xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_export.c (revision 95c635efb7c3b86efc493e0447eaec7aecca3f0f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
24  */
25 
26 /*
27  *  	Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T.
28  *		All rights reserved.
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/socket.h>
38 #include <sys/errno.h>
39 #include <sys/uio.h>
40 #include <sys/proc.h>
41 #include <sys/user.h>
42 #include <sys/file.h>
43 #include <sys/tiuser.h>
44 #include <sys/kmem.h>
45 #include <sys/pathname.h>
46 #include <sys/debug.h>
47 #include <sys/vtrace.h>
48 #include <sys/cmn_err.h>
49 #include <sys/acl.h>
50 #include <sys/utsname.h>
51 #include <sys/sdt.h>
52 #include <netinet/in.h>
53 
54 #include <rpc/types.h>
55 #include <rpc/auth.h>
56 #include <rpc/svc.h>
57 
58 #include <nfs/nfs.h>
59 #include <nfs/export.h>
60 #include <nfs/nfssys.h>
61 #include <nfs/nfs_clnt.h>
62 #include <nfs/nfs_acl.h>
63 #include <nfs/nfs_log.h>
64 #include <nfs/lm.h>
65 #include <sys/sunddi.h>
66 #include <sys/pkp_hash.h>
67 
68 treenode_t *ns_root;
69 
70 struct exportinfo *exptable_path_hash[PKP_HASH_SIZE];
71 struct exportinfo *exptable[EXPTABLESIZE];
72 
73 static int	unexport(exportinfo_t *);
74 static void	exportfree(exportinfo_t *);
75 static int	loadindex(exportdata_t *);
76 
77 extern void	nfsauth_cache_free(exportinfo_t *);
78 extern int	sec_svc_loadrootnames(int, int, caddr_t **, model_t);
79 extern void	sec_svc_freerootnames(int, int, caddr_t *);
80 
81 static int build_seclist_nodups(exportdata_t *, secinfo_t *, int);
82 static void srv_secinfo_add(secinfo_t **, int *, secinfo_t *, int, int);
83 static void srv_secinfo_remove(secinfo_t **, int *, secinfo_t *, int);
84 static void srv_secinfo_treeclimb(exportinfo_t *, secinfo_t *, int, int);
85 
86 #ifdef VOLATILE_FH_TEST
87 static struct ex_vol_rename *find_volrnm_fh(exportinfo_t *, nfs_fh4 *);
88 static uint32_t find_volrnm_fh_id(exportinfo_t *, nfs_fh4 *);
89 static void free_volrnm_list(exportinfo_t *);
90 #endif /* VOLATILE_FH_TEST */
91 
92 /*
93  * exported_lock	Read/Write lock that protects the exportinfo list.
94  *			This lock must be held when searching or modifiying
95  *			the exportinfo list.
96  */
97 krwlock_t exported_lock;
98 
99 /*
100  * "public" and default (root) location for public filehandle
101  */
102 struct exportinfo *exi_public, *exi_root;
103 
104 fid_t exi_rootfid;	/* for checking the default public file handle */
105 
106 fhandle_t nullfh2;	/* for comparing V2 filehandles */
107 
108 /*
109  * macro for static dtrace probes to trace server namespace ref count mods.
110  */
111 #define	SECREF_TRACE(seclist, tag, flav, aftcnt) \
112 	DTRACE_PROBE4(nfss__i__nmspc__secref, struct secinfo *, (seclist), \
113 		char *, (tag), int, (int)(flav), int, (int)(aftcnt))
114 
115 
116 #define	exptablehash(fsid, fid) (nfs_fhhash((fsid), (fid)) & (EXPTABLESIZE - 1))
117 
118 static uint8_t
119 xor_hash(uint8_t *data, int len)
120 {
121 	uint8_t h = 0;
122 
123 	while (len--)
124 		h ^= *data++;
125 
126 	return (h);
127 }
128 
129 /*
130  * File handle hash function, XOR over all bytes in fsid and fid.
131  */
132 static unsigned
133 nfs_fhhash(fsid_t *fsid, fid_t *fid)
134 {
135 	int len;
136 	uint8_t h;
137 
138 	h = xor_hash((uint8_t *)fsid, sizeof (fsid_t));
139 
140 	/*
141 	 * Sanity check the length before using it
142 	 * blindly in case the client trashed it.
143 	 */
144 	len = fid->fid_len > NFS_FH4MAXDATA ? 0 : fid->fid_len;
145 	h ^= xor_hash((uint8_t *)fid->fid_data, len);
146 
147 	return ((unsigned)h);
148 }
149 
150 /*
151  * Free the memory allocated within a secinfo entry.
152  */
153 void
154 srv_secinfo_entry_free(struct secinfo *secp)
155 {
156 	if (secp->s_rootcnt > 0 && secp->s_rootnames != NULL) {
157 		sec_svc_freerootnames(secp->s_secinfo.sc_rpcnum,
158 		    secp->s_rootcnt, secp->s_rootnames);
159 		secp->s_rootcnt = 0;
160 	}
161 
162 	if ((secp->s_secinfo.sc_rpcnum == RPCSEC_GSS) &&
163 	    (secp->s_secinfo.sc_gss_mech_type)) {
164 		kmem_free(secp->s_secinfo.sc_gss_mech_type->elements,
165 		    secp->s_secinfo.sc_gss_mech_type->length);
166 		kmem_free(secp->s_secinfo.sc_gss_mech_type,
167 		    sizeof (rpc_gss_OID_desc));
168 		secp->s_secinfo.sc_gss_mech_type = NULL;
169 	}
170 }
171 
172 /*
173  * Free a list of secinfo allocated in the exportdata structure.
174  */
175 void
176 srv_secinfo_list_free(struct secinfo *secinfo, int cnt)
177 {
178 	int i;
179 
180 	if (cnt == 0)
181 		return;
182 
183 	for (i = 0; i < cnt; i++)
184 		srv_secinfo_entry_free(&secinfo[i]);
185 
186 	kmem_free(secinfo, cnt * sizeof (struct secinfo));
187 }
188 
189 /*
190  * Allocate and copy a secinfo data from "from" to "to".
191  *
192  * This routine is used by srv_secinfo_add() to add a new flavor to an
193  * ancestor's export node. The rootnames are not copied because the
194  * allowable rootname access only applies to the explicit exported node,
195  * not its ancestor's.
196  *
197  * "to" should have already been allocated and zeroed before calling
198  * this routine.
199  *
200  * This routine is used under the protection of exported_lock (RW_WRITER).
201  */
202 void
203 srv_secinfo_copy(struct secinfo *from, struct secinfo *to)
204 {
205 	to->s_secinfo.sc_nfsnum = from->s_secinfo.sc_nfsnum;
206 	to->s_secinfo.sc_rpcnum = from->s_secinfo.sc_rpcnum;
207 
208 	if (from->s_secinfo.sc_rpcnum == RPCSEC_GSS) {
209 		to->s_secinfo.sc_service = from->s_secinfo.sc_service;
210 		bcopy(from->s_secinfo.sc_name, to->s_secinfo.sc_name,
211 		    strlen(from->s_secinfo.sc_name));
212 		bcopy(from->s_secinfo.sc_gss_mech, to->s_secinfo.sc_gss_mech,
213 		    strlen(from->s_secinfo.sc_gss_mech));
214 
215 		/* copy mechanism oid */
216 		to->s_secinfo.sc_gss_mech_type =
217 		    kmem_alloc(sizeof (rpc_gss_OID_desc), KM_SLEEP);
218 		to->s_secinfo.sc_gss_mech_type->length =
219 		    from->s_secinfo.sc_gss_mech_type->length;
220 		to->s_secinfo.sc_gss_mech_type->elements =
221 		    kmem_alloc(from->s_secinfo.sc_gss_mech_type->length,
222 		    KM_SLEEP);
223 		bcopy(from->s_secinfo.sc_gss_mech_type->elements,
224 		    to->s_secinfo.sc_gss_mech_type->elements,
225 		    from->s_secinfo.sc_gss_mech_type->length);
226 	}
227 
228 	to->s_refcnt = from->s_refcnt;
229 	to->s_window = from->s_window;
230 	/* no need to copy the mode bits - s_flags */
231 }
232 
233 /*
234  * Create a secinfo array without duplicates.  The condensed
235  * flavor list is used to propagate flavor ref counts  to an
236  * export's ancestor pseudonodes.
237  */
238 static int
239 build_seclist_nodups(exportdata_t *exd, secinfo_t *nodups, int exponly)
240 {
241 	int ccnt, c;
242 	int ncnt, n;
243 	struct secinfo *cursec;
244 
245 	ncnt = 0;
246 	ccnt = exd->ex_seccnt;
247 	cursec = exd->ex_secinfo;
248 
249 	for (c = 0; c < ccnt; c++) {
250 
251 		if (exponly && ! SEC_REF_EXPORTED(&cursec[c]))
252 			continue;
253 
254 		for (n = 0; n < ncnt; n++) {
255 			if (nodups[n].s_secinfo.sc_nfsnum ==
256 			    cursec[c].s_secinfo.sc_nfsnum)
257 				break;
258 		}
259 
260 		/*
261 		 * The structure copy below also copys ptrs embedded
262 		 * within struct secinfo.  The ptrs are copied but
263 		 * they are never freed from the nodups array.  If
264 		 * an ancestor's secinfo array doesn't contain one
265 		 * of the nodups flavors, then the entry is properly
266 		 * copied into the ancestor's secinfo array.
267 		 * (see srv_secinfo_copy)
268 		 */
269 		if (n == ncnt) {
270 			nodups[n] = cursec[c];
271 			ncnt++;
272 		}
273 	}
274 	return (ncnt);
275 }
276 
277 /*
278  * Add the new security flavors from newdata to the current list, pcursec.
279  * Upon return, *pcursec has the newly merged secinfo list.
280  *
281  * There should be at least 1 secinfo entry in newsec.
282  *
283  * This routine is used under the protection of exported_lock (RW_WRITER).
284  */
285 static void
286 srv_secinfo_add(secinfo_t **pcursec, int *pcurcnt, secinfo_t *newsec,
287     int newcnt, int is_pseudo)
288 {
289 	int ccnt, c;		/* sec count in current data - curdata */
290 	int n;			/* index for newsec  - newsecinfo */
291 	int tcnt;		/* total sec count after merge */
292 	int mcnt;		/* total sec count after merge */
293 	struct secinfo *msec;	/* merged secinfo list */
294 	struct secinfo *cursec;
295 
296 	cursec = *pcursec;
297 	ccnt = *pcurcnt;
298 
299 	ASSERT(newcnt > 0);
300 	tcnt = ccnt + newcnt;
301 
302 	for (n = 0; n < newcnt; n++) {
303 		for (c = 0; c < ccnt; c++) {
304 			if (newsec[n].s_secinfo.sc_nfsnum ==
305 			    cursec[c].s_secinfo.sc_nfsnum) {
306 				cursec[c].s_refcnt += newsec[n].s_refcnt;
307 				SECREF_TRACE(cursec, "add_ref",
308 				    cursec[c].s_secinfo.sc_nfsnum,
309 				    cursec[c].s_refcnt);
310 				tcnt--;
311 				break;
312 			}
313 		}
314 	}
315 
316 	if (tcnt == ccnt)
317 		return; /* no change; no new flavors */
318 
319 	msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP);
320 
321 	/* move current secinfo list data to the new list */
322 	for (c = 0; c < ccnt; c++)
323 		msec[c] = cursec[c];
324 
325 	/* Add the flavor that's not in the current data */
326 	mcnt = ccnt;
327 	for (n = 0; n < newcnt; n++) {
328 		for (c = 0; c < ccnt; c++) {
329 			if (newsec[n].s_secinfo.sc_nfsnum ==
330 			    cursec[c].s_secinfo.sc_nfsnum)
331 				break;
332 		}
333 
334 		/* This is the one. Add it. */
335 		if (c == ccnt) {
336 			srv_secinfo_copy(&newsec[n], &msec[mcnt]);
337 
338 			if (is_pseudo)
339 				msec[mcnt].s_flags = M_RO;
340 
341 			SECREF_TRACE(msec, "new_ref",
342 			    msec[mcnt].s_secinfo.sc_nfsnum,
343 			    msec[mcnt].s_refcnt);
344 			mcnt++;
345 		}
346 	}
347 
348 	ASSERT(mcnt == tcnt);
349 
350 	/*
351 	 * Done. Update curdata. Free the old secinfo list in
352 	 * curdata and return the new sec array info
353 	 */
354 	if (ccnt > 0)
355 		kmem_free(cursec, ccnt * sizeof (struct secinfo));
356 	*pcurcnt = tcnt;
357 	*pcursec = msec;
358 }
359 
360 /*
361  * For NFS V4.
362  * Remove the security data of the unexported node from its ancestors.
363  * Assume there is at least one flavor entry in the current sec list
364  * (pcursec).
365  *
366  * This routine is used under the protection of exported_lock (RW_WRITER).
367  *
368  * Every element of remsec is an explicitly exported flavor.  If
369  * srv_secinfo_remove() is called fom an exportfs error path, then
370  * the flavor list was derived from the user's share cmdline,
371  * and all flavors are explicit.  If it was called from the unshare path,
372  * build_seclist_nodups() was called with the exponly flag.
373  */
374 static void
375 srv_secinfo_remove(secinfo_t **pcursec, int *pcurcnt, secinfo_t *remsec,
376     int remcnt)
377 {
378 	int ccnt, c;		/* sec count in current data - cursec */
379 	int r;			/* sec count in removal data - remsec */
380 	int tcnt, mcnt;		/* total sec count after removing */
381 	struct secinfo *msec;	/* final secinfo list after removing */
382 	struct secinfo *cursec;
383 
384 	cursec = *pcursec;
385 	ccnt = *pcurcnt;
386 	tcnt = ccnt;
387 
388 	for (r = 0; r < remcnt; r++) {
389 		/*
390 		 * At unshare/reshare time, only explicitly shared flavor ref
391 		 * counts are decremented and propagated to ancestors.
392 		 * Implicit flavor refs came from shared descendants, and
393 		 * they must be kept.
394 		 */
395 		if (! SEC_REF_EXPORTED(&remsec[r]))
396 			continue;
397 
398 		for (c = 0; c < ccnt; c++) {
399 			if (remsec[r].s_secinfo.sc_nfsnum ==
400 			    cursec[c].s_secinfo.sc_nfsnum) {
401 
402 				/*
403 				 * Decrement secinfo reference count by 1.
404 				 * If this entry is invalid after decrementing
405 				 * the count (i.e. count < 1), this entry will
406 				 * be removed.
407 				 */
408 				cursec[c].s_refcnt--;
409 
410 				SECREF_TRACE(cursec, "del_ref",
411 				    cursec[c].s_secinfo.sc_nfsnum,
412 				    cursec[c].s_refcnt);
413 
414 				ASSERT(cursec[c].s_refcnt >= 0);
415 
416 				if (SEC_REF_INVALID(&cursec[c]))
417 					tcnt--;
418 				break;
419 			}
420 		}
421 	}
422 
423 	ASSERT(tcnt >= 0);
424 	if (tcnt == ccnt)
425 		return; /* no change; no flavors to remove */
426 
427 	if (tcnt == 0) {
428 		srv_secinfo_list_free(cursec, ccnt);
429 		*pcurcnt = 0;
430 		*pcursec = NULL;
431 		return;
432 	}
433 
434 	msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP);
435 
436 	/* walk thru the given secinfo list to remove the flavors */
437 	mcnt = 0;
438 	for (c = 0; c < ccnt; c++) {
439 		if (SEC_REF_INVALID(&cursec[c])) {
440 			srv_secinfo_entry_free(&cursec[c]);
441 		} else {
442 			msec[mcnt] = cursec[c];
443 			mcnt++;
444 		}
445 	}
446 
447 	ASSERT(mcnt == tcnt);
448 	/*
449 	 * Done. Update curdata.
450 	 * Free the existing secinfo list in curdata. All pointers
451 	 * within the list have either been moved to msec or freed
452 	 * if it's invalid.
453 	 */
454 	kmem_free(*pcursec, ccnt * sizeof (struct secinfo));
455 	*pcursec = msec;
456 	*pcurcnt = tcnt;
457 }
458 
459 
460 /*
461  * For the reshare case, sec flavor accounting happens in 3 steps:
462  * 1) propagate addition of new flavor refs up the ancestor tree
463  * 2) transfer flavor refs of descendants to new/reshared exportdata
464  * 3) propagate removal of old flavor refs up the ancestor tree
465  *
466  * srv_secinfo_exp2exp() implements step 2 of a reshare.  At this point,
467  * the new flavor list has already been propagated up through the
468  * ancestor tree via srv_secinfo_treeclimb().
469  *
470  * If there is more than 1 export reference to an old flavor (i.e. some
471  * of its children shared with this flavor), this flavor information
472  * needs to be transferred to the new exportdata struct.  A flavor in
473  * the old exportdata has descendant refs when its s_refcnt > 1 or it
474  * is implicitly shared (M_SEC4_EXPORTED not set in s_flags).
475  *
476  * SEC_REF_EXPORTED() is only true when  M_SEC4_EXPORTED is set
477  * SEC_REF_SELF() is only true when both M_SEC4_EXPORTED is set and s_refcnt==1
478  *
479  * Transferring descendant flavor refcnts happens in 2 passes:
480  * a) flavors used before (oldsecinfo) and after (curdata->ex_secinfo) reshare
481  * b) flavors used before but not after reshare
482  *
483  * This routine is used under the protection of exported_lock (RW_WRITER).
484  */
485 void
486 srv_secinfo_exp2exp(exportdata_t *curdata, secinfo_t *oldsecinfo, int ocnt)
487 {
488 	int ccnt, c;		/* sec count in current data - curdata */
489 	int o;			/* sec count in old data - oldsecinfo */
490 	int tcnt, mcnt;		/* total sec count after the transfer */
491 	struct secinfo *msec;	/* merged secinfo list */
492 
493 	ccnt = curdata->ex_seccnt;
494 
495 	ASSERT(ocnt > 0);
496 	ASSERT(!(curdata->ex_flags & EX_PSEUDO));
497 
498 	/*
499 	 * If the oldsecinfo has flavors with more than 1 reference count
500 	 * and the flavor is specified in the reshare, transfer the flavor
501 	 * refs to the new seclist (curdata.ex_secinfo).
502 	 */
503 	tcnt = ccnt + ocnt;
504 
505 	for (o = 0; o < ocnt; o++) {
506 
507 		if (SEC_REF_SELF(&oldsecinfo[o])) {
508 			tcnt--;
509 			continue;
510 		}
511 
512 		for (c = 0; c < ccnt; c++) {
513 			if (oldsecinfo[o].s_secinfo.sc_nfsnum ==
514 			    curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) {
515 
516 				/*
517 				 * add old reference to the current
518 				 * secinfo count
519 				 */
520 				curdata->ex_secinfo[c].s_refcnt +=
521 				    oldsecinfo[o].s_refcnt;
522 
523 				/*
524 				 * Delete the old export flavor
525 				 * reference.  The initial reference
526 				 * was created during srv_secinfo_add,
527 				 * and the count is decremented below
528 				 * to account for the initial reference.
529 				 */
530 				if (SEC_REF_EXPORTED(&oldsecinfo[o]))
531 					curdata->ex_secinfo[c].s_refcnt--;
532 
533 				SECREF_TRACE(curdata->ex_path,
534 				    "reshare_xfer_common_child_refs",
535 				    curdata->ex_secinfo[c].s_secinfo.sc_nfsnum,
536 				    curdata->ex_secinfo[c].s_refcnt);
537 
538 				ASSERT(curdata->ex_secinfo[c].s_refcnt >= 0);
539 
540 				tcnt--;
541 				break;
542 			}
543 		}
544 	}
545 
546 	if (tcnt == ccnt)
547 		return; /* no more transfer to do */
548 
549 	/*
550 	 * oldsecinfo has flavors referenced by its children that are not
551 	 * in the current (new) export flavor list.  Add these flavors.
552 	 */
553 	msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP);
554 
555 	/* move current secinfo list data to the new list */
556 	for (c = 0; c < ccnt; c++)
557 		msec[c] = curdata->ex_secinfo[c];
558 
559 	/*
560 	 * Add the flavor that's not in the new export, but still
561 	 * referenced by its children.
562 	 */
563 	mcnt = ccnt;
564 	for (o = 0; o < ocnt; o++) {
565 		if (! SEC_REF_SELF(&oldsecinfo[o])) {
566 			for (c = 0; c < ccnt; c++) {
567 				if (oldsecinfo[o].s_secinfo.sc_nfsnum ==
568 				    curdata->ex_secinfo[c].s_secinfo.sc_nfsnum)
569 					break;
570 			}
571 
572 			/*
573 			 * This is the one. Add it. Decrement the ref count
574 			 * by 1 if the flavor is an explicitly shared flavor
575 			 * for the oldsecinfo export node.
576 			 */
577 			if (c == ccnt) {
578 				srv_secinfo_copy(&oldsecinfo[o], &msec[mcnt]);
579 				if (SEC_REF_EXPORTED(&oldsecinfo[o]))
580 					msec[mcnt].s_refcnt--;
581 
582 				SECREF_TRACE(curdata,
583 				    "reshare_xfer_implicit_child_refs",
584 				    msec[mcnt].s_secinfo.sc_nfsnum,
585 				    msec[mcnt].s_refcnt);
586 
587 				ASSERT(msec[mcnt].s_refcnt >= 0);
588 				mcnt++;
589 			}
590 		}
591 	}
592 
593 	ASSERT(mcnt == tcnt);
594 	/*
595 	 * Done. Update curdata, free the existing secinfo list in
596 	 * curdata and set the new value.
597 	 */
598 	if (ccnt > 0)
599 		kmem_free(curdata->ex_secinfo, ccnt * sizeof (struct secinfo));
600 	curdata->ex_seccnt = tcnt;
601 	curdata->ex_secinfo = msec;
602 }
603 
604 /*
605  * When unsharing an old export node and the old node becomes a pseudo node,
606  * if there is more than 1 export reference to an old flavor (i.e. some of
607  * its children shared with this flavor), this flavor information needs to
608  * be transferred to the new shared node.
609  *
610  * This routine is used under the protection of exported_lock (RW_WRITER).
611  */
612 void
613 srv_secinfo_exp2pseu(exportdata_t *curdata, exportdata_t *olddata)
614 {
615 	int ocnt, o;		/* sec count in transfer data - trandata */
616 	int tcnt, mcnt;		/* total sec count after transfer */
617 	struct secinfo *msec;	/* merged secinfo list */
618 
619 	ASSERT(curdata->ex_flags & EX_PSEUDO);
620 	ASSERT(curdata->ex_seccnt == 0);
621 
622 	ocnt = olddata->ex_seccnt;
623 
624 	/*
625 	 * If the olddata has flavors with more than 1 reference count,
626 	 * transfer the information to the curdata.
627 	 */
628 	tcnt = ocnt;
629 
630 	for (o = 0; o < ocnt; o++) {
631 		if (SEC_REF_SELF(&olddata->ex_secinfo[o]))
632 			tcnt--;
633 	}
634 
635 	if (tcnt == 0)
636 		return; /* no transfer to do */
637 
638 	msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP);
639 
640 	mcnt = 0;
641 	for (o = 0; o < ocnt; o++) {
642 		if (! SEC_REF_SELF(&olddata->ex_secinfo[o])) {
643 
644 			/*
645 			 * Decrement the reference count by 1 if the flavor is
646 			 * an explicitly shared flavor for the olddata export
647 			 * node.
648 			 */
649 			srv_secinfo_copy(&olddata->ex_secinfo[o], &msec[mcnt]);
650 			msec[mcnt].s_flags = M_RO;
651 			if (SEC_REF_EXPORTED(&olddata->ex_secinfo[o]))
652 				msec[mcnt].s_refcnt--;
653 
654 			SECREF_TRACE(curdata, "unshare_morph_pseudo",
655 			    msec[mcnt].s_secinfo.sc_nfsnum,
656 			    msec[mcnt].s_refcnt);
657 
658 			ASSERT(msec[mcnt].s_refcnt >= 0);
659 			mcnt++;
660 		}
661 	}
662 
663 	ASSERT(mcnt == tcnt);
664 	/*
665 	 * Done. Update curdata.
666 	 * Free up the existing secinfo list in curdata and
667 	 * set the new value.
668 	 */
669 	curdata->ex_seccnt = tcnt;
670 	curdata->ex_secinfo = msec;
671 }
672 
673 /*
674  * Find for given treenode the exportinfo which has its
675  * exp_visible linked on its exi_visible list.
676  *
677  * Note: We could add new pointer either to treenode or
678  * to exp_visible, which will point there directly.
679  * This would buy some speed for some memory.
680  */
681 exportinfo_t *
682 vis2exi(treenode_t *tnode)
683 {
684 	exportinfo_t *exi_ret = NULL;
685 
686 	for (;;) {
687 		tnode = tnode->tree_parent;
688 		if (TREE_ROOT(tnode)) {
689 			exi_ret = tnode->tree_exi;
690 			break;
691 		}
692 	}
693 
694 	ASSERT(exi_ret); /* Every visible should have its home exportinfo */
695 	return (exi_ret);
696 }
697 
698 /*
699  * For NFS V4.
700  * Add or remove the newly exported or unexported security flavors of the
701  * given exportinfo from its ancestors upto the system root.
702  */
703 void
704 srv_secinfo_treeclimb(exportinfo_t *exip, secinfo_t *sec, int seccnt, int isadd)
705 {
706 	treenode_t *tnode = exip->exi_tree;
707 
708 	ASSERT(RW_WRITE_HELD(&exported_lock));
709 	ASSERT(tnode);
710 
711 	if (seccnt == 0)
712 		return;
713 
714 	/*
715 	 * If flavors are being added and the new export root isn't
716 	 * also VROOT, its implicitly allowed flavors are inherited from
717 	 * from its pseudonode.
718 	 * Note - for VROOT exports the implicitly allowed flavors were
719 	 * transferred from the PSEUDO export in exportfs()
720 	 */
721 	if (isadd && !(exip->exi_vp->v_flag & VROOT) &&
722 	    tnode->tree_vis->vis_seccnt > 0) {
723 		srv_secinfo_add(&exip->exi_export.ex_secinfo,
724 		    &exip->exi_export.ex_seccnt, tnode->tree_vis->vis_secinfo,
725 		    tnode->tree_vis->vis_seccnt, FALSE);
726 	}
727 
728 	/*
729 	 * Move to parent node and propagate sec flavor
730 	 * to exportinfo and to visible structures.
731 	 */
732 	tnode = tnode->tree_parent;
733 
734 	while (tnode) {
735 
736 		/* If there is exportinfo, update it */
737 		if (tnode->tree_exi) {
738 			secinfo_t **pxsec =
739 			    &tnode->tree_exi->exi_export.ex_secinfo;
740 			int *pxcnt = &tnode->tree_exi->exi_export.ex_seccnt;
741 			int is_pseudo = PSEUDO(tnode->tree_exi);
742 			if (isadd)
743 				srv_secinfo_add(pxsec, pxcnt, sec, seccnt,
744 				    is_pseudo);
745 			else
746 				srv_secinfo_remove(pxsec, pxcnt, sec, seccnt);
747 		}
748 
749 		/* Update every visible - only root node has no visible */
750 		if (tnode->tree_vis) {
751 			secinfo_t **pxsec = &tnode->tree_vis->vis_secinfo;
752 			int *pxcnt = &tnode->tree_vis->vis_seccnt;
753 			if (isadd)
754 				srv_secinfo_add(pxsec, pxcnt, sec, seccnt,
755 				    FALSE);
756 			else
757 				srv_secinfo_remove(pxsec, pxcnt, sec, seccnt);
758 		}
759 		tnode = tnode->tree_parent;
760 	}
761 }
762 
763 /* hash_name is a text substitution for either fid_hash or path_hash */
764 #define	exp_hash_unlink(exi, hash_name) \
765 	if (*(exi)->hash_name.bckt == (exi)) \
766 		*(exi)->hash_name.bckt = (exi)->hash_name.next; \
767 	if ((exi)->hash_name.prev) \
768 		(exi)->hash_name.prev->hash_name.next = (exi)->hash_name.next; \
769 	if ((exi)->hash_name.next) \
770 		(exi)->hash_name.next->hash_name.prev = (exi)->hash_name.prev; \
771 	(exi)->hash_name.bckt = NULL;
772 
773 #define	exp_hash_link(exi, hash_name, bucket) \
774 	(exi)->hash_name.bckt = (bucket); \
775 	(exi)->hash_name.prev = NULL; \
776 	(exi)->hash_name.next = *(bucket); \
777 	if ((exi)->hash_name.next) \
778 		(exi)->hash_name.next->hash_name.prev = (exi); \
779 	*(bucket) = (exi);
780 
781 void
782 export_link(exportinfo_t *exi)
783 {
784 	exportinfo_t **bckt;
785 
786 	bckt = &exptable[exptablehash(&exi->exi_fsid, &exi->exi_fid)];
787 	exp_hash_link(exi, fid_hash, bckt);
788 
789 	bckt = &exptable_path_hash[pkp_tab_hash(exi->exi_export.ex_path,
790 	    strlen(exi->exi_export.ex_path))];
791 	exp_hash_link(exi, path_hash, bckt);
792 }
793 
794 /*
795  * Initialization routine for export routines. Should only be called once.
796  */
797 int
798 nfs_exportinit(void)
799 {
800 	int error;
801 
802 	rw_init(&exported_lock, NULL, RW_DEFAULT, NULL);
803 
804 	/*
805 	 * Allocate the place holder for the public file handle, which
806 	 * is all zeroes. It is initially set to the root filesystem.
807 	 */
808 	exi_root = kmem_zalloc(sizeof (*exi_root), KM_SLEEP);
809 	exi_public = exi_root;
810 
811 	exi_root->exi_export.ex_flags = EX_PUBLIC;
812 	exi_root->exi_export.ex_pathlen = 1;	/* length of "/" */
813 	exi_root->exi_export.ex_path =
814 	    kmem_alloc(exi_root->exi_export.ex_pathlen + 1, KM_SLEEP);
815 	exi_root->exi_export.ex_path[0] = '/';
816 	exi_root->exi_export.ex_path[1] = '\0';
817 
818 	exi_root->exi_count = 1;
819 	mutex_init(&exi_root->exi_lock, NULL, MUTEX_DEFAULT, NULL);
820 
821 	exi_root->exi_vp = rootdir;
822 	exi_rootfid.fid_len = MAXFIDSZ;
823 	error = vop_fid_pseudo(exi_root->exi_vp, &exi_rootfid);
824 	if (error) {
825 		mutex_destroy(&exi_root->exi_lock);
826 		kmem_free(exi_root, sizeof (*exi_root));
827 		return (error);
828 	}
829 
830 	/* setup the fhandle template */
831 	exi_root->exi_fh.fh_fsid = rootdir->v_vfsp->vfs_fsid;
832 	exi_root->exi_fh.fh_xlen = exi_rootfid.fid_len;
833 	bcopy(exi_rootfid.fid_data, exi_root->exi_fh.fh_xdata,
834 	    exi_rootfid.fid_len);
835 	exi_root->exi_fh.fh_len = sizeof (exi_root->exi_fh.fh_data);
836 
837 	/*
838 	 * Publish the exportinfo in the hash table
839 	 */
840 	export_link(exi_root);
841 
842 	nfslog_init();
843 	ns_root = NULL;
844 
845 	return (0);
846 }
847 
848 /*
849  * Finalization routine for export routines. Called to cleanup previously
850  * initialization work when the NFS server module could not be loaded correctly.
851  */
852 void
853 nfs_exportfini(void)
854 {
855 	/*
856 	 * Deallocate the place holder for the public file handle.
857 	 */
858 	srv_secinfo_list_free(exi_root->exi_export.ex_secinfo,
859 	    exi_root->exi_export.ex_seccnt);
860 	mutex_destroy(&exi_root->exi_lock);
861 	kmem_free(exi_root, sizeof (*exi_root));
862 
863 	rw_destroy(&exported_lock);
864 }
865 
866 /*
867  *  Check if 2 gss mechanism identifiers are the same.
868  *
869  *  return FALSE if not the same.
870  *  return TRUE if the same.
871  */
872 static bool_t
873 nfs_mech_equal(rpc_gss_OID mech1, rpc_gss_OID mech2)
874 {
875 	if ((mech1->length == 0) && (mech2->length == 0))
876 		return (TRUE);
877 
878 	if (mech1->length != mech2->length)
879 		return (FALSE);
880 
881 	return (bcmp(mech1->elements, mech2->elements, mech1->length) == 0);
882 }
883 
884 /*
885  *  This routine is used by rpc to map rpc security number
886  *  to nfs specific security flavor number.
887  *
888  *  The gss callback prototype is
889  *  callback(struct svc_req *, gss_cred_id_t *, gss_ctx_id_t *,
890  *				rpc_gss_lock_t *, void **),
891  *  since nfs does not use the gss_cred_id_t/gss_ctx_id_t arguments
892  *  we cast them to void.
893  */
894 /*ARGSUSED*/
895 bool_t
896 rfs_gsscallback(struct svc_req *req, gss_cred_id_t deleg, void *gss_context,
897     rpc_gss_lock_t *lock, void **cookie)
898 {
899 	int i, j;
900 	rpc_gss_rawcred_t *raw_cred;
901 	struct exportinfo *exi;
902 
903 	/*
904 	 * We don't deal with delegated credentials.
905 	 */
906 	if (deleg != GSS_C_NO_CREDENTIAL)
907 		return (FALSE);
908 
909 	raw_cred = lock->raw_cred;
910 	*cookie = NULL;
911 
912 	rw_enter(&exported_lock, RW_READER);
913 	for (i = 0; i < EXPTABLESIZE; i++) {
914 		exi = exptable[i];
915 		while (exi) {
916 			if (exi->exi_export.ex_seccnt > 0) {
917 				struct secinfo *secp;
918 				seconfig_t *se;
919 				int seccnt;
920 
921 				secp = exi->exi_export.ex_secinfo;
922 				seccnt = exi->exi_export.ex_seccnt;
923 				for (j = 0; j < seccnt; j++) {
924 					/*
925 					 *  If there is a map of the triplet
926 					 *  (mechanism, service, qop) between
927 					 *  raw_cred and the exported flavor,
928 					 *  get the psudo flavor number.
929 					 *  Also qop should not be NULL, it
930 					 *  should be "default" or something
931 					 *  else.
932 					 */
933 					se = &secp[j].s_secinfo;
934 					if ((se->sc_rpcnum == RPCSEC_GSS) &&
935 
936 					    (nfs_mech_equal(
937 					    se->sc_gss_mech_type,
938 					    raw_cred->mechanism)) &&
939 
940 					    (se->sc_service ==
941 					    raw_cred->service) &&
942 					    (raw_cred->qop == se->sc_qop)) {
943 
944 						*cookie = (void *)(uintptr_t)
945 						    se->sc_nfsnum;
946 						goto done;
947 					}
948 				}
949 			}
950 			exi = exi->fid_hash.next;
951 		}
952 	}
953 done:
954 	rw_exit(&exported_lock);
955 
956 	/*
957 	 * If no nfs pseudo number mapping can be found in the export
958 	 * table, assign the nfsflavor to NFS_FLAVOR_NOMAP. In V4, we may
959 	 * recover the flavor mismatch from NFS layer (NFS4ERR_WRONGSEC).
960 	 *
961 	 * For example:
962 	 *	server first shares with krb5i;
963 	 *	client mounts with krb5i;
964 	 *	server re-shares with krb5p;
965 	 *	client tries with krb5i, but no mapping can be found;
966 	 *	rpcsec_gss module calls this routine to do the mapping,
967 	 *		if this routine fails, request is rejected from
968 	 *		the rpc layer.
969 	 *	What we need is to let the nfs layer rejects the request.
970 	 *	For V4, we can reject with NFS4ERR_WRONGSEC and the client
971 	 *	may recover from it by getting the new flavor via SECINFO.
972 	 *
973 	 * nfs pseudo number for RPCSEC_GSS mapping (see nfssec.conf)
974 	 * is owned by IANA (see RFC 2623).
975 	 *
976 	 * XXX NFS_FLAVOR_NOMAP is defined in Solaris to work around
977 	 * the implementation issue. This number should not overlap with
978 	 * any new IANA defined pseudo flavor numbers.
979 	 */
980 	if (*cookie == NULL)
981 		*cookie = (void *)NFS_FLAVOR_NOMAP;
982 
983 	lock->locked = TRUE;
984 
985 	return (TRUE);
986 }
987 
988 
989 /*
990  * Exportfs system call; credentials should be checked before
991  * calling this function.
992  */
993 int
994 exportfs(struct exportfs_args *args, model_t model, cred_t *cr)
995 {
996 	vnode_t *vp;
997 	vnode_t *dvp;
998 	struct exportdata *kex;
999 	struct exportinfo *exi = NULL;
1000 	struct exportinfo *ex, *ex1, *ex2;
1001 	fid_t fid;
1002 	fsid_t fsid;
1003 	int error;
1004 	size_t allocsize;
1005 	struct secinfo *sp;
1006 	struct secinfo *exs;
1007 	rpc_gss_callback_t cb;
1008 	char *pathbuf;
1009 	char *log_buffer;
1010 	char *tagbuf;
1011 	int callback;
1012 	int allocd_seccnt;
1013 	STRUCT_HANDLE(exportfs_args, uap);
1014 	STRUCT_DECL(exportdata, uexi);
1015 	struct secinfo newsec[MAX_FLAVORS];
1016 	int newcnt;
1017 	struct secinfo oldsec[MAX_FLAVORS];
1018 	int oldcnt;
1019 	int i;
1020 	struct pathname lookpn;
1021 
1022 	STRUCT_SET_HANDLE(uap, model, args);
1023 
1024 	/* Read in pathname from userspace */
1025 	if (error = pn_get(STRUCT_FGETP(uap, dname), UIO_USERSPACE, &lookpn))
1026 		return (error);
1027 
1028 	/* Walk the export list looking for that pathname */
1029 	rw_enter(&exported_lock, RW_READER);
1030 	DTRACE_PROBE(nfss__i__exported_lock1_start);
1031 	for (ex1 = exptable_path_hash[pkp_tab_hash(lookpn.pn_path,
1032 	    strlen(lookpn.pn_path))]; ex1; ex1 = ex1->path_hash.next) {
1033 		if (ex1 != exi_root && 0 ==
1034 		    strcmp(ex1->exi_export.ex_path, lookpn.pn_path)) {
1035 			exi_hold(ex1);
1036 			break;
1037 		}
1038 	}
1039 	DTRACE_PROBE(nfss__i__exported_lock1_stop);
1040 	rw_exit(&exported_lock);
1041 
1042 	/* Is this an unshare? */
1043 	if (STRUCT_FGETP(uap, uex) == NULL) {
1044 		pn_free(&lookpn);
1045 		if (ex1 == NULL)
1046 			return (EINVAL);
1047 		error = unexport(ex1);
1048 		exi_rele(ex1);
1049 		return (error);
1050 	}
1051 
1052 	/* It is a share or a re-share */
1053 	error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE,
1054 	    FOLLOW, &dvp, &vp);
1055 	if (error == EINVAL) {
1056 		/*
1057 		 * if fname resolves to / we get EINVAL error
1058 		 * since we wanted the parent vnode. Try again
1059 		 * with NULL dvp.
1060 		 */
1061 		error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE,
1062 		    FOLLOW, NULL, &vp);
1063 		dvp = NULL;
1064 	}
1065 	if (!error && vp == NULL) {
1066 		/* Last component of fname not found */
1067 		if (dvp != NULL)
1068 			VN_RELE(dvp);
1069 		error = ENOENT;
1070 	}
1071 	if (error) {
1072 		pn_free(&lookpn);
1073 		if (ex1)
1074 			exi_rele(ex1);
1075 		return (error);
1076 	}
1077 
1078 	/*
1079 	 * 'vp' may be an AUTOFS node, so we perform a
1080 	 * VOP_ACCESS() to trigger the mount of the
1081 	 * intended filesystem, so we can share the intended
1082 	 * filesystem instead of the AUTOFS filesystem.
1083 	 */
1084 	(void) VOP_ACCESS(vp, 0, 0, cr, NULL);
1085 
1086 	/*
1087 	 * We're interested in the top most filesystem.
1088 	 * This is specially important when uap->dname is a trigger
1089 	 * AUTOFS node, since we're really interested in sharing the
1090 	 * filesystem AUTOFS mounted as result of the VOP_ACCESS()
1091 	 * call not the AUTOFS node itself.
1092 	 */
1093 	if (vn_mountedvfs(vp) != NULL) {
1094 		if (error = traverse(&vp)) {
1095 			VN_RELE(vp);
1096 			if (dvp != NULL)
1097 				VN_RELE(dvp);
1098 			pn_free(&lookpn);
1099 			if (ex1)
1100 				exi_rele(ex1);
1101 			return (error);
1102 		}
1103 	}
1104 
1105 	/* Do not allow sharing another vnode for already shared path */
1106 	if (ex1 && !PSEUDO(ex1) && !VN_CMP(ex1->exi_vp, vp)) {
1107 		VN_RELE(vp);
1108 		if (dvp != NULL)
1109 			VN_RELE(dvp);
1110 		pn_free(&lookpn);
1111 		exi_rele(ex1);
1112 		return (EEXIST);
1113 	}
1114 	if (ex1)
1115 		exi_rele(ex1);
1116 
1117 	/*
1118 	 * Get the vfs id
1119 	 */
1120 	bzero(&fid, sizeof (fid));
1121 	fid.fid_len = MAXFIDSZ;
1122 	error = VOP_FID(vp, &fid, NULL);
1123 	fsid = vp->v_vfsp->vfs_fsid;
1124 
1125 	if (error) {
1126 		VN_RELE(vp);
1127 		if (dvp != NULL)
1128 			VN_RELE(dvp);
1129 		/*
1130 		 * If VOP_FID returns ENOSPC then the fid supplied
1131 		 * is too small.  For now we simply return EREMOTE.
1132 		 */
1133 		if (error == ENOSPC)
1134 			error = EREMOTE;
1135 		pn_free(&lookpn);
1136 		return (error);
1137 	}
1138 
1139 	/*
1140 	 * Do not allow re-sharing a shared vnode under a different path
1141 	 * PSEUDO export has ex_path fabricated, e.g. "/tmp (pseudo)", skip it.
1142 	 */
1143 	rw_enter(&exported_lock, RW_READER);
1144 	DTRACE_PROBE(nfss__i__exported_lock2_start);
1145 	for (ex2 = exptable[exptablehash(&fsid, &fid)]; ex2;
1146 	    ex2 = ex2->fid_hash.next) {
1147 		if (ex2 != exi_root && !PSEUDO(ex2) &&
1148 		    VN_CMP(ex2->exi_vp, vp) &&
1149 		    strcmp(ex2->exi_export.ex_path, lookpn.pn_path) != 0) {
1150 			DTRACE_PROBE(nfss__i__exported_lock2_stop);
1151 			rw_exit(&exported_lock);
1152 			VN_RELE(vp);
1153 			if (dvp != NULL)
1154 				VN_RELE(dvp);
1155 			pn_free(&lookpn);
1156 			return (EEXIST);
1157 		}
1158 	}
1159 	DTRACE_PROBE(nfss__i__exported_lock2_stop);
1160 	rw_exit(&exported_lock);
1161 	pn_free(&lookpn);
1162 
1163 	exi = kmem_zalloc(sizeof (*exi), KM_SLEEP);
1164 	exi->exi_fsid = fsid;
1165 	exi->exi_fid = fid;
1166 	exi->exi_vp = vp;
1167 	exi->exi_count = 1;
1168 	exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag &
1169 	    VSW_VOLATILEDEV) ? 1 : 0;
1170 	mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL);
1171 	exi->exi_dvp = dvp;
1172 
1173 	/*
1174 	 * Initialize auth cache lock
1175 	 */
1176 	rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL);
1177 
1178 	/*
1179 	 * Build up the template fhandle
1180 	 */
1181 	exi->exi_fh.fh_fsid = fsid;
1182 	if (exi->exi_fid.fid_len > sizeof (exi->exi_fh.fh_xdata)) {
1183 		error = EREMOTE;
1184 		goto out1;
1185 	}
1186 	exi->exi_fh.fh_xlen = exi->exi_fid.fid_len;
1187 	bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata,
1188 	    exi->exi_fid.fid_len);
1189 
1190 	exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data);
1191 
1192 	kex = &exi->exi_export;
1193 
1194 	/*
1195 	 * Load in everything, and do sanity checking
1196 	 */
1197 	STRUCT_INIT(uexi, model);
1198 	if (copyin(STRUCT_FGETP(uap, uex), STRUCT_BUF(uexi),
1199 	    STRUCT_SIZE(uexi))) {
1200 		error = EFAULT;
1201 		goto out1;
1202 	}
1203 
1204 	kex->ex_version = STRUCT_FGET(uexi, ex_version);
1205 	if (kex->ex_version != EX_CURRENT_VERSION) {
1206 		error = EINVAL;
1207 		cmn_err(CE_WARN,
1208 		    "NFS: exportfs requires export struct version 2 - got %d\n",
1209 		    kex->ex_version);
1210 		goto out1;
1211 	}
1212 
1213 	/*
1214 	 * Must have at least one security entry
1215 	 */
1216 	kex->ex_seccnt = STRUCT_FGET(uexi, ex_seccnt);
1217 	if (kex->ex_seccnt < 1) {
1218 		error = EINVAL;
1219 		goto out1;
1220 	}
1221 
1222 	kex->ex_path = STRUCT_FGETP(uexi, ex_path);
1223 	kex->ex_pathlen = STRUCT_FGET(uexi, ex_pathlen);
1224 	kex->ex_flags = STRUCT_FGET(uexi, ex_flags);
1225 	kex->ex_anon = STRUCT_FGET(uexi, ex_anon);
1226 	kex->ex_secinfo = STRUCT_FGETP(uexi, ex_secinfo);
1227 	kex->ex_index = STRUCT_FGETP(uexi, ex_index);
1228 	kex->ex_log_buffer = STRUCT_FGETP(uexi, ex_log_buffer);
1229 	kex->ex_log_bufferlen = STRUCT_FGET(uexi, ex_log_bufferlen);
1230 	kex->ex_tag = STRUCT_FGETP(uexi, ex_tag);
1231 	kex->ex_taglen = STRUCT_FGET(uexi, ex_taglen);
1232 
1233 	/*
1234 	 * Copy the exported pathname into
1235 	 * an appropriately sized buffer.
1236 	 */
1237 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1238 	if (copyinstr(kex->ex_path, pathbuf, MAXPATHLEN, &kex->ex_pathlen)) {
1239 		kmem_free(pathbuf, MAXPATHLEN);
1240 		error = EFAULT;
1241 		goto out1;
1242 	}
1243 	kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP);
1244 	bcopy(pathbuf, kex->ex_path, kex->ex_pathlen);
1245 	kex->ex_path[kex->ex_pathlen] = '\0';
1246 	kmem_free(pathbuf, MAXPATHLEN);
1247 
1248 	/*
1249 	 * Get the path to the logging buffer and the tag
1250 	 */
1251 	if (kex->ex_flags & EX_LOG) {
1252 		log_buffer = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1253 		if (copyinstr(kex->ex_log_buffer, log_buffer, MAXPATHLEN,
1254 		    &kex->ex_log_bufferlen)) {
1255 			kmem_free(log_buffer, MAXPATHLEN);
1256 			error = EFAULT;
1257 			goto out2;
1258 		}
1259 		kex->ex_log_buffer =
1260 		    kmem_alloc(kex->ex_log_bufferlen + 1, KM_SLEEP);
1261 		bcopy(log_buffer, kex->ex_log_buffer, kex->ex_log_bufferlen);
1262 		kex->ex_log_buffer[kex->ex_log_bufferlen] = '\0';
1263 		kmem_free(log_buffer, MAXPATHLEN);
1264 
1265 		tagbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1266 		if (copyinstr(kex->ex_tag, tagbuf, MAXPATHLEN,
1267 		    &kex->ex_taglen)) {
1268 			kmem_free(tagbuf, MAXPATHLEN);
1269 			error = EFAULT;
1270 			goto out3;
1271 		}
1272 		kex->ex_tag = kmem_alloc(kex->ex_taglen + 1, KM_SLEEP);
1273 		bcopy(tagbuf, kex->ex_tag, kex->ex_taglen);
1274 		kex->ex_tag[kex->ex_taglen] = '\0';
1275 		kmem_free(tagbuf, MAXPATHLEN);
1276 	}
1277 
1278 	/*
1279 	 * Load the security information for each flavor
1280 	 */
1281 	allocsize = kex->ex_seccnt * SIZEOF_STRUCT(secinfo, model);
1282 	sp = kmem_zalloc(allocsize, KM_SLEEP);
1283 	if (copyin(kex->ex_secinfo, sp, allocsize)) {
1284 		kmem_free(sp, allocsize);
1285 		error = EFAULT;
1286 		goto out4;
1287 	}
1288 
1289 	/*
1290 	 * All of these nested structures need to be converted to
1291 	 * the kernel native format.
1292 	 */
1293 	if (model != DATAMODEL_NATIVE) {
1294 		size_t allocsize2;
1295 		struct secinfo *sp2;
1296 
1297 		allocsize2 = kex->ex_seccnt * sizeof (struct secinfo);
1298 		sp2 = kmem_zalloc(allocsize2, KM_SLEEP);
1299 
1300 		for (i = 0; i < kex->ex_seccnt; i++) {
1301 			STRUCT_HANDLE(secinfo, usi);
1302 
1303 			STRUCT_SET_HANDLE(usi, model,
1304 			    (struct secinfo *)((caddr_t)sp +
1305 			    (i * SIZEOF_STRUCT(secinfo, model))));
1306 			bcopy(STRUCT_FGET(usi, s_secinfo.sc_name),
1307 			    sp2[i].s_secinfo.sc_name, MAX_NAME_LEN);
1308 			sp2[i].s_secinfo.sc_nfsnum =
1309 			    STRUCT_FGET(usi, s_secinfo.sc_nfsnum);
1310 			sp2[i].s_secinfo.sc_rpcnum =
1311 			    STRUCT_FGET(usi, s_secinfo.sc_rpcnum);
1312 			bcopy(STRUCT_FGET(usi, s_secinfo.sc_gss_mech),
1313 			    sp2[i].s_secinfo.sc_gss_mech, MAX_NAME_LEN);
1314 			sp2[i].s_secinfo.sc_gss_mech_type =
1315 			    STRUCT_FGETP(usi, s_secinfo.sc_gss_mech_type);
1316 			sp2[i].s_secinfo.sc_qop =
1317 			    STRUCT_FGET(usi, s_secinfo.sc_qop);
1318 			sp2[i].s_secinfo.sc_service =
1319 			    STRUCT_FGET(usi, s_secinfo.sc_service);
1320 
1321 			sp2[i].s_flags = STRUCT_FGET(usi, s_flags);
1322 			sp2[i].s_window = STRUCT_FGET(usi, s_window);
1323 			sp2[i].s_rootid = STRUCT_FGET(usi, s_rootid);
1324 			sp2[i].s_rootcnt = STRUCT_FGET(usi, s_rootcnt);
1325 			sp2[i].s_rootnames = STRUCT_FGETP(usi, s_rootnames);
1326 		}
1327 		kmem_free(sp, allocsize);
1328 		sp = sp2;
1329 		allocsize = allocsize2;
1330 	}
1331 
1332 	kex->ex_secinfo = sp;
1333 
1334 	/*
1335 	 * And now copy rootnames for each individual secinfo.
1336 	 */
1337 	callback = 0;
1338 	allocd_seccnt = 0;
1339 	while (allocd_seccnt < kex->ex_seccnt) {
1340 
1341 		exs = &sp[allocd_seccnt];
1342 		if (exs->s_rootcnt > 0) {
1343 			if (!sec_svc_loadrootnames(exs->s_secinfo.sc_rpcnum,
1344 			    exs->s_rootcnt, &exs->s_rootnames, model)) {
1345 				error = EFAULT;
1346 				goto out5;
1347 			}
1348 		}
1349 
1350 		if (exs->s_secinfo.sc_rpcnum == RPCSEC_GSS) {
1351 			rpc_gss_OID mech_tmp;
1352 			STRUCT_DECL(rpc_gss_OID_s, umech_tmp);
1353 			caddr_t elements_tmp;
1354 
1355 			/* Copyin mechanism type */
1356 			STRUCT_INIT(umech_tmp, model);
1357 			mech_tmp = kmem_alloc(sizeof (*mech_tmp), KM_SLEEP);
1358 			if (copyin(exs->s_secinfo.sc_gss_mech_type,
1359 			    STRUCT_BUF(umech_tmp), STRUCT_SIZE(umech_tmp))) {
1360 				kmem_free(mech_tmp, sizeof (*mech_tmp));
1361 				error = EFAULT;
1362 				goto out5;
1363 			}
1364 			mech_tmp->length = STRUCT_FGET(umech_tmp, length);
1365 			mech_tmp->elements = STRUCT_FGETP(umech_tmp, elements);
1366 
1367 			elements_tmp = kmem_alloc(mech_tmp->length, KM_SLEEP);
1368 			if (copyin(mech_tmp->elements, elements_tmp,
1369 			    mech_tmp->length)) {
1370 				kmem_free(elements_tmp, mech_tmp->length);
1371 				kmem_free(mech_tmp, sizeof (*mech_tmp));
1372 				error = EFAULT;
1373 				goto out5;
1374 			}
1375 			mech_tmp->elements = elements_tmp;
1376 			exs->s_secinfo.sc_gss_mech_type = mech_tmp;
1377 			allocd_seccnt++;
1378 
1379 			callback = 1;
1380 		} else
1381 			allocd_seccnt++;
1382 	}
1383 
1384 	/*
1385 	 * Init the secinfo reference count and mark these flavors
1386 	 * explicitly exported flavors.
1387 	 */
1388 	for (i = 0; i < kex->ex_seccnt; i++) {
1389 		kex->ex_secinfo[i].s_flags |= M_4SEC_EXPORTED;
1390 		kex->ex_secinfo[i].s_refcnt = 1;
1391 	}
1392 
1393 	/*
1394 	 *  Set up rpcsec_gss callback routine entry if any.
1395 	 */
1396 	if (callback) {
1397 		cb.callback = rfs_gsscallback;
1398 		cb.program = NFS_ACL_PROGRAM;
1399 		for (cb.version = NFS_ACL_VERSMIN;
1400 		    cb.version <= NFS_ACL_VERSMAX; cb.version++) {
1401 			(void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK,
1402 			    (void *)&cb);
1403 		}
1404 
1405 		cb.program = NFS_PROGRAM;
1406 		for (cb.version = NFS_VERSMIN;
1407 		    cb.version <= NFS_VERSMAX; cb.version++) {
1408 			(void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK,
1409 			    (void *)&cb);
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * Check the index flag. Do this here to avoid holding the
1415 	 * lock while dealing with the index option (as we do with
1416 	 * the public option).
1417 	 */
1418 	if (kex->ex_flags & EX_INDEX) {
1419 		if (!kex->ex_index) {	/* sanity check */
1420 			error = EINVAL;
1421 			goto out5;
1422 		}
1423 		if (error = loadindex(kex))
1424 			goto out5;
1425 	}
1426 
1427 	if (kex->ex_flags & EX_LOG) {
1428 		if (error = nfslog_setup(exi))
1429 			goto out6;
1430 	}
1431 
1432 	/*
1433 	 * Insert the new entry at the front of the export list
1434 	 */
1435 	rw_enter(&exported_lock, RW_WRITER);
1436 	DTRACE_PROBE(nfss__i__exported_lock3_start);
1437 
1438 	export_link(exi);
1439 
1440 	/*
1441 	 * Check the rest of the list for an old entry for the fs.
1442 	 * If one is found then unlink it, wait until this is the
1443 	 * only reference and then free it.
1444 	 */
1445 	for (ex = exi->fid_hash.next; ex != NULL; ex = ex->fid_hash.next) {
1446 		if (ex != exi_root && VN_CMP(ex->exi_vp, vp)) {
1447 			export_unlink(ex);
1448 			break;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * If the public filehandle is pointing at the
1454 	 * old entry, then point it back at the root.
1455 	 */
1456 	if (ex != NULL && ex == exi_public)
1457 		exi_public = exi_root;
1458 
1459 	/*
1460 	 * If the public flag is on, make the global exi_public
1461 	 * point to this entry and turn off the public bit so that
1462 	 * we can distinguish it from the place holder export.
1463 	 */
1464 	if (kex->ex_flags & EX_PUBLIC) {
1465 		exi_public = exi;
1466 		kex->ex_flags &= ~EX_PUBLIC;
1467 	}
1468 
1469 #ifdef VOLATILE_FH_TEST
1470 	/*
1471 	 * Set up the volatile_id value if volatile on share.
1472 	 * The list of volatile renamed filehandles is always destroyed,
1473 	 * if the fs was reshared.
1474 	 */
1475 	if (kex->ex_flags & EX_VOLFH)
1476 		exi->exi_volatile_id = gethrestime_sec();
1477 
1478 	mutex_init(&exi->exi_vol_rename_lock, NULL, MUTEX_DEFAULT, NULL);
1479 #endif /* VOLATILE_FH_TEST */
1480 
1481 	/*
1482 	 * If this is a new export, then climb up
1483 	 * the tree and check if any pseudo exports
1484 	 * need to be created to provide a path for
1485 	 * NFS v4 clients.
1486 	 */
1487 	if (ex == NULL) {
1488 		error = treeclimb_export(exi);
1489 		if (error)
1490 			goto out7;
1491 	} else {
1492 	/* If it's a re-export update namespace tree */
1493 		exi->exi_tree = ex->exi_tree;
1494 		exi->exi_tree->tree_exi = exi;
1495 	}
1496 
1497 	/*
1498 	 * build a unique flavor list from the flavors specified
1499 	 * in the share cmd.  unique means that each flavor only
1500 	 * appears once in the secinfo list -- no duplicates allowed.
1501 	 */
1502 	newcnt = build_seclist_nodups(&exi->exi_export, newsec, FALSE);
1503 
1504 	srv_secinfo_treeclimb(exi, newsec, newcnt, TRUE);
1505 
1506 	/*
1507 	 * If re-sharing an old export entry, update the secinfo data
1508 	 * depending on if the old entry is a pseudo node or not.
1509 	 */
1510 	if (ex != NULL) {
1511 		oldcnt = build_seclist_nodups(&ex->exi_export, oldsec, FALSE);
1512 		if (PSEUDO(ex)) {
1513 			/*
1514 			 * The dir being shared is a pseudo export root (which
1515 			 * will be transformed into a real export root).  The
1516 			 * flavor(s) of the new share were propagated to the
1517 			 * ancestors by srv_secinfo_treeclimb() above.  Now
1518 			 * transfer the implicit flavor refs from the old
1519 			 * pseudo exprot root to the new (real) export root.
1520 			 */
1521 			srv_secinfo_add(&exi->exi_export.ex_secinfo,
1522 			    &exi->exi_export.ex_seccnt, oldsec, oldcnt, TRUE);
1523 		} else {
1524 			/*
1525 			 * First transfer implicit flavor refs to new export.
1526 			 * Remove old flavor refs last.
1527 			 */
1528 			srv_secinfo_exp2exp(&exi->exi_export, oldsec, oldcnt);
1529 			srv_secinfo_treeclimb(ex, oldsec, oldcnt, FALSE);
1530 		}
1531 	}
1532 
1533 	/*
1534 	 * If it's a re-export and the old entry has a pseudonode list,
1535 	 * transfer it to the new export.
1536 	 */
1537 	if (ex != NULL && (ex->exi_visible != NULL)) {
1538 		exi->exi_visible = ex->exi_visible;
1539 		ex->exi_visible = NULL;
1540 	}
1541 
1542 	DTRACE_PROBE(nfss__i__exported_lock3_stop);
1543 	rw_exit(&exported_lock);
1544 
1545 	if (exi_public == exi || kex->ex_flags & EX_LOG) {
1546 		/*
1547 		 * Log share operation to this buffer only.
1548 		 */
1549 		nfslog_share_record(exi, cr);
1550 	}
1551 
1552 	if (ex != NULL)
1553 		exi_rele(ex);
1554 
1555 	return (0);
1556 
1557 out7:
1558 	/* Unlink the new export in exptable. */
1559 	export_unlink(exi);
1560 	DTRACE_PROBE(nfss__i__exported_lock3_stop);
1561 	rw_exit(&exported_lock);
1562 out6:
1563 	if (kex->ex_flags & EX_INDEX)
1564 		kmem_free(kex->ex_index, strlen(kex->ex_index) + 1);
1565 out5:
1566 	/* free partially completed allocation */
1567 	while (--allocd_seccnt >= 0) {
1568 		exs = &kex->ex_secinfo[allocd_seccnt];
1569 		srv_secinfo_entry_free(exs);
1570 	}
1571 
1572 	if (kex->ex_secinfo) {
1573 		kmem_free(kex->ex_secinfo,
1574 		    kex->ex_seccnt * sizeof (struct secinfo));
1575 	}
1576 
1577 out4:
1578 	if ((kex->ex_flags & EX_LOG) && kex->ex_tag != NULL)
1579 		kmem_free(kex->ex_tag, kex->ex_taglen + 1);
1580 out3:
1581 	if ((kex->ex_flags & EX_LOG) && kex->ex_log_buffer != NULL)
1582 		kmem_free(kex->ex_log_buffer, kex->ex_log_bufferlen + 1);
1583 out2:
1584 	kmem_free(kex->ex_path, kex->ex_pathlen + 1);
1585 out1:
1586 	VN_RELE(vp);
1587 	if (dvp != NULL)
1588 		VN_RELE(dvp);
1589 	mutex_destroy(&exi->exi_lock);
1590 	rw_destroy(&exi->exi_cache_lock);
1591 	kmem_free(exi, sizeof (*exi));
1592 	return (error);
1593 }
1594 
1595 /*
1596  * Remove the exportinfo from the export list
1597  */
1598 void
1599 export_unlink(struct exportinfo *exi)
1600 {
1601 	ASSERT(RW_WRITE_HELD(&exported_lock));
1602 
1603 	exp_hash_unlink(exi, fid_hash);
1604 	exp_hash_unlink(exi, path_hash);
1605 }
1606 
1607 /*
1608  * Unexport an exported filesystem
1609  */
1610 static int
1611 unexport(struct exportinfo *exi)
1612 {
1613 	struct secinfo cursec[MAX_FLAVORS];
1614 	int curcnt;
1615 
1616 	rw_enter(&exported_lock, RW_WRITER);
1617 
1618 	/* Check if exi is still linked in the export table */
1619 	if (!EXP_LINKED(exi) || PSEUDO(exi)) {
1620 		rw_exit(&exported_lock);
1621 		return (EINVAL);
1622 	}
1623 
1624 	export_unlink(exi);
1625 
1626 	/*
1627 	 * Remove security flavors before treeclimb_unexport() is called
1628 	 * because srv_secinfo_treeclimb needs the namespace tree
1629 	 */
1630 	curcnt = build_seclist_nodups(&exi->exi_export, cursec, TRUE);
1631 
1632 	srv_secinfo_treeclimb(exi, cursec, curcnt, FALSE);
1633 
1634 	/*
1635 	 * If there's a visible list, then need to leave
1636 	 * a pseudo export here to retain the visible list
1637 	 * for paths to exports below.
1638 	 */
1639 	if (exi->exi_visible) {
1640 		struct exportinfo *newexi;
1641 
1642 		newexi = pseudo_exportfs(exi->exi_vp, &exi->exi_fid,
1643 		    exi->exi_visible, &exi->exi_export);
1644 		exi->exi_visible = NULL;
1645 
1646 		/* interconnect the existing treenode with the new exportinfo */
1647 		newexi->exi_tree = exi->exi_tree;
1648 		newexi->exi_tree->tree_exi = newexi;
1649 	} else {
1650 		treeclimb_unexport(exi);
1651 	}
1652 
1653 	rw_exit(&exported_lock);
1654 
1655 	/*
1656 	 * Need to call into the NFSv4 server and release all data
1657 	 * held on this particular export.  This is important since
1658 	 * the v4 server may be holding file locks or vnodes under
1659 	 * this export.
1660 	 */
1661 	rfs4_clean_state_exi(exi);
1662 
1663 	/*
1664 	 * Notify the lock manager that the filesystem is being
1665 	 * unexported.
1666 	 */
1667 	lm_unexport(exi);
1668 
1669 	/*
1670 	 * If this was a public export, restore
1671 	 * the public filehandle to the root.
1672 	 */
1673 	if (exi == exi_public) {
1674 		exi_public = exi_root;
1675 
1676 		nfslog_share_record(exi_public, CRED());
1677 	}
1678 
1679 	if (exi->exi_export.ex_flags & EX_LOG) {
1680 		nfslog_unshare_record(exi, CRED());
1681 	}
1682 
1683 	exi_rele(exi);
1684 	return (0);
1685 }
1686 
1687 /*
1688  * Get file handle system call.
1689  * Takes file name and returns a file handle for it.
1690  * Credentials must be verified before calling.
1691  */
1692 int
1693 nfs_getfh(struct nfs_getfh_args *args, model_t model, cred_t *cr)
1694 {
1695 	nfs_fh3 fh;
1696 	char buf[NFS3_MAXFHSIZE];
1697 	char *logptr, logbuf[NFS3_MAXFHSIZE];
1698 	int l = NFS3_MAXFHSIZE;
1699 	vnode_t *vp;
1700 	vnode_t *dvp;
1701 	struct exportinfo *exi;
1702 	int error;
1703 	int vers;
1704 	STRUCT_HANDLE(nfs_getfh_args, uap);
1705 
1706 #ifdef lint
1707 	model = model;		/* STRUCT macros don't always use it */
1708 #endif
1709 
1710 	STRUCT_SET_HANDLE(uap, model, args);
1711 
1712 	error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE,
1713 	    FOLLOW, &dvp, &vp);
1714 	if (error == EINVAL) {
1715 		/*
1716 		 * if fname resolves to / we get EINVAL error
1717 		 * since we wanted the parent vnode. Try again
1718 		 * with NULL dvp.
1719 		 */
1720 		error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE,
1721 		    FOLLOW, NULL, &vp);
1722 		dvp = NULL;
1723 	}
1724 	if (!error && vp == NULL) {
1725 		/*
1726 		 * Last component of fname not found
1727 		 */
1728 		if (dvp != NULL) {
1729 			VN_RELE(dvp);
1730 		}
1731 		error = ENOENT;
1732 	}
1733 	if (error)
1734 		return (error);
1735 
1736 	/*
1737 	 * 'vp' may be an AUTOFS node, so we perform a
1738 	 * VOP_ACCESS() to trigger the mount of the
1739 	 * intended filesystem, so we can share the intended
1740 	 * filesystem instead of the AUTOFS filesystem.
1741 	 */
1742 	(void) VOP_ACCESS(vp, 0, 0, cr, NULL);
1743 
1744 	/*
1745 	 * We're interested in the top most filesystem.
1746 	 * This is specially important when uap->dname is a trigger
1747 	 * AUTOFS node, since we're really interested in sharing the
1748 	 * filesystem AUTOFS mounted as result of the VOP_ACCESS()
1749 	 * call not the AUTOFS node itself.
1750 	 */
1751 	if (vn_mountedvfs(vp) != NULL) {
1752 		if (error = traverse(&vp)) {
1753 			VN_RELE(vp);
1754 			if (dvp != NULL)
1755 				VN_RELE(dvp);
1756 			return (error);
1757 		}
1758 	}
1759 
1760 	vers = STRUCT_FGET(uap, vers);
1761 	exi = nfs_vptoexi(dvp, vp, cr, NULL, &error, FALSE);
1762 	if (!error) {
1763 		if (vers == NFS_VERSION) {
1764 			error = makefh((fhandle_t *)buf, vp, exi);
1765 			l = NFS_FHSIZE;
1766 			logptr = buf;
1767 		} else if (vers == NFS_V3) {
1768 			int i, sz, pad;
1769 
1770 			error = makefh3(&fh, vp, exi);
1771 			l = RNDUP(fh.fh3_length);
1772 			if (!error && (l > sizeof (fhandle3_t)))
1773 				error = EREMOTE;
1774 			logptr = logbuf;
1775 			if (!error) {
1776 				i = 0;
1777 				sz = sizeof (fsid_t);
1778 				bcopy(&fh.fh3_fsid, &buf[i], sz);
1779 				i += sz;
1780 
1781 				/*
1782 				 * For backwards compatibility, the
1783 				 * fid length may be less than
1784 				 * NFS_FHMAXDATA, but it was always
1785 				 * encoded as NFS_FHMAXDATA bytes.
1786 				 */
1787 
1788 				sz = sizeof (ushort_t);
1789 				bcopy(&fh.fh3_len, &buf[i], sz);
1790 				i += sz;
1791 				bcopy(fh.fh3_data, &buf[i], fh.fh3_len);
1792 				i += fh.fh3_len;
1793 				pad = (NFS_FHMAXDATA - fh.fh3_len);
1794 				if (pad > 0) {
1795 					bzero(&buf[i], pad);
1796 					i += pad;
1797 					l += pad;
1798 				}
1799 
1800 				sz = sizeof (ushort_t);
1801 				bcopy(&fh.fh3_xlen, &buf[i], sz);
1802 				i += sz;
1803 				bcopy(fh.fh3_xdata, &buf[i], fh.fh3_xlen);
1804 				i += fh.fh3_xlen;
1805 				pad = (NFS_FHMAXDATA - fh.fh3_xlen);
1806 				if (pad > 0) {
1807 					bzero(&buf[i], pad);
1808 					i += pad;
1809 					l += pad;
1810 				}
1811 			}
1812 			/*
1813 			 * If we need to do NFS logging, the filehandle
1814 			 * must be downsized to 32 bytes.
1815 			 */
1816 			if (!error && exi->exi_export.ex_flags & EX_LOG) {
1817 				i = 0;
1818 				sz = sizeof (fsid_t);
1819 				bcopy(&fh.fh3_fsid, &logbuf[i], sz);
1820 				i += sz;
1821 				sz = sizeof (ushort_t);
1822 				bcopy(&fh.fh3_len, &logbuf[i], sz);
1823 				i += sz;
1824 				sz = NFS_FHMAXDATA;
1825 				bcopy(fh.fh3_data, &logbuf[i], sz);
1826 				i += sz;
1827 				sz = sizeof (ushort_t);
1828 				bcopy(&fh.fh3_xlen, &logbuf[i], sz);
1829 				i += sz;
1830 				sz = NFS_FHMAXDATA;
1831 				bcopy(fh.fh3_xdata, &logbuf[i], sz);
1832 				i += sz;
1833 			}
1834 		}
1835 		if (!error && exi->exi_export.ex_flags & EX_LOG) {
1836 			nfslog_getfh(exi, (fhandle_t *)logptr,
1837 			    STRUCT_FGETP(uap, fname), UIO_USERSPACE, cr);
1838 		}
1839 		exi_rele(exi);
1840 		if (!error) {
1841 			if (copyout(&l, STRUCT_FGETP(uap, lenp), sizeof (int)))
1842 				error = EFAULT;
1843 			if (copyout(buf, STRUCT_FGETP(uap, fhp), l))
1844 				error = EFAULT;
1845 		}
1846 	}
1847 	VN_RELE(vp);
1848 	if (dvp != NULL) {
1849 		VN_RELE(dvp);
1850 	}
1851 	return (error);
1852 }
1853 
1854 /*
1855  * Strategy: if vp is in the export list, then
1856  * return the associated file handle. Otherwise, ".."
1857  * once up the vp and try again, until the root of the
1858  * filesystem is reached.
1859  */
1860 struct   exportinfo *
1861 nfs_vptoexi(vnode_t *dvp, vnode_t *vp, cred_t *cr, int *walk,
1862 	int *err,  bool_t v4srv)
1863 {
1864 	fid_t fid;
1865 	int error;
1866 	struct exportinfo *exi;
1867 
1868 	ASSERT(vp);
1869 	VN_HOLD(vp);
1870 	if (dvp != NULL) {
1871 		VN_HOLD(dvp);
1872 	}
1873 	if (walk != NULL)
1874 		*walk = 0;
1875 
1876 	for (;;) {
1877 		bzero(&fid, sizeof (fid));
1878 		fid.fid_len = MAXFIDSZ;
1879 		error = vop_fid_pseudo(vp, &fid);
1880 		if (error) {
1881 			/*
1882 			 * If vop_fid_pseudo returns ENOSPC then the fid
1883 			 * supplied is too small. For now we simply
1884 			 * return EREMOTE.
1885 			 */
1886 			if (error == ENOSPC)
1887 				error = EREMOTE;
1888 			break;
1889 		}
1890 
1891 		if (v4srv)
1892 			exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp);
1893 		else
1894 			exi = checkexport(&vp->v_vfsp->vfs_fsid, &fid);
1895 
1896 		if (exi != NULL) {
1897 			/*
1898 			 * Found the export info
1899 			 */
1900 			break;
1901 		}
1902 
1903 		/*
1904 		 * We have just failed finding a matching export.
1905 		 * If we're at the root of this filesystem, then
1906 		 * it's time to stop (with failure).
1907 		 */
1908 		if (vp->v_flag & VROOT) {
1909 			error = EINVAL;
1910 			break;
1911 		}
1912 
1913 		if (walk != NULL)
1914 			(*walk)++;
1915 
1916 		/*
1917 		 * Now, do a ".." up vp. If dvp is supplied, use it,
1918 		 * otherwise, look it up.
1919 		 */
1920 		if (dvp == NULL) {
1921 			error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, cr,
1922 			    NULL, NULL, NULL);
1923 			if (error)
1924 				break;
1925 		}
1926 		VN_RELE(vp);
1927 		vp = dvp;
1928 		dvp = NULL;
1929 	}
1930 	VN_RELE(vp);
1931 	if (dvp != NULL) {
1932 		VN_RELE(dvp);
1933 	}
1934 	if (error != 0) {
1935 		if (err != NULL)
1936 			*err = error;
1937 		return (NULL);
1938 	}
1939 	return (exi);
1940 }
1941 
1942 int
1943 chk_clnt_sec(exportinfo_t *exi, struct svc_req *req)
1944 {
1945 	int i, nfsflavor;
1946 	struct secinfo *sp;
1947 
1948 	/*
1949 	 *  Get the nfs flavor number from xprt.
1950 	 */
1951 	nfsflavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1952 
1953 	sp = exi->exi_export.ex_secinfo;
1954 	for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1955 		if ((nfsflavor == sp[i].s_secinfo.sc_nfsnum) &&
1956 		    SEC_REF_EXPORTED(sp + i))
1957 			return (TRUE);
1958 	}
1959 	return (FALSE);
1960 }
1961 
1962 /*
1963  * Make an fhandle from a vnode
1964  */
1965 int
1966 makefh(fhandle_t *fh, vnode_t *vp, exportinfo_t *exi)
1967 {
1968 	int error;
1969 
1970 	*fh = exi->exi_fh;	/* struct copy */
1971 
1972 	error = VOP_FID(vp, (fid_t *)&fh->fh_len, NULL);
1973 	if (error) {
1974 		/*
1975 		 * Should be something other than EREMOTE
1976 		 */
1977 		return (EREMOTE);
1978 	}
1979 	return (0);
1980 }
1981 
1982 /*
1983  * This routine makes an overloaded V2 fhandle which contains
1984  * sec modes.
1985  *
1986  * Note that the first four octets contain the length octet,
1987  * the status octet, and two padded octets to make them XDR
1988  * four-octet aligned.
1989  *
1990  *   1   2   3   4                                          32
1991  * +---+---+---+---+---+---+---+---+   +---+---+---+---+   +---+
1992  * | l | s |   |   |     sec_1     |...|     sec_n     |...|   |
1993  * +---+---+---+---+---+---+---+---+   +---+---+---+---+   +---+
1994  *
1995  * where
1996  *
1997  *   the status octet s indicates whether there are more security
1998  *   flavors (1 means yes, 0 means no) that require the client to
1999  *   perform another 0x81 LOOKUP to get them,
2000  *
2001  *   the length octet l is the length describing the number of
2002  *   valid octets that follow.  (l = 4 * n, where n is the number
2003  *   of security flavors sent in the current overloaded filehandle.)
2004  *
2005  *   sec_index should always be in the inclusive range: [1 - ex_seccnt],
2006  *   and it tells server where to start within the secinfo array.
2007  *   Usually it will always be 1; however, if more flavors are used
2008  *   for the public export than can be encoded in the overloaded FH
2009  *   (7 for NFS2), subsequent SNEGO MCLs will have a larger index
2010  *   so the server will pick up where it left off from the previous
2011  *   MCL reply.
2012  *
2013  *   With NFS4 support, implicitly allowed flavors are also in
2014  *   the secinfo array; however, they should not be returned in
2015  *   SNEGO MCL replies.
2016  */
2017 int
2018 makefh_ol(fhandle_t *fh, exportinfo_t *exi, uint_t sec_index)
2019 {
2020 	secinfo_t sec[MAX_FLAVORS];
2021 	int totalcnt, i, *ipt, cnt, seccnt, secidx, fh_max_cnt;
2022 	char *c;
2023 
2024 	if (fh == NULL || exi == NULL || sec_index < 1)
2025 		return (EREMOTE);
2026 
2027 	/*
2028 	 * WebNFS clients need to know the unique set of explicitly
2029 	 * shared flavors in used for the public export. When
2030 	 * "TRUE" is passed to build_seclist_nodups(), only explicitly
2031 	 * shared flavors are included in the list.
2032 	 */
2033 	seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE);
2034 	if (sec_index > seccnt)
2035 		return (EREMOTE);
2036 
2037 	fh_max_cnt = (NFS_FHSIZE / sizeof (int)) - 1;
2038 	totalcnt = seccnt - sec_index + 1;
2039 	cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt;
2040 
2041 	c = (char *)fh;
2042 	/*
2043 	 * Encode the length octet representing the number of
2044 	 * security flavors (in bytes) in this overloaded fh.
2045 	 */
2046 	*c = cnt * sizeof (int);
2047 
2048 	/*
2049 	 * Encode the status octet that indicates whether there
2050 	 * are more security flavors the client needs to get.
2051 	 */
2052 	*(c + 1) = totalcnt > fh_max_cnt;
2053 
2054 	/*
2055 	 * put security flavors in the overloaded fh
2056 	 */
2057 	ipt = (int *)(c + sizeof (int32_t));
2058 	secidx = sec_index - 1;
2059 	for (i = 0; i < cnt; i++) {
2060 		ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum);
2061 	}
2062 	return (0);
2063 }
2064 
2065 /*
2066  * Make an nfs_fh3 from a vnode
2067  */
2068 int
2069 makefh3(nfs_fh3 *fh, vnode_t *vp, struct exportinfo *exi)
2070 {
2071 	int error;
2072 	fid_t fid;
2073 
2074 	bzero(&fid, sizeof (fid));
2075 	fid.fid_len = sizeof (fh->fh3_data);
2076 	error = VOP_FID(vp, &fid, NULL);
2077 	if (error)
2078 		return (EREMOTE);
2079 
2080 	bzero(fh, sizeof (nfs_fh3));
2081 	fh->fh3_fsid = exi->exi_fsid;
2082 	fh->fh3_len = fid.fid_len;
2083 	bcopy(fid.fid_data, fh->fh3_data, fh->fh3_len);
2084 
2085 	fh->fh3_xlen = exi->exi_fid.fid_len;
2086 	ASSERT(fh->fh3_xlen <= sizeof (fh->fh3_xdata));
2087 	bcopy(exi->exi_fid.fid_data, fh->fh3_xdata, fh->fh3_xlen);
2088 
2089 	fh->fh3_length = sizeof (fh->fh3_fsid)
2090 	    + sizeof (fh->fh3_len) + fh->fh3_len
2091 	    + sizeof (fh->fh3_xlen) + fh->fh3_xlen;
2092 	fh->fh3_flags = 0;
2093 
2094 	return (0);
2095 }
2096 
2097 /*
2098  * This routine makes an overloaded V3 fhandle which contains
2099  * sec modes.
2100  *
2101  *  1        4
2102  * +--+--+--+--+
2103  * |    len    |
2104  * +--+--+--+--+
2105  *                                               up to 64
2106  * +--+--+--+--+--+--+--+--+--+--+--+--+     +--+--+--+--+
2107  * |s |  |  |  |   sec_1   |   sec_2   | ... |   sec_n   |
2108  * +--+--+--+--+--+--+--+--+--+--+--+--+     +--+--+--+--+
2109  *
2110  * len = 4 * (n+1), where n is the number of security flavors
2111  * sent in the current overloaded filehandle.
2112  *
2113  * the status octet s indicates whether there are more security
2114  * mechanisms (1 means yes, 0 means no) that require the client
2115  * to perform another 0x81 LOOKUP to get them.
2116  *
2117  * Three octets are padded after the status octet.
2118  */
2119 int
2120 makefh3_ol(nfs_fh3 *fh, struct exportinfo *exi, uint_t sec_index)
2121 {
2122 	secinfo_t sec[MAX_FLAVORS];
2123 	int totalcnt, cnt, *ipt, i, seccnt, fh_max_cnt, secidx;
2124 	char *c;
2125 
2126 	if (fh == NULL || exi == NULL || sec_index < 1)
2127 		return (EREMOTE);
2128 
2129 	/*
2130 	 * WebNFS clients need to know the unique set of explicitly
2131 	 * shared flavors in used for the public export. When
2132 	 * "TRUE" is passed to build_seclist_nodups(), only explicitly
2133 	 * shared flavors are included in the list.
2134 	 */
2135 	seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE);
2136 
2137 	if (sec_index > seccnt)
2138 		return (EREMOTE);
2139 
2140 	fh_max_cnt = (NFS3_FHSIZE / sizeof (int)) - 1;
2141 	totalcnt = seccnt - sec_index + 1;
2142 	cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt;
2143 
2144 	/*
2145 	 * Place the length in fh3_length representing the number
2146 	 * of security flavors (in bytes) in this overloaded fh.
2147 	 */
2148 	fh->fh3_flags = FH_WEBNFS;
2149 	fh->fh3_length = (cnt+1) * sizeof (int32_t);
2150 
2151 	c = (char *)&fh->fh3_u.nfs_fh3_i.fh3_i;
2152 	/*
2153 	 * Encode the status octet that indicates whether there
2154 	 * are more security flavors the client needs to get.
2155 	 */
2156 	*c = totalcnt > fh_max_cnt;
2157 
2158 	/*
2159 	 * put security flavors in the overloaded fh
2160 	 */
2161 	secidx = sec_index - 1;
2162 	ipt = (int *)(c + sizeof (int32_t));
2163 	for (i = 0; i < cnt; i++) {
2164 		ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum);
2165 	}
2166 	return (0);
2167 }
2168 
2169 /*
2170  * Make an nfs_fh4 from a vnode
2171  */
2172 int
2173 makefh4(nfs_fh4 *fh, vnode_t *vp, struct exportinfo *exi)
2174 {
2175 	int error;
2176 	nfs_fh4_fmt_t *fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val;
2177 	fid_t fid;
2178 
2179 	bzero(&fid, sizeof (fid));
2180 	fid.fid_len = MAXFIDSZ;
2181 	/*
2182 	 * vop_fid_pseudo() is used to set up NFSv4 namespace, so
2183 	 * use vop_fid_pseudo() here to get the fid instead of VOP_FID.
2184 	 */
2185 	error = vop_fid_pseudo(vp, &fid);
2186 	if (error)
2187 		return (error);
2188 
2189 	fh->nfs_fh4_len = NFS_FH4_LEN;
2190 
2191 	fh_fmtp->fh4_i.fhx_fsid = exi->exi_fh.fh_fsid;
2192 	fh_fmtp->fh4_i.fhx_xlen = exi->exi_fh.fh_xlen;
2193 
2194 	bzero(fh_fmtp->fh4_i.fhx_data, sizeof (fh_fmtp->fh4_i.fhx_data));
2195 	bzero(fh_fmtp->fh4_i.fhx_xdata, sizeof (fh_fmtp->fh4_i.fhx_xdata));
2196 	ASSERT(exi->exi_fh.fh_xlen <= sizeof (fh_fmtp->fh4_i.fhx_xdata));
2197 	bcopy(exi->exi_fh.fh_xdata, fh_fmtp->fh4_i.fhx_xdata,
2198 	    exi->exi_fh.fh_xlen);
2199 
2200 	fh_fmtp->fh4_len = fid.fid_len;
2201 	ASSERT(fid.fid_len <= sizeof (fh_fmtp->fh4_data));
2202 	bcopy(fid.fid_data, fh_fmtp->fh4_data, fid.fid_len);
2203 	fh_fmtp->fh4_flag = 0;
2204 
2205 #ifdef VOLATILE_FH_TEST
2206 	/*
2207 	 * XXX (temporary?)
2208 	 * Use the rnode volatile_id value to add volatility to the fh.
2209 	 *
2210 	 * For testing purposes there are currently two scenarios, based
2211 	 * on whether the filesystem was shared with "volatile_fh"
2212 	 * or "expire_on_rename". In the first case, use the value of
2213 	 * export struct share_time as the volatile_id. In the second
2214 	 * case use the vnode volatile_id value (which is set to the
2215 	 * time in which the file was renamed).
2216 	 *
2217 	 * Note that the above are temporary constructs for testing only
2218 	 * XXX
2219 	 */
2220 	if (exi->exi_export.ex_flags & EX_VOLRNM) {
2221 		fh_fmtp->fh4_volatile_id = find_volrnm_fh_id(exi, fh);
2222 	} else if (exi->exi_export.ex_flags & EX_VOLFH) {
2223 		fh_fmtp->fh4_volatile_id = exi->exi_volatile_id;
2224 	} else {
2225 		fh_fmtp->fh4_volatile_id = 0;
2226 	}
2227 #endif /* VOLATILE_FH_TEST */
2228 
2229 	return (0);
2230 }
2231 
2232 /*
2233  * Convert an fhandle into a vnode.
2234  * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode.
2235  * WARNING: users of this routine must do a VN_RELE on the vnode when they
2236  * are done with it.
2237  */
2238 vnode_t *
2239 nfs_fhtovp(fhandle_t *fh, struct exportinfo *exi)
2240 {
2241 	vfs_t *vfsp;
2242 	vnode_t *vp;
2243 	int error;
2244 	fid_t *fidp;
2245 
2246 	TRACE_0(TR_FAC_NFS, TR_FHTOVP_START,
2247 	    "fhtovp_start");
2248 
2249 	if (exi == NULL) {
2250 		TRACE_1(TR_FAC_NFS, TR_FHTOVP_END,
2251 		    "fhtovp_end:(%S)", "exi NULL");
2252 		return (NULL);	/* not exported */
2253 	}
2254 
2255 	ASSERT(exi->exi_vp != NULL);
2256 
2257 	if (PUBLIC_FH2(fh)) {
2258 		if (exi->exi_export.ex_flags & EX_PUBLIC) {
2259 			TRACE_1(TR_FAC_NFS, TR_FHTOVP_END,
2260 			    "fhtovp_end:(%S)", "root not exported");
2261 			return (NULL);
2262 		}
2263 		vp = exi->exi_vp;
2264 		VN_HOLD(vp);
2265 		return (vp);
2266 	}
2267 
2268 	vfsp = exi->exi_vp->v_vfsp;
2269 	ASSERT(vfsp != NULL);
2270 	fidp = (fid_t *)&fh->fh_len;
2271 
2272 	error = VFS_VGET(vfsp, &vp, fidp);
2273 	if (error || vp == NULL) {
2274 		TRACE_1(TR_FAC_NFS, TR_FHTOVP_END,
2275 		    "fhtovp_end:(%S)", "VFS_GET failed or vp NULL");
2276 		return (NULL);
2277 	}
2278 	TRACE_1(TR_FAC_NFS, TR_FHTOVP_END,
2279 	    "fhtovp_end:(%S)", "end");
2280 	return (vp);
2281 }
2282 
2283 /*
2284  * Convert an nfs_fh3 into a vnode.
2285  * Uses the file id (fh_len + fh_data) in the file handle to get the vnode.
2286  * WARNING: users of this routine must do a VN_RELE on the vnode when they
2287  * are done with it.
2288  */
2289 vnode_t *
2290 nfs3_fhtovp(nfs_fh3 *fh, struct exportinfo *exi)
2291 {
2292 	vfs_t *vfsp;
2293 	vnode_t *vp;
2294 	int error;
2295 	fid_t *fidp;
2296 
2297 	if (exi == NULL)
2298 		return (NULL);	/* not exported */
2299 
2300 	ASSERT(exi->exi_vp != NULL);
2301 
2302 	if (PUBLIC_FH3(fh)) {
2303 		if (exi->exi_export.ex_flags & EX_PUBLIC)
2304 			return (NULL);
2305 		vp = exi->exi_vp;
2306 		VN_HOLD(vp);
2307 		return (vp);
2308 	}
2309 
2310 	if (fh->fh3_length < NFS3_OLDFHSIZE ||
2311 	    fh->fh3_length > NFS3_MAXFHSIZE)
2312 		return (NULL);
2313 
2314 	vfsp = exi->exi_vp->v_vfsp;
2315 	ASSERT(vfsp != NULL);
2316 	fidp = FH3TOFIDP(fh);
2317 
2318 	error = VFS_VGET(vfsp, &vp, fidp);
2319 	if (error || vp == NULL)
2320 		return (NULL);
2321 
2322 	return (vp);
2323 }
2324 
2325 /*
2326  * Convert an nfs_fh4 into a vnode.
2327  * Uses the file id (fh_len + fh_data) in the file handle to get the vnode.
2328  * WARNING: users of this routine must do a VN_RELE on the vnode when they
2329  * are done with it.
2330  */
2331 vnode_t *
2332 nfs4_fhtovp(nfs_fh4 *fh, struct exportinfo *exi, nfsstat4 *statp)
2333 {
2334 	vfs_t *vfsp;
2335 	vnode_t *vp = NULL;
2336 	int error;
2337 	fid_t *fidp;
2338 	nfs_fh4_fmt_t *fh_fmtp;
2339 #ifdef VOLATILE_FH_TEST
2340 	uint32_t volatile_id = 0;
2341 #endif /* VOLATILE_FH_TEST */
2342 
2343 	if (exi == NULL) {
2344 		*statp = NFS4ERR_STALE;
2345 		return (NULL);	/* not exported */
2346 	}
2347 	ASSERT(exi->exi_vp != NULL);
2348 
2349 	/* caller should have checked this */
2350 	ASSERT(fh->nfs_fh4_len >= NFS_FH4_LEN);
2351 
2352 	fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val;
2353 	vfsp = exi->exi_vp->v_vfsp;
2354 	ASSERT(vfsp != NULL);
2355 	fidp = (fid_t *)&fh_fmtp->fh4_len;
2356 
2357 #ifdef VOLATILE_FH_TEST
2358 	/* XXX check if volatile - should be changed later */
2359 	if (exi->exi_export.ex_flags & (EX_VOLRNM | EX_VOLFH)) {
2360 		/*
2361 		 * Filesystem is shared with volatile filehandles
2362 		 */
2363 		if (exi->exi_export.ex_flags & EX_VOLRNM)
2364 			volatile_id = find_volrnm_fh_id(exi, fh);
2365 		else
2366 			volatile_id = exi->exi_volatile_id;
2367 
2368 		if (fh_fmtp->fh4_volatile_id != volatile_id) {
2369 			*statp = NFS4ERR_FHEXPIRED;
2370 			return (NULL);
2371 		}
2372 	}
2373 	/*
2374 	 * XXX even if test_volatile_fh false, the fh may contain a
2375 	 * volatile id if obtained when the test was set.
2376 	 */
2377 	fh_fmtp->fh4_volatile_id = (uchar_t)0;
2378 #endif /* VOLATILE_FH_TEST */
2379 
2380 	error = VFS_VGET(vfsp, &vp, fidp);
2381 	/*
2382 	 * If we can not get vp from VFS_VGET, perhaps this is
2383 	 * an nfs v2/v3/v4 node in an nfsv4 pseudo filesystem.
2384 	 * Check it out.
2385 	 */
2386 	if (error && PSEUDO(exi))
2387 		error = nfs4_vget_pseudo(exi, &vp, fidp);
2388 
2389 	if (error || vp == NULL) {
2390 		*statp = NFS4ERR_STALE;
2391 		return (NULL);
2392 	}
2393 	/* XXX - disgusting hack */
2394 	if (vp->v_type == VNON && vp->v_flag & V_XATTRDIR)
2395 		vp->v_type = VDIR;
2396 	*statp = NFS4_OK;
2397 	return (vp);
2398 }
2399 
2400 /*
2401  * Find the export structure associated with the given filesystem.
2402  * If found, then increment the ref count (exi_count).
2403  */
2404 struct exportinfo *
2405 checkexport(fsid_t *fsid, fid_t *fid)
2406 {
2407 	struct exportinfo *exi;
2408 
2409 	rw_enter(&exported_lock, RW_READER);
2410 	for (exi = exptable[exptablehash(fsid, fid)];
2411 	    exi != NULL;
2412 	    exi = exi->fid_hash.next) {
2413 		if (exportmatch(exi, fsid, fid)) {
2414 			/*
2415 			 * If this is the place holder for the
2416 			 * public file handle, then return the
2417 			 * real export entry for the public file
2418 			 * handle.
2419 			 */
2420 			if (exi->exi_export.ex_flags & EX_PUBLIC) {
2421 				exi = exi_public;
2422 			}
2423 
2424 			exi_hold(exi);
2425 			rw_exit(&exported_lock);
2426 			return (exi);
2427 		}
2428 	}
2429 	rw_exit(&exported_lock);
2430 	return (NULL);
2431 }
2432 
2433 
2434 /*
2435  * "old school" version of checkexport() for NFS4.  NFS4
2436  * rfs4_compound holds exported_lock for duration of compound
2437  * processing.  This version doesn't manipulate exi_count
2438  * since NFS4 breaks fundamental assumptions in the exi_count
2439  * design.
2440  */
2441 struct exportinfo *
2442 checkexport4(fsid_t *fsid, fid_t *fid, vnode_t *vp)
2443 {
2444 	struct exportinfo *exi;
2445 
2446 	ASSERT(RW_LOCK_HELD(&exported_lock));
2447 
2448 	for (exi = exptable[exptablehash(fsid, fid)];
2449 	    exi != NULL;
2450 	    exi = exi->fid_hash.next) {
2451 		if (exportmatch(exi, fsid, fid)) {
2452 			/*
2453 			 * If this is the place holder for the
2454 			 * public file handle, then return the
2455 			 * real export entry for the public file
2456 			 * handle.
2457 			 */
2458 			if (exi->exi_export.ex_flags & EX_PUBLIC) {
2459 				exi = exi_public;
2460 			}
2461 
2462 			/*
2463 			 * If vp is given, check if vp is the
2464 			 * same vnode as the exported node.
2465 			 *
2466 			 * Since VOP_FID of a lofs node returns the
2467 			 * fid of its real node (ufs), the exported
2468 			 * node for lofs and (pseudo) ufs may have
2469 			 * the same fsid and fid.
2470 			 */
2471 			if (vp == NULL || vp == exi->exi_vp)
2472 				return (exi);
2473 		}
2474 	}
2475 
2476 	return (NULL);
2477 }
2478 
2479 /*
2480  * Free an entire export list node
2481  */
2482 void
2483 exportfree(struct exportinfo *exi)
2484 {
2485 	struct exportdata *ex;
2486 	struct charset_cache *cache;
2487 
2488 	ex = &exi->exi_export;
2489 
2490 	ASSERT(exi->exi_vp != NULL && !(exi->exi_export.ex_flags & EX_PUBLIC));
2491 	VN_RELE(exi->exi_vp);
2492 	if (exi->exi_dvp != NULL)
2493 		VN_RELE(exi->exi_dvp);
2494 
2495 	if (ex->ex_flags & EX_INDEX)
2496 		kmem_free(ex->ex_index, strlen(ex->ex_index) + 1);
2497 
2498 	kmem_free(ex->ex_path, ex->ex_pathlen + 1);
2499 	nfsauth_cache_free(exi);
2500 
2501 	/*
2502 	 * if there is a character set mapping cached, clean it up.
2503 	 */
2504 	for (cache = exi->exi_charset; cache != NULL;
2505 	    cache = exi->exi_charset) {
2506 		if (cache->inbound != (kiconv_t)-1)
2507 			(void) kiconv_close(cache->inbound);
2508 		if (cache->outbound != (kiconv_t)-1)
2509 			(void) kiconv_close(cache->outbound);
2510 		exi->exi_charset = cache->next;
2511 		kmem_free(cache, sizeof (struct charset_cache));
2512 	}
2513 
2514 	if (exi->exi_logbuffer != NULL)
2515 		nfslog_disable(exi);
2516 
2517 	if (ex->ex_flags & EX_LOG) {
2518 		kmem_free(ex->ex_log_buffer, ex->ex_log_bufferlen + 1);
2519 		kmem_free(ex->ex_tag, ex->ex_taglen + 1);
2520 	}
2521 
2522 	if (exi->exi_visible)
2523 		free_visible(exi->exi_visible);
2524 
2525 	srv_secinfo_list_free(ex->ex_secinfo, ex->ex_seccnt);
2526 
2527 #ifdef VOLATILE_FH_TEST
2528 	free_volrnm_list(exi);
2529 	mutex_destroy(&exi->exi_vol_rename_lock);
2530 #endif /* VOLATILE_FH_TEST */
2531 
2532 	mutex_destroy(&exi->exi_lock);
2533 	rw_destroy(&exi->exi_cache_lock);
2534 
2535 	kmem_free(exi, sizeof (*exi));
2536 }
2537 
2538 /*
2539  * load the index file from user space into kernel space.
2540  */
2541 static int
2542 loadindex(struct exportdata *kex)
2543 {
2544 	int error;
2545 	char index[MAXNAMELEN+1];
2546 	size_t len;
2547 
2548 	/*
2549 	 * copyinstr copies the complete string including the NULL and
2550 	 * returns the len with the NULL byte included in the calculation
2551 	 * as long as the max length is not exceeded.
2552 	 */
2553 	if (error = copyinstr(kex->ex_index, index, sizeof (index), &len))
2554 		return (error);
2555 
2556 	kex->ex_index = kmem_alloc(len, KM_SLEEP);
2557 	bcopy(index, kex->ex_index, len);
2558 
2559 	return (0);
2560 }
2561 
2562 void
2563 exi_hold(struct exportinfo *exi)
2564 {
2565 	mutex_enter(&exi->exi_lock);
2566 	exi->exi_count++;
2567 	mutex_exit(&exi->exi_lock);
2568 }
2569 
2570 /*
2571  * When a thread completes using exi, it should call exi_rele().
2572  * exi_rele() decrements exi_count. It releases exi if exi_count == 0, i.e.
2573  * if this is the last user of exi and exi is not on exportinfo list anymore
2574  */
2575 void
2576 exi_rele(struct exportinfo *exi)
2577 {
2578 	mutex_enter(&exi->exi_lock);
2579 	exi->exi_count--;
2580 	if (exi->exi_count == 0) {
2581 		mutex_exit(&exi->exi_lock);
2582 		exportfree(exi);
2583 	} else
2584 		mutex_exit(&exi->exi_lock);
2585 }
2586 
2587 #ifdef VOLATILE_FH_TEST
2588 /*
2589  * Test for volatile fh's - add file handle to list and set its volatile id
2590  * to time it was renamed. If EX_VOLFH is also on and the fs is reshared,
2591  * the vol_rename queue is purged.
2592  *
2593  * XXX This code is for unit testing purposes only... To correctly use it, it
2594  * needs to tie a rename list to the export struct and (more
2595  * important), protect access to the exi rename list using a write lock.
2596  */
2597 
2598 /*
2599  * get the fh vol record if it's in the volatile on rename list. Don't check
2600  * volatile_id in the file handle - compare only the file handles.
2601  */
2602 static struct ex_vol_rename *
2603 find_volrnm_fh(struct exportinfo *exi, nfs_fh4 *fh4p)
2604 {
2605 	struct ex_vol_rename *p = NULL;
2606 	fhandle4_t *fhp;
2607 
2608 	/* XXX shouldn't we assert &exported_lock held? */
2609 	ASSERT(MUTEX_HELD(&exi->exi_vol_rename_lock));
2610 
2611 	if (fh4p->nfs_fh4_len != NFS_FH4_LEN) {
2612 		return (NULL);
2613 	}
2614 	fhp = &((nfs_fh4_fmt_t *)fh4p->nfs_fh4_val)->fh4_i;
2615 	for (p = exi->exi_vol_rename; p != NULL; p = p->vrn_next) {
2616 		if (bcmp(fhp, &p->vrn_fh_fmt.fh4_i,
2617 		    sizeof (fhandle4_t)) == 0)
2618 			break;
2619 	}
2620 	return (p);
2621 }
2622 
2623 /*
2624  * get the volatile id for the fh (if there is - else return 0). Ignore the
2625  * volatile_id in the file handle - compare only the file handles.
2626  */
2627 static uint32_t
2628 find_volrnm_fh_id(struct exportinfo *exi, nfs_fh4 *fh4p)
2629 {
2630 	struct ex_vol_rename *p;
2631 	uint32_t volatile_id;
2632 
2633 	mutex_enter(&exi->exi_vol_rename_lock);
2634 	p = find_volrnm_fh(exi, fh4p);
2635 	volatile_id = (p ? p->vrn_fh_fmt.fh4_volatile_id :
2636 	    exi->exi_volatile_id);
2637 	mutex_exit(&exi->exi_vol_rename_lock);
2638 	return (volatile_id);
2639 }
2640 
2641 /*
2642  * Free the volatile on rename list - will be called if a filesystem is
2643  * unshared or reshared without EX_VOLRNM
2644  */
2645 static void
2646 free_volrnm_list(struct exportinfo *exi)
2647 {
2648 	struct ex_vol_rename *p, *pnext;
2649 
2650 	/* no need to hold mutex lock - this one is called from exportfree */
2651 	for (p = exi->exi_vol_rename; p != NULL; p = pnext) {
2652 		pnext = p->vrn_next;
2653 		kmem_free(p, sizeof (*p));
2654 	}
2655 	exi->exi_vol_rename = NULL;
2656 }
2657 
2658 /*
2659  * Add a file handle to the volatile on rename list.
2660  */
2661 void
2662 add_volrnm_fh(struct exportinfo *exi, vnode_t *vp)
2663 {
2664 	struct ex_vol_rename *p;
2665 	char fhbuf[NFS4_FHSIZE];
2666 	nfs_fh4 fh4;
2667 	int error;
2668 
2669 	fh4.nfs_fh4_val = fhbuf;
2670 	error = makefh4(&fh4, vp, exi);
2671 	if ((error) || (fh4.nfs_fh4_len != sizeof (p->vrn_fh_fmt))) {
2672 		return;
2673 	}
2674 
2675 	mutex_enter(&exi->exi_vol_rename_lock);
2676 
2677 	p = find_volrnm_fh(exi, &fh4);
2678 
2679 	if (p == NULL) {
2680 		p = kmem_alloc(sizeof (*p), KM_SLEEP);
2681 		bcopy(fh4.nfs_fh4_val, &p->vrn_fh_fmt, sizeof (p->vrn_fh_fmt));
2682 		p->vrn_next = exi->exi_vol_rename;
2683 		exi->exi_vol_rename = p;
2684 	}
2685 
2686 	p->vrn_fh_fmt.fh4_volatile_id = gethrestime_sec();
2687 	mutex_exit(&exi->exi_vol_rename_lock);
2688 }
2689 
2690 #endif /* VOLATILE_FH_TEST */
2691