1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/cred.h> 33 #include <sys/time.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/file.h> 38 #include <sys/filio.h> 39 #include <sys/uio.h> 40 #include <sys/buf.h> 41 #include <sys/mman.h> 42 #include <sys/pathname.h> 43 #include <sys/dirent.h> 44 #include <sys/debug.h> 45 #include <sys/vmsystm.h> 46 #include <sys/fcntl.h> 47 #include <sys/flock.h> 48 #include <sys/swap.h> 49 #include <sys/errno.h> 50 #include <sys/strsubr.h> 51 #include <sys/sysmacros.h> 52 #include <sys/kmem.h> 53 #include <sys/cmn_err.h> 54 #include <sys/pathconf.h> 55 #include <sys/utsname.h> 56 #include <sys/dnlc.h> 57 #include <sys/acl.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 62 #include <rpc/types.h> 63 #include <rpc/auth.h> 64 #include <rpc/clnt.h> 65 66 #include <nfs/nfs.h> 67 #include <nfs/nfs_clnt.h> 68 #include <nfs/rnode.h> 69 #include <nfs/nfs_acl.h> 70 #include <nfs/lm.h> 71 72 #include <vm/hat.h> 73 #include <vm/as.h> 74 #include <vm/page.h> 75 #include <vm/pvn.h> 76 #include <vm/seg.h> 77 #include <vm/seg_map.h> 78 #include <vm/seg_kpm.h> 79 #include <vm/seg_vn.h> 80 81 #include <fs/fs_subr.h> 82 83 #include <sys/ddi.h> 84 85 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 86 cred_t *); 87 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 88 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 89 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 90 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 91 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 92 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 93 caller_context_t *); 94 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 95 static int nfs_bio(struct buf *, cred_t *); 96 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 97 page_t *[], size_t, struct seg *, caddr_t, 98 enum seg_rw, cred_t *); 99 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 100 cred_t *); 101 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 102 int, cred_t *); 103 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 104 int, cred_t *); 105 static void nfs_delmap_callback(struct as *, void *, uint_t); 106 107 /* 108 * Error flags used to pass information about certain special errors 109 * which need to be handled specially. 110 */ 111 #define NFS_EOF -98 112 113 /* 114 * These are the vnode ops routines which implement the vnode interface to 115 * the networked file system. These routines just take their parameters, 116 * make them look networkish by putting the right info into interface structs, 117 * and then calling the appropriate remote routine(s) to do the work. 118 * 119 * Note on directory name lookup cacheing: If we detect a stale fhandle, 120 * we purge the directory cache relative to that vnode. This way, the 121 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 122 * more details on rnode locking. 123 */ 124 125 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 126 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 127 caller_context_t *); 128 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 129 caller_context_t *); 130 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 133 caller_context_t *); 134 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 137 caller_context_t *); 138 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 139 static int nfs_accessx(void *, int, cred_t *); 140 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 141 caller_context_t *); 142 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 143 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 144 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 145 int, vnode_t *, cred_t *, caller_context_t *, 146 int *, pathname_t *); 147 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 148 int, vnode_t **, cred_t *, int, caller_context_t *, 149 vsecattr_t *); 150 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 151 int); 152 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 153 caller_context_t *, int); 154 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 155 caller_context_t *, int); 156 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 157 cred_t *, caller_context_t *, int, vsecattr_t *); 158 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 159 caller_context_t *, int); 160 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 161 cred_t *, caller_context_t *, int); 162 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 163 caller_context_t *, int); 164 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 165 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 166 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 167 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 168 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 169 page_t *[], size_t, struct seg *, caddr_t, 170 enum seg_rw, cred_t *, caller_context_t *); 171 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 172 caller_context_t *); 173 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 174 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 175 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 176 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 177 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 178 struct flk_callback *, cred_t *, caller_context_t *); 179 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 180 cred_t *, caller_context_t *); 181 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 182 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 183 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 184 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 185 caller_context_t *); 186 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 187 cred_t *, caller_context_t *); 188 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 189 caller_context_t *); 190 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 191 caller_context_t *); 192 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 193 caller_context_t *); 194 195 struct vnodeops *nfs_vnodeops; 196 197 const fs_operation_def_t nfs_vnodeops_template[] = { 198 VOPNAME_OPEN, { .vop_open = nfs_open }, 199 VOPNAME_CLOSE, { .vop_close = nfs_close }, 200 VOPNAME_READ, { .vop_read = nfs_read }, 201 VOPNAME_WRITE, { .vop_write = nfs_write }, 202 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 203 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 204 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 205 VOPNAME_ACCESS, { .vop_access = nfs_access }, 206 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 207 VOPNAME_CREATE, { .vop_create = nfs_create }, 208 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 209 VOPNAME_LINK, { .vop_link = nfs_link }, 210 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 211 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 212 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 213 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 214 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 215 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 216 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 217 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 218 VOPNAME_FID, { .vop_fid = nfs_fid }, 219 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 220 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 221 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 222 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 223 VOPNAME_SPACE, { .vop_space = nfs_space }, 224 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 225 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 226 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 227 VOPNAME_MAP, { .vop_map = nfs_map }, 228 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 229 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 230 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 231 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 232 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 233 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 234 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 235 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 237 NULL, NULL 238 }; 239 240 /* 241 * XXX: This is referenced in modstubs.s 242 */ 243 struct vnodeops * 244 nfs_getvnodeops(void) 245 { 246 return (nfs_vnodeops); 247 } 248 249 /* ARGSUSED */ 250 static int 251 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 252 { 253 int error; 254 struct vattr va; 255 rnode_t *rp; 256 vnode_t *vp; 257 258 vp = *vpp; 259 rp = VTOR(vp); 260 if (nfs_zone() != VTOMI(vp)->mi_zone) 261 return (EIO); 262 mutex_enter(&rp->r_statelock); 263 if (rp->r_cred == NULL) { 264 crhold(cr); 265 rp->r_cred = cr; 266 } 267 mutex_exit(&rp->r_statelock); 268 269 /* 270 * If there is no cached data or if close-to-open 271 * consistency checking is turned off, we can avoid 272 * the over the wire getattr. Otherwise, if the 273 * file system is mounted readonly, then just verify 274 * the caches are up to date using the normal mechanism. 275 * Else, if the file is not mmap'd, then just mark 276 * the attributes as timed out. They will be refreshed 277 * and the caches validated prior to being used. 278 * Else, the file system is mounted writeable so 279 * force an over the wire GETATTR in order to ensure 280 * that all cached data is valid. 281 */ 282 if (vp->v_count > 1 || 283 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 284 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 285 if (vn_is_readonly(vp)) 286 error = nfs_validate_caches(vp, cr); 287 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 288 PURGE_ATTRCACHE(vp); 289 error = 0; 290 } else { 291 va.va_mask = AT_ALL; 292 error = nfs_getattr_otw(vp, &va, cr); 293 } 294 } else 295 error = 0; 296 297 return (error); 298 } 299 300 /* ARGSUSED */ 301 static int 302 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 303 caller_context_t *ct) 304 { 305 rnode_t *rp; 306 int error; 307 struct vattr va; 308 309 /* 310 * zone_enter(2) prevents processes from changing zones with NFS files 311 * open; if we happen to get here from the wrong zone we can't do 312 * anything over the wire. 313 */ 314 if (VTOMI(vp)->mi_zone != nfs_zone()) { 315 /* 316 * We could attempt to clean up locks, except we're sure 317 * that the current process didn't acquire any locks on 318 * the file: any attempt to lock a file belong to another zone 319 * will fail, and one can't lock an NFS file and then change 320 * zones, as that fails too. 321 * 322 * Returning an error here is the sane thing to do. A 323 * subsequent call to VN_RELE() which translates to a 324 * nfs_inactive() will clean up state: if the zone of the 325 * vnode's origin is still alive and kicking, an async worker 326 * thread will handle the request (from the correct zone), and 327 * everything (minus the final nfs_getattr_otw() call) should 328 * be OK. If the zone is going away nfs_async_inactive() will 329 * throw away cached pages inline. 330 */ 331 return (EIO); 332 } 333 334 /* 335 * If we are using local locking for this filesystem, then 336 * release all of the SYSV style record locks. Otherwise, 337 * we are doing network locking and we need to release all 338 * of the network locks. All of the locks held by this 339 * process on this file are released no matter what the 340 * incoming reference count is. 341 */ 342 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 343 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 344 cleanshares(vp, ttoproc(curthread)->p_pid); 345 } else 346 nfs_lockrelease(vp, flag, offset, cr); 347 348 if (count > 1) 349 return (0); 350 351 /* 352 * If the file has been `unlinked', then purge the 353 * DNLC so that this vnode will get reycled quicker 354 * and the .nfs* file on the server will get removed. 355 */ 356 rp = VTOR(vp); 357 if (rp->r_unldvp != NULL) 358 dnlc_purge_vp(vp); 359 360 /* 361 * If the file was open for write and there are pages, 362 * then if the file system was mounted using the "no-close- 363 * to-open" semantics, then start an asynchronous flush 364 * of the all of the pages in the file. 365 * else the file system was not mounted using the "no-close- 366 * to-open" semantics, then do a synchronous flush and 367 * commit of all of the dirty and uncommitted pages. 368 * 369 * The asynchronous flush of the pages in the "nocto" path 370 * mostly just associates a cred pointer with the rnode so 371 * writes which happen later will have a better chance of 372 * working. It also starts the data being written to the 373 * server, but without unnecessarily delaying the application. 374 */ 375 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 376 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 377 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 378 cr, ct); 379 if (error == EAGAIN) 380 error = 0; 381 } else 382 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 383 if (!error) { 384 mutex_enter(&rp->r_statelock); 385 error = rp->r_error; 386 rp->r_error = 0; 387 mutex_exit(&rp->r_statelock); 388 } 389 } else { 390 mutex_enter(&rp->r_statelock); 391 error = rp->r_error; 392 rp->r_error = 0; 393 mutex_exit(&rp->r_statelock); 394 } 395 396 /* 397 * If RWRITEATTR is set, then issue an over the wire GETATTR to 398 * refresh the attribute cache with a set of attributes which 399 * weren't returned from a WRITE. This will enable the close- 400 * to-open processing to work. 401 */ 402 if (rp->r_flags & RWRITEATTR) 403 (void) nfs_getattr_otw(vp, &va, cr); 404 405 return (error); 406 } 407 408 /* ARGSUSED */ 409 static int 410 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 411 caller_context_t *ct) 412 { 413 rnode_t *rp; 414 u_offset_t off; 415 offset_t diff; 416 int on; 417 size_t n; 418 caddr_t base; 419 uint_t flags; 420 int error; 421 mntinfo_t *mi; 422 423 rp = VTOR(vp); 424 mi = VTOMI(vp); 425 426 if (nfs_zone() != mi->mi_zone) 427 return (EIO); 428 429 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 430 431 if (vp->v_type != VREG) 432 return (EISDIR); 433 434 if (uiop->uio_resid == 0) 435 return (0); 436 437 if (uiop->uio_loffset > MAXOFF32_T) 438 return (EFBIG); 439 440 if (uiop->uio_loffset < 0 || 441 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 442 return (EINVAL); 443 444 /* 445 * Bypass VM if caching has been disabled (e.g., locking) or if 446 * using client-side direct I/O and the file is not mmap'd and 447 * there are no cached pages. 448 */ 449 if ((vp->v_flag & VNOCACHE) || 450 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 451 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 452 size_t bufsize; 453 size_t resid = 0; 454 455 /* 456 * Let's try to do read in as large a chunk as we can 457 * (Filesystem (NFS client) bsize if possible/needed). 458 * For V3, this is 32K and for V2, this is 8K. 459 */ 460 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 461 base = kmem_alloc(bufsize, KM_SLEEP); 462 do { 463 n = MIN(uiop->uio_resid, bufsize); 464 error = nfsread(vp, base, uiop->uio_offset, n, 465 &resid, cr); 466 if (!error) { 467 n -= resid; 468 error = uiomove(base, n, UIO_READ, uiop); 469 } 470 } while (!error && uiop->uio_resid > 0 && n > 0); 471 kmem_free(base, bufsize); 472 return (error); 473 } 474 475 error = 0; 476 477 do { 478 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 479 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 480 n = MIN(MAXBSIZE - on, uiop->uio_resid); 481 482 error = nfs_validate_caches(vp, cr); 483 if (error) 484 break; 485 486 mutex_enter(&rp->r_statelock); 487 while (rp->r_flags & RINCACHEPURGE) { 488 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 489 mutex_exit(&rp->r_statelock); 490 return (EINTR); 491 } 492 } 493 diff = rp->r_size - uiop->uio_loffset; 494 mutex_exit(&rp->r_statelock); 495 if (diff <= 0) 496 break; 497 if (diff < n) 498 n = (size_t)diff; 499 500 if (vpm_enable) { 501 /* 502 * Copy data. 503 */ 504 error = vpm_data_copy(vp, off + on, n, uiop, 505 1, NULL, 0, S_READ); 506 } else { 507 base = segmap_getmapflt(segkmap, vp, off + on, n, 508 1, S_READ); 509 error = uiomove(base + on, n, UIO_READ, uiop); 510 } 511 512 if (!error) { 513 /* 514 * If read a whole block or read to eof, 515 * won't need this buffer again soon. 516 */ 517 mutex_enter(&rp->r_statelock); 518 if (n + on == MAXBSIZE || 519 uiop->uio_loffset == rp->r_size) 520 flags = SM_DONTNEED; 521 else 522 flags = 0; 523 mutex_exit(&rp->r_statelock); 524 if (vpm_enable) { 525 error = vpm_sync_pages(vp, off, n, flags); 526 } else { 527 error = segmap_release(segkmap, base, flags); 528 } 529 } else { 530 if (vpm_enable) { 531 (void) vpm_sync_pages(vp, off, n, 0); 532 } else { 533 (void) segmap_release(segkmap, base, 0); 534 } 535 } 536 } while (!error && uiop->uio_resid > 0); 537 538 return (error); 539 } 540 541 /* ARGSUSED */ 542 static int 543 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 544 caller_context_t *ct) 545 { 546 rnode_t *rp; 547 u_offset_t off; 548 caddr_t base; 549 uint_t flags; 550 int remainder; 551 size_t n; 552 int on; 553 int error; 554 int resid; 555 offset_t offset; 556 rlim_t limit; 557 mntinfo_t *mi; 558 559 rp = VTOR(vp); 560 561 mi = VTOMI(vp); 562 if (nfs_zone() != mi->mi_zone) 563 return (EIO); 564 if (vp->v_type != VREG) 565 return (EISDIR); 566 567 if (uiop->uio_resid == 0) 568 return (0); 569 570 if (ioflag & FAPPEND) { 571 struct vattr va; 572 573 /* 574 * Must serialize if appending. 575 */ 576 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 577 nfs_rw_exit(&rp->r_rwlock); 578 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 579 INTR(vp))) 580 return (EINTR); 581 } 582 583 va.va_mask = AT_SIZE; 584 error = nfsgetattr(vp, &va, cr); 585 if (error) 586 return (error); 587 uiop->uio_loffset = va.va_size; 588 } 589 590 if (uiop->uio_loffset > MAXOFF32_T) 591 return (EFBIG); 592 593 offset = uiop->uio_loffset + uiop->uio_resid; 594 595 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 596 return (EINVAL); 597 598 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 599 limit = MAXOFF32_T; 600 } else { 601 limit = (rlim_t)uiop->uio_llimit; 602 } 603 604 /* 605 * Check to make sure that the process will not exceed 606 * its limit on file size. It is okay to write up to 607 * the limit, but not beyond. Thus, the write which 608 * reaches the limit will be short and the next write 609 * will return an error. 610 */ 611 remainder = 0; 612 if (offset > limit) { 613 remainder = offset - limit; 614 uiop->uio_resid = limit - uiop->uio_offset; 615 if (uiop->uio_resid <= 0) { 616 proc_t *p = ttoproc(curthread); 617 618 uiop->uio_resid += remainder; 619 mutex_enter(&p->p_lock); 620 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 621 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 622 mutex_exit(&p->p_lock); 623 return (EFBIG); 624 } 625 } 626 627 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 628 return (EINTR); 629 630 /* 631 * Bypass VM if caching has been disabled (e.g., locking) or if 632 * using client-side direct I/O and the file is not mmap'd and 633 * there are no cached pages. 634 */ 635 if ((vp->v_flag & VNOCACHE) || 636 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 637 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 638 size_t bufsize; 639 int count; 640 uint_t org_offset; 641 642 nfs_fwrite: 643 if (rp->r_flags & RSTALE) { 644 resid = uiop->uio_resid; 645 offset = uiop->uio_loffset; 646 error = rp->r_error; 647 goto bottom; 648 } 649 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 650 base = kmem_alloc(bufsize, KM_SLEEP); 651 do { 652 resid = uiop->uio_resid; 653 offset = uiop->uio_loffset; 654 count = MIN(uiop->uio_resid, bufsize); 655 org_offset = uiop->uio_offset; 656 error = uiomove(base, count, UIO_WRITE, uiop); 657 if (!error) { 658 error = nfswrite(vp, base, org_offset, 659 count, cr); 660 } 661 } while (!error && uiop->uio_resid > 0); 662 kmem_free(base, bufsize); 663 goto bottom; 664 } 665 666 do { 667 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 668 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 669 n = MIN(MAXBSIZE - on, uiop->uio_resid); 670 671 resid = uiop->uio_resid; 672 offset = uiop->uio_loffset; 673 674 if (rp->r_flags & RSTALE) { 675 error = rp->r_error; 676 break; 677 } 678 679 /* 680 * Don't create dirty pages faster than they 681 * can be cleaned so that the system doesn't 682 * get imbalanced. If the async queue is 683 * maxed out, then wait for it to drain before 684 * creating more dirty pages. Also, wait for 685 * any threads doing pagewalks in the vop_getattr 686 * entry points so that they don't block for 687 * long periods. 688 */ 689 mutex_enter(&rp->r_statelock); 690 while ((mi->mi_max_threads != 0 && 691 rp->r_awcount > 2 * mi->mi_max_threads) || 692 rp->r_gcount > 0) 693 cv_wait(&rp->r_cv, &rp->r_statelock); 694 mutex_exit(&rp->r_statelock); 695 696 if (vpm_enable) { 697 /* 698 * It will use kpm mappings, so no need to 699 * pass an address. 700 */ 701 error = writerp(rp, NULL, n, uiop, 0); 702 } else { 703 if (segmap_kpm) { 704 int pon = uiop->uio_loffset & PAGEOFFSET; 705 size_t pn = MIN(PAGESIZE - pon, 706 uiop->uio_resid); 707 int pagecreate; 708 709 mutex_enter(&rp->r_statelock); 710 pagecreate = (pon == 0) && (pn == PAGESIZE || 711 uiop->uio_loffset + pn >= rp->r_size); 712 mutex_exit(&rp->r_statelock); 713 714 base = segmap_getmapflt(segkmap, vp, off + on, 715 pn, !pagecreate, S_WRITE); 716 717 error = writerp(rp, base + pon, n, uiop, 718 pagecreate); 719 720 } else { 721 base = segmap_getmapflt(segkmap, vp, off + on, 722 n, 0, S_READ); 723 error = writerp(rp, base + on, n, uiop, 0); 724 } 725 } 726 727 if (!error) { 728 if (mi->mi_flags & MI_NOAC) 729 flags = SM_WRITE; 730 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 731 /* 732 * Have written a whole block. 733 * Start an asynchronous write 734 * and mark the buffer to 735 * indicate that it won't be 736 * needed again soon. 737 */ 738 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 739 } else 740 flags = 0; 741 if ((ioflag & (FSYNC|FDSYNC)) || 742 (rp->r_flags & ROUTOFSPACE)) { 743 flags &= ~SM_ASYNC; 744 flags |= SM_WRITE; 745 } 746 if (vpm_enable) { 747 error = vpm_sync_pages(vp, off, n, flags); 748 } else { 749 error = segmap_release(segkmap, base, flags); 750 } 751 } else { 752 if (vpm_enable) { 753 (void) vpm_sync_pages(vp, off, n, 0); 754 } else { 755 (void) segmap_release(segkmap, base, 0); 756 } 757 /* 758 * In the event that we got an access error while 759 * faulting in a page for a write-only file just 760 * force a write. 761 */ 762 if (error == EACCES) 763 goto nfs_fwrite; 764 } 765 } while (!error && uiop->uio_resid > 0); 766 767 bottom: 768 if (error) { 769 uiop->uio_resid = resid + remainder; 770 uiop->uio_loffset = offset; 771 } else 772 uiop->uio_resid += remainder; 773 774 nfs_rw_exit(&rp->r_lkserlock); 775 776 return (error); 777 } 778 779 /* 780 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 781 */ 782 static int 783 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 784 int flags, cred_t *cr) 785 { 786 struct buf *bp; 787 int error; 788 789 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 790 bp = pageio_setup(pp, len, vp, flags); 791 ASSERT(bp != NULL); 792 793 /* 794 * pageio_setup should have set b_addr to 0. This 795 * is correct since we want to do I/O on a page 796 * boundary. bp_mapin will use this addr to calculate 797 * an offset, and then set b_addr to the kernel virtual 798 * address it allocated for us. 799 */ 800 ASSERT(bp->b_un.b_addr == 0); 801 802 bp->b_edev = 0; 803 bp->b_dev = 0; 804 bp->b_lblkno = lbtodb(off); 805 bp->b_file = vp; 806 bp->b_offset = (offset_t)off; 807 bp_mapin(bp); 808 809 error = nfs_bio(bp, cr); 810 811 bp_mapout(bp); 812 pageio_done(bp); 813 814 return (error); 815 } 816 817 /* 818 * Write to file. Writes to remote server in largest size 819 * chunks that the server can handle. Write is synchronous. 820 */ 821 static int 822 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 823 { 824 rnode_t *rp; 825 mntinfo_t *mi; 826 struct nfswriteargs wa; 827 struct nfsattrstat ns; 828 int error; 829 int tsize; 830 int douprintf; 831 832 douprintf = 1; 833 834 rp = VTOR(vp); 835 mi = VTOMI(vp); 836 837 ASSERT(nfs_zone() == mi->mi_zone); 838 839 wa.wa_args = &wa.wa_args_buf; 840 wa.wa_fhandle = *VTOFH(vp); 841 842 do { 843 tsize = MIN(mi->mi_curwrite, count); 844 wa.wa_data = base; 845 wa.wa_begoff = offset; 846 wa.wa_totcount = tsize; 847 wa.wa_count = tsize; 848 wa.wa_offset = offset; 849 850 if (mi->mi_io_kstats) { 851 mutex_enter(&mi->mi_lock); 852 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 853 mutex_exit(&mi->mi_lock); 854 } 855 wa.wa_mblk = NULL; 856 do { 857 error = rfs2call(mi, RFS_WRITE, 858 xdr_writeargs, (caddr_t)&wa, 859 xdr_attrstat, (caddr_t)&ns, cr, 860 &douprintf, &ns.ns_status, 0, NULL); 861 } while (error == ENFS_TRYAGAIN); 862 if (mi->mi_io_kstats) { 863 mutex_enter(&mi->mi_lock); 864 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 865 mutex_exit(&mi->mi_lock); 866 } 867 868 if (!error) { 869 error = geterrno(ns.ns_status); 870 /* 871 * Can't check for stale fhandle and purge caches 872 * here because pages are held by nfs_getpage. 873 * Just mark the attribute cache as timed out 874 * and set RWRITEATTR to indicate that the file 875 * was modified with a WRITE operation. 876 */ 877 if (!error) { 878 count -= tsize; 879 base += tsize; 880 offset += tsize; 881 if (mi->mi_io_kstats) { 882 mutex_enter(&mi->mi_lock); 883 KSTAT_IO_PTR(mi->mi_io_kstats)-> 884 writes++; 885 KSTAT_IO_PTR(mi->mi_io_kstats)-> 886 nwritten += tsize; 887 mutex_exit(&mi->mi_lock); 888 } 889 lwp_stat_update(LWP_STAT_OUBLK, 1); 890 mutex_enter(&rp->r_statelock); 891 PURGE_ATTRCACHE_LOCKED(rp); 892 rp->r_flags |= RWRITEATTR; 893 mutex_exit(&rp->r_statelock); 894 } 895 } 896 } while (!error && count); 897 898 return (error); 899 } 900 901 /* 902 * Read from a file. Reads data in largest chunks our interface can handle. 903 */ 904 static int 905 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 906 int count, size_t *residp, cred_t *cr) 907 { 908 mntinfo_t *mi; 909 struct nfsreadargs ra; 910 struct nfsrdresult rr; 911 int tsize; 912 int error; 913 int douprintf; 914 failinfo_t fi; 915 rnode_t *rp; 916 struct vattr va; 917 hrtime_t t; 918 919 rp = VTOR(vp); 920 mi = VTOMI(vp); 921 922 ASSERT(nfs_zone() == mi->mi_zone); 923 924 douprintf = 1; 925 926 ra.ra_fhandle = *VTOFH(vp); 927 928 fi.vp = vp; 929 fi.fhp = (caddr_t)&ra.ra_fhandle; 930 fi.copyproc = nfscopyfh; 931 fi.lookupproc = nfslookup; 932 fi.xattrdirproc = acl_getxattrdir2; 933 934 do { 935 if (mi->mi_io_kstats) { 936 mutex_enter(&mi->mi_lock); 937 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 938 mutex_exit(&mi->mi_lock); 939 } 940 941 do { 942 tsize = MIN(mi->mi_curread, count); 943 rr.rr_data = base; 944 ra.ra_offset = offset; 945 ra.ra_totcount = tsize; 946 ra.ra_count = tsize; 947 ra.ra_data = base; 948 t = gethrtime(); 949 error = rfs2call(mi, RFS_READ, 950 xdr_readargs, (caddr_t)&ra, 951 xdr_rdresult, (caddr_t)&rr, cr, 952 &douprintf, &rr.rr_status, 0, &fi); 953 } while (error == ENFS_TRYAGAIN); 954 955 if (mi->mi_io_kstats) { 956 mutex_enter(&mi->mi_lock); 957 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 958 mutex_exit(&mi->mi_lock); 959 } 960 961 if (!error) { 962 error = geterrno(rr.rr_status); 963 if (!error) { 964 count -= rr.rr_count; 965 base += rr.rr_count; 966 offset += rr.rr_count; 967 if (mi->mi_io_kstats) { 968 mutex_enter(&mi->mi_lock); 969 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 970 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 971 rr.rr_count; 972 mutex_exit(&mi->mi_lock); 973 } 974 lwp_stat_update(LWP_STAT_INBLK, 1); 975 } 976 } 977 } while (!error && count && rr.rr_count == tsize); 978 979 *residp = count; 980 981 if (!error) { 982 /* 983 * Since no error occurred, we have the current 984 * attributes and we need to do a cache check and then 985 * potentially update the cached attributes. We can't 986 * use the normal attribute check and cache mechanisms 987 * because they might cause a cache flush which would 988 * deadlock. Instead, we just check the cache to see 989 * if the attributes have changed. If it is, then we 990 * just mark the attributes as out of date. The next 991 * time that the attributes are checked, they will be 992 * out of date, new attributes will be fetched, and 993 * the page cache will be flushed. If the attributes 994 * weren't changed, then we just update the cached 995 * attributes with these attributes. 996 */ 997 /* 998 * If NFS_ACL is supported on the server, then the 999 * attributes returned by server may have minimal 1000 * permissions sometimes denying access to users having 1001 * proper access. To get the proper attributes, mark 1002 * the attributes as expired so that they will be 1003 * regotten via the NFS_ACL GETATTR2 procedure. 1004 */ 1005 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1006 mutex_enter(&rp->r_statelock); 1007 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1008 (mi->mi_flags & MI_ACL)) { 1009 mutex_exit(&rp->r_statelock); 1010 PURGE_ATTRCACHE(vp); 1011 } else { 1012 if (rp->r_mtime <= t) { 1013 nfs_attrcache_va(vp, &va); 1014 } 1015 mutex_exit(&rp->r_statelock); 1016 } 1017 } 1018 1019 return (error); 1020 } 1021 1022 /* ARGSUSED */ 1023 static int 1024 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1025 caller_context_t *ct) 1026 { 1027 1028 if (nfs_zone() != VTOMI(vp)->mi_zone) 1029 return (EIO); 1030 switch (cmd) { 1031 case _FIODIRECTIO: 1032 return (nfs_directio(vp, (int)arg, cr)); 1033 default: 1034 return (ENOTTY); 1035 } 1036 } 1037 1038 /* ARGSUSED */ 1039 static int 1040 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1041 caller_context_t *ct) 1042 { 1043 int error; 1044 rnode_t *rp; 1045 1046 if (nfs_zone() != VTOMI(vp)->mi_zone) 1047 return (EIO); 1048 /* 1049 * If it has been specified that the return value will 1050 * just be used as a hint, and we are only being asked 1051 * for size, fsid or rdevid, then return the client's 1052 * notion of these values without checking to make sure 1053 * that the attribute cache is up to date. 1054 * The whole point is to avoid an over the wire GETATTR 1055 * call. 1056 */ 1057 rp = VTOR(vp); 1058 if (flags & ATTR_HINT) { 1059 if (vap->va_mask == 1060 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1061 mutex_enter(&rp->r_statelock); 1062 if (vap->va_mask | AT_SIZE) 1063 vap->va_size = rp->r_size; 1064 if (vap->va_mask | AT_FSID) 1065 vap->va_fsid = rp->r_attr.va_fsid; 1066 if (vap->va_mask | AT_RDEV) 1067 vap->va_rdev = rp->r_attr.va_rdev; 1068 mutex_exit(&rp->r_statelock); 1069 return (0); 1070 } 1071 } 1072 1073 /* 1074 * Only need to flush pages if asking for the mtime 1075 * and if there any dirty pages or any outstanding 1076 * asynchronous (write) requests for this file. 1077 */ 1078 if (vap->va_mask & AT_MTIME) { 1079 if (vn_has_cached_data(vp) && 1080 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1081 mutex_enter(&rp->r_statelock); 1082 rp->r_gcount++; 1083 mutex_exit(&rp->r_statelock); 1084 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1085 mutex_enter(&rp->r_statelock); 1086 if (error && (error == ENOSPC || error == EDQUOT)) { 1087 if (!rp->r_error) 1088 rp->r_error = error; 1089 } 1090 if (--rp->r_gcount == 0) 1091 cv_broadcast(&rp->r_cv); 1092 mutex_exit(&rp->r_statelock); 1093 } 1094 } 1095 1096 return (nfsgetattr(vp, vap, cr)); 1097 } 1098 1099 /*ARGSUSED4*/ 1100 static int 1101 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1102 caller_context_t *ct) 1103 { 1104 int error; 1105 uint_t mask; 1106 struct vattr va; 1107 1108 mask = vap->va_mask; 1109 1110 if (mask & AT_NOSET) 1111 return (EINVAL); 1112 1113 if ((mask & AT_SIZE) && 1114 vap->va_type == VREG && 1115 vap->va_size > MAXOFF32_T) 1116 return (EFBIG); 1117 1118 if (nfs_zone() != VTOMI(vp)->mi_zone) 1119 return (EIO); 1120 1121 va.va_mask = AT_UID | AT_MODE; 1122 1123 error = nfsgetattr(vp, &va, cr); 1124 if (error) 1125 return (error); 1126 1127 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1128 vp); 1129 1130 if (error) 1131 return (error); 1132 1133 return (nfssetattr(vp, vap, flags, cr)); 1134 } 1135 1136 static int 1137 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1138 { 1139 int error; 1140 uint_t mask; 1141 struct nfssaargs args; 1142 struct nfsattrstat ns; 1143 int douprintf; 1144 rnode_t *rp; 1145 struct vattr va; 1146 mode_t omode; 1147 mntinfo_t *mi; 1148 vsecattr_t *vsp; 1149 hrtime_t t; 1150 1151 mask = vap->va_mask; 1152 1153 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1154 1155 rp = VTOR(vp); 1156 1157 /* 1158 * Only need to flush pages if there are any pages and 1159 * if the file is marked as dirty in some fashion. The 1160 * file must be flushed so that we can accurately 1161 * determine the size of the file and the cached data 1162 * after the SETATTR returns. A file is considered to 1163 * be dirty if it is either marked with RDIRTY, has 1164 * outstanding i/o's active, or is mmap'd. In this 1165 * last case, we can't tell whether there are dirty 1166 * pages, so we flush just to be sure. 1167 */ 1168 if (vn_has_cached_data(vp) && 1169 ((rp->r_flags & RDIRTY) || 1170 rp->r_count > 0 || 1171 rp->r_mapcnt > 0)) { 1172 ASSERT(vp->v_type != VCHR); 1173 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1174 if (error && (error == ENOSPC || error == EDQUOT)) { 1175 mutex_enter(&rp->r_statelock); 1176 if (!rp->r_error) 1177 rp->r_error = error; 1178 mutex_exit(&rp->r_statelock); 1179 } 1180 } 1181 1182 /* 1183 * If the system call was utime(2) or utimes(2) and the 1184 * application did not specify the times, then set the 1185 * mtime nanosecond field to 1 billion. This will get 1186 * translated from 1 billion nanoseconds to 1 million 1187 * microseconds in the over the wire request. The 1188 * server will use 1 million in the microsecond field 1189 * to tell whether both the mtime and atime should be 1190 * set to the server's current time. 1191 * 1192 * This is an overload of the protocol and should be 1193 * documented in the NFS Version 2 protocol specification. 1194 */ 1195 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1196 vap->va_mtime.tv_nsec = 1000000000; 1197 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1198 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1199 error = vattr_to_sattr(vap, &args.saa_sa); 1200 } else { 1201 /* 1202 * Use server times. vap time values will not be used. 1203 * To ensure no time overflow, make sure vap has 1204 * valid values, but retain the original values. 1205 */ 1206 timestruc_t mtime = vap->va_mtime; 1207 timestruc_t atime = vap->va_atime; 1208 time_t now; 1209 1210 now = gethrestime_sec(); 1211 if (NFS_TIME_T_OK(now)) { 1212 /* Just in case server does not know of this */ 1213 vap->va_mtime.tv_sec = now; 1214 vap->va_atime.tv_sec = now; 1215 } else { 1216 vap->va_mtime.tv_sec = 0; 1217 vap->va_atime.tv_sec = 0; 1218 } 1219 error = vattr_to_sattr(vap, &args.saa_sa); 1220 /* set vap times back on */ 1221 vap->va_mtime = mtime; 1222 vap->va_atime = atime; 1223 } 1224 } else { 1225 /* Either do not set times or use the client specified times */ 1226 error = vattr_to_sattr(vap, &args.saa_sa); 1227 } 1228 if (error) { 1229 /* req time field(s) overflow - return immediately */ 1230 return (error); 1231 } 1232 args.saa_fh = *VTOFH(vp); 1233 1234 va.va_mask = AT_MODE; 1235 error = nfsgetattr(vp, &va, cr); 1236 if (error) 1237 return (error); 1238 omode = va.va_mode; 1239 1240 mi = VTOMI(vp); 1241 1242 douprintf = 1; 1243 1244 t = gethrtime(); 1245 1246 error = rfs2call(mi, RFS_SETATTR, 1247 xdr_saargs, (caddr_t)&args, 1248 xdr_attrstat, (caddr_t)&ns, cr, 1249 &douprintf, &ns.ns_status, 0, NULL); 1250 1251 /* 1252 * Purge the access cache and ACL cache if changing either the 1253 * owner of the file, the group owner, or the mode. These may 1254 * change the access permissions of the file, so purge old 1255 * information and start over again. 1256 */ 1257 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1258 (void) nfs_access_purge_rp(rp); 1259 if (rp->r_secattr != NULL) { 1260 mutex_enter(&rp->r_statelock); 1261 vsp = rp->r_secattr; 1262 rp->r_secattr = NULL; 1263 mutex_exit(&rp->r_statelock); 1264 if (vsp != NULL) 1265 nfs_acl_free(vsp); 1266 } 1267 } 1268 1269 if (!error) { 1270 error = geterrno(ns.ns_status); 1271 if (!error) { 1272 /* 1273 * If changing the size of the file, invalidate 1274 * any local cached data which is no longer part 1275 * of the file. We also possibly invalidate the 1276 * last page in the file. We could use 1277 * pvn_vpzero(), but this would mark the page as 1278 * modified and require it to be written back to 1279 * the server for no particularly good reason. 1280 * This way, if we access it, then we bring it 1281 * back in. A read should be cheaper than a 1282 * write. 1283 */ 1284 if (mask & AT_SIZE) { 1285 nfs_invalidate_pages(vp, 1286 (vap->va_size & PAGEMASK), cr); 1287 } 1288 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1289 /* 1290 * If NFS_ACL is supported on the server, then the 1291 * attributes returned by server may have minimal 1292 * permissions sometimes denying access to users having 1293 * proper access. To get the proper attributes, mark 1294 * the attributes as expired so that they will be 1295 * regotten via the NFS_ACL GETATTR2 procedure. 1296 */ 1297 if (mi->mi_flags & MI_ACL) { 1298 PURGE_ATTRCACHE(vp); 1299 } 1300 /* 1301 * This next check attempts to deal with NFS 1302 * servers which can not handle increasing 1303 * the size of the file via setattr. Most 1304 * of these servers do not return an error, 1305 * but do not change the size of the file. 1306 * Hence, this check and then attempt to set 1307 * the file size by writing 1 byte at the 1308 * offset of the end of the file that we need. 1309 */ 1310 if ((mask & AT_SIZE) && 1311 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1312 char zb = '\0'; 1313 1314 error = nfswrite(vp, &zb, 1315 vap->va_size - sizeof (zb), 1316 sizeof (zb), cr); 1317 } 1318 /* 1319 * Some servers will change the mode to clear the setuid 1320 * and setgid bits when changing the uid or gid. The 1321 * client needs to compensate appropriately. 1322 */ 1323 if (mask & (AT_UID | AT_GID)) { 1324 int terror; 1325 1326 va.va_mask = AT_MODE; 1327 terror = nfsgetattr(vp, &va, cr); 1328 if (!terror && 1329 (((mask & AT_MODE) && 1330 va.va_mode != vap->va_mode) || 1331 (!(mask & AT_MODE) && 1332 va.va_mode != omode))) { 1333 va.va_mask = AT_MODE; 1334 if (mask & AT_MODE) 1335 va.va_mode = vap->va_mode; 1336 else 1337 va.va_mode = omode; 1338 (void) nfssetattr(vp, &va, 0, cr); 1339 } 1340 } 1341 } else { 1342 PURGE_ATTRCACHE(vp); 1343 PURGE_STALE_FH(error, vp, cr); 1344 } 1345 } else { 1346 PURGE_ATTRCACHE(vp); 1347 } 1348 1349 return (error); 1350 } 1351 1352 static int 1353 nfs_accessx(void *vp, int mode, cred_t *cr) 1354 { 1355 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1356 return (nfs_access(vp, mode, 0, cr, NULL)); 1357 } 1358 1359 /* ARGSUSED */ 1360 static int 1361 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1362 { 1363 struct vattr va; 1364 int error; 1365 mntinfo_t *mi; 1366 int shift = 0; 1367 1368 mi = VTOMI(vp); 1369 1370 if (nfs_zone() != mi->mi_zone) 1371 return (EIO); 1372 if (mi->mi_flags & MI_ACL) { 1373 error = acl_access2(vp, mode, flags, cr); 1374 if (mi->mi_flags & MI_ACL) 1375 return (error); 1376 } 1377 1378 va.va_mask = AT_MODE | AT_UID | AT_GID; 1379 error = nfsgetattr(vp, &va, cr); 1380 if (error) 1381 return (error); 1382 1383 /* 1384 * Disallow write attempts on read-only 1385 * file systems, unless the file is a 1386 * device node. 1387 */ 1388 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1389 return (EROFS); 1390 1391 /* 1392 * Disallow attempts to access mandatory lock files. 1393 */ 1394 if ((mode & (VWRITE | VREAD | VEXEC)) && 1395 MANDLOCK(vp, va.va_mode)) 1396 return (EACCES); 1397 1398 /* 1399 * Access check is based on only 1400 * one of owner, group, public. 1401 * If not owner, then check group. 1402 * If not a member of the group, 1403 * then check public access. 1404 */ 1405 if (crgetuid(cr) != va.va_uid) { 1406 shift += 3; 1407 if (!groupmember(va.va_gid, cr)) 1408 shift += 3; 1409 } 1410 found: 1411 mode &= ~(va.va_mode << shift); 1412 if (mode == 0) 1413 return (0); 1414 1415 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1416 } 1417 1418 static int nfs_do_symlink_cache = 1; 1419 1420 /* ARGSUSED */ 1421 static int 1422 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1423 { 1424 int error; 1425 struct nfsrdlnres rl; 1426 rnode_t *rp; 1427 int douprintf; 1428 failinfo_t fi; 1429 1430 /* 1431 * We want to be consistent with UFS semantics so we will return 1432 * EINVAL instead of ENXIO. This violates the XNFS spec and 1433 * the RFC 1094, which are wrong any way. BUGID 1138002. 1434 */ 1435 if (vp->v_type != VLNK) 1436 return (EINVAL); 1437 1438 if (nfs_zone() != VTOMI(vp)->mi_zone) 1439 return (EIO); 1440 1441 rp = VTOR(vp); 1442 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1443 error = nfs_validate_caches(vp, cr); 1444 if (error) 1445 return (error); 1446 mutex_enter(&rp->r_statelock); 1447 if (rp->r_symlink.contents != NULL) { 1448 error = uiomove(rp->r_symlink.contents, 1449 rp->r_symlink.len, UIO_READ, uiop); 1450 mutex_exit(&rp->r_statelock); 1451 return (error); 1452 } 1453 mutex_exit(&rp->r_statelock); 1454 } 1455 1456 1457 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1458 1459 fi.vp = vp; 1460 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1461 fi.copyproc = nfscopyfh; 1462 fi.lookupproc = nfslookup; 1463 fi.xattrdirproc = acl_getxattrdir2; 1464 1465 douprintf = 1; 1466 1467 error = rfs2call(VTOMI(vp), RFS_READLINK, 1468 xdr_readlink, (caddr_t)VTOFH(vp), 1469 xdr_rdlnres, (caddr_t)&rl, cr, 1470 &douprintf, &rl.rl_status, 0, &fi); 1471 1472 if (error) { 1473 1474 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1475 return (error); 1476 } 1477 1478 error = geterrno(rl.rl_status); 1479 if (!error) { 1480 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1481 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1482 mutex_enter(&rp->r_statelock); 1483 if (rp->r_symlink.contents == NULL) { 1484 rp->r_symlink.contents = rl.rl_data; 1485 rp->r_symlink.len = (int)rl.rl_count; 1486 rp->r_symlink.size = NFS_MAXPATHLEN; 1487 mutex_exit(&rp->r_statelock); 1488 } else { 1489 mutex_exit(&rp->r_statelock); 1490 1491 kmem_free((void *)rl.rl_data, 1492 NFS_MAXPATHLEN); 1493 } 1494 } else { 1495 1496 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1497 } 1498 } else { 1499 PURGE_STALE_FH(error, vp, cr); 1500 1501 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1502 } 1503 1504 /* 1505 * Conform to UFS semantics (see comment above) 1506 */ 1507 return (error == ENXIO ? EINVAL : error); 1508 } 1509 1510 /* 1511 * Flush local dirty pages to stable storage on the server. 1512 * 1513 * If FNODSYNC is specified, then there is nothing to do because 1514 * metadata changes are not cached on the client before being 1515 * sent to the server. 1516 */ 1517 /* ARGSUSED */ 1518 static int 1519 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1520 { 1521 int error; 1522 1523 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1524 return (0); 1525 1526 if (nfs_zone() != VTOMI(vp)->mi_zone) 1527 return (EIO); 1528 1529 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1530 if (!error) 1531 error = VTOR(vp)->r_error; 1532 return (error); 1533 } 1534 1535 1536 /* 1537 * Weirdness: if the file was removed or the target of a rename 1538 * operation while it was open, it got renamed instead. Here we 1539 * remove the renamed file. 1540 */ 1541 /* ARGSUSED */ 1542 static void 1543 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1544 { 1545 rnode_t *rp; 1546 1547 ASSERT(vp != DNLC_NO_VNODE); 1548 1549 /* 1550 * If this is coming from the wrong zone, we let someone in the right 1551 * zone take care of it asynchronously. We can get here due to 1552 * VN_RELE() being called from pageout() or fsflush(). This call may 1553 * potentially turn into an expensive no-op if, for instance, v_count 1554 * gets incremented in the meantime, but it's still correct. 1555 */ 1556 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1557 nfs_async_inactive(vp, cr, nfs_inactive); 1558 return; 1559 } 1560 1561 rp = VTOR(vp); 1562 redo: 1563 if (rp->r_unldvp != NULL) { 1564 /* 1565 * Save the vnode pointer for the directory where the 1566 * unlinked-open file got renamed, then set it to NULL 1567 * to prevent another thread from getting here before 1568 * we're done with the remove. While we have the 1569 * statelock, make local copies of the pertinent rnode 1570 * fields. If we weren't to do this in an atomic way, the 1571 * the unl* fields could become inconsistent with respect 1572 * to each other due to a race condition between this 1573 * code and nfs_remove(). See bug report 1034328. 1574 */ 1575 mutex_enter(&rp->r_statelock); 1576 if (rp->r_unldvp != NULL) { 1577 vnode_t *unldvp; 1578 char *unlname; 1579 cred_t *unlcred; 1580 struct nfsdiropargs da; 1581 enum nfsstat status; 1582 int douprintf; 1583 int error; 1584 1585 unldvp = rp->r_unldvp; 1586 rp->r_unldvp = NULL; 1587 unlname = rp->r_unlname; 1588 rp->r_unlname = NULL; 1589 unlcred = rp->r_unlcred; 1590 rp->r_unlcred = NULL; 1591 mutex_exit(&rp->r_statelock); 1592 1593 /* 1594 * If there are any dirty pages left, then flush 1595 * them. This is unfortunate because they just 1596 * may get thrown away during the remove operation, 1597 * but we have to do this for correctness. 1598 */ 1599 if (vn_has_cached_data(vp) && 1600 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1601 ASSERT(vp->v_type != VCHR); 1602 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1603 cr, ct); 1604 if (error) { 1605 mutex_enter(&rp->r_statelock); 1606 if (!rp->r_error) 1607 rp->r_error = error; 1608 mutex_exit(&rp->r_statelock); 1609 } 1610 } 1611 1612 /* 1613 * Do the remove operation on the renamed file 1614 */ 1615 setdiropargs(&da, unlname, unldvp); 1616 1617 douprintf = 1; 1618 1619 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1620 xdr_diropargs, (caddr_t)&da, 1621 xdr_enum, (caddr_t)&status, unlcred, 1622 &douprintf, &status, 0, NULL); 1623 1624 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1625 nfs_purge_rddir_cache(unldvp); 1626 PURGE_ATTRCACHE(unldvp); 1627 1628 /* 1629 * Release stuff held for the remove 1630 */ 1631 VN_RELE(unldvp); 1632 kmem_free(unlname, MAXNAMELEN); 1633 crfree(unlcred); 1634 goto redo; 1635 } 1636 mutex_exit(&rp->r_statelock); 1637 } 1638 1639 rp_addfree(rp, cr); 1640 } 1641 1642 /* 1643 * Remote file system operations having to do with directory manipulation. 1644 */ 1645 1646 /* ARGSUSED */ 1647 static int 1648 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1649 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1650 int *direntflags, pathname_t *realpnp) 1651 { 1652 int error; 1653 vnode_t *vp; 1654 vnode_t *avp = NULL; 1655 rnode_t *drp; 1656 1657 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1658 return (EPERM); 1659 1660 drp = VTOR(dvp); 1661 1662 /* 1663 * Are we looking up extended attributes? If so, "dvp" is 1664 * the file or directory for which we want attributes, and 1665 * we need a lookup of the hidden attribute directory 1666 * before we lookup the rest of the path. 1667 */ 1668 if (flags & LOOKUP_XATTR) { 1669 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1670 mntinfo_t *mi; 1671 1672 mi = VTOMI(dvp); 1673 if (!(mi->mi_flags & MI_EXTATTR)) 1674 return (EINVAL); 1675 1676 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1677 return (EINTR); 1678 1679 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1680 if (avp == NULL) 1681 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1682 else 1683 error = 0; 1684 1685 nfs_rw_exit(&drp->r_rwlock); 1686 1687 if (error) { 1688 if (mi->mi_flags & MI_EXTATTR) 1689 return (error); 1690 return (EINVAL); 1691 } 1692 dvp = avp; 1693 drp = VTOR(dvp); 1694 } 1695 1696 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1697 error = EINTR; 1698 goto out; 1699 } 1700 1701 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1702 1703 nfs_rw_exit(&drp->r_rwlock); 1704 1705 /* 1706 * If vnode is a device, create special vnode. 1707 */ 1708 if (!error && IS_DEVVP(*vpp)) { 1709 vp = *vpp; 1710 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1711 VN_RELE(vp); 1712 } 1713 1714 out: 1715 if (avp != NULL) 1716 VN_RELE(avp); 1717 1718 return (error); 1719 } 1720 1721 static int nfs_lookup_neg_cache = 1; 1722 1723 #ifdef DEBUG 1724 static int nfs_lookup_dnlc_hits = 0; 1725 static int nfs_lookup_dnlc_misses = 0; 1726 static int nfs_lookup_dnlc_neg_hits = 0; 1727 static int nfs_lookup_dnlc_disappears = 0; 1728 static int nfs_lookup_dnlc_lookups = 0; 1729 #endif 1730 1731 /* ARGSUSED */ 1732 int 1733 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1734 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1735 { 1736 int error; 1737 1738 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1739 1740 /* 1741 * If lookup is for "", just return dvp. Don't need 1742 * to send it over the wire, look it up in the dnlc, 1743 * or perform any access checks. 1744 */ 1745 if (*nm == '\0') { 1746 VN_HOLD(dvp); 1747 *vpp = dvp; 1748 return (0); 1749 } 1750 1751 /* 1752 * Can't do lookups in non-directories. 1753 */ 1754 if (dvp->v_type != VDIR) 1755 return (ENOTDIR); 1756 1757 /* 1758 * If we're called with RFSCALL_SOFT, it's important that 1759 * the only rfscall is one we make directly; if we permit 1760 * an access call because we're looking up "." or validating 1761 * a dnlc hit, we'll deadlock because that rfscall will not 1762 * have the RFSCALL_SOFT set. 1763 */ 1764 if (rfscall_flags & RFSCALL_SOFT) 1765 goto callit; 1766 1767 /* 1768 * If lookup is for ".", just return dvp. Don't need 1769 * to send it over the wire or look it up in the dnlc, 1770 * just need to check access. 1771 */ 1772 if (strcmp(nm, ".") == 0) { 1773 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1774 if (error) 1775 return (error); 1776 VN_HOLD(dvp); 1777 *vpp = dvp; 1778 return (0); 1779 } 1780 1781 /* 1782 * Lookup this name in the DNLC. If there was a valid entry, 1783 * then return the results of the lookup. 1784 */ 1785 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1786 if (error || *vpp != NULL) 1787 return (error); 1788 1789 callit: 1790 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1791 1792 return (error); 1793 } 1794 1795 static int 1796 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1797 { 1798 int error; 1799 vnode_t *vp; 1800 1801 ASSERT(*nm != '\0'); 1802 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1803 1804 /* 1805 * Lookup this name in the DNLC. If successful, then validate 1806 * the caches and then recheck the DNLC. The DNLC is rechecked 1807 * just in case this entry got invalidated during the call 1808 * to nfs_validate_caches. 1809 * 1810 * An assumption is being made that it is safe to say that a 1811 * file exists which may not on the server. Any operations to 1812 * the server will fail with ESTALE. 1813 */ 1814 #ifdef DEBUG 1815 nfs_lookup_dnlc_lookups++; 1816 #endif 1817 vp = dnlc_lookup(dvp, nm); 1818 if (vp != NULL) { 1819 VN_RELE(vp); 1820 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1821 PURGE_ATTRCACHE(dvp); 1822 } 1823 error = nfs_validate_caches(dvp, cr); 1824 if (error) 1825 return (error); 1826 vp = dnlc_lookup(dvp, nm); 1827 if (vp != NULL) { 1828 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1829 if (error) { 1830 VN_RELE(vp); 1831 return (error); 1832 } 1833 if (vp == DNLC_NO_VNODE) { 1834 VN_RELE(vp); 1835 #ifdef DEBUG 1836 nfs_lookup_dnlc_neg_hits++; 1837 #endif 1838 return (ENOENT); 1839 } 1840 *vpp = vp; 1841 #ifdef DEBUG 1842 nfs_lookup_dnlc_hits++; 1843 #endif 1844 return (0); 1845 } 1846 #ifdef DEBUG 1847 nfs_lookup_dnlc_disappears++; 1848 #endif 1849 } 1850 #ifdef DEBUG 1851 else 1852 nfs_lookup_dnlc_misses++; 1853 #endif 1854 1855 *vpp = NULL; 1856 1857 return (0); 1858 } 1859 1860 static int 1861 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1862 int rfscall_flags) 1863 { 1864 int error; 1865 struct nfsdiropargs da; 1866 struct nfsdiropres dr; 1867 int douprintf; 1868 failinfo_t fi; 1869 hrtime_t t; 1870 1871 ASSERT(*nm != '\0'); 1872 ASSERT(dvp->v_type == VDIR); 1873 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1874 1875 setdiropargs(&da, nm, dvp); 1876 1877 fi.vp = dvp; 1878 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1879 fi.copyproc = nfscopyfh; 1880 fi.lookupproc = nfslookup; 1881 fi.xattrdirproc = acl_getxattrdir2; 1882 1883 douprintf = 1; 1884 1885 t = gethrtime(); 1886 1887 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1888 xdr_diropargs, (caddr_t)&da, 1889 xdr_diropres, (caddr_t)&dr, cr, 1890 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1891 1892 if (!error) { 1893 error = geterrno(dr.dr_status); 1894 if (!error) { 1895 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1896 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1897 /* 1898 * If NFS_ACL is supported on the server, then the 1899 * attributes returned by server may have minimal 1900 * permissions sometimes denying access to users having 1901 * proper access. To get the proper attributes, mark 1902 * the attributes as expired so that they will be 1903 * regotten via the NFS_ACL GETATTR2 procedure. 1904 */ 1905 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1906 PURGE_ATTRCACHE(*vpp); 1907 } 1908 if (!(rfscall_flags & RFSCALL_SOFT)) 1909 dnlc_update(dvp, nm, *vpp); 1910 } else { 1911 PURGE_STALE_FH(error, dvp, cr); 1912 if (error == ENOENT && nfs_lookup_neg_cache) 1913 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1914 } 1915 } 1916 1917 return (error); 1918 } 1919 1920 /* ARGSUSED */ 1921 static int 1922 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1923 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1924 vsecattr_t *vsecp) 1925 { 1926 int error; 1927 struct nfscreatargs args; 1928 struct nfsdiropres dr; 1929 int douprintf; 1930 vnode_t *vp; 1931 rnode_t *rp; 1932 struct vattr vattr; 1933 rnode_t *drp; 1934 vnode_t *tempvp; 1935 hrtime_t t; 1936 1937 drp = VTOR(dvp); 1938 1939 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1940 return (EPERM); 1941 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1942 return (EINTR); 1943 1944 /* 1945 * We make a copy of the attributes because the caller does not 1946 * expect us to change what va points to. 1947 */ 1948 vattr = *va; 1949 1950 /* 1951 * If the pathname is "", just use dvp. Don't need 1952 * to send it over the wire, look it up in the dnlc, 1953 * or perform any access checks. 1954 */ 1955 if (*nm == '\0') { 1956 error = 0; 1957 VN_HOLD(dvp); 1958 vp = dvp; 1959 /* 1960 * If the pathname is ".", just use dvp. Don't need 1961 * to send it over the wire or look it up in the dnlc, 1962 * just need to check access. 1963 */ 1964 } else if (strcmp(nm, ".") == 0) { 1965 error = nfs_access(dvp, VEXEC, 0, cr, ct); 1966 if (error) { 1967 nfs_rw_exit(&drp->r_rwlock); 1968 return (error); 1969 } 1970 VN_HOLD(dvp); 1971 vp = dvp; 1972 /* 1973 * We need to go over the wire, just to be sure whether the 1974 * file exists or not. Using the DNLC can be dangerous in 1975 * this case when making a decision regarding existence. 1976 */ 1977 } else { 1978 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1979 } 1980 if (!error) { 1981 if (exclusive == EXCL) 1982 error = EEXIST; 1983 else if (vp->v_type == VDIR && (mode & VWRITE)) 1984 error = EISDIR; 1985 else { 1986 /* 1987 * If vnode is a device, create special vnode. 1988 */ 1989 if (IS_DEVVP(vp)) { 1990 tempvp = vp; 1991 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1992 VN_RELE(tempvp); 1993 } 1994 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 1995 if ((vattr.va_mask & AT_SIZE) && 1996 vp->v_type == VREG) { 1997 vattr.va_mask = AT_SIZE; 1998 error = nfssetattr(vp, &vattr, 0, cr); 1999 } 2000 } 2001 } 2002 nfs_rw_exit(&drp->r_rwlock); 2003 if (error) { 2004 VN_RELE(vp); 2005 } else { 2006 /* 2007 * existing file got truncated, notify. 2008 */ 2009 vnevent_create(vp, ct); 2010 *vpp = vp; 2011 } 2012 return (error); 2013 } 2014 2015 ASSERT(vattr.va_mask & AT_TYPE); 2016 if (vattr.va_type == VREG) { 2017 ASSERT(vattr.va_mask & AT_MODE); 2018 if (MANDMODE(vattr.va_mode)) { 2019 nfs_rw_exit(&drp->r_rwlock); 2020 return (EACCES); 2021 } 2022 } 2023 2024 dnlc_remove(dvp, nm); 2025 2026 setdiropargs(&args.ca_da, nm, dvp); 2027 2028 /* 2029 * Decide what the group-id of the created file should be. 2030 * Set it in attribute list as advisory...then do a setattr 2031 * if the server didn't get it right the first time. 2032 */ 2033 error = setdirgid(dvp, &vattr.va_gid, cr); 2034 if (error) { 2035 nfs_rw_exit(&drp->r_rwlock); 2036 return (error); 2037 } 2038 vattr.va_mask |= AT_GID; 2039 2040 /* 2041 * This is a completely gross hack to make mknod 2042 * work over the wire until we can wack the protocol 2043 */ 2044 #define IFCHR 0020000 /* character special */ 2045 #define IFBLK 0060000 /* block special */ 2046 #define IFSOCK 0140000 /* socket */ 2047 2048 /* 2049 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2050 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2051 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2052 * minor/major numbers <= 8 bits long, compress the device 2053 * number before sending it. Otherwise, the 4.x server will not 2054 * create the device with the correct device number and nothing can be 2055 * done about this. 2056 */ 2057 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2058 dev_t d = vattr.va_rdev; 2059 dev32_t dev32; 2060 2061 if (vattr.va_type == VCHR) 2062 vattr.va_mode |= IFCHR; 2063 else 2064 vattr.va_mode |= IFBLK; 2065 2066 (void) cmpldev(&dev32, d); 2067 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2068 vattr.va_size = (u_offset_t)dev32; 2069 else 2070 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2071 2072 vattr.va_mask |= AT_MODE|AT_SIZE; 2073 } else if (vattr.va_type == VFIFO) { 2074 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2075 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2076 vattr.va_mask |= AT_MODE|AT_SIZE; 2077 } else if (vattr.va_type == VSOCK) { 2078 vattr.va_mode |= IFSOCK; 2079 /* 2080 * To avoid triggering bugs in the servers set AT_SIZE 2081 * (all other RFS_CREATE calls set this). 2082 */ 2083 vattr.va_size = 0; 2084 vattr.va_mask |= AT_MODE|AT_SIZE; 2085 } 2086 2087 args.ca_sa = &args.ca_sa_buf; 2088 error = vattr_to_sattr(&vattr, args.ca_sa); 2089 if (error) { 2090 /* req time field(s) overflow - return immediately */ 2091 nfs_rw_exit(&drp->r_rwlock); 2092 return (error); 2093 } 2094 2095 douprintf = 1; 2096 2097 t = gethrtime(); 2098 2099 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2100 xdr_creatargs, (caddr_t)&args, 2101 xdr_diropres, (caddr_t)&dr, cr, 2102 &douprintf, &dr.dr_status, 0, NULL); 2103 2104 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2105 2106 if (!error) { 2107 error = geterrno(dr.dr_status); 2108 if (!error) { 2109 if (HAVE_RDDIR_CACHE(drp)) 2110 nfs_purge_rddir_cache(dvp); 2111 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2112 dvp->v_vfsp, t, cr, NULL, NULL); 2113 /* 2114 * If NFS_ACL is supported on the server, then the 2115 * attributes returned by server may have minimal 2116 * permissions sometimes denying access to users having 2117 * proper access. To get the proper attributes, mark 2118 * the attributes as expired so that they will be 2119 * regotten via the NFS_ACL GETATTR2 procedure. 2120 */ 2121 if (VTOMI(vp)->mi_flags & MI_ACL) { 2122 PURGE_ATTRCACHE(vp); 2123 } 2124 dnlc_update(dvp, nm, vp); 2125 rp = VTOR(vp); 2126 if (vattr.va_size == 0) { 2127 mutex_enter(&rp->r_statelock); 2128 rp->r_size = 0; 2129 mutex_exit(&rp->r_statelock); 2130 if (vn_has_cached_data(vp)) { 2131 ASSERT(vp->v_type != VCHR); 2132 nfs_invalidate_pages(vp, 2133 (u_offset_t)0, cr); 2134 } 2135 } 2136 2137 /* 2138 * Make sure the gid was set correctly. 2139 * If not, try to set it (but don't lose 2140 * any sleep over it). 2141 */ 2142 if (vattr.va_gid != rp->r_attr.va_gid) { 2143 vattr.va_mask = AT_GID; 2144 (void) nfssetattr(vp, &vattr, 0, cr); 2145 } 2146 2147 /* 2148 * If vnode is a device create special vnode 2149 */ 2150 if (IS_DEVVP(vp)) { 2151 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2152 VN_RELE(vp); 2153 } else 2154 *vpp = vp; 2155 } else { 2156 PURGE_STALE_FH(error, dvp, cr); 2157 } 2158 } 2159 2160 nfs_rw_exit(&drp->r_rwlock); 2161 2162 return (error); 2163 } 2164 2165 /* 2166 * Weirdness: if the vnode to be removed is open 2167 * we rename it instead of removing it and nfs_inactive 2168 * will remove the new name. 2169 */ 2170 /* ARGSUSED */ 2171 static int 2172 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2173 { 2174 int error; 2175 struct nfsdiropargs da; 2176 enum nfsstat status; 2177 vnode_t *vp; 2178 char *tmpname; 2179 int douprintf; 2180 rnode_t *rp; 2181 rnode_t *drp; 2182 2183 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2184 return (EPERM); 2185 drp = VTOR(dvp); 2186 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2187 return (EINTR); 2188 2189 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2190 if (error) { 2191 nfs_rw_exit(&drp->r_rwlock); 2192 return (error); 2193 } 2194 2195 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2196 VN_RELE(vp); 2197 nfs_rw_exit(&drp->r_rwlock); 2198 return (EPERM); 2199 } 2200 2201 /* 2202 * First just remove the entry from the name cache, as it 2203 * is most likely the only entry for this vp. 2204 */ 2205 dnlc_remove(dvp, nm); 2206 2207 /* 2208 * If the file has a v_count > 1 then there may be more than one 2209 * entry in the name cache due multiple links or an open file, 2210 * but we don't have the real reference count so flush all 2211 * possible entries. 2212 */ 2213 if (vp->v_count > 1) 2214 dnlc_purge_vp(vp); 2215 2216 /* 2217 * Now we have the real reference count on the vnode 2218 */ 2219 rp = VTOR(vp); 2220 mutex_enter(&rp->r_statelock); 2221 if (vp->v_count > 1 && 2222 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2223 mutex_exit(&rp->r_statelock); 2224 tmpname = newname(); 2225 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2226 if (error) 2227 kmem_free(tmpname, MAXNAMELEN); 2228 else { 2229 mutex_enter(&rp->r_statelock); 2230 if (rp->r_unldvp == NULL) { 2231 VN_HOLD(dvp); 2232 rp->r_unldvp = dvp; 2233 if (rp->r_unlcred != NULL) 2234 crfree(rp->r_unlcred); 2235 crhold(cr); 2236 rp->r_unlcred = cr; 2237 rp->r_unlname = tmpname; 2238 } else { 2239 kmem_free(rp->r_unlname, MAXNAMELEN); 2240 rp->r_unlname = tmpname; 2241 } 2242 mutex_exit(&rp->r_statelock); 2243 } 2244 } else { 2245 mutex_exit(&rp->r_statelock); 2246 /* 2247 * We need to flush any dirty pages which happen to 2248 * be hanging around before removing the file. This 2249 * shouldn't happen very often and mostly on file 2250 * systems mounted "nocto". 2251 */ 2252 if (vn_has_cached_data(vp) && 2253 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2254 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2255 if (error && (error == ENOSPC || error == EDQUOT)) { 2256 mutex_enter(&rp->r_statelock); 2257 if (!rp->r_error) 2258 rp->r_error = error; 2259 mutex_exit(&rp->r_statelock); 2260 } 2261 } 2262 2263 setdiropargs(&da, nm, dvp); 2264 2265 douprintf = 1; 2266 2267 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2268 xdr_diropargs, (caddr_t)&da, 2269 xdr_enum, (caddr_t)&status, cr, 2270 &douprintf, &status, 0, NULL); 2271 2272 /* 2273 * The xattr dir may be gone after last attr is removed, 2274 * so flush it from dnlc. 2275 */ 2276 if (dvp->v_flag & V_XATTRDIR) 2277 dnlc_purge_vp(dvp); 2278 2279 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2280 PURGE_ATTRCACHE(vp); /* link count changed */ 2281 2282 if (!error) { 2283 error = geterrno(status); 2284 if (!error) { 2285 if (HAVE_RDDIR_CACHE(drp)) 2286 nfs_purge_rddir_cache(dvp); 2287 } else { 2288 PURGE_STALE_FH(error, dvp, cr); 2289 } 2290 } 2291 } 2292 2293 if (error == 0) { 2294 vnevent_remove(vp, dvp, nm, ct); 2295 } 2296 VN_RELE(vp); 2297 2298 nfs_rw_exit(&drp->r_rwlock); 2299 2300 return (error); 2301 } 2302 2303 /* ARGSUSED */ 2304 static int 2305 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2306 caller_context_t *ct, int flags) 2307 { 2308 int error; 2309 struct nfslinkargs args; 2310 enum nfsstat status; 2311 vnode_t *realvp; 2312 int douprintf; 2313 rnode_t *tdrp; 2314 2315 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2316 return (EPERM); 2317 if (VOP_REALVP(svp, &realvp, ct) == 0) 2318 svp = realvp; 2319 2320 args.la_from = VTOFH(svp); 2321 setdiropargs(&args.la_to, tnm, tdvp); 2322 2323 tdrp = VTOR(tdvp); 2324 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2325 return (EINTR); 2326 2327 dnlc_remove(tdvp, tnm); 2328 2329 douprintf = 1; 2330 2331 error = rfs2call(VTOMI(svp), RFS_LINK, 2332 xdr_linkargs, (caddr_t)&args, 2333 xdr_enum, (caddr_t)&status, cr, 2334 &douprintf, &status, 0, NULL); 2335 2336 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2337 PURGE_ATTRCACHE(svp); /* link count changed */ 2338 2339 if (!error) { 2340 error = geterrno(status); 2341 if (!error) { 2342 if (HAVE_RDDIR_CACHE(tdrp)) 2343 nfs_purge_rddir_cache(tdvp); 2344 } 2345 } 2346 2347 nfs_rw_exit(&tdrp->r_rwlock); 2348 2349 if (!error) { 2350 /* 2351 * Notify the source file of this link operation. 2352 */ 2353 vnevent_link(svp, ct); 2354 } 2355 return (error); 2356 } 2357 2358 /* ARGSUSED */ 2359 static int 2360 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2361 caller_context_t *ct, int flags) 2362 { 2363 vnode_t *realvp; 2364 2365 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2366 return (EPERM); 2367 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2368 ndvp = realvp; 2369 2370 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2371 } 2372 2373 /* 2374 * nfsrename does the real work of renaming in NFS Version 2. 2375 */ 2376 static int 2377 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2378 caller_context_t *ct) 2379 { 2380 int error; 2381 enum nfsstat status; 2382 struct nfsrnmargs args; 2383 int douprintf; 2384 vnode_t *nvp = NULL; 2385 vnode_t *ovp = NULL; 2386 char *tmpname; 2387 rnode_t *rp; 2388 rnode_t *odrp; 2389 rnode_t *ndrp; 2390 2391 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2392 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2393 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2394 return (EINVAL); 2395 2396 odrp = VTOR(odvp); 2397 ndrp = VTOR(ndvp); 2398 if ((intptr_t)odrp < (intptr_t)ndrp) { 2399 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2400 return (EINTR); 2401 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2402 nfs_rw_exit(&odrp->r_rwlock); 2403 return (EINTR); 2404 } 2405 } else { 2406 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2407 return (EINTR); 2408 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2409 nfs_rw_exit(&ndrp->r_rwlock); 2410 return (EINTR); 2411 } 2412 } 2413 2414 /* 2415 * Lookup the target file. If it exists, it needs to be 2416 * checked to see whether it is a mount point and whether 2417 * it is active (open). 2418 */ 2419 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2420 if (!error) { 2421 /* 2422 * If this file has been mounted on, then just 2423 * return busy because renaming to it would remove 2424 * the mounted file system from the name space. 2425 */ 2426 if (vn_mountedvfs(nvp) != NULL) { 2427 VN_RELE(nvp); 2428 nfs_rw_exit(&odrp->r_rwlock); 2429 nfs_rw_exit(&ndrp->r_rwlock); 2430 return (EBUSY); 2431 } 2432 2433 /* 2434 * Purge the name cache of all references to this vnode 2435 * so that we can check the reference count to infer 2436 * whether it is active or not. 2437 */ 2438 /* 2439 * First just remove the entry from the name cache, as it 2440 * is most likely the only entry for this vp. 2441 */ 2442 dnlc_remove(ndvp, nnm); 2443 /* 2444 * If the file has a v_count > 1 then there may be more 2445 * than one entry in the name cache due multiple links 2446 * or an open file, but we don't have the real reference 2447 * count so flush all possible entries. 2448 */ 2449 if (nvp->v_count > 1) 2450 dnlc_purge_vp(nvp); 2451 2452 /* 2453 * If the vnode is active and is not a directory, 2454 * arrange to rename it to a 2455 * temporary file so that it will continue to be 2456 * accessible. This implements the "unlink-open-file" 2457 * semantics for the target of a rename operation. 2458 * Before doing this though, make sure that the 2459 * source and target files are not already the same. 2460 */ 2461 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2462 /* 2463 * Lookup the source name. 2464 */ 2465 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2466 cr, 0); 2467 2468 /* 2469 * The source name *should* already exist. 2470 */ 2471 if (error) { 2472 VN_RELE(nvp); 2473 nfs_rw_exit(&odrp->r_rwlock); 2474 nfs_rw_exit(&ndrp->r_rwlock); 2475 return (error); 2476 } 2477 2478 /* 2479 * Compare the two vnodes. If they are the same, 2480 * just release all held vnodes and return success. 2481 */ 2482 if (ovp == nvp) { 2483 VN_RELE(ovp); 2484 VN_RELE(nvp); 2485 nfs_rw_exit(&odrp->r_rwlock); 2486 nfs_rw_exit(&ndrp->r_rwlock); 2487 return (0); 2488 } 2489 2490 /* 2491 * Can't mix and match directories and non- 2492 * directories in rename operations. We already 2493 * know that the target is not a directory. If 2494 * the source is a directory, return an error. 2495 */ 2496 if (ovp->v_type == VDIR) { 2497 VN_RELE(ovp); 2498 VN_RELE(nvp); 2499 nfs_rw_exit(&odrp->r_rwlock); 2500 nfs_rw_exit(&ndrp->r_rwlock); 2501 return (ENOTDIR); 2502 } 2503 2504 /* 2505 * The target file exists, is not the same as 2506 * the source file, and is active. Link it 2507 * to a temporary filename to avoid having 2508 * the server removing the file completely. 2509 */ 2510 tmpname = newname(); 2511 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2512 if (error == EOPNOTSUPP) { 2513 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2514 cr, NULL, 0); 2515 } 2516 if (error) { 2517 kmem_free(tmpname, MAXNAMELEN); 2518 VN_RELE(ovp); 2519 VN_RELE(nvp); 2520 nfs_rw_exit(&odrp->r_rwlock); 2521 nfs_rw_exit(&ndrp->r_rwlock); 2522 return (error); 2523 } 2524 rp = VTOR(nvp); 2525 mutex_enter(&rp->r_statelock); 2526 if (rp->r_unldvp == NULL) { 2527 VN_HOLD(ndvp); 2528 rp->r_unldvp = ndvp; 2529 if (rp->r_unlcred != NULL) 2530 crfree(rp->r_unlcred); 2531 crhold(cr); 2532 rp->r_unlcred = cr; 2533 rp->r_unlname = tmpname; 2534 } else { 2535 kmem_free(rp->r_unlname, MAXNAMELEN); 2536 rp->r_unlname = tmpname; 2537 } 2538 mutex_exit(&rp->r_statelock); 2539 } 2540 } 2541 2542 if (ovp == NULL) { 2543 /* 2544 * When renaming directories to be a subdirectory of a 2545 * different parent, the dnlc entry for ".." will no 2546 * longer be valid, so it must be removed. 2547 * 2548 * We do a lookup here to determine whether we are renaming 2549 * a directory and we need to check if we are renaming 2550 * an unlinked file. This might have already been done 2551 * in previous code, so we check ovp == NULL to avoid 2552 * doing it twice. 2553 */ 2554 2555 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2556 2557 /* 2558 * The source name *should* already exist. 2559 */ 2560 if (error) { 2561 nfs_rw_exit(&odrp->r_rwlock); 2562 nfs_rw_exit(&ndrp->r_rwlock); 2563 if (nvp) { 2564 VN_RELE(nvp); 2565 } 2566 return (error); 2567 } 2568 ASSERT(ovp != NULL); 2569 } 2570 2571 dnlc_remove(odvp, onm); 2572 dnlc_remove(ndvp, nnm); 2573 2574 setdiropargs(&args.rna_from, onm, odvp); 2575 setdiropargs(&args.rna_to, nnm, ndvp); 2576 2577 douprintf = 1; 2578 2579 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2580 xdr_rnmargs, (caddr_t)&args, 2581 xdr_enum, (caddr_t)&status, cr, 2582 &douprintf, &status, 0, NULL); 2583 2584 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2585 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2586 2587 if (!error) { 2588 error = geterrno(status); 2589 if (!error) { 2590 if (HAVE_RDDIR_CACHE(odrp)) 2591 nfs_purge_rddir_cache(odvp); 2592 if (HAVE_RDDIR_CACHE(ndrp)) 2593 nfs_purge_rddir_cache(ndvp); 2594 /* 2595 * when renaming directories to be a subdirectory of a 2596 * different parent, the dnlc entry for ".." will no 2597 * longer be valid, so it must be removed 2598 */ 2599 rp = VTOR(ovp); 2600 if (ndvp != odvp) { 2601 if (ovp->v_type == VDIR) { 2602 dnlc_remove(ovp, ".."); 2603 if (HAVE_RDDIR_CACHE(rp)) 2604 nfs_purge_rddir_cache(ovp); 2605 } 2606 } 2607 2608 /* 2609 * If we are renaming the unlinked file, update the 2610 * r_unldvp and r_unlname as needed. 2611 */ 2612 mutex_enter(&rp->r_statelock); 2613 if (rp->r_unldvp != NULL) { 2614 if (strcmp(rp->r_unlname, onm) == 0) { 2615 (void) strncpy(rp->r_unlname, 2616 nnm, MAXNAMELEN); 2617 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2618 2619 if (ndvp != rp->r_unldvp) { 2620 VN_RELE(rp->r_unldvp); 2621 rp->r_unldvp = ndvp; 2622 VN_HOLD(ndvp); 2623 } 2624 } 2625 } 2626 mutex_exit(&rp->r_statelock); 2627 } else { 2628 /* 2629 * System V defines rename to return EEXIST, not 2630 * ENOTEMPTY if the target directory is not empty. 2631 * Over the wire, the error is NFSERR_ENOTEMPTY 2632 * which geterrno maps to ENOTEMPTY. 2633 */ 2634 if (error == ENOTEMPTY) 2635 error = EEXIST; 2636 } 2637 } 2638 2639 if (error == 0) { 2640 if (nvp) 2641 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2642 2643 if (odvp != ndvp) 2644 vnevent_rename_dest_dir(ndvp, ct); 2645 2646 ASSERT(ovp != NULL); 2647 vnevent_rename_src(ovp, odvp, onm, ct); 2648 } 2649 2650 if (nvp) { 2651 VN_RELE(nvp); 2652 } 2653 VN_RELE(ovp); 2654 2655 nfs_rw_exit(&odrp->r_rwlock); 2656 nfs_rw_exit(&ndrp->r_rwlock); 2657 2658 return (error); 2659 } 2660 2661 /* ARGSUSED */ 2662 static int 2663 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2664 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2665 { 2666 int error; 2667 struct nfscreatargs args; 2668 struct nfsdiropres dr; 2669 int douprintf; 2670 rnode_t *drp; 2671 hrtime_t t; 2672 2673 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2674 return (EPERM); 2675 2676 setdiropargs(&args.ca_da, nm, dvp); 2677 2678 /* 2679 * Decide what the group-id and set-gid bit of the created directory 2680 * should be. May have to do a setattr to get the gid right. 2681 */ 2682 error = setdirgid(dvp, &va->va_gid, cr); 2683 if (error) 2684 return (error); 2685 error = setdirmode(dvp, &va->va_mode, cr); 2686 if (error) 2687 return (error); 2688 va->va_mask |= AT_MODE|AT_GID; 2689 2690 args.ca_sa = &args.ca_sa_buf; 2691 error = vattr_to_sattr(va, args.ca_sa); 2692 if (error) { 2693 /* req time field(s) overflow - return immediately */ 2694 return (error); 2695 } 2696 2697 drp = VTOR(dvp); 2698 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2699 return (EINTR); 2700 2701 dnlc_remove(dvp, nm); 2702 2703 douprintf = 1; 2704 2705 t = gethrtime(); 2706 2707 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2708 xdr_creatargs, (caddr_t)&args, 2709 xdr_diropres, (caddr_t)&dr, cr, 2710 &douprintf, &dr.dr_status, 0, NULL); 2711 2712 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2713 2714 if (!error) { 2715 error = geterrno(dr.dr_status); 2716 if (!error) { 2717 if (HAVE_RDDIR_CACHE(drp)) 2718 nfs_purge_rddir_cache(dvp); 2719 /* 2720 * The attributes returned by RFS_MKDIR can not 2721 * be depended upon, so mark the attribute cache 2722 * as purged. A subsequent GETATTR will get the 2723 * correct attributes from the server. 2724 */ 2725 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2726 dvp->v_vfsp, t, cr, NULL, NULL); 2727 PURGE_ATTRCACHE(*vpp); 2728 dnlc_update(dvp, nm, *vpp); 2729 2730 /* 2731 * Make sure the gid was set correctly. 2732 * If not, try to set it (but don't lose 2733 * any sleep over it). 2734 */ 2735 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2736 va->va_mask = AT_GID; 2737 (void) nfssetattr(*vpp, va, 0, cr); 2738 } 2739 } else { 2740 PURGE_STALE_FH(error, dvp, cr); 2741 } 2742 } 2743 2744 nfs_rw_exit(&drp->r_rwlock); 2745 2746 return (error); 2747 } 2748 2749 /* ARGSUSED */ 2750 static int 2751 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2752 caller_context_t *ct, int flags) 2753 { 2754 int error; 2755 enum nfsstat status; 2756 struct nfsdiropargs da; 2757 vnode_t *vp; 2758 int douprintf; 2759 rnode_t *drp; 2760 2761 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2762 return (EPERM); 2763 drp = VTOR(dvp); 2764 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2765 return (EINTR); 2766 2767 /* 2768 * Attempt to prevent a rmdir(".") from succeeding. 2769 */ 2770 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2771 if (error) { 2772 nfs_rw_exit(&drp->r_rwlock); 2773 return (error); 2774 } 2775 2776 if (vp == cdir) { 2777 VN_RELE(vp); 2778 nfs_rw_exit(&drp->r_rwlock); 2779 return (EINVAL); 2780 } 2781 2782 setdiropargs(&da, nm, dvp); 2783 2784 /* 2785 * First just remove the entry from the name cache, as it 2786 * is most likely an entry for this vp. 2787 */ 2788 dnlc_remove(dvp, nm); 2789 2790 /* 2791 * If there vnode reference count is greater than one, then 2792 * there may be additional references in the DNLC which will 2793 * need to be purged. First, trying removing the entry for 2794 * the parent directory and see if that removes the additional 2795 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2796 * to completely remove any references to the directory which 2797 * might still exist in the DNLC. 2798 */ 2799 if (vp->v_count > 1) { 2800 dnlc_remove(vp, ".."); 2801 if (vp->v_count > 1) 2802 dnlc_purge_vp(vp); 2803 } 2804 2805 douprintf = 1; 2806 2807 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2808 xdr_diropargs, (caddr_t)&da, 2809 xdr_enum, (caddr_t)&status, cr, 2810 &douprintf, &status, 0, NULL); 2811 2812 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2813 2814 if (error) { 2815 VN_RELE(vp); 2816 nfs_rw_exit(&drp->r_rwlock); 2817 return (error); 2818 } 2819 2820 error = geterrno(status); 2821 if (!error) { 2822 if (HAVE_RDDIR_CACHE(drp)) 2823 nfs_purge_rddir_cache(dvp); 2824 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2825 nfs_purge_rddir_cache(vp); 2826 } else { 2827 PURGE_STALE_FH(error, dvp, cr); 2828 /* 2829 * System V defines rmdir to return EEXIST, not 2830 * ENOTEMPTY if the directory is not empty. Over 2831 * the wire, the error is NFSERR_ENOTEMPTY which 2832 * geterrno maps to ENOTEMPTY. 2833 */ 2834 if (error == ENOTEMPTY) 2835 error = EEXIST; 2836 } 2837 2838 if (error == 0) { 2839 vnevent_rmdir(vp, dvp, nm, ct); 2840 } 2841 VN_RELE(vp); 2842 2843 nfs_rw_exit(&drp->r_rwlock); 2844 2845 return (error); 2846 } 2847 2848 /* ARGSUSED */ 2849 static int 2850 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2851 caller_context_t *ct, int flags) 2852 { 2853 int error; 2854 struct nfsslargs args; 2855 enum nfsstat status; 2856 int douprintf; 2857 rnode_t *drp; 2858 2859 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2860 return (EPERM); 2861 setdiropargs(&args.sla_from, lnm, dvp); 2862 args.sla_sa = &args.sla_sa_buf; 2863 error = vattr_to_sattr(tva, args.sla_sa); 2864 if (error) { 2865 /* req time field(s) overflow - return immediately */ 2866 return (error); 2867 } 2868 args.sla_tnm = tnm; 2869 2870 drp = VTOR(dvp); 2871 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2872 return (EINTR); 2873 2874 dnlc_remove(dvp, lnm); 2875 2876 douprintf = 1; 2877 2878 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2879 xdr_slargs, (caddr_t)&args, 2880 xdr_enum, (caddr_t)&status, cr, 2881 &douprintf, &status, 0, NULL); 2882 2883 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2884 2885 if (!error) { 2886 error = geterrno(status); 2887 if (!error) { 2888 if (HAVE_RDDIR_CACHE(drp)) 2889 nfs_purge_rddir_cache(dvp); 2890 } else { 2891 PURGE_STALE_FH(error, dvp, cr); 2892 } 2893 } 2894 2895 nfs_rw_exit(&drp->r_rwlock); 2896 2897 return (error); 2898 } 2899 2900 #ifdef DEBUG 2901 static int nfs_readdir_cache_hits = 0; 2902 static int nfs_readdir_cache_shorts = 0; 2903 static int nfs_readdir_cache_waits = 0; 2904 static int nfs_readdir_cache_misses = 0; 2905 static int nfs_readdir_readahead = 0; 2906 #endif 2907 2908 static int nfs_shrinkreaddir = 0; 2909 2910 /* 2911 * Read directory entries. 2912 * There are some weird things to look out for here. The uio_offset 2913 * field is either 0 or it is the offset returned from a previous 2914 * readdir. It is an opaque value used by the server to find the 2915 * correct directory block to read. The count field is the number 2916 * of blocks to read on the server. This is advisory only, the server 2917 * may return only one block's worth of entries. Entries may be compressed 2918 * on the server. 2919 */ 2920 /* ARGSUSED */ 2921 static int 2922 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2923 caller_context_t *ct, int flags) 2924 { 2925 int error; 2926 size_t count; 2927 rnode_t *rp; 2928 rddir_cache *rdc; 2929 rddir_cache *nrdc; 2930 rddir_cache *rrdc; 2931 #ifdef DEBUG 2932 int missed; 2933 #endif 2934 rddir_cache srdc; 2935 avl_index_t where; 2936 2937 rp = VTOR(vp); 2938 2939 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2940 if (nfs_zone() != VTOMI(vp)->mi_zone) 2941 return (EIO); 2942 /* 2943 * Make sure that the directory cache is valid. 2944 */ 2945 if (HAVE_RDDIR_CACHE(rp)) { 2946 if (nfs_disable_rddir_cache) { 2947 /* 2948 * Setting nfs_disable_rddir_cache in /etc/system 2949 * allows interoperability with servers that do not 2950 * properly update the attributes of directories. 2951 * Any cached information gets purged before an 2952 * access is made to it. 2953 */ 2954 nfs_purge_rddir_cache(vp); 2955 } else { 2956 error = nfs_validate_caches(vp, cr); 2957 if (error) 2958 return (error); 2959 } 2960 } 2961 2962 /* 2963 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2964 * RFS_READDIR request with rda_count set to more than 0x400. So 2965 * we reduce the request size here purely for compatibility. 2966 * 2967 * In general, this is no longer required. However, if a server 2968 * is discovered which can not handle requests larger than 1024, 2969 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2970 * compatibility. 2971 * 2972 * In any case, the request size is limited to NFS_MAXDATA bytes. 2973 */ 2974 count = MIN(uiop->uio_iov->iov_len, 2975 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2976 2977 nrdc = NULL; 2978 #ifdef DEBUG 2979 missed = 0; 2980 #endif 2981 top: 2982 /* 2983 * Short circuit last readdir which always returns 0 bytes. 2984 * This can be done after the directory has been read through 2985 * completely at least once. This will set r_direof which 2986 * can be used to find the value of the last cookie. 2987 */ 2988 mutex_enter(&rp->r_statelock); 2989 if (rp->r_direof != NULL && 2990 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2991 mutex_exit(&rp->r_statelock); 2992 #ifdef DEBUG 2993 nfs_readdir_cache_shorts++; 2994 #endif 2995 if (eofp) 2996 *eofp = 1; 2997 if (nrdc != NULL) 2998 rddir_cache_rele(nrdc); 2999 return (0); 3000 } 3001 /* 3002 * Look for a cache entry. Cache entries are identified 3003 * by the NFS cookie value and the byte count requested. 3004 */ 3005 srdc.nfs_cookie = uiop->uio_offset; 3006 srdc.buflen = count; 3007 rdc = avl_find(&rp->r_dir, &srdc, &where); 3008 if (rdc != NULL) { 3009 rddir_cache_hold(rdc); 3010 /* 3011 * If the cache entry is in the process of being 3012 * filled in, wait until this completes. The 3013 * RDDIRWAIT bit is set to indicate that someone 3014 * is waiting and then the thread currently 3015 * filling the entry is done, it should do a 3016 * cv_broadcast to wakeup all of the threads 3017 * waiting for it to finish. 3018 */ 3019 if (rdc->flags & RDDIR) { 3020 nfs_rw_exit(&rp->r_rwlock); 3021 rdc->flags |= RDDIRWAIT; 3022 #ifdef DEBUG 3023 nfs_readdir_cache_waits++; 3024 #endif 3025 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3026 /* 3027 * We got interrupted, probably 3028 * the user typed ^C or an alarm 3029 * fired. We free the new entry 3030 * if we allocated one. 3031 */ 3032 mutex_exit(&rp->r_statelock); 3033 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3034 RW_READER, FALSE); 3035 rddir_cache_rele(rdc); 3036 if (nrdc != NULL) 3037 rddir_cache_rele(nrdc); 3038 return (EINTR); 3039 } 3040 mutex_exit(&rp->r_statelock); 3041 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3042 RW_READER, FALSE); 3043 rddir_cache_rele(rdc); 3044 goto top; 3045 } 3046 /* 3047 * Check to see if a readdir is required to 3048 * fill the entry. If so, mark this entry 3049 * as being filled, remove our reference, 3050 * and branch to the code to fill the entry. 3051 */ 3052 if (rdc->flags & RDDIRREQ) { 3053 rdc->flags &= ~RDDIRREQ; 3054 rdc->flags |= RDDIR; 3055 if (nrdc != NULL) 3056 rddir_cache_rele(nrdc); 3057 nrdc = rdc; 3058 mutex_exit(&rp->r_statelock); 3059 goto bottom; 3060 } 3061 #ifdef DEBUG 3062 if (!missed) 3063 nfs_readdir_cache_hits++; 3064 #endif 3065 /* 3066 * If an error occurred while attempting 3067 * to fill the cache entry, just return it. 3068 */ 3069 if (rdc->error) { 3070 error = rdc->error; 3071 mutex_exit(&rp->r_statelock); 3072 rddir_cache_rele(rdc); 3073 if (nrdc != NULL) 3074 rddir_cache_rele(nrdc); 3075 return (error); 3076 } 3077 3078 /* 3079 * The cache entry is complete and good, 3080 * copyout the dirent structs to the calling 3081 * thread. 3082 */ 3083 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3084 3085 /* 3086 * If no error occurred during the copyout, 3087 * update the offset in the uio struct to 3088 * contain the value of the next cookie 3089 * and set the eof value appropriately. 3090 */ 3091 if (!error) { 3092 uiop->uio_offset = rdc->nfs_ncookie; 3093 if (eofp) 3094 *eofp = rdc->eof; 3095 } 3096 3097 /* 3098 * Decide whether to do readahead. Don't if 3099 * have already read to the end of directory. 3100 */ 3101 if (rdc->eof) { 3102 rp->r_direof = rdc; 3103 mutex_exit(&rp->r_statelock); 3104 rddir_cache_rele(rdc); 3105 if (nrdc != NULL) 3106 rddir_cache_rele(nrdc); 3107 return (error); 3108 } 3109 3110 /* 3111 * Check to see whether we found an entry 3112 * for the readahead. If so, we don't need 3113 * to do anything further, so free the new 3114 * entry if one was allocated. Otherwise, 3115 * allocate a new entry, add it to the cache, 3116 * and then initiate an asynchronous readdir 3117 * operation to fill it. 3118 */ 3119 srdc.nfs_cookie = rdc->nfs_ncookie; 3120 srdc.buflen = count; 3121 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3122 if (rrdc != NULL) { 3123 if (nrdc != NULL) 3124 rddir_cache_rele(nrdc); 3125 } else { 3126 if (nrdc != NULL) 3127 rrdc = nrdc; 3128 else { 3129 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3130 } 3131 if (rrdc != NULL) { 3132 rrdc->nfs_cookie = rdc->nfs_ncookie; 3133 rrdc->buflen = count; 3134 avl_insert(&rp->r_dir, rrdc, where); 3135 rddir_cache_hold(rrdc); 3136 mutex_exit(&rp->r_statelock); 3137 rddir_cache_rele(rdc); 3138 #ifdef DEBUG 3139 nfs_readdir_readahead++; 3140 #endif 3141 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3142 return (error); 3143 } 3144 } 3145 3146 mutex_exit(&rp->r_statelock); 3147 rddir_cache_rele(rdc); 3148 return (error); 3149 } 3150 3151 /* 3152 * Didn't find an entry in the cache. Construct a new empty 3153 * entry and link it into the cache. Other processes attempting 3154 * to access this entry will need to wait until it is filled in. 3155 * 3156 * Since kmem_alloc may block, another pass through the cache 3157 * will need to be taken to make sure that another process 3158 * hasn't already added an entry to the cache for this request. 3159 */ 3160 if (nrdc == NULL) { 3161 mutex_exit(&rp->r_statelock); 3162 nrdc = rddir_cache_alloc(KM_SLEEP); 3163 nrdc->nfs_cookie = uiop->uio_offset; 3164 nrdc->buflen = count; 3165 goto top; 3166 } 3167 3168 /* 3169 * Add this entry to the cache. 3170 */ 3171 avl_insert(&rp->r_dir, nrdc, where); 3172 rddir_cache_hold(nrdc); 3173 mutex_exit(&rp->r_statelock); 3174 3175 bottom: 3176 #ifdef DEBUG 3177 missed = 1; 3178 nfs_readdir_cache_misses++; 3179 #endif 3180 /* 3181 * Do the readdir. 3182 */ 3183 error = nfsreaddir(vp, nrdc, cr); 3184 3185 /* 3186 * If this operation failed, just return the error which occurred. 3187 */ 3188 if (error != 0) 3189 return (error); 3190 3191 /* 3192 * Since the RPC operation will have taken sometime and blocked 3193 * this process, another pass through the cache will need to be 3194 * taken to find the correct cache entry. It is possible that 3195 * the correct cache entry will not be there (although one was 3196 * added) because the directory changed during the RPC operation 3197 * and the readdir cache was flushed. In this case, just start 3198 * over. It is hoped that this will not happen too often... :-) 3199 */ 3200 nrdc = NULL; 3201 goto top; 3202 /* NOTREACHED */ 3203 } 3204 3205 static int 3206 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3207 { 3208 int error; 3209 struct nfsrddirargs rda; 3210 struct nfsrddirres rd; 3211 rnode_t *rp; 3212 mntinfo_t *mi; 3213 uint_t count; 3214 int douprintf; 3215 failinfo_t fi, *fip; 3216 3217 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3218 count = rdc->buflen; 3219 3220 rp = VTOR(vp); 3221 mi = VTOMI(vp); 3222 3223 rda.rda_fh = *VTOFH(vp); 3224 rda.rda_offset = rdc->nfs_cookie; 3225 3226 /* 3227 * NFS client failover support 3228 * suppress failover unless we have a zero cookie 3229 */ 3230 if (rdc->nfs_cookie == (off_t)0) { 3231 fi.vp = vp; 3232 fi.fhp = (caddr_t)&rda.rda_fh; 3233 fi.copyproc = nfscopyfh; 3234 fi.lookupproc = nfslookup; 3235 fi.xattrdirproc = acl_getxattrdir2; 3236 fip = &fi; 3237 } else { 3238 fip = NULL; 3239 } 3240 3241 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3242 rd.rd_size = count; 3243 rd.rd_offset = rda.rda_offset; 3244 3245 douprintf = 1; 3246 3247 if (mi->mi_io_kstats) { 3248 mutex_enter(&mi->mi_lock); 3249 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3250 mutex_exit(&mi->mi_lock); 3251 } 3252 3253 do { 3254 rda.rda_count = MIN(count, mi->mi_curread); 3255 error = rfs2call(mi, RFS_READDIR, 3256 xdr_rddirargs, (caddr_t)&rda, 3257 xdr_getrddirres, (caddr_t)&rd, cr, 3258 &douprintf, &rd.rd_status, 0, fip); 3259 } while (error == ENFS_TRYAGAIN); 3260 3261 if (mi->mi_io_kstats) { 3262 mutex_enter(&mi->mi_lock); 3263 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3264 mutex_exit(&mi->mi_lock); 3265 } 3266 3267 /* 3268 * Since we are actually doing a READDIR RPC, we must have 3269 * exclusive access to the cache entry being filled. Thus, 3270 * it is safe to update all fields except for the flags 3271 * field. The r_statelock in the rnode must be held to 3272 * prevent two different threads from simultaneously 3273 * attempting to update the flags field. This can happen 3274 * if we are turning off RDDIR and the other thread is 3275 * trying to set RDDIRWAIT. 3276 */ 3277 ASSERT(rdc->flags & RDDIR); 3278 if (!error) { 3279 error = geterrno(rd.rd_status); 3280 if (!error) { 3281 rdc->nfs_ncookie = rd.rd_offset; 3282 rdc->eof = rd.rd_eof ? 1 : 0; 3283 rdc->entlen = rd.rd_size; 3284 ASSERT(rdc->entlen <= rdc->buflen); 3285 #ifdef DEBUG 3286 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3287 KM_SLEEP); 3288 #else 3289 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3290 #endif 3291 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3292 rdc->error = 0; 3293 if (mi->mi_io_kstats) { 3294 mutex_enter(&mi->mi_lock); 3295 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3296 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3297 rd.rd_size; 3298 mutex_exit(&mi->mi_lock); 3299 } 3300 } else { 3301 PURGE_STALE_FH(error, vp, cr); 3302 } 3303 } 3304 if (error) { 3305 rdc->entries = NULL; 3306 rdc->error = error; 3307 } 3308 kmem_free(rd.rd_entries, rdc->buflen); 3309 3310 mutex_enter(&rp->r_statelock); 3311 rdc->flags &= ~RDDIR; 3312 if (rdc->flags & RDDIRWAIT) { 3313 rdc->flags &= ~RDDIRWAIT; 3314 cv_broadcast(&rdc->cv); 3315 } 3316 if (error) 3317 rdc->flags |= RDDIRREQ; 3318 mutex_exit(&rp->r_statelock); 3319 3320 rddir_cache_rele(rdc); 3321 3322 return (error); 3323 } 3324 3325 #ifdef DEBUG 3326 static int nfs_bio_do_stop = 0; 3327 #endif 3328 3329 static int 3330 nfs_bio(struct buf *bp, cred_t *cr) 3331 { 3332 rnode_t *rp = VTOR(bp->b_vp); 3333 int count; 3334 int error; 3335 cred_t *cred; 3336 uint_t offset; 3337 3338 DTRACE_IO1(start, struct buf *, bp); 3339 3340 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3341 offset = dbtob(bp->b_blkno); 3342 3343 if (bp->b_flags & B_READ) { 3344 mutex_enter(&rp->r_statelock); 3345 if (rp->r_cred != NULL) { 3346 cred = rp->r_cred; 3347 crhold(cred); 3348 } else { 3349 rp->r_cred = cr; 3350 crhold(cr); 3351 cred = cr; 3352 crhold(cred); 3353 } 3354 mutex_exit(&rp->r_statelock); 3355 read_again: 3356 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3357 offset, bp->b_bcount, &bp->b_resid, cred); 3358 3359 crfree(cred); 3360 if (!error) { 3361 if (bp->b_resid) { 3362 /* 3363 * Didn't get it all because we hit EOF, 3364 * zero all the memory beyond the EOF. 3365 */ 3366 /* bzero(rdaddr + */ 3367 bzero(bp->b_un.b_addr + 3368 bp->b_bcount - bp->b_resid, bp->b_resid); 3369 } 3370 mutex_enter(&rp->r_statelock); 3371 if (bp->b_resid == bp->b_bcount && 3372 offset >= rp->r_size) { 3373 /* 3374 * We didn't read anything at all as we are 3375 * past EOF. Return an error indicator back 3376 * but don't destroy the pages (yet). 3377 */ 3378 error = NFS_EOF; 3379 } 3380 mutex_exit(&rp->r_statelock); 3381 } else if (error == EACCES) { 3382 mutex_enter(&rp->r_statelock); 3383 if (cred != cr) { 3384 if (rp->r_cred != NULL) 3385 crfree(rp->r_cred); 3386 rp->r_cred = cr; 3387 crhold(cr); 3388 cred = cr; 3389 crhold(cred); 3390 mutex_exit(&rp->r_statelock); 3391 goto read_again; 3392 } 3393 mutex_exit(&rp->r_statelock); 3394 } 3395 } else { 3396 if (!(rp->r_flags & RSTALE)) { 3397 mutex_enter(&rp->r_statelock); 3398 if (rp->r_cred != NULL) { 3399 cred = rp->r_cred; 3400 crhold(cred); 3401 } else { 3402 rp->r_cred = cr; 3403 crhold(cr); 3404 cred = cr; 3405 crhold(cred); 3406 } 3407 mutex_exit(&rp->r_statelock); 3408 write_again: 3409 mutex_enter(&rp->r_statelock); 3410 count = MIN(bp->b_bcount, rp->r_size - offset); 3411 mutex_exit(&rp->r_statelock); 3412 if (count < 0) 3413 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3414 #ifdef DEBUG 3415 if (count == 0) { 3416 zcmn_err(getzoneid(), CE_WARN, 3417 "nfs_bio: zero length write at %d", 3418 offset); 3419 nfs_printfhandle(&rp->r_fh); 3420 if (nfs_bio_do_stop) 3421 debug_enter("nfs_bio"); 3422 } 3423 #endif 3424 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3425 count, cred); 3426 if (error == EACCES) { 3427 mutex_enter(&rp->r_statelock); 3428 if (cred != cr) { 3429 if (rp->r_cred != NULL) 3430 crfree(rp->r_cred); 3431 rp->r_cred = cr; 3432 crhold(cr); 3433 crfree(cred); 3434 cred = cr; 3435 crhold(cred); 3436 mutex_exit(&rp->r_statelock); 3437 goto write_again; 3438 } 3439 mutex_exit(&rp->r_statelock); 3440 } 3441 bp->b_error = error; 3442 if (error && error != EINTR) { 3443 /* 3444 * Don't print EDQUOT errors on the console. 3445 * Don't print asynchronous EACCES errors. 3446 * Don't print EFBIG errors. 3447 * Print all other write errors. 3448 */ 3449 if (error != EDQUOT && error != EFBIG && 3450 (error != EACCES || 3451 !(bp->b_flags & B_ASYNC))) 3452 nfs_write_error(bp->b_vp, error, cred); 3453 /* 3454 * Update r_error and r_flags as appropriate. 3455 * If the error was ESTALE, then mark the 3456 * rnode as not being writeable and save 3457 * the error status. Otherwise, save any 3458 * errors which occur from asynchronous 3459 * page invalidations. Any errors occurring 3460 * from other operations should be saved 3461 * by the caller. 3462 */ 3463 mutex_enter(&rp->r_statelock); 3464 if (error == ESTALE) { 3465 rp->r_flags |= RSTALE; 3466 if (!rp->r_error) 3467 rp->r_error = error; 3468 } else if (!rp->r_error && 3469 (bp->b_flags & 3470 (B_INVAL|B_FORCE|B_ASYNC)) == 3471 (B_INVAL|B_FORCE|B_ASYNC)) { 3472 rp->r_error = error; 3473 } 3474 mutex_exit(&rp->r_statelock); 3475 } 3476 crfree(cred); 3477 } else 3478 error = rp->r_error; 3479 } 3480 3481 if (error != 0 && error != NFS_EOF) 3482 bp->b_flags |= B_ERROR; 3483 3484 DTRACE_IO1(done, struct buf *, bp); 3485 3486 return (error); 3487 } 3488 3489 /* ARGSUSED */ 3490 static int 3491 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3492 { 3493 struct nfs_fid *fp; 3494 rnode_t *rp; 3495 3496 rp = VTOR(vp); 3497 3498 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3499 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3500 return (ENOSPC); 3501 } 3502 fp = (struct nfs_fid *)fidp; 3503 fp->nf_pad = 0; 3504 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3505 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3506 return (0); 3507 } 3508 3509 /* ARGSUSED2 */ 3510 static int 3511 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3512 { 3513 rnode_t *rp = VTOR(vp); 3514 3515 if (!write_lock) { 3516 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3517 return (V_WRITELOCK_FALSE); 3518 } 3519 3520 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3521 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3522 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3523 return (V_WRITELOCK_FALSE); 3524 nfs_rw_exit(&rp->r_rwlock); 3525 } 3526 3527 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3528 return (V_WRITELOCK_TRUE); 3529 } 3530 3531 /* ARGSUSED */ 3532 static void 3533 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3534 { 3535 rnode_t *rp = VTOR(vp); 3536 3537 nfs_rw_exit(&rp->r_rwlock); 3538 } 3539 3540 /* ARGSUSED */ 3541 static int 3542 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3543 { 3544 3545 /* 3546 * Because we stuff the readdir cookie into the offset field 3547 * someone may attempt to do an lseek with the cookie which 3548 * we want to succeed. 3549 */ 3550 if (vp->v_type == VDIR) 3551 return (0); 3552 if (*noffp < 0 || *noffp > MAXOFF32_T) 3553 return (EINVAL); 3554 return (0); 3555 } 3556 3557 /* 3558 * number of NFS_MAXDATA blocks to read ahead 3559 * optimized for 100 base-T. 3560 */ 3561 static int nfs_nra = 4; 3562 3563 #ifdef DEBUG 3564 static int nfs_lostpage = 0; /* number of times we lost original page */ 3565 #endif 3566 3567 /* 3568 * Return all the pages from [off..off+len) in file 3569 */ 3570 /* ARGSUSED */ 3571 static int 3572 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3573 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3574 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3575 { 3576 rnode_t *rp; 3577 int error; 3578 mntinfo_t *mi; 3579 3580 if (vp->v_flag & VNOMAP) 3581 return (ENOSYS); 3582 3583 ASSERT(off <= MAXOFF32_T); 3584 if (nfs_zone() != VTOMI(vp)->mi_zone) 3585 return (EIO); 3586 if (protp != NULL) 3587 *protp = PROT_ALL; 3588 3589 /* 3590 * Now valididate that the caches are up to date. 3591 */ 3592 error = nfs_validate_caches(vp, cr); 3593 if (error) 3594 return (error); 3595 3596 rp = VTOR(vp); 3597 mi = VTOMI(vp); 3598 retry: 3599 mutex_enter(&rp->r_statelock); 3600 3601 /* 3602 * Don't create dirty pages faster than they 3603 * can be cleaned so that the system doesn't 3604 * get imbalanced. If the async queue is 3605 * maxed out, then wait for it to drain before 3606 * creating more dirty pages. Also, wait for 3607 * any threads doing pagewalks in the vop_getattr 3608 * entry points so that they don't block for 3609 * long periods. 3610 */ 3611 if (rw == S_CREATE) { 3612 while ((mi->mi_max_threads != 0 && 3613 rp->r_awcount > 2 * mi->mi_max_threads) || 3614 rp->r_gcount > 0) 3615 cv_wait(&rp->r_cv, &rp->r_statelock); 3616 } 3617 3618 /* 3619 * If we are getting called as a side effect of an nfs_write() 3620 * operation the local file size might not be extended yet. 3621 * In this case we want to be able to return pages of zeroes. 3622 */ 3623 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3624 mutex_exit(&rp->r_statelock); 3625 return (EFAULT); /* beyond EOF */ 3626 } 3627 3628 mutex_exit(&rp->r_statelock); 3629 3630 if (len <= PAGESIZE) { 3631 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3632 seg, addr, rw, cr); 3633 } else { 3634 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3635 pl, plsz, seg, addr, rw, cr); 3636 } 3637 3638 switch (error) { 3639 case NFS_EOF: 3640 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3641 goto retry; 3642 case ESTALE: 3643 PURGE_STALE_FH(error, vp, cr); 3644 } 3645 3646 return (error); 3647 } 3648 3649 /* 3650 * Called from pvn_getpages or nfs_getpage to get a particular page. 3651 */ 3652 /* ARGSUSED */ 3653 static int 3654 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3655 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3656 enum seg_rw rw, cred_t *cr) 3657 { 3658 rnode_t *rp; 3659 uint_t bsize; 3660 struct buf *bp; 3661 page_t *pp; 3662 u_offset_t lbn; 3663 u_offset_t io_off; 3664 u_offset_t blkoff; 3665 u_offset_t rablkoff; 3666 size_t io_len; 3667 uint_t blksize; 3668 int error; 3669 int readahead; 3670 int readahead_issued = 0; 3671 int ra_window; /* readahead window */ 3672 page_t *pagefound; 3673 3674 if (nfs_zone() != VTOMI(vp)->mi_zone) 3675 return (EIO); 3676 rp = VTOR(vp); 3677 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3678 3679 reread: 3680 bp = NULL; 3681 pp = NULL; 3682 pagefound = NULL; 3683 3684 if (pl != NULL) 3685 pl[0] = NULL; 3686 3687 error = 0; 3688 lbn = off / bsize; 3689 blkoff = lbn * bsize; 3690 3691 /* 3692 * Queueing up the readahead before doing the synchronous read 3693 * results in a significant increase in read throughput because 3694 * of the increased parallelism between the async threads and 3695 * the process context. 3696 */ 3697 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3698 rw != S_CREATE && 3699 !(vp->v_flag & VNOCACHE)) { 3700 mutex_enter(&rp->r_statelock); 3701 3702 /* 3703 * Calculate the number of readaheads to do. 3704 * a) No readaheads at offset = 0. 3705 * b) Do maximum(nfs_nra) readaheads when the readahead 3706 * window is closed. 3707 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3708 * upon how far the readahead window is open or close. 3709 * d) No readaheads if rp->r_nextr is not within the scope 3710 * of the readahead window (random i/o). 3711 */ 3712 3713 if (off == 0) 3714 readahead = 0; 3715 else if (blkoff == rp->r_nextr) 3716 readahead = nfs_nra; 3717 else if (rp->r_nextr > blkoff && 3718 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3719 <= (nfs_nra - 1))) 3720 readahead = nfs_nra - ra_window; 3721 else 3722 readahead = 0; 3723 3724 rablkoff = rp->r_nextr; 3725 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3726 mutex_exit(&rp->r_statelock); 3727 if (nfs_async_readahead(vp, rablkoff + bsize, 3728 addr + (rablkoff + bsize - off), seg, cr, 3729 nfs_readahead) < 0) { 3730 mutex_enter(&rp->r_statelock); 3731 break; 3732 } 3733 readahead--; 3734 rablkoff += bsize; 3735 /* 3736 * Indicate that we did a readahead so 3737 * readahead offset is not updated 3738 * by the synchronous read below. 3739 */ 3740 readahead_issued = 1; 3741 mutex_enter(&rp->r_statelock); 3742 /* 3743 * set readahead offset to 3744 * offset of last async readahead 3745 * request. 3746 */ 3747 rp->r_nextr = rablkoff; 3748 } 3749 mutex_exit(&rp->r_statelock); 3750 } 3751 3752 again: 3753 if ((pagefound = page_exists(vp, off)) == NULL) { 3754 if (pl == NULL) { 3755 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3756 nfs_readahead); 3757 } else if (rw == S_CREATE) { 3758 /* 3759 * Block for this page is not allocated, or the offset 3760 * is beyond the current allocation size, or we're 3761 * allocating a swap slot and the page was not found, 3762 * so allocate it and return a zero page. 3763 */ 3764 if ((pp = page_create_va(vp, off, 3765 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3766 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3767 io_len = PAGESIZE; 3768 mutex_enter(&rp->r_statelock); 3769 rp->r_nextr = off + PAGESIZE; 3770 mutex_exit(&rp->r_statelock); 3771 } else { 3772 /* 3773 * Need to go to server to get a BLOCK, exception to 3774 * that being while reading at offset = 0 or doing 3775 * random i/o, in that case read only a PAGE. 3776 */ 3777 mutex_enter(&rp->r_statelock); 3778 if (blkoff < rp->r_size && 3779 blkoff + bsize >= rp->r_size) { 3780 /* 3781 * If only a block or less is left in 3782 * the file, read all that is remaining. 3783 */ 3784 if (rp->r_size <= off) { 3785 /* 3786 * Trying to access beyond EOF, 3787 * set up to get at least one page. 3788 */ 3789 blksize = off + PAGESIZE - blkoff; 3790 } else 3791 blksize = rp->r_size - blkoff; 3792 } else if ((off == 0) || 3793 (off != rp->r_nextr && !readahead_issued)) { 3794 blksize = PAGESIZE; 3795 blkoff = off; /* block = page here */ 3796 } else 3797 blksize = bsize; 3798 mutex_exit(&rp->r_statelock); 3799 3800 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3801 &io_len, blkoff, blksize, 0); 3802 3803 /* 3804 * Some other thread has entered the page, 3805 * so just use it. 3806 */ 3807 if (pp == NULL) 3808 goto again; 3809 3810 /* 3811 * Now round the request size up to page boundaries. 3812 * This ensures that the entire page will be 3813 * initialized to zeroes if EOF is encountered. 3814 */ 3815 io_len = ptob(btopr(io_len)); 3816 3817 bp = pageio_setup(pp, io_len, vp, B_READ); 3818 ASSERT(bp != NULL); 3819 3820 /* 3821 * pageio_setup should have set b_addr to 0. This 3822 * is correct since we want to do I/O on a page 3823 * boundary. bp_mapin will use this addr to calculate 3824 * an offset, and then set b_addr to the kernel virtual 3825 * address it allocated for us. 3826 */ 3827 ASSERT(bp->b_un.b_addr == 0); 3828 3829 bp->b_edev = 0; 3830 bp->b_dev = 0; 3831 bp->b_lblkno = lbtodb(io_off); 3832 bp->b_file = vp; 3833 bp->b_offset = (offset_t)off; 3834 bp_mapin(bp); 3835 3836 /* 3837 * If doing a write beyond what we believe is EOF, 3838 * don't bother trying to read the pages from the 3839 * server, we'll just zero the pages here. We 3840 * don't check that the rw flag is S_WRITE here 3841 * because some implementations may attempt a 3842 * read access to the buffer before copying data. 3843 */ 3844 mutex_enter(&rp->r_statelock); 3845 if (io_off >= rp->r_size && seg == segkmap) { 3846 mutex_exit(&rp->r_statelock); 3847 bzero(bp->b_un.b_addr, io_len); 3848 } else { 3849 mutex_exit(&rp->r_statelock); 3850 error = nfs_bio(bp, cr); 3851 } 3852 3853 /* 3854 * Unmap the buffer before freeing it. 3855 */ 3856 bp_mapout(bp); 3857 pageio_done(bp); 3858 3859 if (error == NFS_EOF) { 3860 /* 3861 * If doing a write system call just return 3862 * zeroed pages, else user tried to get pages 3863 * beyond EOF, return error. We don't check 3864 * that the rw flag is S_WRITE here because 3865 * some implementations may attempt a read 3866 * access to the buffer before copying data. 3867 */ 3868 if (seg == segkmap) 3869 error = 0; 3870 else 3871 error = EFAULT; 3872 } 3873 3874 if (!readahead_issued && !error) { 3875 mutex_enter(&rp->r_statelock); 3876 rp->r_nextr = io_off + io_len; 3877 mutex_exit(&rp->r_statelock); 3878 } 3879 } 3880 } 3881 3882 out: 3883 if (pl == NULL) 3884 return (error); 3885 3886 if (error) { 3887 if (pp != NULL) 3888 pvn_read_done(pp, B_ERROR); 3889 return (error); 3890 } 3891 3892 if (pagefound) { 3893 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3894 3895 /* 3896 * Page exists in the cache, acquire the appropriate lock. 3897 * If this fails, start all over again. 3898 */ 3899 if ((pp = page_lookup(vp, off, se)) == NULL) { 3900 #ifdef DEBUG 3901 nfs_lostpage++; 3902 #endif 3903 goto reread; 3904 } 3905 pl[0] = pp; 3906 pl[1] = NULL; 3907 return (0); 3908 } 3909 3910 if (pp != NULL) 3911 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3912 3913 return (error); 3914 } 3915 3916 static void 3917 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3918 cred_t *cr) 3919 { 3920 int error; 3921 page_t *pp; 3922 u_offset_t io_off; 3923 size_t io_len; 3924 struct buf *bp; 3925 uint_t bsize, blksize; 3926 rnode_t *rp = VTOR(vp); 3927 3928 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3929 3930 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3931 3932 mutex_enter(&rp->r_statelock); 3933 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3934 /* 3935 * If less than a block left in file read less 3936 * than a block. 3937 */ 3938 blksize = rp->r_size - blkoff; 3939 } else 3940 blksize = bsize; 3941 mutex_exit(&rp->r_statelock); 3942 3943 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3944 &io_off, &io_len, blkoff, blksize, 1); 3945 /* 3946 * The isra flag passed to the kluster function is 1, we may have 3947 * gotten a return value of NULL for a variety of reasons (# of free 3948 * pages < minfree, someone entered the page on the vnode etc). In all 3949 * cases, we want to punt on the readahead. 3950 */ 3951 if (pp == NULL) 3952 return; 3953 3954 /* 3955 * Now round the request size up to page boundaries. 3956 * This ensures that the entire page will be 3957 * initialized to zeroes if EOF is encountered. 3958 */ 3959 io_len = ptob(btopr(io_len)); 3960 3961 bp = pageio_setup(pp, io_len, vp, B_READ); 3962 ASSERT(bp != NULL); 3963 3964 /* 3965 * pageio_setup should have set b_addr to 0. This is correct since 3966 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3967 * to calculate an offset, and then set b_addr to the kernel virtual 3968 * address it allocated for us. 3969 */ 3970 ASSERT(bp->b_un.b_addr == 0); 3971 3972 bp->b_edev = 0; 3973 bp->b_dev = 0; 3974 bp->b_lblkno = lbtodb(io_off); 3975 bp->b_file = vp; 3976 bp->b_offset = (offset_t)blkoff; 3977 bp_mapin(bp); 3978 3979 /* 3980 * If doing a write beyond what we believe is EOF, don't bother trying 3981 * to read the pages from the server, we'll just zero the pages here. 3982 * We don't check that the rw flag is S_WRITE here because some 3983 * implementations may attempt a read access to the buffer before 3984 * copying data. 3985 */ 3986 mutex_enter(&rp->r_statelock); 3987 if (io_off >= rp->r_size && seg == segkmap) { 3988 mutex_exit(&rp->r_statelock); 3989 bzero(bp->b_un.b_addr, io_len); 3990 error = 0; 3991 } else { 3992 mutex_exit(&rp->r_statelock); 3993 error = nfs_bio(bp, cr); 3994 if (error == NFS_EOF) 3995 error = 0; 3996 } 3997 3998 /* 3999 * Unmap the buffer before freeing it. 4000 */ 4001 bp_mapout(bp); 4002 pageio_done(bp); 4003 4004 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4005 4006 /* 4007 * In case of error set readahead offset 4008 * to the lowest offset. 4009 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4010 */ 4011 if (error && rp->r_nextr > io_off) { 4012 mutex_enter(&rp->r_statelock); 4013 if (rp->r_nextr > io_off) 4014 rp->r_nextr = io_off; 4015 mutex_exit(&rp->r_statelock); 4016 } 4017 } 4018 4019 /* 4020 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4021 * If len == 0, do from off to EOF. 4022 * 4023 * The normal cases should be len == 0 && off == 0 (entire vp list), 4024 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4025 * (from pageout). 4026 */ 4027 /* ARGSUSED */ 4028 static int 4029 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4030 caller_context_t *ct) 4031 { 4032 int error; 4033 rnode_t *rp; 4034 4035 ASSERT(cr != NULL); 4036 4037 /* 4038 * XXX - Why should this check be made here? 4039 */ 4040 if (vp->v_flag & VNOMAP) 4041 return (ENOSYS); 4042 4043 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4044 return (0); 4045 4046 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4047 return (EIO); 4048 ASSERT(off <= MAXOFF32_T); 4049 4050 rp = VTOR(vp); 4051 mutex_enter(&rp->r_statelock); 4052 rp->r_count++; 4053 mutex_exit(&rp->r_statelock); 4054 error = nfs_putpages(vp, off, len, flags, cr); 4055 mutex_enter(&rp->r_statelock); 4056 rp->r_count--; 4057 cv_broadcast(&rp->r_cv); 4058 mutex_exit(&rp->r_statelock); 4059 4060 return (error); 4061 } 4062 4063 /* 4064 * Write out a single page, possibly klustering adjacent dirty pages. 4065 */ 4066 int 4067 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4068 int flags, cred_t *cr) 4069 { 4070 u_offset_t io_off; 4071 u_offset_t lbn_off; 4072 u_offset_t lbn; 4073 size_t io_len; 4074 uint_t bsize; 4075 int error; 4076 rnode_t *rp; 4077 4078 ASSERT(!vn_is_readonly(vp)); 4079 ASSERT(pp != NULL); 4080 ASSERT(cr != NULL); 4081 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4082 4083 rp = VTOR(vp); 4084 ASSERT(rp->r_count > 0); 4085 4086 ASSERT(pp->p_offset <= MAXOFF32_T); 4087 4088 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4089 lbn = pp->p_offset / bsize; 4090 lbn_off = lbn * bsize; 4091 4092 /* 4093 * Find a kluster that fits in one block, or in 4094 * one page if pages are bigger than blocks. If 4095 * there is less file space allocated than a whole 4096 * page, we'll shorten the i/o request below. 4097 */ 4098 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4099 roundup(bsize, PAGESIZE), flags); 4100 4101 /* 4102 * pvn_write_kluster shouldn't have returned a page with offset 4103 * behind the original page we were given. Verify that. 4104 */ 4105 ASSERT((pp->p_offset / bsize) >= lbn); 4106 4107 /* 4108 * Now pp will have the list of kept dirty pages marked for 4109 * write back. It will also handle invalidation and freeing 4110 * of pages that are not dirty. Check for page length rounding 4111 * problems. 4112 */ 4113 if (io_off + io_len > lbn_off + bsize) { 4114 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4115 io_len = lbn_off + bsize - io_off; 4116 } 4117 /* 4118 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4119 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4120 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4121 * progress and the r_size has not been made consistent with the 4122 * new size of the file. When the uiomove() completes the r_size is 4123 * updated and the RMODINPROGRESS flag is cleared. 4124 * 4125 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4126 * consistent value of r_size. Without this handshaking, it is 4127 * possible that nfs(3)_bio() picks up the old value of r_size 4128 * before the uiomove() in writerp() completes. This will result 4129 * in the write through nfs(3)_bio() being dropped. 4130 * 4131 * More precisely, there is a window between the time the uiomove() 4132 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4133 * operation intervenes in this window, the page will be picked up, 4134 * because it is dirty (it will be unlocked, unless it was 4135 * pagecreate'd). When the page is picked up as dirty, the dirty 4136 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4137 * checked. This will still be the old size. Therefore the page will 4138 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4139 * the page will be found to be clean and the write will be dropped. 4140 */ 4141 if (rp->r_flags & RMODINPROGRESS) { 4142 mutex_enter(&rp->r_statelock); 4143 if ((rp->r_flags & RMODINPROGRESS) && 4144 rp->r_modaddr + MAXBSIZE > io_off && 4145 rp->r_modaddr < io_off + io_len) { 4146 page_t *plist; 4147 /* 4148 * A write is in progress for this region of the file. 4149 * If we did not detect RMODINPROGRESS here then this 4150 * path through nfs_putapage() would eventually go to 4151 * nfs(3)_bio() and may not write out all of the data 4152 * in the pages. We end up losing data. So we decide 4153 * to set the modified bit on each page in the page 4154 * list and mark the rnode with RDIRTY. This write 4155 * will be restarted at some later time. 4156 */ 4157 plist = pp; 4158 while (plist != NULL) { 4159 pp = plist; 4160 page_sub(&plist, pp); 4161 hat_setmod(pp); 4162 page_io_unlock(pp); 4163 page_unlock(pp); 4164 } 4165 rp->r_flags |= RDIRTY; 4166 mutex_exit(&rp->r_statelock); 4167 if (offp) 4168 *offp = io_off; 4169 if (lenp) 4170 *lenp = io_len; 4171 return (0); 4172 } 4173 mutex_exit(&rp->r_statelock); 4174 } 4175 4176 if (flags & B_ASYNC) { 4177 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4178 nfs_sync_putapage); 4179 } else 4180 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4181 4182 if (offp) 4183 *offp = io_off; 4184 if (lenp) 4185 *lenp = io_len; 4186 return (error); 4187 } 4188 4189 static int 4190 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4191 int flags, cred_t *cr) 4192 { 4193 int error; 4194 rnode_t *rp; 4195 4196 flags |= B_WRITE; 4197 4198 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4199 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4200 4201 rp = VTOR(vp); 4202 4203 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4204 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4205 if (!(rp->r_flags & ROUTOFSPACE)) { 4206 mutex_enter(&rp->r_statelock); 4207 rp->r_flags |= ROUTOFSPACE; 4208 mutex_exit(&rp->r_statelock); 4209 } 4210 flags |= B_ERROR; 4211 pvn_write_done(pp, flags); 4212 /* 4213 * If this was not an async thread, then try again to 4214 * write out the pages, but this time, also destroy 4215 * them whether or not the write is successful. This 4216 * will prevent memory from filling up with these 4217 * pages and destroying them is the only alternative 4218 * if they can't be written out. 4219 * 4220 * Don't do this if this is an async thread because 4221 * when the pages are unlocked in pvn_write_done, 4222 * some other thread could have come along, locked 4223 * them, and queued for an async thread. It would be 4224 * possible for all of the async threads to be tied 4225 * up waiting to lock the pages again and they would 4226 * all already be locked and waiting for an async 4227 * thread to handle them. Deadlock. 4228 */ 4229 if (!(flags & B_ASYNC)) { 4230 error = nfs_putpage(vp, io_off, io_len, 4231 B_INVAL | B_FORCE, cr, NULL); 4232 } 4233 } else { 4234 if (error) 4235 flags |= B_ERROR; 4236 else if (rp->r_flags & ROUTOFSPACE) { 4237 mutex_enter(&rp->r_statelock); 4238 rp->r_flags &= ~ROUTOFSPACE; 4239 mutex_exit(&rp->r_statelock); 4240 } 4241 pvn_write_done(pp, flags); 4242 } 4243 4244 return (error); 4245 } 4246 4247 /* ARGSUSED */ 4248 static int 4249 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4250 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4251 caller_context_t *ct) 4252 { 4253 struct segvn_crargs vn_a; 4254 int error; 4255 rnode_t *rp; 4256 struct vattr va; 4257 4258 if (nfs_zone() != VTOMI(vp)->mi_zone) 4259 return (EIO); 4260 4261 if (vp->v_flag & VNOMAP) 4262 return (ENOSYS); 4263 4264 if (off > MAXOFF32_T) 4265 return (EFBIG); 4266 4267 if (off < 0 || off + len < 0) 4268 return (ENXIO); 4269 4270 if (vp->v_type != VREG) 4271 return (ENODEV); 4272 4273 /* 4274 * If there is cached data and if close-to-open consistency 4275 * checking is not turned off and if the file system is not 4276 * mounted readonly, then force an over the wire getattr. 4277 * Otherwise, just invoke nfsgetattr to get a copy of the 4278 * attributes. The attribute cache will be used unless it 4279 * is timed out and if it is, then an over the wire getattr 4280 * will be issued. 4281 */ 4282 va.va_mask = AT_ALL; 4283 if (vn_has_cached_data(vp) && 4284 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4285 error = nfs_getattr_otw(vp, &va, cr); 4286 else 4287 error = nfsgetattr(vp, &va, cr); 4288 if (error) 4289 return (error); 4290 4291 /* 4292 * Check to see if the vnode is currently marked as not cachable. 4293 * This means portions of the file are locked (through VOP_FRLOCK). 4294 * In this case the map request must be refused. We use 4295 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4296 */ 4297 rp = VTOR(vp); 4298 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 4299 return (EINTR); 4300 4301 if (vp->v_flag & VNOCACHE) { 4302 error = EAGAIN; 4303 goto done; 4304 } 4305 4306 /* 4307 * Don't allow concurrent locks and mapping if mandatory locking is 4308 * enabled. 4309 */ 4310 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4311 MANDLOCK(vp, va.va_mode)) { 4312 error = EAGAIN; 4313 goto done; 4314 } 4315 4316 as_rangelock(as); 4317 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4318 if (error != 0) { 4319 as_rangeunlock(as); 4320 goto done; 4321 } 4322 4323 vn_a.vp = vp; 4324 vn_a.offset = off; 4325 vn_a.type = (flags & MAP_TYPE); 4326 vn_a.prot = (uchar_t)prot; 4327 vn_a.maxprot = (uchar_t)maxprot; 4328 vn_a.flags = (flags & ~MAP_TYPE); 4329 vn_a.cred = cr; 4330 vn_a.amp = NULL; 4331 vn_a.szc = 0; 4332 vn_a.lgrp_mem_policy_flags = 0; 4333 4334 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4335 as_rangeunlock(as); 4336 4337 done: 4338 nfs_rw_exit(&rp->r_lkserlock); 4339 return (error); 4340 } 4341 4342 /* ARGSUSED */ 4343 static int 4344 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4345 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4346 caller_context_t *ct) 4347 { 4348 rnode_t *rp; 4349 4350 if (vp->v_flag & VNOMAP) 4351 return (ENOSYS); 4352 if (nfs_zone() != VTOMI(vp)->mi_zone) 4353 return (EIO); 4354 4355 /* 4356 * Need to hold rwlock while incrementing the mapcnt so that 4357 * mmap'ing can be serialized with writes so that the caching 4358 * can be handled correctly. 4359 */ 4360 rp = VTOR(vp); 4361 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4362 return (EINTR); 4363 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4364 nfs_rw_exit(&rp->r_rwlock); 4365 4366 return (0); 4367 } 4368 4369 /* ARGSUSED */ 4370 static int 4371 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4372 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4373 { 4374 netobj lm_fh; 4375 int rc; 4376 u_offset_t start, end; 4377 rnode_t *rp; 4378 int error = 0, intr = INTR(vp); 4379 4380 /* check for valid cmd parameter */ 4381 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4382 return (EINVAL); 4383 if (nfs_zone() != VTOMI(vp)->mi_zone) 4384 return (EIO); 4385 4386 /* Verify l_type. */ 4387 switch (bfp->l_type) { 4388 case F_RDLCK: 4389 if (cmd != F_GETLK && !(flag & FREAD)) 4390 return (EBADF); 4391 break; 4392 case F_WRLCK: 4393 if (cmd != F_GETLK && !(flag & FWRITE)) 4394 return (EBADF); 4395 break; 4396 case F_UNLCK: 4397 intr = 0; 4398 break; 4399 4400 default: 4401 return (EINVAL); 4402 } 4403 4404 /* check the validity of the lock range */ 4405 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4406 return (rc); 4407 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4408 return (rc); 4409 4410 /* 4411 * If the filesystem is mounted using local locking, pass the 4412 * request off to the local locking code. 4413 */ 4414 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4415 if (offset > MAXOFF32_T) 4416 return (EFBIG); 4417 if (cmd == F_SETLK || cmd == F_SETLKW) { 4418 /* 4419 * For complete safety, we should be holding 4420 * r_lkserlock. However, we can't call 4421 * lm_safelock and then fs_frlock while 4422 * holding r_lkserlock, so just invoke 4423 * lm_safelock and expect that this will 4424 * catch enough of the cases. 4425 */ 4426 if (!lm_safelock(vp, bfp, cr)) 4427 return (EAGAIN); 4428 } 4429 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4430 } 4431 4432 rp = VTOR(vp); 4433 4434 /* 4435 * Check whether the given lock request can proceed, given the 4436 * current file mappings. 4437 */ 4438 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4439 return (EINTR); 4440 if (cmd == F_SETLK || cmd == F_SETLKW) { 4441 if (!lm_safelock(vp, bfp, cr)) { 4442 rc = EAGAIN; 4443 goto done; 4444 } 4445 } 4446 4447 /* 4448 * Flush the cache after waiting for async I/O to finish. For new 4449 * locks, this is so that the process gets the latest bits from the 4450 * server. For unlocks, this is so that other clients see the 4451 * latest bits once the file has been unlocked. If currently dirty 4452 * pages can't be flushed, then don't allow a lock to be set. But 4453 * allow unlocks to succeed, to avoid having orphan locks on the 4454 * server. 4455 */ 4456 if (cmd != F_GETLK) { 4457 mutex_enter(&rp->r_statelock); 4458 while (rp->r_count > 0) { 4459 if (intr) { 4460 klwp_t *lwp = ttolwp(curthread); 4461 4462 if (lwp != NULL) 4463 lwp->lwp_nostop++; 4464 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4465 == 0) { 4466 if (lwp != NULL) 4467 lwp->lwp_nostop--; 4468 rc = EINTR; 4469 break; 4470 } 4471 if (lwp != NULL) 4472 lwp->lwp_nostop--; 4473 } else 4474 cv_wait(&rp->r_cv, &rp->r_statelock); 4475 } 4476 mutex_exit(&rp->r_statelock); 4477 if (rc != 0) 4478 goto done; 4479 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4480 if (error) { 4481 if (error == ENOSPC || error == EDQUOT) { 4482 mutex_enter(&rp->r_statelock); 4483 if (!rp->r_error) 4484 rp->r_error = error; 4485 mutex_exit(&rp->r_statelock); 4486 } 4487 if (bfp->l_type != F_UNLCK) { 4488 rc = ENOLCK; 4489 goto done; 4490 } 4491 } 4492 } 4493 4494 lm_fh.n_len = sizeof (fhandle_t); 4495 lm_fh.n_bytes = (char *)VTOFH(vp); 4496 4497 /* 4498 * Call the lock manager to do the real work of contacting 4499 * the server and obtaining the lock. 4500 */ 4501 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4502 4503 if (rc == 0) 4504 nfs_lockcompletion(vp, cmd); 4505 4506 done: 4507 nfs_rw_exit(&rp->r_lkserlock); 4508 return (rc); 4509 } 4510 4511 /* 4512 * Free storage space associated with the specified vnode. The portion 4513 * to be freed is specified by bfp->l_start and bfp->l_len (already 4514 * normalized to a "whence" of 0). 4515 * 4516 * This is an experimental facility whose continued existence is not 4517 * guaranteed. Currently, we only support the special case 4518 * of l_len == 0, meaning free to end of file. 4519 */ 4520 /* ARGSUSED */ 4521 static int 4522 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4523 offset_t offset, cred_t *cr, caller_context_t *ct) 4524 { 4525 int error; 4526 4527 ASSERT(vp->v_type == VREG); 4528 if (cmd != F_FREESP) 4529 return (EINVAL); 4530 4531 if (offset > MAXOFF32_T) 4532 return (EFBIG); 4533 4534 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4535 (bfp->l_len > MAXOFF32_T)) 4536 return (EFBIG); 4537 4538 if (nfs_zone() != VTOMI(vp)->mi_zone) 4539 return (EIO); 4540 4541 error = convoff(vp, bfp, 0, offset); 4542 if (!error) { 4543 ASSERT(bfp->l_start >= 0); 4544 if (bfp->l_len == 0) { 4545 struct vattr va; 4546 4547 /* 4548 * ftruncate should not change the ctime and 4549 * mtime if we truncate the file to its 4550 * previous size. 4551 */ 4552 va.va_mask = AT_SIZE; 4553 error = nfsgetattr(vp, &va, cr); 4554 if (error || va.va_size == bfp->l_start) 4555 return (error); 4556 va.va_mask = AT_SIZE; 4557 va.va_size = bfp->l_start; 4558 error = nfssetattr(vp, &va, 0, cr); 4559 } else 4560 error = EINVAL; 4561 } 4562 4563 return (error); 4564 } 4565 4566 /* ARGSUSED */ 4567 static int 4568 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4569 { 4570 4571 return (EINVAL); 4572 } 4573 4574 /* 4575 * Setup and add an address space callback to do the work of the delmap call. 4576 * The callback will (and must be) deleted in the actual callback function. 4577 * 4578 * This is done in order to take care of the problem that we have with holding 4579 * the address space's a_lock for a long period of time (e.g. if the NFS server 4580 * is down). Callbacks will be executed in the address space code while the 4581 * a_lock is not held. Holding the address space's a_lock causes things such 4582 * as ps and fork to hang because they are trying to acquire this lock as well. 4583 */ 4584 /* ARGSUSED */ 4585 static int 4586 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4587 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4588 caller_context_t *ct) 4589 { 4590 int caller_found; 4591 int error; 4592 rnode_t *rp; 4593 nfs_delmap_args_t *dmapp; 4594 nfs_delmapcall_t *delmap_call; 4595 4596 if (vp->v_flag & VNOMAP) 4597 return (ENOSYS); 4598 /* 4599 * A process may not change zones if it has NFS pages mmap'ed 4600 * in, so we can't legitimately get here from the wrong zone. 4601 */ 4602 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4603 4604 rp = VTOR(vp); 4605 4606 /* 4607 * The way that the address space of this process deletes its mapping 4608 * of this file is via the following call chains: 4609 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4610 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4611 * 4612 * With the use of address space callbacks we are allowed to drop the 4613 * address space lock, a_lock, while executing the NFS operations that 4614 * need to go over the wire. Returning EAGAIN to the caller of this 4615 * function is what drives the execution of the callback that we add 4616 * below. The callback will be executed by the address space code 4617 * after dropping the a_lock. When the callback is finished, since 4618 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4619 * is called again on the same segment to finish the rest of the work 4620 * that needs to happen during unmapping. 4621 * 4622 * This action of calling back into the segment driver causes 4623 * nfs_delmap() to get called again, but since the callback was 4624 * already executed at this point, it already did the work and there 4625 * is nothing left for us to do. 4626 * 4627 * To Summarize: 4628 * - The first time nfs_delmap is called by the current thread is when 4629 * we add the caller associated with this delmap to the delmap caller 4630 * list, add the callback, and return EAGAIN. 4631 * - The second time in this call chain when nfs_delmap is called we 4632 * will find this caller in the delmap caller list and realize there 4633 * is no more work to do thus removing this caller from the list and 4634 * returning the error that was set in the callback execution. 4635 */ 4636 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4637 if (caller_found) { 4638 /* 4639 * 'error' is from the actual delmap operations. To avoid 4640 * hangs, we need to handle the return of EAGAIN differently 4641 * since this is what drives the callback execution. 4642 * In this case, we don't want to return EAGAIN and do the 4643 * callback execution because there are none to execute. 4644 */ 4645 if (error == EAGAIN) 4646 return (0); 4647 else 4648 return (error); 4649 } 4650 4651 /* current caller was not in the list */ 4652 delmap_call = nfs_init_delmapcall(); 4653 4654 mutex_enter(&rp->r_statelock); 4655 list_insert_tail(&rp->r_indelmap, delmap_call); 4656 mutex_exit(&rp->r_statelock); 4657 4658 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4659 4660 dmapp->vp = vp; 4661 dmapp->off = off; 4662 dmapp->addr = addr; 4663 dmapp->len = len; 4664 dmapp->prot = prot; 4665 dmapp->maxprot = maxprot; 4666 dmapp->flags = flags; 4667 dmapp->cr = cr; 4668 dmapp->caller = delmap_call; 4669 4670 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4671 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4672 4673 return (error ? error : EAGAIN); 4674 } 4675 4676 /* 4677 * Remove some pages from an mmap'd vnode. Just update the 4678 * count of pages. If doing close-to-open, then flush all 4679 * of the pages associated with this file. Otherwise, start 4680 * an asynchronous page flush to write out any dirty pages. 4681 * This will also associate a credential with the rnode which 4682 * can be used to write the pages. 4683 */ 4684 /* ARGSUSED */ 4685 static void 4686 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4687 { 4688 int error; 4689 rnode_t *rp; 4690 mntinfo_t *mi; 4691 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4692 4693 rp = VTOR(dmapp->vp); 4694 mi = VTOMI(dmapp->vp); 4695 4696 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4697 ASSERT(rp->r_mapcnt >= 0); 4698 4699 /* 4700 * Initiate a page flush if there are pages, the file system 4701 * was not mounted readonly, the segment was mapped shared, and 4702 * the pages themselves were writeable. 4703 */ 4704 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4705 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4706 mutex_enter(&rp->r_statelock); 4707 rp->r_flags |= RDIRTY; 4708 mutex_exit(&rp->r_statelock); 4709 /* 4710 * If this is a cross-zone access a sync putpage won't work, so 4711 * the best we can do is try an async putpage. That seems 4712 * better than something more draconian such as discarding the 4713 * dirty pages. 4714 */ 4715 if ((mi->mi_flags & MI_NOCTO) || 4716 nfs_zone() != mi->mi_zone) 4717 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4718 B_ASYNC, dmapp->cr, NULL); 4719 else 4720 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4721 0, dmapp->cr, NULL); 4722 if (!error) { 4723 mutex_enter(&rp->r_statelock); 4724 error = rp->r_error; 4725 rp->r_error = 0; 4726 mutex_exit(&rp->r_statelock); 4727 } 4728 } else 4729 error = 0; 4730 4731 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4732 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4733 B_INVAL, dmapp->cr, NULL); 4734 4735 dmapp->caller->error = error; 4736 (void) as_delete_callback(as, arg); 4737 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4738 } 4739 4740 /* ARGSUSED */ 4741 static int 4742 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4743 caller_context_t *ct) 4744 { 4745 int error = 0; 4746 4747 if (nfs_zone() != VTOMI(vp)->mi_zone) 4748 return (EIO); 4749 /* 4750 * This looks a little weird because it's written in a general 4751 * manner but we make little use of cases. If cntl() ever gets 4752 * widely used, the outer switch will make more sense. 4753 */ 4754 4755 switch (cmd) { 4756 4757 /* 4758 * Large file spec - need to base answer new query with 4759 * hardcoded constant based on the protocol. 4760 */ 4761 case _PC_FILESIZEBITS: 4762 *valp = 32; 4763 return (0); 4764 4765 case _PC_LINK_MAX: 4766 case _PC_NAME_MAX: 4767 case _PC_PATH_MAX: 4768 case _PC_SYMLINK_MAX: 4769 case _PC_CHOWN_RESTRICTED: 4770 case _PC_NO_TRUNC: { 4771 mntinfo_t *mi; 4772 struct pathcnf *pc; 4773 4774 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4775 return (EINVAL); 4776 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4777 switch (cmd) { 4778 case _PC_LINK_MAX: 4779 *valp = pc->pc_link_max; 4780 break; 4781 case _PC_NAME_MAX: 4782 *valp = pc->pc_name_max; 4783 break; 4784 case _PC_PATH_MAX: 4785 case _PC_SYMLINK_MAX: 4786 *valp = pc->pc_path_max; 4787 break; 4788 case _PC_CHOWN_RESTRICTED: 4789 /* 4790 * if we got here, error is really a boolean which 4791 * indicates whether cmd is set or not. 4792 */ 4793 *valp = error ? 1 : 0; /* see above */ 4794 error = 0; 4795 break; 4796 case _PC_NO_TRUNC: 4797 /* 4798 * if we got here, error is really a boolean which 4799 * indicates whether cmd is set or not. 4800 */ 4801 *valp = error ? 1 : 0; /* see above */ 4802 error = 0; 4803 break; 4804 } 4805 return (error ? EINVAL : 0); 4806 } 4807 4808 case _PC_XATTR_EXISTS: 4809 *valp = 0; 4810 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4811 vnode_t *avp; 4812 rnode_t *rp; 4813 mntinfo_t *mi = VTOMI(vp); 4814 4815 if (!(mi->mi_flags & MI_EXTATTR)) 4816 return (0); 4817 4818 rp = VTOR(vp); 4819 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4820 INTR(vp))) 4821 return (EINTR); 4822 4823 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4824 if (error || avp == NULL) 4825 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4826 4827 nfs_rw_exit(&rp->r_rwlock); 4828 4829 if (error == 0 && avp != NULL) { 4830 error = do_xattr_exists_check(avp, valp, cr); 4831 VN_RELE(avp); 4832 } 4833 } 4834 return (error ? EINVAL : 0); 4835 4836 case _PC_ACL_ENABLED: 4837 *valp = _ACL_ACLENT_ENABLED; 4838 return (0); 4839 4840 default: 4841 return (EINVAL); 4842 } 4843 } 4844 4845 /* 4846 * Called by async thread to do synchronous pageio. Do the i/o, wait 4847 * for it to complete, and cleanup the page list when done. 4848 */ 4849 static int 4850 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4851 int flags, cred_t *cr) 4852 { 4853 int error; 4854 4855 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4856 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4857 if (flags & B_READ) 4858 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4859 else 4860 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4861 return (error); 4862 } 4863 4864 /* ARGSUSED */ 4865 static int 4866 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4867 int flags, cred_t *cr, caller_context_t *ct) 4868 { 4869 int error; 4870 rnode_t *rp; 4871 4872 if (pp == NULL) 4873 return (EINVAL); 4874 4875 if (io_off > MAXOFF32_T) 4876 return (EFBIG); 4877 if (nfs_zone() != VTOMI(vp)->mi_zone) 4878 return (EIO); 4879 rp = VTOR(vp); 4880 mutex_enter(&rp->r_statelock); 4881 rp->r_count++; 4882 mutex_exit(&rp->r_statelock); 4883 4884 if (flags & B_ASYNC) { 4885 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4886 nfs_sync_pageio); 4887 } else 4888 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4889 mutex_enter(&rp->r_statelock); 4890 rp->r_count--; 4891 cv_broadcast(&rp->r_cv); 4892 mutex_exit(&rp->r_statelock); 4893 return (error); 4894 } 4895 4896 /* ARGSUSED */ 4897 static int 4898 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4899 caller_context_t *ct) 4900 { 4901 int error; 4902 mntinfo_t *mi; 4903 4904 mi = VTOMI(vp); 4905 4906 if (nfs_zone() != mi->mi_zone) 4907 return (EIO); 4908 if (mi->mi_flags & MI_ACL) { 4909 error = acl_setacl2(vp, vsecattr, flag, cr); 4910 if (mi->mi_flags & MI_ACL) 4911 return (error); 4912 } 4913 4914 return (ENOSYS); 4915 } 4916 4917 /* ARGSUSED */ 4918 static int 4919 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4920 caller_context_t *ct) 4921 { 4922 int error; 4923 mntinfo_t *mi; 4924 4925 mi = VTOMI(vp); 4926 4927 if (nfs_zone() != mi->mi_zone) 4928 return (EIO); 4929 if (mi->mi_flags & MI_ACL) { 4930 error = acl_getacl2(vp, vsecattr, flag, cr); 4931 if (mi->mi_flags & MI_ACL) 4932 return (error); 4933 } 4934 4935 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4936 } 4937 4938 /* ARGSUSED */ 4939 static int 4940 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4941 caller_context_t *ct) 4942 { 4943 int error; 4944 struct shrlock nshr; 4945 struct nfs_owner nfs_owner; 4946 netobj lm_fh; 4947 4948 if (nfs_zone() != VTOMI(vp)->mi_zone) 4949 return (EIO); 4950 4951 /* 4952 * check for valid cmd parameter 4953 */ 4954 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4955 return (EINVAL); 4956 4957 /* 4958 * Check access permissions 4959 */ 4960 if (cmd == F_SHARE && 4961 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4962 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4963 return (EBADF); 4964 4965 /* 4966 * If the filesystem is mounted using local locking, pass the 4967 * request off to the local share code. 4968 */ 4969 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4970 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 4971 4972 switch (cmd) { 4973 case F_SHARE: 4974 case F_UNSHARE: 4975 lm_fh.n_len = sizeof (fhandle_t); 4976 lm_fh.n_bytes = (char *)VTOFH(vp); 4977 4978 /* 4979 * If passed an owner that is too large to fit in an 4980 * nfs_owner it is likely a recursive call from the 4981 * lock manager client and pass it straight through. If 4982 * it is not a nfs_owner then simply return an error. 4983 */ 4984 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 4985 if (((struct nfs_owner *)shr->s_owner)->magic != 4986 NFS_OWNER_MAGIC) 4987 return (EINVAL); 4988 4989 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 4990 error = set_errno(error); 4991 } 4992 return (error); 4993 } 4994 /* 4995 * Remote share reservations owner is a combination of 4996 * a magic number, hostname, and the local owner 4997 */ 4998 bzero(&nfs_owner, sizeof (nfs_owner)); 4999 nfs_owner.magic = NFS_OWNER_MAGIC; 5000 (void) strncpy(nfs_owner.hname, uts_nodename(), 5001 sizeof (nfs_owner.hname)); 5002 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5003 nshr.s_access = shr->s_access; 5004 nshr.s_deny = shr->s_deny; 5005 nshr.s_sysid = 0; 5006 nshr.s_pid = ttoproc(curthread)->p_pid; 5007 nshr.s_own_len = sizeof (nfs_owner); 5008 nshr.s_owner = (caddr_t)&nfs_owner; 5009 5010 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5011 error = set_errno(error); 5012 } 5013 5014 break; 5015 5016 case F_HASREMOTELOCKS: 5017 /* 5018 * NFS client can't store remote locks itself 5019 */ 5020 shr->s_access = 0; 5021 error = 0; 5022 break; 5023 5024 default: 5025 error = EINVAL; 5026 break; 5027 } 5028 5029 return (error); 5030 } 5031