with the libsocket/sockmod 1371 * implementation we set EOR for all send* calls. 1372 */ 1373 flags |= MSG_EOR; 1374 } 1375 1376 /* 1377 * Code below us will kmem_alloc memory and hang it 1378 * off msg_control and msg_name fields. This forces 1379 * us to copy the structure to its native form. 1380 */ 1381 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1382 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1383 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1384 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1385 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1386 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1387 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1388 1389 iovcnt = lmsg.msg_iovlen; 1390 1391 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1392 /* 1393 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1394 * be compatible with SunOS 4.X and 4.4BSD. 1395 */ 1396 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1397 return (set_errno(EMSGSIZE)); 1398 } 1399 1400 if (iovcnt > IOV_MAX_STACK) { 1401 iovsize = iovcnt * sizeof (struct iovec); 1402 aiov = kmem_alloc(iovsize, KM_SLEEP); 1403 } 1404 1405 #ifdef _SYSCALL32_IMPL 1406 /* 1407 * 32-bit callers need to have their iovec expanded, while ensuring 1408 * that they can't move more than 2Gbytes of data in a single call. 1409 */ 1410 if (model == DATAMODEL_ILP32) { 1411 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1412 ssize_t iov32size; 1413 ssize32_t count32; 1414 1415 iov32size = iovcnt * sizeof (struct iovec32); 1416 if (iovsize != 0) 1417 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1418 1419 if (iovcnt != 0 && 1420 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1421 if (iovsize != 0) { 1422 kmem_free(aiov32, iov32size); 1423 kmem_free(aiov, iovsize); 1424 } 1425 1426 return (set_errno(EFAULT)); 1427 } 1428 1429 count32 = 0; 1430 for (i = 0; i < iovcnt; i++) { 1431 ssize32_t iovlen32; 1432 1433 iovlen32 = aiov32[i].iov_len; 1434 count32 += iovlen32; 1435 if (iovlen32 < 0 || count32 < 0) { 1436 if (iovsize != 0) { 1437 kmem_free(aiov32, iov32size); 1438 kmem_free(aiov, iovsize); 1439 } 1440 1441 return (set_errno(EINVAL)); 1442 } 1443 1444 aiov[i].iov_len = iovlen32; 1445 aiov[i].iov_base = 1446 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1447 } 1448 1449 if (iovsize != 0) 1450 kmem_free(aiov32, iov32size); 1451 } else 1452 #endif /* _SYSCALL32_IMPL */ 1453 if (iovcnt != 0 && 1454 copyin(lmsg.msg_iov, aiov, 1455 (unsigned)iovcnt * sizeof (struct iovec))) { 1456 if (iovsize != 0) 1457 kmem_free(aiov, iovsize); 1458 1459 return (set_errno(EFAULT)); 1460 } 1461 len = 0; 1462 for (i = 0; i < iovcnt; i++) { 1463 ssize_t iovlen = aiov[i].iov_len; 1464 len += iovlen; 1465 if (iovlen < 0 || len < 0) { 1466 if (iovsize != 0) 1467 kmem_free(aiov, iovsize); 1468 1469 return (set_errno(EINVAL)); 1470 } 1471 } 1472 auio.uio_loffset = 0; 1473 auio.uio_iov = aiov; 1474 auio.uio_iovcnt = iovcnt; 1475 auio.uio_resid = len; 1476 auio.uio_segflg = UIO_USERSPACE; 1477 auio.uio_limit = 0; 1478 1479 rval = sendit(sock, &lmsg, &auio, flags); 1480 1481 if (iovsize != 0) 1482 kmem_free(aiov, iovsize); 1483 1484 return (rval); 1485 } 1486 1487 ssize_t 1488 sendto(int sock, void *buffer, size_t len, int flags, 1489 struct sockaddr *name, socklen_t namelen) 1490 { 1491 struct nmsghdr lmsg; 1492 struct uio auio; 1493 struct iovec aiov[1]; 1494 1495 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1496 sock, buffer, len, flags, (void *)name, namelen)); 1497 1498 if ((ssize_t)len < 0) { 1499 return (set_errno(EINVAL)); 1500 } 1501 1502 aiov[0].iov_base = buffer; 1503 aiov[0].iov_len = len; 1504 auio.uio_loffset = 0; 1505 auio.uio_iov = aiov; 1506 auio.uio_iovcnt = 1; 1507 auio.uio_resid = len; 1508 auio.uio_segflg = UIO_USERSPACE; 1509 auio.uio_limit = 0; 1510 1511 lmsg.msg_name = (char *)name; 1512 lmsg.msg_namelen = namelen; 1513 lmsg.msg_control = NULL; 1514 if (!(flags & MSG_XPG4_2)) { 1515 /* 1516 * In order to be compatible with the libsocket/sockmod 1517 * implementation we set EOR for all send* calls. 1518 */ 1519 flags |= MSG_EOR; 1520 } 1521 return (sendit(sock, &lmsg, &auio, flags)); 1522 } 1523 1524 /*ARGSUSED3*/ 1525 int 1526 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1527 { 1528 struct sonode *so; 1529 int error; 1530 socklen_t namelen; 1531 socklen_t sock_addrlen; 1532 struct sockaddr *sock_addrp; 1533 1534 dprint(1, ("getpeername(%d, %p, %p)\n", 1535 sock, (void *)name, (void *)namelenp)); 1536 1537 if ((so = getsonode(sock, &error, NULL)) == NULL) 1538 goto bad; 1539 1540 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1541 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1542 (name == NULL && namelen != 0)) { 1543 error = EFAULT; 1544 goto rel_out; 1545 } 1546 sock_addrlen = so->so_max_addr_len; 1547 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1548 1549 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1550 B_FALSE, CRED())) == 0) { 1551 ASSERT(sock_addrlen <= so->so_max_addr_len); 1552 error = copyout_name(name, namelen, namelenp, 1553 (void *)sock_addrp, sock_addrlen); 1554 } 1555 kmem_free(sock_addrp, so->so_max_addr_len); 1556 rel_out: 1557 releasef(sock); 1558 bad: return (error != 0 ? set_errno(error) : 0); 1559 } 1560 1561 /*ARGSUSED3*/ 1562 int 1563 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1564 { 1565 struct sonode *so; 1566 int error; 1567 socklen_t namelen, sock_addrlen; 1568 struct sockaddr *sock_addrp; 1569 1570 dprint(1, ("getsockname(%d, %p, %p)\n", 1571 sock, (void *)name, (void *)namelenp)); 1572 1573 if ((so = getsonode(sock, &error, NULL)) == NULL) 1574 goto bad; 1575 1576 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1577 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1578 (name == NULL && namelen != 0)) { 1579 error = EFAULT; 1580 goto rel_out; 1581 } 1582 1583 sock_addrlen = so->so_max_addr_len; 1584 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1585 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1586 CRED())) == 0) { 1587 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1588 ASSERT(sock_addrlen <= so->so_max_addr_len); 1589 error = copyout_name(name, namelen, namelenp, 1590 (void *)sock_addrp, sock_addrlen); 1591 } 1592 kmem_free(sock_addrp, so->so_max_addr_len); 1593 rel_out: 1594 releasef(sock); 1595 bad: return (error != 0 ? set_errno(error) : 0); 1596 } 1597 1598 /*ARGSUSED5*/ 1599 int 1600 getsockopt(int sock, int level, int option_name, void *option_value, 1601 socklen_t *option_lenp, int version) 1602 { 1603 struct sonode *so; 1604 socklen_t optlen, optlen_res; 1605 void *optval; 1606 int error; 1607 1608 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1609 sock, level, option_name, option_value, (void *)option_lenp)); 1610 1611 if ((so = getsonode(sock, &error, NULL)) == NULL) 1612 return (set_errno(error)); 1613 1614 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1615 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1616 releasef(sock); 1617 return (set_errno(EFAULT)); 1618 } 1619 /* 1620 * Verify that the length is not excessive to prevent 1621 * an application from consuming all of kernel memory. 1622 */ 1623 if (optlen > SO_MAXARGSIZE) { 1624 error = EINVAL; 1625 releasef(sock); 1626 return (set_errno(error)); 1627 } 1628 optval = kmem_alloc(optlen, KM_SLEEP); 1629 optlen_res = optlen; 1630 error = socket_getsockopt(so, level, option_name, optval, 1631 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1632 CRED()); 1633 releasef(sock); 1634 if (error) { 1635 kmem_free(optval, optlen); 1636 return (set_errno(error)); 1637 } 1638 error = copyout_arg(option_value, optlen, option_lenp, 1639 optval, optlen_res); 1640 kmem_free(optval, optlen); 1641 if (error) 1642 return (set_errno(error)); 1643 return (0); 1644 } 1645 1646 /*ARGSUSED5*/ 1647 int 1648 setsockopt(int sock, int level, int option_name, void *option_value, 1649 socklen_t option_len, int version) 1650 { 1651 struct sonode *so; 1652 intptr_t buffer[2]; 1653 void *optval = NULL; 1654 int error; 1655 1656 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1657 sock, level, option_name, option_value, option_len)); 1658 1659 if ((so = getsonode(sock, &error, NULL)) == NULL) 1660 return (set_errno(error)); 1661 1662 if (option_value != NULL) { 1663 if (option_len != 0) { 1664 /* 1665 * Verify that the length is not excessive to prevent 1666 * an application from consuming all of kernel memory. 1667 */ 1668 if (option_len > SO_MAXARGSIZE) { 1669 error = EINVAL; 1670 goto done2; 1671 } 1672 optval = option_len <= sizeof (buffer) ? 1673 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1674 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1675 if (copyin(option_value, optval, (size_t)option_len)) { 1676 error = EFAULT; 1677 goto done1; 1678 } 1679 } 1680 } else 1681 option_len = 0; 1682 1683 error = socket_setsockopt(so, level, option_name, optval, 1684 (t_uscalar_t)option_len, CRED()); 1685 done1: 1686 if (optval != buffer) 1687 kmem_free(optval, (size_t)option_len); 1688 done2: 1689 releasef(sock); 1690 if (error) 1691 return (set_errno(error)); 1692 return (0); 1693 } 1694 1695 static int 1696 sockconf_add_sock(int family, int type, int protocol, char *name) 1697 { 1698 int error = 0; 1699 char *kdevpath = NULL; 1700 char *kmodule = NULL; 1701 char *buf = NULL; 1702 size_t pathlen = 0; 1703 struct sockparams *sp; 1704 1705 if (name == NULL) 1706 return (EINVAL); 1707 /* 1708 * Copyin the name. 1709 * This also makes it possible to check for too long pathnames. 1710 * Compress the space needed for the name before passing it 1711 * to soconfig - soconfig will store the string until 1712 * the configuration is removed. 1713 */ 1714 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1715 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1716 kmem_free(buf, MAXPATHLEN); 1717 return (error); 1718 } 1719 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1720 /* For device */ 1721 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1722 bcopy(buf, kdevpath, pathlen); 1723 kdevpath[pathlen - 1] = '\0'; 1724 } else { 1725 /* For socket module */ 1726 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1727 bcopy(buf, kmodule, pathlen); 1728 kmodule[pathlen - 1] = '\0'; 1729 pathlen = 0; 1730 } 1731 kmem_free(buf, MAXPATHLEN); 1732 1733 /* sockparams_create frees mod name and devpath upon failure */ 1734 sp = sockparams_create(family, type, protocol, kmodule, 1735 kdevpath, pathlen, 0, KM_SLEEP, &error); 1736 if (sp != NULL) { 1737 error = sockparams_add(sp); 1738 if (error != 0) 1739 sockparams_destroy(sp); 1740 } 1741 1742 return (error); 1743 } 1744 1745 static int 1746 sockconf_remove_sock(int family, int type, int protocol) 1747 { 1748 return (sockparams_delete(family, type, protocol)); 1749 } 1750 1751 static int 1752 sockconfig_remove_filter(const char *uname) 1753 { 1754 char kname[SOF_MAXNAMELEN]; 1755 size_t len; 1756 int error; 1757 sof_entry_t *ent; 1758 1759 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1760 return (error); 1761 1762 ent = sof_entry_remove_by_name(kname); 1763 if (ent == NULL) 1764 return (ENXIO); 1765 1766 mutex_enter(&ent->sofe_lock); 1767 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1768 if (ent->sofe_refcnt == 0) { 1769 mutex_exit(&ent->sofe_lock); 1770 sof_entry_free(ent); 1771 } else { 1772 /* let the last socket free the filter */ 1773 ent->sofe_flags |= SOFEF_CONDEMED; 1774 mutex_exit(&ent->sofe_lock); 1775 } 1776 1777 return (0); 1778 } 1779 1780 static int 1781 sockconfig_add_filter(const char *uname, void *ufilpropp) 1782 { 1783 struct sockconfig_filter_props filprop; 1784 sof_entry_t *ent; 1785 int error; 1786 size_t tuplesz, len; 1787 char hintbuf[SOF_MAXNAMELEN]; 1788 1789 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1790 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1791 1792 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1793 &len)) != 0) { 1794 sof_entry_free(ent); 1795 return (error); 1796 } 1797 1798 if (get_udatamodel() == DATAMODEL_NATIVE) { 1799 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1800 sof_entry_free(ent); 1801 return (EFAULT); 1802 } 1803 } 1804 #ifdef _SYSCALL32_IMPL 1805 else { 1806 struct sockconfig_filter_props32 filprop32; 1807 1808 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1809 sof_entry_free(ent); 1810 return (EFAULT); 1811 } 1812 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1813 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1814 filprop.sfp_hint = filprop32.sfp_hint; 1815 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1816 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1817 filprop.sfp_socktuple = 1818 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1819 } 1820 #endif /* _SYSCALL32_IMPL */ 1821 1822 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1823 sizeof (ent->sofe_modname), &len)) != 0) { 1824 sof_entry_free(ent); 1825 return (error); 1826 } 1827 1828 /* 1829 * A filter must specify at least one socket tuple. 1830 */ 1831 if (filprop.sfp_socktuple_cnt == 0 || 1832 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1833 sof_entry_free(ent); 1834 return (EINVAL); 1835 } 1836 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1837 ent->sofe_hint = filprop.sfp_hint; 1838 1839 /* 1840 * Verify the hint, and copy in the hint argument, if necessary. 1841 */ 1842 switch (ent->sofe_hint) { 1843 case SOF_HINT_BEFORE: 1844 case SOF_HINT_AFTER: 1845 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1846 sizeof (hintbuf), &len)) != 0) { 1847 sof_entry_free(ent); 1848 return (error); 1849 } 1850 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1851 bcopy(hintbuf, ent->sofe_hintarg, len); 1852 /* FALLTHRU */ 1853 case SOF_HINT_TOP: 1854 case SOF_HINT_BOTTOM: 1855 /* hints cannot be used with programmatic filters */ 1856 if (ent->sofe_flags & SOFEF_PROG) { 1857 sof_entry_free(ent); 1858 return (EINVAL); 1859 } 1860 break; 1861 case SOF_HINT_NONE: 1862 break; 1863 default: 1864 /* bad hint value */ 1865 sof_entry_free(ent); 1866 return (EINVAL); 1867 } 1868 1869 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1870 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1871 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1872 1873 if (get_udatamodel() == DATAMODEL_NATIVE) { 1874 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1875 tuplesz)) { 1876 sof_entry_free(ent); 1877 return (EFAULT); 1878 } 1879 } 1880 #ifdef _SYSCALL32_IMPL 1881 else { 1882 int i; 1883 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1884 sof_socktuple_t *tup = ent->sofe_socktuple; 1885 sof_socktuple32_t tup32; 1886 1887 tup = ent->sofe_socktuple; 1888 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1889 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1890 1891 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1892 sof_entry_free(ent); 1893 return (EFAULT); 1894 } 1895 tup->sofst_family = tup32.sofst_family; 1896 tup->sofst_type = tup32.sofst_type; 1897 tup->sofst_protocol = tup32.sofst_protocol; 1898 1899 data += sizeof (tup32); 1900 } 1901 } 1902 #endif /* _SYSCALL32_IMPL */ 1903 1904 /* Sockets can start using the filter as soon as the filter is added */ 1905 if ((error = sof_entry_add(ent)) != 0) 1906 sof_entry_free(ent); 1907 1908 return (error); 1909 } 1910 1911 /* 1912 * Socket configuration system call. It is used to add and remove 1913 * socket types. 1914 */ 1915 int 1916 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1917 { 1918 int error = 0; 1919 1920 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1921 return (set_errno(EPERM)); 1922 1923 switch (cmd) { 1924 case SOCKCONFIG_ADD_SOCK: 1925 error = sockconf_add_sock((int)(uintptr_t)arg1, 1926 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1927 break; 1928 case SOCKCONFIG_REMOVE_SOCK: 1929 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1930 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1931 break; 1932 case SOCKCONFIG_ADD_FILTER: 1933 error = sockconfig_add_filter((const char *)arg1, arg2); 1934 break; 1935 case SOCKCONFIG_REMOVE_FILTER: 1936 error = sockconfig_remove_filter((const char *)arg1); 1937 break; 1938 case SOCKCONFIG_GET_SOCKTABLE: 1939 error = sockparams_copyout_socktable((int)(uintptr_t)arg1); 1940 break; 1941 default: 1942 #ifdef DEBUG 1943 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1944 #endif 1945 error = EINVAL; 1946 break; 1947 } 1948 1949 if (error != 0) { 1950 eprintline(error); 1951 return (set_errno(error)); 1952 } 1953 return (0); 1954 } 1955 1956 1957 /* 1958 * Sendfile is implemented through two schemes, direct I/O or by 1959 * caching in the filesystem page cache. We cache the input file by 1960 * default and use direct I/O only if sendfile_max_size is set 1961 * appropriately as explained below. Note that this logic is consistent 1962 * with other filesystems where caching is turned on by default 1963 * unless explicitly turned off by using the DIRECTIO ioctl. 1964 * 1965 * We choose a slightly different scheme here. One can turn off 1966 * caching by setting sendfile_max_size to 0. One can also enable 1967 * caching of files <= sendfile_max_size by setting sendfile_max_size 1968 * to an appropriate value. By default sendfile_max_size is set to the 1969 * maximum value so that all files are cached. In future, we may provide 1970 * better interfaces for caching the file. 1971 * 1972 * Sendfile through Direct I/O (Zero copy) 1973 * -------------------------------------- 1974 * 1975 * As disks are normally slower than the network, we can't have a 1976 * single thread that reads the disk and writes to the network. We 1977 * need to have parallelism. This is done by having the sendfile 1978 * thread create another thread that reads from the filesystem 1979 * and queues it for network processing. In this scheme, the data 1980 * is never copied anywhere i.e it is zero copy unlike the other 1981 * scheme. 1982 * 1983 * We have a sendfile queue (snfq) where each sendfile 1984 * request (snf_req_t) is queued for processing by a thread. Number 1985 * of threads is dynamically allocated and they exit if they are idling 1986 * beyond a specified amount of time. When each request (snf_req_t) is 1987 * processed by a thread, it produces a number of mblk_t structures to 1988 * be consumed by the sendfile thread. snf_deque and snf_enque are 1989 * used for consuming and producing mblks. Size of the filesystem 1990 * read is determined by the tunable (sendfile_read_size). A single 1991 * mblk holds sendfile_read_size worth of data (except the last 1992 * read of the file) which is sent down as a whole to the network. 1993 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1994 * value for the UFS filesystem backed by a striped storage array. 1995 * 1996 * Synchronisation between read (producer) and write (consumer) threads. 1997 * -------------------------------------------------------------------- 1998 * 1999 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 2000 * adding and deleting items in this list. Error can happen anytime 2001 * during read or write. There could be unprocessed mblks in the 2002 * sr_ib_XXX list when a read or write error occurs. Whenever error 2003 * is encountered, we need two things to happen : 2004 * 2005 * a) One of the threads need to clean the mblks. 2006 * b) When one thread encounters an error, the other should stop. 2007 * 2008 * For (a), we don't want to penalize the reader thread as it could do 2009 * some useful work processing other requests. For (b), the error can 2010 * be detected by examining sr_read_error or sr_write_error. 2011 * sr_lock protects sr_read_error and sr_write_error. If both reader and 2012 * writer encounters error, we need to report the write error back to 2013 * the application as that's what would have happened if the operations 2014 * were done sequentially. With this in mind, following should work : 2015 * 2016 * - Check for errors before read or write. 2017 * - If the reader encounters error, set the error in sr_read_error. 2018 * Check sr_write_error, if it is set, send cv_signal as it is 2019 * waiting for reader to complete. If it is not set, the writer 2020 * is either running sinking data to the network or blocked 2021 * because of flow control. For handling the latter case, we 2022 * always send a signal. In any case, it will examine sr_read_error 2023 * and return. sr_read_error is marked with SR_READ_DONE to tell 2024 * the writer that the reader is done in all the cases. 2025 * - If the writer encounters error, set the error in sr_write_error. 2026 * The reader thread is either blocked because of flow control or 2027 * running reading data from the disk. For the former, we need to 2028 * wakeup the thread. Again to keep it simple, we always wake up 2029 * the reader thread. Then, wait for the read thread to complete 2030 * if it is not done yet. Cleanup and return. 2031 * 2032 * High and low water marks for the read thread. 2033 * -------------------------------------------- 2034 * 2035 * If sendfile() is used to send data over a slow network, we need to 2036 * make sure that the read thread does not produce data at a faster 2037 * rate than the network. This can happen if the disk is faster than 2038 * the network. In such a case, we don't want to build a very large queue. 2039 * But we would still like to get all of the network throughput possible. 2040 * This implies that network should never block waiting for data. 2041 * As there are lot of disk throughput/network throughput combinations 2042 * possible, it is difficult to come up with an accurate number. 2043 * A typical 10K RPM disk has a max seek latency 17ms and rotational 2044 * latency of 3ms for reading a disk block. Thus, the total latency to 2045 * initiate a new read, transfer data from the disk and queue for 2046 * transmission would take about a max of 25ms. Todays max transfer rate 2047 * for network is 100MB/sec. If the thread is blocked because of flow 2048 * control, it would take 25ms to get new data ready for transmission. 2049 * We have to make sure that network is not idling, while we are initiating 2050 * new transfers. So, at 100MB/sec, to keep network busy we would need 2051 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 2052 * We need to pick a high water mark so that the woken up thread would 2053 * do considerable work before blocking again to prevent thrashing. Currently, 2054 * we pick this to be 10 times that of the low water mark. 2055 * 2056 * Sendfile with segmap caching (One copy from page cache to mblks). 2057 * ---------------------------------------------------------------- 2058 * 2059 * We use the segmap cache for caching the file, if the size of file 2060 * is <= sendfile_max_size. In this case we don't use threads as VM 2061 * is reasonably fast enough to keep up with the network. If the underlying 2062 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 2063 * of data into segmap space, and use the virtual address from segmap 2064 * directly through desballoc() to avoid copy. Once the transport is done 2065 * with the data, the mapping will be released through segmap_release() 2066 * called by the call-back routine. 2067 * 2068 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 2069 * to copy the data from the filesystem into our temporary network buffer. 2070 * 2071 * To disable caching, set sendfile_max_size to 0. 2072 */ 2073 2074 uint_t sendfile_read_size = 1024 * 1024; 2075 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 2076 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 2077 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 2078 struct sendfile_stats sf_stats; 2079 struct sendfile_queue *snfq; 2080 clock_t snfq_timeout; 2081 off64_t sendfile_max_size; 2082 2083 static void snf_enque(snf_req_t *, mblk_t *); 2084 static mblk_t *snf_deque(snf_req_t *); 2085 2086 void 2087 sendfile_init(void) 2088 { 2089 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2090 2091 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2092 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2093 snfq->snfq_max_threads = max_ncpus; 2094 snfq_timeout = SNFQ_TIMEOUT; 2095 /* Cache all files by default. */ 2096 sendfile_max_size = MAXOFFSET_T; 2097 } 2098 2099 /* 2100 * Queues a mblk_t for network processing. 2101 */ 2102 static void 2103 snf_enque(snf_req_t *sr, mblk_t *mp) 2104 { 2105 mp->b_next = NULL; 2106 mutex_enter(&sr->sr_lock); 2107 if (sr->sr_mp_head == NULL) { 2108 sr->sr_mp_head = sr->sr_mp_tail = mp; 2109 cv_signal(&sr->sr_cv); 2110 } else { 2111 sr->sr_mp_tail->b_next = mp; 2112 sr->sr_mp_tail = mp; 2113 } 2114 sr->sr_qlen += MBLKL(mp); 2115 while ((sr->sr_qlen > sr->sr_hiwat) && 2116 (sr->sr_write_error == 0)) { 2117 sf_stats.ss_full_waits++; 2118 cv_wait(&sr->sr_cv, &sr->sr_lock); 2119 } 2120 mutex_exit(&sr->sr_lock); 2121 } 2122 2123 /* 2124 * De-queues a mblk_t for network processing. 2125 */ 2126 static mblk_t * 2127 snf_deque(snf_req_t *sr) 2128 { 2129 mblk_t *mp; 2130 2131 mutex_enter(&sr->sr_lock); 2132 /* 2133 * If we have encountered an error on read or read is 2134 * completed and no more mblks, return NULL. 2135 * We need to check for NULL sr_mp_head also as 2136 * the reads could have completed and there is 2137 * nothing more to come. 2138 */ 2139 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2140 ((sr->sr_read_error & SR_READ_DONE) && 2141 sr->sr_mp_head == NULL)) { 2142 mutex_exit(&sr->sr_lock); 2143 return (NULL); 2144 } 2145 /* 2146 * To start with neither SR_READ_DONE is marked nor 2147 * the error is set. When we wake up from cv_wait, 2148 * following are the possibilities : 2149 * 2150 * a) sr_read_error is zero and mblks are queued. 2151 * b) sr_read_error is set to SR_READ_DONE 2152 * and mblks are queued. 2153 * c) sr_read_error is set to SR_READ_DONE 2154 * and no mblks. 2155 * d) sr_read_error is set to some error other 2156 * than SR_READ_DONE. 2157 */ 2158 2159 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2160 sf_stats.ss_empty_waits++; 2161 cv_wait(&sr->sr_cv, &sr->sr_lock); 2162 } 2163 /* Handle (a) and (b) first - the normal case. */ 2164 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2165 (sr->sr_mp_head != NULL)) { 2166 mp = sr->sr_mp_head; 2167 sr->sr_mp_head = mp->b_next; 2168 sr->sr_qlen -= MBLKL(mp); 2169 if (sr->sr_qlen < sr->sr_lowat) 2170 cv_signal(&sr->sr_cv); 2171 mutex_exit(&sr->sr_lock); 2172 mp->b_next = NULL; 2173 return (mp); 2174 } 2175 /* Handle (c) and (d). */ 2176 mutex_exit(&sr->sr_lock); 2177 return (NULL); 2178 } 2179 2180 /* 2181 * Reads data from the filesystem and queues it for network processing. 2182 */ 2183 void 2184 snf_async_read(snf_req_t *sr) 2185 { 2186 size_t iosize; 2187 u_offset_t fileoff; 2188 u_offset_t size; 2189 int ret_size; 2190 int error; 2191 file_t *fp; 2192 mblk_t *mp; 2193 struct vnode *vp; 2194 int extra = 0; 2195 int maxblk = 0; 2196 int wroff = 0; 2197 struct sonode *so = NULL; 2198 2199 fp = sr->sr_fp; 2200 size = sr->sr_file_size; 2201 fileoff = sr->sr_file_off; 2202 2203 /* 2204 * Ignore the error for filesystems that doesn't support DIRECTIO. 2205 */ 2206 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2207 kcred, NULL, NULL); 2208 2209 vp = sr->sr_vp; 2210 if (vp->v_type == VSOCK) { 2211 stdata_t *stp; 2212 2213 /* 2214 * Get the extra space to insert a header and a trailer. 2215 */ 2216 so = VTOSO(vp); 2217 stp = vp->v_stream; 2218 if (stp == NULL) { 2219 wroff = so->so_proto_props.sopp_wroff; 2220 maxblk = so->so_proto_props.sopp_maxblk; 2221 extra = wroff + so->so_proto_props.sopp_tail; 2222 } else { 2223 wroff = (int)(stp->sd_wroff); 2224 maxblk = (int)(stp->sd_maxblk); 2225 extra = wroff + (int)(stp->sd_tail); 2226 } 2227 } 2228 2229 while ((size != 0) && (sr->sr_write_error == 0)) { 2230 2231 iosize = (int)MIN(sr->sr_maxpsz, size); 2232 2233 /* 2234 * Socket filters can limit the mblk size, 2235 * so limit reads to maxblk if there are 2236 * filters present. 2237 */ 2238 if (vp->v_type == VSOCK && 2239 so->so_filter_active > 0 && maxblk != INFPSZ) 2240 iosize = (int)MIN(iosize, maxblk); 2241 2242 if (is_system_labeled()) { 2243 mp = allocb_cred(iosize + extra, CRED(), 2244 curproc->p_pid); 2245 } else { 2246 mp = allocb(iosize + extra, BPRI_MED); 2247 } 2248 if (mp == NULL) { 2249 error = EAGAIN; 2250 break; 2251 } 2252 2253 mp->b_rptr += wroff; 2254 2255 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2256 2257 /* Error or Reached EOF ? */ 2258 if ((error != 0) || (ret_size == 0)) { 2259 freeb(mp); 2260 break; 2261 } 2262 mp->b_wptr = mp->b_rptr + ret_size; 2263 2264 snf_enque(sr, mp); 2265 size -= ret_size; 2266 fileoff += ret_size; 2267 } 2268 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2269 kcred, NULL, NULL); 2270 mutex_enter(&sr->sr_lock); 2271 sr->sr_read_error = error; 2272 sr->sr_read_error |= SR_READ_DONE; 2273 cv_signal(&sr->sr_cv); 2274 mutex_exit(&sr->sr_lock); 2275 } 2276 2277 void 2278 snf_async_thread(void) 2279 { 2280 snf_req_t *sr; 2281 callb_cpr_t cprinfo; 2282 clock_t time_left = 1; 2283 2284 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2285 2286 mutex_enter(&snfq->snfq_lock); 2287 for (;;) { 2288 /* 2289 * If we didn't find a entry, then block until woken up 2290 * again and then look through the queues again. 2291 */ 2292 while ((sr = snfq->snfq_req_head) == NULL) { 2293 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2294 if (time_left <= 0) { 2295 snfq->snfq_svc_threads--; 2296 CALLB_CPR_EXIT(&cprinfo); 2297 thread_exit(); 2298 /* NOTREACHED */ 2299 } 2300 snfq->snfq_idle_cnt++; 2301 2302 time_left = cv_reltimedwait(&snfq->snfq_cv, 2303 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2304 snfq->snfq_idle_cnt--; 2305 2306 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2307 } 2308 snfq->snfq_req_head = sr->sr_next; 2309 snfq->snfq_req_cnt--; 2310 mutex_exit(&snfq->snfq_lock); 2311 snf_async_read(sr); 2312 mutex_enter(&snfq->snfq_lock); 2313 } 2314 } 2315 2316 2317 snf_req_t * 2318 create_thread(int operation, struct vnode *vp, file_t *fp, 2319 u_offset_t fileoff, u_offset_t size) 2320 { 2321 snf_req_t *sr; 2322 stdata_t *stp; 2323 2324 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2325 2326 sr->sr_vp = vp; 2327 sr->sr_fp = fp; 2328 stp = vp->v_stream; 2329 2330 /* 2331 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2332 * stream might be closed before thread returns from snf_async_read. 2333 */ 2334 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2335 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2336 } else { 2337 sr->sr_maxpsz = MAXBSIZE; 2338 } 2339 2340 sr->sr_operation = operation; 2341 sr->sr_file_off = fileoff; 2342 sr->sr_file_size = size; 2343 sr->sr_hiwat = sendfile_req_hiwat; 2344 sr->sr_lowat = sendfile_req_lowat; 2345 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2346 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2347 /* 2348 * See whether we need another thread for servicing this 2349 * request. If there are already enough requests queued 2350 * for the threads, create one if not exceeding 2351 * snfq_max_threads. 2352 */ 2353 mutex_enter(&snfq->snfq_lock); 2354 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2355 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2356 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2357 TS_RUN, minclsyspri); 2358 snfq->snfq_svc_threads++; 2359 } 2360 if (snfq->snfq_req_head == NULL) { 2361 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2362 cv_signal(&snfq->snfq_cv); 2363 } else { 2364 snfq->snfq_req_tail->sr_next = sr; 2365 snfq->snfq_req_tail = sr; 2366 } 2367 snfq->snfq_req_cnt++; 2368 mutex_exit(&snfq->snfq_lock); 2369 return (sr); 2370 } 2371 2372 int 2373 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2374 ssize_t *count) 2375 { 2376 snf_req_t *sr; 2377 mblk_t *mp; 2378 int iosize; 2379 int error = 0; 2380 short fflag; 2381 struct vnode *vp; 2382 int ksize; 2383 struct nmsghdr msg; 2384 2385 ksize = 0; 2386 *count = 0; 2387 bzero(&msg, sizeof (msg)); 2388 2389 vp = fp->f_vnode; 2390 fflag = fp->f_flag; 2391 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2392 return (EAGAIN); 2393 2394 /* 2395 * We check for read error in snf_deque. It has to check 2396 * for successful READ_DONE and return NULL, and we might 2397 * as well make an additional check there. 2398 */ 2399 while ((mp = snf_deque(sr)) != NULL) { 2400 2401 if (ISSIG(curthread, JUSTLOOKING)) { 2402 freeb(mp); 2403 error = EINTR; 2404 break; 2405 } 2406 iosize = MBLKL(mp); 2407 2408 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2409 2410 if (error != 0) { 2411 if (mp != NULL) 2412 freeb(mp); 2413 break; 2414 } 2415 ksize += iosize; 2416 } 2417 *count = ksize; 2418 2419 mutex_enter(&sr->sr_lock); 2420 sr->sr_write_error = error; 2421 /* Look at the big comments on why we cv_signal here. */ 2422 cv_signal(&sr->sr_cv); 2423 2424 /* Wait for the reader to complete always. */ 2425 while (!(sr->sr_read_error & SR_READ_DONE)) { 2426 cv_wait(&sr->sr_cv, &sr->sr_lock); 2427 } 2428 /* If there is no write error, check for read error. */ 2429 if (error == 0) 2430 error = (sr->sr_read_error & ~SR_READ_DONE); 2431 2432 if (error != 0) { 2433 mblk_t *next_mp; 2434 2435 mp = sr->sr_mp_head; 2436 while (mp != NULL) { 2437 next_mp = mp->b_next; 2438 mp->b_next = NULL; 2439 freeb(mp); 2440 mp = next_mp; 2441 } 2442 } 2443 mutex_exit(&sr->sr_lock); 2444 kmem_free(sr, sizeof (snf_req_t)); 2445 return (error); 2446 } 2447 2448 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2449 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2450 2451 /* 2452 * Maximum no.of elements in the list returned by vpm, including 2453 * NULL for the last entry 2454 */ 2455 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2456 2457 typedef struct { 2458 unsigned int snfv_ref; 2459 frtn_t snfv_frtn; 2460 vnode_t *snfv_vp; 2461 struct vmap snfv_vml[SNF_MAXVMAPS]; 2462 } snf_vmap_desbinfo; 2463 2464 typedef struct { 2465 frtn_t snfi_frtn; 2466 caddr_t snfi_base; 2467 uint_t snfi_mapoff; 2468 size_t snfi_len; 2469 vnode_t *snfi_vp; 2470 } snf_smap_desbinfo; 2471 2472 /* 2473 * The callback function used for vpm mapped mblks called when the last ref of 2474 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2475 * can be the driver too due to lazy reclaim. 2476 */ 2477 void 2478 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2479 { 2480 ASSERT(snfv->snfv_ref != 0); 2481 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2482 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2483 VN_RELE(snfv->snfv_vp); 2484 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2485 } 2486 } 2487 2488 /* 2489 * The callback function used for segmap'ped mblks called when the last ref of 2490 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2491 * can be the driver too due to lazy reclaim. 2492 */ 2493 void 2494 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2495 { 2496 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2497 /* 2498 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2499 * segmap_kpm as long as the latter never falls back to 2500 * "use_segmap_range". (See segmap_getmapflt().) 2501 * 2502 * Using S_OTHER saves an redundant hat_setref() in 2503 * segmap_unlock() 2504 */ 2505 (void) segmap_fault(kas.a_hat, segkmap, 2506 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2507 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2508 F_SOFTUNLOCK, S_OTHER); 2509 } 2510 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2511 VN_RELE(snfi->snfi_vp); 2512 kmem_free(snfi, sizeof (*snfi)); 2513 } 2514 2515 /* 2516 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2517 * When segmap is used, the mblk contains a segmap slot of no more 2518 * than MAXBSIZE. 2519 * 2520 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2521 * in each iteration and sent by socket_sendmblk until an error occurs or 2522 * the requested size has been transferred. An mblk is esballoca'ed from 2523 * each mapped page and a chain of these mblk is sent to the transport layer. 2524 * vpm will be called to unmap the pages when all mblks have been freed by 2525 * free_func. 2526 * 2527 * At the end of the whole sendfile() operation, we wait till the data from 2528 * the last mblk is ack'ed by the transport before returning so that the 2529 * caller of sendfile() can safely modify the file content. 2530 * 2531 * The caller of this function should make sure that total_size does not exceed 2532 * the actual file size of fvp. 2533 */ 2534 int 2535 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2536 ssize_t *count, boolean_t nowait) 2537 { 2538 caddr_t base; 2539 int mapoff; 2540 vnode_t *vp; 2541 mblk_t *mp = NULL; 2542 int chain_size; 2543 int error; 2544 clock_t deadlk_wait; 2545 short fflag; 2546 int ksize; 2547 struct vattr va; 2548 boolean_t dowait = B_FALSE; 2549 struct nmsghdr msg; 2550 2551 vp = fp->f_vnode; 2552 fflag = fp->f_flag; 2553 ksize = 0; 2554 bzero(&msg, sizeof (msg)); 2555 2556 for (;;) { 2557 if (ISSIG(curthread, JUSTLOOKING)) { 2558 error = EINTR; 2559 break; 2560 } 2561 2562 if (vpm_enable) { 2563 snf_vmap_desbinfo *snfv; 2564 mblk_t *nmp; 2565 int mblk_size; 2566 int maxsize; 2567 int i; 2568 2569 mapoff = fileoff & PAGEOFFSET; 2570 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2571 2572 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2573 KM_SLEEP); 2574 2575 /* 2576 * Get vpm mappings for maxsize with read access. 2577 * If the pages aren't available yet, we get 2578 * DEADLK, so wait and try again a little later using 2579 * an increasing wait. We might be here a long time. 2580 * 2581 * If delay_sig returns EINTR, be sure to exit and 2582 * pass it up to the caller. 2583 */ 2584 deadlk_wait = 0; 2585 while ((error = vpm_map_pages(fvp, fileoff, 2586 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2587 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2588 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2589 if ((error = delay_sig(deadlk_wait)) != 0) { 2590 break; 2591 } 2592 } 2593 if (error != 0) { 2594 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2595 error = (error == EINTR) ? EINTR : EIO; 2596 goto out; 2597 } 2598 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2599 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2600 2601 /* Construct the mblk chain from the page mappings */ 2602 chain_size = 0; 2603 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2604 total_size > 0; i++) { 2605 ASSERT(chain_size < maxsize); 2606 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2607 mapoff, total_size); 2608 nmp = esballoca( 2609 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2610 mapoff, mblk_size, BPRI_HI, 2611 &snfv->snfv_frtn); 2612 2613 /* 2614 * We return EAGAIN after unmapping the pages 2615 * if we cannot allocate the the head of the 2616 * chain. Otherwise, we continue sending the 2617 * mblks constructed so far. 2618 */ 2619 if (nmp == NULL) { 2620 if (i == 0) { 2621 vpm_unmap_pages(snfv->snfv_vml, 2622 S_READ); 2623 kmem_free(snfv, 2624 sizeof (snf_vmap_desbinfo)); 2625 error = EAGAIN; 2626 goto out; 2627 } 2628 break; 2629 } 2630 /* Mark this dblk with the zero-copy flag */ 2631 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2632 nmp->b_wptr += mblk_size; 2633 chain_size += mblk_size; 2634 fileoff += mblk_size; 2635 total_size -= mblk_size; 2636 snfv->snfv_ref++; 2637 mapoff = 0; 2638 if (i > 0) 2639 linkb(mp, nmp); 2640 else 2641 mp = nmp; 2642 } 2643 VN_HOLD(fvp); 2644 snfv->snfv_vp = fvp; 2645 } else { 2646 /* vpm not supported. fallback to segmap */ 2647 snf_smap_desbinfo *snfi; 2648 2649 mapoff = fileoff & MAXBOFFSET; 2650 chain_size = MAXBSIZE - mapoff; 2651 if (chain_size > total_size) 2652 chain_size = total_size; 2653 /* 2654 * we don't forcefault because we'll call 2655 * segmap_fault(F_SOFTLOCK) next. 2656 * 2657 * S_READ will get the ref bit set (by either 2658 * segmap_getmapflt() or segmap_fault()) and page 2659 * shared locked. 2660 */ 2661 base = segmap_getmapflt(segkmap, fvp, fileoff, 2662 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2663 2664 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2665 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2666 PAGESIZE)- (mapoff & PAGEMASK); 2667 /* 2668 * We must call segmap_fault() even for segmap_kpm 2669 * because that's how error gets returned. 2670 * (segmap_getmapflt() never fails but segmap_fault() 2671 * does.) 2672 * 2673 * If the pages aren't available yet, we get 2674 * DEADLK, so wait and try again a little later using 2675 * an increasing wait. We might be here a long time. 2676 * 2677 * If delay_sig returns EINTR, be sure to exit and 2678 * pass it up to the caller. 2679 */ 2680 deadlk_wait = 0; 2681 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2682 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2683 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2684 S_READ))) == EDEADLK) { 2685 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2686 if ((error = delay_sig(deadlk_wait)) != 0) { 2687 break; 2688 } 2689 } 2690 if (error != 0) { 2691 (void) segmap_release(segkmap, base, 0); 2692 kmem_free(snfi, sizeof (*snfi)); 2693 error = (error == EINTR) ? EINTR : EIO; 2694 goto out; 2695 } 2696 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2697 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2698 snfi->snfi_base = base; 2699 snfi->snfi_mapoff = mapoff; 2700 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2701 BPRI_HI, &snfi->snfi_frtn); 2702 2703 if (mp == NULL) { 2704 (void) segmap_fault(kas.a_hat, segkmap, 2705 (caddr_t)(uintptr_t)(((uintptr_t)base + 2706 mapoff) & PAGEMASK), snfi->snfi_len, 2707 F_SOFTUNLOCK, S_OTHER); 2708 (void) segmap_release(segkmap, base, 0); 2709 kmem_free(snfi, sizeof (*snfi)); 2710 freemsg(mp); 2711 error = EAGAIN; 2712 goto out; 2713 } 2714 VN_HOLD(fvp); 2715 snfi->snfi_vp = fvp; 2716 mp->b_wptr += chain_size; 2717 2718 /* Mark this dblk with the zero-copy flag */ 2719 mp->b_datap->db_struioflag |= STRUIO_ZC; 2720 fileoff += chain_size; 2721 total_size -= chain_size; 2722 } 2723 2724 if (total_size == 0 && !nowait) { 2725 ASSERT(!dowait); 2726 dowait = B_TRUE; 2727 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2728 } 2729 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2730 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2731 if (error != 0) { 2732 /* 2733 * mp contains the mblks that were not sent by 2734 * socket_sendmblk. Use its size to update *count 2735 */ 2736 *count = ksize + (chain_size - msgdsize(mp)); 2737 if (mp != NULL) 2738 freemsg(mp); 2739 return (error); 2740 } 2741 ksize += chain_size; 2742 if (total_size == 0) 2743 goto done; 2744 2745 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2746 va.va_mask = AT_SIZE; 2747 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2748 if (error) 2749 break; 2750 /* Read as much as possible. */ 2751 if (fileoff >= va.va_size) 2752 break; 2753 if (total_size + fileoff > va.va_size) 2754 total_size = va.va_size - fileoff; 2755 } 2756 out: 2757 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2758 done: 2759 *count = ksize; 2760 if (dowait) { 2761 stdata_t *stp; 2762 2763 stp = vp->v_stream; 2764 if (stp == NULL) { 2765 struct sonode *so; 2766 so = VTOSO(vp); 2767 error = so_zcopy_wait(so); 2768 } else { 2769 mutex_enter(&stp->sd_lock); 2770 while (!(stp->sd_flag & STZCNOTIFY)) { 2771 if (cv_wait_sig(&stp->sd_zcopy_wait, 2772 &stp->sd_lock) == 0) { 2773 error = EINTR; 2774 break; 2775 } 2776 } 2777 stp->sd_flag &= ~STZCNOTIFY; 2778 mutex_exit(&stp->sd_lock); 2779 } 2780 } 2781 return (error); 2782 } 2783 2784 int 2785 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2786 uint_t maxpsz, ssize_t *count) 2787 { 2788 struct vnode *vp; 2789 mblk_t *mp; 2790 int iosize; 2791 int extra = 0; 2792 int error; 2793 short fflag; 2794 int ksize; 2795 int ioflag; 2796 struct uio auio; 2797 struct iovec aiov; 2798 struct vattr va; 2799 int maxblk = 0; 2800 int wroff = 0; 2801 struct sonode *so = NULL; 2802 struct nmsghdr msg; 2803 2804 vp = fp->f_vnode; 2805 if (vp->v_type == VSOCK) { 2806 stdata_t *stp; 2807 2808 /* 2809 * Get the extra space to insert a header and a trailer. 2810 */ 2811 so = VTOSO(vp); 2812 stp = vp->v_stream; 2813 if (stp == NULL) { 2814 wroff = so->so_proto_props.sopp_wroff; 2815 maxblk = so->so_proto_props.sopp_maxblk; 2816 extra = wroff + so->so_proto_props.sopp_tail; 2817 } else { 2818 wroff = (int)(stp->sd_wroff); 2819 maxblk = (int)(stp->sd_maxblk); 2820 extra = wroff + (int)(stp->sd_tail); 2821 } 2822 } 2823 bzero(&msg, sizeof (msg)); 2824 fflag = fp->f_flag; 2825 ksize = 0; 2826 auio.uio_iov = &aiov; 2827 auio.uio_iovcnt = 1; 2828 auio.uio_segflg = UIO_SYSSPACE; 2829 auio.uio_llimit = MAXOFFSET_T; 2830 auio.uio_fmode = fflag; 2831 auio.uio_extflg = UIO_COPY_CACHED; 2832 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2833 /* If read sync is not asked for, filter sync flags */ 2834 if ((ioflag & FRSYNC) == 0) 2835 ioflag &= ~(FSYNC|FDSYNC); 2836 for (;;) { 2837 if (ISSIG(curthread, JUSTLOOKING)) { 2838 error = EINTR; 2839 break; 2840 } 2841 iosize = (int)MIN(maxpsz, size); 2842 2843 /* 2844 * Socket filters can limit the mblk size, 2845 * so limit reads to maxblk if there are 2846 * filters present. 2847 */ 2848 if (vp->v_type == VSOCK && 2849 so->so_filter_active > 0 && maxblk != INFPSZ) 2850 iosize = (int)MIN(iosize, maxblk); 2851 2852 if (is_system_labeled()) { 2853 mp = allocb_cred(iosize + extra, CRED(), 2854 curproc->p_pid); 2855 } else { 2856 mp = allocb(iosize + extra, BPRI_MED); 2857 } 2858 if (mp == NULL) { 2859 error = EAGAIN; 2860 break; 2861 } 2862 2863 mp->b_rptr += wroff; 2864 2865 aiov.iov_base = (caddr_t)mp->b_rptr; 2866 aiov.iov_len = iosize; 2867 auio.uio_loffset = fileoff; 2868 auio.uio_resid = iosize; 2869 2870 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2871 iosize -= auio.uio_resid; 2872 2873 if (error == EINTR && iosize != 0) 2874 error = 0; 2875 2876 if (error != 0 || iosize == 0) { 2877 freeb(mp); 2878 break; 2879 } 2880 mp->b_wptr = mp->b_rptr + iosize; 2881 2882 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2883 2884 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2885 2886 if (error != 0) { 2887 *count = ksize; 2888 if (mp != NULL) 2889 freeb(mp); 2890 return (error); 2891 } 2892 ksize += iosize; 2893 size -= iosize; 2894 if (size == 0) 2895 goto done; 2896 2897 fileoff += iosize; 2898 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2899 va.va_mask = AT_SIZE; 2900 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2901 if (error) 2902 break; 2903 /* Read as much as possible. */ 2904 if (fileoff >= va.va_size) 2905 size = 0; 2906 else if (size + fileoff > va.va_size) 2907 size = va.va_size - fileoff; 2908 } 2909 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2910 done: 2911 *count = ksize; 2912 return (error); 2913 } 2914 2915 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2916 /* 2917 * Largefile support for 32 bit applications only. 2918 */ 2919 int 2920 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2921 ssize32_t *count32) 2922 { 2923 ssize32_t sfv_len; 2924 u_offset_t sfv_off, va_size; 2925 struct vnode *vp, *fvp, *realvp; 2926 struct vattr va; 2927 stdata_t *stp; 2928 ssize_t count = 0; 2929 int error = 0; 2930 boolean_t dozcopy = B_FALSE; 2931 uint_t maxpsz; 2932 2933 sfv_len = (ssize32_t)sfv->sfv_len; 2934 if (sfv_len < 0) { 2935 error = EINVAL; 2936 goto out; 2937 } 2938 2939 if (sfv_len == 0) goto out; 2940 2941 sfv_off = (u_offset_t)sfv->sfv_off; 2942 2943 /* Same checks as in pread */ 2944 if (sfv_off > MAXOFFSET_T) { 2945 error = EINVAL; 2946 goto out; 2947 } 2948 if (sfv_off + sfv_len > MAXOFFSET_T) 2949 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2950 2951 /* 2952 * There are no more checks on sfv_len. So, we cast it to 2953 * u_offset_t and share the snf_direct_io/snf_cache code between 2954 * 32 bit and 64 bit. 2955 * 2956 * TODO: should do nbl_need_check() like read()? 2957 */ 2958 if (sfv_len > sendfile_max_size) { 2959 sf_stats.ss_file_not_cached++; 2960 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2961 &count); 2962 goto out; 2963 } 2964 fvp = rfp->f_vnode; 2965 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2966 fvp = realvp; 2967 /* 2968 * Grab the lock as a reader to prevent the file size 2969 * from changing underneath. 2970 */ 2971 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2972 va.va_mask = AT_SIZE; 2973 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2974 va_size = va.va_size; 2975 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2976 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2977 goto out; 2978 } 2979 /* Read as much as possible. */ 2980 if (sfv_off + sfv_len > va_size) 2981 sfv_len = va_size - sfv_off; 2982 2983 vp = fp->f_vnode; 2984 stp = vp->v_stream; 2985 /* 2986 * When the NOWAIT flag is not set, we enable zero-copy only if the 2987 * transfer size is large enough. This prevents performance loss 2988 * when the caller sends the file piece by piece. 2989 */ 2990 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2991 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2992 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2993 uint_t copyflag; 2994 copyflag = stp != NULL ? stp->sd_copyflag : 2995 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2996 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2997 int on = 1; 2998 2999 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 3000 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 3001 dozcopy = B_TRUE; 3002 } else { 3003 dozcopy = copyflag & STZCVMSAFE; 3004 } 3005 } 3006 if (dozcopy) { 3007 sf_stats.ss_file_segmap++; 3008 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 3009 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 3010 } else { 3011 if (vp->v_type == VSOCK && stp == NULL) { 3012 sonode_t *so = VTOSO(vp); 3013 maxpsz = so->so_proto_props.sopp_maxpsz; 3014 } else if (stp != NULL) { 3015 maxpsz = stp->sd_qn_maxpsz; 3016 } else { 3017 maxpsz = maxphys; 3018 } 3019 3020 if (maxpsz == INFPSZ) 3021 maxpsz = maxphys; 3022 else 3023 maxpsz = roundup(maxpsz, MAXBSIZE); 3024 sf_stats.ss_file_cached++; 3025 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 3026 maxpsz, &count); 3027 } 3028 out: 3029 releasef(sfv->sfv_fd); 3030 *count32 = (ssize32_t)count; 3031 return (error); 3032 } 3033 #endif 3034 3035 #ifdef _SYSCALL32_IMPL 3036 /* 3037 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 3038 * ssize_t rather than ssize32_t; see the comments above read32 for details. 3039 */ 3040 3041 ssize_t 3042 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3043 { 3044 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3045 } 3046 3047 ssize_t 3048 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3049 caddr32_t name, caddr32_t namelenp) 3050 { 3051 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3052 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 3053 } 3054 3055 ssize_t 3056 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3057 { 3058 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3059 } 3060 3061 ssize_t 3062 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3063 caddr32_t name, socklen_t namelen) 3064 { 3065 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3066 (void *)(uintptr_t)name, namelen)); 3067 } 3068 #endif /* _SYSCALL32_IMPL */ 3069 3070 /* 3071 * Function wrappers (mostly around the sonode switch) for 3072 * backward compatibility. 3073 */ 3074 3075 int 3076 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 3077 { 3078 return (socket_accept(so, fflag, CRED(), nsop)); 3079 } 3080 3081 int 3082 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3083 int backlog, int flags) 3084 { 3085 int error; 3086 3087 error = socket_bind(so, name, namelen, flags, CRED()); 3088 if (error == 0 && backlog != 0) 3089 return (socket_listen(so, backlog, CRED())); 3090 3091 return (error); 3092 } 3093 3094 int 3095 solisten(struct sonode *so, int backlog) 3096 { 3097 return (socket_listen(so, backlog, CRED())); 3098 } 3099 3100 int 3101 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3102 int fflag, int flags) 3103 { 3104 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3105 } 3106 3107 int 3108 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3109 { 3110 return (socket_recvmsg(so, msg, uiop, CRED())); 3111 } 3112 3113 int 3114 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3115 { 3116 return (socket_sendmsg(so, msg, uiop, CRED())); 3117 } 3118 3119 int 3120 soshutdown(struct sonode *so, int how) 3121 { 3122 return (socket_shutdown(so, how, CRED())); 3123 } 3124 3125 int 3126 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3127 socklen_t *optlenp, int flags) 3128 { 3129 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3130 flags, CRED())); 3131 } 3132 3133 int 3134 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3135 t_uscalar_t optlen) 3136 { 3137 return (socket_setsockopt(so, level, option_name, optval, optlen, 3138 CRED())); 3139 } 3140 3141 /* 3142 * Because this is backward compatibility interface it only needs to be 3143 * able to handle the creation of TPI sockfs sockets. 3144 */ 3145 struct sonode * 3146 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3147 int *errorp) 3148 { 3149 struct sonode *so; 3150 3151 ASSERT(sp != NULL); 3152 3153 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3154 version, SOCKET_SLEEP, errorp, CRED()); 3155 if (so == NULL) { 3156 SOCKPARAMS_DEC_REF(sp); 3157 } else { 3158 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3159 /* Cannot fail, only bumps so_count */ 3160 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3161 } else { 3162 socket_destroy(so); 3163 so = NULL; 3164 } 3165 } 3166 return (so); 3167 } 3168