1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 STRATO AG. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 /* 36 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 37 * All Rights Reserved 38 */ 39 40 /* 41 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 42 */ 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 #include <sys/systm.h> 47 #include <sys/cred.h> 48 #include <sys/time.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/file.h> 53 #include <sys/filio.h> 54 #include <sys/uio.h> 55 #include <sys/buf.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/dirent.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/fcntl.h> 62 #include <sys/flock.h> 63 #include <sys/swap.h> 64 #include <sys/errno.h> 65 #include <sys/strsubr.h> 66 #include <sys/sysmacros.h> 67 #include <sys/kmem.h> 68 #include <sys/cmn_err.h> 69 #include <sys/pathconf.h> 70 #include <sys/utsname.h> 71 #include <sys/dnlc.h> 72 #include <sys/acl.h> 73 #include <sys/systeminfo.h> 74 #include <sys/policy.h> 75 #include <sys/sdt.h> 76 #include <sys/list.h> 77 #include <sys/stat.h> 78 #include <sys/zone.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/nfs_acl.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs4.h> 89 #include <nfs/nfs4_kprot.h> 90 #include <nfs/rnode4.h> 91 #include <nfs/nfs4_clnt.h> 92 93 #include <vm/hat.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/pvn.h> 97 #include <vm/seg.h> 98 #include <vm/seg_map.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_vn.h> 101 102 #include <fs/fs_subr.h> 103 104 #include <sys/ddi.h> 105 #include <sys/int_fmtio.h> 106 #include <sys/fs/autofs.h> 107 108 typedef struct { 109 nfs4_ga_res_t *di_garp; 110 cred_t *di_cred; 111 hrtime_t di_time_call; 112 } dirattr_info_t; 113 114 typedef enum nfs4_acl_op { 115 NFS4_ACL_GET, 116 NFS4_ACL_SET 117 } nfs4_acl_op_t; 118 119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *); 120 121 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 122 char *, dirattr_info_t *); 123 124 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 125 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 126 nfs4_error_t *, int *); 127 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 128 cred_t *); 129 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 130 stable_how4 *); 131 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 132 cred_t *, bool_t, struct uio *); 133 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 134 vsecattr_t *); 135 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 136 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 137 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 138 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 139 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 141 int, vnode_t **, cred_t *); 142 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 143 cred_t *, int, int, enum createmode4, int); 144 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 145 caller_context_t *); 146 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 147 vnode_t *, char *, cred_t *, nfsstat4 *); 148 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 149 vnode_t *, char *, cred_t *, nfsstat4 *); 150 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 151 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 153 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 154 page_t *[], size_t, struct seg *, caddr_t, 155 enum seg_rw, cred_t *); 156 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 157 cred_t *); 158 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 159 int, cred_t *); 160 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 161 int, cred_t *); 162 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 163 static void nfs4_set_mod(vnode_t *); 164 static void nfs4_get_commit(vnode_t *); 165 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 166 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 167 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 168 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 169 cred_t *); 170 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 171 cred_t *); 172 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 173 hrtime_t, vnode_t *, cred_t *); 174 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 175 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 176 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 177 u_offset_t); 178 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 179 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 180 static cred_t *state_to_cred(nfs4_open_stream_t *); 181 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 182 static pid_t lo_to_pid(lock_owner4 *); 183 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 184 cred_t *, nfs4_lock_owner_t *); 185 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 186 nfs4_lock_owner_t *); 187 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 188 static void nfs4_delmap_callback(struct as *, void *, uint_t); 189 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 190 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 191 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 192 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 193 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 194 uid_t, gid_t, int); 195 196 /* 197 * Routines that implement the setting of v4 args for the misc. ops 198 */ 199 static void nfs4args_lock_free(nfs_argop4 *); 200 static void nfs4args_lockt_free(nfs_argop4 *); 201 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 202 int, rnode4_t *, cred_t *, bitmap4, int *, 203 nfs4_stateid_types_t *); 204 static void nfs4args_setattr_free(nfs_argop4 *); 205 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 206 bitmap4); 207 static void nfs4args_verify_free(nfs_argop4 *); 208 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 209 WRITE4args **, nfs4_stateid_types_t *); 210 211 /* 212 * These are the vnode ops functions that implement the vnode interface to 213 * the networked file system. See more comments below at nfs4_vnodeops. 214 */ 215 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 216 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 217 caller_context_t *); 218 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 219 caller_context_t *); 220 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 221 caller_context_t *); 222 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 223 caller_context_t *); 224 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 225 caller_context_t *); 226 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 227 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 228 caller_context_t *); 229 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 230 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 231 int, vnode_t **, cred_t *, int, caller_context_t *, 232 vsecattr_t *); 233 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 234 int); 235 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 236 caller_context_t *, int); 237 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 238 caller_context_t *, int); 239 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 240 cred_t *, caller_context_t *, int, vsecattr_t *); 241 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 242 caller_context_t *, int); 243 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 244 cred_t *, caller_context_t *, int); 245 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 246 caller_context_t *, int); 247 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 248 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 249 page_t *[], size_t, struct seg *, caddr_t, 250 enum seg_rw, cred_t *, caller_context_t *); 251 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 252 caller_context_t *); 253 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 254 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 255 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 256 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 257 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 258 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 259 struct flk_callback *, cred_t *, caller_context_t *); 260 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 261 cred_t *, caller_context_t *); 262 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 263 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 264 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 265 cred_t *, caller_context_t *); 266 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 267 caller_context_t *); 268 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 269 caller_context_t *); 270 /* 271 * These vnode ops are required to be called from outside this source file, 272 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 273 * as static. 274 */ 275 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 276 caller_context_t *); 277 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 278 int nfs4_lookup(vnode_t *, char *, vnode_t **, 279 struct pathname *, int, vnode_t *, cred_t *, 280 caller_context_t *, int *, pathname_t *); 281 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 282 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 283 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 284 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 285 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 286 caller_context_t *); 287 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 288 caller_context_t *); 289 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 290 caller_context_t *); 291 292 /* 293 * Used for nfs4_commit_vp() to indicate if we should 294 * wait on pending writes. 295 */ 296 #define NFS4_WRITE_NOWAIT 0 297 #define NFS4_WRITE_WAIT 1 298 299 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 300 301 /* 302 * Error flags used to pass information about certain special errors 303 * which need to be handled specially. 304 */ 305 #define NFS_EOF -98 306 #define NFS_VERF_MISMATCH -97 307 308 /* 309 * Flags used to differentiate between which operation drove the 310 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 311 */ 312 #define NFS4_CLOSE_OP 0x1 313 #define NFS4_DELMAP_OP 0x2 314 #define NFS4_INACTIVE_OP 0x3 315 316 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 317 318 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 319 #define ALIGN64(x, ptr, sz) \ 320 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 321 if (x) { \ 322 x = sizeof (uint64_t) - (x); \ 323 sz -= (x); \ 324 ptr += (x); \ 325 } 326 327 #ifdef DEBUG 328 int nfs4_client_attr_debug = 0; 329 int nfs4_client_state_debug = 0; 330 int nfs4_client_shadow_debug = 0; 331 int nfs4_client_lock_debug = 0; 332 int nfs4_seqid_sync = 0; 333 int nfs4_client_map_debug = 0; 334 static int nfs4_pageio_debug = 0; 335 int nfs4_client_inactive_debug = 0; 336 int nfs4_client_recov_debug = 0; 337 int nfs4_client_failover_debug = 0; 338 int nfs4_client_call_debug = 0; 339 int nfs4_client_lookup_debug = 0; 340 int nfs4_client_zone_debug = 0; 341 int nfs4_lost_rqst_debug = 0; 342 int nfs4_rdattrerr_debug = 0; 343 int nfs4_open_stream_debug = 0; 344 345 int nfs4read_error_inject; 346 347 static int nfs4_create_misses = 0; 348 349 static int nfs4_readdir_cache_shorts = 0; 350 static int nfs4_readdir_readahead = 0; 351 352 static int nfs4_bio_do_stop = 0; 353 354 static int nfs4_lostpage = 0; /* number of times we lost original page */ 355 356 int nfs4_mmap_debug = 0; 357 358 static int nfs4_pathconf_cache_hits = 0; 359 static int nfs4_pathconf_cache_misses = 0; 360 361 int nfs4close_all_cnt; 362 int nfs4close_one_debug = 0; 363 int nfs4close_notw_debug = 0; 364 365 int denied_to_flk_debug = 0; 366 void *lockt_denied_debug; 367 368 #endif 369 370 /* 371 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 372 * or NFS4ERR_RESOURCE. 373 */ 374 static int confirm_retry_sec = 30; 375 376 static int nfs4_lookup_neg_cache = 1; 377 378 /* 379 * number of pages to read ahead 380 * optimized for 100 base-T. 381 */ 382 static int nfs4_nra = 4; 383 384 static int nfs4_do_symlink_cache = 1; 385 386 static int nfs4_pathconf_disable_cache = 0; 387 388 /* 389 * These are the vnode ops routines which implement the vnode interface to 390 * the networked file system. These routines just take their parameters, 391 * make them look networkish by putting the right info into interface structs, 392 * and then calling the appropriate remote routine(s) to do the work. 393 * 394 * Note on directory name lookup cacheing: If we detect a stale fhandle, 395 * we purge the directory cache relative to that vnode. This way, the 396 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 397 * more details on rnode locking. 398 */ 399 400 struct vnodeops *nfs4_vnodeops; 401 402 const fs_operation_def_t nfs4_vnodeops_template[] = { 403 VOPNAME_OPEN, { .vop_open = nfs4_open }, 404 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 405 VOPNAME_READ, { .vop_read = nfs4_read }, 406 VOPNAME_WRITE, { .vop_write = nfs4_write }, 407 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 408 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 409 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 410 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 411 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 412 VOPNAME_CREATE, { .vop_create = nfs4_create }, 413 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 414 VOPNAME_LINK, { .vop_link = nfs4_link }, 415 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 416 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 417 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 418 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 419 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 420 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 421 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 422 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 423 VOPNAME_FID, { .vop_fid = nfs4_fid }, 424 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 425 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 426 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 427 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 428 VOPNAME_SPACE, { .vop_space = nfs4_space }, 429 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 430 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 431 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 432 VOPNAME_MAP, { .vop_map = nfs4_map }, 433 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 434 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 435 /* no separate nfs4_dump */ 436 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 437 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 438 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 439 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 440 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 441 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 442 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 443 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 444 NULL, NULL 445 }; 446 447 /* 448 * The following are subroutines and definitions to set args or get res 449 * for the different nfsv4 ops 450 */ 451 452 void 453 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 454 { 455 int i; 456 457 for (i = 0; i < arglen; i++) { 458 if (argop[i].argop == OP_LOOKUP) { 459 kmem_free( 460 argop[i].nfs_argop4_u.oplookup. 461 objname.utf8string_val, 462 argop[i].nfs_argop4_u.oplookup. 463 objname.utf8string_len); 464 } 465 } 466 } 467 468 static void 469 nfs4args_lock_free(nfs_argop4 *argop) 470 { 471 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 472 473 if (locker->new_lock_owner == TRUE) { 474 open_to_lock_owner4 *open_owner; 475 476 open_owner = &locker->locker4_u.open_owner; 477 if (open_owner->lock_owner.owner_val != NULL) { 478 kmem_free(open_owner->lock_owner.owner_val, 479 open_owner->lock_owner.owner_len); 480 } 481 } 482 } 483 484 static void 485 nfs4args_lockt_free(nfs_argop4 *argop) 486 { 487 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 488 489 if (lowner->owner_val != NULL) { 490 kmem_free(lowner->owner_val, lowner->owner_len); 491 } 492 } 493 494 static void 495 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 496 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 497 nfs4_stateid_types_t *sid_types) 498 { 499 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 500 mntinfo4_t *mi; 501 502 argop->argop = OP_SETATTR; 503 /* 504 * The stateid is set to 0 if client is not modifying the size 505 * and otherwise to whatever nfs4_get_stateid() returns. 506 * 507 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 508 * state struct could be found for the process/file pair. We may 509 * want to change this in the future (by OPENing the file). See 510 * bug # 4474852. 511 */ 512 if (vap->va_mask & AT_SIZE) { 513 514 ASSERT(rp != NULL); 515 mi = VTOMI4(RTOV4(rp)); 516 517 argop->nfs_argop4_u.opsetattr.stateid = 518 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 519 OP_SETATTR, sid_types, FALSE); 520 } else { 521 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 522 sizeof (stateid4)); 523 } 524 525 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 526 if (*error) 527 bzero(attr, sizeof (*attr)); 528 } 529 530 static void 531 nfs4args_setattr_free(nfs_argop4 *argop) 532 { 533 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 534 } 535 536 static int 537 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 538 bitmap4 supp) 539 { 540 fattr4 *attr; 541 int error = 0; 542 543 argop->argop = op; 544 switch (op) { 545 case OP_VERIFY: 546 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 547 break; 548 case OP_NVERIFY: 549 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 550 break; 551 default: 552 return (EINVAL); 553 } 554 if (!error) 555 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 556 if (error) 557 bzero(attr, sizeof (*attr)); 558 return (error); 559 } 560 561 static void 562 nfs4args_verify_free(nfs_argop4 *argop) 563 { 564 switch (argop->argop) { 565 case OP_VERIFY: 566 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 567 break; 568 case OP_NVERIFY: 569 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 570 break; 571 default: 572 break; 573 } 574 } 575 576 static void 577 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 578 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 579 { 580 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 581 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 582 583 argop->argop = OP_WRITE; 584 wargs->stable = stable; 585 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 586 mi, OP_WRITE, sid_tp); 587 wargs->mblk = NULL; 588 *wargs_pp = wargs; 589 } 590 591 void 592 nfs4args_copen_free(OPEN4cargs *open_args) 593 { 594 if (open_args->owner.owner_val) { 595 kmem_free(open_args->owner.owner_val, 596 open_args->owner.owner_len); 597 } 598 if ((open_args->opentype == OPEN4_CREATE) && 599 (open_args->mode != EXCLUSIVE4)) { 600 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 601 } 602 } 603 604 /* 605 * XXX: This is referenced in modstubs.s 606 */ 607 struct vnodeops * 608 nfs4_getvnodeops(void) 609 { 610 return (nfs4_vnodeops); 611 } 612 613 /* 614 * The OPEN operation opens a regular file. 615 */ 616 /*ARGSUSED3*/ 617 static int 618 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 619 { 620 vnode_t *dvp = NULL; 621 rnode4_t *rp, *drp; 622 int error; 623 int just_been_created; 624 char fn[MAXNAMELEN]; 625 626 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 627 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 628 return (EIO); 629 rp = VTOR4(*vpp); 630 631 /* 632 * Check to see if opening something besides a regular file; 633 * if so skip the OTW call 634 */ 635 if ((*vpp)->v_type != VREG) { 636 error = nfs4_open_non_reg_file(vpp, flag, cr); 637 return (error); 638 } 639 640 /* 641 * XXX - would like a check right here to know if the file is 642 * executable or not, so as to skip OTW 643 */ 644 645 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 646 return (error); 647 648 drp = VTOR4(dvp); 649 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 650 return (EINTR); 651 652 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 653 nfs_rw_exit(&drp->r_rwlock); 654 return (error); 655 } 656 657 /* 658 * See if this file has just been CREATEd. 659 * If so, clear the flag and update the dnlc, which was previously 660 * skipped in nfs4_create. 661 * XXX need better serilization on this. 662 * XXX move this into the nf4open_otw call, after we have 663 * XXX acquired the open owner seqid sync. 664 */ 665 mutex_enter(&rp->r_statev4_lock); 666 if (rp->created_v4) { 667 rp->created_v4 = 0; 668 mutex_exit(&rp->r_statev4_lock); 669 670 dnlc_update(dvp, fn, *vpp); 671 /* This is needed so we don't bump the open ref count */ 672 just_been_created = 1; 673 } else { 674 mutex_exit(&rp->r_statev4_lock); 675 just_been_created = 0; 676 } 677 678 /* 679 * If caller specified O_TRUNC/FTRUNC, then be sure to set 680 * FWRITE (to drive successful setattr(size=0) after open) 681 */ 682 if (flag & FTRUNC) 683 flag |= FWRITE; 684 685 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 686 just_been_created); 687 688 if (!error && !((*vpp)->v_flag & VROOT)) 689 dnlc_update(dvp, fn, *vpp); 690 691 nfs_rw_exit(&drp->r_rwlock); 692 693 /* release the hold from vtodv */ 694 VN_RELE(dvp); 695 696 /* exchange the shadow for the master vnode, if needed */ 697 698 if (error == 0 && IS_SHADOW(*vpp, rp)) 699 sv_exchange(vpp); 700 701 return (error); 702 } 703 704 /* 705 * See if there's a "lost open" request to be saved and recovered. 706 */ 707 static void 708 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 709 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 710 vnode_t *dvp, OPEN4cargs *open_args) 711 { 712 vfs_t *vfsp; 713 char *srccfp; 714 715 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 716 717 if (error != ETIMEDOUT && error != EINTR && 718 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 719 lost_rqstp->lr_op = 0; 720 return; 721 } 722 723 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 724 "nfs4open_save_lost_rqst: error %d", error)); 725 726 lost_rqstp->lr_op = OP_OPEN; 727 728 /* 729 * The vp (if it is not NULL) and dvp are held and rele'd via 730 * the recovery code. See nfs4_save_lost_rqst. 731 */ 732 lost_rqstp->lr_vp = vp; 733 lost_rqstp->lr_dvp = dvp; 734 lost_rqstp->lr_oop = oop; 735 lost_rqstp->lr_osp = NULL; 736 lost_rqstp->lr_lop = NULL; 737 lost_rqstp->lr_cr = cr; 738 lost_rqstp->lr_flk = NULL; 739 lost_rqstp->lr_oacc = open_args->share_access; 740 lost_rqstp->lr_odeny = open_args->share_deny; 741 lost_rqstp->lr_oclaim = open_args->claim; 742 if (open_args->claim == CLAIM_DELEGATE_CUR) { 743 lost_rqstp->lr_ostateid = 744 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 745 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 746 } else { 747 srccfp = open_args->open_claim4_u.cfile; 748 } 749 lost_rqstp->lr_ofile.utf8string_len = 0; 750 lost_rqstp->lr_ofile.utf8string_val = NULL; 751 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 752 lost_rqstp->lr_putfirst = FALSE; 753 } 754 755 struct nfs4_excl_time { 756 uint32 seconds; 757 uint32 nseconds; 758 }; 759 760 /* 761 * The OPEN operation creates and/or opens a regular file 762 * 763 * ARGSUSED 764 */ 765 static int 766 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 767 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 768 enum createmode4 createmode, int file_just_been_created) 769 { 770 rnode4_t *rp; 771 rnode4_t *drp = VTOR4(dvp); 772 vnode_t *vp = NULL; 773 vnode_t *vpi = *vpp; 774 bool_t needrecov = FALSE; 775 776 int doqueue = 1; 777 778 COMPOUND4args_clnt args; 779 COMPOUND4res_clnt res; 780 nfs_argop4 *argop; 781 nfs_resop4 *resop; 782 int argoplist_size; 783 int idx_open, idx_fattr; 784 785 GETFH4res *gf_res = NULL; 786 OPEN4res *op_res = NULL; 787 nfs4_ga_res_t *garp; 788 fattr4 *attr = NULL; 789 struct nfs4_excl_time verf; 790 bool_t did_excl_setup = FALSE; 791 int created_osp; 792 793 OPEN4cargs *open_args; 794 nfs4_open_owner_t *oop = NULL; 795 nfs4_open_stream_t *osp = NULL; 796 seqid4 seqid = 0; 797 bool_t retry_open = FALSE; 798 nfs4_recov_state_t recov_state; 799 nfs4_lost_rqst_t lost_rqst; 800 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 801 hrtime_t t; 802 int acc = 0; 803 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 804 cred_t *ncr = NULL; 805 806 nfs4_sharedfh_t *otw_sfh; 807 nfs4_sharedfh_t *orig_sfh; 808 int fh_differs = 0; 809 int numops, setgid_flag; 810 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 811 812 /* 813 * Make sure we properly deal with setting the right gid on 814 * a newly created file to reflect the parent's setgid bit 815 */ 816 setgid_flag = 0; 817 if (create_flag && in_va) { 818 819 /* 820 * If there is grpid mount flag used or 821 * the parent's directory has the setgid bit set 822 * _and_ the client was able to get a valid mapping 823 * for the parent dir's owner_group, we want to 824 * append NVERIFY(owner_group == dva.va_gid) and 825 * SETATTR to the CREATE compound. 826 */ 827 mutex_enter(&drp->r_statelock); 828 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 829 drp->r_attr.va_mode & VSGID) && 830 drp->r_attr.va_gid != GID_NOBODY) { 831 in_va->va_mask |= AT_GID; 832 in_va->va_gid = drp->r_attr.va_gid; 833 setgid_flag = 1; 834 } 835 mutex_exit(&drp->r_statelock); 836 } 837 838 /* 839 * Normal/non-create compound: 840 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 841 * 842 * Open(create) compound no setgid: 843 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 844 * RESTOREFH + GETATTR 845 * 846 * Open(create) setgid: 847 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 848 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 849 * NVERIFY(grp) + SETATTR 850 */ 851 if (setgid_flag) { 852 numops = 10; 853 idx_open = 1; 854 idx_fattr = 3; 855 } else if (create_flag) { 856 numops = 7; 857 idx_open = 2; 858 idx_fattr = 4; 859 } else { 860 numops = 4; 861 idx_open = 1; 862 idx_fattr = 3; 863 } 864 865 args.array_len = numops; 866 argoplist_size = numops * sizeof (nfs_argop4); 867 argop = kmem_alloc(argoplist_size, KM_SLEEP); 868 869 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 870 "open %s open flag 0x%x cred %p", file_name, open_flag, 871 (void *)cr)); 872 873 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 874 if (create_flag) { 875 /* 876 * We are to create a file. Initialize the passed in vnode 877 * pointer. 878 */ 879 vpi = NULL; 880 } else { 881 /* 882 * Check to see if the client owns a read delegation and is 883 * trying to open for write. If so, then return the delegation 884 * to avoid the server doing a cb_recall and returning DELAY. 885 * NB - we don't use the statev4_lock here because we'd have 886 * to drop the lock anyway and the result would be stale. 887 */ 888 if ((open_flag & FWRITE) && 889 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 890 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 891 892 /* 893 * If the file has a delegation, then do an access check up 894 * front. This avoids having to an access check later after 895 * we've already done start_op, which could deadlock. 896 */ 897 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 898 if (open_flag & FREAD && 899 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 900 acc |= VREAD; 901 if (open_flag & FWRITE && 902 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 903 acc |= VWRITE; 904 } 905 } 906 907 drp = VTOR4(dvp); 908 909 recov_state.rs_flags = 0; 910 recov_state.rs_num_retry_despite_err = 0; 911 cred_otw = cr; 912 913 recov_retry: 914 fh_differs = 0; 915 nfs4_error_zinit(&e); 916 917 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 918 if (e.error) { 919 if (ncr != NULL) 920 crfree(ncr); 921 kmem_free(argop, argoplist_size); 922 return (e.error); 923 } 924 925 args.ctag = TAG_OPEN; 926 args.array_len = numops; 927 args.array = argop; 928 929 /* putfh directory fh */ 930 argop[0].argop = OP_CPUTFH; 931 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 932 933 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 934 argop[idx_open].argop = OP_COPEN; 935 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 936 open_args->claim = CLAIM_NULL; 937 938 /* name of file */ 939 open_args->open_claim4_u.cfile = file_name; 940 open_args->owner.owner_len = 0; 941 open_args->owner.owner_val = NULL; 942 943 if (create_flag) { 944 /* CREATE a file */ 945 open_args->opentype = OPEN4_CREATE; 946 open_args->mode = createmode; 947 if (createmode == EXCLUSIVE4) { 948 if (did_excl_setup == FALSE) { 949 verf.seconds = zone_get_hostid(NULL); 950 if (verf.seconds != 0) 951 verf.nseconds = newnum(); 952 else { 953 timestruc_t now; 954 955 gethrestime(&now); 956 verf.seconds = now.tv_sec; 957 verf.nseconds = now.tv_nsec; 958 } 959 /* 960 * Since the server will use this value for the 961 * mtime, make sure that it can't overflow. Zero 962 * out the MSB. The actual value does not matter 963 * here, only its uniqeness. 964 */ 965 verf.seconds &= INT32_MAX; 966 did_excl_setup = TRUE; 967 } 968 969 /* Now copy over verifier to OPEN4args. */ 970 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 971 } else { 972 int v_error; 973 bitmap4 supp_attrs; 974 servinfo4_t *svp; 975 976 attr = &open_args->createhow4_u.createattrs; 977 978 svp = drp->r_server; 979 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 980 supp_attrs = svp->sv_supp_attrs; 981 nfs_rw_exit(&svp->sv_lock); 982 983 /* GUARDED4 or UNCHECKED4 */ 984 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 985 supp_attrs); 986 if (v_error) { 987 bzero(attr, sizeof (*attr)); 988 nfs4args_copen_free(open_args); 989 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 990 &recov_state, FALSE); 991 if (ncr != NULL) 992 crfree(ncr); 993 kmem_free(argop, argoplist_size); 994 return (v_error); 995 } 996 } 997 } else { 998 /* NO CREATE */ 999 open_args->opentype = OPEN4_NOCREATE; 1000 } 1001 1002 if (recov_state.rs_sp != NULL) { 1003 mutex_enter(&recov_state.rs_sp->s_lock); 1004 open_args->owner.clientid = recov_state.rs_sp->clientid; 1005 mutex_exit(&recov_state.rs_sp->s_lock); 1006 } else { 1007 /* XXX should we just fail here? */ 1008 open_args->owner.clientid = 0; 1009 } 1010 1011 /* 1012 * This increments oop's ref count or creates a temporary 'just_created' 1013 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1014 * completes. 1015 */ 1016 mutex_enter(&VTOMI4(dvp)->mi_lock); 1017 1018 /* See if a permanent or just created open owner exists */ 1019 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1020 if (!oop) { 1021 /* 1022 * This open owner does not exist so create a temporary 1023 * just created one. 1024 */ 1025 oop = create_open_owner(cr, VTOMI4(dvp)); 1026 ASSERT(oop != NULL); 1027 } 1028 mutex_exit(&VTOMI4(dvp)->mi_lock); 1029 1030 /* this length never changes, do alloc before seqid sync */ 1031 open_args->owner.owner_len = sizeof (oop->oo_name); 1032 open_args->owner.owner_val = 1033 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1034 1035 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1036 if (e.error == EAGAIN) { 1037 open_owner_rele(oop); 1038 nfs4args_copen_free(open_args); 1039 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1040 if (ncr != NULL) { 1041 crfree(ncr); 1042 ncr = NULL; 1043 } 1044 goto recov_retry; 1045 } 1046 1047 /* Check to see if we need to do the OTW call */ 1048 if (!create_flag) { 1049 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1050 file_just_been_created, &e.error, acc, &recov_state)) { 1051 1052 /* 1053 * The OTW open is not necessary. Either 1054 * the open can succeed without it (eg. 1055 * delegation, error == 0) or the open 1056 * must fail due to an access failure 1057 * (error != 0). In either case, tidy 1058 * up and return. 1059 */ 1060 1061 nfs4_end_open_seqid_sync(oop); 1062 open_owner_rele(oop); 1063 nfs4args_copen_free(open_args); 1064 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1065 if (ncr != NULL) 1066 crfree(ncr); 1067 kmem_free(argop, argoplist_size); 1068 return (e.error); 1069 } 1070 } 1071 1072 bcopy(&oop->oo_name, open_args->owner.owner_val, 1073 open_args->owner.owner_len); 1074 1075 seqid = nfs4_get_open_seqid(oop) + 1; 1076 open_args->seqid = seqid; 1077 open_args->share_access = 0; 1078 if (open_flag & FREAD) 1079 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1080 if (open_flag & FWRITE) 1081 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1082 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1083 1084 1085 1086 /* 1087 * getfh w/sanity check for idx_open/idx_fattr 1088 */ 1089 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1090 argop[idx_open + 1].argop = OP_GETFH; 1091 1092 /* getattr */ 1093 argop[idx_fattr].argop = OP_GETATTR; 1094 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1095 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1096 1097 if (setgid_flag) { 1098 vattr_t _v; 1099 servinfo4_t *svp; 1100 bitmap4 supp_attrs; 1101 1102 svp = drp->r_server; 1103 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1104 supp_attrs = svp->sv_supp_attrs; 1105 nfs_rw_exit(&svp->sv_lock); 1106 1107 /* 1108 * For setgid case, we need to: 1109 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1110 */ 1111 argop[4].argop = OP_SAVEFH; 1112 1113 argop[5].argop = OP_CPUTFH; 1114 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1115 1116 argop[6].argop = OP_GETATTR; 1117 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1118 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1119 1120 argop[7].argop = OP_RESTOREFH; 1121 1122 /* 1123 * nverify 1124 */ 1125 _v.va_mask = AT_GID; 1126 _v.va_gid = in_va->va_gid; 1127 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1128 supp_attrs))) { 1129 1130 /* 1131 * setattr 1132 * 1133 * We _know_ we're not messing with AT_SIZE or 1134 * AT_XTIME, so no need for stateid or flags. 1135 * Also we specify NULL rp since we're only 1136 * interested in setting owner_group attributes. 1137 */ 1138 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1139 supp_attrs, &e.error, 0); 1140 if (e.error) 1141 nfs4args_verify_free(&argop[8]); 1142 } 1143 1144 if (e.error) { 1145 /* 1146 * XXX - Revisit the last argument to nfs4_end_op() 1147 * once 5020486 is fixed. 1148 */ 1149 nfs4_end_open_seqid_sync(oop); 1150 open_owner_rele(oop); 1151 nfs4args_copen_free(open_args); 1152 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1153 if (ncr != NULL) 1154 crfree(ncr); 1155 kmem_free(argop, argoplist_size); 1156 return (e.error); 1157 } 1158 } else if (create_flag) { 1159 argop[1].argop = OP_SAVEFH; 1160 1161 argop[5].argop = OP_RESTOREFH; 1162 1163 argop[6].argop = OP_GETATTR; 1164 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1165 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1166 } 1167 1168 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1169 "nfs4open_otw: %s call, nm %s, rp %s", 1170 needrecov ? "recov" : "first", file_name, 1171 rnode4info(VTOR4(dvp)))); 1172 1173 t = gethrtime(); 1174 1175 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1176 1177 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1178 nfs4_set_open_seqid(seqid, oop, args.ctag); 1179 1180 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1181 1182 if (e.error || needrecov) { 1183 bool_t abort = FALSE; 1184 1185 if (needrecov) { 1186 nfs4_bseqid_entry_t *bsep = NULL; 1187 1188 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1189 cred_otw, vpi, dvp, open_args); 1190 1191 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1192 bsep = nfs4_create_bseqid_entry(oop, NULL, 1193 vpi, 0, args.ctag, open_args->seqid); 1194 num_bseqid_retry--; 1195 } 1196 1197 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1198 NULL, lost_rqst.lr_op == OP_OPEN ? 1199 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1200 1201 if (bsep) 1202 kmem_free(bsep, sizeof (*bsep)); 1203 /* give up if we keep getting BAD_SEQID */ 1204 if (num_bseqid_retry == 0) 1205 abort = TRUE; 1206 if (abort == TRUE && e.error == 0) 1207 e.error = geterrno4(res.status); 1208 } 1209 nfs4_end_open_seqid_sync(oop); 1210 open_owner_rele(oop); 1211 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1212 nfs4args_copen_free(open_args); 1213 if (setgid_flag) { 1214 nfs4args_verify_free(&argop[8]); 1215 nfs4args_setattr_free(&argop[9]); 1216 } 1217 if (!e.error) 1218 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1219 if (ncr != NULL) { 1220 crfree(ncr); 1221 ncr = NULL; 1222 } 1223 if (!needrecov || abort == TRUE || e.error == EINTR || 1224 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1225 kmem_free(argop, argoplist_size); 1226 return (e.error); 1227 } 1228 goto recov_retry; 1229 } 1230 1231 /* 1232 * Will check and update lease after checking the rflag for 1233 * OPEN_CONFIRM in the successful OPEN call. 1234 */ 1235 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1236 1237 /* 1238 * XXX what if we're crossing mount points from server1:/drp 1239 * to server2:/drp/rp. 1240 */ 1241 1242 /* Signal our end of use of the open seqid */ 1243 nfs4_end_open_seqid_sync(oop); 1244 1245 /* 1246 * This will destroy the open owner if it was just created, 1247 * and no one else has put a reference on it. 1248 */ 1249 open_owner_rele(oop); 1250 if (create_flag && (createmode != EXCLUSIVE4) && 1251 res.status == NFS4ERR_BADOWNER) 1252 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1253 1254 e.error = geterrno4(res.status); 1255 nfs4args_copen_free(open_args); 1256 if (setgid_flag) { 1257 nfs4args_verify_free(&argop[8]); 1258 nfs4args_setattr_free(&argop[9]); 1259 } 1260 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1261 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1262 /* 1263 * If the reply is NFS4ERR_ACCESS, it may be because 1264 * we are root (no root net access). If the real uid 1265 * is not root, then retry with the real uid instead. 1266 */ 1267 if (ncr != NULL) { 1268 crfree(ncr); 1269 ncr = NULL; 1270 } 1271 if (res.status == NFS4ERR_ACCESS && 1272 (ncr = crnetadjust(cred_otw)) != NULL) { 1273 cred_otw = ncr; 1274 goto recov_retry; 1275 } 1276 kmem_free(argop, argoplist_size); 1277 return (e.error); 1278 } 1279 1280 resop = &res.array[idx_open]; /* open res */ 1281 op_res = &resop->nfs_resop4_u.opopen; 1282 1283 #ifdef DEBUG 1284 /* 1285 * verify attrset bitmap 1286 */ 1287 if (create_flag && 1288 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1289 /* make sure attrset returned is what we asked for */ 1290 /* XXX Ignore this 'error' for now */ 1291 if (attr->attrmask != op_res->attrset) 1292 /* EMPTY */; 1293 } 1294 #endif 1295 1296 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1297 mutex_enter(&VTOMI4(dvp)->mi_lock); 1298 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1299 mutex_exit(&VTOMI4(dvp)->mi_lock); 1300 } 1301 1302 resop = &res.array[idx_open + 1]; /* getfh res */ 1303 gf_res = &resop->nfs_resop4_u.opgetfh; 1304 1305 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1306 1307 /* 1308 * The open stateid has been updated on the server but not 1309 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1310 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1311 * WRITE call. That, however, will use the old stateid, so go ahead 1312 * and upate the open stateid now, before any call to makenfs4node. 1313 */ 1314 if (vpi) { 1315 nfs4_open_stream_t *tmp_osp; 1316 rnode4_t *tmp_rp = VTOR4(vpi); 1317 1318 tmp_osp = find_open_stream(oop, tmp_rp); 1319 if (tmp_osp) { 1320 tmp_osp->open_stateid = op_res->stateid; 1321 mutex_exit(&tmp_osp->os_sync_lock); 1322 open_stream_rele(tmp_osp, tmp_rp); 1323 } 1324 1325 /* 1326 * We must determine if the file handle given by the otw open 1327 * is the same as the file handle which was passed in with 1328 * *vpp. This case can be reached if the file we are trying 1329 * to open has been removed and another file has been created 1330 * having the same file name. The passed in vnode is released 1331 * later. 1332 */ 1333 orig_sfh = VTOR4(vpi)->r_fh; 1334 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1335 } 1336 1337 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1338 1339 if (create_flag || fh_differs) { 1340 int rnode_err = 0; 1341 1342 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1343 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1344 1345 if (e.error) 1346 PURGE_ATTRCACHE4(vp); 1347 /* 1348 * For the newly created vp case, make sure the rnode 1349 * isn't bad before using it. 1350 */ 1351 mutex_enter(&(VTOR4(vp))->r_statelock); 1352 if (VTOR4(vp)->r_flags & R4RECOVERR) 1353 rnode_err = EIO; 1354 mutex_exit(&(VTOR4(vp))->r_statelock); 1355 1356 if (rnode_err) { 1357 nfs4_end_open_seqid_sync(oop); 1358 nfs4args_copen_free(open_args); 1359 if (setgid_flag) { 1360 nfs4args_verify_free(&argop[8]); 1361 nfs4args_setattr_free(&argop[9]); 1362 } 1363 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1364 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1365 needrecov); 1366 open_owner_rele(oop); 1367 VN_RELE(vp); 1368 if (ncr != NULL) 1369 crfree(ncr); 1370 sfh4_rele(&otw_sfh); 1371 kmem_free(argop, argoplist_size); 1372 return (EIO); 1373 } 1374 } else { 1375 vp = vpi; 1376 } 1377 sfh4_rele(&otw_sfh); 1378 1379 /* 1380 * It seems odd to get a full set of attrs and then not update 1381 * the object's attrcache in the non-create case. Create case uses 1382 * the attrs since makenfs4node checks to see if the attrs need to 1383 * be updated (and then updates them). The non-create case should 1384 * update attrs also. 1385 */ 1386 if (! create_flag && ! fh_differs && !e.error) { 1387 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1388 } 1389 1390 nfs4_error_zinit(&e); 1391 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1392 /* This does not do recovery for vp explicitly. */ 1393 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1394 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1395 1396 if (e.error || e.stat) { 1397 nfs4_end_open_seqid_sync(oop); 1398 nfs4args_copen_free(open_args); 1399 if (setgid_flag) { 1400 nfs4args_verify_free(&argop[8]); 1401 nfs4args_setattr_free(&argop[9]); 1402 } 1403 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1404 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1405 needrecov); 1406 open_owner_rele(oop); 1407 if (create_flag || fh_differs) { 1408 /* rele the makenfs4node */ 1409 VN_RELE(vp); 1410 } 1411 if (ncr != NULL) { 1412 crfree(ncr); 1413 ncr = NULL; 1414 } 1415 if (retry_open == TRUE) { 1416 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1417 "nfs4open_otw: retry the open since OPEN " 1418 "CONFIRM failed with error %d stat %d", 1419 e.error, e.stat)); 1420 if (create_flag && createmode == GUARDED4) { 1421 NFS4_DEBUG(nfs4_client_recov_debug, 1422 (CE_NOTE, "nfs4open_otw: switch " 1423 "createmode from GUARDED4 to " 1424 "UNCHECKED4")); 1425 createmode = UNCHECKED4; 1426 } 1427 goto recov_retry; 1428 } 1429 if (!e.error) { 1430 if (create_flag && (createmode != EXCLUSIVE4) && 1431 e.stat == NFS4ERR_BADOWNER) 1432 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1433 1434 e.error = geterrno4(e.stat); 1435 } 1436 kmem_free(argop, argoplist_size); 1437 return (e.error); 1438 } 1439 } 1440 1441 rp = VTOR4(vp); 1442 1443 mutex_enter(&rp->r_statev4_lock); 1444 if (create_flag) 1445 rp->created_v4 = 1; 1446 mutex_exit(&rp->r_statev4_lock); 1447 1448 mutex_enter(&oop->oo_lock); 1449 /* Doesn't matter if 'oo_just_created' already was set as this */ 1450 oop->oo_just_created = NFS4_PERM_CREATED; 1451 if (oop->oo_cred_otw) 1452 crfree(oop->oo_cred_otw); 1453 oop->oo_cred_otw = cred_otw; 1454 crhold(oop->oo_cred_otw); 1455 mutex_exit(&oop->oo_lock); 1456 1457 /* returns with 'os_sync_lock' held */ 1458 osp = find_or_create_open_stream(oop, rp, &created_osp); 1459 if (!osp) { 1460 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1461 "nfs4open_otw: failed to create an open stream")); 1462 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1463 "signal our end of use of the open seqid")); 1464 1465 nfs4_end_open_seqid_sync(oop); 1466 open_owner_rele(oop); 1467 nfs4args_copen_free(open_args); 1468 if (setgid_flag) { 1469 nfs4args_verify_free(&argop[8]); 1470 nfs4args_setattr_free(&argop[9]); 1471 } 1472 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1473 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1474 if (create_flag || fh_differs) 1475 VN_RELE(vp); 1476 if (ncr != NULL) 1477 crfree(ncr); 1478 1479 kmem_free(argop, argoplist_size); 1480 return (EINVAL); 1481 1482 } 1483 1484 osp->open_stateid = op_res->stateid; 1485 1486 if (open_flag & FREAD) 1487 osp->os_share_acc_read++; 1488 if (open_flag & FWRITE) 1489 osp->os_share_acc_write++; 1490 osp->os_share_deny_none++; 1491 1492 /* 1493 * Need to reset this bitfield for the possible case where we were 1494 * going to OTW CLOSE the file, got a non-recoverable error, and before 1495 * we could retry the CLOSE, OPENed the file again. 1496 */ 1497 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1498 osp->os_final_close = 0; 1499 osp->os_force_close = 0; 1500 #ifdef DEBUG 1501 if (osp->os_failed_reopen) 1502 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1503 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1504 (void *)osp, (void *)cr, rnode4info(rp))); 1505 #endif 1506 osp->os_failed_reopen = 0; 1507 1508 mutex_exit(&osp->os_sync_lock); 1509 1510 nfs4_end_open_seqid_sync(oop); 1511 1512 if (created_osp && recov_state.rs_sp != NULL) { 1513 mutex_enter(&recov_state.rs_sp->s_lock); 1514 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1515 mutex_exit(&recov_state.rs_sp->s_lock); 1516 } 1517 1518 /* get rid of our reference to find oop */ 1519 open_owner_rele(oop); 1520 1521 open_stream_rele(osp, rp); 1522 1523 /* accept delegation, if any */ 1524 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1525 1526 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1527 1528 if (createmode == EXCLUSIVE4 && 1529 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1530 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1531 " EXCLUSIVE4: sending a SETATTR")); 1532 /* 1533 * If doing an exclusive create, then generate 1534 * a SETATTR to set the initial attributes. 1535 * Try to set the mtime and the atime to the 1536 * server's current time. It is somewhat 1537 * expected that these fields will be used to 1538 * store the exclusive create cookie. If not, 1539 * server implementors will need to know that 1540 * a SETATTR will follow an exclusive create 1541 * and the cookie should be destroyed if 1542 * appropriate. 1543 * 1544 * The AT_GID and AT_SIZE bits are turned off 1545 * so that the SETATTR request will not attempt 1546 * to process these. The gid will be set 1547 * separately if appropriate. The size is turned 1548 * off because it is assumed that a new file will 1549 * be created empty and if the file wasn't empty, 1550 * then the exclusive create will have failed 1551 * because the file must have existed already. 1552 * Therefore, no truncate operation is needed. 1553 */ 1554 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1555 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1556 1557 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1558 if (e.error) { 1559 nfs4_error_t err; 1560 1561 /* 1562 * Couldn't correct the attributes of 1563 * the newly created file and the 1564 * attributes are wrong. Remove the 1565 * file and return an error to the 1566 * application. 1567 */ 1568 /* XXX will this take care of client state ? */ 1569 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1570 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1571 " remove file", e.error)); 1572 1573 /* 1574 * The file is currently open so try to close it first. 1575 * 1576 * If we do not close the file explicitly here then the 1577 * VN_RELE() would do an (implicit and asynchronous) 1578 * close for us. But such async close could race with 1579 * the nfs4_remove() below. If the async close is 1580 * slower than nfs4_remove() then nfs4_remove() 1581 * wouldn't remove the file but rename it to .nfsXXXX 1582 * instead. 1583 */ 1584 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err, 1585 CLOSE_NORM, 0, 0, 0); 1586 VN_RELE(vp); 1587 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1588 1589 /* 1590 * Since we've reled the vnode and removed 1591 * the file we now need to return the error. 1592 * At this point we don't want to update the 1593 * dircaches, call nfs4_waitfor_purge_complete 1594 * or set vpp to vp so we need to skip these 1595 * as well. 1596 */ 1597 goto skip_update_dircaches; 1598 } 1599 } 1600 1601 /* 1602 * If we created or found the correct vnode, due to create_flag or 1603 * fh_differs being set, then update directory cache attribute, readdir 1604 * and dnlc caches. 1605 */ 1606 if (create_flag || fh_differs) { 1607 dirattr_info_t dinfo, *dinfop; 1608 1609 /* 1610 * Make sure getattr succeeded before using results. 1611 * note: op 7 is getattr(dir) for both flavors of 1612 * open(create). 1613 */ 1614 if (create_flag && res.status == NFS4_OK) { 1615 dinfo.di_time_call = t; 1616 dinfo.di_cred = cr; 1617 dinfo.di_garp = 1618 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1619 dinfop = &dinfo; 1620 } else { 1621 dinfop = NULL; 1622 } 1623 1624 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1625 dinfop); 1626 } 1627 1628 /* 1629 * If the page cache for this file was flushed from actions 1630 * above, it was done asynchronously and if that is true, 1631 * there is a need to wait here for it to complete. This must 1632 * be done outside of start_fop/end_fop. 1633 */ 1634 (void) nfs4_waitfor_purge_complete(vp); 1635 1636 /* 1637 * It is implicit that we are in the open case (create_flag == 0) since 1638 * fh_differs can only be set to a non-zero value in the open case. 1639 */ 1640 if (fh_differs != 0 && vpi != NULL) 1641 VN_RELE(vpi); 1642 1643 /* 1644 * Be sure to set *vpp to the correct value before returning. 1645 */ 1646 *vpp = vp; 1647 1648 skip_update_dircaches: 1649 1650 nfs4args_copen_free(open_args); 1651 if (setgid_flag) { 1652 nfs4args_verify_free(&argop[8]); 1653 nfs4args_setattr_free(&argop[9]); 1654 } 1655 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1656 1657 if (ncr) 1658 crfree(ncr); 1659 kmem_free(argop, argoplist_size); 1660 return (e.error); 1661 } 1662 1663 /* 1664 * Reopen an open instance. cf. nfs4open_otw(). 1665 * 1666 * Errors are returned by the nfs4_error_t parameter. 1667 * - ep->error contains an errno value or zero. 1668 * - if it is zero, ep->stat is set to an NFS status code, if any. 1669 * If the file could not be reopened, but the caller should continue, the 1670 * file is marked dead and no error values are returned. If the caller 1671 * should stop recovering open files and start over, either the ep->error 1672 * value or ep->stat will indicate an error (either something that requires 1673 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1674 * filehandles) may be handled silently by this routine. 1675 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1676 * will be started, so the caller should not do it. 1677 * 1678 * Gotos: 1679 * - kill_file : reopen failed in such a fashion to constitute marking the 1680 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1681 * is for cases where recovery is not possible. 1682 * - failed_reopen : same as above, except that the file has already been 1683 * marked dead, so no need to do it again. 1684 * - bailout : reopen failed but we are able to recover and retry the reopen - 1685 * either within this function immediately or via the calling function. 1686 */ 1687 1688 void 1689 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1690 open_claim_type4 claim, bool_t frc_use_claim_previous, 1691 bool_t is_recov) 1692 { 1693 COMPOUND4args_clnt args; 1694 COMPOUND4res_clnt res; 1695 nfs_argop4 argop[4]; 1696 nfs_resop4 *resop; 1697 OPEN4res *op_res = NULL; 1698 OPEN4cargs *open_args; 1699 GETFH4res *gf_res; 1700 rnode4_t *rp = VTOR4(vp); 1701 int doqueue = 1; 1702 cred_t *cr = NULL, *cred_otw = NULL; 1703 nfs4_open_owner_t *oop = NULL; 1704 seqid4 seqid; 1705 nfs4_ga_res_t *garp; 1706 char fn[MAXNAMELEN]; 1707 nfs4_recov_state_t recov = {NULL, 0}; 1708 nfs4_lost_rqst_t lost_rqst; 1709 mntinfo4_t *mi = VTOMI4(vp); 1710 bool_t abort; 1711 char *failed_msg = ""; 1712 int fh_different; 1713 hrtime_t t; 1714 nfs4_bseqid_entry_t *bsep = NULL; 1715 1716 ASSERT(nfs4_consistent_type(vp)); 1717 ASSERT(nfs_zone() == mi->mi_zone); 1718 1719 nfs4_error_zinit(ep); 1720 1721 /* this is the cred used to find the open owner */ 1722 cr = state_to_cred(osp); 1723 if (cr == NULL) { 1724 failed_msg = "Couldn't reopen: no cred"; 1725 goto kill_file; 1726 } 1727 /* use this cred for OTW operations */ 1728 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1729 1730 top: 1731 nfs4_error_zinit(ep); 1732 1733 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1734 /* File system has been unmounted, quit */ 1735 ep->error = EIO; 1736 failed_msg = "Couldn't reopen: file system has been unmounted"; 1737 goto kill_file; 1738 } 1739 1740 oop = osp->os_open_owner; 1741 1742 ASSERT(oop != NULL); 1743 if (oop == NULL) { /* be defensive in non-DEBUG */ 1744 failed_msg = "can't reopen: no open owner"; 1745 goto kill_file; 1746 } 1747 open_owner_hold(oop); 1748 1749 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1750 if (ep->error) { 1751 open_owner_rele(oop); 1752 oop = NULL; 1753 goto bailout; 1754 } 1755 1756 /* 1757 * If the rnode has a delegation and the delegation has been 1758 * recovered and the server didn't request a recall and the caller 1759 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1760 * recovery) and the rnode hasn't been marked dead, then install 1761 * the delegation stateid in the open stream. Otherwise, proceed 1762 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1763 */ 1764 mutex_enter(&rp->r_statev4_lock); 1765 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1766 !rp->r_deleg_return_pending && 1767 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1768 !rp->r_deleg_needs_recall && 1769 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1770 !(rp->r_flags & R4RECOVERR)) { 1771 mutex_enter(&osp->os_sync_lock); 1772 osp->os_delegation = 1; 1773 osp->open_stateid = rp->r_deleg_stateid; 1774 mutex_exit(&osp->os_sync_lock); 1775 mutex_exit(&rp->r_statev4_lock); 1776 goto bailout; 1777 } 1778 mutex_exit(&rp->r_statev4_lock); 1779 1780 /* 1781 * If the file failed recovery, just quit. This failure need not 1782 * affect other reopens, so don't return an error. 1783 */ 1784 mutex_enter(&rp->r_statelock); 1785 if (rp->r_flags & R4RECOVERR) { 1786 mutex_exit(&rp->r_statelock); 1787 ep->error = 0; 1788 goto failed_reopen; 1789 } 1790 mutex_exit(&rp->r_statelock); 1791 1792 /* 1793 * argop is empty here 1794 * 1795 * PUTFH, OPEN, GETATTR 1796 */ 1797 args.ctag = TAG_REOPEN; 1798 args.array_len = 4; 1799 args.array = argop; 1800 1801 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1802 "nfs4_reopen: file is type %d, id %s", 1803 vp->v_type, rnode4info(VTOR4(vp)))); 1804 1805 argop[0].argop = OP_CPUTFH; 1806 1807 if (claim != CLAIM_PREVIOUS) { 1808 /* 1809 * if this is a file mount then 1810 * use the mntinfo parentfh 1811 */ 1812 argop[0].nfs_argop4_u.opcputfh.sfh = 1813 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1814 VTOSV(vp)->sv_dfh; 1815 } else { 1816 /* putfh fh to reopen */ 1817 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1818 } 1819 1820 argop[1].argop = OP_COPEN; 1821 open_args = &argop[1].nfs_argop4_u.opcopen; 1822 open_args->claim = claim; 1823 1824 if (claim == CLAIM_NULL) { 1825 1826 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1827 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1828 "failed for vp 0x%p for CLAIM_NULL with %m", 1829 (void *)vp); 1830 failed_msg = "Couldn't reopen: vtoname failed for " 1831 "CLAIM_NULL"; 1832 /* nothing allocated yet */ 1833 goto kill_file; 1834 } 1835 1836 open_args->open_claim4_u.cfile = fn; 1837 } else if (claim == CLAIM_PREVIOUS) { 1838 1839 /* 1840 * We have two cases to deal with here: 1841 * 1) We're being called to reopen files in order to satisfy 1842 * a lock operation request which requires us to explicitly 1843 * reopen files which were opened under a delegation. If 1844 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1845 * that case, frc_use_claim_previous is TRUE and we must 1846 * use the rnode's current delegation type (r_deleg_type). 1847 * 2) We're reopening files during some form of recovery. 1848 * In this case, frc_use_claim_previous is FALSE and we 1849 * use the delegation type appropriate for recovery 1850 * (r_deleg_needs_recovery). 1851 */ 1852 mutex_enter(&rp->r_statev4_lock); 1853 open_args->open_claim4_u.delegate_type = 1854 frc_use_claim_previous ? 1855 rp->r_deleg_type : 1856 rp->r_deleg_needs_recovery; 1857 mutex_exit(&rp->r_statev4_lock); 1858 1859 } else if (claim == CLAIM_DELEGATE_CUR) { 1860 1861 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1862 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1863 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1864 "with %m", (void *)vp); 1865 failed_msg = "Couldn't reopen: vtoname failed for " 1866 "CLAIM_DELEGATE_CUR"; 1867 /* nothing allocated yet */ 1868 goto kill_file; 1869 } 1870 1871 mutex_enter(&rp->r_statev4_lock); 1872 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1873 rp->r_deleg_stateid; 1874 mutex_exit(&rp->r_statev4_lock); 1875 1876 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1877 } 1878 open_args->opentype = OPEN4_NOCREATE; 1879 open_args->owner.clientid = mi2clientid(mi); 1880 open_args->owner.owner_len = sizeof (oop->oo_name); 1881 open_args->owner.owner_val = 1882 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1883 bcopy(&oop->oo_name, open_args->owner.owner_val, 1884 open_args->owner.owner_len); 1885 open_args->share_access = 0; 1886 open_args->share_deny = 0; 1887 1888 mutex_enter(&osp->os_sync_lock); 1889 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1890 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1891 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1892 (void *)osp, (void *)rp, osp->os_share_acc_read, 1893 osp->os_share_acc_write, osp->os_open_ref_count, 1894 osp->os_mmap_read, osp->os_mmap_write, claim)); 1895 1896 if (osp->os_share_acc_read || osp->os_mmap_read) 1897 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1898 if (osp->os_share_acc_write || osp->os_mmap_write) 1899 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1900 if (osp->os_share_deny_read) 1901 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1902 if (osp->os_share_deny_write) 1903 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1904 mutex_exit(&osp->os_sync_lock); 1905 1906 seqid = nfs4_get_open_seqid(oop) + 1; 1907 open_args->seqid = seqid; 1908 1909 /* Construct the getfh part of the compound */ 1910 argop[2].argop = OP_GETFH; 1911 1912 /* Construct the getattr part of the compound */ 1913 argop[3].argop = OP_GETATTR; 1914 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1915 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1916 1917 t = gethrtime(); 1918 1919 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1920 1921 if (ep->error) { 1922 if (!is_recov && !frc_use_claim_previous && 1923 (ep->error == EINTR || ep->error == ETIMEDOUT || 1924 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1925 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1926 cred_otw, vp, NULL, open_args); 1927 abort = nfs4_start_recovery(ep, 1928 VTOMI4(vp), vp, NULL, NULL, 1929 lost_rqst.lr_op == OP_OPEN ? 1930 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1931 nfs4args_copen_free(open_args); 1932 goto bailout; 1933 } 1934 1935 nfs4args_copen_free(open_args); 1936 1937 if (ep->error == EACCES && cred_otw != cr) { 1938 crfree(cred_otw); 1939 cred_otw = cr; 1940 crhold(cred_otw); 1941 nfs4_end_open_seqid_sync(oop); 1942 open_owner_rele(oop); 1943 oop = NULL; 1944 goto top; 1945 } 1946 if (ep->error == ETIMEDOUT) 1947 goto bailout; 1948 failed_msg = "Couldn't reopen: rpc error"; 1949 goto kill_file; 1950 } 1951 1952 if (nfs4_need_to_bump_seqid(&res)) 1953 nfs4_set_open_seqid(seqid, oop, args.ctag); 1954 1955 switch (res.status) { 1956 case NFS4_OK: 1957 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1958 mutex_enter(&rp->r_statelock); 1959 rp->r_delay_interval = 0; 1960 mutex_exit(&rp->r_statelock); 1961 } 1962 break; 1963 case NFS4ERR_BAD_SEQID: 1964 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1965 args.ctag, open_args->seqid); 1966 1967 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1968 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1969 NULL, OP_OPEN, bsep, NULL, NULL); 1970 1971 nfs4args_copen_free(open_args); 1972 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1973 nfs4_end_open_seqid_sync(oop); 1974 open_owner_rele(oop); 1975 oop = NULL; 1976 kmem_free(bsep, sizeof (*bsep)); 1977 1978 goto kill_file; 1979 case NFS4ERR_NO_GRACE: 1980 nfs4args_copen_free(open_args); 1981 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1982 nfs4_end_open_seqid_sync(oop); 1983 open_owner_rele(oop); 1984 oop = NULL; 1985 if (claim == CLAIM_PREVIOUS) { 1986 /* 1987 * Retry as a plain open. We don't need to worry about 1988 * checking the changeinfo: it is acceptable for a 1989 * client to re-open a file and continue processing 1990 * (in the absence of locks). 1991 */ 1992 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1993 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1994 "will retry as CLAIM_NULL")); 1995 claim = CLAIM_NULL; 1996 nfs4_mi_kstat_inc_no_grace(mi); 1997 goto top; 1998 } 1999 failed_msg = 2000 "Couldn't reopen: tried reclaim outside grace period. "; 2001 goto kill_file; 2002 case NFS4ERR_GRACE: 2003 nfs4_set_grace_wait(mi); 2004 nfs4args_copen_free(open_args); 2005 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2006 nfs4_end_open_seqid_sync(oop); 2007 open_owner_rele(oop); 2008 oop = NULL; 2009 ep->error = nfs4_wait_for_grace(mi, &recov); 2010 if (ep->error != 0) 2011 goto bailout; 2012 goto top; 2013 case NFS4ERR_DELAY: 2014 nfs4_set_delay_wait(vp); 2015 nfs4args_copen_free(open_args); 2016 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2017 nfs4_end_open_seqid_sync(oop); 2018 open_owner_rele(oop); 2019 oop = NULL; 2020 ep->error = nfs4_wait_for_delay(vp, &recov); 2021 nfs4_mi_kstat_inc_delay(mi); 2022 if (ep->error != 0) 2023 goto bailout; 2024 goto top; 2025 case NFS4ERR_FHEXPIRED: 2026 /* recover filehandle and retry */ 2027 abort = nfs4_start_recovery(ep, 2028 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2029 nfs4args_copen_free(open_args); 2030 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 if (abort == FALSE) 2035 goto top; 2036 failed_msg = "Couldn't reopen: recovery aborted"; 2037 goto kill_file; 2038 case NFS4ERR_RESOURCE: 2039 case NFS4ERR_STALE_CLIENTID: 2040 case NFS4ERR_WRONGSEC: 2041 case NFS4ERR_EXPIRED: 2042 /* 2043 * Do not mark the file dead and let the calling 2044 * function initiate recovery. 2045 */ 2046 nfs4args_copen_free(open_args); 2047 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2048 nfs4_end_open_seqid_sync(oop); 2049 open_owner_rele(oop); 2050 oop = NULL; 2051 goto bailout; 2052 case NFS4ERR_ACCESS: 2053 if (cred_otw != cr) { 2054 crfree(cred_otw); 2055 cred_otw = cr; 2056 crhold(cred_otw); 2057 nfs4args_copen_free(open_args); 2058 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2059 nfs4_end_open_seqid_sync(oop); 2060 open_owner_rele(oop); 2061 oop = NULL; 2062 goto top; 2063 } 2064 /* fall through */ 2065 default: 2066 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2067 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2068 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2069 rnode4info(VTOR4(vp)))); 2070 failed_msg = "Couldn't reopen: NFSv4 error"; 2071 nfs4args_copen_free(open_args); 2072 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2073 goto kill_file; 2074 } 2075 2076 resop = &res.array[1]; /* open res */ 2077 op_res = &resop->nfs_resop4_u.opopen; 2078 2079 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2080 2081 /* 2082 * Check if the path we reopened really is the same 2083 * file. We could end up in a situation where the file 2084 * was removed and a new file created with the same name. 2085 */ 2086 resop = &res.array[2]; 2087 gf_res = &resop->nfs_resop4_u.opgetfh; 2088 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2089 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2090 if (fh_different) { 2091 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2092 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2093 /* Oops, we don't have the same file */ 2094 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2095 failed_msg = "Couldn't reopen: Persistent " 2096 "file handle changed"; 2097 else 2098 failed_msg = "Couldn't reopen: Volatile " 2099 "(no expire on open) file handle changed"; 2100 2101 nfs4args_copen_free(open_args); 2102 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2103 nfs_rw_exit(&mi->mi_fh_lock); 2104 goto kill_file; 2105 2106 } else { 2107 /* 2108 * We have volatile file handles that don't compare. 2109 * If the fids are the same then we assume that the 2110 * file handle expired but the rnode still refers to 2111 * the same file object. 2112 * 2113 * First check that we have fids or not. 2114 * If we don't we have a dumb server so we will 2115 * just assume every thing is ok for now. 2116 */ 2117 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2118 rp->r_attr.va_mask & AT_NODEID && 2119 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2120 /* 2121 * We have fids, but they don't 2122 * compare. So kill the file. 2123 */ 2124 failed_msg = 2125 "Couldn't reopen: file handle changed" 2126 " due to mismatched fids"; 2127 nfs4args_copen_free(open_args); 2128 xdr_free(xdr_COMPOUND4res_clnt, 2129 (caddr_t)&res); 2130 nfs_rw_exit(&mi->mi_fh_lock); 2131 goto kill_file; 2132 } else { 2133 /* 2134 * We have volatile file handles that refers 2135 * to the same file (at least they have the 2136 * same fid) or we don't have fids so we 2137 * can't tell. :(. We'll be a kind and accepting 2138 * client so we'll update the rnode's file 2139 * handle with the otw handle. 2140 * 2141 * We need to drop mi->mi_fh_lock since 2142 * sh4_update acquires it. Since there is 2143 * only one recovery thread there is no 2144 * race. 2145 */ 2146 nfs_rw_exit(&mi->mi_fh_lock); 2147 sfh4_update(rp->r_fh, &gf_res->object); 2148 } 2149 } 2150 } else { 2151 nfs_rw_exit(&mi->mi_fh_lock); 2152 } 2153 2154 ASSERT(nfs4_consistent_type(vp)); 2155 2156 /* 2157 * If the server wanted an OPEN_CONFIRM but that fails, just start 2158 * over. Presumably if there is a persistent error it will show up 2159 * when we resend the OPEN. 2160 */ 2161 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2162 bool_t retry_open = FALSE; 2163 2164 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2165 cred_otw, is_recov, &retry_open, 2166 oop, FALSE, ep, NULL); 2167 if (ep->error || ep->stat) { 2168 nfs4args_copen_free(open_args); 2169 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2170 nfs4_end_open_seqid_sync(oop); 2171 open_owner_rele(oop); 2172 oop = NULL; 2173 goto top; 2174 } 2175 } 2176 2177 mutex_enter(&osp->os_sync_lock); 2178 osp->open_stateid = op_res->stateid; 2179 osp->os_delegation = 0; 2180 /* 2181 * Need to reset this bitfield for the possible case where we were 2182 * going to OTW CLOSE the file, got a non-recoverable error, and before 2183 * we could retry the CLOSE, OPENed the file again. 2184 */ 2185 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2186 osp->os_final_close = 0; 2187 osp->os_force_close = 0; 2188 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2189 osp->os_dc_openacc = open_args->share_access; 2190 mutex_exit(&osp->os_sync_lock); 2191 2192 nfs4_end_open_seqid_sync(oop); 2193 2194 /* accept delegation, if any */ 2195 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2196 2197 nfs4args_copen_free(open_args); 2198 2199 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2200 2201 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2202 2203 ASSERT(nfs4_consistent_type(vp)); 2204 2205 open_owner_rele(oop); 2206 crfree(cr); 2207 crfree(cred_otw); 2208 return; 2209 2210 kill_file: 2211 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2212 failed_reopen: 2213 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2214 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2215 (void *)osp, (void *)cr, rnode4info(rp))); 2216 mutex_enter(&osp->os_sync_lock); 2217 osp->os_failed_reopen = 1; 2218 mutex_exit(&osp->os_sync_lock); 2219 bailout: 2220 if (oop != NULL) { 2221 nfs4_end_open_seqid_sync(oop); 2222 open_owner_rele(oop); 2223 } 2224 if (cr != NULL) 2225 crfree(cr); 2226 if (cred_otw != NULL) 2227 crfree(cred_otw); 2228 } 2229 2230 /* for . and .. OPENs */ 2231 /* ARGSUSED */ 2232 static int 2233 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2234 { 2235 rnode4_t *rp; 2236 nfs4_ga_res_t gar; 2237 2238 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2239 2240 /* 2241 * If close-to-open consistency checking is turned off or 2242 * if there is no cached data, we can avoid 2243 * the over the wire getattr. Otherwise, force a 2244 * call to the server to get fresh attributes and to 2245 * check caches. This is required for close-to-open 2246 * consistency. 2247 */ 2248 rp = VTOR4(*vpp); 2249 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2250 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2251 return (0); 2252 2253 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2254 } 2255 2256 /* 2257 * CLOSE a file 2258 */ 2259 /* ARGSUSED */ 2260 static int 2261 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2262 caller_context_t *ct) 2263 { 2264 rnode4_t *rp; 2265 int error = 0; 2266 int r_error = 0; 2267 int n4error = 0; 2268 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2269 2270 /* 2271 * Remove client state for this (lockowner, file) pair. 2272 * Issue otw v4 call to have the server do the same. 2273 */ 2274 2275 rp = VTOR4(vp); 2276 2277 /* 2278 * zone_enter(2) prevents processes from changing zones with NFS files 2279 * open; if we happen to get here from the wrong zone we can't do 2280 * anything over the wire. 2281 */ 2282 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2283 /* 2284 * We could attempt to clean up locks, except we're sure 2285 * that the current process didn't acquire any locks on 2286 * the file: any attempt to lock a file belong to another zone 2287 * will fail, and one can't lock an NFS file and then change 2288 * zones, as that fails too. 2289 * 2290 * Returning an error here is the sane thing to do. A 2291 * subsequent call to VN_RELE() which translates to a 2292 * nfs4_inactive() will clean up state: if the zone of the 2293 * vnode's origin is still alive and kicking, the inactive 2294 * thread will handle the request (from the correct zone), and 2295 * everything (minus the OTW close call) should be OK. If the 2296 * zone is going away nfs4_async_inactive() will throw away 2297 * delegations, open streams and cached pages inline. 2298 */ 2299 return (EIO); 2300 } 2301 2302 /* 2303 * If we are using local locking for this filesystem, then 2304 * release all of the SYSV style record locks. Otherwise, 2305 * we are doing network locking and we need to release all 2306 * of the network locks. All of the locks held by this 2307 * process on this file are released no matter what the 2308 * incoming reference count is. 2309 */ 2310 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2311 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2312 cleanshares(vp, ttoproc(curthread)->p_pid); 2313 } else 2314 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2315 2316 if (e.error) { 2317 struct lm_sysid *lmsid; 2318 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2319 if (lmsid == NULL) { 2320 DTRACE_PROBE2(unknown__sysid, int, e.error, 2321 vnode_t *, vp); 2322 } else { 2323 cleanlocks(vp, ttoproc(curthread)->p_pid, 2324 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2325 2326 lm_rel_sysid(lmsid); 2327 } 2328 return (e.error); 2329 } 2330 2331 if (count > 1) 2332 return (0); 2333 2334 /* 2335 * If the file has been `unlinked', then purge the 2336 * DNLC so that this vnode will get reycled quicker 2337 * and the .nfs* file on the server will get removed. 2338 */ 2339 if (rp->r_unldvp != NULL) 2340 dnlc_purge_vp(vp); 2341 2342 /* 2343 * If the file was open for write and there are pages, 2344 * do a synchronous flush and commit of all of the 2345 * dirty and uncommitted pages. 2346 */ 2347 ASSERT(!e.error); 2348 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2349 error = nfs4_putpage_commit(vp, 0, 0, cr); 2350 2351 mutex_enter(&rp->r_statelock); 2352 r_error = rp->r_error; 2353 rp->r_error = 0; 2354 mutex_exit(&rp->r_statelock); 2355 2356 /* 2357 * If this file type is one for which no explicit 'open' was 2358 * done, then bail now (ie. no need for protocol 'close'). If 2359 * there was an error w/the vm subsystem, return _that_ error, 2360 * otherwise, return any errors that may've been reported via 2361 * the rnode. 2362 */ 2363 if (vp->v_type != VREG) 2364 return (error ? error : r_error); 2365 2366 /* 2367 * The sync putpage commit may have failed above, but since 2368 * we're working w/a regular file, we need to do the protocol 2369 * 'close' (nfs4close_one will figure out if an otw close is 2370 * needed or not). Report any errors _after_ doing the protocol 2371 * 'close'. 2372 */ 2373 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2374 n4error = e.error ? e.error : geterrno4(e.stat); 2375 2376 /* 2377 * Error reporting prio (Hi -> Lo) 2378 * 2379 * i) nfs4_putpage_commit (error) 2380 * ii) rnode's (r_error) 2381 * iii) nfs4close_one (n4error) 2382 */ 2383 return (error ? error : (r_error ? r_error : n4error)); 2384 } 2385 2386 /* 2387 * Initialize *lost_rqstp. 2388 */ 2389 2390 static void 2391 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2392 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2393 vnode_t *vp) 2394 { 2395 if (error != ETIMEDOUT && error != EINTR && 2396 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2397 lost_rqstp->lr_op = 0; 2398 return; 2399 } 2400 2401 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2402 "nfs4close_save_lost_rqst: error %d", error)); 2403 2404 lost_rqstp->lr_op = OP_CLOSE; 2405 /* 2406 * The vp is held and rele'd via the recovery code. 2407 * See nfs4_save_lost_rqst. 2408 */ 2409 lost_rqstp->lr_vp = vp; 2410 lost_rqstp->lr_dvp = NULL; 2411 lost_rqstp->lr_oop = oop; 2412 lost_rqstp->lr_osp = osp; 2413 ASSERT(osp != NULL); 2414 ASSERT(mutex_owned(&osp->os_sync_lock)); 2415 osp->os_pending_close = 1; 2416 lost_rqstp->lr_lop = NULL; 2417 lost_rqstp->lr_cr = cr; 2418 lost_rqstp->lr_flk = NULL; 2419 lost_rqstp->lr_putfirst = FALSE; 2420 } 2421 2422 /* 2423 * Assumes you already have the open seqid sync grabbed as well as the 2424 * 'os_sync_lock'. Note: this will release the open seqid sync and 2425 * 'os_sync_lock' if client recovery starts. Calling functions have to 2426 * be prepared to handle this. 2427 * 2428 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2429 * was needed and was started, and that the calling function should retry 2430 * this function; otherwise it is returned as 0. 2431 * 2432 * Errors are returned via the nfs4_error_t parameter. 2433 */ 2434 static void 2435 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2436 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2437 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2438 { 2439 COMPOUND4args_clnt args; 2440 COMPOUND4res_clnt res; 2441 CLOSE4args *close_args; 2442 nfs_resop4 *resop; 2443 nfs_argop4 argop[3]; 2444 int doqueue = 1; 2445 mntinfo4_t *mi; 2446 seqid4 seqid; 2447 vnode_t *vp; 2448 bool_t needrecov = FALSE; 2449 nfs4_lost_rqst_t lost_rqst; 2450 hrtime_t t; 2451 2452 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2453 2454 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2455 2456 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2457 2458 /* Only set this to 1 if recovery is started */ 2459 *recov = 0; 2460 2461 /* do the OTW call to close the file */ 2462 2463 if (close_type == CLOSE_RESEND) 2464 args.ctag = TAG_CLOSE_LOST; 2465 else if (close_type == CLOSE_AFTER_RESEND) 2466 args.ctag = TAG_CLOSE_UNDO; 2467 else 2468 args.ctag = TAG_CLOSE; 2469 2470 args.array_len = 3; 2471 args.array = argop; 2472 2473 vp = RTOV4(rp); 2474 2475 mi = VTOMI4(vp); 2476 2477 /* putfh target fh */ 2478 argop[0].argop = OP_CPUTFH; 2479 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2480 2481 argop[1].argop = OP_GETATTR; 2482 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2483 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2484 2485 argop[2].argop = OP_CLOSE; 2486 close_args = &argop[2].nfs_argop4_u.opclose; 2487 2488 seqid = nfs4_get_open_seqid(oop) + 1; 2489 2490 close_args->seqid = seqid; 2491 close_args->open_stateid = osp->open_stateid; 2492 2493 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2494 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2495 rnode4info(rp))); 2496 2497 t = gethrtime(); 2498 2499 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2500 2501 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2502 nfs4_set_open_seqid(seqid, oop, args.ctag); 2503 } 2504 2505 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2506 if (ep->error && !needrecov) { 2507 /* 2508 * if there was an error and no recovery is to be done 2509 * then then set up the file to flush its cache if 2510 * needed for the next caller. 2511 */ 2512 mutex_enter(&rp->r_statelock); 2513 PURGE_ATTRCACHE4_LOCKED(rp); 2514 rp->r_flags &= ~R4WRITEMODIFIED; 2515 mutex_exit(&rp->r_statelock); 2516 return; 2517 } 2518 2519 if (needrecov) { 2520 bool_t abort; 2521 nfs4_bseqid_entry_t *bsep = NULL; 2522 2523 if (close_type != CLOSE_RESEND) 2524 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2525 osp, cred_otw, vp); 2526 2527 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2528 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2529 0, args.ctag, close_args->seqid); 2530 2531 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2532 "nfs4close_otw: initiating recovery. error %d " 2533 "res.status %d", ep->error, res.status)); 2534 2535 /* 2536 * Drop the 'os_sync_lock' here so we don't hit 2537 * a potential recursive mutex_enter via an 2538 * 'open_stream_hold()'. 2539 */ 2540 mutex_exit(&osp->os_sync_lock); 2541 *have_sync_lockp = 0; 2542 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2543 (close_type != CLOSE_RESEND && 2544 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2545 OP_CLOSE, bsep, NULL, NULL); 2546 2547 /* drop open seq sync, and let the calling function regrab it */ 2548 nfs4_end_open_seqid_sync(oop); 2549 *did_start_seqid_syncp = 0; 2550 2551 if (bsep) 2552 kmem_free(bsep, sizeof (*bsep)); 2553 /* 2554 * For signals, the caller wants to quit, so don't say to 2555 * retry. For forced unmount, if it's a user thread, it 2556 * wants to quit. If it's a recovery thread, the retry 2557 * will happen higher-up on the call stack. Either way, 2558 * don't say to retry. 2559 */ 2560 if (abort == FALSE && ep->error != EINTR && 2561 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2562 close_type != CLOSE_RESEND && 2563 close_type != CLOSE_AFTER_RESEND) 2564 *recov = 1; 2565 else 2566 *recov = 0; 2567 2568 if (!ep->error) 2569 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2570 return; 2571 } 2572 2573 if (res.status) { 2574 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2575 return; 2576 } 2577 2578 mutex_enter(&rp->r_statev4_lock); 2579 rp->created_v4 = 0; 2580 mutex_exit(&rp->r_statev4_lock); 2581 2582 resop = &res.array[2]; 2583 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2584 osp->os_valid = 0; 2585 2586 /* 2587 * This removes the reference obtained at OPEN; ie, when the 2588 * open stream structure was created. 2589 * 2590 * We don't have to worry about calling 'open_stream_rele' 2591 * since we our currently holding a reference to the open 2592 * stream which means the count cannot go to 0 with this 2593 * decrement. 2594 */ 2595 ASSERT(osp->os_ref_count >= 2); 2596 osp->os_ref_count--; 2597 2598 if (ep->error == 0) { 2599 /* 2600 * Avoid a deadlock with the r_serial thread waiting for 2601 * os_sync_lock in nfs4_get_otw_cred_by_osp() which might be 2602 * held by us. We will wait in nfs4_attr_cache() for the 2603 * completion of the r_serial thread. 2604 */ 2605 mutex_exit(&osp->os_sync_lock); 2606 *have_sync_lockp = 0; 2607 2608 nfs4_attr_cache(vp, 2609 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2610 t, cred_otw, TRUE, NULL); 2611 } 2612 2613 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2614 " returning %d", ep->error)); 2615 2616 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2617 } 2618 2619 /* ARGSUSED */ 2620 static int 2621 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2622 caller_context_t *ct) 2623 { 2624 rnode4_t *rp; 2625 u_offset_t off; 2626 offset_t diff; 2627 uint_t on; 2628 uint_t n; 2629 caddr_t base; 2630 uint_t flags; 2631 int error; 2632 mntinfo4_t *mi; 2633 2634 rp = VTOR4(vp); 2635 2636 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2637 2638 if (IS_SHADOW(vp, rp)) 2639 vp = RTOV4(rp); 2640 2641 if (vp->v_type != VREG) 2642 return (EISDIR); 2643 2644 mi = VTOMI4(vp); 2645 2646 if (nfs_zone() != mi->mi_zone) 2647 return (EIO); 2648 2649 if (uiop->uio_resid == 0) 2650 return (0); 2651 2652 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2653 return (EINVAL); 2654 2655 mutex_enter(&rp->r_statelock); 2656 if (rp->r_flags & R4RECOVERRP) 2657 error = (rp->r_error ? rp->r_error : EIO); 2658 else 2659 error = 0; 2660 mutex_exit(&rp->r_statelock); 2661 if (error) 2662 return (error); 2663 2664 /* 2665 * Bypass VM if caching has been disabled (e.g., locking) or if 2666 * using client-side direct I/O and the file is not mmap'd and 2667 * there are no cached pages. 2668 */ 2669 if ((vp->v_flag & VNOCACHE) || 2670 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2671 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2672 size_t resid = 0; 2673 2674 return (nfs4read(vp, NULL, uiop->uio_loffset, 2675 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2676 } 2677 2678 error = 0; 2679 2680 do { 2681 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2682 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2683 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2684 2685 if (error = nfs4_validate_caches(vp, cr)) 2686 break; 2687 2688 mutex_enter(&rp->r_statelock); 2689 while (rp->r_flags & R4INCACHEPURGE) { 2690 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2691 mutex_exit(&rp->r_statelock); 2692 return (EINTR); 2693 } 2694 } 2695 diff = rp->r_size - uiop->uio_loffset; 2696 mutex_exit(&rp->r_statelock); 2697 if (diff <= 0) 2698 break; 2699 if (diff < n) 2700 n = (uint_t)diff; 2701 2702 if (vpm_enable) { 2703 /* 2704 * Copy data. 2705 */ 2706 error = vpm_data_copy(vp, off + on, n, uiop, 2707 1, NULL, 0, S_READ); 2708 } else { 2709 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2710 S_READ); 2711 2712 error = uiomove(base + on, n, UIO_READ, uiop); 2713 } 2714 2715 if (!error) { 2716 /* 2717 * If read a whole block or read to eof, 2718 * won't need this buffer again soon. 2719 */ 2720 mutex_enter(&rp->r_statelock); 2721 if (n + on == MAXBSIZE || 2722 uiop->uio_loffset == rp->r_size) 2723 flags = SM_DONTNEED; 2724 else 2725 flags = 0; 2726 mutex_exit(&rp->r_statelock); 2727 if (vpm_enable) { 2728 error = vpm_sync_pages(vp, off, n, flags); 2729 } else { 2730 error = segmap_release(segkmap, base, flags); 2731 } 2732 } else { 2733 if (vpm_enable) { 2734 (void) vpm_sync_pages(vp, off, n, 0); 2735 } else { 2736 (void) segmap_release(segkmap, base, 0); 2737 } 2738 } 2739 } while (!error && uiop->uio_resid > 0); 2740 2741 return (error); 2742 } 2743 2744 /* ARGSUSED */ 2745 static int 2746 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2747 caller_context_t *ct) 2748 { 2749 rlim64_t limit = uiop->uio_llimit; 2750 rnode4_t *rp; 2751 u_offset_t off; 2752 caddr_t base; 2753 uint_t flags; 2754 int remainder; 2755 size_t n; 2756 int on; 2757 int error; 2758 int resid; 2759 u_offset_t offset; 2760 mntinfo4_t *mi; 2761 uint_t bsize; 2762 2763 rp = VTOR4(vp); 2764 2765 if (IS_SHADOW(vp, rp)) 2766 vp = RTOV4(rp); 2767 2768 if (vp->v_type != VREG) 2769 return (EISDIR); 2770 2771 mi = VTOMI4(vp); 2772 2773 if (nfs_zone() != mi->mi_zone) 2774 return (EIO); 2775 2776 if (uiop->uio_resid == 0) 2777 return (0); 2778 2779 mutex_enter(&rp->r_statelock); 2780 if (rp->r_flags & R4RECOVERRP) 2781 error = (rp->r_error ? rp->r_error : EIO); 2782 else 2783 error = 0; 2784 mutex_exit(&rp->r_statelock); 2785 if (error) 2786 return (error); 2787 2788 if (ioflag & FAPPEND) { 2789 struct vattr va; 2790 2791 /* 2792 * Must serialize if appending. 2793 */ 2794 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2795 nfs_rw_exit(&rp->r_rwlock); 2796 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2797 INTR4(vp))) 2798 return (EINTR); 2799 } 2800 2801 va.va_mask = AT_SIZE; 2802 error = nfs4getattr(vp, &va, cr); 2803 if (error) 2804 return (error); 2805 uiop->uio_loffset = va.va_size; 2806 } 2807 2808 offset = uiop->uio_loffset + uiop->uio_resid; 2809 2810 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2811 return (EINVAL); 2812 2813 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2814 limit = MAXOFFSET_T; 2815 2816 /* 2817 * Check to make sure that the process will not exceed 2818 * its limit on file size. It is okay to write up to 2819 * the limit, but not beyond. Thus, the write which 2820 * reaches the limit will be short and the next write 2821 * will return an error. 2822 */ 2823 remainder = 0; 2824 if (offset > uiop->uio_llimit) { 2825 remainder = offset - uiop->uio_llimit; 2826 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2827 if (uiop->uio_resid <= 0) { 2828 proc_t *p = ttoproc(curthread); 2829 2830 uiop->uio_resid += remainder; 2831 mutex_enter(&p->p_lock); 2832 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2833 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2834 mutex_exit(&p->p_lock); 2835 return (EFBIG); 2836 } 2837 } 2838 2839 /* update the change attribute, if we have a write delegation */ 2840 2841 mutex_enter(&rp->r_statev4_lock); 2842 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2843 rp->r_deleg_change++; 2844 2845 mutex_exit(&rp->r_statev4_lock); 2846 2847 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2848 return (EINTR); 2849 2850 /* 2851 * Bypass VM if caching has been disabled (e.g., locking) or if 2852 * using client-side direct I/O and the file is not mmap'd and 2853 * there are no cached pages. 2854 */ 2855 if ((vp->v_flag & VNOCACHE) || 2856 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2857 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2858 size_t bufsize; 2859 int count; 2860 u_offset_t org_offset; 2861 stable_how4 stab_comm; 2862 nfs4_fwrite: 2863 if (rp->r_flags & R4STALE) { 2864 resid = uiop->uio_resid; 2865 offset = uiop->uio_loffset; 2866 error = rp->r_error; 2867 /* 2868 * A close may have cleared r_error, if so, 2869 * propagate ESTALE error return properly 2870 */ 2871 if (error == 0) 2872 error = ESTALE; 2873 goto bottom; 2874 } 2875 2876 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2877 base = kmem_alloc(bufsize, KM_SLEEP); 2878 do { 2879 if (ioflag & FDSYNC) 2880 stab_comm = DATA_SYNC4; 2881 else 2882 stab_comm = FILE_SYNC4; 2883 resid = uiop->uio_resid; 2884 offset = uiop->uio_loffset; 2885 count = MIN(uiop->uio_resid, bufsize); 2886 org_offset = uiop->uio_loffset; 2887 error = uiomove(base, count, UIO_WRITE, uiop); 2888 if (!error) { 2889 error = nfs4write(vp, base, org_offset, 2890 count, cr, &stab_comm); 2891 if (!error) { 2892 mutex_enter(&rp->r_statelock); 2893 if (rp->r_size < uiop->uio_loffset) 2894 rp->r_size = uiop->uio_loffset; 2895 mutex_exit(&rp->r_statelock); 2896 } 2897 } 2898 } while (!error && uiop->uio_resid > 0); 2899 kmem_free(base, bufsize); 2900 goto bottom; 2901 } 2902 2903 bsize = vp->v_vfsp->vfs_bsize; 2904 2905 do { 2906 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2907 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2908 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2909 2910 resid = uiop->uio_resid; 2911 offset = uiop->uio_loffset; 2912 2913 if (rp->r_flags & R4STALE) { 2914 error = rp->r_error; 2915 /* 2916 * A close may have cleared r_error, if so, 2917 * propagate ESTALE error return properly 2918 */ 2919 if (error == 0) 2920 error = ESTALE; 2921 break; 2922 } 2923 2924 /* 2925 * Don't create dirty pages faster than they 2926 * can be cleaned so that the system doesn't 2927 * get imbalanced. If the async queue is 2928 * maxed out, then wait for it to drain before 2929 * creating more dirty pages. Also, wait for 2930 * any threads doing pagewalks in the vop_getattr 2931 * entry points so that they don't block for 2932 * long periods. 2933 */ 2934 mutex_enter(&rp->r_statelock); 2935 while ((mi->mi_max_threads != 0 && 2936 rp->r_awcount > 2 * mi->mi_max_threads) || 2937 rp->r_gcount > 0) { 2938 if (INTR4(vp)) { 2939 klwp_t *lwp = ttolwp(curthread); 2940 2941 if (lwp != NULL) 2942 lwp->lwp_nostop++; 2943 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2944 mutex_exit(&rp->r_statelock); 2945 if (lwp != NULL) 2946 lwp->lwp_nostop--; 2947 error = EINTR; 2948 goto bottom; 2949 } 2950 if (lwp != NULL) 2951 lwp->lwp_nostop--; 2952 } else 2953 cv_wait(&rp->r_cv, &rp->r_statelock); 2954 } 2955 mutex_exit(&rp->r_statelock); 2956 2957 /* 2958 * Touch the page and fault it in if it is not in core 2959 * before segmap_getmapflt or vpm_data_copy can lock it. 2960 * This is to avoid the deadlock if the buffer is mapped 2961 * to the same file through mmap which we want to write. 2962 */ 2963 uio_prefaultpages((long)n, uiop); 2964 2965 if (vpm_enable) { 2966 /* 2967 * It will use kpm mappings, so no need to 2968 * pass an address. 2969 */ 2970 error = writerp4(rp, NULL, n, uiop, 0); 2971 } else { 2972 if (segmap_kpm) { 2973 int pon = uiop->uio_loffset & PAGEOFFSET; 2974 size_t pn = MIN(PAGESIZE - pon, 2975 uiop->uio_resid); 2976 int pagecreate; 2977 2978 mutex_enter(&rp->r_statelock); 2979 pagecreate = (pon == 0) && (pn == PAGESIZE || 2980 uiop->uio_loffset + pn >= rp->r_size); 2981 mutex_exit(&rp->r_statelock); 2982 2983 base = segmap_getmapflt(segkmap, vp, off + on, 2984 pn, !pagecreate, S_WRITE); 2985 2986 error = writerp4(rp, base + pon, n, uiop, 2987 pagecreate); 2988 2989 } else { 2990 base = segmap_getmapflt(segkmap, vp, off + on, 2991 n, 0, S_READ); 2992 error = writerp4(rp, base + on, n, uiop, 0); 2993 } 2994 } 2995 2996 if (!error) { 2997 if (mi->mi_flags & MI4_NOAC) 2998 flags = SM_WRITE; 2999 else if ((uiop->uio_loffset % bsize) == 0 || 3000 IS_SWAPVP(vp)) { 3001 /* 3002 * Have written a whole block. 3003 * Start an asynchronous write 3004 * and mark the buffer to 3005 * indicate that it won't be 3006 * needed again soon. 3007 */ 3008 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 3009 } else 3010 flags = 0; 3011 if ((ioflag & (FSYNC|FDSYNC)) || 3012 (rp->r_flags & R4OUTOFSPACE)) { 3013 flags &= ~SM_ASYNC; 3014 flags |= SM_WRITE; 3015 } 3016 if (vpm_enable) { 3017 error = vpm_sync_pages(vp, off, n, flags); 3018 } else { 3019 error = segmap_release(segkmap, base, flags); 3020 } 3021 } else { 3022 if (vpm_enable) { 3023 (void) vpm_sync_pages(vp, off, n, 0); 3024 } else { 3025 (void) segmap_release(segkmap, base, 0); 3026 } 3027 /* 3028 * In the event that we got an access error while 3029 * faulting in a page for a write-only file just 3030 * force a write. 3031 */ 3032 if (error == EACCES) 3033 goto nfs4_fwrite; 3034 } 3035 } while (!error && uiop->uio_resid > 0); 3036 3037 bottom: 3038 if (error) { 3039 uiop->uio_resid = resid + remainder; 3040 uiop->uio_loffset = offset; 3041 } else { 3042 uiop->uio_resid += remainder; 3043 3044 mutex_enter(&rp->r_statev4_lock); 3045 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3046 gethrestime(&rp->r_attr.va_mtime); 3047 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3048 } 3049 mutex_exit(&rp->r_statev4_lock); 3050 } 3051 3052 nfs_rw_exit(&rp->r_lkserlock); 3053 3054 return (error); 3055 } 3056 3057 /* 3058 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3059 */ 3060 static int 3061 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3062 int flags, cred_t *cr) 3063 { 3064 struct buf *bp; 3065 int error; 3066 page_t *savepp; 3067 uchar_t fsdata; 3068 stable_how4 stab_comm; 3069 3070 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3071 bp = pageio_setup(pp, len, vp, flags); 3072 ASSERT(bp != NULL); 3073 3074 /* 3075 * pageio_setup should have set b_addr to 0. This 3076 * is correct since we want to do I/O on a page 3077 * boundary. bp_mapin will use this addr to calculate 3078 * an offset, and then set b_addr to the kernel virtual 3079 * address it allocated for us. 3080 */ 3081 ASSERT(bp->b_un.b_addr == 0); 3082 3083 bp->b_edev = 0; 3084 bp->b_dev = 0; 3085 bp->b_lblkno = lbtodb(off); 3086 bp->b_file = vp; 3087 bp->b_offset = (offset_t)off; 3088 bp_mapin(bp); 3089 3090 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3091 freemem > desfree) 3092 stab_comm = UNSTABLE4; 3093 else 3094 stab_comm = FILE_SYNC4; 3095 3096 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3097 3098 bp_mapout(bp); 3099 pageio_done(bp); 3100 3101 if (stab_comm == UNSTABLE4) 3102 fsdata = C_DELAYCOMMIT; 3103 else 3104 fsdata = C_NOCOMMIT; 3105 3106 savepp = pp; 3107 do { 3108 pp->p_fsdata = fsdata; 3109 } while ((pp = pp->p_next) != savepp); 3110 3111 return (error); 3112 } 3113 3114 /* 3115 */ 3116 static int 3117 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3118 { 3119 nfs4_open_owner_t *oop; 3120 nfs4_open_stream_t *osp; 3121 rnode4_t *rp = VTOR4(vp); 3122 mntinfo4_t *mi = VTOMI4(vp); 3123 int reopen_needed; 3124 3125 ASSERT(nfs_zone() == mi->mi_zone); 3126 3127 3128 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3129 if (!oop) 3130 return (EIO); 3131 3132 /* returns with 'os_sync_lock' held */ 3133 osp = find_open_stream(oop, rp); 3134 if (!osp) { 3135 open_owner_rele(oop); 3136 return (EIO); 3137 } 3138 3139 if (osp->os_failed_reopen) { 3140 mutex_exit(&osp->os_sync_lock); 3141 open_stream_rele(osp, rp); 3142 open_owner_rele(oop); 3143 return (EIO); 3144 } 3145 3146 /* 3147 * Determine whether a reopen is needed. If this 3148 * is a delegation open stream, then the os_delegation bit 3149 * should be set. 3150 */ 3151 3152 reopen_needed = osp->os_delegation; 3153 3154 mutex_exit(&osp->os_sync_lock); 3155 open_owner_rele(oop); 3156 3157 if (reopen_needed) { 3158 nfs4_error_zinit(ep); 3159 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3160 mutex_enter(&osp->os_sync_lock); 3161 if (ep->error || ep->stat || osp->os_failed_reopen) { 3162 mutex_exit(&osp->os_sync_lock); 3163 open_stream_rele(osp, rp); 3164 return (EIO); 3165 } 3166 mutex_exit(&osp->os_sync_lock); 3167 } 3168 open_stream_rele(osp, rp); 3169 3170 return (0); 3171 } 3172 3173 /* 3174 * Write to file. Writes to remote server in largest size 3175 * chunks that the server can handle. Write is synchronous. 3176 */ 3177 static int 3178 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3179 stable_how4 *stab_comm) 3180 { 3181 mntinfo4_t *mi; 3182 COMPOUND4args_clnt args; 3183 COMPOUND4res_clnt res; 3184 WRITE4args *wargs; 3185 WRITE4res *wres; 3186 nfs_argop4 argop[2]; 3187 nfs_resop4 *resop; 3188 int tsize; 3189 stable_how4 stable; 3190 rnode4_t *rp; 3191 int doqueue = 1; 3192 bool_t needrecov; 3193 nfs4_recov_state_t recov_state; 3194 nfs4_stateid_types_t sid_types; 3195 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3196 int recov; 3197 3198 rp = VTOR4(vp); 3199 mi = VTOMI4(vp); 3200 3201 ASSERT(nfs_zone() == mi->mi_zone); 3202 3203 stable = *stab_comm; 3204 *stab_comm = FILE_SYNC4; 3205 3206 needrecov = FALSE; 3207 recov_state.rs_flags = 0; 3208 recov_state.rs_num_retry_despite_err = 0; 3209 nfs4_init_stateid_types(&sid_types); 3210 3211 /* Is curthread the recovery thread? */ 3212 mutex_enter(&mi->mi_lock); 3213 recov = (mi->mi_recovthread == curthread); 3214 mutex_exit(&mi->mi_lock); 3215 3216 recov_retry: 3217 args.ctag = TAG_WRITE; 3218 args.array_len = 2; 3219 args.array = argop; 3220 3221 if (!recov) { 3222 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3223 &recov_state, NULL); 3224 if (e.error) 3225 return (e.error); 3226 } 3227 3228 /* 0. putfh target fh */ 3229 argop[0].argop = OP_CPUTFH; 3230 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3231 3232 /* 1. write */ 3233 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3234 3235 do { 3236 3237 wargs->offset = (offset4)offset; 3238 wargs->data_val = base; 3239 3240 if (mi->mi_io_kstats) { 3241 mutex_enter(&mi->mi_lock); 3242 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3243 mutex_exit(&mi->mi_lock); 3244 } 3245 3246 if ((vp->v_flag & VNOCACHE) || 3247 (rp->r_flags & R4DIRECTIO) || 3248 (mi->mi_flags & MI4_DIRECTIO)) 3249 tsize = MIN(mi->mi_stsize, count); 3250 else 3251 tsize = MIN(mi->mi_curwrite, count); 3252 wargs->data_len = (uint_t)tsize; 3253 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3254 3255 if (mi->mi_io_kstats) { 3256 mutex_enter(&mi->mi_lock); 3257 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3258 mutex_exit(&mi->mi_lock); 3259 } 3260 3261 if (!recov) { 3262 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3263 if (e.error && !needrecov) { 3264 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3265 &recov_state, needrecov); 3266 return (e.error); 3267 } 3268 } else { 3269 if (e.error) 3270 return (e.error); 3271 } 3272 3273 /* 3274 * Do handling of OLD_STATEID outside 3275 * of the normal recovery framework. 3276 * 3277 * If write receives a BAD stateid error while using a 3278 * delegation stateid, retry using the open stateid (if it 3279 * exists). If it doesn't have an open stateid, reopen the 3280 * file first, then retry. 3281 */ 3282 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3283 sid_types.cur_sid_type != SPEC_SID) { 3284 nfs4_save_stateid(&wargs->stateid, &sid_types); 3285 if (!recov) 3286 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3287 &recov_state, needrecov); 3288 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3289 goto recov_retry; 3290 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3291 sid_types.cur_sid_type == DEL_SID) { 3292 nfs4_save_stateid(&wargs->stateid, &sid_types); 3293 mutex_enter(&rp->r_statev4_lock); 3294 rp->r_deleg_return_pending = TRUE; 3295 mutex_exit(&rp->r_statev4_lock); 3296 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3297 if (!recov) 3298 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3299 &recov_state, needrecov); 3300 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3301 return (EIO); 3302 } 3303 if (!recov) 3304 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3305 &recov_state, needrecov); 3306 /* hold needed for nfs4delegreturn_thread */ 3307 VN_HOLD(vp); 3308 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3309 NFS4_DR_DISCARD), FALSE); 3310 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3311 goto recov_retry; 3312 } 3313 3314 if (needrecov) { 3315 bool_t abort; 3316 3317 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3318 "nfs4write: client got error %d, res.status %d" 3319 ", so start recovery", e.error, res.status)); 3320 3321 abort = nfs4_start_recovery(&e, 3322 VTOMI4(vp), vp, NULL, &wargs->stateid, 3323 NULL, OP_WRITE, NULL, NULL, NULL); 3324 if (!e.error) { 3325 e.error = geterrno4(res.status); 3326 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3327 } 3328 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3329 &recov_state, needrecov); 3330 if (abort == FALSE) 3331 goto recov_retry; 3332 return (e.error); 3333 } 3334 3335 if (res.status) { 3336 e.error = geterrno4(res.status); 3337 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3338 if (!recov) 3339 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3340 &recov_state, needrecov); 3341 return (e.error); 3342 } 3343 3344 resop = &res.array[1]; /* write res */ 3345 wres = &resop->nfs_resop4_u.opwrite; 3346 3347 if ((int)wres->count > tsize) { 3348 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3349 3350 zcmn_err(getzoneid(), CE_WARN, 3351 "nfs4write: server wrote %u, requested was %u", 3352 (int)wres->count, tsize); 3353 if (!recov) 3354 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3355 &recov_state, needrecov); 3356 return (EIO); 3357 } 3358 if (wres->committed == UNSTABLE4) { 3359 *stab_comm = UNSTABLE4; 3360 if (wargs->stable == DATA_SYNC4 || 3361 wargs->stable == FILE_SYNC4) { 3362 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3363 zcmn_err(getzoneid(), CE_WARN, 3364 "nfs4write: server %s did not commit " 3365 "to stable storage", 3366 rp->r_server->sv_hostname); 3367 if (!recov) 3368 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3369 OH_WRITE, &recov_state, needrecov); 3370 return (EIO); 3371 } 3372 } 3373 3374 tsize = (int)wres->count; 3375 count -= tsize; 3376 base += tsize; 3377 offset += tsize; 3378 if (mi->mi_io_kstats) { 3379 mutex_enter(&mi->mi_lock); 3380 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3381 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3382 tsize; 3383 mutex_exit(&mi->mi_lock); 3384 } 3385 lwp_stat_update(LWP_STAT_OUBLK, 1); 3386 mutex_enter(&rp->r_statelock); 3387 if (rp->r_flags & R4HAVEVERF) { 3388 if (rp->r_writeverf != wres->writeverf) { 3389 nfs4_set_mod(vp); 3390 rp->r_writeverf = wres->writeverf; 3391 } 3392 } else { 3393 rp->r_writeverf = wres->writeverf; 3394 rp->r_flags |= R4HAVEVERF; 3395 } 3396 PURGE_ATTRCACHE4_LOCKED(rp); 3397 rp->r_flags |= R4WRITEMODIFIED; 3398 gethrestime(&rp->r_attr.va_mtime); 3399 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3400 mutex_exit(&rp->r_statelock); 3401 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3402 } while (count); 3403 3404 if (!recov) 3405 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3406 needrecov); 3407 3408 return (e.error); 3409 } 3410 3411 /* 3412 * Read from a file. Reads data in largest chunks our interface can handle. 3413 */ 3414 static int 3415 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3416 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3417 { 3418 mntinfo4_t *mi; 3419 COMPOUND4args_clnt args; 3420 COMPOUND4res_clnt res; 3421 READ4args *rargs; 3422 nfs_argop4 argop[2]; 3423 int tsize; 3424 int doqueue; 3425 rnode4_t *rp; 3426 int data_len; 3427 bool_t is_eof; 3428 bool_t needrecov = FALSE; 3429 nfs4_recov_state_t recov_state; 3430 nfs4_stateid_types_t sid_types; 3431 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3432 3433 rp = VTOR4(vp); 3434 mi = VTOMI4(vp); 3435 doqueue = 1; 3436 3437 ASSERT(nfs_zone() == mi->mi_zone); 3438 3439 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3440 3441 args.array_len = 2; 3442 args.array = argop; 3443 3444 nfs4_init_stateid_types(&sid_types); 3445 3446 recov_state.rs_flags = 0; 3447 recov_state.rs_num_retry_despite_err = 0; 3448 3449 recov_retry: 3450 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3451 &recov_state, NULL); 3452 if (e.error) 3453 return (e.error); 3454 3455 /* putfh target fh */ 3456 argop[0].argop = OP_CPUTFH; 3457 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3458 3459 /* read */ 3460 argop[1].argop = OP_READ; 3461 rargs = &argop[1].nfs_argop4_u.opread; 3462 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3463 OP_READ, &sid_types, async); 3464 3465 do { 3466 if (mi->mi_io_kstats) { 3467 mutex_enter(&mi->mi_lock); 3468 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3469 mutex_exit(&mi->mi_lock); 3470 } 3471 3472 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3473 "nfs4read: %s call, rp %s", 3474 needrecov ? "recov" : "first", 3475 rnode4info(rp))); 3476 3477 if ((vp->v_flag & VNOCACHE) || 3478 (rp->r_flags & R4DIRECTIO) || 3479 (mi->mi_flags & MI4_DIRECTIO)) 3480 tsize = MIN(mi->mi_tsize, count); 3481 else 3482 tsize = MIN(mi->mi_curread, count); 3483 3484 rargs->offset = (offset4)offset; 3485 rargs->count = (count4)tsize; 3486 rargs->res_data_val_alt = NULL; 3487 rargs->res_mblk = NULL; 3488 rargs->res_uiop = NULL; 3489 rargs->res_maxsize = 0; 3490 rargs->wlist = NULL; 3491 3492 if (uiop) 3493 rargs->res_uiop = uiop; 3494 else 3495 rargs->res_data_val_alt = base; 3496 rargs->res_maxsize = tsize; 3497 3498 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3499 #ifdef DEBUG 3500 if (nfs4read_error_inject) { 3501 res.status = nfs4read_error_inject; 3502 nfs4read_error_inject = 0; 3503 } 3504 #endif 3505 3506 if (mi->mi_io_kstats) { 3507 mutex_enter(&mi->mi_lock); 3508 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3509 mutex_exit(&mi->mi_lock); 3510 } 3511 3512 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3513 if (e.error != 0 && !needrecov) { 3514 nfs4_end_fop(mi, vp, NULL, OH_READ, 3515 &recov_state, needrecov); 3516 return (e.error); 3517 } 3518 3519 /* 3520 * Do proper retry for OLD and BAD stateid errors outside 3521 * of the normal recovery framework. There are two differences 3522 * between async and sync reads. The first is that we allow 3523 * retry on BAD_STATEID for async reads, but not sync reads. 3524 * The second is that we mark the file dead for a failed 3525 * attempt with a special stateid for sync reads, but just 3526 * return EIO for async reads. 3527 * 3528 * If a sync read receives a BAD stateid error while using a 3529 * delegation stateid, retry using the open stateid (if it 3530 * exists). If it doesn't have an open stateid, reopen the 3531 * file first, then retry. 3532 */ 3533 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3534 res.status == NFS4ERR_BAD_STATEID) && async) { 3535 nfs4_end_fop(mi, vp, NULL, OH_READ, 3536 &recov_state, needrecov); 3537 if (sid_types.cur_sid_type == SPEC_SID) { 3538 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3539 return (EIO); 3540 } 3541 nfs4_save_stateid(&rargs->stateid, &sid_types); 3542 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3543 goto recov_retry; 3544 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3545 !async && sid_types.cur_sid_type != SPEC_SID) { 3546 nfs4_save_stateid(&rargs->stateid, &sid_types); 3547 nfs4_end_fop(mi, vp, NULL, OH_READ, 3548 &recov_state, needrecov); 3549 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3550 goto recov_retry; 3551 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3552 sid_types.cur_sid_type == DEL_SID) { 3553 nfs4_save_stateid(&rargs->stateid, &sid_types); 3554 mutex_enter(&rp->r_statev4_lock); 3555 rp->r_deleg_return_pending = TRUE; 3556 mutex_exit(&rp->r_statev4_lock); 3557 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3558 nfs4_end_fop(mi, vp, NULL, OH_READ, 3559 &recov_state, needrecov); 3560 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3561 return (EIO); 3562 } 3563 nfs4_end_fop(mi, vp, NULL, OH_READ, 3564 &recov_state, needrecov); 3565 /* hold needed for nfs4delegreturn_thread */ 3566 VN_HOLD(vp); 3567 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3568 NFS4_DR_DISCARD), FALSE); 3569 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3570 goto recov_retry; 3571 } 3572 if (needrecov) { 3573 bool_t abort; 3574 3575 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3576 "nfs4read: initiating recovery\n")); 3577 abort = nfs4_start_recovery(&e, 3578 mi, vp, NULL, &rargs->stateid, 3579 NULL, OP_READ, NULL, NULL, NULL); 3580 nfs4_end_fop(mi, vp, NULL, OH_READ, 3581 &recov_state, needrecov); 3582 /* 3583 * Do not retry if we got OLD_STATEID using a special 3584 * stateid. This avoids looping with a broken server. 3585 */ 3586 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3587 sid_types.cur_sid_type == SPEC_SID) 3588 abort = TRUE; 3589 3590 if (abort == FALSE) { 3591 /* 3592 * Need to retry all possible stateids in 3593 * case the recovery error wasn't stateid 3594 * related or the stateids have become 3595 * stale (server reboot). 3596 */ 3597 nfs4_init_stateid_types(&sid_types); 3598 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3599 goto recov_retry; 3600 } 3601 3602 if (!e.error) { 3603 e.error = geterrno4(res.status); 3604 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3605 } 3606 return (e.error); 3607 } 3608 3609 if (res.status) { 3610 e.error = geterrno4(res.status); 3611 nfs4_end_fop(mi, vp, NULL, OH_READ, 3612 &recov_state, needrecov); 3613 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3614 return (e.error); 3615 } 3616 3617 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3618 count -= data_len; 3619 if (base) 3620 base += data_len; 3621 offset += data_len; 3622 if (mi->mi_io_kstats) { 3623 mutex_enter(&mi->mi_lock); 3624 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3625 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3626 mutex_exit(&mi->mi_lock); 3627 } 3628 lwp_stat_update(LWP_STAT_INBLK, 1); 3629 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3630 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3631 3632 } while (count && !is_eof); 3633 3634 *residp = count; 3635 3636 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3637 3638 return (e.error); 3639 } 3640 3641 /* ARGSUSED */ 3642 static int 3643 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3644 caller_context_t *ct) 3645 { 3646 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3647 return (EIO); 3648 switch (cmd) { 3649 case _FIODIRECTIO: 3650 return (nfs4_directio(vp, (int)arg, cr)); 3651 default: 3652 return (ENOTTY); 3653 } 3654 } 3655 3656 /* ARGSUSED */ 3657 int 3658 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3659 caller_context_t *ct) 3660 { 3661 int error; 3662 rnode4_t *rp = VTOR4(vp); 3663 3664 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3665 return (EIO); 3666 /* 3667 * If it has been specified that the return value will 3668 * just be used as a hint, and we are only being asked 3669 * for size, fsid or rdevid, then return the client's 3670 * notion of these values without checking to make sure 3671 * that the attribute cache is up to date. 3672 * The whole point is to avoid an over the wire GETATTR 3673 * call. 3674 */ 3675 if (flags & ATTR_HINT) { 3676 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3677 mutex_enter(&rp->r_statelock); 3678 if (vap->va_mask & AT_SIZE) 3679 vap->va_size = rp->r_size; 3680 if (vap->va_mask & AT_FSID) 3681 vap->va_fsid = rp->r_attr.va_fsid; 3682 if (vap->va_mask & AT_RDEV) 3683 vap->va_rdev = rp->r_attr.va_rdev; 3684 mutex_exit(&rp->r_statelock); 3685 return (0); 3686 } 3687 } 3688 3689 /* 3690 * Only need to flush pages if asking for the mtime 3691 * and if there any dirty pages or any outstanding 3692 * asynchronous (write) requests for this file. 3693 */ 3694 if (vap->va_mask & AT_MTIME) { 3695 rp = VTOR4(vp); 3696 if (nfs4_has_pages(vp)) { 3697 mutex_enter(&rp->r_statev4_lock); 3698 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3699 mutex_exit(&rp->r_statev4_lock); 3700 if (rp->r_flags & R4DIRTY || 3701 rp->r_awcount > 0) { 3702 mutex_enter(&rp->r_statelock); 3703 rp->r_gcount++; 3704 mutex_exit(&rp->r_statelock); 3705 error = 3706 nfs4_putpage(vp, (u_offset_t)0, 3707 0, 0, cr, NULL); 3708 mutex_enter(&rp->r_statelock); 3709 if (error && (error == ENOSPC || 3710 error == EDQUOT)) { 3711 if (!rp->r_error) 3712 rp->r_error = error; 3713 } 3714 if (--rp->r_gcount == 0) 3715 cv_broadcast(&rp->r_cv); 3716 mutex_exit(&rp->r_statelock); 3717 } 3718 } else { 3719 mutex_exit(&rp->r_statev4_lock); 3720 } 3721 } 3722 } 3723 return (nfs4getattr(vp, vap, cr)); 3724 } 3725 3726 int 3727 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3728 { 3729 /* 3730 * If these are the only two bits cleared 3731 * on the server then return 0 (OK) else 3732 * return 1 (BAD). 3733 */ 3734 on_client &= ~(S_ISUID|S_ISGID); 3735 if (on_client == from_server) 3736 return (0); 3737 else 3738 return (1); 3739 } 3740 3741 /*ARGSUSED4*/ 3742 static int 3743 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3744 caller_context_t *ct) 3745 { 3746 int error; 3747 3748 if (vap->va_mask & AT_NOSET) 3749 return (EINVAL); 3750 3751 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3752 return (EIO); 3753 3754 /* 3755 * Don't call secpolicy_vnode_setattr, the client cannot 3756 * use its cached attributes to make security decisions 3757 * as the server may be faking mode bits or mapping uid/gid. 3758 * Always just let the server to the checking. 3759 * If we provide the ability to remove basic priviledges 3760 * to setattr (e.g. basic without chmod) then we will 3761 * need to add a check here before calling the server. 3762 */ 3763 error = nfs4setattr(vp, vap, flags, cr, NULL); 3764 3765 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3766 vnevent_truncate(vp, ct); 3767 3768 return (error); 3769 } 3770 3771 /* 3772 * To replace the "guarded" version 3 setattr, we use two types of compound 3773 * setattr requests: 3774 * 1. The "normal" setattr, used when the size of the file isn't being 3775 * changed - { Putfh <fh>; Setattr; Getattr }/ 3776 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3777 * with only ctime as the argument. If the server ctime differs from 3778 * what is cached on the client, the verify will fail, but we would 3779 * already have the ctime from the preceding getattr, so just set it 3780 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3781 * Setattr; Getattr }. 3782 * 3783 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3784 * this setattr and NULL if they are not. 3785 */ 3786 static int 3787 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3788 vsecattr_t *vsap) 3789 { 3790 COMPOUND4args_clnt args; 3791 COMPOUND4res_clnt res, *resp = NULL; 3792 nfs4_ga_res_t *garp = NULL; 3793 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3794 nfs_argop4 argop[5]; 3795 int verify_argop = -1; 3796 int setattr_argop = 1; 3797 nfs_resop4 *resop; 3798 vattr_t va; 3799 rnode4_t *rp; 3800 int doqueue = 1; 3801 uint_t mask = vap->va_mask; 3802 mode_t omode; 3803 vsecattr_t *vsp; 3804 timestruc_t ctime; 3805 bool_t needrecov = FALSE; 3806 nfs4_recov_state_t recov_state; 3807 nfs4_stateid_types_t sid_types; 3808 stateid4 stateid; 3809 hrtime_t t; 3810 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3811 servinfo4_t *svp; 3812 bitmap4 supp_attrs; 3813 3814 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3815 rp = VTOR4(vp); 3816 nfs4_init_stateid_types(&sid_types); 3817 3818 /* 3819 * Only need to flush pages if there are any pages and 3820 * if the file is marked as dirty in some fashion. The 3821 * file must be flushed so that we can accurately 3822 * determine the size of the file and the cached data 3823 * after the SETATTR returns. A file is considered to 3824 * be dirty if it is either marked with R4DIRTY, has 3825 * outstanding i/o's active, or is mmap'd. In this 3826 * last case, we can't tell whether there are dirty 3827 * pages, so we flush just to be sure. 3828 */ 3829 if (nfs4_has_pages(vp) && 3830 ((rp->r_flags & R4DIRTY) || 3831 rp->r_count > 0 || 3832 rp->r_mapcnt > 0)) { 3833 ASSERT(vp->v_type != VCHR); 3834 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3835 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3836 mutex_enter(&rp->r_statelock); 3837 if (!rp->r_error) 3838 rp->r_error = e.error; 3839 mutex_exit(&rp->r_statelock); 3840 } 3841 } 3842 3843 if (mask & AT_SIZE) { 3844 /* 3845 * Verification setattr compound for non-deleg AT_SIZE: 3846 * { Putfh; Getattr; Verify; Setattr; Getattr } 3847 * Set ctime local here (outside the do_again label) 3848 * so that subsequent retries (after failed VERIFY) 3849 * will use ctime from GETATTR results (from failed 3850 * verify compound) as VERIFY arg. 3851 * If file has delegation, then VERIFY(time_metadata) 3852 * is of little added value, so don't bother. 3853 */ 3854 mutex_enter(&rp->r_statev4_lock); 3855 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3856 rp->r_deleg_return_pending) { 3857 numops = 5; 3858 ctime = rp->r_attr.va_ctime; 3859 } 3860 mutex_exit(&rp->r_statev4_lock); 3861 } 3862 3863 recov_state.rs_flags = 0; 3864 recov_state.rs_num_retry_despite_err = 0; 3865 3866 args.ctag = TAG_SETATTR; 3867 do_again: 3868 recov_retry: 3869 setattr_argop = numops - 2; 3870 3871 args.array = argop; 3872 args.array_len = numops; 3873 3874 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3875 if (e.error) 3876 return (e.error); 3877 3878 3879 /* putfh target fh */ 3880 argop[0].argop = OP_CPUTFH; 3881 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3882 3883 if (numops == 5) { 3884 /* 3885 * We only care about the ctime, but need to get mtime 3886 * and size for proper cache update. 3887 */ 3888 /* getattr */ 3889 argop[1].argop = OP_GETATTR; 3890 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3891 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3892 3893 /* verify - set later in loop */ 3894 verify_argop = 2; 3895 } 3896 3897 /* setattr */ 3898 svp = rp->r_server; 3899 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3900 supp_attrs = svp->sv_supp_attrs; 3901 nfs_rw_exit(&svp->sv_lock); 3902 3903 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3904 supp_attrs, &e.error, &sid_types); 3905 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3906 if (e.error) { 3907 /* req time field(s) overflow - return immediately */ 3908 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3909 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3910 opsetattr.obj_attributes); 3911 return (e.error); 3912 } 3913 omode = rp->r_attr.va_mode; 3914 3915 /* getattr */ 3916 argop[numops-1].argop = OP_GETATTR; 3917 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3918 /* 3919 * If we are setting the ACL (indicated only by vsap != NULL), request 3920 * the ACL in this getattr. The ACL returned from this getattr will be 3921 * used in updating the ACL cache. 3922 */ 3923 if (vsap != NULL) 3924 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3925 FATTR4_ACL_MASK; 3926 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3927 3928 /* 3929 * setattr iterates if the object size is set and the cached ctime 3930 * does not match the file ctime. In that case, verify the ctime first. 3931 */ 3932 3933 do { 3934 if (verify_argop != -1) { 3935 /* 3936 * Verify that the ctime match before doing setattr. 3937 */ 3938 va.va_mask = AT_CTIME; 3939 va.va_ctime = ctime; 3940 svp = rp->r_server; 3941 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3942 supp_attrs = svp->sv_supp_attrs; 3943 nfs_rw_exit(&svp->sv_lock); 3944 e.error = nfs4args_verify(&argop[verify_argop], &va, 3945 OP_VERIFY, supp_attrs); 3946 if (e.error) { 3947 /* req time field(s) overflow - return */ 3948 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3949 needrecov); 3950 break; 3951 } 3952 } 3953 3954 doqueue = 1; 3955 3956 t = gethrtime(); 3957 3958 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3959 3960 /* 3961 * Purge the access cache and ACL cache if changing either the 3962 * owner of the file, the group owner, or the mode. These may 3963 * change the access permissions of the file, so purge old 3964 * information and start over again. 3965 */ 3966 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3967 (void) nfs4_access_purge_rp(rp); 3968 if (rp->r_secattr != NULL) { 3969 mutex_enter(&rp->r_statelock); 3970 vsp = rp->r_secattr; 3971 rp->r_secattr = NULL; 3972 mutex_exit(&rp->r_statelock); 3973 if (vsp != NULL) 3974 nfs4_acl_free_cache(vsp); 3975 } 3976 } 3977 3978 /* 3979 * If res.array_len == numops, then everything succeeded, 3980 * except for possibly the final getattr. If only the 3981 * last getattr failed, give up, and don't try recovery. 3982 */ 3983 if (res.array_len == numops) { 3984 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3985 needrecov); 3986 if (! e.error) 3987 resp = &res; 3988 break; 3989 } 3990 3991 /* 3992 * if either rpc call failed or completely succeeded - done 3993 */ 3994 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3995 if (e.error) { 3996 PURGE_ATTRCACHE4(vp); 3997 if (!needrecov) { 3998 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3999 needrecov); 4000 break; 4001 } 4002 } 4003 4004 /* 4005 * Do proper retry for OLD_STATEID outside of the normal 4006 * recovery framework. 4007 */ 4008 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4009 sid_types.cur_sid_type != SPEC_SID && 4010 sid_types.cur_sid_type != NO_SID) { 4011 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4012 needrecov); 4013 nfs4_save_stateid(&stateid, &sid_types); 4014 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4015 opsetattr.obj_attributes); 4016 if (verify_argop != -1) { 4017 nfs4args_verify_free(&argop[verify_argop]); 4018 verify_argop = -1; 4019 } 4020 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4021 goto recov_retry; 4022 } 4023 4024 if (needrecov) { 4025 bool_t abort; 4026 4027 abort = nfs4_start_recovery(&e, 4028 VTOMI4(vp), vp, NULL, NULL, NULL, 4029 OP_SETATTR, NULL, NULL, NULL); 4030 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4031 needrecov); 4032 /* 4033 * Do not retry if we failed with OLD_STATEID using 4034 * a special stateid. This is done to avoid looping 4035 * with a broken server. 4036 */ 4037 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4038 (sid_types.cur_sid_type == SPEC_SID || 4039 sid_types.cur_sid_type == NO_SID)) 4040 abort = TRUE; 4041 if (!e.error) { 4042 if (res.status == NFS4ERR_BADOWNER) 4043 nfs4_log_badowner(VTOMI4(vp), 4044 OP_SETATTR); 4045 4046 e.error = geterrno4(res.status); 4047 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4048 } 4049 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4050 opsetattr.obj_attributes); 4051 if (verify_argop != -1) { 4052 nfs4args_verify_free(&argop[verify_argop]); 4053 verify_argop = -1; 4054 } 4055 if (abort == FALSE) { 4056 /* 4057 * Need to retry all possible stateids in 4058 * case the recovery error wasn't stateid 4059 * related or the stateids have become 4060 * stale (server reboot). 4061 */ 4062 nfs4_init_stateid_types(&sid_types); 4063 goto recov_retry; 4064 } 4065 return (e.error); 4066 } 4067 4068 /* 4069 * Need to call nfs4_end_op before nfs4getattr to 4070 * avoid potential nfs4_start_op deadlock. See RFE 4071 * 4777612. Calls to nfs4_invalidate_pages() and 4072 * nfs4_purge_stale_fh() might also generate over the 4073 * wire calls which my cause nfs4_start_op() deadlock. 4074 */ 4075 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4076 4077 /* 4078 * Check to update lease. 4079 */ 4080 resp = &res; 4081 if (res.status == NFS4_OK) { 4082 break; 4083 } 4084 4085 /* 4086 * Check if verify failed to see if try again 4087 */ 4088 if ((verify_argop == -1) || (res.array_len != 3)) { 4089 /* 4090 * can't continue... 4091 */ 4092 if (res.status == NFS4ERR_BADOWNER) 4093 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4094 4095 e.error = geterrno4(res.status); 4096 } else { 4097 /* 4098 * When the verify request fails, the client ctime is 4099 * not in sync with the server. This is the same as 4100 * the version 3 "not synchronized" error, and we 4101 * handle it in a similar manner (XXX do we need to???). 4102 * Use the ctime returned in the first getattr for 4103 * the input to the next verify. 4104 * If we couldn't get the attributes, then we give up 4105 * because we can't complete the operation as required. 4106 */ 4107 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4108 } 4109 if (e.error) { 4110 PURGE_ATTRCACHE4(vp); 4111 nfs4_purge_stale_fh(e.error, vp, cr); 4112 } else { 4113 /* 4114 * retry with a new verify value 4115 */ 4116 ctime = garp->n4g_va.va_ctime; 4117 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4118 resp = NULL; 4119 } 4120 if (!e.error) { 4121 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4122 opsetattr.obj_attributes); 4123 if (verify_argop != -1) { 4124 nfs4args_verify_free(&argop[verify_argop]); 4125 verify_argop = -1; 4126 } 4127 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4128 goto do_again; 4129 } 4130 } while (!e.error); 4131 4132 if (e.error) { 4133 /* 4134 * If we are here, rfs4call has an irrecoverable error - return 4135 */ 4136 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4137 opsetattr.obj_attributes); 4138 if (verify_argop != -1) { 4139 nfs4args_verify_free(&argop[verify_argop]); 4140 verify_argop = -1; 4141 } 4142 if (resp) 4143 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4144 return (e.error); 4145 } 4146 4147 4148 4149 /* 4150 * If changing the size of the file, invalidate 4151 * any local cached data which is no longer part 4152 * of the file. We also possibly invalidate the 4153 * last page in the file. We could use 4154 * pvn_vpzero(), but this would mark the page as 4155 * modified and require it to be written back to 4156 * the server for no particularly good reason. 4157 * This way, if we access it, then we bring it 4158 * back in. A read should be cheaper than a 4159 * write. 4160 */ 4161 if (mask & AT_SIZE) { 4162 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4163 } 4164 4165 /* either no error or one of the postop getattr failed */ 4166 4167 /* 4168 * XXX Perform a simplified version of wcc checking. Instead of 4169 * have another getattr to get pre-op, just purge cache if 4170 * any of the ops prior to and including the getattr failed. 4171 * If the getattr succeeded then update the attrcache accordingly. 4172 */ 4173 4174 garp = NULL; 4175 if (res.status == NFS4_OK) { 4176 /* 4177 * Last getattr 4178 */ 4179 resop = &res.array[numops - 1]; 4180 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4181 } 4182 /* 4183 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4184 * rather than filling it. See the function itself for details. 4185 */ 4186 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4187 if (garp != NULL) { 4188 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4189 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4190 vs_ace4_destroy(&garp->n4g_vsa); 4191 } else { 4192 if (vsap != NULL) { 4193 /* 4194 * The ACL was supposed to be set and to be 4195 * returned in the last getattr of this 4196 * compound, but for some reason the getattr 4197 * result doesn't contain the ACL. In this 4198 * case, purge the ACL cache. 4199 */ 4200 if (rp->r_secattr != NULL) { 4201 mutex_enter(&rp->r_statelock); 4202 vsp = rp->r_secattr; 4203 rp->r_secattr = NULL; 4204 mutex_exit(&rp->r_statelock); 4205 if (vsp != NULL) 4206 nfs4_acl_free_cache(vsp); 4207 } 4208 } 4209 } 4210 } 4211 4212 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4213 /* 4214 * Set the size, rather than relying on getting it updated 4215 * via a GETATTR. With delegations the client tries to 4216 * suppress GETATTR calls. 4217 */ 4218 mutex_enter(&rp->r_statelock); 4219 rp->r_size = vap->va_size; 4220 mutex_exit(&rp->r_statelock); 4221 } 4222 4223 /* 4224 * Can free up request args and res 4225 */ 4226 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4227 opsetattr.obj_attributes); 4228 if (verify_argop != -1) { 4229 nfs4args_verify_free(&argop[verify_argop]); 4230 verify_argop = -1; 4231 } 4232 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4233 4234 /* 4235 * Some servers will change the mode to clear the setuid 4236 * and setgid bits when changing the uid or gid. The 4237 * client needs to compensate appropriately. 4238 */ 4239 if (mask & (AT_UID | AT_GID)) { 4240 int terror, do_setattr; 4241 4242 do_setattr = 0; 4243 va.va_mask = AT_MODE; 4244 terror = nfs4getattr(vp, &va, cr); 4245 if (!terror && 4246 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4247 (!(mask & AT_MODE) && va.va_mode != omode))) { 4248 va.va_mask = AT_MODE; 4249 if (mask & AT_MODE) { 4250 /* 4251 * We asked the mode to be changed and what 4252 * we just got from the server in getattr is 4253 * not what we wanted it to be, so set it now. 4254 */ 4255 va.va_mode = vap->va_mode; 4256 do_setattr = 1; 4257 } else { 4258 /* 4259 * We did not ask the mode to be changed, 4260 * Check to see that the server just cleared 4261 * I_SUID and I_GUID from it. If not then 4262 * set mode to omode with UID/GID cleared. 4263 */ 4264 if (nfs4_compare_modes(va.va_mode, omode)) { 4265 omode &= ~(S_ISUID|S_ISGID); 4266 va.va_mode = omode; 4267 do_setattr = 1; 4268 } 4269 } 4270 4271 if (do_setattr) 4272 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4273 } 4274 } 4275 4276 return (e.error); 4277 } 4278 4279 /* ARGSUSED */ 4280 static int 4281 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4282 { 4283 COMPOUND4args_clnt args; 4284 COMPOUND4res_clnt res; 4285 int doqueue; 4286 uint32_t acc, resacc, argacc; 4287 rnode4_t *rp; 4288 cred_t *cred, *ncr, *ncrfree = NULL; 4289 nfs4_access_type_t cacc; 4290 int num_ops; 4291 nfs_argop4 argop[3]; 4292 nfs_resop4 *resop; 4293 bool_t needrecov = FALSE, do_getattr; 4294 nfs4_recov_state_t recov_state; 4295 int rpc_error; 4296 hrtime_t t; 4297 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4298 mntinfo4_t *mi = VTOMI4(vp); 4299 4300 if (nfs_zone() != mi->mi_zone) 4301 return (EIO); 4302 4303 acc = 0; 4304 if (mode & VREAD) 4305 acc |= ACCESS4_READ; 4306 if (mode & VWRITE) { 4307 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4308 return (EROFS); 4309 if (vp->v_type == VDIR) 4310 acc |= ACCESS4_DELETE; 4311 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4312 } 4313 if (mode & VEXEC) { 4314 if (vp->v_type == VDIR) 4315 acc |= ACCESS4_LOOKUP; 4316 else 4317 acc |= ACCESS4_EXECUTE; 4318 } 4319 4320 if (VTOR4(vp)->r_acache != NULL) { 4321 e.error = nfs4_validate_caches(vp, cr); 4322 if (e.error) 4323 return (e.error); 4324 } 4325 4326 rp = VTOR4(vp); 4327 if (vp->v_type == VDIR) 4328 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4329 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4330 else 4331 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4332 ACCESS4_EXECUTE; 4333 recov_state.rs_flags = 0; 4334 recov_state.rs_num_retry_despite_err = 0; 4335 4336 cred = cr; 4337 /* 4338 * ncr and ncrfree both initially 4339 * point to the memory area returned 4340 * by crnetadjust(); 4341 * ncrfree not NULL when exiting means 4342 * that we need to release it 4343 */ 4344 ncr = crnetadjust(cred); 4345 ncrfree = ncr; 4346 4347 tryagain: 4348 cacc = nfs4_access_check(rp, acc, cred); 4349 if (cacc == NFS4_ACCESS_ALLOWED) { 4350 if (ncrfree != NULL) 4351 crfree(ncrfree); 4352 return (0); 4353 } 4354 if (cacc == NFS4_ACCESS_DENIED) { 4355 /* 4356 * If the cred can be adjusted, try again 4357 * with the new cred. 4358 */ 4359 if (ncr != NULL) { 4360 cred = ncr; 4361 ncr = NULL; 4362 goto tryagain; 4363 } 4364 if (ncrfree != NULL) 4365 crfree(ncrfree); 4366 return (EACCES); 4367 } 4368 4369 recov_retry: 4370 /* 4371 * Don't take with r_statev4_lock here. r_deleg_type could 4372 * change as soon as lock is released. Since it is an int, 4373 * there is no atomicity issue. 4374 */ 4375 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4376 num_ops = do_getattr ? 3 : 2; 4377 4378 args.ctag = TAG_ACCESS; 4379 4380 args.array_len = num_ops; 4381 args.array = argop; 4382 4383 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4384 &recov_state, NULL)) { 4385 if (ncrfree != NULL) 4386 crfree(ncrfree); 4387 return (e.error); 4388 } 4389 4390 /* putfh target fh */ 4391 argop[0].argop = OP_CPUTFH; 4392 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4393 4394 /* access */ 4395 argop[1].argop = OP_ACCESS; 4396 argop[1].nfs_argop4_u.opaccess.access = argacc; 4397 4398 /* getattr */ 4399 if (do_getattr) { 4400 argop[2].argop = OP_GETATTR; 4401 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4402 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4403 } 4404 4405 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4406 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4407 rnode4info(VTOR4(vp)))); 4408 4409 doqueue = 1; 4410 t = gethrtime(); 4411 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4412 rpc_error = e.error; 4413 4414 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4415 if (needrecov) { 4416 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4417 "nfs4_access: initiating recovery\n")); 4418 4419 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4420 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4421 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4422 &recov_state, needrecov); 4423 if (!e.error) 4424 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4425 goto recov_retry; 4426 } 4427 } 4428 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4429 4430 if (e.error) 4431 goto out; 4432 4433 if (res.status) { 4434 e.error = geterrno4(res.status); 4435 /* 4436 * This might generate over the wire calls throught 4437 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4438 * here to avoid a deadlock. 4439 */ 4440 nfs4_purge_stale_fh(e.error, vp, cr); 4441 goto out; 4442 } 4443 resop = &res.array[1]; /* access res */ 4444 4445 resacc = resop->nfs_resop4_u.opaccess.access; 4446 4447 if (do_getattr) { 4448 resop++; /* getattr res */ 4449 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4450 t, cr, FALSE, NULL); 4451 } 4452 4453 if (!e.error) { 4454 nfs4_access_cache(rp, argacc, resacc, cred); 4455 /* 4456 * we just cached results with cred; if cred is the 4457 * adjusted credentials from crnetadjust, we do not want 4458 * to release them before exiting: hence setting ncrfree 4459 * to NULL 4460 */ 4461 if (cred != cr) 4462 ncrfree = NULL; 4463 /* XXX check the supported bits too? */ 4464 if ((acc & resacc) != acc) { 4465 /* 4466 * The following code implements the semantic 4467 * that a setuid root program has *at least* the 4468 * permissions of the user that is running the 4469 * program. See rfs3call() for more portions 4470 * of the implementation of this functionality. 4471 */ 4472 /* XXX-LP */ 4473 if (ncr != NULL) { 4474 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4475 cred = ncr; 4476 ncr = NULL; 4477 goto tryagain; 4478 } 4479 e.error = EACCES; 4480 } 4481 } 4482 4483 out: 4484 if (!rpc_error) 4485 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4486 4487 if (ncrfree != NULL) 4488 crfree(ncrfree); 4489 4490 return (e.error); 4491 } 4492 4493 /* ARGSUSED */ 4494 static int 4495 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4496 { 4497 COMPOUND4args_clnt args; 4498 COMPOUND4res_clnt res; 4499 int doqueue; 4500 rnode4_t *rp; 4501 nfs_argop4 argop[3]; 4502 nfs_resop4 *resop; 4503 READLINK4res *lr_res; 4504 nfs4_ga_res_t *garp; 4505 uint_t len; 4506 char *linkdata; 4507 bool_t needrecov = FALSE; 4508 nfs4_recov_state_t recov_state; 4509 hrtime_t t; 4510 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4511 4512 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4513 return (EIO); 4514 /* 4515 * Can't readlink anything other than a symbolic link. 4516 */ 4517 if (vp->v_type != VLNK) 4518 return (EINVAL); 4519 4520 rp = VTOR4(vp); 4521 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4522 e.error = nfs4_validate_caches(vp, cr); 4523 if (e.error) 4524 return (e.error); 4525 mutex_enter(&rp->r_statelock); 4526 if (rp->r_symlink.contents != NULL) { 4527 e.error = uiomove(rp->r_symlink.contents, 4528 rp->r_symlink.len, UIO_READ, uiop); 4529 mutex_exit(&rp->r_statelock); 4530 return (e.error); 4531 } 4532 mutex_exit(&rp->r_statelock); 4533 } 4534 recov_state.rs_flags = 0; 4535 recov_state.rs_num_retry_despite_err = 0; 4536 4537 recov_retry: 4538 args.array_len = 3; 4539 args.array = argop; 4540 args.ctag = TAG_READLINK; 4541 4542 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4543 if (e.error) { 4544 return (e.error); 4545 } 4546 4547 /* 0. putfh symlink fh */ 4548 argop[0].argop = OP_CPUTFH; 4549 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4550 4551 /* 1. readlink */ 4552 argop[1].argop = OP_READLINK; 4553 4554 /* 2. getattr */ 4555 argop[2].argop = OP_GETATTR; 4556 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4557 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4558 4559 doqueue = 1; 4560 4561 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4562 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4563 rnode4info(VTOR4(vp)))); 4564 4565 t = gethrtime(); 4566 4567 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4568 4569 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4570 if (needrecov) { 4571 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4572 "nfs4_readlink: initiating recovery\n")); 4573 4574 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4575 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4576 if (!e.error) 4577 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4578 4579 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4580 needrecov); 4581 goto recov_retry; 4582 } 4583 } 4584 4585 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4586 4587 if (e.error) 4588 return (e.error); 4589 4590 /* 4591 * There is an path in the code below which calls 4592 * nfs4_purge_stale_fh(), which may generate otw calls through 4593 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4594 * here to avoid nfs4_start_op() deadlock. 4595 */ 4596 4597 if (res.status && (res.array_len < args.array_len)) { 4598 /* 4599 * either Putfh or Link failed 4600 */ 4601 e.error = geterrno4(res.status); 4602 nfs4_purge_stale_fh(e.error, vp, cr); 4603 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4604 return (e.error); 4605 } 4606 4607 resop = &res.array[1]; /* readlink res */ 4608 lr_res = &resop->nfs_resop4_u.opreadlink; 4609 4610 /* 4611 * treat symlink names as data 4612 */ 4613 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4614 if (linkdata != NULL) { 4615 int uio_len = len - 1; 4616 /* len includes null byte, which we won't uiomove */ 4617 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4618 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4619 mutex_enter(&rp->r_statelock); 4620 if (rp->r_symlink.contents == NULL) { 4621 rp->r_symlink.contents = linkdata; 4622 rp->r_symlink.len = uio_len; 4623 rp->r_symlink.size = len; 4624 mutex_exit(&rp->r_statelock); 4625 } else { 4626 mutex_exit(&rp->r_statelock); 4627 kmem_free(linkdata, len); 4628 } 4629 } else { 4630 kmem_free(linkdata, len); 4631 } 4632 } 4633 if (res.status == NFS4_OK) { 4634 resop++; /* getattr res */ 4635 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4636 } 4637 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4638 4639 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4640 4641 /* 4642 * The over the wire error for attempting to readlink something 4643 * other than a symbolic link is ENXIO. However, we need to 4644 * return EINVAL instead of ENXIO, so we map it here. 4645 */ 4646 return (e.error == ENXIO ? EINVAL : e.error); 4647 } 4648 4649 /* 4650 * Flush local dirty pages to stable storage on the server. 4651 * 4652 * If FNODSYNC is specified, then there is nothing to do because 4653 * metadata changes are not cached on the client before being 4654 * sent to the server. 4655 */ 4656 /* ARGSUSED */ 4657 static int 4658 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4659 { 4660 int error; 4661 4662 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4663 return (0); 4664 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4665 return (EIO); 4666 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4667 if (!error) 4668 error = VTOR4(vp)->r_error; 4669 return (error); 4670 } 4671 4672 /* 4673 * Weirdness: if the file was removed or the target of a rename 4674 * operation while it was open, it got renamed instead. Here we 4675 * remove the renamed file. 4676 */ 4677 /* ARGSUSED */ 4678 void 4679 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4680 { 4681 rnode4_t *rp; 4682 4683 ASSERT(vp != DNLC_NO_VNODE); 4684 4685 rp = VTOR4(vp); 4686 4687 if (IS_SHADOW(vp, rp)) { 4688 sv_inactive(vp); 4689 return; 4690 } 4691 4692 /* 4693 * If this is coming from the wrong zone, we let someone in the right 4694 * zone take care of it asynchronously. We can get here due to 4695 * VN_RELE() being called from pageout() or fsflush(). This call may 4696 * potentially turn into an expensive no-op if, for instance, v_count 4697 * gets incremented in the meantime, but it's still correct. 4698 */ 4699 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4700 nfs4_async_inactive(vp, cr); 4701 return; 4702 } 4703 4704 /* 4705 * Some of the cleanup steps might require over-the-wire 4706 * operations. Since VOP_INACTIVE can get called as a result of 4707 * other over-the-wire operations (e.g., an attribute cache update 4708 * can lead to a DNLC purge), doing those steps now would lead to a 4709 * nested call to the recovery framework, which can deadlock. So 4710 * do any over-the-wire cleanups asynchronously, in a separate 4711 * thread. 4712 */ 4713 4714 mutex_enter(&rp->r_os_lock); 4715 mutex_enter(&rp->r_statelock); 4716 mutex_enter(&rp->r_statev4_lock); 4717 4718 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4719 mutex_exit(&rp->r_statev4_lock); 4720 mutex_exit(&rp->r_statelock); 4721 mutex_exit(&rp->r_os_lock); 4722 nfs4_async_inactive(vp, cr); 4723 return; 4724 } 4725 4726 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4727 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4728 mutex_exit(&rp->r_statev4_lock); 4729 mutex_exit(&rp->r_statelock); 4730 mutex_exit(&rp->r_os_lock); 4731 nfs4_async_inactive(vp, cr); 4732 return; 4733 } 4734 4735 if (rp->r_unldvp != NULL) { 4736 mutex_exit(&rp->r_statev4_lock); 4737 mutex_exit(&rp->r_statelock); 4738 mutex_exit(&rp->r_os_lock); 4739 nfs4_async_inactive(vp, cr); 4740 return; 4741 } 4742 mutex_exit(&rp->r_statev4_lock); 4743 mutex_exit(&rp->r_statelock); 4744 mutex_exit(&rp->r_os_lock); 4745 4746 rp4_addfree(rp, cr); 4747 } 4748 4749 /* 4750 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4751 * various bits of state. The caller must not refer to vp after this call. 4752 */ 4753 4754 void 4755 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4756 { 4757 rnode4_t *rp = VTOR4(vp); 4758 nfs4_recov_state_t recov_state; 4759 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4760 vnode_t *unldvp; 4761 char *unlname; 4762 cred_t *unlcred; 4763 COMPOUND4args_clnt args; 4764 COMPOUND4res_clnt res, *resp; 4765 nfs_argop4 argop[2]; 4766 int doqueue; 4767 #ifdef DEBUG 4768 char *name; 4769 #endif 4770 4771 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4772 ASSERT(!IS_SHADOW(vp, rp)); 4773 4774 #ifdef DEBUG 4775 name = fn_name(VTOSV(vp)->sv_name); 4776 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4777 "release vnode %s", name)); 4778 kmem_free(name, MAXNAMELEN); 4779 #endif 4780 4781 if (vp->v_type == VREG) { 4782 bool_t recov_failed = FALSE; 4783 4784 e.error = nfs4close_all(vp, cr); 4785 if (e.error) { 4786 /* Check to see if recovery failed */ 4787 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4788 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4789 recov_failed = TRUE; 4790 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4791 if (!recov_failed) { 4792 mutex_enter(&rp->r_statelock); 4793 if (rp->r_flags & R4RECOVERR) 4794 recov_failed = TRUE; 4795 mutex_exit(&rp->r_statelock); 4796 } 4797 if (recov_failed) { 4798 NFS4_DEBUG(nfs4_client_recov_debug, 4799 (CE_NOTE, "nfs4_inactive_otw: " 4800 "close failed (recovery failure)")); 4801 } 4802 } 4803 } 4804 4805 redo: 4806 if (rp->r_unldvp == NULL) { 4807 rp4_addfree(rp, cr); 4808 return; 4809 } 4810 4811 /* 4812 * Save the vnode pointer for the directory where the 4813 * unlinked-open file got renamed, then set it to NULL 4814 * to prevent another thread from getting here before 4815 * we're done with the remove. While we have the 4816 * statelock, make local copies of the pertinent rnode 4817 * fields. If we weren't to do this in an atomic way, the 4818 * the unl* fields could become inconsistent with respect 4819 * to each other due to a race condition between this 4820 * code and nfs_remove(). See bug report 1034328. 4821 */ 4822 mutex_enter(&rp->r_statelock); 4823 if (rp->r_unldvp == NULL) { 4824 mutex_exit(&rp->r_statelock); 4825 rp4_addfree(rp, cr); 4826 return; 4827 } 4828 4829 unldvp = rp->r_unldvp; 4830 rp->r_unldvp = NULL; 4831 unlname = rp->r_unlname; 4832 rp->r_unlname = NULL; 4833 unlcred = rp->r_unlcred; 4834 rp->r_unlcred = NULL; 4835 mutex_exit(&rp->r_statelock); 4836 4837 /* 4838 * If there are any dirty pages left, then flush 4839 * them. This is unfortunate because they just 4840 * may get thrown away during the remove operation, 4841 * but we have to do this for correctness. 4842 */ 4843 if (nfs4_has_pages(vp) && 4844 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4845 ASSERT(vp->v_type != VCHR); 4846 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4847 if (e.error) { 4848 mutex_enter(&rp->r_statelock); 4849 if (!rp->r_error) 4850 rp->r_error = e.error; 4851 mutex_exit(&rp->r_statelock); 4852 } 4853 } 4854 4855 recov_state.rs_flags = 0; 4856 recov_state.rs_num_retry_despite_err = 0; 4857 recov_retry_remove: 4858 /* 4859 * Do the remove operation on the renamed file 4860 */ 4861 args.ctag = TAG_INACTIVE; 4862 4863 /* 4864 * Remove ops: putfh dir; remove 4865 */ 4866 args.array_len = 2; 4867 args.array = argop; 4868 4869 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4870 if (e.error) { 4871 kmem_free(unlname, MAXNAMELEN); 4872 crfree(unlcred); 4873 VN_RELE(unldvp); 4874 /* 4875 * Try again; this time around r_unldvp will be NULL, so we'll 4876 * just call rp4_addfree() and return. 4877 */ 4878 goto redo; 4879 } 4880 4881 /* putfh directory */ 4882 argop[0].argop = OP_CPUTFH; 4883 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4884 4885 /* remove */ 4886 argop[1].argop = OP_CREMOVE; 4887 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4888 4889 doqueue = 1; 4890 resp = &res; 4891 4892 #if 0 /* notyet */ 4893 /* 4894 * Can't do this yet. We may be being called from 4895 * dnlc_purge_XXX while that routine is holding a 4896 * mutex lock to the nc_rele list. The calls to 4897 * nfs3_cache_wcc_data may result in calls to 4898 * dnlc_purge_XXX. This will result in a deadlock. 4899 */ 4900 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4901 if (e.error) { 4902 PURGE_ATTRCACHE4(unldvp); 4903 resp = NULL; 4904 } else if (res.status) { 4905 e.error = geterrno4(res.status); 4906 PURGE_ATTRCACHE4(unldvp); 4907 /* 4908 * This code is inactive right now 4909 * but if made active there should 4910 * be a nfs4_end_op() call before 4911 * nfs4_purge_stale_fh to avoid start_op() 4912 * deadlock. See BugId: 4948726 4913 */ 4914 nfs4_purge_stale_fh(error, unldvp, cr); 4915 } else { 4916 nfs_resop4 *resop; 4917 REMOVE4res *rm_res; 4918 4919 resop = &res.array[1]; 4920 rm_res = &resop->nfs_resop4_u.opremove; 4921 /* 4922 * Update directory cache attribute, 4923 * readdir and dnlc caches. 4924 */ 4925 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4926 } 4927 #else 4928 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4929 4930 PURGE_ATTRCACHE4(unldvp); 4931 #endif 4932 4933 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4934 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4935 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4936 if (!e.error) 4937 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4938 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4939 &recov_state, TRUE); 4940 goto recov_retry_remove; 4941 } 4942 } 4943 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4944 4945 /* 4946 * Release stuff held for the remove 4947 */ 4948 VN_RELE(unldvp); 4949 if (!e.error && resp) 4950 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4951 4952 kmem_free(unlname, MAXNAMELEN); 4953 crfree(unlcred); 4954 goto redo; 4955 } 4956 4957 /* 4958 * Remote file system operations having to do with directory manipulation. 4959 */ 4960 /* ARGSUSED3 */ 4961 int 4962 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4963 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4964 int *direntflags, pathname_t *realpnp) 4965 { 4966 int error; 4967 vnode_t *vp, *avp = NULL; 4968 rnode4_t *drp; 4969 4970 *vpp = NULL; 4971 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4972 return (EPERM); 4973 /* 4974 * if LOOKUP_XATTR, must replace dvp (object) with 4975 * object's attrdir before continuing with lookup 4976 */ 4977 if (flags & LOOKUP_XATTR) { 4978 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4979 if (error) 4980 return (error); 4981 4982 dvp = avp; 4983 4984 /* 4985 * If lookup is for "", just return dvp now. The attrdir 4986 * has already been activated (from nfs4lookup_xattr), and 4987 * the caller will RELE the original dvp -- not 4988 * the attrdir. So, set vpp and return. 4989 * Currently, when the LOOKUP_XATTR flag is 4990 * passed to VOP_LOOKUP, the name is always empty, and 4991 * shortcircuiting here avoids 3 unneeded lock/unlock 4992 * pairs. 4993 * 4994 * If a non-empty name was provided, then it is the 4995 * attribute name, and it will be looked up below. 4996 */ 4997 if (*nm == '\0') { 4998 *vpp = dvp; 4999 return (0); 5000 } 5001 5002 /* 5003 * The vfs layer never sends a name when asking for the 5004 * attrdir, so we should never get here (unless of course 5005 * name is passed at some time in future -- at which time 5006 * we'll blow up here). 5007 */ 5008 ASSERT(0); 5009 } 5010 5011 drp = VTOR4(dvp); 5012 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5013 return (EINTR); 5014 5015 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5016 nfs_rw_exit(&drp->r_rwlock); 5017 5018 /* 5019 * If vnode is a device, create special vnode. 5020 */ 5021 if (!error && ISVDEV((*vpp)->v_type)) { 5022 vp = *vpp; 5023 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5024 VN_RELE(vp); 5025 } 5026 5027 return (error); 5028 } 5029 5030 /* ARGSUSED */ 5031 static int 5032 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5033 { 5034 int error; 5035 rnode4_t *drp; 5036 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5037 mntinfo4_t *mi; 5038 5039 mi = VTOMI4(dvp); 5040 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5041 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5042 return (EINVAL); 5043 5044 drp = VTOR4(dvp); 5045 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5046 return (EINTR); 5047 5048 mutex_enter(&drp->r_statelock); 5049 /* 5050 * If the server doesn't support xattrs just return EINVAL 5051 */ 5052 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5053 mutex_exit(&drp->r_statelock); 5054 nfs_rw_exit(&drp->r_rwlock); 5055 return (EINVAL); 5056 } 5057 5058 /* 5059 * If there is a cached xattr directory entry, 5060 * use it as long as the attributes are valid. If the 5061 * attributes are not valid, take the simple approach and 5062 * free the cached value and re-fetch a new value. 5063 * 5064 * We don't negative entry cache for now, if we did we 5065 * would need to check if the file has changed on every 5066 * lookup. But xattrs don't exist very often and failing 5067 * an openattr is not much more expensive than and NVERIFY or GETATTR 5068 * so do an openattr over the wire for now. 5069 */ 5070 if (drp->r_xattr_dir != NULL) { 5071 if (ATTRCACHE4_VALID(dvp)) { 5072 VN_HOLD(drp->r_xattr_dir); 5073 *vpp = drp->r_xattr_dir; 5074 mutex_exit(&drp->r_statelock); 5075 nfs_rw_exit(&drp->r_rwlock); 5076 return (0); 5077 } 5078 VN_RELE(drp->r_xattr_dir); 5079 drp->r_xattr_dir = NULL; 5080 } 5081 mutex_exit(&drp->r_statelock); 5082 5083 error = nfs4openattr(dvp, vpp, cflag, cr); 5084 5085 nfs_rw_exit(&drp->r_rwlock); 5086 5087 return (error); 5088 } 5089 5090 static int 5091 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5092 { 5093 int error; 5094 rnode4_t *drp; 5095 5096 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5097 5098 /* 5099 * If lookup is for "", just return dvp. Don't need 5100 * to send it over the wire, look it up in the dnlc, 5101 * or perform any access checks. 5102 */ 5103 if (*nm == '\0') { 5104 VN_HOLD(dvp); 5105 *vpp = dvp; 5106 return (0); 5107 } 5108 5109 /* 5110 * Can't do lookups in non-directories. 5111 */ 5112 if (dvp->v_type != VDIR) 5113 return (ENOTDIR); 5114 5115 /* 5116 * If lookup is for ".", just return dvp. Don't need 5117 * to send it over the wire or look it up in the dnlc, 5118 * just need to check access. 5119 */ 5120 if (nm[0] == '.' && nm[1] == '\0') { 5121 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5122 if (error) 5123 return (error); 5124 VN_HOLD(dvp); 5125 *vpp = dvp; 5126 return (0); 5127 } 5128 5129 drp = VTOR4(dvp); 5130 if (!(drp->r_flags & R4LOOKUP)) { 5131 mutex_enter(&drp->r_statelock); 5132 drp->r_flags |= R4LOOKUP; 5133 mutex_exit(&drp->r_statelock); 5134 } 5135 5136 *vpp = NULL; 5137 /* 5138 * Lookup this name in the DNLC. If there is no entry 5139 * lookup over the wire. 5140 */ 5141 if (!skipdnlc) 5142 *vpp = dnlc_lookup(dvp, nm); 5143 if (*vpp == NULL) { 5144 /* 5145 * We need to go over the wire to lookup the name. 5146 */ 5147 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5148 } 5149 5150 /* 5151 * We hit on the dnlc 5152 */ 5153 if (*vpp != DNLC_NO_VNODE || 5154 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5155 /* 5156 * But our attrs may not be valid. 5157 */ 5158 if (ATTRCACHE4_VALID(dvp)) { 5159 error = nfs4_waitfor_purge_complete(dvp); 5160 if (error) { 5161 VN_RELE(*vpp); 5162 *vpp = NULL; 5163 return (error); 5164 } 5165 5166 /* 5167 * If after the purge completes, check to make sure 5168 * our attrs are still valid. 5169 */ 5170 if (ATTRCACHE4_VALID(dvp)) { 5171 /* 5172 * If we waited for a purge we may have 5173 * lost our vnode so look it up again. 5174 */ 5175 VN_RELE(*vpp); 5176 *vpp = dnlc_lookup(dvp, nm); 5177 if (*vpp == NULL) 5178 return (nfs4lookupnew_otw(dvp, 5179 nm, vpp, cr)); 5180 5181 /* 5182 * The access cache should almost always hit 5183 */ 5184 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5185 5186 if (error) { 5187 VN_RELE(*vpp); 5188 *vpp = NULL; 5189 return (error); 5190 } 5191 if (*vpp == DNLC_NO_VNODE) { 5192 VN_RELE(*vpp); 5193 *vpp = NULL; 5194 return (ENOENT); 5195 } 5196 return (0); 5197 } 5198 } 5199 } 5200 5201 ASSERT(*vpp != NULL); 5202 5203 /* 5204 * We may have gotten here we have one of the following cases: 5205 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5206 * need to validate them. 5207 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5208 * must validate. 5209 * 5210 * Go to the server and check if the directory has changed, if 5211 * it hasn't we are done and can use the dnlc entry. 5212 */ 5213 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5214 } 5215 5216 /* 5217 * Go to the server and check if the directory has changed, if 5218 * it hasn't we are done and can use the dnlc entry. If it 5219 * has changed we get a new copy of its attributes and check 5220 * the access for VEXEC, then relookup the filename and 5221 * get its filehandle and attributes. 5222 * 5223 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5224 * if the NVERIFY failed we must 5225 * purge the caches 5226 * cache new attributes (will set r_time_attr_inval) 5227 * cache new access 5228 * recheck VEXEC access 5229 * add name to dnlc, possibly negative 5230 * if LOOKUP succeeded 5231 * cache new attributes 5232 * else 5233 * set a new r_time_attr_inval for dvp 5234 * check to make sure we have access 5235 * 5236 * The vpp returned is the vnode passed in if the directory is valid, 5237 * a new vnode if successful lookup, or NULL on error. 5238 */ 5239 static int 5240 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5241 { 5242 COMPOUND4args_clnt args; 5243 COMPOUND4res_clnt res; 5244 fattr4 *ver_fattr; 5245 fattr4_change dchange; 5246 int32_t *ptr; 5247 int argoplist_size = 7 * sizeof (nfs_argop4); 5248 nfs_argop4 *argop; 5249 int doqueue; 5250 mntinfo4_t *mi; 5251 nfs4_recov_state_t recov_state; 5252 hrtime_t t; 5253 int isdotdot; 5254 vnode_t *nvp; 5255 nfs_fh4 *fhp; 5256 nfs4_sharedfh_t *sfhp; 5257 nfs4_access_type_t cacc; 5258 rnode4_t *nrp; 5259 rnode4_t *drp = VTOR4(dvp); 5260 nfs4_ga_res_t *garp = NULL; 5261 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5262 5263 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5264 ASSERT(nm != NULL); 5265 ASSERT(nm[0] != '\0'); 5266 ASSERT(dvp->v_type == VDIR); 5267 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5268 ASSERT(*vpp != NULL); 5269 5270 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5271 isdotdot = 1; 5272 args.ctag = TAG_LOOKUP_VPARENT; 5273 } else { 5274 /* 5275 * If dvp were a stub, it should have triggered and caused 5276 * a mount for us to get this far. 5277 */ 5278 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5279 5280 isdotdot = 0; 5281 args.ctag = TAG_LOOKUP_VALID; 5282 } 5283 5284 mi = VTOMI4(dvp); 5285 recov_state.rs_flags = 0; 5286 recov_state.rs_num_retry_despite_err = 0; 5287 5288 nvp = NULL; 5289 5290 /* Save the original mount point security information */ 5291 (void) save_mnt_secinfo(mi->mi_curr_serv); 5292 5293 recov_retry: 5294 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5295 &recov_state, NULL); 5296 if (e.error) { 5297 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5298 VN_RELE(*vpp); 5299 *vpp = NULL; 5300 return (e.error); 5301 } 5302 5303 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5304 5305 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5306 args.array_len = 7; 5307 args.array = argop; 5308 5309 /* 0. putfh file */ 5310 argop[0].argop = OP_CPUTFH; 5311 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5312 5313 /* 1. nverify the change info */ 5314 argop[1].argop = OP_NVERIFY; 5315 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5316 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5317 ver_fattr->attrlist4 = (char *)&dchange; 5318 ptr = (int32_t *)&dchange; 5319 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5320 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5321 5322 /* 2. getattr directory */ 5323 argop[2].argop = OP_GETATTR; 5324 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5325 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5326 5327 /* 3. access directory */ 5328 argop[3].argop = OP_ACCESS; 5329 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5330 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5331 5332 /* 4. lookup name */ 5333 if (isdotdot) { 5334 argop[4].argop = OP_LOOKUPP; 5335 } else { 5336 argop[4].argop = OP_CLOOKUP; 5337 argop[4].nfs_argop4_u.opclookup.cname = nm; 5338 } 5339 5340 /* 5. resulting file handle */ 5341 argop[5].argop = OP_GETFH; 5342 5343 /* 6. resulting file attributes */ 5344 argop[6].argop = OP_GETATTR; 5345 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5346 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5347 5348 doqueue = 1; 5349 t = gethrtime(); 5350 5351 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5352 5353 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5354 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5355 if (e.error != 0 && *vpp != NULL) 5356 VN_RELE(*vpp); 5357 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5358 &recov_state, FALSE); 5359 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5360 kmem_free(argop, argoplist_size); 5361 return (e.error); 5362 } 5363 5364 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5365 /* 5366 * For WRONGSEC of a non-dotdot case, send secinfo directly 5367 * from this thread, do not go thru the recovery thread since 5368 * we need the nm information. 5369 * 5370 * Not doing dotdot case because there is no specification 5371 * for (PUTFH, SECINFO "..") yet. 5372 */ 5373 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5374 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5375 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5376 &recov_state, FALSE); 5377 else 5378 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5379 &recov_state, TRUE); 5380 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5381 kmem_free(argop, argoplist_size); 5382 if (!e.error) 5383 goto recov_retry; 5384 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5385 VN_RELE(*vpp); 5386 *vpp = NULL; 5387 return (e.error); 5388 } 5389 5390 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5391 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5392 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5393 &recov_state, TRUE); 5394 5395 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5396 kmem_free(argop, argoplist_size); 5397 goto recov_retry; 5398 } 5399 } 5400 5401 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5402 5403 if (e.error || res.array_len == 0) { 5404 /* 5405 * If e.error isn't set, then reply has no ops (or we couldn't 5406 * be here). The only legal way to reply without an op array 5407 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5408 * be in the reply for all other status values. 5409 * 5410 * For valid replies without an ops array, return ENOTSUP 5411 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5412 * return EIO -- don't trust status. 5413 */ 5414 if (e.error == 0) 5415 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5416 ENOTSUP : EIO; 5417 VN_RELE(*vpp); 5418 *vpp = NULL; 5419 kmem_free(argop, argoplist_size); 5420 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5421 return (e.error); 5422 } 5423 5424 if (res.status != NFS4ERR_SAME) { 5425 e.error = geterrno4(res.status); 5426 5427 /* 5428 * The NVERIFY "failed" so the directory has changed 5429 * First make sure PUTFH succeeded and NVERIFY "failed" 5430 * cleanly. 5431 */ 5432 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5433 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5434 nfs4_purge_stale_fh(e.error, dvp, cr); 5435 VN_RELE(*vpp); 5436 *vpp = NULL; 5437 goto exit; 5438 } 5439 5440 /* 5441 * We know the NVERIFY "failed" so we must: 5442 * purge the caches (access and indirectly dnlc if needed) 5443 */ 5444 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5445 5446 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5447 nfs4_purge_stale_fh(e.error, dvp, cr); 5448 VN_RELE(*vpp); 5449 *vpp = NULL; 5450 goto exit; 5451 } 5452 5453 /* 5454 * Install new cached attributes for the directory 5455 */ 5456 nfs4_attr_cache(dvp, 5457 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5458 t, cr, FALSE, NULL); 5459 5460 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5461 nfs4_purge_stale_fh(e.error, dvp, cr); 5462 VN_RELE(*vpp); 5463 *vpp = NULL; 5464 e.error = geterrno4(res.status); 5465 goto exit; 5466 } 5467 5468 /* 5469 * Now we know the directory is valid, 5470 * cache new directory access 5471 */ 5472 nfs4_access_cache(drp, 5473 args.array[3].nfs_argop4_u.opaccess.access, 5474 res.array[3].nfs_resop4_u.opaccess.access, cr); 5475 5476 /* 5477 * recheck VEXEC access 5478 */ 5479 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5480 if (cacc != NFS4_ACCESS_ALLOWED) { 5481 /* 5482 * Directory permissions might have been revoked 5483 */ 5484 if (cacc == NFS4_ACCESS_DENIED) { 5485 e.error = EACCES; 5486 VN_RELE(*vpp); 5487 *vpp = NULL; 5488 goto exit; 5489 } 5490 5491 /* 5492 * Somehow we must not have asked for enough 5493 * so try a singleton ACCESS, should never happen. 5494 */ 5495 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5496 if (e.error) { 5497 VN_RELE(*vpp); 5498 *vpp = NULL; 5499 goto exit; 5500 } 5501 } 5502 5503 e.error = geterrno4(res.status); 5504 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5505 /* 5506 * The lookup failed, probably no entry 5507 */ 5508 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5509 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5510 } else { 5511 /* 5512 * Might be some other error, so remove 5513 * the dnlc entry to make sure we start all 5514 * over again, next time. 5515 */ 5516 dnlc_remove(dvp, nm); 5517 } 5518 VN_RELE(*vpp); 5519 *vpp = NULL; 5520 goto exit; 5521 } 5522 5523 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5524 /* 5525 * The file exists but we can't get its fh for 5526 * some unknown reason. Remove it from the dnlc 5527 * and error out to be safe. 5528 */ 5529 dnlc_remove(dvp, nm); 5530 VN_RELE(*vpp); 5531 *vpp = NULL; 5532 goto exit; 5533 } 5534 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5535 if (fhp->nfs_fh4_len == 0) { 5536 /* 5537 * The file exists but a bogus fh 5538 * some unknown reason. Remove it from the dnlc 5539 * and error out to be safe. 5540 */ 5541 e.error = ENOENT; 5542 dnlc_remove(dvp, nm); 5543 VN_RELE(*vpp); 5544 *vpp = NULL; 5545 goto exit; 5546 } 5547 sfhp = sfh4_get(fhp, mi); 5548 5549 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5550 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5551 5552 /* 5553 * Make the new rnode 5554 */ 5555 if (isdotdot) { 5556 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5557 if (e.error) { 5558 sfh4_rele(&sfhp); 5559 VN_RELE(*vpp); 5560 *vpp = NULL; 5561 goto exit; 5562 } 5563 /* 5564 * XXX if nfs4_make_dotdot uses an existing rnode 5565 * XXX it doesn't update the attributes. 5566 * XXX for now just save them again to save an OTW 5567 */ 5568 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5569 } else { 5570 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5571 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5572 /* 5573 * If v_type == VNON, then garp was NULL because 5574 * the last op in the compound failed and makenfs4node 5575 * could not find the vnode for sfhp. It created 5576 * a new vnode, so we have nothing to purge here. 5577 */ 5578 if (nvp->v_type == VNON) { 5579 vattr_t vattr; 5580 5581 vattr.va_mask = AT_TYPE; 5582 /* 5583 * N.B. We've already called nfs4_end_fop above. 5584 */ 5585 e.error = nfs4getattr(nvp, &vattr, cr); 5586 if (e.error) { 5587 sfh4_rele(&sfhp); 5588 VN_RELE(*vpp); 5589 *vpp = NULL; 5590 VN_RELE(nvp); 5591 goto exit; 5592 } 5593 nvp->v_type = vattr.va_type; 5594 } 5595 } 5596 sfh4_rele(&sfhp); 5597 5598 nrp = VTOR4(nvp); 5599 mutex_enter(&nrp->r_statev4_lock); 5600 if (!nrp->created_v4) { 5601 mutex_exit(&nrp->r_statev4_lock); 5602 dnlc_update(dvp, nm, nvp); 5603 } else 5604 mutex_exit(&nrp->r_statev4_lock); 5605 5606 VN_RELE(*vpp); 5607 *vpp = nvp; 5608 } else { 5609 hrtime_t now; 5610 hrtime_t delta = 0; 5611 5612 e.error = 0; 5613 5614 /* 5615 * Because the NVERIFY "succeeded" we know that the 5616 * directory attributes are still valid 5617 * so update r_time_attr_inval 5618 */ 5619 now = gethrtime(); 5620 mutex_enter(&drp->r_statelock); 5621 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5622 delta = now - drp->r_time_attr_saved; 5623 if (delta < mi->mi_acdirmin) 5624 delta = mi->mi_acdirmin; 5625 else if (delta > mi->mi_acdirmax) 5626 delta = mi->mi_acdirmax; 5627 } 5628 drp->r_time_attr_inval = now + delta; 5629 mutex_exit(&drp->r_statelock); 5630 dnlc_update(dvp, nm, *vpp); 5631 5632 /* 5633 * Even though we have a valid directory attr cache 5634 * and dnlc entry, we may not have access. 5635 * This should almost always hit the cache. 5636 */ 5637 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5638 if (e.error) { 5639 VN_RELE(*vpp); 5640 *vpp = NULL; 5641 } 5642 5643 if (*vpp == DNLC_NO_VNODE) { 5644 VN_RELE(*vpp); 5645 *vpp = NULL; 5646 e.error = ENOENT; 5647 } 5648 } 5649 5650 exit: 5651 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5652 kmem_free(argop, argoplist_size); 5653 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5654 return (e.error); 5655 } 5656 5657 /* 5658 * We need to go over the wire to lookup the name, but 5659 * while we are there verify the directory has not 5660 * changed but if it has, get new attributes and check access 5661 * 5662 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5663 * NVERIFY GETATTR ACCESS 5664 * 5665 * With the results: 5666 * if the NVERIFY failed we must purge the caches, add new attributes, 5667 * and cache new access. 5668 * set a new r_time_attr_inval 5669 * add name to dnlc, possibly negative 5670 * if LOOKUP succeeded 5671 * cache new attributes 5672 */ 5673 static int 5674 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5675 { 5676 COMPOUND4args_clnt args; 5677 COMPOUND4res_clnt res; 5678 fattr4 *ver_fattr; 5679 fattr4_change dchange; 5680 int32_t *ptr; 5681 nfs4_ga_res_t *garp = NULL; 5682 int argoplist_size = 9 * sizeof (nfs_argop4); 5683 nfs_argop4 *argop; 5684 int doqueue; 5685 mntinfo4_t *mi; 5686 nfs4_recov_state_t recov_state; 5687 hrtime_t t; 5688 int isdotdot; 5689 vnode_t *nvp; 5690 nfs_fh4 *fhp; 5691 nfs4_sharedfh_t *sfhp; 5692 nfs4_access_type_t cacc; 5693 rnode4_t *nrp; 5694 rnode4_t *drp = VTOR4(dvp); 5695 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5696 5697 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5698 ASSERT(nm != NULL); 5699 ASSERT(nm[0] != '\0'); 5700 ASSERT(dvp->v_type == VDIR); 5701 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5702 ASSERT(*vpp == NULL); 5703 5704 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5705 isdotdot = 1; 5706 args.ctag = TAG_LOOKUP_PARENT; 5707 } else { 5708 /* 5709 * If dvp were a stub, it should have triggered and caused 5710 * a mount for us to get this far. 5711 */ 5712 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5713 5714 isdotdot = 0; 5715 args.ctag = TAG_LOOKUP; 5716 } 5717 5718 mi = VTOMI4(dvp); 5719 recov_state.rs_flags = 0; 5720 recov_state.rs_num_retry_despite_err = 0; 5721 5722 nvp = NULL; 5723 5724 /* Save the original mount point security information */ 5725 (void) save_mnt_secinfo(mi->mi_curr_serv); 5726 5727 recov_retry: 5728 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5729 &recov_state, NULL); 5730 if (e.error) { 5731 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5732 return (e.error); 5733 } 5734 5735 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5736 5737 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5738 args.array_len = 9; 5739 args.array = argop; 5740 5741 /* 0. putfh file */ 5742 argop[0].argop = OP_CPUTFH; 5743 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5744 5745 /* 1. savefh for the nverify */ 5746 argop[1].argop = OP_SAVEFH; 5747 5748 /* 2. lookup name */ 5749 if (isdotdot) { 5750 argop[2].argop = OP_LOOKUPP; 5751 } else { 5752 argop[2].argop = OP_CLOOKUP; 5753 argop[2].nfs_argop4_u.opclookup.cname = nm; 5754 } 5755 5756 /* 3. resulting file handle */ 5757 argop[3].argop = OP_GETFH; 5758 5759 /* 4. resulting file attributes */ 5760 argop[4].argop = OP_GETATTR; 5761 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5762 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5763 5764 /* 5. restorefh back the directory for the nverify */ 5765 argop[5].argop = OP_RESTOREFH; 5766 5767 /* 6. nverify the change info */ 5768 argop[6].argop = OP_NVERIFY; 5769 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5770 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5771 ver_fattr->attrlist4 = (char *)&dchange; 5772 ptr = (int32_t *)&dchange; 5773 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5774 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5775 5776 /* 7. getattr directory */ 5777 argop[7].argop = OP_GETATTR; 5778 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5779 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5780 5781 /* 8. access directory */ 5782 argop[8].argop = OP_ACCESS; 5783 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5784 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5785 5786 doqueue = 1; 5787 t = gethrtime(); 5788 5789 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5790 5791 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5792 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5793 if (e.error != 0 && *vpp != NULL) 5794 VN_RELE(*vpp); 5795 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5796 &recov_state, FALSE); 5797 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5798 kmem_free(argop, argoplist_size); 5799 return (e.error); 5800 } 5801 5802 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5803 /* 5804 * For WRONGSEC of a non-dotdot case, send secinfo directly 5805 * from this thread, do not go thru the recovery thread since 5806 * we need the nm information. 5807 * 5808 * Not doing dotdot case because there is no specification 5809 * for (PUTFH, SECINFO "..") yet. 5810 */ 5811 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5812 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5813 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5814 &recov_state, FALSE); 5815 else 5816 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5817 &recov_state, TRUE); 5818 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5819 kmem_free(argop, argoplist_size); 5820 if (!e.error) 5821 goto recov_retry; 5822 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5823 return (e.error); 5824 } 5825 5826 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5827 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5828 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5829 &recov_state, TRUE); 5830 5831 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5832 kmem_free(argop, argoplist_size); 5833 goto recov_retry; 5834 } 5835 } 5836 5837 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5838 5839 if (e.error || res.array_len == 0) { 5840 /* 5841 * If e.error isn't set, then reply has no ops (or we couldn't 5842 * be here). The only legal way to reply without an op array 5843 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5844 * be in the reply for all other status values. 5845 * 5846 * For valid replies without an ops array, return ENOTSUP 5847 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5848 * return EIO -- don't trust status. 5849 */ 5850 if (e.error == 0) 5851 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5852 ENOTSUP : EIO; 5853 5854 kmem_free(argop, argoplist_size); 5855 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5856 return (e.error); 5857 } 5858 5859 e.error = geterrno4(res.status); 5860 5861 /* 5862 * The PUTFH and SAVEFH may have failed. 5863 */ 5864 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5865 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5866 nfs4_purge_stale_fh(e.error, dvp, cr); 5867 goto exit; 5868 } 5869 5870 /* 5871 * Check if the file exists, if it does delay entering 5872 * into the dnlc until after we update the directory 5873 * attributes so we don't cause it to get purged immediately. 5874 */ 5875 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5876 /* 5877 * The lookup failed, probably no entry 5878 */ 5879 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5880 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5881 goto exit; 5882 } 5883 5884 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5885 /* 5886 * The file exists but we can't get its fh for 5887 * some unknown reason. Error out to be safe. 5888 */ 5889 goto exit; 5890 } 5891 5892 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5893 if (fhp->nfs_fh4_len == 0) { 5894 /* 5895 * The file exists but a bogus fh 5896 * some unknown reason. Error out to be safe. 5897 */ 5898 e.error = EIO; 5899 goto exit; 5900 } 5901 sfhp = sfh4_get(fhp, mi); 5902 5903 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5904 sfh4_rele(&sfhp); 5905 goto exit; 5906 } 5907 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5908 5909 /* 5910 * The RESTOREFH may have failed 5911 */ 5912 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5913 sfh4_rele(&sfhp); 5914 e.error = EIO; 5915 goto exit; 5916 } 5917 5918 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5919 /* 5920 * First make sure the NVERIFY failed as we expected, 5921 * if it didn't then be conservative and error out 5922 * as we can't trust the directory. 5923 */ 5924 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5925 sfh4_rele(&sfhp); 5926 e.error = EIO; 5927 goto exit; 5928 } 5929 5930 /* 5931 * We know the NVERIFY "failed" so the directory has changed, 5932 * so we must: 5933 * purge the caches (access and indirectly dnlc if needed) 5934 */ 5935 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5936 5937 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5938 sfh4_rele(&sfhp); 5939 goto exit; 5940 } 5941 nfs4_attr_cache(dvp, 5942 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5943 t, cr, FALSE, NULL); 5944 5945 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5946 nfs4_purge_stale_fh(e.error, dvp, cr); 5947 sfh4_rele(&sfhp); 5948 e.error = geterrno4(res.status); 5949 goto exit; 5950 } 5951 5952 /* 5953 * Now we know the directory is valid, 5954 * cache new directory access 5955 */ 5956 nfs4_access_cache(drp, 5957 args.array[8].nfs_argop4_u.opaccess.access, 5958 res.array[8].nfs_resop4_u.opaccess.access, cr); 5959 5960 /* 5961 * recheck VEXEC access 5962 */ 5963 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5964 if (cacc != NFS4_ACCESS_ALLOWED) { 5965 /* 5966 * Directory permissions might have been revoked 5967 */ 5968 if (cacc == NFS4_ACCESS_DENIED) { 5969 sfh4_rele(&sfhp); 5970 e.error = EACCES; 5971 goto exit; 5972 } 5973 5974 /* 5975 * Somehow we must not have asked for enough 5976 * so try a singleton ACCESS should never happen 5977 */ 5978 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5979 if (e.error) { 5980 sfh4_rele(&sfhp); 5981 goto exit; 5982 } 5983 } 5984 5985 e.error = geterrno4(res.status); 5986 } else { 5987 hrtime_t now; 5988 hrtime_t delta = 0; 5989 5990 e.error = 0; 5991 5992 /* 5993 * Because the NVERIFY "succeeded" we know that the 5994 * directory attributes are still valid 5995 * so update r_time_attr_inval 5996 */ 5997 now = gethrtime(); 5998 mutex_enter(&drp->r_statelock); 5999 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 6000 delta = now - drp->r_time_attr_saved; 6001 if (delta < mi->mi_acdirmin) 6002 delta = mi->mi_acdirmin; 6003 else if (delta > mi->mi_acdirmax) 6004 delta = mi->mi_acdirmax; 6005 } 6006 drp->r_time_attr_inval = now + delta; 6007 mutex_exit(&drp->r_statelock); 6008 6009 /* 6010 * Even though we have a valid directory attr cache, 6011 * we may not have access. 6012 * This should almost always hit the cache. 6013 */ 6014 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6015 if (e.error) { 6016 sfh4_rele(&sfhp); 6017 goto exit; 6018 } 6019 } 6020 6021 /* 6022 * Now we have successfully completed the lookup, if the 6023 * directory has changed we now have the valid attributes. 6024 * We also know we have directory access. 6025 * Create the new rnode and insert it in the dnlc. 6026 */ 6027 if (isdotdot) { 6028 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6029 if (e.error) { 6030 sfh4_rele(&sfhp); 6031 goto exit; 6032 } 6033 /* 6034 * XXX if nfs4_make_dotdot uses an existing rnode 6035 * XXX it doesn't update the attributes. 6036 * XXX for now just save them again to save an OTW 6037 */ 6038 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6039 } else { 6040 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6041 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6042 } 6043 sfh4_rele(&sfhp); 6044 6045 nrp = VTOR4(nvp); 6046 mutex_enter(&nrp->r_statev4_lock); 6047 if (!nrp->created_v4) { 6048 mutex_exit(&nrp->r_statev4_lock); 6049 dnlc_update(dvp, nm, nvp); 6050 } else 6051 mutex_exit(&nrp->r_statev4_lock); 6052 6053 *vpp = nvp; 6054 6055 exit: 6056 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6057 kmem_free(argop, argoplist_size); 6058 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6059 return (e.error); 6060 } 6061 6062 #ifdef DEBUG 6063 void 6064 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6065 { 6066 uint_t i, len; 6067 zoneid_t zoneid = getzoneid(); 6068 char *s; 6069 6070 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6071 for (i = 0; i < argcnt; i++) { 6072 nfs_argop4 *op = &argbase[i]; 6073 switch (op->argop) { 6074 case OP_CPUTFH: 6075 case OP_PUTFH: 6076 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6077 break; 6078 case OP_PUTROOTFH: 6079 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6080 break; 6081 case OP_CLOOKUP: 6082 s = op->nfs_argop4_u.opclookup.cname; 6083 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6084 break; 6085 case OP_LOOKUP: 6086 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6087 &len, NULL); 6088 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6089 kmem_free(s, len); 6090 break; 6091 case OP_LOOKUPP: 6092 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6093 break; 6094 case OP_GETFH: 6095 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6096 break; 6097 case OP_GETATTR: 6098 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6099 break; 6100 case OP_OPENATTR: 6101 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6102 break; 6103 default: 6104 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6105 op->argop); 6106 break; 6107 } 6108 } 6109 } 6110 #endif 6111 6112 /* 6113 * nfs4lookup_setup - constructs a multi-lookup compound request. 6114 * 6115 * Given the path "nm1/nm2/.../nmn", the following compound requests 6116 * may be created: 6117 * 6118 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6119 * is faster, for now. 6120 * 6121 * l4_getattrs indicates the type of compound requested. 6122 * 6123 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6124 * 6125 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6126 * 6127 * total number of ops is n + 1. 6128 * 6129 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6130 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6131 * before the last component, and only get attributes 6132 * for the last component. Note that the second-to-last 6133 * pathname component is XATTR_RPATH, which does NOT go 6134 * over-the-wire as a lookup. 6135 * 6136 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6137 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6138 * 6139 * and total number of ops is n + 5. 6140 * 6141 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6142 * attribute directory: create lookups plus an OPENATTR 6143 * replacing the last lookup. Note that the last pathname 6144 * component is XATTR_RPATH, which does NOT go over-the-wire 6145 * as a lookup. 6146 * 6147 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6148 * Openattr; Getfh; Getattr } 6149 * 6150 * and total number of ops is n + 5. 6151 * 6152 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6153 * nodes too. 6154 * 6155 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6156 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6157 * 6158 * and total number of ops is 3*n + 1. 6159 * 6160 * All cases: returns the index in the arg array of the final LOOKUP op, or 6161 * -1 if no LOOKUPs were used. 6162 */ 6163 int 6164 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6165 { 6166 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6167 nfs_argop4 *argbase, *argop; 6168 int arglen, argcnt; 6169 int n = 1; /* number of components */ 6170 int nga = 1; /* number of Getattr's in request */ 6171 char c = '\0', *s, *p; 6172 int lookup_idx = -1; 6173 int argoplist_size; 6174 6175 /* set lookuparg response result to 0 */ 6176 lookupargp->resp->status = NFS4_OK; 6177 6178 /* skip leading "/" or "." e.g. ".//./" if there is */ 6179 for (; ; nm++) { 6180 if (*nm != '/' && *nm != '.') 6181 break; 6182 6183 /* ".." is counted as 1 component */ 6184 if (*nm == '.' && *(nm + 1) != '/') 6185 break; 6186 } 6187 6188 /* 6189 * Find n = number of components - nm must be null terminated 6190 * Skip "." components. 6191 */ 6192 if (*nm != '\0') 6193 for (n = 1, s = nm; *s != '\0'; s++) { 6194 if ((*s == '/') && (*(s + 1) != '/') && 6195 (*(s + 1) != '\0') && 6196 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6197 *(s + 2) == '\0'))) 6198 n++; 6199 } 6200 else 6201 n = 0; 6202 6203 /* 6204 * nga is number of components that need Getfh+Getattr 6205 */ 6206 switch (l4_getattrs) { 6207 case LKP4_NO_ATTRIBUTES: 6208 nga = 0; 6209 break; 6210 case LKP4_ALL_ATTRIBUTES: 6211 nga = n; 6212 /* 6213 * Always have at least 1 getfh, getattr pair 6214 */ 6215 if (nga == 0) 6216 nga++; 6217 break; 6218 case LKP4_LAST_ATTRDIR: 6219 case LKP4_LAST_NAMED_ATTR: 6220 nga = n+1; 6221 break; 6222 } 6223 6224 /* 6225 * If change to use the filehandle attr instead of getfh 6226 * the following line can be deleted. 6227 */ 6228 nga *= 2; 6229 6230 /* 6231 * calculate number of ops in request as 6232 * header + trailer + lookups + getattrs 6233 */ 6234 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6235 6236 argoplist_size = arglen * sizeof (nfs_argop4); 6237 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6238 lookupargp->argsp->array = argop; 6239 6240 argcnt = lookupargp->header_len; 6241 argop += argcnt; 6242 6243 /* 6244 * loop and create a lookup op and possibly getattr/getfh for 6245 * each component. Skip "." components. 6246 */ 6247 for (s = nm; *s != '\0'; s = p) { 6248 /* 6249 * Set up a pathname struct for each component if needed 6250 */ 6251 while (*s == '/') 6252 s++; 6253 if (*s == '\0') 6254 break; 6255 6256 for (p = s; (*p != '/') && (*p != '\0'); p++) 6257 ; 6258 c = *p; 6259 *p = '\0'; 6260 6261 if (s[0] == '.' && s[1] == '\0') { 6262 *p = c; 6263 continue; 6264 } 6265 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6266 strcmp(s, XATTR_RPATH) == 0) { 6267 /* getfh XXX may not be needed in future */ 6268 argop->argop = OP_GETFH; 6269 argop++; 6270 argcnt++; 6271 6272 /* getattr */ 6273 argop->argop = OP_GETATTR; 6274 argop->nfs_argop4_u.opgetattr.attr_request = 6275 lookupargp->ga_bits; 6276 argop->nfs_argop4_u.opgetattr.mi = 6277 lookupargp->mi; 6278 argop++; 6279 argcnt++; 6280 6281 /* openattr */ 6282 argop->argop = OP_OPENATTR; 6283 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6284 strcmp(s, XATTR_RPATH) == 0) { 6285 /* openattr */ 6286 argop->argop = OP_OPENATTR; 6287 argop++; 6288 argcnt++; 6289 6290 /* getfh XXX may not be needed in future */ 6291 argop->argop = OP_GETFH; 6292 argop++; 6293 argcnt++; 6294 6295 /* getattr */ 6296 argop->argop = OP_GETATTR; 6297 argop->nfs_argop4_u.opgetattr.attr_request = 6298 lookupargp->ga_bits; 6299 argop->nfs_argop4_u.opgetattr.mi = 6300 lookupargp->mi; 6301 argop++; 6302 argcnt++; 6303 *p = c; 6304 continue; 6305 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6306 /* lookupp */ 6307 argop->argop = OP_LOOKUPP; 6308 } else { 6309 /* lookup */ 6310 argop->argop = OP_LOOKUP; 6311 (void) str_to_utf8(s, 6312 &argop->nfs_argop4_u.oplookup.objname); 6313 } 6314 lookup_idx = argcnt; 6315 argop++; 6316 argcnt++; 6317 6318 *p = c; 6319 6320 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6321 /* getfh XXX may not be needed in future */ 6322 argop->argop = OP_GETFH; 6323 argop++; 6324 argcnt++; 6325 6326 /* getattr */ 6327 argop->argop = OP_GETATTR; 6328 argop->nfs_argop4_u.opgetattr.attr_request = 6329 lookupargp->ga_bits; 6330 argop->nfs_argop4_u.opgetattr.mi = 6331 lookupargp->mi; 6332 argop++; 6333 argcnt++; 6334 } 6335 } 6336 6337 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6338 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6339 if (needgetfh) { 6340 /* stick in a post-lookup getfh */ 6341 argop->argop = OP_GETFH; 6342 argcnt++; 6343 argop++; 6344 } 6345 /* post-lookup getattr */ 6346 argop->argop = OP_GETATTR; 6347 argop->nfs_argop4_u.opgetattr.attr_request = 6348 lookupargp->ga_bits; 6349 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6350 argcnt++; 6351 } 6352 argcnt += lookupargp->trailer_len; /* actual op count */ 6353 lookupargp->argsp->array_len = argcnt; 6354 lookupargp->arglen = arglen; 6355 6356 #ifdef DEBUG 6357 if (nfs4_client_lookup_debug) 6358 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6359 #endif 6360 6361 return (lookup_idx); 6362 } 6363 6364 static int 6365 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6366 { 6367 COMPOUND4args_clnt args; 6368 COMPOUND4res_clnt res; 6369 GETFH4res *gf_res = NULL; 6370 nfs_argop4 argop[4]; 6371 nfs_resop4 *resop = NULL; 6372 nfs4_sharedfh_t *sfhp; 6373 hrtime_t t; 6374 nfs4_error_t e; 6375 6376 rnode4_t *drp; 6377 int doqueue = 1; 6378 vnode_t *vp; 6379 int needrecov = 0; 6380 nfs4_recov_state_t recov_state; 6381 6382 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6383 6384 *avp = NULL; 6385 recov_state.rs_flags = 0; 6386 recov_state.rs_num_retry_despite_err = 0; 6387 6388 recov_retry: 6389 /* COMPOUND: putfh, openattr, getfh, getattr */ 6390 args.array_len = 4; 6391 args.array = argop; 6392 args.ctag = TAG_OPENATTR; 6393 6394 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6395 if (e.error) 6396 return (e.error); 6397 6398 drp = VTOR4(dvp); 6399 6400 /* putfh */ 6401 argop[0].argop = OP_CPUTFH; 6402 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6403 6404 /* openattr */ 6405 argop[1].argop = OP_OPENATTR; 6406 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6407 6408 /* getfh */ 6409 argop[2].argop = OP_GETFH; 6410 6411 /* getattr */ 6412 argop[3].argop = OP_GETATTR; 6413 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6414 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6415 6416 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6417 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6418 rnode4info(drp))); 6419 6420 t = gethrtime(); 6421 6422 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6423 6424 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6425 if (needrecov) { 6426 bool_t abort; 6427 6428 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6429 "nfs4openattr: initiating recovery\n")); 6430 6431 abort = nfs4_start_recovery(&e, 6432 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6433 OP_OPENATTR, NULL, NULL, NULL); 6434 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6435 if (!e.error) { 6436 e.error = geterrno4(res.status); 6437 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6438 } 6439 if (abort == FALSE) 6440 goto recov_retry; 6441 return (e.error); 6442 } 6443 6444 if (e.error) { 6445 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6446 return (e.error); 6447 } 6448 6449 if (res.status) { 6450 /* 6451 * If OTW errro is NOTSUPP, then it should be 6452 * translated to EINVAL. All Solaris file system 6453 * implementations return EINVAL to the syscall layer 6454 * when the attrdir cannot be created due to an 6455 * implementation restriction or noxattr mount option. 6456 */ 6457 if (res.status == NFS4ERR_NOTSUPP) { 6458 mutex_enter(&drp->r_statelock); 6459 if (drp->r_xattr_dir) 6460 VN_RELE(drp->r_xattr_dir); 6461 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6462 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6463 mutex_exit(&drp->r_statelock); 6464 6465 e.error = EINVAL; 6466 } else { 6467 e.error = geterrno4(res.status); 6468 } 6469 6470 if (e.error) { 6471 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6472 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6473 needrecov); 6474 return (e.error); 6475 } 6476 } 6477 6478 resop = &res.array[0]; /* putfh res */ 6479 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6480 6481 resop = &res.array[1]; /* openattr res */ 6482 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6483 6484 resop = &res.array[2]; /* getfh res */ 6485 gf_res = &resop->nfs_resop4_u.opgetfh; 6486 if (gf_res->object.nfs_fh4_len == 0) { 6487 *avp = NULL; 6488 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6489 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6490 return (ENOENT); 6491 } 6492 6493 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6494 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6495 dvp->v_vfsp, t, cr, dvp, 6496 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6497 sfh4_rele(&sfhp); 6498 6499 if (e.error) 6500 PURGE_ATTRCACHE4(vp); 6501 6502 mutex_enter(&vp->v_lock); 6503 vp->v_flag |= V_XATTRDIR; 6504 mutex_exit(&vp->v_lock); 6505 6506 *avp = vp; 6507 6508 mutex_enter(&drp->r_statelock); 6509 if (drp->r_xattr_dir) 6510 VN_RELE(drp->r_xattr_dir); 6511 VN_HOLD(vp); 6512 drp->r_xattr_dir = vp; 6513 6514 /* 6515 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6516 * NULL. xattrs could be created at any time, and we have no 6517 * way to update pc4_xattr_exists in the base object if/when 6518 * it happens. 6519 */ 6520 drp->r_pathconf.pc4_xattr_valid = 0; 6521 6522 mutex_exit(&drp->r_statelock); 6523 6524 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6525 6526 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6527 6528 return (0); 6529 } 6530 6531 /* ARGSUSED */ 6532 static int 6533 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6534 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6535 vsecattr_t *vsecp) 6536 { 6537 int error; 6538 vnode_t *vp = NULL; 6539 rnode4_t *rp; 6540 struct vattr vattr; 6541 rnode4_t *drp; 6542 vnode_t *tempvp; 6543 enum createmode4 createmode; 6544 bool_t must_trunc = FALSE; 6545 int truncating = 0; 6546 6547 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6548 return (EPERM); 6549 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6550 return (EINVAL); 6551 } 6552 6553 /* . and .. have special meaning in the protocol, reject them. */ 6554 6555 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6556 return (EISDIR); 6557 6558 drp = VTOR4(dvp); 6559 6560 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6561 return (EINTR); 6562 6563 top: 6564 /* 6565 * We make a copy of the attributes because the caller does not 6566 * expect us to change what va points to. 6567 */ 6568 vattr = *va; 6569 6570 /* 6571 * If the pathname is "", then dvp is the root vnode of 6572 * a remote file mounted over a local directory. 6573 * All that needs to be done is access 6574 * checking and truncation. Note that we avoid doing 6575 * open w/ create because the parent directory might 6576 * be in pseudo-fs and the open would fail. 6577 */ 6578 if (*nm == '\0') { 6579 error = 0; 6580 VN_HOLD(dvp); 6581 vp = dvp; 6582 must_trunc = TRUE; 6583 } else { 6584 /* 6585 * We need to go over the wire, just to be sure whether the 6586 * file exists or not. Using the DNLC can be dangerous in 6587 * this case when making a decision regarding existence. 6588 */ 6589 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6590 } 6591 6592 if (exclusive) 6593 createmode = EXCLUSIVE4; 6594 else 6595 createmode = GUARDED4; 6596 6597 /* 6598 * error would be set if the file does not exist on the 6599 * server, so lets go create it. 6600 */ 6601 if (error) { 6602 goto create_otw; 6603 } 6604 6605 /* 6606 * File does exist on the server 6607 */ 6608 if (exclusive == EXCL) 6609 error = EEXIST; 6610 else if (vp->v_type == VDIR && (mode & VWRITE)) 6611 error = EISDIR; 6612 else { 6613 /* 6614 * If vnode is a device, create special vnode. 6615 */ 6616 if (ISVDEV(vp->v_type)) { 6617 tempvp = vp; 6618 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6619 VN_RELE(tempvp); 6620 } 6621 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6622 if ((vattr.va_mask & AT_SIZE) && 6623 vp->v_type == VREG) { 6624 rp = VTOR4(vp); 6625 /* 6626 * Check here for large file handled 6627 * by LF-unaware process (as 6628 * ufs_create() does) 6629 */ 6630 if (!(flags & FOFFMAX)) { 6631 mutex_enter(&rp->r_statelock); 6632 if (rp->r_size > MAXOFF32_T) 6633 error = EOVERFLOW; 6634 mutex_exit(&rp->r_statelock); 6635 } 6636 6637 /* if error is set then we need to return */ 6638 if (error) { 6639 nfs_rw_exit(&drp->r_rwlock); 6640 VN_RELE(vp); 6641 return (error); 6642 } 6643 6644 if (must_trunc) { 6645 vattr.va_mask = AT_SIZE; 6646 error = nfs4setattr(vp, &vattr, 0, cr, 6647 NULL); 6648 } else { 6649 /* 6650 * we know we have a regular file that already 6651 * exists and we may end up truncating the file 6652 * as a result of the open_otw, so flush out 6653 * any dirty pages for this file first. 6654 */ 6655 if (nfs4_has_pages(vp) && 6656 ((rp->r_flags & R4DIRTY) || 6657 rp->r_count > 0 || 6658 rp->r_mapcnt > 0)) { 6659 error = nfs4_putpage(vp, 6660 (offset_t)0, 0, 0, cr, ct); 6661 if (error && (error == ENOSPC || 6662 error == EDQUOT)) { 6663 mutex_enter( 6664 &rp->r_statelock); 6665 if (!rp->r_error) 6666 rp->r_error = 6667 error; 6668 mutex_exit( 6669 &rp->r_statelock); 6670 } 6671 } 6672 vattr.va_mask = (AT_SIZE | 6673 AT_TYPE | AT_MODE); 6674 vattr.va_type = VREG; 6675 createmode = UNCHECKED4; 6676 truncating = 1; 6677 goto create_otw; 6678 } 6679 } 6680 } 6681 } 6682 nfs_rw_exit(&drp->r_rwlock); 6683 if (error) { 6684 VN_RELE(vp); 6685 } else { 6686 vnode_t *tvp; 6687 rnode4_t *trp; 6688 tvp = vp; 6689 if (vp->v_type == VREG) { 6690 trp = VTOR4(vp); 6691 if (IS_SHADOW(vp, trp)) 6692 tvp = RTOV4(trp); 6693 } 6694 6695 if (must_trunc) { 6696 /* 6697 * existing file got truncated, notify. 6698 */ 6699 vnevent_create(tvp, ct); 6700 } 6701 6702 *vpp = vp; 6703 } 6704 return (error); 6705 6706 create_otw: 6707 dnlc_remove(dvp, nm); 6708 6709 ASSERT(vattr.va_mask & AT_TYPE); 6710 6711 /* 6712 * If not a regular file let nfs4mknod() handle it. 6713 */ 6714 if (vattr.va_type != VREG) { 6715 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6716 nfs_rw_exit(&drp->r_rwlock); 6717 return (error); 6718 } 6719 6720 /* 6721 * It _is_ a regular file. 6722 */ 6723 ASSERT(vattr.va_mask & AT_MODE); 6724 if (MANDMODE(vattr.va_mode)) { 6725 nfs_rw_exit(&drp->r_rwlock); 6726 return (EACCES); 6727 } 6728 6729 /* 6730 * If this happens to be a mknod of a regular file, then flags will 6731 * have neither FREAD or FWRITE. However, we must set at least one 6732 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6733 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6734 * set (based on openmode specified by app). 6735 */ 6736 if ((flags & (FREAD|FWRITE)) == 0) 6737 flags |= (FREAD|FWRITE); 6738 6739 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6740 6741 if (vp != NULL) { 6742 /* if create was successful, throw away the file's pages */ 6743 if (!error && (vattr.va_mask & AT_SIZE)) 6744 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6745 cr); 6746 /* release the lookup hold */ 6747 VN_RELE(vp); 6748 vp = NULL; 6749 } 6750 6751 /* 6752 * validate that we opened a regular file. This handles a misbehaving 6753 * server that returns an incorrect FH. 6754 */ 6755 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6756 error = EISDIR; 6757 VN_RELE(*vpp); 6758 } 6759 6760 /* 6761 * If this is not an exclusive create, then the CREATE 6762 * request will be made with the GUARDED mode set. This 6763 * means that the server will return EEXIST if the file 6764 * exists. The file could exist because of a retransmitted 6765 * request. In this case, we recover by starting over and 6766 * checking to see whether the file exists. This second 6767 * time through it should and a CREATE request will not be 6768 * sent. 6769 * 6770 * This handles the problem of a dangling CREATE request 6771 * which contains attributes which indicate that the file 6772 * should be truncated. This retransmitted request could 6773 * possibly truncate valid data in the file if not caught 6774 * by the duplicate request mechanism on the server or if 6775 * not caught by other means. The scenario is: 6776 * 6777 * Client transmits CREATE request with size = 0 6778 * Client times out, retransmits request. 6779 * Response to the first request arrives from the server 6780 * and the client proceeds on. 6781 * Client writes data to the file. 6782 * The server now processes retransmitted CREATE request 6783 * and truncates file. 6784 * 6785 * The use of the GUARDED CREATE request prevents this from 6786 * happening because the retransmitted CREATE would fail 6787 * with EEXIST and would not truncate the file. 6788 */ 6789 if (error == EEXIST && exclusive == NONEXCL) { 6790 #ifdef DEBUG 6791 nfs4_create_misses++; 6792 #endif 6793 goto top; 6794 } 6795 nfs_rw_exit(&drp->r_rwlock); 6796 if (truncating && !error && *vpp) { 6797 vnode_t *tvp; 6798 rnode4_t *trp; 6799 /* 6800 * existing file got truncated, notify. 6801 */ 6802 tvp = *vpp; 6803 trp = VTOR4(tvp); 6804 if (IS_SHADOW(tvp, trp)) 6805 tvp = RTOV4(trp); 6806 vnevent_create(tvp, ct); 6807 } 6808 return (error); 6809 } 6810 6811 /* 6812 * Create compound (for mkdir, mknod, symlink): 6813 * { Putfh <dfh>; Create; Getfh; Getattr } 6814 * It's okay if setattr failed to set gid - this is not considered 6815 * an error, but purge attrs in that case. 6816 */ 6817 static int 6818 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6819 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6820 { 6821 int need_end_op = FALSE; 6822 COMPOUND4args_clnt args; 6823 COMPOUND4res_clnt res, *resp = NULL; 6824 nfs_argop4 *argop; 6825 nfs_resop4 *resop; 6826 int doqueue; 6827 mntinfo4_t *mi; 6828 rnode4_t *drp = VTOR4(dvp); 6829 change_info4 *cinfo; 6830 GETFH4res *gf_res; 6831 struct vattr vattr; 6832 vnode_t *vp; 6833 fattr4 *crattr; 6834 bool_t needrecov = FALSE; 6835 nfs4_recov_state_t recov_state; 6836 nfs4_sharedfh_t *sfhp = NULL; 6837 hrtime_t t; 6838 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6839 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6840 dirattr_info_t dinfo, *dinfop; 6841 servinfo4_t *svp; 6842 bitmap4 supp_attrs; 6843 6844 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6845 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6846 6847 mi = VTOMI4(dvp); 6848 6849 /* 6850 * Make sure we properly deal with setting the right gid 6851 * on a new directory to reflect the parent's setgid bit 6852 */ 6853 setgid_flag = 0; 6854 if (type == NF4DIR) { 6855 struct vattr dva; 6856 6857 va->va_mode &= ~VSGID; 6858 dva.va_mask = AT_MODE | AT_GID; 6859 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6860 6861 /* 6862 * If the parent's directory has the setgid bit set 6863 * _and_ the client was able to get a valid mapping 6864 * for the parent dir's owner_group, we want to 6865 * append NVERIFY(owner_group == dva.va_gid) and 6866 * SETTATTR to the CREATE compound. 6867 */ 6868 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6869 setgid_flag = 1; 6870 va->va_mode |= VSGID; 6871 if (dva.va_gid != GID_NOBODY) { 6872 va->va_mask |= AT_GID; 6873 va->va_gid = dva.va_gid; 6874 } 6875 } 6876 } 6877 } 6878 6879 /* 6880 * Create ops: 6881 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6882 * 5:restorefh(dir) 6:getattr(dir) 6883 * 6884 * if (setgid) 6885 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6886 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6887 * 8:nverify 9:setattr 6888 */ 6889 if (setgid_flag) { 6890 numops = 10; 6891 idx_create = 1; 6892 idx_fattr = 3; 6893 } else { 6894 numops = 7; 6895 idx_create = 2; 6896 idx_fattr = 4; 6897 } 6898 6899 ASSERT(nfs_zone() == mi->mi_zone); 6900 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6901 return (EINTR); 6902 } 6903 recov_state.rs_flags = 0; 6904 recov_state.rs_num_retry_despite_err = 0; 6905 6906 argoplist_size = numops * sizeof (nfs_argop4); 6907 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6908 6909 recov_retry: 6910 if (type == NF4LNK) 6911 args.ctag = TAG_SYMLINK; 6912 else if (type == NF4DIR) 6913 args.ctag = TAG_MKDIR; 6914 else 6915 args.ctag = TAG_MKNOD; 6916 6917 args.array_len = numops; 6918 args.array = argop; 6919 6920 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6921 nfs_rw_exit(&drp->r_rwlock); 6922 kmem_free(argop, argoplist_size); 6923 return (e.error); 6924 } 6925 need_end_op = TRUE; 6926 6927 6928 /* 0: putfh directory */ 6929 argop[0].argop = OP_CPUTFH; 6930 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6931 6932 /* 1/2: Create object */ 6933 argop[idx_create].argop = OP_CCREATE; 6934 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6935 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6936 if (type == NF4LNK) { 6937 /* 6938 * symlink, treat name as data 6939 */ 6940 ASSERT(data != NULL); 6941 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6942 (char *)data; 6943 } 6944 if (type == NF4BLK || type == NF4CHR) { 6945 ASSERT(data != NULL); 6946 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6947 *((specdata4 *)data); 6948 } 6949 6950 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6951 6952 svp = drp->r_server; 6953 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6954 supp_attrs = svp->sv_supp_attrs; 6955 nfs_rw_exit(&svp->sv_lock); 6956 6957 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6958 nfs_rw_exit(&drp->r_rwlock); 6959 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6960 e.error = EINVAL; 6961 kmem_free(argop, argoplist_size); 6962 return (e.error); 6963 } 6964 6965 /* 2/3: getfh fh of created object */ 6966 ASSERT(idx_create + 1 == idx_fattr - 1); 6967 argop[idx_create + 1].argop = OP_GETFH; 6968 6969 /* 3/4: getattr of new object */ 6970 argop[idx_fattr].argop = OP_GETATTR; 6971 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6972 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6973 6974 if (setgid_flag) { 6975 vattr_t _v; 6976 6977 argop[4].argop = OP_SAVEFH; 6978 6979 argop[5].argop = OP_CPUTFH; 6980 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6981 6982 argop[6].argop = OP_GETATTR; 6983 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6984 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6985 6986 argop[7].argop = OP_RESTOREFH; 6987 6988 /* 6989 * nverify 6990 * 6991 * XXX - Revisit the last argument to nfs4_end_op() 6992 * once 5020486 is fixed. 6993 */ 6994 _v.va_mask = AT_GID; 6995 _v.va_gid = va->va_gid; 6996 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6997 supp_attrs)) { 6998 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6999 nfs_rw_exit(&drp->r_rwlock); 7000 nfs4_fattr4_free(crattr); 7001 kmem_free(argop, argoplist_size); 7002 return (e.error); 7003 } 7004 7005 /* 7006 * setattr 7007 * 7008 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7009 * so no need for stateid or flags. Also we specify NULL 7010 * rp since we're only interested in setting owner_group 7011 * attributes. 7012 */ 7013 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7014 &e.error, 0); 7015 7016 if (e.error) { 7017 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7018 nfs_rw_exit(&drp->r_rwlock); 7019 nfs4_fattr4_free(crattr); 7020 nfs4args_verify_free(&argop[8]); 7021 kmem_free(argop, argoplist_size); 7022 return (e.error); 7023 } 7024 } else { 7025 argop[1].argop = OP_SAVEFH; 7026 7027 argop[5].argop = OP_RESTOREFH; 7028 7029 argop[6].argop = OP_GETATTR; 7030 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7031 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7032 } 7033 7034 dnlc_remove(dvp, nm); 7035 7036 doqueue = 1; 7037 t = gethrtime(); 7038 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7039 7040 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7041 if (e.error) { 7042 PURGE_ATTRCACHE4(dvp); 7043 if (!needrecov) 7044 goto out; 7045 } 7046 7047 if (needrecov) { 7048 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7049 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7050 nfs4_end_op(mi, dvp, NULL, &recov_state, 7051 needrecov); 7052 need_end_op = FALSE; 7053 nfs4_fattr4_free(crattr); 7054 if (setgid_flag) { 7055 nfs4args_verify_free(&argop[8]); 7056 nfs4args_setattr_free(&argop[9]); 7057 } 7058 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7059 goto recov_retry; 7060 } 7061 } 7062 7063 resp = &res; 7064 7065 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7066 7067 if (res.status == NFS4ERR_BADOWNER) 7068 nfs4_log_badowner(mi, OP_CREATE); 7069 7070 e.error = geterrno4(res.status); 7071 7072 /* 7073 * This check is left over from when create was implemented 7074 * using a setattr op (instead of createattrs). If the 7075 * putfh/create/getfh failed, the error was returned. If 7076 * setattr/getattr failed, we keep going. 7077 * 7078 * It might be better to get rid of the GETFH also, and just 7079 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7080 * Then if any of the operations failed, we could return the 7081 * error now, and remove much of the error code below. 7082 */ 7083 if (res.array_len <= idx_fattr) { 7084 /* 7085 * Either Putfh, Create or Getfh failed. 7086 */ 7087 PURGE_ATTRCACHE4(dvp); 7088 /* 7089 * nfs4_purge_stale_fh() may generate otw calls through 7090 * nfs4_invalidate_pages. Hence the need to call 7091 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7092 */ 7093 nfs4_end_op(mi, dvp, NULL, &recov_state, 7094 needrecov); 7095 need_end_op = FALSE; 7096 nfs4_purge_stale_fh(e.error, dvp, cr); 7097 goto out; 7098 } 7099 } 7100 7101 resop = &res.array[idx_create]; /* create res */ 7102 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7103 7104 resop = &res.array[idx_create + 1]; /* getfh res */ 7105 gf_res = &resop->nfs_resop4_u.opgetfh; 7106 7107 sfhp = sfh4_get(&gf_res->object, mi); 7108 if (e.error) { 7109 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7110 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7111 if (vp->v_type == VNON) { 7112 vattr.va_mask = AT_TYPE; 7113 /* 7114 * Need to call nfs4_end_op before nfs4getattr to avoid 7115 * potential nfs4_start_op deadlock. See RFE 4777612. 7116 */ 7117 nfs4_end_op(mi, dvp, NULL, &recov_state, 7118 needrecov); 7119 need_end_op = FALSE; 7120 e.error = nfs4getattr(vp, &vattr, cr); 7121 if (e.error) { 7122 VN_RELE(vp); 7123 *vpp = NULL; 7124 goto out; 7125 } 7126 vp->v_type = vattr.va_type; 7127 } 7128 e.error = 0; 7129 } else { 7130 *vpp = vp = makenfs4node(sfhp, 7131 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7132 dvp->v_vfsp, t, cr, 7133 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7134 } 7135 7136 /* 7137 * If compound succeeded, then update dir attrs 7138 */ 7139 if (res.status == NFS4_OK) { 7140 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7141 dinfo.di_cred = cr; 7142 dinfo.di_time_call = t; 7143 dinfop = &dinfo; 7144 } else 7145 dinfop = NULL; 7146 7147 /* Update directory cache attribute, readdir and dnlc caches */ 7148 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7149 7150 out: 7151 if (sfhp != NULL) 7152 sfh4_rele(&sfhp); 7153 nfs_rw_exit(&drp->r_rwlock); 7154 nfs4_fattr4_free(crattr); 7155 if (setgid_flag) { 7156 nfs4args_verify_free(&argop[8]); 7157 nfs4args_setattr_free(&argop[9]); 7158 } 7159 if (resp) 7160 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7161 if (need_end_op) 7162 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7163 7164 kmem_free(argop, argoplist_size); 7165 return (e.error); 7166 } 7167 7168 /* ARGSUSED */ 7169 static int 7170 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7171 int mode, vnode_t **vpp, cred_t *cr) 7172 { 7173 int error; 7174 vnode_t *vp; 7175 nfs_ftype4 type; 7176 specdata4 spec, *specp = NULL; 7177 7178 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7179 7180 switch (va->va_type) { 7181 case VCHR: 7182 case VBLK: 7183 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7184 spec.specdata1 = getmajor(va->va_rdev); 7185 spec.specdata2 = getminor(va->va_rdev); 7186 specp = &spec; 7187 break; 7188 7189 case VFIFO: 7190 type = NF4FIFO; 7191 break; 7192 case VSOCK: 7193 type = NF4SOCK; 7194 break; 7195 7196 default: 7197 return (EINVAL); 7198 } 7199 7200 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7201 if (error) { 7202 return (error); 7203 } 7204 7205 /* 7206 * This might not be needed any more; special case to deal 7207 * with problematic v2/v3 servers. Since create was unable 7208 * to set group correctly, not sure what hope setattr has. 7209 */ 7210 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7211 va->va_mask = AT_GID; 7212 (void) nfs4setattr(vp, va, 0, cr, NULL); 7213 } 7214 7215 /* 7216 * If vnode is a device create special vnode 7217 */ 7218 if (ISVDEV(vp->v_type)) { 7219 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7220 VN_RELE(vp); 7221 } else { 7222 *vpp = vp; 7223 } 7224 return (error); 7225 } 7226 7227 /* 7228 * Remove requires that the current fh be the target directory. 7229 * After the operation, the current fh is unchanged. 7230 * The compound op structure is: 7231 * PUTFH(targetdir), REMOVE 7232 * 7233 * Weirdness: if the vnode to be removed is open 7234 * we rename it instead of removing it and nfs_inactive 7235 * will remove the new name. 7236 */ 7237 /* ARGSUSED */ 7238 static int 7239 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7240 { 7241 COMPOUND4args_clnt args; 7242 COMPOUND4res_clnt res, *resp = NULL; 7243 REMOVE4res *rm_res; 7244 nfs_argop4 argop[3]; 7245 nfs_resop4 *resop; 7246 vnode_t *vp; 7247 char *tmpname; 7248 int doqueue; 7249 mntinfo4_t *mi; 7250 rnode4_t *rp; 7251 rnode4_t *drp; 7252 int needrecov = 0; 7253 nfs4_recov_state_t recov_state; 7254 int isopen; 7255 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7256 dirattr_info_t dinfo; 7257 7258 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7259 return (EPERM); 7260 drp = VTOR4(dvp); 7261 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7262 return (EINTR); 7263 7264 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7265 if (e.error) { 7266 nfs_rw_exit(&drp->r_rwlock); 7267 return (e.error); 7268 } 7269 7270 if (vp->v_type == VDIR) { 7271 VN_RELE(vp); 7272 nfs_rw_exit(&drp->r_rwlock); 7273 return (EISDIR); 7274 } 7275 7276 /* 7277 * First just remove the entry from the name cache, as it 7278 * is most likely the only entry for this vp. 7279 */ 7280 dnlc_remove(dvp, nm); 7281 7282 rp = VTOR4(vp); 7283 7284 /* 7285 * For regular file types, check to see if the file is open by looking 7286 * at the open streams. 7287 * For all other types, check the reference count on the vnode. Since 7288 * they are not opened OTW they never have an open stream. 7289 * 7290 * If the file is open, rename it to .nfsXXXX. 7291 */ 7292 if (vp->v_type != VREG) { 7293 /* 7294 * If the file has a v_count > 1 then there may be more than one 7295 * entry in the name cache due multiple links or an open file, 7296 * but we don't have the real reference count so flush all 7297 * possible entries. 7298 */ 7299 if (vp->v_count > 1) 7300 dnlc_purge_vp(vp); 7301 7302 /* 7303 * Now we have the real reference count. 7304 */ 7305 isopen = vp->v_count > 1; 7306 } else { 7307 mutex_enter(&rp->r_os_lock); 7308 isopen = list_head(&rp->r_open_streams) != NULL; 7309 mutex_exit(&rp->r_os_lock); 7310 } 7311 7312 mutex_enter(&rp->r_statelock); 7313 if (isopen && 7314 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7315 mutex_exit(&rp->r_statelock); 7316 tmpname = newname(); 7317 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7318 if (e.error) 7319 kmem_free(tmpname, MAXNAMELEN); 7320 else { 7321 mutex_enter(&rp->r_statelock); 7322 if (rp->r_unldvp == NULL) { 7323 VN_HOLD(dvp); 7324 rp->r_unldvp = dvp; 7325 if (rp->r_unlcred != NULL) 7326 crfree(rp->r_unlcred); 7327 crhold(cr); 7328 rp->r_unlcred = cr; 7329 rp->r_unlname = tmpname; 7330 } else { 7331 kmem_free(rp->r_unlname, MAXNAMELEN); 7332 rp->r_unlname = tmpname; 7333 } 7334 mutex_exit(&rp->r_statelock); 7335 } 7336 VN_RELE(vp); 7337 nfs_rw_exit(&drp->r_rwlock); 7338 return (e.error); 7339 } 7340 /* 7341 * Actually remove the file/dir 7342 */ 7343 mutex_exit(&rp->r_statelock); 7344 7345 /* 7346 * We need to flush any dirty pages which happen to 7347 * be hanging around before removing the file. 7348 * This shouldn't happen very often since in NFSv4 7349 * we should be close to open consistent. 7350 */ 7351 if (nfs4_has_pages(vp) && 7352 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7353 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7354 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7355 mutex_enter(&rp->r_statelock); 7356 if (!rp->r_error) 7357 rp->r_error = e.error; 7358 mutex_exit(&rp->r_statelock); 7359 } 7360 } 7361 7362 mi = VTOMI4(dvp); 7363 7364 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7365 recov_state.rs_flags = 0; 7366 recov_state.rs_num_retry_despite_err = 0; 7367 7368 recov_retry: 7369 /* 7370 * Remove ops: putfh dir; remove 7371 */ 7372 args.ctag = TAG_REMOVE; 7373 args.array_len = 3; 7374 args.array = argop; 7375 7376 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7377 if (e.error) { 7378 nfs_rw_exit(&drp->r_rwlock); 7379 VN_RELE(vp); 7380 return (e.error); 7381 } 7382 7383 /* putfh directory */ 7384 argop[0].argop = OP_CPUTFH; 7385 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7386 7387 /* remove */ 7388 argop[1].argop = OP_CREMOVE; 7389 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7390 7391 /* getattr dir */ 7392 argop[2].argop = OP_GETATTR; 7393 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7394 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7395 7396 doqueue = 1; 7397 dinfo.di_time_call = gethrtime(); 7398 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7399 7400 PURGE_ATTRCACHE4(vp); 7401 7402 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7403 if (e.error) 7404 PURGE_ATTRCACHE4(dvp); 7405 7406 if (needrecov) { 7407 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7408 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7409 if (!e.error) 7410 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7411 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7412 needrecov); 7413 goto recov_retry; 7414 } 7415 } 7416 7417 /* 7418 * Matching nfs4_end_op() for start_op() above. 7419 * There is a path in the code below which calls 7420 * nfs4_purge_stale_fh(), which may generate otw calls through 7421 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7422 * here to avoid nfs4_start_op() deadlock. 7423 */ 7424 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7425 7426 if (!e.error) { 7427 resp = &res; 7428 7429 if (res.status) { 7430 e.error = geterrno4(res.status); 7431 PURGE_ATTRCACHE4(dvp); 7432 nfs4_purge_stale_fh(e.error, dvp, cr); 7433 } else { 7434 resop = &res.array[1]; /* remove res */ 7435 rm_res = &resop->nfs_resop4_u.opremove; 7436 7437 dinfo.di_garp = 7438 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7439 dinfo.di_cred = cr; 7440 7441 /* Update directory attr, readdir and dnlc caches */ 7442 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7443 &dinfo); 7444 } 7445 } 7446 nfs_rw_exit(&drp->r_rwlock); 7447 if (resp) 7448 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7449 7450 if (e.error == 0) { 7451 vnode_t *tvp; 7452 rnode4_t *trp; 7453 trp = VTOR4(vp); 7454 tvp = vp; 7455 if (IS_SHADOW(vp, trp)) 7456 tvp = RTOV4(trp); 7457 vnevent_remove(tvp, dvp, nm, ct); 7458 } 7459 VN_RELE(vp); 7460 return (e.error); 7461 } 7462 7463 /* 7464 * Link requires that the current fh be the target directory and the 7465 * saved fh be the source fh. After the operation, the current fh is unchanged. 7466 * Thus the compound op structure is: 7467 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7468 * GETATTR(file) 7469 */ 7470 /* ARGSUSED */ 7471 static int 7472 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7473 caller_context_t *ct, int flags) 7474 { 7475 COMPOUND4args_clnt args; 7476 COMPOUND4res_clnt res, *resp = NULL; 7477 LINK4res *ln_res; 7478 int argoplist_size = 7 * sizeof (nfs_argop4); 7479 nfs_argop4 *argop; 7480 nfs_resop4 *resop; 7481 vnode_t *realvp, *nvp; 7482 int doqueue; 7483 mntinfo4_t *mi; 7484 rnode4_t *tdrp; 7485 bool_t needrecov = FALSE; 7486 nfs4_recov_state_t recov_state; 7487 hrtime_t t; 7488 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7489 dirattr_info_t dinfo; 7490 7491 ASSERT(*tnm != '\0'); 7492 ASSERT(tdvp->v_type == VDIR); 7493 ASSERT(nfs4_consistent_type(tdvp)); 7494 ASSERT(nfs4_consistent_type(svp)); 7495 7496 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7497 return (EPERM); 7498 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7499 svp = realvp; 7500 ASSERT(nfs4_consistent_type(svp)); 7501 } 7502 7503 tdrp = VTOR4(tdvp); 7504 mi = VTOMI4(svp); 7505 7506 if (!(mi->mi_flags & MI4_LINK)) { 7507 return (EOPNOTSUPP); 7508 } 7509 recov_state.rs_flags = 0; 7510 recov_state.rs_num_retry_despite_err = 0; 7511 7512 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7513 return (EINTR); 7514 7515 recov_retry: 7516 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7517 7518 args.ctag = TAG_LINK; 7519 7520 /* 7521 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7522 * restorefh; getattr(fl) 7523 */ 7524 args.array_len = 7; 7525 args.array = argop; 7526 7527 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7528 if (e.error) { 7529 kmem_free(argop, argoplist_size); 7530 nfs_rw_exit(&tdrp->r_rwlock); 7531 return (e.error); 7532 } 7533 7534 /* 0. putfh file */ 7535 argop[0].argop = OP_CPUTFH; 7536 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7537 7538 /* 1. save current fh to free up the space for the dir */ 7539 argop[1].argop = OP_SAVEFH; 7540 7541 /* 2. putfh targetdir */ 7542 argop[2].argop = OP_CPUTFH; 7543 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7544 7545 /* 3. link: current_fh is targetdir, saved_fh is source */ 7546 argop[3].argop = OP_CLINK; 7547 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7548 7549 /* 4. Get attributes of dir */ 7550 argop[4].argop = OP_GETATTR; 7551 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7552 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7553 7554 /* 5. If link was successful, restore current vp to file */ 7555 argop[5].argop = OP_RESTOREFH; 7556 7557 /* 6. Get attributes of linked object */ 7558 argop[6].argop = OP_GETATTR; 7559 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7560 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7561 7562 dnlc_remove(tdvp, tnm); 7563 7564 doqueue = 1; 7565 t = gethrtime(); 7566 7567 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7568 7569 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7570 if (e.error != 0 && !needrecov) { 7571 PURGE_ATTRCACHE4(tdvp); 7572 PURGE_ATTRCACHE4(svp); 7573 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7574 goto out; 7575 } 7576 7577 if (needrecov) { 7578 bool_t abort; 7579 7580 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7581 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7582 if (abort == FALSE) { 7583 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7584 needrecov); 7585 kmem_free(argop, argoplist_size); 7586 if (!e.error) 7587 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7588 goto recov_retry; 7589 } else { 7590 if (e.error != 0) { 7591 PURGE_ATTRCACHE4(tdvp); 7592 PURGE_ATTRCACHE4(svp); 7593 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7594 &recov_state, needrecov); 7595 goto out; 7596 } 7597 /* fall through for res.status case */ 7598 } 7599 } 7600 7601 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7602 7603 resp = &res; 7604 if (res.status) { 7605 /* If link succeeded, then don't return error */ 7606 e.error = geterrno4(res.status); 7607 if (res.array_len <= 4) { 7608 /* 7609 * Either Putfh, Savefh, Putfh dir, or Link failed 7610 */ 7611 PURGE_ATTRCACHE4(svp); 7612 PURGE_ATTRCACHE4(tdvp); 7613 if (e.error == EOPNOTSUPP) { 7614 mutex_enter(&mi->mi_lock); 7615 mi->mi_flags &= ~MI4_LINK; 7616 mutex_exit(&mi->mi_lock); 7617 } 7618 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7619 /* XXX-LP */ 7620 if (e.error == EISDIR && crgetuid(cr) != 0) 7621 e.error = EPERM; 7622 goto out; 7623 } 7624 } 7625 7626 /* either no error or one of the postop getattr failed */ 7627 7628 /* 7629 * XXX - if LINK succeeded, but no attrs were returned for link 7630 * file, purge its cache. 7631 * 7632 * XXX Perform a simplified version of wcc checking. Instead of 7633 * have another getattr to get pre-op, just purge cache if 7634 * any of the ops prior to and including the getattr failed. 7635 * If the getattr succeeded then update the attrcache accordingly. 7636 */ 7637 7638 /* 7639 * update cache with link file postattrs. 7640 * Note: at this point resop points to link res. 7641 */ 7642 resop = &res.array[3]; /* link res */ 7643 ln_res = &resop->nfs_resop4_u.oplink; 7644 if (res.status == NFS4_OK) 7645 e.error = nfs4_update_attrcache(res.status, 7646 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7647 t, svp, cr); 7648 7649 /* 7650 * Call makenfs4node to create the new shadow vp for tnm. 7651 * We pass NULL attrs because we just cached attrs for 7652 * the src object. All we're trying to accomplish is to 7653 * to create the new shadow vnode. 7654 */ 7655 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7656 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7657 7658 /* Update target cache attribute, readdir and dnlc caches */ 7659 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7660 dinfo.di_time_call = t; 7661 dinfo.di_cred = cr; 7662 7663 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7664 ASSERT(nfs4_consistent_type(tdvp)); 7665 ASSERT(nfs4_consistent_type(svp)); 7666 ASSERT(nfs4_consistent_type(nvp)); 7667 VN_RELE(nvp); 7668 7669 if (!e.error) { 7670 vnode_t *tvp; 7671 rnode4_t *trp; 7672 /* 7673 * Notify the source file of this link operation. 7674 */ 7675 trp = VTOR4(svp); 7676 tvp = svp; 7677 if (IS_SHADOW(svp, trp)) 7678 tvp = RTOV4(trp); 7679 vnevent_link(tvp, ct); 7680 } 7681 out: 7682 kmem_free(argop, argoplist_size); 7683 if (resp) 7684 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7685 7686 nfs_rw_exit(&tdrp->r_rwlock); 7687 7688 return (e.error); 7689 } 7690 7691 /* ARGSUSED */ 7692 static int 7693 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7694 caller_context_t *ct, int flags) 7695 { 7696 vnode_t *realvp; 7697 7698 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7699 return (EPERM); 7700 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7701 ndvp = realvp; 7702 7703 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7704 } 7705 7706 /* 7707 * nfs4rename does the real work of renaming in NFS Version 4. 7708 * 7709 * A file handle is considered volatile for renaming purposes if either 7710 * of the volatile bits are turned on. However, the compound may differ 7711 * based on the likelihood of the filehandle to change during rename. 7712 */ 7713 static int 7714 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7715 caller_context_t *ct) 7716 { 7717 int error; 7718 mntinfo4_t *mi; 7719 vnode_t *nvp = NULL; 7720 vnode_t *ovp = NULL; 7721 char *tmpname = NULL; 7722 rnode4_t *rp; 7723 rnode4_t *odrp; 7724 rnode4_t *ndrp; 7725 int did_link = 0; 7726 int do_link = 1; 7727 nfsstat4 stat = NFS4_OK; 7728 7729 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7730 ASSERT(nfs4_consistent_type(odvp)); 7731 ASSERT(nfs4_consistent_type(ndvp)); 7732 7733 if (onm[0] == '.' && (onm[1] == '\0' || 7734 (onm[1] == '.' && onm[2] == '\0'))) 7735 return (EINVAL); 7736 7737 if (nnm[0] == '.' && (nnm[1] == '\0' || 7738 (nnm[1] == '.' && nnm[2] == '\0'))) 7739 return (EINVAL); 7740 7741 odrp = VTOR4(odvp); 7742 ndrp = VTOR4(ndvp); 7743 if ((intptr_t)odrp < (intptr_t)ndrp) { 7744 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7745 return (EINTR); 7746 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7747 nfs_rw_exit(&odrp->r_rwlock); 7748 return (EINTR); 7749 } 7750 } else { 7751 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7752 return (EINTR); 7753 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7754 nfs_rw_exit(&ndrp->r_rwlock); 7755 return (EINTR); 7756 } 7757 } 7758 7759 /* 7760 * Lookup the target file. If it exists, it needs to be 7761 * checked to see whether it is a mount point and whether 7762 * it is active (open). 7763 */ 7764 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7765 if (!error) { 7766 int isactive; 7767 7768 ASSERT(nfs4_consistent_type(nvp)); 7769 /* 7770 * If this file has been mounted on, then just 7771 * return busy because renaming to it would remove 7772 * the mounted file system from the name space. 7773 */ 7774 if (vn_ismntpt(nvp)) { 7775 VN_RELE(nvp); 7776 nfs_rw_exit(&odrp->r_rwlock); 7777 nfs_rw_exit(&ndrp->r_rwlock); 7778 return (EBUSY); 7779 } 7780 7781 /* 7782 * First just remove the entry from the name cache, as it 7783 * is most likely the only entry for this vp. 7784 */ 7785 dnlc_remove(ndvp, nnm); 7786 7787 rp = VTOR4(nvp); 7788 7789 if (nvp->v_type != VREG) { 7790 /* 7791 * Purge the name cache of all references to this vnode 7792 * so that we can check the reference count to infer 7793 * whether it is active or not. 7794 */ 7795 if (nvp->v_count > 1) 7796 dnlc_purge_vp(nvp); 7797 7798 isactive = nvp->v_count > 1; 7799 } else { 7800 mutex_enter(&rp->r_os_lock); 7801 isactive = list_head(&rp->r_open_streams) != NULL; 7802 mutex_exit(&rp->r_os_lock); 7803 } 7804 7805 /* 7806 * If the vnode is active and is not a directory, 7807 * arrange to rename it to a 7808 * temporary file so that it will continue to be 7809 * accessible. This implements the "unlink-open-file" 7810 * semantics for the target of a rename operation. 7811 * Before doing this though, make sure that the 7812 * source and target files are not already the same. 7813 */ 7814 if (isactive && nvp->v_type != VDIR) { 7815 /* 7816 * Lookup the source name. 7817 */ 7818 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7819 7820 /* 7821 * The source name *should* already exist. 7822 */ 7823 if (error) { 7824 VN_RELE(nvp); 7825 nfs_rw_exit(&odrp->r_rwlock); 7826 nfs_rw_exit(&ndrp->r_rwlock); 7827 return (error); 7828 } 7829 7830 ASSERT(nfs4_consistent_type(ovp)); 7831 7832 /* 7833 * Compare the two vnodes. If they are the same, 7834 * just release all held vnodes and return success. 7835 */ 7836 if (VN_CMP(ovp, nvp)) { 7837 VN_RELE(ovp); 7838 VN_RELE(nvp); 7839 nfs_rw_exit(&odrp->r_rwlock); 7840 nfs_rw_exit(&ndrp->r_rwlock); 7841 return (0); 7842 } 7843 7844 /* 7845 * Can't mix and match directories and non- 7846 * directories in rename operations. We already 7847 * know that the target is not a directory. If 7848 * the source is a directory, return an error. 7849 */ 7850 if (ovp->v_type == VDIR) { 7851 VN_RELE(ovp); 7852 VN_RELE(nvp); 7853 nfs_rw_exit(&odrp->r_rwlock); 7854 nfs_rw_exit(&ndrp->r_rwlock); 7855 return (ENOTDIR); 7856 } 7857 link_call: 7858 /* 7859 * The target file exists, is not the same as 7860 * the source file, and is active. We first 7861 * try to Link it to a temporary filename to 7862 * avoid having the server removing the file 7863 * completely (which could cause data loss to 7864 * the user's POV in the event the Rename fails 7865 * -- see bug 1165874). 7866 */ 7867 /* 7868 * The do_link and did_link booleans are 7869 * introduced in the event we get NFS4ERR_FILE_OPEN 7870 * returned for the Rename. Some servers can 7871 * not Rename over an Open file, so they return 7872 * this error. The client needs to Remove the 7873 * newly created Link and do two Renames, just 7874 * as if the server didn't support LINK. 7875 */ 7876 tmpname = newname(); 7877 error = 0; 7878 7879 if (do_link) { 7880 error = nfs4_link(ndvp, nvp, tmpname, cr, 7881 NULL, 0); 7882 } 7883 if (error == EOPNOTSUPP || !do_link) { 7884 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7885 cr, NULL, 0); 7886 did_link = 0; 7887 } else { 7888 did_link = 1; 7889 } 7890 if (error) { 7891 kmem_free(tmpname, MAXNAMELEN); 7892 VN_RELE(ovp); 7893 VN_RELE(nvp); 7894 nfs_rw_exit(&odrp->r_rwlock); 7895 nfs_rw_exit(&ndrp->r_rwlock); 7896 return (error); 7897 } 7898 7899 mutex_enter(&rp->r_statelock); 7900 if (rp->r_unldvp == NULL) { 7901 VN_HOLD(ndvp); 7902 rp->r_unldvp = ndvp; 7903 if (rp->r_unlcred != NULL) 7904 crfree(rp->r_unlcred); 7905 crhold(cr); 7906 rp->r_unlcred = cr; 7907 rp->r_unlname = tmpname; 7908 } else { 7909 if (rp->r_unlname) 7910 kmem_free(rp->r_unlname, MAXNAMELEN); 7911 rp->r_unlname = tmpname; 7912 } 7913 mutex_exit(&rp->r_statelock); 7914 } 7915 7916 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7917 7918 ASSERT(nfs4_consistent_type(nvp)); 7919 } 7920 7921 if (ovp == NULL) { 7922 /* 7923 * When renaming directories to be a subdirectory of a 7924 * different parent, the dnlc entry for ".." will no 7925 * longer be valid, so it must be removed. 7926 * 7927 * We do a lookup here to determine whether we are renaming 7928 * a directory and we need to check if we are renaming 7929 * an unlinked file. This might have already been done 7930 * in previous code, so we check ovp == NULL to avoid 7931 * doing it twice. 7932 */ 7933 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7934 /* 7935 * The source name *should* already exist. 7936 */ 7937 if (error) { 7938 nfs_rw_exit(&odrp->r_rwlock); 7939 nfs_rw_exit(&ndrp->r_rwlock); 7940 if (nvp) { 7941 VN_RELE(nvp); 7942 } 7943 return (error); 7944 } 7945 ASSERT(ovp != NULL); 7946 ASSERT(nfs4_consistent_type(ovp)); 7947 } 7948 7949 /* 7950 * Is the object being renamed a dir, and if so, is 7951 * it being renamed to a child of itself? The underlying 7952 * fs should ultimately return EINVAL for this case; 7953 * however, buggy beta non-Solaris NFSv4 servers at 7954 * interop testing events have allowed this behavior, 7955 * and it caused our client to panic due to a recursive 7956 * mutex_enter in fn_move. 7957 * 7958 * The tedious locking in fn_move could be changed to 7959 * deal with this case, and the client could avoid the 7960 * panic; however, the client would just confuse itself 7961 * later and misbehave. A better way to handle the broken 7962 * server is to detect this condition and return EINVAL 7963 * without ever sending the the bogus rename to the server. 7964 * We know the rename is invalid -- just fail it now. 7965 */ 7966 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7967 VN_RELE(ovp); 7968 nfs_rw_exit(&odrp->r_rwlock); 7969 nfs_rw_exit(&ndrp->r_rwlock); 7970 if (nvp) { 7971 VN_RELE(nvp); 7972 } 7973 return (EINVAL); 7974 } 7975 7976 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7977 7978 /* 7979 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7980 * possible for the filehandle to change due to the rename. 7981 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7982 * the fh will not change because of the rename, but we still need 7983 * to update its rnode entry with the new name for 7984 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7985 * has no effect on these for now, but for future improvements, 7986 * we might want to use it too to simplify handling of files 7987 * that are open with that flag on. (XXX) 7988 */ 7989 mi = VTOMI4(odvp); 7990 if (NFS4_VOLATILE_FH(mi)) 7991 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7992 &stat); 7993 else 7994 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7995 &stat); 7996 7997 ASSERT(nfs4_consistent_type(odvp)); 7998 ASSERT(nfs4_consistent_type(ndvp)); 7999 ASSERT(nfs4_consistent_type(ovp)); 8000 8001 if (stat == NFS4ERR_FILE_OPEN && did_link) { 8002 do_link = 0; 8003 /* 8004 * Before the 'link_call' code, we did a nfs4_lookup 8005 * that puts a VN_HOLD on nvp. After the nfs4_link 8006 * call we call VN_RELE to match that hold. We need 8007 * to place an additional VN_HOLD here since we will 8008 * be hitting that VN_RELE again. 8009 */ 8010 VN_HOLD(nvp); 8011 8012 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8013 8014 /* Undo the unlinked file naming stuff we just did */ 8015 mutex_enter(&rp->r_statelock); 8016 if (rp->r_unldvp) { 8017 VN_RELE(ndvp); 8018 rp->r_unldvp = NULL; 8019 if (rp->r_unlcred != NULL) 8020 crfree(rp->r_unlcred); 8021 rp->r_unlcred = NULL; 8022 /* rp->r_unlanme points to tmpname */ 8023 if (rp->r_unlname) 8024 kmem_free(rp->r_unlname, MAXNAMELEN); 8025 rp->r_unlname = NULL; 8026 } 8027 mutex_exit(&rp->r_statelock); 8028 8029 if (nvp) { 8030 VN_RELE(nvp); 8031 } 8032 goto link_call; 8033 } 8034 8035 if (error) { 8036 VN_RELE(ovp); 8037 nfs_rw_exit(&odrp->r_rwlock); 8038 nfs_rw_exit(&ndrp->r_rwlock); 8039 if (nvp) { 8040 VN_RELE(nvp); 8041 } 8042 return (error); 8043 } 8044 8045 /* 8046 * when renaming directories to be a subdirectory of a 8047 * different parent, the dnlc entry for ".." will no 8048 * longer be valid, so it must be removed 8049 */ 8050 rp = VTOR4(ovp); 8051 if (ndvp != odvp) { 8052 if (ovp->v_type == VDIR) { 8053 dnlc_remove(ovp, ".."); 8054 if (rp->r_dir != NULL) 8055 nfs4_purge_rddir_cache(ovp); 8056 } 8057 } 8058 8059 /* 8060 * If we are renaming the unlinked file, update the 8061 * r_unldvp and r_unlname as needed. 8062 */ 8063 mutex_enter(&rp->r_statelock); 8064 if (rp->r_unldvp != NULL) { 8065 if (strcmp(rp->r_unlname, onm) == 0) { 8066 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8067 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8068 if (ndvp != rp->r_unldvp) { 8069 VN_RELE(rp->r_unldvp); 8070 rp->r_unldvp = ndvp; 8071 VN_HOLD(ndvp); 8072 } 8073 } 8074 } 8075 mutex_exit(&rp->r_statelock); 8076 8077 /* 8078 * Notify the rename vnevents to source vnode, and to the target 8079 * vnode if it already existed. 8080 */ 8081 if (error == 0) { 8082 vnode_t *tvp; 8083 rnode4_t *trp; 8084 /* 8085 * Notify the vnode. Each links is represented by 8086 * a different vnode, in nfsv4. 8087 */ 8088 if (nvp) { 8089 trp = VTOR4(nvp); 8090 tvp = nvp; 8091 if (IS_SHADOW(nvp, trp)) 8092 tvp = RTOV4(trp); 8093 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8094 } 8095 8096 /* 8097 * if the source and destination directory are not the 8098 * same notify the destination directory. 8099 */ 8100 if (VTOR4(odvp) != VTOR4(ndvp)) { 8101 trp = VTOR4(ndvp); 8102 tvp = ndvp; 8103 if (IS_SHADOW(ndvp, trp)) 8104 tvp = RTOV4(trp); 8105 vnevent_rename_dest_dir(tvp, ct); 8106 } 8107 8108 trp = VTOR4(ovp); 8109 tvp = ovp; 8110 if (IS_SHADOW(ovp, trp)) 8111 tvp = RTOV4(trp); 8112 vnevent_rename_src(tvp, odvp, onm, ct); 8113 } 8114 8115 if (nvp) { 8116 VN_RELE(nvp); 8117 } 8118 VN_RELE(ovp); 8119 8120 nfs_rw_exit(&odrp->r_rwlock); 8121 nfs_rw_exit(&ndrp->r_rwlock); 8122 8123 return (error); 8124 } 8125 8126 /* 8127 * When the parent directory has changed, sv_dfh must be updated 8128 */ 8129 static void 8130 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8131 { 8132 svnode_t *sv = VTOSV(vp); 8133 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8134 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8135 8136 sfh4_hold(new_dfh); 8137 sv->sv_dfh = new_dfh; 8138 sfh4_rele(&old_dfh); 8139 } 8140 8141 /* 8142 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8143 * when it is known that the filehandle is persistent through rename. 8144 * 8145 * Rename requires that the current fh be the target directory and the 8146 * saved fh be the source directory. After the operation, the current fh 8147 * is unchanged. 8148 * The compound op structure for persistent fh rename is: 8149 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8150 * Rather than bother with the directory postop args, we'll simply 8151 * update that a change occurred in the cache, so no post-op getattrs. 8152 */ 8153 static int 8154 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8155 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8156 { 8157 COMPOUND4args_clnt args; 8158 COMPOUND4res_clnt res, *resp = NULL; 8159 nfs_argop4 *argop; 8160 nfs_resop4 *resop; 8161 int doqueue, argoplist_size; 8162 mntinfo4_t *mi; 8163 rnode4_t *odrp = VTOR4(odvp); 8164 rnode4_t *ndrp = VTOR4(ndvp); 8165 RENAME4res *rn_res; 8166 bool_t needrecov; 8167 nfs4_recov_state_t recov_state; 8168 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8169 dirattr_info_t dinfo, *dinfop; 8170 8171 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8172 8173 recov_state.rs_flags = 0; 8174 recov_state.rs_num_retry_despite_err = 0; 8175 8176 /* 8177 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8178 * 8179 * If source/target are different dirs, then append putfh(src); getattr 8180 */ 8181 args.array_len = (odvp == ndvp) ? 5 : 7; 8182 argoplist_size = args.array_len * sizeof (nfs_argop4); 8183 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8184 8185 recov_retry: 8186 *statp = NFS4_OK; 8187 8188 /* No need to Lookup the file, persistent fh */ 8189 args.ctag = TAG_RENAME; 8190 8191 mi = VTOMI4(odvp); 8192 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8193 if (e.error) { 8194 kmem_free(argop, argoplist_size); 8195 return (e.error); 8196 } 8197 8198 /* 0: putfh source directory */ 8199 argop[0].argop = OP_CPUTFH; 8200 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8201 8202 /* 1: Save source fh to free up current for target */ 8203 argop[1].argop = OP_SAVEFH; 8204 8205 /* 2: putfh targetdir */ 8206 argop[2].argop = OP_CPUTFH; 8207 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8208 8209 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8210 argop[3].argop = OP_CRENAME; 8211 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8212 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8213 8214 /* 4: getattr (targetdir) */ 8215 argop[4].argop = OP_GETATTR; 8216 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8217 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8218 8219 if (ndvp != odvp) { 8220 8221 /* 5: putfh (sourcedir) */ 8222 argop[5].argop = OP_CPUTFH; 8223 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8224 8225 /* 6: getattr (sourcedir) */ 8226 argop[6].argop = OP_GETATTR; 8227 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8228 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8229 } 8230 8231 dnlc_remove(odvp, onm); 8232 dnlc_remove(ndvp, nnm); 8233 8234 doqueue = 1; 8235 dinfo.di_time_call = gethrtime(); 8236 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8237 8238 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8239 if (e.error) { 8240 PURGE_ATTRCACHE4(odvp); 8241 PURGE_ATTRCACHE4(ndvp); 8242 } else { 8243 *statp = res.status; 8244 } 8245 8246 if (needrecov) { 8247 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8248 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8249 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8250 if (!e.error) 8251 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8252 goto recov_retry; 8253 } 8254 } 8255 8256 if (!e.error) { 8257 resp = &res; 8258 /* 8259 * as long as OP_RENAME 8260 */ 8261 if (res.status != NFS4_OK && res.array_len <= 4) { 8262 e.error = geterrno4(res.status); 8263 PURGE_ATTRCACHE4(odvp); 8264 PURGE_ATTRCACHE4(ndvp); 8265 /* 8266 * System V defines rename to return EEXIST, not 8267 * ENOTEMPTY if the target directory is not empty. 8268 * Over the wire, the error is NFSERR_ENOTEMPTY 8269 * which geterrno4 maps to ENOTEMPTY. 8270 */ 8271 if (e.error == ENOTEMPTY) 8272 e.error = EEXIST; 8273 } else { 8274 8275 resop = &res.array[3]; /* rename res */ 8276 rn_res = &resop->nfs_resop4_u.oprename; 8277 8278 if (res.status == NFS4_OK) { 8279 /* 8280 * Update target attribute, readdir and dnlc 8281 * caches. 8282 */ 8283 dinfo.di_garp = 8284 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8285 dinfo.di_cred = cr; 8286 dinfop = &dinfo; 8287 } else 8288 dinfop = NULL; 8289 8290 nfs4_update_dircaches(&rn_res->target_cinfo, 8291 ndvp, NULL, NULL, dinfop); 8292 8293 /* 8294 * Update source attribute, readdir and dnlc caches 8295 * 8296 */ 8297 if (ndvp != odvp) { 8298 update_parentdir_sfh(renvp, ndvp); 8299 8300 if (dinfop) 8301 dinfo.di_garp = 8302 &(res.array[6].nfs_resop4_u. 8303 opgetattr.ga_res); 8304 8305 nfs4_update_dircaches(&rn_res->source_cinfo, 8306 odvp, NULL, NULL, dinfop); 8307 } 8308 8309 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8310 nnm); 8311 } 8312 } 8313 8314 if (resp) 8315 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8316 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8317 kmem_free(argop, argoplist_size); 8318 8319 return (e.error); 8320 } 8321 8322 /* 8323 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8324 * it is possible for the filehandle to change due to the rename. 8325 * 8326 * The compound req in this case includes a post-rename lookup and getattr 8327 * to ensure that we have the correct fh and attributes for the object. 8328 * 8329 * Rename requires that the current fh be the target directory and the 8330 * saved fh be the source directory. After the operation, the current fh 8331 * is unchanged. 8332 * 8333 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8334 * update the filehandle for the renamed object. We also get the old 8335 * filehandle for historical reasons; this should be taken out sometime. 8336 * This results in a rather cumbersome compound... 8337 * 8338 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8339 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8340 * 8341 */ 8342 static int 8343 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8344 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8345 { 8346 COMPOUND4args_clnt args; 8347 COMPOUND4res_clnt res, *resp = NULL; 8348 int argoplist_size; 8349 nfs_argop4 *argop; 8350 nfs_resop4 *resop; 8351 int doqueue; 8352 mntinfo4_t *mi; 8353 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8354 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8355 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8356 RENAME4res *rn_res; 8357 GETFH4res *ngf_res; 8358 bool_t needrecov; 8359 nfs4_recov_state_t recov_state; 8360 hrtime_t t; 8361 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8362 dirattr_info_t dinfo, *dinfop = &dinfo; 8363 8364 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8365 8366 recov_state.rs_flags = 0; 8367 recov_state.rs_num_retry_despite_err = 0; 8368 8369 recov_retry: 8370 *statp = NFS4_OK; 8371 8372 /* 8373 * There is a window between the RPC and updating the path and 8374 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8375 * code, so that it doesn't try to use the old path during that 8376 * window. 8377 */ 8378 mutex_enter(&orp->r_statelock); 8379 while (orp->r_flags & R4RECEXPFH) { 8380 klwp_t *lwp = ttolwp(curthread); 8381 8382 if (lwp != NULL) 8383 lwp->lwp_nostop++; 8384 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8385 mutex_exit(&orp->r_statelock); 8386 if (lwp != NULL) 8387 lwp->lwp_nostop--; 8388 return (EINTR); 8389 } 8390 if (lwp != NULL) 8391 lwp->lwp_nostop--; 8392 } 8393 orp->r_flags |= R4RECEXPFH; 8394 mutex_exit(&orp->r_statelock); 8395 8396 mi = VTOMI4(odvp); 8397 8398 args.ctag = TAG_RENAME_VFH; 8399 args.array_len = (odvp == ndvp) ? 10 : 12; 8400 argoplist_size = args.array_len * sizeof (nfs_argop4); 8401 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8402 8403 /* 8404 * Rename ops: 8405 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8406 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8407 * LOOKUP(trgt), GETFH(new), GETATTR, 8408 * 8409 * if (odvp != ndvp) 8410 * add putfh(sourcedir), getattr(sourcedir) } 8411 */ 8412 args.array = argop; 8413 8414 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8415 &recov_state, NULL); 8416 if (e.error) { 8417 kmem_free(argop, argoplist_size); 8418 mutex_enter(&orp->r_statelock); 8419 orp->r_flags &= ~R4RECEXPFH; 8420 cv_broadcast(&orp->r_cv); 8421 mutex_exit(&orp->r_statelock); 8422 return (e.error); 8423 } 8424 8425 /* 0: putfh source directory */ 8426 argop[0].argop = OP_CPUTFH; 8427 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8428 8429 /* 1: Save source fh to free up current for target */ 8430 argop[1].argop = OP_SAVEFH; 8431 8432 /* 2: Lookup pre-rename fh of renamed object */ 8433 argop[2].argop = OP_CLOOKUP; 8434 argop[2].nfs_argop4_u.opclookup.cname = onm; 8435 8436 /* 3: getfh fh of renamed object (before rename) */ 8437 argop[3].argop = OP_GETFH; 8438 8439 /* 4: putfh targetdir */ 8440 argop[4].argop = OP_CPUTFH; 8441 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8442 8443 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8444 argop[5].argop = OP_CRENAME; 8445 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8446 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8447 8448 /* 6: getattr of target dir (post op attrs) */ 8449 argop[6].argop = OP_GETATTR; 8450 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8451 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8452 8453 /* 7: Lookup post-rename fh of renamed object */ 8454 argop[7].argop = OP_CLOOKUP; 8455 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8456 8457 /* 8: getfh fh of renamed object (after rename) */ 8458 argop[8].argop = OP_GETFH; 8459 8460 /* 9: getattr of renamed object */ 8461 argop[9].argop = OP_GETATTR; 8462 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8463 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8464 8465 /* 8466 * If source/target dirs are different, then get new post-op 8467 * attrs for source dir also. 8468 */ 8469 if (ndvp != odvp) { 8470 /* 10: putfh (sourcedir) */ 8471 argop[10].argop = OP_CPUTFH; 8472 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8473 8474 /* 11: getattr (sourcedir) */ 8475 argop[11].argop = OP_GETATTR; 8476 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8477 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8478 } 8479 8480 dnlc_remove(odvp, onm); 8481 dnlc_remove(ndvp, nnm); 8482 8483 doqueue = 1; 8484 t = gethrtime(); 8485 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8486 8487 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8488 if (e.error) { 8489 PURGE_ATTRCACHE4(odvp); 8490 PURGE_ATTRCACHE4(ndvp); 8491 if (!needrecov) { 8492 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8493 &recov_state, needrecov); 8494 goto out; 8495 } 8496 } else { 8497 *statp = res.status; 8498 } 8499 8500 if (needrecov) { 8501 bool_t abort; 8502 8503 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8504 OP_RENAME, NULL, NULL, NULL); 8505 if (abort == FALSE) { 8506 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8507 &recov_state, needrecov); 8508 kmem_free(argop, argoplist_size); 8509 if (!e.error) 8510 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8511 mutex_enter(&orp->r_statelock); 8512 orp->r_flags &= ~R4RECEXPFH; 8513 cv_broadcast(&orp->r_cv); 8514 mutex_exit(&orp->r_statelock); 8515 goto recov_retry; 8516 } else { 8517 if (e.error != 0) { 8518 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8519 &recov_state, needrecov); 8520 goto out; 8521 } 8522 /* fall through for res.status case */ 8523 } 8524 } 8525 8526 resp = &res; 8527 /* 8528 * If OP_RENAME (or any prev op) failed, then return an error. 8529 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8530 */ 8531 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8532 /* 8533 * Error in an op other than last Getattr 8534 */ 8535 e.error = geterrno4(res.status); 8536 PURGE_ATTRCACHE4(odvp); 8537 PURGE_ATTRCACHE4(ndvp); 8538 /* 8539 * System V defines rename to return EEXIST, not 8540 * ENOTEMPTY if the target directory is not empty. 8541 * Over the wire, the error is NFSERR_ENOTEMPTY 8542 * which geterrno4 maps to ENOTEMPTY. 8543 */ 8544 if (e.error == ENOTEMPTY) 8545 e.error = EEXIST; 8546 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8547 needrecov); 8548 goto out; 8549 } 8550 8551 /* rename results */ 8552 rn_res = &res.array[5].nfs_resop4_u.oprename; 8553 8554 if (res.status == NFS4_OK) { 8555 /* Update target attribute, readdir and dnlc caches */ 8556 dinfo.di_garp = 8557 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8558 dinfo.di_cred = cr; 8559 dinfo.di_time_call = t; 8560 } else 8561 dinfop = NULL; 8562 8563 /* Update source cache attribute, readdir and dnlc caches */ 8564 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8565 8566 /* Update source cache attribute, readdir and dnlc caches */ 8567 if (ndvp != odvp) { 8568 update_parentdir_sfh(ovp, ndvp); 8569 8570 /* 8571 * If dinfop is non-NULL, then compound succeded, so 8572 * set di_garp to attrs for source dir. dinfop is only 8573 * set to NULL when compound fails. 8574 */ 8575 if (dinfop) 8576 dinfo.di_garp = 8577 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8578 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8579 dinfop); 8580 } 8581 8582 /* 8583 * Update the rnode with the new component name and args, 8584 * and if the file handle changed, also update it with the new fh. 8585 * This is only necessary if the target object has an rnode 8586 * entry and there is no need to create one for it. 8587 */ 8588 resop = &res.array[8]; /* getfh new res */ 8589 ngf_res = &resop->nfs_resop4_u.opgetfh; 8590 8591 /* 8592 * Update the path and filehandle for the renamed object. 8593 */ 8594 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8595 8596 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8597 8598 if (res.status == NFS4_OK) { 8599 resop++; /* getattr res */ 8600 e.error = nfs4_update_attrcache(res.status, 8601 &resop->nfs_resop4_u.opgetattr.ga_res, 8602 t, ovp, cr); 8603 } 8604 8605 out: 8606 kmem_free(argop, argoplist_size); 8607 if (resp) 8608 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8609 mutex_enter(&orp->r_statelock); 8610 orp->r_flags &= ~R4RECEXPFH; 8611 cv_broadcast(&orp->r_cv); 8612 mutex_exit(&orp->r_statelock); 8613 8614 return (e.error); 8615 } 8616 8617 /* ARGSUSED */ 8618 static int 8619 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8620 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8621 { 8622 int error; 8623 vnode_t *vp; 8624 8625 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8626 return (EPERM); 8627 /* 8628 * As ".." has special meaning and rather than send a mkdir 8629 * over the wire to just let the server freak out, we just 8630 * short circuit it here and return EEXIST 8631 */ 8632 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8633 return (EEXIST); 8634 8635 /* 8636 * Decision to get the right gid and setgid bit of the 8637 * new directory is now made in call_nfs4_create_req. 8638 */ 8639 va->va_mask |= AT_MODE; 8640 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8641 if (error) 8642 return (error); 8643 8644 *vpp = vp; 8645 return (0); 8646 } 8647 8648 8649 /* 8650 * rmdir is using the same remove v4 op as does remove. 8651 * Remove requires that the current fh be the target directory. 8652 * After the operation, the current fh is unchanged. 8653 * The compound op structure is: 8654 * PUTFH(targetdir), REMOVE 8655 */ 8656 /*ARGSUSED4*/ 8657 static int 8658 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8659 caller_context_t *ct, int flags) 8660 { 8661 int need_end_op = FALSE; 8662 COMPOUND4args_clnt args; 8663 COMPOUND4res_clnt res, *resp = NULL; 8664 REMOVE4res *rm_res; 8665 nfs_argop4 argop[3]; 8666 nfs_resop4 *resop; 8667 vnode_t *vp; 8668 int doqueue; 8669 mntinfo4_t *mi; 8670 rnode4_t *drp; 8671 bool_t needrecov = FALSE; 8672 nfs4_recov_state_t recov_state; 8673 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8674 dirattr_info_t dinfo, *dinfop; 8675 8676 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8677 return (EPERM); 8678 /* 8679 * As ".." has special meaning and rather than send a rmdir 8680 * over the wire to just let the server freak out, we just 8681 * short circuit it here and return EEXIST 8682 */ 8683 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8684 return (EEXIST); 8685 8686 drp = VTOR4(dvp); 8687 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8688 return (EINTR); 8689 8690 /* 8691 * Attempt to prevent a rmdir(".") from succeeding. 8692 */ 8693 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8694 if (e.error) { 8695 nfs_rw_exit(&drp->r_rwlock); 8696 return (e.error); 8697 } 8698 if (vp == cdir) { 8699 VN_RELE(vp); 8700 nfs_rw_exit(&drp->r_rwlock); 8701 return (EINVAL); 8702 } 8703 8704 /* 8705 * Since nfsv4 remove op works on both files and directories, 8706 * check that the removed object is indeed a directory. 8707 */ 8708 if (vp->v_type != VDIR) { 8709 VN_RELE(vp); 8710 nfs_rw_exit(&drp->r_rwlock); 8711 return (ENOTDIR); 8712 } 8713 8714 /* 8715 * First just remove the entry from the name cache, as it 8716 * is most likely an entry for this vp. 8717 */ 8718 dnlc_remove(dvp, nm); 8719 8720 /* 8721 * If there vnode reference count is greater than one, then 8722 * there may be additional references in the DNLC which will 8723 * need to be purged. First, trying removing the entry for 8724 * the parent directory and see if that removes the additional 8725 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8726 * to completely remove any references to the directory which 8727 * might still exist in the DNLC. 8728 */ 8729 if (vp->v_count > 1) { 8730 dnlc_remove(vp, ".."); 8731 if (vp->v_count > 1) 8732 dnlc_purge_vp(vp); 8733 } 8734 8735 mi = VTOMI4(dvp); 8736 recov_state.rs_flags = 0; 8737 recov_state.rs_num_retry_despite_err = 0; 8738 8739 recov_retry: 8740 args.ctag = TAG_RMDIR; 8741 8742 /* 8743 * Rmdir ops: putfh dir; remove 8744 */ 8745 args.array_len = 3; 8746 args.array = argop; 8747 8748 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8749 if (e.error) { 8750 nfs_rw_exit(&drp->r_rwlock); 8751 return (e.error); 8752 } 8753 need_end_op = TRUE; 8754 8755 /* putfh directory */ 8756 argop[0].argop = OP_CPUTFH; 8757 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8758 8759 /* remove */ 8760 argop[1].argop = OP_CREMOVE; 8761 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8762 8763 /* getattr (postop attrs for dir that contained removed dir) */ 8764 argop[2].argop = OP_GETATTR; 8765 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8766 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8767 8768 dinfo.di_time_call = gethrtime(); 8769 doqueue = 1; 8770 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8771 8772 PURGE_ATTRCACHE4(vp); 8773 8774 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8775 if (e.error) { 8776 PURGE_ATTRCACHE4(dvp); 8777 } 8778 8779 if (needrecov) { 8780 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8781 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8782 if (!e.error) 8783 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8784 8785 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8786 needrecov); 8787 need_end_op = FALSE; 8788 goto recov_retry; 8789 } 8790 } 8791 8792 if (!e.error) { 8793 resp = &res; 8794 8795 /* 8796 * Only return error if first 2 ops (OP_REMOVE or earlier) 8797 * failed. 8798 */ 8799 if (res.status != NFS4_OK && res.array_len <= 2) { 8800 e.error = geterrno4(res.status); 8801 PURGE_ATTRCACHE4(dvp); 8802 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8803 &recov_state, needrecov); 8804 need_end_op = FALSE; 8805 nfs4_purge_stale_fh(e.error, dvp, cr); 8806 /* 8807 * System V defines rmdir to return EEXIST, not 8808 * ENOTEMPTY if the directory is not empty. Over 8809 * the wire, the error is NFSERR_ENOTEMPTY which 8810 * geterrno4 maps to ENOTEMPTY. 8811 */ 8812 if (e.error == ENOTEMPTY) 8813 e.error = EEXIST; 8814 } else { 8815 resop = &res.array[1]; /* remove res */ 8816 rm_res = &resop->nfs_resop4_u.opremove; 8817 8818 if (res.status == NFS4_OK) { 8819 resop = &res.array[2]; /* dir attrs */ 8820 dinfo.di_garp = 8821 &resop->nfs_resop4_u.opgetattr.ga_res; 8822 dinfo.di_cred = cr; 8823 dinfop = &dinfo; 8824 } else 8825 dinfop = NULL; 8826 8827 /* Update dir attribute, readdir and dnlc caches */ 8828 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8829 dinfop); 8830 8831 /* destroy rddir cache for dir that was removed */ 8832 if (VTOR4(vp)->r_dir != NULL) 8833 nfs4_purge_rddir_cache(vp); 8834 } 8835 } 8836 8837 if (need_end_op) 8838 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8839 8840 nfs_rw_exit(&drp->r_rwlock); 8841 8842 if (resp) 8843 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8844 8845 if (e.error == 0) { 8846 vnode_t *tvp; 8847 rnode4_t *trp; 8848 trp = VTOR4(vp); 8849 tvp = vp; 8850 if (IS_SHADOW(vp, trp)) 8851 tvp = RTOV4(trp); 8852 vnevent_rmdir(tvp, dvp, nm, ct); 8853 } 8854 8855 VN_RELE(vp); 8856 8857 return (e.error); 8858 } 8859 8860 /* ARGSUSED */ 8861 static int 8862 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8863 caller_context_t *ct, int flags) 8864 { 8865 int error; 8866 vnode_t *vp; 8867 rnode4_t *rp; 8868 char *contents; 8869 mntinfo4_t *mi = VTOMI4(dvp); 8870 8871 if (nfs_zone() != mi->mi_zone) 8872 return (EPERM); 8873 if (!(mi->mi_flags & MI4_SYMLINK)) 8874 return (EOPNOTSUPP); 8875 8876 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8877 if (error) 8878 return (error); 8879 8880 ASSERT(nfs4_consistent_type(vp)); 8881 rp = VTOR4(vp); 8882 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8883 8884 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8885 8886 if (contents != NULL) { 8887 mutex_enter(&rp->r_statelock); 8888 if (rp->r_symlink.contents == NULL) { 8889 rp->r_symlink.len = strlen(tnm); 8890 bcopy(tnm, contents, rp->r_symlink.len); 8891 rp->r_symlink.contents = contents; 8892 rp->r_symlink.size = MAXPATHLEN; 8893 mutex_exit(&rp->r_statelock); 8894 } else { 8895 mutex_exit(&rp->r_statelock); 8896 kmem_free((void *)contents, MAXPATHLEN); 8897 } 8898 } 8899 } 8900 VN_RELE(vp); 8901 8902 return (error); 8903 } 8904 8905 8906 /* 8907 * Read directory entries. 8908 * There are some weird things to look out for here. The uio_loffset 8909 * field is either 0 or it is the offset returned from a previous 8910 * readdir. It is an opaque value used by the server to find the 8911 * correct directory block to read. The count field is the number 8912 * of blocks to read on the server. This is advisory only, the server 8913 * may return only one block's worth of entries. Entries may be compressed 8914 * on the server. 8915 */ 8916 /* ARGSUSED */ 8917 static int 8918 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8919 caller_context_t *ct, int flags) 8920 { 8921 int error; 8922 uint_t count; 8923 rnode4_t *rp; 8924 rddir4_cache *rdc; 8925 rddir4_cache *rrdc; 8926 8927 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8928 return (EIO); 8929 rp = VTOR4(vp); 8930 8931 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8932 8933 /* 8934 * Make sure that the directory cache is valid. 8935 */ 8936 if (rp->r_dir != NULL) { 8937 if (nfs_disable_rddir_cache != 0) { 8938 /* 8939 * Setting nfs_disable_rddir_cache in /etc/system 8940 * allows interoperability with servers that do not 8941 * properly update the attributes of directories. 8942 * Any cached information gets purged before an 8943 * access is made to it. 8944 */ 8945 nfs4_purge_rddir_cache(vp); 8946 } 8947 8948 error = nfs4_validate_caches(vp, cr); 8949 if (error) 8950 return (error); 8951 } 8952 8953 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8954 8955 /* 8956 * Short circuit last readdir which always returns 0 bytes. 8957 * This can be done after the directory has been read through 8958 * completely at least once. This will set r_direof which 8959 * can be used to find the value of the last cookie. 8960 */ 8961 mutex_enter(&rp->r_statelock); 8962 if (rp->r_direof != NULL && 8963 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8964 mutex_exit(&rp->r_statelock); 8965 #ifdef DEBUG 8966 nfs4_readdir_cache_shorts++; 8967 #endif 8968 if (eofp) 8969 *eofp = 1; 8970 return (0); 8971 } 8972 8973 /* 8974 * Look for a cache entry. Cache entries are identified 8975 * by the NFS cookie value and the byte count requested. 8976 */ 8977 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8978 8979 /* 8980 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8981 */ 8982 if (rdc == NULL) { 8983 mutex_exit(&rp->r_statelock); 8984 return (EINTR); 8985 } 8986 8987 /* 8988 * Check to see if we need to fill this entry in. 8989 */ 8990 if (rdc->flags & RDDIRREQ) { 8991 rdc->flags &= ~RDDIRREQ; 8992 rdc->flags |= RDDIR; 8993 mutex_exit(&rp->r_statelock); 8994 8995 /* 8996 * Do the readdir. 8997 */ 8998 nfs4readdir(vp, rdc, cr); 8999 9000 /* 9001 * Reacquire the lock, so that we can continue 9002 */ 9003 mutex_enter(&rp->r_statelock); 9004 /* 9005 * The entry is now complete 9006 */ 9007 rdc->flags &= ~RDDIR; 9008 } 9009 9010 ASSERT(!(rdc->flags & RDDIR)); 9011 9012 /* 9013 * If an error occurred while attempting 9014 * to fill the cache entry, mark the entry invalid and 9015 * just return the error. 9016 */ 9017 if (rdc->error) { 9018 error = rdc->error; 9019 rdc->flags |= RDDIRREQ; 9020 rddir4_cache_rele(rp, rdc); 9021 mutex_exit(&rp->r_statelock); 9022 return (error); 9023 } 9024 9025 /* 9026 * The cache entry is complete and good, 9027 * copyout the dirent structs to the calling 9028 * thread. 9029 */ 9030 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9031 9032 /* 9033 * If no error occurred during the copyout, 9034 * update the offset in the uio struct to 9035 * contain the value of the next NFS 4 cookie 9036 * and set the eof value appropriately. 9037 */ 9038 if (!error) { 9039 uiop->uio_loffset = rdc->nfs4_ncookie; 9040 if (eofp) 9041 *eofp = rdc->eof; 9042 } 9043 9044 /* 9045 * Decide whether to do readahead. Don't if we 9046 * have already read to the end of directory. 9047 */ 9048 if (rdc->eof) { 9049 /* 9050 * Make the entry the direof only if it is cached 9051 */ 9052 if (rdc->flags & RDDIRCACHED) 9053 rp->r_direof = rdc; 9054 rddir4_cache_rele(rp, rdc); 9055 mutex_exit(&rp->r_statelock); 9056 return (error); 9057 } 9058 9059 /* Determine if a readdir readahead should be done */ 9060 if (!(rp->r_flags & R4LOOKUP)) { 9061 rddir4_cache_rele(rp, rdc); 9062 mutex_exit(&rp->r_statelock); 9063 return (error); 9064 } 9065 9066 /* 9067 * Now look for a readahead entry. 9068 * 9069 * Check to see whether we found an entry for the readahead. 9070 * If so, we don't need to do anything further, so free the new 9071 * entry if one was allocated. Otherwise, allocate a new entry, add 9072 * it to the cache, and then initiate an asynchronous readdir 9073 * operation to fill it. 9074 */ 9075 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9076 9077 /* 9078 * A readdir cache entry could not be obtained for the readahead. In 9079 * this case we skip the readahead and return. 9080 */ 9081 if (rrdc == NULL) { 9082 rddir4_cache_rele(rp, rdc); 9083 mutex_exit(&rp->r_statelock); 9084 return (error); 9085 } 9086 9087 /* 9088 * Check to see if we need to fill this entry in. 9089 */ 9090 if (rrdc->flags & RDDIRREQ) { 9091 rrdc->flags &= ~RDDIRREQ; 9092 rrdc->flags |= RDDIR; 9093 rddir4_cache_rele(rp, rdc); 9094 mutex_exit(&rp->r_statelock); 9095 #ifdef DEBUG 9096 nfs4_readdir_readahead++; 9097 #endif 9098 /* 9099 * Do the readdir. 9100 */ 9101 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9102 return (error); 9103 } 9104 9105 rddir4_cache_rele(rp, rrdc); 9106 rddir4_cache_rele(rp, rdc); 9107 mutex_exit(&rp->r_statelock); 9108 return (error); 9109 } 9110 9111 static int 9112 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9113 { 9114 int error; 9115 rnode4_t *rp; 9116 9117 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9118 9119 rp = VTOR4(vp); 9120 9121 /* 9122 * Obtain the readdir results for the caller. 9123 */ 9124 nfs4readdir(vp, rdc, cr); 9125 9126 mutex_enter(&rp->r_statelock); 9127 /* 9128 * The entry is now complete 9129 */ 9130 rdc->flags &= ~RDDIR; 9131 9132 error = rdc->error; 9133 if (error) 9134 rdc->flags |= RDDIRREQ; 9135 rddir4_cache_rele(rp, rdc); 9136 mutex_exit(&rp->r_statelock); 9137 9138 return (error); 9139 } 9140 9141 /* 9142 * Read directory entries. 9143 * There are some weird things to look out for here. The uio_loffset 9144 * field is either 0 or it is the offset returned from a previous 9145 * readdir. It is an opaque value used by the server to find the 9146 * correct directory block to read. The count field is the number 9147 * of blocks to read on the server. This is advisory only, the server 9148 * may return only one block's worth of entries. Entries may be compressed 9149 * on the server. 9150 * 9151 * Generates the following compound request: 9152 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9153 * must include a Lookupp as well. In this case, send: 9154 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9155 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9156 * 9157 * Get complete attributes and filehandles for entries if this is the 9158 * first read of the directory. Otherwise, just get fileid's. 9159 */ 9160 static void 9161 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9162 { 9163 COMPOUND4args_clnt args; 9164 COMPOUND4res_clnt res; 9165 READDIR4args *rargs; 9166 READDIR4res_clnt *rd_res; 9167 bitmap4 rd_bitsval; 9168 nfs_argop4 argop[5]; 9169 nfs_resop4 *resop; 9170 rnode4_t *rp = VTOR4(vp); 9171 mntinfo4_t *mi = VTOMI4(vp); 9172 int doqueue; 9173 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9174 vnode_t *dvp; 9175 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9176 int num_ops, res_opcnt; 9177 bool_t needrecov = FALSE; 9178 nfs4_recov_state_t recov_state; 9179 hrtime_t t; 9180 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9181 9182 ASSERT(nfs_zone() == mi->mi_zone); 9183 ASSERT(rdc->flags & RDDIR); 9184 ASSERT(rdc->entries == NULL); 9185 9186 /* 9187 * If rp were a stub, it should have triggered and caused 9188 * a mount for us to get this far. 9189 */ 9190 ASSERT(!RP_ISSTUB(rp)); 9191 9192 num_ops = 2; 9193 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9194 /* 9195 * Since nfsv4 readdir may not return entries for "." and "..", 9196 * the client must recreate them: 9197 * To find the correct nodeid, do the following: 9198 * For current node, get nodeid from dnlc. 9199 * - if current node is rootvp, set pnodeid to nodeid. 9200 * - else if parent is in the dnlc, get its nodeid from there. 9201 * - else add LOOKUPP+GETATTR to compound. 9202 */ 9203 nodeid = rp->r_attr.va_nodeid; 9204 if (vp->v_flag & VROOT) { 9205 pnodeid = nodeid; /* root of mount point */ 9206 } else { 9207 dvp = dnlc_lookup(vp, ".."); 9208 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9209 /* parent in dnlc cache - no need for otw */ 9210 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9211 } else { 9212 /* 9213 * parent not in dnlc cache, 9214 * do lookupp to get its id 9215 */ 9216 num_ops = 5; 9217 pnodeid = 0; /* set later by getattr parent */ 9218 } 9219 if (dvp) 9220 VN_RELE(dvp); 9221 } 9222 } 9223 recov_state.rs_flags = 0; 9224 recov_state.rs_num_retry_despite_err = 0; 9225 9226 /* Save the original mount point security flavor */ 9227 (void) save_mnt_secinfo(mi->mi_curr_serv); 9228 9229 recov_retry: 9230 args.ctag = TAG_READDIR; 9231 9232 args.array = argop; 9233 args.array_len = num_ops; 9234 9235 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9236 &recov_state, NULL)) { 9237 /* 9238 * If readdir a node that is a stub for a crossed mount point, 9239 * keep the original secinfo flavor for the current file 9240 * system, not the crossed one. 9241 */ 9242 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9243 rdc->error = e.error; 9244 return; 9245 } 9246 9247 /* 9248 * Determine which attrs to request for dirents. This code 9249 * must be protected by nfs4_start/end_fop because of r_server 9250 * (which will change during failover recovery). 9251 * 9252 */ 9253 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9254 /* 9255 * Get all vattr attrs plus filehandle and rdattr_error 9256 */ 9257 rd_bitsval = NFS4_VATTR_MASK | 9258 FATTR4_RDATTR_ERROR_MASK | 9259 FATTR4_FILEHANDLE_MASK; 9260 9261 if (rp->r_flags & R4READDIRWATTR) { 9262 mutex_enter(&rp->r_statelock); 9263 rp->r_flags &= ~R4READDIRWATTR; 9264 mutex_exit(&rp->r_statelock); 9265 } 9266 } else { 9267 servinfo4_t *svp = rp->r_server; 9268 9269 /* 9270 * Already read directory. Use readdir with 9271 * no attrs (except for mounted_on_fileid) for updates. 9272 */ 9273 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9274 9275 /* 9276 * request mounted on fileid if supported, else request 9277 * fileid. maybe we should verify that fileid is supported 9278 * and request something else if not. 9279 */ 9280 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9281 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9282 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9283 nfs_rw_exit(&svp->sv_lock); 9284 } 9285 9286 /* putfh directory fh */ 9287 argop[0].argop = OP_CPUTFH; 9288 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9289 9290 argop[1].argop = OP_READDIR; 9291 rargs = &argop[1].nfs_argop4_u.opreaddir; 9292 /* 9293 * 1 and 2 are reserved for client "." and ".." entry offset. 9294 * cookie 0 should be used over-the-wire to start reading at 9295 * the beginning of the directory excluding "." and "..". 9296 */ 9297 if (rdc->nfs4_cookie == 0 || 9298 rdc->nfs4_cookie == 1 || 9299 rdc->nfs4_cookie == 2) { 9300 rargs->cookie = (nfs_cookie4)0; 9301 rargs->cookieverf = 0; 9302 } else { 9303 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9304 mutex_enter(&rp->r_statelock); 9305 rargs->cookieverf = rp->r_cookieverf4; 9306 mutex_exit(&rp->r_statelock); 9307 } 9308 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9309 rargs->maxcount = mi->mi_tsize; 9310 rargs->attr_request = rd_bitsval; 9311 rargs->rdc = rdc; 9312 rargs->dvp = vp; 9313 rargs->mi = mi; 9314 rargs->cr = cr; 9315 9316 9317 /* 9318 * If count < than the minimum required, we return no entries 9319 * and fail with EINVAL 9320 */ 9321 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9322 rdc->error = EINVAL; 9323 goto out; 9324 } 9325 9326 if (args.array_len == 5) { 9327 /* 9328 * Add lookupp and getattr for parent nodeid. 9329 */ 9330 argop[2].argop = OP_LOOKUPP; 9331 9332 argop[3].argop = OP_GETFH; 9333 9334 /* getattr parent */ 9335 argop[4].argop = OP_GETATTR; 9336 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9337 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9338 } 9339 9340 doqueue = 1; 9341 9342 if (mi->mi_io_kstats) { 9343 mutex_enter(&mi->mi_lock); 9344 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9345 mutex_exit(&mi->mi_lock); 9346 } 9347 9348 /* capture the time of this call */ 9349 rargs->t = t = gethrtime(); 9350 9351 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9352 9353 if (mi->mi_io_kstats) { 9354 mutex_enter(&mi->mi_lock); 9355 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9356 mutex_exit(&mi->mi_lock); 9357 } 9358 9359 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9360 9361 /* 9362 * If RPC error occurred and it isn't an error that 9363 * triggers recovery, then go ahead and fail now. 9364 */ 9365 if (e.error != 0 && !needrecov) { 9366 rdc->error = e.error; 9367 goto out; 9368 } 9369 9370 if (needrecov) { 9371 bool_t abort; 9372 9373 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9374 "nfs4readdir: initiating recovery.\n")); 9375 9376 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9377 NULL, OP_READDIR, NULL, NULL, NULL); 9378 if (abort == FALSE) { 9379 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9380 &recov_state, needrecov); 9381 if (!e.error) 9382 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9383 if (rdc->entries != NULL) { 9384 kmem_free(rdc->entries, rdc->entlen); 9385 rdc->entries = NULL; 9386 } 9387 goto recov_retry; 9388 } 9389 9390 if (e.error != 0) { 9391 rdc->error = e.error; 9392 goto out; 9393 } 9394 9395 /* fall through for res.status case */ 9396 } 9397 9398 res_opcnt = res.array_len; 9399 9400 /* 9401 * If compound failed first 2 ops (PUTFH+READDIR), then return 9402 * failure here. Subsequent ops are for filling out dot-dot 9403 * dirent, and if they fail, we still want to give the caller 9404 * the dirents returned by (the successful) READDIR op, so we need 9405 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9406 * 9407 * One example where PUTFH+READDIR ops would succeed but 9408 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9409 * but lacks x. In this case, a POSIX server's VOP_READDIR 9410 * would succeed; however, VOP_LOOKUP(..) would fail since no 9411 * x perm. We need to come up with a non-vendor-specific way 9412 * for a POSIX server to return d_ino from dotdot's dirent if 9413 * client only requests mounted_on_fileid, and just say the 9414 * LOOKUPP succeeded and fill out the GETATTR. However, if 9415 * client requested any mandatory attrs, server would be required 9416 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9417 * for dotdot. 9418 */ 9419 9420 if (res.status) { 9421 if (res_opcnt <= 2) { 9422 e.error = geterrno4(res.status); 9423 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9424 &recov_state, needrecov); 9425 nfs4_purge_stale_fh(e.error, vp, cr); 9426 rdc->error = e.error; 9427 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9428 if (rdc->entries != NULL) { 9429 kmem_free(rdc->entries, rdc->entlen); 9430 rdc->entries = NULL; 9431 } 9432 /* 9433 * If readdir a node that is a stub for a 9434 * crossed mount point, keep the original 9435 * secinfo flavor for the current file system, 9436 * not the crossed one. 9437 */ 9438 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9439 return; 9440 } 9441 } 9442 9443 resop = &res.array[1]; /* readdir res */ 9444 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9445 9446 mutex_enter(&rp->r_statelock); 9447 rp->r_cookieverf4 = rd_res->cookieverf; 9448 mutex_exit(&rp->r_statelock); 9449 9450 /* 9451 * For "." and ".." entries 9452 * e.g. 9453 * seek(cookie=0) -> "." entry with d_off = 1 9454 * seek(cookie=1) -> ".." entry with d_off = 2 9455 */ 9456 if (cookie == (nfs_cookie4) 0) { 9457 if (rd_res->dotp) 9458 rd_res->dotp->d_ino = nodeid; 9459 if (rd_res->dotdotp) 9460 rd_res->dotdotp->d_ino = pnodeid; 9461 } 9462 if (cookie == (nfs_cookie4) 1) { 9463 if (rd_res->dotdotp) 9464 rd_res->dotdotp->d_ino = pnodeid; 9465 } 9466 9467 9468 /* LOOKUPP+GETATTR attemped */ 9469 if (args.array_len == 5 && rd_res->dotdotp) { 9470 if (res.status == NFS4_OK && res_opcnt == 5) { 9471 nfs_fh4 *fhp; 9472 nfs4_sharedfh_t *sfhp; 9473 vnode_t *pvp; 9474 nfs4_ga_res_t *garp; 9475 9476 resop++; /* lookupp */ 9477 resop++; /* getfh */ 9478 fhp = &resop->nfs_resop4_u.opgetfh.object; 9479 9480 resop++; /* getattr of parent */ 9481 9482 /* 9483 * First, take care of finishing the 9484 * readdir results. 9485 */ 9486 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9487 /* 9488 * The d_ino of .. must be the inode number 9489 * of the mounted filesystem. 9490 */ 9491 if (garp->n4g_va.va_mask & AT_NODEID) 9492 rd_res->dotdotp->d_ino = 9493 garp->n4g_va.va_nodeid; 9494 9495 9496 /* 9497 * Next, create the ".." dnlc entry 9498 */ 9499 sfhp = sfh4_get(fhp, mi); 9500 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9501 dnlc_update(vp, "..", pvp); 9502 VN_RELE(pvp); 9503 } 9504 sfh4_rele(&sfhp); 9505 } 9506 } 9507 9508 if (mi->mi_io_kstats) { 9509 mutex_enter(&mi->mi_lock); 9510 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9511 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9512 mutex_exit(&mi->mi_lock); 9513 } 9514 9515 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9516 9517 out: 9518 /* 9519 * If readdir a node that is a stub for a crossed mount point, 9520 * keep the original secinfo flavor for the current file system, 9521 * not the crossed one. 9522 */ 9523 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9524 9525 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9526 } 9527 9528 9529 static int 9530 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9531 { 9532 rnode4_t *rp = VTOR4(bp->b_vp); 9533 int count; 9534 int error; 9535 cred_t *cred_otw = NULL; 9536 offset_t offset; 9537 nfs4_open_stream_t *osp = NULL; 9538 bool_t first_time = TRUE; /* first time getting otw cred */ 9539 bool_t last_time = FALSE; /* last time getting otw cred */ 9540 9541 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9542 9543 DTRACE_IO1(start, struct buf *, bp); 9544 offset = ldbtob(bp->b_lblkno); 9545 9546 if (bp->b_flags & B_READ) { 9547 read_again: 9548 /* 9549 * Releases the osp, if it is provided. 9550 * Puts a hold on the cred_otw and the new osp (if found). 9551 */ 9552 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9553 &first_time, &last_time); 9554 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9555 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9556 readahead, NULL); 9557 crfree(cred_otw); 9558 if (!error) { 9559 if (bp->b_resid) { 9560 /* 9561 * Didn't get it all because we hit EOF, 9562 * zero all the memory beyond the EOF. 9563 */ 9564 /* bzero(rdaddr + */ 9565 bzero(bp->b_un.b_addr + 9566 bp->b_bcount - bp->b_resid, bp->b_resid); 9567 } 9568 mutex_enter(&rp->r_statelock); 9569 if (bp->b_resid == bp->b_bcount && 9570 offset >= rp->r_size) { 9571 /* 9572 * We didn't read anything at all as we are 9573 * past EOF. Return an error indicator back 9574 * but don't destroy the pages (yet). 9575 */ 9576 error = NFS_EOF; 9577 } 9578 mutex_exit(&rp->r_statelock); 9579 } else if (error == EACCES && last_time == FALSE) { 9580 goto read_again; 9581 } 9582 } else { 9583 if (!(rp->r_flags & R4STALE)) { 9584 write_again: 9585 /* 9586 * Releases the osp, if it is provided. 9587 * Puts a hold on the cred_otw and the new 9588 * osp (if found). 9589 */ 9590 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9591 &first_time, &last_time); 9592 mutex_enter(&rp->r_statelock); 9593 count = MIN(bp->b_bcount, rp->r_size - offset); 9594 mutex_exit(&rp->r_statelock); 9595 if (count < 0) 9596 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9597 #ifdef DEBUG 9598 if (count == 0) { 9599 zoneid_t zoneid = getzoneid(); 9600 9601 zcmn_err(zoneid, CE_WARN, 9602 "nfs4_bio: zero length write at %lld", 9603 offset); 9604 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9605 "b_bcount=%ld, file size=%lld", 9606 rp->r_flags, (long)bp->b_bcount, 9607 rp->r_size); 9608 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9609 if (nfs4_bio_do_stop) 9610 debug_enter("nfs4_bio"); 9611 } 9612 #endif 9613 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9614 count, cred_otw, stab_comm); 9615 if (error == EACCES && last_time == FALSE) { 9616 crfree(cred_otw); 9617 goto write_again; 9618 } 9619 bp->b_error = error; 9620 if (error && error != EINTR && 9621 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9622 /* 9623 * Don't print EDQUOT errors on the console. 9624 * Don't print asynchronous EACCES errors. 9625 * Don't print EFBIG errors. 9626 * Print all other write errors. 9627 */ 9628 if (error != EDQUOT && error != EFBIG && 9629 (error != EACCES || 9630 !(bp->b_flags & B_ASYNC))) 9631 nfs4_write_error(bp->b_vp, 9632 error, cred_otw); 9633 /* 9634 * Update r_error and r_flags as appropriate. 9635 * If the error was ESTALE, then mark the 9636 * rnode as not being writeable and save 9637 * the error status. Otherwise, save any 9638 * errors which occur from asynchronous 9639 * page invalidations. Any errors occurring 9640 * from other operations should be saved 9641 * by the caller. 9642 */ 9643 mutex_enter(&rp->r_statelock); 9644 if (error == ESTALE) { 9645 rp->r_flags |= R4STALE; 9646 if (!rp->r_error) 9647 rp->r_error = error; 9648 } else if (!rp->r_error && 9649 (bp->b_flags & 9650 (B_INVAL|B_FORCE|B_ASYNC)) == 9651 (B_INVAL|B_FORCE|B_ASYNC)) { 9652 rp->r_error = error; 9653 } 9654 mutex_exit(&rp->r_statelock); 9655 } 9656 crfree(cred_otw); 9657 } else { 9658 error = rp->r_error; 9659 /* 9660 * A close may have cleared r_error, if so, 9661 * propagate ESTALE error return properly 9662 */ 9663 if (error == 0) 9664 error = ESTALE; 9665 } 9666 } 9667 9668 if (error != 0 && error != NFS_EOF) 9669 bp->b_flags |= B_ERROR; 9670 9671 if (osp) 9672 open_stream_rele(osp, rp); 9673 9674 DTRACE_IO1(done, struct buf *, bp); 9675 9676 return (error); 9677 } 9678 9679 /* ARGSUSED */ 9680 int 9681 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9682 { 9683 return (EREMOTE); 9684 } 9685 9686 /* ARGSUSED2 */ 9687 int 9688 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9689 { 9690 rnode4_t *rp = VTOR4(vp); 9691 9692 if (!write_lock) { 9693 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9694 return (V_WRITELOCK_FALSE); 9695 } 9696 9697 if ((rp->r_flags & R4DIRECTIO) || 9698 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9699 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9700 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9701 return (V_WRITELOCK_FALSE); 9702 nfs_rw_exit(&rp->r_rwlock); 9703 } 9704 9705 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9706 return (V_WRITELOCK_TRUE); 9707 } 9708 9709 /* ARGSUSED */ 9710 void 9711 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9712 { 9713 rnode4_t *rp = VTOR4(vp); 9714 9715 nfs_rw_exit(&rp->r_rwlock); 9716 } 9717 9718 /* ARGSUSED */ 9719 static int 9720 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9721 { 9722 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9723 return (EIO); 9724 9725 /* 9726 * Because we stuff the readdir cookie into the offset field 9727 * someone may attempt to do an lseek with the cookie which 9728 * we want to succeed. 9729 */ 9730 if (vp->v_type == VDIR) 9731 return (0); 9732 if (*noffp < 0) 9733 return (EINVAL); 9734 return (0); 9735 } 9736 9737 9738 /* 9739 * Return all the pages from [off..off+len) in file 9740 */ 9741 /* ARGSUSED */ 9742 static int 9743 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9744 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9745 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9746 { 9747 rnode4_t *rp; 9748 int error; 9749 mntinfo4_t *mi; 9750 9751 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9752 return (EIO); 9753 rp = VTOR4(vp); 9754 if (IS_SHADOW(vp, rp)) 9755 vp = RTOV4(rp); 9756 9757 if (vp->v_flag & VNOMAP) 9758 return (ENOSYS); 9759 9760 if (protp != NULL) 9761 *protp = PROT_ALL; 9762 9763 /* 9764 * Now validate that the caches are up to date. 9765 */ 9766 if (error = nfs4_validate_caches(vp, cr)) 9767 return (error); 9768 9769 mi = VTOMI4(vp); 9770 retry: 9771 mutex_enter(&rp->r_statelock); 9772 9773 /* 9774 * Don't create dirty pages faster than they 9775 * can be cleaned so that the system doesn't 9776 * get imbalanced. If the async queue is 9777 * maxed out, then wait for it to drain before 9778 * creating more dirty pages. Also, wait for 9779 * any threads doing pagewalks in the vop_getattr 9780 * entry points so that they don't block for 9781 * long periods. 9782 */ 9783 if (rw == S_CREATE) { 9784 while ((mi->mi_max_threads != 0 && 9785 rp->r_awcount > 2 * mi->mi_max_threads) || 9786 rp->r_gcount > 0) 9787 cv_wait(&rp->r_cv, &rp->r_statelock); 9788 } 9789 9790 /* 9791 * If we are getting called as a side effect of an nfs_write() 9792 * operation the local file size might not be extended yet. 9793 * In this case we want to be able to return pages of zeroes. 9794 */ 9795 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9796 NFS4_DEBUG(nfs4_pageio_debug, 9797 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9798 "len=%llu, size=%llu, attrsize =%llu", off, 9799 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9800 mutex_exit(&rp->r_statelock); 9801 return (EFAULT); /* beyond EOF */ 9802 } 9803 9804 mutex_exit(&rp->r_statelock); 9805 9806 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9807 pl, plsz, seg, addr, rw, cr); 9808 NFS4_DEBUG(nfs4_pageio_debug && error, 9809 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9810 error, off, (u_longlong_t)len)); 9811 9812 switch (error) { 9813 case NFS_EOF: 9814 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9815 goto retry; 9816 case ESTALE: 9817 nfs4_purge_stale_fh(error, vp, cr); 9818 } 9819 9820 return (error); 9821 } 9822 9823 /* 9824 * Called from pvn_getpages to get a particular page. 9825 */ 9826 /* ARGSUSED */ 9827 static int 9828 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9829 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9830 enum seg_rw rw, cred_t *cr) 9831 { 9832 rnode4_t *rp; 9833 uint_t bsize; 9834 struct buf *bp; 9835 page_t *pp; 9836 u_offset_t lbn; 9837 u_offset_t io_off; 9838 u_offset_t blkoff; 9839 u_offset_t rablkoff; 9840 size_t io_len; 9841 uint_t blksize; 9842 int error; 9843 int readahead; 9844 int readahead_issued = 0; 9845 int ra_window; /* readahead window */ 9846 page_t *pagefound; 9847 page_t *savepp; 9848 9849 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9850 return (EIO); 9851 9852 rp = VTOR4(vp); 9853 ASSERT(!IS_SHADOW(vp, rp)); 9854 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9855 9856 reread: 9857 bp = NULL; 9858 pp = NULL; 9859 pagefound = NULL; 9860 9861 if (pl != NULL) 9862 pl[0] = NULL; 9863 9864 error = 0; 9865 lbn = off / bsize; 9866 blkoff = lbn * bsize; 9867 9868 /* 9869 * Queueing up the readahead before doing the synchronous read 9870 * results in a significant increase in read throughput because 9871 * of the increased parallelism between the async threads and 9872 * the process context. 9873 */ 9874 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9875 rw != S_CREATE && 9876 !(vp->v_flag & VNOCACHE)) { 9877 mutex_enter(&rp->r_statelock); 9878 9879 /* 9880 * Calculate the number of readaheads to do. 9881 * a) No readaheads at offset = 0. 9882 * b) Do maximum(nfs4_nra) readaheads when the readahead 9883 * window is closed. 9884 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9885 * upon how far the readahead window is open or close. 9886 * d) No readaheads if rp->r_nextr is not within the scope 9887 * of the readahead window (random i/o). 9888 */ 9889 9890 if (off == 0) 9891 readahead = 0; 9892 else if (blkoff == rp->r_nextr) 9893 readahead = nfs4_nra; 9894 else if (rp->r_nextr > blkoff && 9895 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9896 <= (nfs4_nra - 1))) 9897 readahead = nfs4_nra - ra_window; 9898 else 9899 readahead = 0; 9900 9901 rablkoff = rp->r_nextr; 9902 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9903 mutex_exit(&rp->r_statelock); 9904 if (nfs4_async_readahead(vp, rablkoff + bsize, 9905 addr + (rablkoff + bsize - off), 9906 seg, cr, nfs4_readahead) < 0) { 9907 mutex_enter(&rp->r_statelock); 9908 break; 9909 } 9910 readahead--; 9911 rablkoff += bsize; 9912 /* 9913 * Indicate that we did a readahead so 9914 * readahead offset is not updated 9915 * by the synchronous read below. 9916 */ 9917 readahead_issued = 1; 9918 mutex_enter(&rp->r_statelock); 9919 /* 9920 * set readahead offset to 9921 * offset of last async readahead 9922 * request. 9923 */ 9924 rp->r_nextr = rablkoff; 9925 } 9926 mutex_exit(&rp->r_statelock); 9927 } 9928 9929 again: 9930 if ((pagefound = page_exists(vp, off)) == NULL) { 9931 if (pl == NULL) { 9932 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9933 nfs4_readahead); 9934 } else if (rw == S_CREATE) { 9935 /* 9936 * Block for this page is not allocated, or the offset 9937 * is beyond the current allocation size, or we're 9938 * allocating a swap slot and the page was not found, 9939 * so allocate it and return a zero page. 9940 */ 9941 if ((pp = page_create_va(vp, off, 9942 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9943 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9944 io_len = PAGESIZE; 9945 mutex_enter(&rp->r_statelock); 9946 rp->r_nextr = off + PAGESIZE; 9947 mutex_exit(&rp->r_statelock); 9948 } else { 9949 /* 9950 * Need to go to server to get a block 9951 */ 9952 mutex_enter(&rp->r_statelock); 9953 if (blkoff < rp->r_size && 9954 blkoff + bsize > rp->r_size) { 9955 /* 9956 * If less than a block left in 9957 * file read less than a block. 9958 */ 9959 if (rp->r_size <= off) { 9960 /* 9961 * Trying to access beyond EOF, 9962 * set up to get at least one page. 9963 */ 9964 blksize = off + PAGESIZE - blkoff; 9965 } else 9966 blksize = rp->r_size - blkoff; 9967 } else if ((off == 0) || 9968 (off != rp->r_nextr && !readahead_issued)) { 9969 blksize = PAGESIZE; 9970 blkoff = off; /* block = page here */ 9971 } else 9972 blksize = bsize; 9973 mutex_exit(&rp->r_statelock); 9974 9975 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9976 &io_len, blkoff, blksize, 0); 9977 9978 /* 9979 * Some other thread has entered the page, 9980 * so just use it. 9981 */ 9982 if (pp == NULL) 9983 goto again; 9984 9985 /* 9986 * Now round the request size up to page boundaries. 9987 * This ensures that the entire page will be 9988 * initialized to zeroes if EOF is encountered. 9989 */ 9990 io_len = ptob(btopr(io_len)); 9991 9992 bp = pageio_setup(pp, io_len, vp, B_READ); 9993 ASSERT(bp != NULL); 9994 9995 /* 9996 * pageio_setup should have set b_addr to 0. This 9997 * is correct since we want to do I/O on a page 9998 * boundary. bp_mapin will use this addr to calculate 9999 * an offset, and then set b_addr to the kernel virtual 10000 * address it allocated for us. 10001 */ 10002 ASSERT(bp->b_un.b_addr == 0); 10003 10004 bp->b_edev = 0; 10005 bp->b_dev = 0; 10006 bp->b_lblkno = lbtodb(io_off); 10007 bp->b_file = vp; 10008 bp->b_offset = (offset_t)off; 10009 bp_mapin(bp); 10010 10011 /* 10012 * If doing a write beyond what we believe is EOF, 10013 * don't bother trying to read the pages from the 10014 * server, we'll just zero the pages here. We 10015 * don't check that the rw flag is S_WRITE here 10016 * because some implementations may attempt a 10017 * read access to the buffer before copying data. 10018 */ 10019 mutex_enter(&rp->r_statelock); 10020 if (io_off >= rp->r_size && seg == segkmap) { 10021 mutex_exit(&rp->r_statelock); 10022 bzero(bp->b_un.b_addr, io_len); 10023 } else { 10024 mutex_exit(&rp->r_statelock); 10025 error = nfs4_bio(bp, NULL, cr, FALSE); 10026 } 10027 10028 /* 10029 * Unmap the buffer before freeing it. 10030 */ 10031 bp_mapout(bp); 10032 pageio_done(bp); 10033 10034 savepp = pp; 10035 do { 10036 pp->p_fsdata = C_NOCOMMIT; 10037 } while ((pp = pp->p_next) != savepp); 10038 10039 if (error == NFS_EOF) { 10040 /* 10041 * If doing a write system call just return 10042 * zeroed pages, else user tried to get pages 10043 * beyond EOF, return error. We don't check 10044 * that the rw flag is S_WRITE here because 10045 * some implementations may attempt a read 10046 * access to the buffer before copying data. 10047 */ 10048 if (seg == segkmap) 10049 error = 0; 10050 else 10051 error = EFAULT; 10052 } 10053 10054 if (!readahead_issued && !error) { 10055 mutex_enter(&rp->r_statelock); 10056 rp->r_nextr = io_off + io_len; 10057 mutex_exit(&rp->r_statelock); 10058 } 10059 } 10060 } 10061 10062 out: 10063 if (pl == NULL) 10064 return (error); 10065 10066 if (error) { 10067 if (pp != NULL) 10068 pvn_read_done(pp, B_ERROR); 10069 return (error); 10070 } 10071 10072 if (pagefound) { 10073 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10074 10075 /* 10076 * Page exists in the cache, acquire the appropriate lock. 10077 * If this fails, start all over again. 10078 */ 10079 if ((pp = page_lookup(vp, off, se)) == NULL) { 10080 #ifdef DEBUG 10081 nfs4_lostpage++; 10082 #endif 10083 goto reread; 10084 } 10085 pl[0] = pp; 10086 pl[1] = NULL; 10087 return (0); 10088 } 10089 10090 if (pp != NULL) 10091 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10092 10093 return (error); 10094 } 10095 10096 static void 10097 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10098 cred_t *cr) 10099 { 10100 int error; 10101 page_t *pp; 10102 u_offset_t io_off; 10103 size_t io_len; 10104 struct buf *bp; 10105 uint_t bsize, blksize; 10106 rnode4_t *rp = VTOR4(vp); 10107 page_t *savepp; 10108 10109 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10110 10111 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10112 10113 mutex_enter(&rp->r_statelock); 10114 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10115 /* 10116 * If less than a block left in file read less 10117 * than a block. 10118 */ 10119 blksize = rp->r_size - blkoff; 10120 } else 10121 blksize = bsize; 10122 mutex_exit(&rp->r_statelock); 10123 10124 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10125 &io_off, &io_len, blkoff, blksize, 1); 10126 /* 10127 * The isra flag passed to the kluster function is 1, we may have 10128 * gotten a return value of NULL for a variety of reasons (# of free 10129 * pages < minfree, someone entered the page on the vnode etc). In all 10130 * cases, we want to punt on the readahead. 10131 */ 10132 if (pp == NULL) 10133 return; 10134 10135 /* 10136 * Now round the request size up to page boundaries. 10137 * This ensures that the entire page will be 10138 * initialized to zeroes if EOF is encountered. 10139 */ 10140 io_len = ptob(btopr(io_len)); 10141 10142 bp = pageio_setup(pp, io_len, vp, B_READ); 10143 ASSERT(bp != NULL); 10144 10145 /* 10146 * pageio_setup should have set b_addr to 0. This is correct since 10147 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10148 * to calculate an offset, and then set b_addr to the kernel virtual 10149 * address it allocated for us. 10150 */ 10151 ASSERT(bp->b_un.b_addr == 0); 10152 10153 bp->b_edev = 0; 10154 bp->b_dev = 0; 10155 bp->b_lblkno = lbtodb(io_off); 10156 bp->b_file = vp; 10157 bp->b_offset = (offset_t)blkoff; 10158 bp_mapin(bp); 10159 10160 /* 10161 * If doing a write beyond what we believe is EOF, don't bother trying 10162 * to read the pages from the server, we'll just zero the pages here. 10163 * We don't check that the rw flag is S_WRITE here because some 10164 * implementations may attempt a read access to the buffer before 10165 * copying data. 10166 */ 10167 mutex_enter(&rp->r_statelock); 10168 if (io_off >= rp->r_size && seg == segkmap) { 10169 mutex_exit(&rp->r_statelock); 10170 bzero(bp->b_un.b_addr, io_len); 10171 error = 0; 10172 } else { 10173 mutex_exit(&rp->r_statelock); 10174 error = nfs4_bio(bp, NULL, cr, TRUE); 10175 if (error == NFS_EOF) 10176 error = 0; 10177 } 10178 10179 /* 10180 * Unmap the buffer before freeing it. 10181 */ 10182 bp_mapout(bp); 10183 pageio_done(bp); 10184 10185 savepp = pp; 10186 do { 10187 pp->p_fsdata = C_NOCOMMIT; 10188 } while ((pp = pp->p_next) != savepp); 10189 10190 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10191 10192 /* 10193 * In case of error set readahead offset 10194 * to the lowest offset. 10195 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10196 */ 10197 if (error && rp->r_nextr > io_off) { 10198 mutex_enter(&rp->r_statelock); 10199 if (rp->r_nextr > io_off) 10200 rp->r_nextr = io_off; 10201 mutex_exit(&rp->r_statelock); 10202 } 10203 } 10204 10205 /* 10206 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10207 * If len == 0, do from off to EOF. 10208 * 10209 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10210 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10211 * (from pageout). 10212 */ 10213 /* ARGSUSED */ 10214 static int 10215 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10216 caller_context_t *ct) 10217 { 10218 int error; 10219 rnode4_t *rp; 10220 10221 ASSERT(cr != NULL); 10222 10223 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10224 return (EIO); 10225 10226 rp = VTOR4(vp); 10227 if (IS_SHADOW(vp, rp)) 10228 vp = RTOV4(rp); 10229 10230 /* 10231 * XXX - Why should this check be made here? 10232 */ 10233 if (vp->v_flag & VNOMAP) 10234 return (ENOSYS); 10235 10236 if (len == 0 && !(flags & B_INVAL) && 10237 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10238 return (0); 10239 10240 mutex_enter(&rp->r_statelock); 10241 rp->r_count++; 10242 mutex_exit(&rp->r_statelock); 10243 error = nfs4_putpages(vp, off, len, flags, cr); 10244 mutex_enter(&rp->r_statelock); 10245 rp->r_count--; 10246 cv_broadcast(&rp->r_cv); 10247 mutex_exit(&rp->r_statelock); 10248 10249 return (error); 10250 } 10251 10252 /* 10253 * Write out a single page, possibly klustering adjacent dirty pages. 10254 */ 10255 int 10256 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10257 int flags, cred_t *cr) 10258 { 10259 u_offset_t io_off; 10260 u_offset_t lbn_off; 10261 u_offset_t lbn; 10262 size_t io_len; 10263 uint_t bsize; 10264 int error; 10265 rnode4_t *rp; 10266 10267 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10268 ASSERT(pp != NULL); 10269 ASSERT(cr != NULL); 10270 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10271 10272 rp = VTOR4(vp); 10273 ASSERT(rp->r_count > 0); 10274 ASSERT(!IS_SHADOW(vp, rp)); 10275 10276 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10277 lbn = pp->p_offset / bsize; 10278 lbn_off = lbn * bsize; 10279 10280 /* 10281 * Find a kluster that fits in one block, or in 10282 * one page if pages are bigger than blocks. If 10283 * there is less file space allocated than a whole 10284 * page, we'll shorten the i/o request below. 10285 */ 10286 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10287 roundup(bsize, PAGESIZE), flags); 10288 10289 /* 10290 * pvn_write_kluster shouldn't have returned a page with offset 10291 * behind the original page we were given. Verify that. 10292 */ 10293 ASSERT((pp->p_offset / bsize) >= lbn); 10294 10295 /* 10296 * Now pp will have the list of kept dirty pages marked for 10297 * write back. It will also handle invalidation and freeing 10298 * of pages that are not dirty. Check for page length rounding 10299 * problems. 10300 */ 10301 if (io_off + io_len > lbn_off + bsize) { 10302 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10303 io_len = lbn_off + bsize - io_off; 10304 } 10305 /* 10306 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10307 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10308 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10309 * progress and the r_size has not been made consistent with the 10310 * new size of the file. When the uiomove() completes the r_size is 10311 * updated and the R4MODINPROGRESS flag is cleared. 10312 * 10313 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10314 * consistent value of r_size. Without this handshaking, it is 10315 * possible that nfs4_bio() picks up the old value of r_size 10316 * before the uiomove() in writerp4() completes. This will result 10317 * in the write through nfs4_bio() being dropped. 10318 * 10319 * More precisely, there is a window between the time the uiomove() 10320 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10321 * operation intervenes in this window, the page will be picked up, 10322 * because it is dirty (it will be unlocked, unless it was 10323 * pagecreate'd). When the page is picked up as dirty, the dirty 10324 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10325 * checked. This will still be the old size. Therefore the page will 10326 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10327 * the page will be found to be clean and the write will be dropped. 10328 */ 10329 if (rp->r_flags & R4MODINPROGRESS) { 10330 mutex_enter(&rp->r_statelock); 10331 if ((rp->r_flags & R4MODINPROGRESS) && 10332 rp->r_modaddr + MAXBSIZE > io_off && 10333 rp->r_modaddr < io_off + io_len) { 10334 page_t *plist; 10335 /* 10336 * A write is in progress for this region of the file. 10337 * If we did not detect R4MODINPROGRESS here then this 10338 * path through nfs_putapage() would eventually go to 10339 * nfs4_bio() and may not write out all of the data 10340 * in the pages. We end up losing data. So we decide 10341 * to set the modified bit on each page in the page 10342 * list and mark the rnode with R4DIRTY. This write 10343 * will be restarted at some later time. 10344 */ 10345 plist = pp; 10346 while (plist != NULL) { 10347 pp = plist; 10348 page_sub(&plist, pp); 10349 hat_setmod(pp); 10350 page_io_unlock(pp); 10351 page_unlock(pp); 10352 } 10353 rp->r_flags |= R4DIRTY; 10354 mutex_exit(&rp->r_statelock); 10355 if (offp) 10356 *offp = io_off; 10357 if (lenp) 10358 *lenp = io_len; 10359 return (0); 10360 } 10361 mutex_exit(&rp->r_statelock); 10362 } 10363 10364 if (flags & B_ASYNC) { 10365 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10366 nfs4_sync_putapage); 10367 } else 10368 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10369 10370 if (offp) 10371 *offp = io_off; 10372 if (lenp) 10373 *lenp = io_len; 10374 return (error); 10375 } 10376 10377 static int 10378 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10379 int flags, cred_t *cr) 10380 { 10381 int error; 10382 rnode4_t *rp; 10383 10384 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10385 10386 flags |= B_WRITE; 10387 10388 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10389 10390 rp = VTOR4(vp); 10391 10392 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10393 error == EACCES) && 10394 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10395 if (!(rp->r_flags & R4OUTOFSPACE)) { 10396 mutex_enter(&rp->r_statelock); 10397 rp->r_flags |= R4OUTOFSPACE; 10398 mutex_exit(&rp->r_statelock); 10399 } 10400 flags |= B_ERROR; 10401 pvn_write_done(pp, flags); 10402 /* 10403 * If this was not an async thread, then try again to 10404 * write out the pages, but this time, also destroy 10405 * them whether or not the write is successful. This 10406 * will prevent memory from filling up with these 10407 * pages and destroying them is the only alternative 10408 * if they can't be written out. 10409 * 10410 * Don't do this if this is an async thread because 10411 * when the pages are unlocked in pvn_write_done, 10412 * some other thread could have come along, locked 10413 * them, and queued for an async thread. It would be 10414 * possible for all of the async threads to be tied 10415 * up waiting to lock the pages again and they would 10416 * all already be locked and waiting for an async 10417 * thread to handle them. Deadlock. 10418 */ 10419 if (!(flags & B_ASYNC)) { 10420 error = nfs4_putpage(vp, io_off, io_len, 10421 B_INVAL | B_FORCE, cr, NULL); 10422 } 10423 } else { 10424 if (error) 10425 flags |= B_ERROR; 10426 else if (rp->r_flags & R4OUTOFSPACE) { 10427 mutex_enter(&rp->r_statelock); 10428 rp->r_flags &= ~R4OUTOFSPACE; 10429 mutex_exit(&rp->r_statelock); 10430 } 10431 pvn_write_done(pp, flags); 10432 if (freemem < desfree) 10433 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10434 NFS4_WRITE_NOWAIT); 10435 } 10436 10437 return (error); 10438 } 10439 10440 #ifdef DEBUG 10441 int nfs4_force_open_before_mmap = 0; 10442 #endif 10443 10444 /* ARGSUSED */ 10445 static int 10446 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10447 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10448 caller_context_t *ct) 10449 { 10450 struct segvn_crargs vn_a; 10451 int error = 0; 10452 rnode4_t *rp = VTOR4(vp); 10453 mntinfo4_t *mi = VTOMI4(vp); 10454 10455 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10456 return (EIO); 10457 10458 if (vp->v_flag & VNOMAP) 10459 return (ENOSYS); 10460 10461 if (off < 0 || (off + len) < 0) 10462 return (ENXIO); 10463 10464 if (vp->v_type != VREG) 10465 return (ENODEV); 10466 10467 /* 10468 * If the file is delegated to the client don't do anything. 10469 * If the file is not delegated, then validate the data cache. 10470 */ 10471 mutex_enter(&rp->r_statev4_lock); 10472 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10473 mutex_exit(&rp->r_statev4_lock); 10474 error = nfs4_validate_caches(vp, cr); 10475 if (error) 10476 return (error); 10477 } else { 10478 mutex_exit(&rp->r_statev4_lock); 10479 } 10480 10481 /* 10482 * Check to see if the vnode is currently marked as not cachable. 10483 * This means portions of the file are locked (through VOP_FRLOCK). 10484 * In this case the map request must be refused. We use 10485 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10486 * 10487 * Atomically increment r_inmap after acquiring r_rwlock. The 10488 * idea here is to acquire r_rwlock to block read/write and 10489 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10490 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10491 * and we can prevent the deadlock that would have occurred 10492 * when nfs4_addmap() would have acquired it out of order. 10493 * 10494 * Since we are not protecting r_inmap by any lock, we do not 10495 * hold any lock when we decrement it. We atomically decrement 10496 * r_inmap after we release r_lkserlock. 10497 */ 10498 10499 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10500 return (EINTR); 10501 atomic_inc_uint(&rp->r_inmap); 10502 nfs_rw_exit(&rp->r_rwlock); 10503 10504 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10505 atomic_dec_uint(&rp->r_inmap); 10506 return (EINTR); 10507 } 10508 10509 if (vp->v_flag & VNOCACHE) { 10510 error = EAGAIN; 10511 goto done; 10512 } 10513 10514 /* 10515 * Don't allow concurrent locks and mapping if mandatory locking is 10516 * enabled. 10517 */ 10518 if (flk_has_remote_locks(vp)) { 10519 struct vattr va; 10520 va.va_mask = AT_MODE; 10521 error = nfs4getattr(vp, &va, cr); 10522 if (error != 0) 10523 goto done; 10524 if (MANDLOCK(vp, va.va_mode)) { 10525 error = EAGAIN; 10526 goto done; 10527 } 10528 } 10529 10530 /* 10531 * It is possible that the rnode has a lost lock request that we 10532 * are still trying to recover, and that the request conflicts with 10533 * this map request. 10534 * 10535 * An alternative approach would be for nfs4_safemap() to consider 10536 * queued lock requests when deciding whether to set or clear 10537 * VNOCACHE. This would require the frlock code path to call 10538 * nfs4_safemap() after enqueing a lost request. 10539 */ 10540 if (nfs4_map_lost_lock_conflict(vp)) { 10541 error = EAGAIN; 10542 goto done; 10543 } 10544 10545 as_rangelock(as); 10546 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10547 if (error != 0) { 10548 as_rangeunlock(as); 10549 goto done; 10550 } 10551 10552 if (vp->v_type == VREG) { 10553 /* 10554 * We need to retrieve the open stream 10555 */ 10556 nfs4_open_stream_t *osp = NULL; 10557 nfs4_open_owner_t *oop = NULL; 10558 10559 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10560 if (oop != NULL) { 10561 /* returns with 'os_sync_lock' held */ 10562 osp = find_open_stream(oop, rp); 10563 open_owner_rele(oop); 10564 } 10565 if (osp == NULL) { 10566 #ifdef DEBUG 10567 if (nfs4_force_open_before_mmap) { 10568 error = EIO; 10569 goto done; 10570 } 10571 #endif 10572 /* returns with 'os_sync_lock' held */ 10573 error = open_and_get_osp(vp, cr, &osp); 10574 if (osp == NULL) { 10575 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10576 "nfs4_map: we tried to OPEN the file " 10577 "but again no osp, so fail with EIO")); 10578 goto done; 10579 } 10580 } 10581 10582 if (osp->os_failed_reopen) { 10583 mutex_exit(&osp->os_sync_lock); 10584 open_stream_rele(osp, rp); 10585 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10586 "nfs4_map: os_failed_reopen set on " 10587 "osp %p, cr %p, rp %s", (void *)osp, 10588 (void *)cr, rnode4info(rp))); 10589 error = EIO; 10590 goto done; 10591 } 10592 mutex_exit(&osp->os_sync_lock); 10593 open_stream_rele(osp, rp); 10594 } 10595 10596 vn_a.vp = vp; 10597 vn_a.offset = off; 10598 vn_a.type = (flags & MAP_TYPE); 10599 vn_a.prot = (uchar_t)prot; 10600 vn_a.maxprot = (uchar_t)maxprot; 10601 vn_a.flags = (flags & ~MAP_TYPE); 10602 vn_a.cred = cr; 10603 vn_a.amp = NULL; 10604 vn_a.szc = 0; 10605 vn_a.lgrp_mem_policy_flags = 0; 10606 10607 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10608 as_rangeunlock(as); 10609 10610 done: 10611 nfs_rw_exit(&rp->r_lkserlock); 10612 atomic_dec_uint(&rp->r_inmap); 10613 return (error); 10614 } 10615 10616 /* 10617 * We're most likely dealing with a kernel module that likes to READ 10618 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10619 * officially OPEN the file to create the necessary client state 10620 * for bookkeeping of os_mmap_read/write counts. 10621 * 10622 * Since VOP_MAP only passes in a pointer to the vnode rather than 10623 * a double pointer, we can't handle the case where nfs4open_otw() 10624 * returns a different vnode than the one passed into VOP_MAP (since 10625 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10626 * we return NULL and let nfs4_map() fail. Note: the only case where 10627 * this should happen is if the file got removed and replaced with the 10628 * same name on the server (in addition to the fact that we're trying 10629 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10630 */ 10631 static int 10632 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10633 { 10634 rnode4_t *rp, *drp; 10635 vnode_t *dvp, *open_vp; 10636 char file_name[MAXNAMELEN]; 10637 int just_created; 10638 nfs4_open_stream_t *osp; 10639 nfs4_open_owner_t *oop; 10640 int error; 10641 10642 *ospp = NULL; 10643 open_vp = map_vp; 10644 10645 rp = VTOR4(open_vp); 10646 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10647 return (error); 10648 drp = VTOR4(dvp); 10649 10650 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10651 VN_RELE(dvp); 10652 return (EINTR); 10653 } 10654 10655 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10656 nfs_rw_exit(&drp->r_rwlock); 10657 VN_RELE(dvp); 10658 return (error); 10659 } 10660 10661 mutex_enter(&rp->r_statev4_lock); 10662 if (rp->created_v4) { 10663 rp->created_v4 = 0; 10664 mutex_exit(&rp->r_statev4_lock); 10665 10666 dnlc_update(dvp, file_name, open_vp); 10667 /* This is needed so we don't bump the open ref count */ 10668 just_created = 1; 10669 } else { 10670 mutex_exit(&rp->r_statev4_lock); 10671 just_created = 0; 10672 } 10673 10674 VN_HOLD(map_vp); 10675 10676 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10677 just_created); 10678 if (error) { 10679 nfs_rw_exit(&drp->r_rwlock); 10680 VN_RELE(dvp); 10681 VN_RELE(map_vp); 10682 return (error); 10683 } 10684 10685 nfs_rw_exit(&drp->r_rwlock); 10686 VN_RELE(dvp); 10687 10688 /* 10689 * If nfs4open_otw() returned a different vnode then "undo" 10690 * the open and return failure to the caller. 10691 */ 10692 if (!VN_CMP(open_vp, map_vp)) { 10693 nfs4_error_t e; 10694 10695 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10696 "open returned a different vnode")); 10697 /* 10698 * If there's an error, ignore it, 10699 * and let VOP_INACTIVE handle it. 10700 */ 10701 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10702 CLOSE_NORM, 0, 0, 0); 10703 VN_RELE(map_vp); 10704 return (EIO); 10705 } 10706 10707 VN_RELE(map_vp); 10708 10709 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10710 if (!oop) { 10711 nfs4_error_t e; 10712 10713 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10714 "no open owner")); 10715 /* 10716 * If there's an error, ignore it, 10717 * and let VOP_INACTIVE handle it. 10718 */ 10719 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10720 CLOSE_NORM, 0, 0, 0); 10721 return (EIO); 10722 } 10723 osp = find_open_stream(oop, rp); 10724 open_owner_rele(oop); 10725 *ospp = osp; 10726 return (0); 10727 } 10728 10729 /* 10730 * Please be aware that when this function is called, the address space write 10731 * a_lock is held. Do not put over the wire calls in this function. 10732 */ 10733 /* ARGSUSED */ 10734 static int 10735 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10736 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10737 caller_context_t *ct) 10738 { 10739 rnode4_t *rp; 10740 int error = 0; 10741 mntinfo4_t *mi; 10742 10743 mi = VTOMI4(vp); 10744 rp = VTOR4(vp); 10745 10746 if (nfs_zone() != mi->mi_zone) 10747 return (EIO); 10748 if (vp->v_flag & VNOMAP) 10749 return (ENOSYS); 10750 10751 /* 10752 * Don't need to update the open stream first, since this 10753 * mmap can't add any additional share access that isn't 10754 * already contained in the open stream (for the case where we 10755 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10756 * take into account os_mmap_read[write] counts). 10757 */ 10758 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10759 10760 if (vp->v_type == VREG) { 10761 /* 10762 * We need to retrieve the open stream and update the counts. 10763 * If there is no open stream here, something is wrong. 10764 */ 10765 nfs4_open_stream_t *osp = NULL; 10766 nfs4_open_owner_t *oop = NULL; 10767 10768 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10769 if (oop != NULL) { 10770 /* returns with 'os_sync_lock' held */ 10771 osp = find_open_stream(oop, rp); 10772 open_owner_rele(oop); 10773 } 10774 if (osp == NULL) { 10775 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10776 "nfs4_addmap: we should have an osp" 10777 "but we don't, so fail with EIO")); 10778 error = EIO; 10779 goto out; 10780 } 10781 10782 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10783 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10784 10785 /* 10786 * Update the map count in the open stream. 10787 * This is necessary in the case where we 10788 * open/mmap/close/, then the server reboots, and we 10789 * attempt to reopen. If the mmap doesn't add share 10790 * access then we send an invalid reopen with 10791 * access = NONE. 10792 * 10793 * We need to specifically check each PROT_* so a mmap 10794 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10795 * read and write access. A simple comparison of prot 10796 * to ~PROT_WRITE to determine read access is insufficient 10797 * since prot can be |= with PROT_USER, etc. 10798 */ 10799 10800 /* 10801 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10802 */ 10803 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10804 osp->os_mmap_write += btopr(len); 10805 if (maxprot & PROT_READ) 10806 osp->os_mmap_read += btopr(len); 10807 if (maxprot & PROT_EXEC) 10808 osp->os_mmap_read += btopr(len); 10809 /* 10810 * Ensure that os_mmap_read gets incremented, even if 10811 * maxprot were to look like PROT_NONE. 10812 */ 10813 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10814 !(maxprot & PROT_EXEC)) 10815 osp->os_mmap_read += btopr(len); 10816 osp->os_mapcnt += btopr(len); 10817 mutex_exit(&osp->os_sync_lock); 10818 open_stream_rele(osp, rp); 10819 } 10820 10821 out: 10822 /* 10823 * If we got an error, then undo our 10824 * incrementing of 'r_mapcnt'. 10825 */ 10826 10827 if (error) { 10828 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10829 ASSERT(rp->r_mapcnt >= 0); 10830 } 10831 return (error); 10832 } 10833 10834 /* ARGSUSED */ 10835 static int 10836 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10837 { 10838 10839 return (VTOR4(vp1) == VTOR4(vp2)); 10840 } 10841 10842 /* ARGSUSED */ 10843 static int 10844 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10845 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10846 caller_context_t *ct) 10847 { 10848 int rc; 10849 u_offset_t start, end; 10850 rnode4_t *rp; 10851 int error = 0, intr = INTR4(vp); 10852 nfs4_error_t e; 10853 10854 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10855 return (EIO); 10856 10857 /* check for valid cmd parameter */ 10858 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10859 return (EINVAL); 10860 10861 /* Verify l_type. */ 10862 switch (bfp->l_type) { 10863 case F_RDLCK: 10864 if (cmd != F_GETLK && !(flag & FREAD)) 10865 return (EBADF); 10866 break; 10867 case F_WRLCK: 10868 if (cmd != F_GETLK && !(flag & FWRITE)) 10869 return (EBADF); 10870 break; 10871 case F_UNLCK: 10872 intr = 0; 10873 break; 10874 10875 default: 10876 return (EINVAL); 10877 } 10878 10879 /* check the validity of the lock range */ 10880 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10881 return (rc); 10882 if (rc = flk_check_lock_data(start, end, MAXEND)) 10883 return (rc); 10884 10885 /* 10886 * If the filesystem is mounted using local locking, pass the 10887 * request off to the local locking code. 10888 */ 10889 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10890 if (cmd == F_SETLK || cmd == F_SETLKW) { 10891 /* 10892 * For complete safety, we should be holding 10893 * r_lkserlock. However, we can't call 10894 * nfs4_safelock and then fs_frlock while 10895 * holding r_lkserlock, so just invoke 10896 * nfs4_safelock and expect that this will 10897 * catch enough of the cases. 10898 */ 10899 if (!nfs4_safelock(vp, bfp, cr)) 10900 return (EAGAIN); 10901 } 10902 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10903 } 10904 10905 rp = VTOR4(vp); 10906 10907 /* 10908 * Check whether the given lock request can proceed, given the 10909 * current file mappings. 10910 */ 10911 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10912 return (EINTR); 10913 if (cmd == F_SETLK || cmd == F_SETLKW) { 10914 if (!nfs4_safelock(vp, bfp, cr)) { 10915 rc = EAGAIN; 10916 goto done; 10917 } 10918 } 10919 10920 /* 10921 * Flush the cache after waiting for async I/O to finish. For new 10922 * locks, this is so that the process gets the latest bits from the 10923 * server. For unlocks, this is so that other clients see the 10924 * latest bits once the file has been unlocked. If currently dirty 10925 * pages can't be flushed, then don't allow a lock to be set. But 10926 * allow unlocks to succeed, to avoid having orphan locks on the 10927 * server. 10928 */ 10929 if (cmd != F_GETLK) { 10930 mutex_enter(&rp->r_statelock); 10931 while (rp->r_count > 0) { 10932 if (intr) { 10933 klwp_t *lwp = ttolwp(curthread); 10934 10935 if (lwp != NULL) 10936 lwp->lwp_nostop++; 10937 if (cv_wait_sig(&rp->r_cv, 10938 &rp->r_statelock) == 0) { 10939 if (lwp != NULL) 10940 lwp->lwp_nostop--; 10941 rc = EINTR; 10942 break; 10943 } 10944 if (lwp != NULL) 10945 lwp->lwp_nostop--; 10946 } else { 10947 cv_wait(&rp->r_cv, &rp->r_statelock); 10948 } 10949 } 10950 mutex_exit(&rp->r_statelock); 10951 if (rc != 0) 10952 goto done; 10953 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10954 if (error) { 10955 if (error == ENOSPC || error == EDQUOT) { 10956 mutex_enter(&rp->r_statelock); 10957 if (!rp->r_error) 10958 rp->r_error = error; 10959 mutex_exit(&rp->r_statelock); 10960 } 10961 if (bfp->l_type != F_UNLCK) { 10962 rc = ENOLCK; 10963 goto done; 10964 } 10965 } 10966 } 10967 10968 /* 10969 * Call the lock manager to do the real work of contacting 10970 * the server and obtaining the lock. 10971 */ 10972 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10973 cr, &e, NULL, NULL); 10974 rc = e.error; 10975 10976 if (rc == 0) 10977 nfs4_lockcompletion(vp, cmd); 10978 10979 done: 10980 nfs_rw_exit(&rp->r_lkserlock); 10981 10982 return (rc); 10983 } 10984 10985 /* 10986 * Free storage space associated with the specified vnode. The portion 10987 * to be freed is specified by bfp->l_start and bfp->l_len (already 10988 * normalized to a "whence" of 0). 10989 * 10990 * This is an experimental facility whose continued existence is not 10991 * guaranteed. Currently, we only support the special case 10992 * of l_len == 0, meaning free to end of file. 10993 */ 10994 /* ARGSUSED */ 10995 static int 10996 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10997 offset_t offset, cred_t *cr, caller_context_t *ct) 10998 { 10999 int error; 11000 11001 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11002 return (EIO); 11003 ASSERT(vp->v_type == VREG); 11004 if (cmd != F_FREESP) 11005 return (EINVAL); 11006 11007 error = convoff(vp, bfp, 0, offset); 11008 if (!error) { 11009 ASSERT(bfp->l_start >= 0); 11010 if (bfp->l_len == 0) { 11011 struct vattr va; 11012 11013 va.va_mask = AT_SIZE; 11014 va.va_size = bfp->l_start; 11015 error = nfs4setattr(vp, &va, 0, cr, NULL); 11016 11017 if (error == 0 && bfp->l_start == 0) 11018 vnevent_truncate(vp, ct); 11019 } else 11020 error = EINVAL; 11021 } 11022 11023 return (error); 11024 } 11025 11026 /* ARGSUSED */ 11027 int 11028 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11029 { 11030 rnode4_t *rp; 11031 rp = VTOR4(vp); 11032 11033 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11034 vp = RTOV4(rp); 11035 } 11036 *vpp = vp; 11037 return (0); 11038 } 11039 11040 /* 11041 * Setup and add an address space callback to do the work of the delmap call. 11042 * The callback will (and must be) deleted in the actual callback function. 11043 * 11044 * This is done in order to take care of the problem that we have with holding 11045 * the address space's a_lock for a long period of time (e.g. if the NFS server 11046 * is down). Callbacks will be executed in the address space code while the 11047 * a_lock is not held. Holding the address space's a_lock causes things such 11048 * as ps and fork to hang because they are trying to acquire this lock as well. 11049 */ 11050 /* ARGSUSED */ 11051 static int 11052 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11053 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11054 caller_context_t *ct) 11055 { 11056 int caller_found; 11057 int error; 11058 rnode4_t *rp; 11059 nfs4_delmap_args_t *dmapp; 11060 nfs4_delmapcall_t *delmap_call; 11061 11062 if (vp->v_flag & VNOMAP) 11063 return (ENOSYS); 11064 11065 /* 11066 * A process may not change zones if it has NFS pages mmap'ed 11067 * in, so we can't legitimately get here from the wrong zone. 11068 */ 11069 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11070 11071 rp = VTOR4(vp); 11072 11073 /* 11074 * The way that the address space of this process deletes its mapping 11075 * of this file is via the following call chains: 11076 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11077 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11078 * 11079 * With the use of address space callbacks we are allowed to drop the 11080 * address space lock, a_lock, while executing the NFS operations that 11081 * need to go over the wire. Returning EAGAIN to the caller of this 11082 * function is what drives the execution of the callback that we add 11083 * below. The callback will be executed by the address space code 11084 * after dropping the a_lock. When the callback is finished, since 11085 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11086 * is called again on the same segment to finish the rest of the work 11087 * that needs to happen during unmapping. 11088 * 11089 * This action of calling back into the segment driver causes 11090 * nfs4_delmap() to get called again, but since the callback was 11091 * already executed at this point, it already did the work and there 11092 * is nothing left for us to do. 11093 * 11094 * To Summarize: 11095 * - The first time nfs4_delmap is called by the current thread is when 11096 * we add the caller associated with this delmap to the delmap caller 11097 * list, add the callback, and return EAGAIN. 11098 * - The second time in this call chain when nfs4_delmap is called we 11099 * will find this caller in the delmap caller list and realize there 11100 * is no more work to do thus removing this caller from the list and 11101 * returning the error that was set in the callback execution. 11102 */ 11103 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11104 if (caller_found) { 11105 /* 11106 * 'error' is from the actual delmap operations. To avoid 11107 * hangs, we need to handle the return of EAGAIN differently 11108 * since this is what drives the callback execution. 11109 * In this case, we don't want to return EAGAIN and do the 11110 * callback execution because there are none to execute. 11111 */ 11112 if (error == EAGAIN) 11113 return (0); 11114 else 11115 return (error); 11116 } 11117 11118 /* current caller was not in the list */ 11119 delmap_call = nfs4_init_delmapcall(); 11120 11121 mutex_enter(&rp->r_statelock); 11122 list_insert_tail(&rp->r_indelmap, delmap_call); 11123 mutex_exit(&rp->r_statelock); 11124 11125 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11126 11127 dmapp->vp = vp; 11128 dmapp->off = off; 11129 dmapp->addr = addr; 11130 dmapp->len = len; 11131 dmapp->prot = prot; 11132 dmapp->maxprot = maxprot; 11133 dmapp->flags = flags; 11134 dmapp->cr = cr; 11135 dmapp->caller = delmap_call; 11136 11137 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11138 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11139 11140 return (error ? error : EAGAIN); 11141 } 11142 11143 static nfs4_delmapcall_t * 11144 nfs4_init_delmapcall() 11145 { 11146 nfs4_delmapcall_t *delmap_call; 11147 11148 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11149 delmap_call->call_id = curthread; 11150 delmap_call->error = 0; 11151 11152 return (delmap_call); 11153 } 11154 11155 static void 11156 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11157 { 11158 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11159 } 11160 11161 /* 11162 * Searches for the current delmap caller (based on curthread) in the list of 11163 * callers. If it is found, we remove it and free the delmap caller. 11164 * Returns: 11165 * 0 if the caller wasn't found 11166 * 1 if the caller was found, removed and freed. *errp will be set 11167 * to what the result of the delmap was. 11168 */ 11169 static int 11170 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11171 { 11172 nfs4_delmapcall_t *delmap_call; 11173 11174 /* 11175 * If the list doesn't exist yet, we create it and return 11176 * that the caller wasn't found. No list = no callers. 11177 */ 11178 mutex_enter(&rp->r_statelock); 11179 if (!(rp->r_flags & R4DELMAPLIST)) { 11180 /* The list does not exist */ 11181 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11182 offsetof(nfs4_delmapcall_t, call_node)); 11183 rp->r_flags |= R4DELMAPLIST; 11184 mutex_exit(&rp->r_statelock); 11185 return (0); 11186 } else { 11187 /* The list exists so search it */ 11188 for (delmap_call = list_head(&rp->r_indelmap); 11189 delmap_call != NULL; 11190 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11191 if (delmap_call->call_id == curthread) { 11192 /* current caller is in the list */ 11193 *errp = delmap_call->error; 11194 list_remove(&rp->r_indelmap, delmap_call); 11195 mutex_exit(&rp->r_statelock); 11196 nfs4_free_delmapcall(delmap_call); 11197 return (1); 11198 } 11199 } 11200 } 11201 mutex_exit(&rp->r_statelock); 11202 return (0); 11203 } 11204 11205 /* 11206 * Remove some pages from an mmap'd vnode. Just update the 11207 * count of pages. If doing close-to-open, then flush and 11208 * commit all of the pages associated with this file. 11209 * Otherwise, start an asynchronous page flush to write out 11210 * any dirty pages. This will also associate a credential 11211 * with the rnode which can be used to write the pages. 11212 */ 11213 /* ARGSUSED */ 11214 static void 11215 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11216 { 11217 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11218 rnode4_t *rp; 11219 mntinfo4_t *mi; 11220 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11221 11222 rp = VTOR4(dmapp->vp); 11223 mi = VTOMI4(dmapp->vp); 11224 11225 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11226 ASSERT(rp->r_mapcnt >= 0); 11227 11228 /* 11229 * Initiate a page flush and potential commit if there are 11230 * pages, the file system was not mounted readonly, the segment 11231 * was mapped shared, and the pages themselves were writeable. 11232 */ 11233 if (nfs4_has_pages(dmapp->vp) && 11234 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11235 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11236 mutex_enter(&rp->r_statelock); 11237 rp->r_flags |= R4DIRTY; 11238 mutex_exit(&rp->r_statelock); 11239 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11240 dmapp->len, dmapp->cr); 11241 if (!e.error) { 11242 mutex_enter(&rp->r_statelock); 11243 e.error = rp->r_error; 11244 rp->r_error = 0; 11245 mutex_exit(&rp->r_statelock); 11246 } 11247 } else 11248 e.error = 0; 11249 11250 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11251 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11252 B_INVAL, dmapp->cr, NULL); 11253 11254 if (e.error) { 11255 e.stat = puterrno4(e.error); 11256 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11257 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11258 dmapp->caller->error = e.error; 11259 } 11260 11261 /* Check to see if we need to close the file */ 11262 11263 if (dmapp->vp->v_type == VREG) { 11264 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11265 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11266 11267 if (e.error != 0 || e.stat != NFS4_OK) { 11268 /* 11269 * Since it is possible that e.error == 0 and 11270 * e.stat != NFS4_OK (and vice versa), 11271 * we do the proper checking in order to get both 11272 * e.error and e.stat reporting the correct info. 11273 */ 11274 if (e.stat == NFS4_OK) 11275 e.stat = puterrno4(e.error); 11276 if (e.error == 0) 11277 e.error = geterrno4(e.stat); 11278 11279 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11280 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11281 dmapp->caller->error = e.error; 11282 } 11283 } 11284 11285 (void) as_delete_callback(as, arg); 11286 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11287 } 11288 11289 11290 static uint_t 11291 fattr4_maxfilesize_to_bits(uint64_t ll) 11292 { 11293 uint_t l = 1; 11294 11295 if (ll == 0) { 11296 return (0); 11297 } 11298 11299 if (ll & 0xffffffff00000000) { 11300 l += 32; ll >>= 32; 11301 } 11302 if (ll & 0xffff0000) { 11303 l += 16; ll >>= 16; 11304 } 11305 if (ll & 0xff00) { 11306 l += 8; ll >>= 8; 11307 } 11308 if (ll & 0xf0) { 11309 l += 4; ll >>= 4; 11310 } 11311 if (ll & 0xc) { 11312 l += 2; ll >>= 2; 11313 } 11314 if (ll & 0x2) { 11315 l += 1; 11316 } 11317 return (l); 11318 } 11319 11320 static int 11321 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11322 { 11323 vnode_t *avp = NULL; 11324 int error; 11325 11326 if ((error = nfs4lookup_xattr(vp, "", &avp, 11327 LOOKUP_XATTR, cr)) == 0) 11328 error = do_xattr_exists_check(avp, valp, cr); 11329 if (avp) 11330 VN_RELE(avp); 11331 11332 return (error); 11333 } 11334 11335 /* ARGSUSED */ 11336 int 11337 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11338 caller_context_t *ct) 11339 { 11340 int error; 11341 hrtime_t t; 11342 rnode4_t *rp; 11343 nfs4_ga_res_t gar; 11344 nfs4_ga_ext_res_t ger; 11345 11346 gar.n4g_ext_res = &ger; 11347 11348 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11349 return (EIO); 11350 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11351 *valp = MAXPATHLEN; 11352 return (0); 11353 } 11354 if (cmd == _PC_ACL_ENABLED) { 11355 *valp = _ACL_ACE_ENABLED; 11356 return (0); 11357 } 11358 11359 rp = VTOR4(vp); 11360 if (cmd == _PC_XATTR_EXISTS) { 11361 /* 11362 * The existence of the xattr directory is not sufficient 11363 * for determining whether generic user attributes exists. 11364 * The attribute directory could only be a transient directory 11365 * used for Solaris sysattr support. Do a small readdir 11366 * to verify if the only entries are sysattrs or not. 11367 * 11368 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11369 * is NULL. Once the xadir vp exists, we can create xattrs, 11370 * and we don't have any way to update the "base" object's 11371 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11372 * could help out. 11373 */ 11374 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11375 rp->r_xattr_dir == NULL) { 11376 return (nfs4_have_xattrs(vp, valp, cr)); 11377 } 11378 } else { /* OLD CODE */ 11379 if (ATTRCACHE4_VALID(vp)) { 11380 mutex_enter(&rp->r_statelock); 11381 if (rp->r_pathconf.pc4_cache_valid) { 11382 error = 0; 11383 switch (cmd) { 11384 case _PC_FILESIZEBITS: 11385 *valp = 11386 rp->r_pathconf.pc4_filesizebits; 11387 break; 11388 case _PC_LINK_MAX: 11389 *valp = 11390 rp->r_pathconf.pc4_link_max; 11391 break; 11392 case _PC_NAME_MAX: 11393 *valp = 11394 rp->r_pathconf.pc4_name_max; 11395 break; 11396 case _PC_CHOWN_RESTRICTED: 11397 *valp = 11398 rp->r_pathconf.pc4_chown_restricted; 11399 break; 11400 case _PC_NO_TRUNC: 11401 *valp = 11402 rp->r_pathconf.pc4_no_trunc; 11403 break; 11404 default: 11405 error = EINVAL; 11406 break; 11407 } 11408 mutex_exit(&rp->r_statelock); 11409 #ifdef DEBUG 11410 nfs4_pathconf_cache_hits++; 11411 #endif 11412 return (error); 11413 } 11414 mutex_exit(&rp->r_statelock); 11415 } 11416 } 11417 #ifdef DEBUG 11418 nfs4_pathconf_cache_misses++; 11419 #endif 11420 11421 t = gethrtime(); 11422 11423 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11424 11425 if (error) { 11426 mutex_enter(&rp->r_statelock); 11427 rp->r_pathconf.pc4_cache_valid = FALSE; 11428 rp->r_pathconf.pc4_xattr_valid = FALSE; 11429 mutex_exit(&rp->r_statelock); 11430 return (error); 11431 } 11432 11433 /* interpret the max filesize */ 11434 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11435 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11436 11437 /* Store the attributes we just received */ 11438 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11439 11440 switch (cmd) { 11441 case _PC_FILESIZEBITS: 11442 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11443 break; 11444 case _PC_LINK_MAX: 11445 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11446 break; 11447 case _PC_NAME_MAX: 11448 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11449 break; 11450 case _PC_CHOWN_RESTRICTED: 11451 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11452 break; 11453 case _PC_NO_TRUNC: 11454 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11455 break; 11456 case _PC_XATTR_EXISTS: 11457 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11458 if (error = nfs4_have_xattrs(vp, valp, cr)) 11459 return (error); 11460 } 11461 break; 11462 default: 11463 return (EINVAL); 11464 } 11465 11466 return (0); 11467 } 11468 11469 /* 11470 * Called by async thread to do synchronous pageio. Do the i/o, wait 11471 * for it to complete, and cleanup the page list when done. 11472 */ 11473 static int 11474 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11475 int flags, cred_t *cr) 11476 { 11477 int error; 11478 11479 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11480 11481 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11482 if (flags & B_READ) 11483 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11484 else 11485 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11486 return (error); 11487 } 11488 11489 /* ARGSUSED */ 11490 static int 11491 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11492 int flags, cred_t *cr, caller_context_t *ct) 11493 { 11494 int error; 11495 rnode4_t *rp; 11496 11497 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11498 return (EIO); 11499 11500 if (pp == NULL) 11501 return (EINVAL); 11502 11503 rp = VTOR4(vp); 11504 mutex_enter(&rp->r_statelock); 11505 rp->r_count++; 11506 mutex_exit(&rp->r_statelock); 11507 11508 if (flags & B_ASYNC) { 11509 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11510 nfs4_sync_pageio); 11511 } else 11512 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11513 mutex_enter(&rp->r_statelock); 11514 rp->r_count--; 11515 cv_broadcast(&rp->r_cv); 11516 mutex_exit(&rp->r_statelock); 11517 return (error); 11518 } 11519 11520 /* ARGSUSED */ 11521 static void 11522 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11523 caller_context_t *ct) 11524 { 11525 int error; 11526 rnode4_t *rp; 11527 page_t *plist; 11528 page_t *pptr; 11529 offset3 offset; 11530 count3 len; 11531 k_sigset_t smask; 11532 11533 /* 11534 * We should get called with fl equal to either B_FREE or 11535 * B_INVAL. Any other value is illegal. 11536 * 11537 * The page that we are either supposed to free or destroy 11538 * should be exclusive locked and its io lock should not 11539 * be held. 11540 */ 11541 ASSERT(fl == B_FREE || fl == B_INVAL); 11542 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11543 11544 rp = VTOR4(vp); 11545 11546 /* 11547 * If the page doesn't need to be committed or we shouldn't 11548 * even bother attempting to commit it, then just make sure 11549 * that the p_fsdata byte is clear and then either free or 11550 * destroy the page as appropriate. 11551 */ 11552 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11553 pp->p_fsdata = C_NOCOMMIT; 11554 if (fl == B_FREE) 11555 page_free(pp, dn); 11556 else 11557 page_destroy(pp, dn); 11558 return; 11559 } 11560 11561 /* 11562 * If there is a page invalidation operation going on, then 11563 * if this is one of the pages being destroyed, then just 11564 * clear the p_fsdata byte and then either free or destroy 11565 * the page as appropriate. 11566 */ 11567 mutex_enter(&rp->r_statelock); 11568 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11569 mutex_exit(&rp->r_statelock); 11570 pp->p_fsdata = C_NOCOMMIT; 11571 if (fl == B_FREE) 11572 page_free(pp, dn); 11573 else 11574 page_destroy(pp, dn); 11575 return; 11576 } 11577 11578 /* 11579 * If we are freeing this page and someone else is already 11580 * waiting to do a commit, then just unlock the page and 11581 * return. That other thread will take care of commiting 11582 * this page. The page can be freed sometime after the 11583 * commit has finished. Otherwise, if the page is marked 11584 * as delay commit, then we may be getting called from 11585 * pvn_write_done, one page at a time. This could result 11586 * in one commit per page, so we end up doing lots of small 11587 * commits instead of fewer larger commits. This is bad, 11588 * we want do as few commits as possible. 11589 */ 11590 if (fl == B_FREE) { 11591 if (rp->r_flags & R4COMMITWAIT) { 11592 page_unlock(pp); 11593 mutex_exit(&rp->r_statelock); 11594 return; 11595 } 11596 if (pp->p_fsdata == C_DELAYCOMMIT) { 11597 pp->p_fsdata = C_COMMIT; 11598 page_unlock(pp); 11599 mutex_exit(&rp->r_statelock); 11600 return; 11601 } 11602 } 11603 11604 /* 11605 * Check to see if there is a signal which would prevent an 11606 * attempt to commit the pages from being successful. If so, 11607 * then don't bother with all of the work to gather pages and 11608 * generate the unsuccessful RPC. Just return from here and 11609 * let the page be committed at some later time. 11610 */ 11611 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11612 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11613 sigunintr(&smask); 11614 page_unlock(pp); 11615 mutex_exit(&rp->r_statelock); 11616 return; 11617 } 11618 sigunintr(&smask); 11619 11620 /* 11621 * We are starting to need to commit pages, so let's try 11622 * to commit as many as possible at once to reduce the 11623 * overhead. 11624 * 11625 * Set the `commit inprogress' state bit. We must 11626 * first wait until any current one finishes. Then 11627 * we initialize the c_pages list with this page. 11628 */ 11629 while (rp->r_flags & R4COMMIT) { 11630 rp->r_flags |= R4COMMITWAIT; 11631 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11632 rp->r_flags &= ~R4COMMITWAIT; 11633 } 11634 rp->r_flags |= R4COMMIT; 11635 mutex_exit(&rp->r_statelock); 11636 ASSERT(rp->r_commit.c_pages == NULL); 11637 rp->r_commit.c_pages = pp; 11638 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11639 rp->r_commit.c_commlen = PAGESIZE; 11640 11641 /* 11642 * Gather together all other pages which can be committed. 11643 * They will all be chained off r_commit.c_pages. 11644 */ 11645 nfs4_get_commit(vp); 11646 11647 /* 11648 * Clear the `commit inprogress' status and disconnect 11649 * the list of pages to be committed from the rnode. 11650 * At this same time, we also save the starting offset 11651 * and length of data to be committed on the server. 11652 */ 11653 plist = rp->r_commit.c_pages; 11654 rp->r_commit.c_pages = NULL; 11655 offset = rp->r_commit.c_commbase; 11656 len = rp->r_commit.c_commlen; 11657 mutex_enter(&rp->r_statelock); 11658 rp->r_flags &= ~R4COMMIT; 11659 cv_broadcast(&rp->r_commit.c_cv); 11660 mutex_exit(&rp->r_statelock); 11661 11662 if (curproc == proc_pageout || curproc == proc_fsflush || 11663 nfs_zone() != VTOMI4(vp)->mi_zone) { 11664 nfs4_async_commit(vp, plist, offset, len, 11665 cr, do_nfs4_async_commit); 11666 return; 11667 } 11668 11669 /* 11670 * Actually generate the COMMIT op over the wire operation. 11671 */ 11672 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11673 11674 /* 11675 * If we got an error during the commit, just unlock all 11676 * of the pages. The pages will get retransmitted to the 11677 * server during a putpage operation. 11678 */ 11679 if (error) { 11680 while (plist != NULL) { 11681 pptr = plist; 11682 page_sub(&plist, pptr); 11683 page_unlock(pptr); 11684 } 11685 return; 11686 } 11687 11688 /* 11689 * We've tried as hard as we can to commit the data to stable 11690 * storage on the server. We just unlock the rest of the pages 11691 * and clear the commit required state. They will be put 11692 * onto the tail of the cachelist if they are nolonger 11693 * mapped. 11694 */ 11695 while (plist != pp) { 11696 pptr = plist; 11697 page_sub(&plist, pptr); 11698 pptr->p_fsdata = C_NOCOMMIT; 11699 page_unlock(pptr); 11700 } 11701 11702 /* 11703 * It is possible that nfs4_commit didn't return error but 11704 * some other thread has modified the page we are going 11705 * to free/destroy. 11706 * In this case we need to rewrite the page. Do an explicit check 11707 * before attempting to free/destroy the page. If modified, needs to 11708 * be rewritten so unlock the page and return. 11709 */ 11710 if (hat_ismod(pp)) { 11711 pp->p_fsdata = C_NOCOMMIT; 11712 page_unlock(pp); 11713 return; 11714 } 11715 11716 /* 11717 * Now, as appropriate, either free or destroy the page 11718 * that we were called with. 11719 */ 11720 pp->p_fsdata = C_NOCOMMIT; 11721 if (fl == B_FREE) 11722 page_free(pp, dn); 11723 else 11724 page_destroy(pp, dn); 11725 } 11726 11727 /* 11728 * Commit requires that the current fh be the file written to. 11729 * The compound op structure is: 11730 * PUTFH(file), COMMIT 11731 */ 11732 static int 11733 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11734 { 11735 COMPOUND4args_clnt args; 11736 COMPOUND4res_clnt res; 11737 COMMIT4res *cm_res; 11738 nfs_argop4 argop[2]; 11739 nfs_resop4 *resop; 11740 int doqueue; 11741 mntinfo4_t *mi; 11742 rnode4_t *rp; 11743 cred_t *cred_otw = NULL; 11744 bool_t needrecov = FALSE; 11745 nfs4_recov_state_t recov_state; 11746 nfs4_open_stream_t *osp = NULL; 11747 bool_t first_time = TRUE; /* first time getting OTW cred */ 11748 bool_t last_time = FALSE; /* last time getting OTW cred */ 11749 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11750 11751 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11752 11753 rp = VTOR4(vp); 11754 11755 mi = VTOMI4(vp); 11756 recov_state.rs_flags = 0; 11757 recov_state.rs_num_retry_despite_err = 0; 11758 get_commit_cred: 11759 /* 11760 * Releases the osp, if a valid open stream is provided. 11761 * Puts a hold on the cred_otw and the new osp (if found). 11762 */ 11763 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11764 &first_time, &last_time); 11765 args.ctag = TAG_COMMIT; 11766 recov_retry: 11767 /* 11768 * Commit ops: putfh file; commit 11769 */ 11770 args.array_len = 2; 11771 args.array = argop; 11772 11773 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11774 &recov_state, NULL); 11775 if (e.error) { 11776 crfree(cred_otw); 11777 if (osp != NULL) 11778 open_stream_rele(osp, rp); 11779 return (e.error); 11780 } 11781 11782 /* putfh directory */ 11783 argop[0].argop = OP_CPUTFH; 11784 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11785 11786 /* commit */ 11787 argop[1].argop = OP_COMMIT; 11788 argop[1].nfs_argop4_u.opcommit.offset = offset; 11789 argop[1].nfs_argop4_u.opcommit.count = count; 11790 11791 doqueue = 1; 11792 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11793 11794 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11795 if (!needrecov && e.error) { 11796 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11797 needrecov); 11798 crfree(cred_otw); 11799 if (e.error == EACCES && last_time == FALSE) 11800 goto get_commit_cred; 11801 if (osp != NULL) 11802 open_stream_rele(osp, rp); 11803 return (e.error); 11804 } 11805 11806 if (needrecov) { 11807 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11808 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11809 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11810 &recov_state, needrecov); 11811 if (!e.error) 11812 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11813 goto recov_retry; 11814 } 11815 if (e.error) { 11816 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11817 &recov_state, needrecov); 11818 crfree(cred_otw); 11819 if (osp != NULL) 11820 open_stream_rele(osp, rp); 11821 return (e.error); 11822 } 11823 /* fall through for res.status case */ 11824 } 11825 11826 if (res.status) { 11827 e.error = geterrno4(res.status); 11828 if (e.error == EACCES && last_time == FALSE) { 11829 crfree(cred_otw); 11830 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11831 &recov_state, needrecov); 11832 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11833 goto get_commit_cred; 11834 } 11835 /* 11836 * Can't do a nfs4_purge_stale_fh here because this 11837 * can cause a deadlock. nfs4_commit can 11838 * be called from nfs4_dispose which can be called 11839 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11840 * can call back to pvn_vplist_dirty. 11841 */ 11842 if (e.error == ESTALE) { 11843 mutex_enter(&rp->r_statelock); 11844 rp->r_flags |= R4STALE; 11845 if (!rp->r_error) 11846 rp->r_error = e.error; 11847 mutex_exit(&rp->r_statelock); 11848 PURGE_ATTRCACHE4(vp); 11849 } else { 11850 mutex_enter(&rp->r_statelock); 11851 if (!rp->r_error) 11852 rp->r_error = e.error; 11853 mutex_exit(&rp->r_statelock); 11854 } 11855 } else { 11856 ASSERT(rp->r_flags & R4HAVEVERF); 11857 resop = &res.array[1]; /* commit res */ 11858 cm_res = &resop->nfs_resop4_u.opcommit; 11859 mutex_enter(&rp->r_statelock); 11860 if (cm_res->writeverf == rp->r_writeverf) { 11861 mutex_exit(&rp->r_statelock); 11862 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11863 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11864 &recov_state, needrecov); 11865 crfree(cred_otw); 11866 if (osp != NULL) 11867 open_stream_rele(osp, rp); 11868 return (0); 11869 } 11870 nfs4_set_mod(vp); 11871 rp->r_writeverf = cm_res->writeverf; 11872 mutex_exit(&rp->r_statelock); 11873 e.error = NFS_VERF_MISMATCH; 11874 } 11875 11876 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11877 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11878 crfree(cred_otw); 11879 if (osp != NULL) 11880 open_stream_rele(osp, rp); 11881 11882 return (e.error); 11883 } 11884 11885 static void 11886 nfs4_set_mod(vnode_t *vp) 11887 { 11888 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11889 11890 /* make sure we're looking at the master vnode, not a shadow */ 11891 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11892 } 11893 11894 /* 11895 * This function is used to gather a page list of the pages which 11896 * can be committed on the server. 11897 * 11898 * The calling thread must have set R4COMMIT. This bit is used to 11899 * serialize access to the commit structure in the rnode. As long 11900 * as the thread has set R4COMMIT, then it can manipulate the commit 11901 * structure without requiring any other locks. 11902 * 11903 * When this function is called from nfs4_dispose() the page passed 11904 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11905 * will skip it. This is not a problem since we initially add the 11906 * page to the r_commit page list. 11907 * 11908 */ 11909 static void 11910 nfs4_get_commit(vnode_t *vp) 11911 { 11912 rnode4_t *rp; 11913 page_t *pp; 11914 kmutex_t *vphm; 11915 11916 rp = VTOR4(vp); 11917 11918 ASSERT(rp->r_flags & R4COMMIT); 11919 11920 /* make sure we're looking at the master vnode, not a shadow */ 11921 11922 if (IS_SHADOW(vp, rp)) 11923 vp = RTOV4(rp); 11924 11925 vphm = page_vnode_mutex(vp); 11926 mutex_enter(vphm); 11927 11928 /* 11929 * If there are no pages associated with this vnode, then 11930 * just return. 11931 */ 11932 if ((pp = vp->v_pages) == NULL) { 11933 mutex_exit(vphm); 11934 return; 11935 } 11936 11937 /* 11938 * Step through all of the pages associated with this vnode 11939 * looking for pages which need to be committed. 11940 */ 11941 do { 11942 /* Skip marker pages. */ 11943 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11944 continue; 11945 11946 /* 11947 * First short-cut everything (without the page_lock) 11948 * and see if this page does not need to be committed 11949 * or is modified if so then we'll just skip it. 11950 */ 11951 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11952 continue; 11953 11954 /* 11955 * Attempt to lock the page. If we can't, then 11956 * someone else is messing with it or we have been 11957 * called from nfs4_dispose and this is the page that 11958 * nfs4_dispose was called with.. anyway just skip it. 11959 */ 11960 if (!page_trylock(pp, SE_EXCL)) 11961 continue; 11962 11963 /* 11964 * Lets check again now that we have the page lock. 11965 */ 11966 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11967 page_unlock(pp); 11968 continue; 11969 } 11970 11971 /* this had better not be a free page */ 11972 ASSERT(PP_ISFREE(pp) == 0); 11973 11974 /* 11975 * The page needs to be committed and we locked it. 11976 * Update the base and length parameters and add it 11977 * to r_pages. 11978 */ 11979 if (rp->r_commit.c_pages == NULL) { 11980 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11981 rp->r_commit.c_commlen = PAGESIZE; 11982 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11983 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11984 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11985 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11986 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11987 <= pp->p_offset) { 11988 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11989 rp->r_commit.c_commbase + PAGESIZE; 11990 } 11991 page_add(&rp->r_commit.c_pages, pp); 11992 } while ((pp = pp->p_vpnext) != vp->v_pages); 11993 11994 mutex_exit(vphm); 11995 } 11996 11997 /* 11998 * This routine is used to gather together a page list of the pages 11999 * which are to be committed on the server. This routine must not 12000 * be called if the calling thread holds any locked pages. 12001 * 12002 * The calling thread must have set R4COMMIT. This bit is used to 12003 * serialize access to the commit structure in the rnode. As long 12004 * as the thread has set R4COMMIT, then it can manipulate the commit 12005 * structure without requiring any other locks. 12006 */ 12007 static void 12008 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12009 { 12010 12011 rnode4_t *rp; 12012 page_t *pp; 12013 u_offset_t end; 12014 u_offset_t off; 12015 ASSERT(len != 0); 12016 rp = VTOR4(vp); 12017 ASSERT(rp->r_flags & R4COMMIT); 12018 12019 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12020 12021 /* make sure we're looking at the master vnode, not a shadow */ 12022 12023 if (IS_SHADOW(vp, rp)) 12024 vp = RTOV4(rp); 12025 12026 /* 12027 * If there are no pages associated with this vnode, then 12028 * just return. 12029 */ 12030 if ((pp = vp->v_pages) == NULL) 12031 return; 12032 /* 12033 * Calculate the ending offset. 12034 */ 12035 end = soff + len; 12036 for (off = soff; off < end; off += PAGESIZE) { 12037 /* 12038 * Lookup each page by vp, offset. 12039 */ 12040 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12041 continue; 12042 /* 12043 * If this page does not need to be committed or is 12044 * modified, then just skip it. 12045 */ 12046 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12047 page_unlock(pp); 12048 continue; 12049 } 12050 12051 ASSERT(PP_ISFREE(pp) == 0); 12052 /* 12053 * The page needs to be committed and we locked it. 12054 * Update the base and length parameters and add it 12055 * to r_pages. 12056 */ 12057 if (rp->r_commit.c_pages == NULL) { 12058 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12059 rp->r_commit.c_commlen = PAGESIZE; 12060 } else { 12061 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12062 rp->r_commit.c_commbase + PAGESIZE; 12063 } 12064 page_add(&rp->r_commit.c_pages, pp); 12065 } 12066 } 12067 12068 /* 12069 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12070 * Flushes and commits data to the server. 12071 */ 12072 static int 12073 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12074 { 12075 int error; 12076 verifier4 write_verf; 12077 rnode4_t *rp = VTOR4(vp); 12078 12079 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12080 12081 /* 12082 * Flush the data portion of the file and then commit any 12083 * portions which need to be committed. This may need to 12084 * be done twice if the server has changed state since 12085 * data was last written. The data will need to be 12086 * rewritten to the server and then a new commit done. 12087 * 12088 * In fact, this may need to be done several times if the 12089 * server is having problems and crashing while we are 12090 * attempting to do this. 12091 */ 12092 12093 top: 12094 /* 12095 * Do a flush based on the poff and plen arguments. This 12096 * will synchronously write out any modified pages in the 12097 * range specified by (poff, plen). This starts all of the 12098 * i/o operations which will be waited for in the next 12099 * call to nfs4_putpage 12100 */ 12101 12102 mutex_enter(&rp->r_statelock); 12103 write_verf = rp->r_writeverf; 12104 mutex_exit(&rp->r_statelock); 12105 12106 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12107 if (error == EAGAIN) 12108 error = 0; 12109 12110 /* 12111 * Do a flush based on the poff and plen arguments. This 12112 * will synchronously write out any modified pages in the 12113 * range specified by (poff, plen) and wait until all of 12114 * the asynchronous i/o's in that range are done as well. 12115 */ 12116 if (!error) 12117 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12118 12119 if (error) 12120 return (error); 12121 12122 mutex_enter(&rp->r_statelock); 12123 if (rp->r_writeverf != write_verf) { 12124 mutex_exit(&rp->r_statelock); 12125 goto top; 12126 } 12127 mutex_exit(&rp->r_statelock); 12128 12129 /* 12130 * Now commit any pages which might need to be committed. 12131 * If the error, NFS_VERF_MISMATCH, is returned, then 12132 * start over with the flush operation. 12133 */ 12134 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12135 12136 if (error == NFS_VERF_MISMATCH) 12137 goto top; 12138 12139 return (error); 12140 } 12141 12142 /* 12143 * nfs4_commit_vp() will wait for other pending commits and 12144 * will either commit the whole file or a range, plen dictates 12145 * if we commit whole file. a value of zero indicates the whole 12146 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12147 */ 12148 static int 12149 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12150 cred_t *cr, int wait_on_writes) 12151 { 12152 rnode4_t *rp; 12153 page_t *plist; 12154 offset3 offset; 12155 count3 len; 12156 12157 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12158 12159 rp = VTOR4(vp); 12160 12161 /* 12162 * before we gather commitable pages make 12163 * sure there are no outstanding async writes 12164 */ 12165 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12166 mutex_enter(&rp->r_statelock); 12167 while (rp->r_count > 0) { 12168 cv_wait(&rp->r_cv, &rp->r_statelock); 12169 } 12170 mutex_exit(&rp->r_statelock); 12171 } 12172 12173 /* 12174 * Set the `commit inprogress' state bit. We must 12175 * first wait until any current one finishes. 12176 */ 12177 mutex_enter(&rp->r_statelock); 12178 while (rp->r_flags & R4COMMIT) { 12179 rp->r_flags |= R4COMMITWAIT; 12180 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12181 rp->r_flags &= ~R4COMMITWAIT; 12182 } 12183 rp->r_flags |= R4COMMIT; 12184 mutex_exit(&rp->r_statelock); 12185 12186 /* 12187 * Gather all of the pages which need to be 12188 * committed. 12189 */ 12190 if (plen == 0) 12191 nfs4_get_commit(vp); 12192 else 12193 nfs4_get_commit_range(vp, poff, plen); 12194 12195 /* 12196 * Clear the `commit inprogress' bit and disconnect the 12197 * page list which was gathered by nfs4_get_commit. 12198 */ 12199 plist = rp->r_commit.c_pages; 12200 rp->r_commit.c_pages = NULL; 12201 offset = rp->r_commit.c_commbase; 12202 len = rp->r_commit.c_commlen; 12203 mutex_enter(&rp->r_statelock); 12204 rp->r_flags &= ~R4COMMIT; 12205 cv_broadcast(&rp->r_commit.c_cv); 12206 mutex_exit(&rp->r_statelock); 12207 12208 /* 12209 * If any pages need to be committed, commit them and 12210 * then unlock them so that they can be freed some 12211 * time later. 12212 */ 12213 if (plist == NULL) 12214 return (0); 12215 12216 /* 12217 * No error occurred during the flush portion 12218 * of this operation, so now attempt to commit 12219 * the data to stable storage on the server. 12220 * 12221 * This will unlock all of the pages on the list. 12222 */ 12223 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12224 } 12225 12226 static int 12227 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12228 cred_t *cr) 12229 { 12230 int error; 12231 page_t *pp; 12232 12233 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12234 12235 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12236 12237 /* 12238 * If we got an error, then just unlock all of the pages 12239 * on the list. 12240 */ 12241 if (error) { 12242 while (plist != NULL) { 12243 pp = plist; 12244 page_sub(&plist, pp); 12245 page_unlock(pp); 12246 } 12247 return (error); 12248 } 12249 /* 12250 * We've tried as hard as we can to commit the data to stable 12251 * storage on the server. We just unlock the pages and clear 12252 * the commit required state. They will get freed later. 12253 */ 12254 while (plist != NULL) { 12255 pp = plist; 12256 page_sub(&plist, pp); 12257 pp->p_fsdata = C_NOCOMMIT; 12258 page_unlock(pp); 12259 } 12260 12261 return (error); 12262 } 12263 12264 static void 12265 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12266 cred_t *cr) 12267 { 12268 12269 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12270 } 12271 12272 /*ARGSUSED*/ 12273 static int 12274 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12275 caller_context_t *ct) 12276 { 12277 int error = 0; 12278 mntinfo4_t *mi; 12279 vattr_t va; 12280 vsecattr_t nfsace4_vsap; 12281 12282 mi = VTOMI4(vp); 12283 if (nfs_zone() != mi->mi_zone) 12284 return (EIO); 12285 if (mi->mi_flags & MI4_ACL) { 12286 /* if we have a delegation, return it */ 12287 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12288 (void) nfs4delegreturn(VTOR4(vp), 12289 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12290 12291 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12292 NFS4_ACL_SET); 12293 if (error) /* EINVAL */ 12294 return (error); 12295 12296 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12297 /* 12298 * These are aclent_t type entries. 12299 */ 12300 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12301 vp->v_type == VDIR, FALSE); 12302 if (error) 12303 return (error); 12304 } else { 12305 /* 12306 * These are ace_t type entries. 12307 */ 12308 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12309 FALSE); 12310 if (error) 12311 return (error); 12312 } 12313 bzero(&va, sizeof (va)); 12314 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12315 vs_ace4_destroy(&nfsace4_vsap); 12316 return (error); 12317 } 12318 return (ENOSYS); 12319 } 12320 12321 /* ARGSUSED */ 12322 int 12323 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12324 caller_context_t *ct) 12325 { 12326 int error; 12327 mntinfo4_t *mi; 12328 nfs4_ga_res_t gar; 12329 rnode4_t *rp = VTOR4(vp); 12330 12331 mi = VTOMI4(vp); 12332 if (nfs_zone() != mi->mi_zone) 12333 return (EIO); 12334 12335 bzero(&gar, sizeof (gar)); 12336 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12337 12338 /* 12339 * vsecattr->vsa_mask holds the original acl request mask. 12340 * This is needed when determining what to return. 12341 * (See: nfs4_create_getsecattr_return()) 12342 */ 12343 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12344 if (error) /* EINVAL */ 12345 return (error); 12346 12347 /* 12348 * If this is a referral stub, don't try to go OTW for an ACL 12349 */ 12350 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12351 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12352 12353 if (mi->mi_flags & MI4_ACL) { 12354 /* 12355 * Check if the data is cached and the cache is valid. If it 12356 * is we don't go over the wire. 12357 */ 12358 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12359 mutex_enter(&rp->r_statelock); 12360 if (rp->r_secattr != NULL) { 12361 error = nfs4_create_getsecattr_return( 12362 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12363 rp->r_attr.va_gid, 12364 vp->v_type == VDIR); 12365 if (!error) { /* error == 0 - Success! */ 12366 mutex_exit(&rp->r_statelock); 12367 return (error); 12368 } 12369 } 12370 mutex_exit(&rp->r_statelock); 12371 } 12372 12373 /* 12374 * The getattr otw call will always get both the acl, in 12375 * the form of a list of nfsace4's, and the number of acl 12376 * entries; independent of the value of gar.n4g_va.va_mask. 12377 */ 12378 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12379 if (error) { 12380 vs_ace4_destroy(&gar.n4g_vsa); 12381 if (error == ENOTSUP || error == EOPNOTSUPP) 12382 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12383 return (error); 12384 } 12385 12386 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12387 /* 12388 * No error was returned, but according to the response 12389 * bitmap, neither was an acl. 12390 */ 12391 vs_ace4_destroy(&gar.n4g_vsa); 12392 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12393 return (error); 12394 } 12395 12396 /* 12397 * Update the cache with the ACL. 12398 */ 12399 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12400 12401 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12402 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12403 vp->v_type == VDIR); 12404 vs_ace4_destroy(&gar.n4g_vsa); 12405 if ((error) && (vsecattr->vsa_mask & 12406 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12407 (error != EACCES)) { 12408 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12409 } 12410 return (error); 12411 } 12412 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12413 return (error); 12414 } 12415 12416 /* 12417 * The function returns: 12418 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12419 * - EINVAL if the passed in "acl_mask" is an invalid request. 12420 * 12421 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12422 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12423 * 12424 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12425 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12426 * - We have a count field set without the corresponding acl field set. (e.g. - 12427 * VSA_ACECNT is set, but VSA_ACE is not) 12428 */ 12429 static int 12430 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12431 { 12432 /* Shortcut the masks that are always valid. */ 12433 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12434 return (0); 12435 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12436 return (0); 12437 12438 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12439 /* 12440 * We can't have any VSA_ACL type stuff in the mask now. 12441 */ 12442 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12443 VSA_DFACLCNT)) 12444 return (EINVAL); 12445 12446 if (op == NFS4_ACL_SET) { 12447 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12448 return (EINVAL); 12449 } 12450 } 12451 12452 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12453 /* 12454 * We can't have any VSA_ACE type stuff in the mask now. 12455 */ 12456 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12457 return (EINVAL); 12458 12459 if (op == NFS4_ACL_SET) { 12460 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12461 return (EINVAL); 12462 12463 if ((acl_mask & VSA_DFACLCNT) && 12464 !(acl_mask & VSA_DFACL)) 12465 return (EINVAL); 12466 } 12467 } 12468 return (0); 12469 } 12470 12471 /* 12472 * The theory behind creating the correct getsecattr return is simply this: 12473 * "Don't return anything that the caller is not expecting to have to free." 12474 */ 12475 static int 12476 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12477 uid_t uid, gid_t gid, int isdir) 12478 { 12479 int error = 0; 12480 /* Save the mask since the translators modify it. */ 12481 uint_t orig_mask = vsap->vsa_mask; 12482 12483 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12484 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12485 12486 if (error) 12487 return (error); 12488 12489 /* 12490 * If the caller only asked for the ace count (VSA_ACECNT) 12491 * don't give them the full acl (VSA_ACE), free it. 12492 */ 12493 if (!orig_mask & VSA_ACE) { 12494 if (vsap->vsa_aclentp != NULL) { 12495 kmem_free(vsap->vsa_aclentp, 12496 vsap->vsa_aclcnt * sizeof (ace_t)); 12497 vsap->vsa_aclentp = NULL; 12498 } 12499 } 12500 vsap->vsa_mask = orig_mask; 12501 12502 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12503 VSA_DFACLCNT)) { 12504 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12505 isdir, FALSE); 12506 12507 if (error) 12508 return (error); 12509 12510 /* 12511 * If the caller only asked for the acl count (VSA_ACLCNT) 12512 * and/or the default acl count (VSA_DFACLCNT) don't give them 12513 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12514 */ 12515 if (!orig_mask & VSA_ACL) { 12516 if (vsap->vsa_aclentp != NULL) { 12517 kmem_free(vsap->vsa_aclentp, 12518 vsap->vsa_aclcnt * sizeof (aclent_t)); 12519 vsap->vsa_aclentp = NULL; 12520 } 12521 } 12522 12523 if (!orig_mask & VSA_DFACL) { 12524 if (vsap->vsa_dfaclentp != NULL) { 12525 kmem_free(vsap->vsa_dfaclentp, 12526 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12527 vsap->vsa_dfaclentp = NULL; 12528 } 12529 } 12530 vsap->vsa_mask = orig_mask; 12531 } 12532 return (0); 12533 } 12534 12535 /* ARGSUSED */ 12536 int 12537 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12538 caller_context_t *ct) 12539 { 12540 int error; 12541 12542 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12543 return (EIO); 12544 /* 12545 * check for valid cmd parameter 12546 */ 12547 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12548 return (EINVAL); 12549 12550 /* 12551 * Check access permissions 12552 */ 12553 if ((cmd & F_SHARE) && 12554 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12555 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12556 return (EBADF); 12557 12558 /* 12559 * If the filesystem is mounted using local locking, pass the 12560 * request off to the local share code. 12561 */ 12562 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12563 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12564 12565 switch (cmd) { 12566 case F_SHARE: 12567 case F_UNSHARE: 12568 /* 12569 * This will be properly implemented later, 12570 * see RFE: 4823948 . 12571 */ 12572 error = EAGAIN; 12573 break; 12574 12575 case F_HASREMOTELOCKS: 12576 /* 12577 * NFS client can't store remote locks itself 12578 */ 12579 shr->s_access = 0; 12580 error = 0; 12581 break; 12582 12583 default: 12584 error = EINVAL; 12585 break; 12586 } 12587 12588 return (error); 12589 } 12590 12591 /* 12592 * Common code called by directory ops to update the attrcache 12593 */ 12594 static int 12595 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12596 hrtime_t t, vnode_t *vp, cred_t *cr) 12597 { 12598 int error = 0; 12599 12600 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12601 12602 if (status != NFS4_OK) { 12603 /* getattr not done or failed */ 12604 PURGE_ATTRCACHE4(vp); 12605 return (error); 12606 } 12607 12608 if (garp) { 12609 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12610 } else { 12611 PURGE_ATTRCACHE4(vp); 12612 } 12613 return (error); 12614 } 12615 12616 /* 12617 * Update directory caches for directory modification ops (link, rename, etc.) 12618 * When dinfo is NULL, manage dircaches in the old way. 12619 */ 12620 static void 12621 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12622 dirattr_info_t *dinfo) 12623 { 12624 rnode4_t *drp = VTOR4(dvp); 12625 12626 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12627 12628 /* Purge rddir cache for dir since it changed */ 12629 if (drp->r_dir != NULL) 12630 nfs4_purge_rddir_cache(dvp); 12631 12632 /* 12633 * If caller provided dinfo, then use it to manage dir caches. 12634 */ 12635 if (dinfo != NULL) { 12636 if (vp != NULL) { 12637 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12638 if (!VTOR4(vp)->created_v4) { 12639 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12640 dnlc_update(dvp, nm, vp); 12641 } else { 12642 /* 12643 * XXX don't update if the created_v4 flag is 12644 * set 12645 */ 12646 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12647 NFS4_DEBUG(nfs4_client_state_debug, 12648 (CE_NOTE, "nfs4_update_dircaches: " 12649 "don't update dnlc: created_v4 flag")); 12650 } 12651 } 12652 12653 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12654 dinfo->di_cred, FALSE, cinfo); 12655 12656 return; 12657 } 12658 12659 /* 12660 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12661 * Since caller modified dir but didn't receive post-dirmod-op dir 12662 * attrs, the dir's attrs must be purged. 12663 * 12664 * XXX this check and dnlc update/purge should really be atomic, 12665 * XXX but can't use rnode statelock because it'll deadlock in 12666 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12667 * XXX does occur. 12668 * 12669 * XXX We also may want to check that atomic is true in the 12670 * XXX change_info struct. If it is not, the change_info may 12671 * XXX reflect changes by more than one clients which means that 12672 * XXX our cache may not be valid. 12673 */ 12674 PURGE_ATTRCACHE4(dvp); 12675 if (drp->r_change == cinfo->before) { 12676 /* no changes took place in the directory prior to our link */ 12677 if (vp != NULL) { 12678 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12679 if (!VTOR4(vp)->created_v4) { 12680 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12681 dnlc_update(dvp, nm, vp); 12682 } else { 12683 /* 12684 * XXX dont' update if the created_v4 flag 12685 * is set 12686 */ 12687 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12688 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12689 "nfs4_update_dircaches: don't" 12690 " update dnlc: created_v4 flag")); 12691 } 12692 } 12693 } else { 12694 /* Another client modified directory - purge its dnlc cache */ 12695 dnlc_purge_vp(dvp); 12696 } 12697 } 12698 12699 /* 12700 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12701 * file. 12702 * 12703 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12704 * file (ie: client recovery) and otherwise set to FALSE. 12705 * 12706 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12707 * initiated) calling functions. 12708 * 12709 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12710 * of resending a 'lost' open request. 12711 * 12712 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12713 * server that hands out BAD_SEQID on open confirm. 12714 * 12715 * Errors are returned via the nfs4_error_t parameter. 12716 */ 12717 void 12718 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12719 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12720 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12721 { 12722 COMPOUND4args_clnt args; 12723 COMPOUND4res_clnt res; 12724 nfs_argop4 argop[2]; 12725 nfs_resop4 *resop; 12726 int doqueue = 1; 12727 mntinfo4_t *mi; 12728 OPEN_CONFIRM4args *open_confirm_args; 12729 int needrecov; 12730 12731 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12732 #if DEBUG 12733 mutex_enter(&oop->oo_lock); 12734 ASSERT(oop->oo_seqid_inuse); 12735 mutex_exit(&oop->oo_lock); 12736 #endif 12737 12738 recov_retry_confirm: 12739 nfs4_error_zinit(ep); 12740 *retry_open = FALSE; 12741 12742 if (resend) 12743 args.ctag = TAG_OPEN_CONFIRM_LOST; 12744 else 12745 args.ctag = TAG_OPEN_CONFIRM; 12746 12747 args.array_len = 2; 12748 args.array = argop; 12749 12750 /* putfh target fh */ 12751 argop[0].argop = OP_CPUTFH; 12752 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12753 12754 argop[1].argop = OP_OPEN_CONFIRM; 12755 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12756 12757 (*seqid) += 1; 12758 open_confirm_args->seqid = *seqid; 12759 open_confirm_args->open_stateid = *stateid; 12760 12761 mi = VTOMI4(vp); 12762 12763 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12764 12765 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12766 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12767 } 12768 12769 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12770 if (!needrecov && ep->error) 12771 return; 12772 12773 if (needrecov) { 12774 bool_t abort = FALSE; 12775 12776 if (reopening_file == FALSE) { 12777 nfs4_bseqid_entry_t *bsep = NULL; 12778 12779 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12780 bsep = nfs4_create_bseqid_entry(oop, NULL, 12781 vp, 0, args.ctag, 12782 open_confirm_args->seqid); 12783 12784 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12785 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12786 if (bsep) { 12787 kmem_free(bsep, sizeof (*bsep)); 12788 if (num_bseqid_retryp && 12789 --(*num_bseqid_retryp) == 0) 12790 abort = TRUE; 12791 } 12792 } 12793 if ((ep->error == ETIMEDOUT || 12794 res.status == NFS4ERR_RESOURCE) && 12795 abort == FALSE && resend == FALSE) { 12796 if (!ep->error) 12797 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12798 12799 delay(SEC_TO_TICK(confirm_retry_sec)); 12800 goto recov_retry_confirm; 12801 } 12802 /* State may have changed so retry the entire OPEN op */ 12803 if (abort == FALSE) 12804 *retry_open = TRUE; 12805 else 12806 *retry_open = FALSE; 12807 if (!ep->error) 12808 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12809 return; 12810 } 12811 12812 if (res.status) { 12813 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12814 return; 12815 } 12816 12817 resop = &res.array[1]; /* open confirm res */ 12818 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12819 stateid, sizeof (*stateid)); 12820 12821 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12822 } 12823 12824 /* 12825 * Return the credentials associated with a client state object. The 12826 * caller is responsible for freeing the credentials. 12827 */ 12828 12829 static cred_t * 12830 state_to_cred(nfs4_open_stream_t *osp) 12831 { 12832 cred_t *cr; 12833 12834 /* 12835 * It's ok to not lock the open stream and open owner to get 12836 * the oo_cred since this is only written once (upon creation) 12837 * and will not change. 12838 */ 12839 cr = osp->os_open_owner->oo_cred; 12840 crhold(cr); 12841 12842 return (cr); 12843 } 12844 12845 /* 12846 * nfs4_find_sysid 12847 * 12848 * Find the sysid for the knetconfig associated with the given mi. 12849 */ 12850 static struct lm_sysid * 12851 nfs4_find_sysid(mntinfo4_t *mi) 12852 { 12853 ASSERT(nfs_zone() == mi->mi_zone); 12854 12855 /* 12856 * Switch from RDMA knconf to original mount knconf 12857 */ 12858 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12859 mi->mi_curr_serv->sv_hostname, NULL)); 12860 } 12861 12862 #ifdef DEBUG 12863 /* 12864 * Return a string version of the call type for easy reading. 12865 */ 12866 static char * 12867 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12868 { 12869 switch (ctype) { 12870 case NFS4_LCK_CTYPE_NORM: 12871 return ("NORMAL"); 12872 case NFS4_LCK_CTYPE_RECLAIM: 12873 return ("RECLAIM"); 12874 case NFS4_LCK_CTYPE_RESEND: 12875 return ("RESEND"); 12876 case NFS4_LCK_CTYPE_REINSTATE: 12877 return ("REINSTATE"); 12878 default: 12879 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12880 "type %d", ctype); 12881 return (""); 12882 } 12883 } 12884 #endif 12885 12886 /* 12887 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12888 * Unlock requests don't have an over-the-wire locktype, so we just return 12889 * something non-threatening. 12890 */ 12891 12892 static nfs_lock_type4 12893 flk_to_locktype(int cmd, int l_type) 12894 { 12895 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12896 12897 switch (l_type) { 12898 case F_UNLCK: 12899 return (READ_LT); 12900 case F_RDLCK: 12901 if (cmd == F_SETLK) 12902 return (READ_LT); 12903 else 12904 return (READW_LT); 12905 case F_WRLCK: 12906 if (cmd == F_SETLK) 12907 return (WRITE_LT); 12908 else 12909 return (WRITEW_LT); 12910 } 12911 panic("flk_to_locktype"); 12912 /*NOTREACHED*/ 12913 } 12914 12915 /* 12916 * Do some preliminary checks for nfs4frlock. 12917 */ 12918 static int 12919 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12920 u_offset_t offset) 12921 { 12922 int error = 0; 12923 12924 /* 12925 * If we are setting a lock, check that the file is opened 12926 * with the correct mode. 12927 */ 12928 if (cmd == F_SETLK || cmd == F_SETLKW) { 12929 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12930 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12931 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12932 "nfs4frlock_validate_args: file was opened with " 12933 "incorrect mode")); 12934 return (EBADF); 12935 } 12936 } 12937 12938 /* Convert the offset. It may need to be restored before returning. */ 12939 if (error = convoff(vp, flk, 0, offset)) { 12940 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12941 "nfs4frlock_validate_args: convoff => error= %d\n", 12942 error)); 12943 return (error); 12944 } 12945 12946 return (error); 12947 } 12948 12949 /* 12950 * Set the flock64's lm_sysid for nfs4frlock. 12951 */ 12952 static int 12953 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12954 { 12955 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12956 12957 /* Find the lm_sysid */ 12958 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12959 12960 if (*lspp == NULL) { 12961 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12962 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12963 return (ENOLCK); 12964 } 12965 12966 flk->l_sysid = lm_sysidt(*lspp); 12967 12968 return (0); 12969 } 12970 12971 /* 12972 * Do the remaining preliminary setup for nfs4frlock. 12973 */ 12974 static void 12975 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12976 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12977 cred_t **cred_otw) 12978 { 12979 /* 12980 * set tick_delay to the base delay time. 12981 * (NFS4_BASE_WAIT_TIME is in secs) 12982 */ 12983 12984 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12985 12986 /* 12987 * If lock is relative to EOF, we need the newest length of the 12988 * file. Therefore invalidate the ATTR_CACHE. 12989 */ 12990 12991 *whencep = flk->l_whence; 12992 12993 if (*whencep == 2) /* SEEK_END */ 12994 PURGE_ATTRCACHE4(vp); 12995 12996 recov_statep->rs_flags = 0; 12997 recov_statep->rs_num_retry_despite_err = 0; 12998 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12999 } 13000 13001 /* 13002 * Initialize and allocate the data structures necessary for 13003 * the nfs4frlock call. 13004 * Allocates argsp's op array. 13005 */ 13006 static void 13007 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13008 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13009 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13010 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13011 { 13012 int argoplist_size; 13013 int num_ops = 2; 13014 13015 *retry = FALSE; 13016 *did_start_fop = FALSE; 13017 *skip_get_err = FALSE; 13018 lost_rqstp->lr_op = 0; 13019 argoplist_size = num_ops * sizeof (nfs_argop4); 13020 /* fill array with zero */ 13021 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13022 13023 *argspp = argsp; 13024 *respp = NULL; 13025 13026 argsp->array_len = num_ops; 13027 argsp->array = *argopp; 13028 13029 /* initialize in case of error; will get real value down below */ 13030 argsp->ctag = TAG_NONE; 13031 13032 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13033 *op_hintp = OH_LOCKU; 13034 else 13035 *op_hintp = OH_OTHER; 13036 } 13037 13038 /* 13039 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13040 * the proper nfs4_server_t for this instance of nfs4frlock. 13041 * Returns 0 (success) or an errno value. 13042 */ 13043 static int 13044 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13045 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13046 bool_t *did_start_fop, bool_t *startrecovp) 13047 { 13048 int error = 0; 13049 rnode4_t *rp; 13050 13051 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13052 13053 if (ctype == NFS4_LCK_CTYPE_NORM) { 13054 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13055 recov_statep, startrecovp); 13056 if (error) 13057 return (error); 13058 *did_start_fop = TRUE; 13059 } else { 13060 *did_start_fop = FALSE; 13061 *startrecovp = FALSE; 13062 } 13063 13064 if (!error) { 13065 rp = VTOR4(vp); 13066 13067 /* If the file failed recovery, just quit. */ 13068 mutex_enter(&rp->r_statelock); 13069 if (rp->r_flags & R4RECOVERR) { 13070 error = EIO; 13071 } 13072 mutex_exit(&rp->r_statelock); 13073 } 13074 13075 return (error); 13076 } 13077 13078 /* 13079 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13080 * resend nfs4frlock call is initiated by the recovery framework. 13081 * Acquires the lop and oop seqid synchronization. 13082 */ 13083 static void 13084 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13085 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13086 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13087 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13088 { 13089 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13090 int error; 13091 13092 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13093 (CE_NOTE, 13094 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13095 ASSERT(resend_rqstp != NULL); 13096 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13097 resend_rqstp->lr_op == OP_LOCKU); 13098 13099 *oopp = resend_rqstp->lr_oop; 13100 if (resend_rqstp->lr_oop) { 13101 open_owner_hold(resend_rqstp->lr_oop); 13102 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13103 ASSERT(error == 0); /* recov thread always succeeds */ 13104 } 13105 13106 /* Must resend this lost lock/locku request. */ 13107 ASSERT(resend_rqstp->lr_lop != NULL); 13108 *lopp = resend_rqstp->lr_lop; 13109 lock_owner_hold(resend_rqstp->lr_lop); 13110 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13111 ASSERT(error == 0); /* recov thread always succeeds */ 13112 13113 *ospp = resend_rqstp->lr_osp; 13114 if (*ospp) 13115 open_stream_hold(resend_rqstp->lr_osp); 13116 13117 if (resend_rqstp->lr_op == OP_LOCK) { 13118 LOCK4args *lock_args; 13119 13120 argop->argop = OP_LOCK; 13121 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13122 lock_args->locktype = resend_rqstp->lr_locktype; 13123 lock_args->reclaim = 13124 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13125 lock_args->offset = resend_rqstp->lr_flk->l_start; 13126 lock_args->length = resend_rqstp->lr_flk->l_len; 13127 if (lock_args->length == 0) 13128 lock_args->length = ~lock_args->length; 13129 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13130 mi2clientid(mi), &lock_args->locker); 13131 13132 switch (resend_rqstp->lr_ctype) { 13133 case NFS4_LCK_CTYPE_RESEND: 13134 argsp->ctag = TAG_LOCK_RESEND; 13135 break; 13136 case NFS4_LCK_CTYPE_REINSTATE: 13137 argsp->ctag = TAG_LOCK_REINSTATE; 13138 break; 13139 case NFS4_LCK_CTYPE_RECLAIM: 13140 argsp->ctag = TAG_LOCK_RECLAIM; 13141 break; 13142 default: 13143 argsp->ctag = TAG_LOCK_UNKNOWN; 13144 break; 13145 } 13146 } else { 13147 LOCKU4args *locku_args; 13148 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13149 13150 argop->argop = OP_LOCKU; 13151 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13152 locku_args->locktype = READ_LT; 13153 locku_args->seqid = lop->lock_seqid + 1; 13154 mutex_enter(&lop->lo_lock); 13155 locku_args->lock_stateid = lop->lock_stateid; 13156 mutex_exit(&lop->lo_lock); 13157 locku_args->offset = resend_rqstp->lr_flk->l_start; 13158 locku_args->length = resend_rqstp->lr_flk->l_len; 13159 if (locku_args->length == 0) 13160 locku_args->length = ~locku_args->length; 13161 13162 switch (resend_rqstp->lr_ctype) { 13163 case NFS4_LCK_CTYPE_RESEND: 13164 argsp->ctag = TAG_LOCKU_RESEND; 13165 break; 13166 case NFS4_LCK_CTYPE_REINSTATE: 13167 argsp->ctag = TAG_LOCKU_REINSTATE; 13168 break; 13169 default: 13170 argsp->ctag = TAG_LOCK_UNKNOWN; 13171 break; 13172 } 13173 } 13174 } 13175 13176 /* 13177 * Setup the LOCKT4 arguments. 13178 */ 13179 static void 13180 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13181 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13182 rnode4_t *rp) 13183 { 13184 LOCKT4args *lockt_args; 13185 13186 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13187 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13188 argop->argop = OP_LOCKT; 13189 argsp->ctag = TAG_LOCKT; 13190 lockt_args = &argop->nfs_argop4_u.oplockt; 13191 13192 /* 13193 * The locktype will be READ_LT unless it's 13194 * a write lock. We do this because the Solaris 13195 * system call allows the combination of 13196 * F_UNLCK and F_GETLK* and so in that case the 13197 * unlock is mapped to a read. 13198 */ 13199 if (flk->l_type == F_WRLCK) 13200 lockt_args->locktype = WRITE_LT; 13201 else 13202 lockt_args->locktype = READ_LT; 13203 13204 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13205 /* set the lock owner4 args */ 13206 nfs4_setlockowner_args(&lockt_args->owner, rp, 13207 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13208 flk->l_pid); 13209 lockt_args->offset = flk->l_start; 13210 lockt_args->length = flk->l_len; 13211 if (flk->l_len == 0) 13212 lockt_args->length = ~lockt_args->length; 13213 13214 *lockt_argsp = lockt_args; 13215 } 13216 13217 /* 13218 * If the client is holding a delegation, and the open stream to be used 13219 * with this lock request is a delegation open stream, then re-open the stream. 13220 * Sets the nfs4_error_t to all zeros unless the open stream has already 13221 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13222 * means the caller should retry (like a recovery retry). 13223 */ 13224 static void 13225 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13226 { 13227 open_delegation_type4 dt; 13228 bool_t reopen_needed, force; 13229 nfs4_open_stream_t *osp; 13230 open_claim_type4 oclaim; 13231 rnode4_t *rp = VTOR4(vp); 13232 mntinfo4_t *mi = VTOMI4(vp); 13233 13234 ASSERT(nfs_zone() == mi->mi_zone); 13235 13236 nfs4_error_zinit(ep); 13237 13238 mutex_enter(&rp->r_statev4_lock); 13239 dt = rp->r_deleg_type; 13240 mutex_exit(&rp->r_statev4_lock); 13241 13242 if (dt != OPEN_DELEGATE_NONE) { 13243 nfs4_open_owner_t *oop; 13244 13245 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13246 if (!oop) { 13247 ep->stat = NFS4ERR_IO; 13248 return; 13249 } 13250 /* returns with 'os_sync_lock' held */ 13251 osp = find_open_stream(oop, rp); 13252 if (!osp) { 13253 open_owner_rele(oop); 13254 ep->stat = NFS4ERR_IO; 13255 return; 13256 } 13257 13258 if (osp->os_failed_reopen) { 13259 NFS4_DEBUG((nfs4_open_stream_debug || 13260 nfs4_client_lock_debug), (CE_NOTE, 13261 "nfs4frlock_check_deleg: os_failed_reopen set " 13262 "for osp %p, cr %p, rp %s", (void *)osp, 13263 (void *)cr, rnode4info(rp))); 13264 mutex_exit(&osp->os_sync_lock); 13265 open_stream_rele(osp, rp); 13266 open_owner_rele(oop); 13267 ep->stat = NFS4ERR_IO; 13268 return; 13269 } 13270 13271 /* 13272 * Determine whether a reopen is needed. If this 13273 * is a delegation open stream, then send the open 13274 * to the server to give visibility to the open owner. 13275 * Even if it isn't a delegation open stream, we need 13276 * to check if the previous open CLAIM_DELEGATE_CUR 13277 * was sufficient. 13278 */ 13279 13280 reopen_needed = osp->os_delegation || 13281 ((lt == F_RDLCK && 13282 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13283 (lt == F_WRLCK && 13284 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13285 13286 mutex_exit(&osp->os_sync_lock); 13287 open_owner_rele(oop); 13288 13289 if (reopen_needed) { 13290 /* 13291 * Always use CLAIM_PREVIOUS after server reboot. 13292 * The server will reject CLAIM_DELEGATE_CUR if 13293 * it is used during the grace period. 13294 */ 13295 mutex_enter(&mi->mi_lock); 13296 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13297 oclaim = CLAIM_PREVIOUS; 13298 force = TRUE; 13299 } else { 13300 oclaim = CLAIM_DELEGATE_CUR; 13301 force = FALSE; 13302 } 13303 mutex_exit(&mi->mi_lock); 13304 13305 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13306 if (ep->error == EAGAIN) { 13307 nfs4_error_zinit(ep); 13308 ep->stat = NFS4ERR_DELAY; 13309 } 13310 } 13311 open_stream_rele(osp, rp); 13312 osp = NULL; 13313 } 13314 } 13315 13316 /* 13317 * Setup the LOCKU4 arguments. 13318 * Returns errors via the nfs4_error_t. 13319 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13320 * over-the-wire. The caller must release the 13321 * reference on *lopp. 13322 * NFS4ERR_DELAY caller should retry (like recovery retry) 13323 * (other) unrecoverable error. 13324 */ 13325 static void 13326 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13327 LOCKU4args **locku_argsp, flock64_t *flk, 13328 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13329 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13330 bool_t *skip_get_err, bool_t *go_otwp) 13331 { 13332 nfs4_lock_owner_t *lop = NULL; 13333 LOCKU4args *locku_args; 13334 pid_t pid; 13335 bool_t is_spec = FALSE; 13336 rnode4_t *rp = VTOR4(vp); 13337 13338 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13339 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13340 13341 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13342 if (ep->error || ep->stat) 13343 return; 13344 13345 argop->argop = OP_LOCKU; 13346 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13347 argsp->ctag = TAG_LOCKU_REINSTATE; 13348 else 13349 argsp->ctag = TAG_LOCKU; 13350 locku_args = &argop->nfs_argop4_u.oplocku; 13351 *locku_argsp = locku_args; 13352 13353 /* locktype should be set to any legal value */ 13354 locku_args->locktype = READ_LT; 13355 13356 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13357 flk->l_pid; 13358 13359 /* 13360 * Get the lock owner stateid. If no lock owner 13361 * exists, return success. 13362 */ 13363 lop = find_lock_owner(rp, pid, LOWN_ANY); 13364 *lopp = lop; 13365 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13366 is_spec = TRUE; 13367 if (!lop || is_spec) { 13368 /* 13369 * No lock owner so no locks to unlock. 13370 * Return success. If there was a failed 13371 * reclaim earlier, the lock might still be 13372 * registered with the local locking code, 13373 * so notify it of the unlock. 13374 * 13375 * If the lockowner is using a special stateid, 13376 * then the original lock request (that created 13377 * this lockowner) was never successful, so we 13378 * have no lock to undo OTW. 13379 */ 13380 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13381 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13382 "(%ld) so return success", (long)pid)); 13383 13384 if (ctype == NFS4_LCK_CTYPE_NORM) 13385 flk->l_pid = curproc->p_pid; 13386 nfs4_register_lock_locally(vp, flk, flag, offset); 13387 /* 13388 * Release our hold and NULL out so final_cleanup 13389 * doesn't try to end a lock seqid sync we 13390 * never started. 13391 */ 13392 if (is_spec) { 13393 lock_owner_rele(lop); 13394 *lopp = NULL; 13395 } 13396 *skip_get_err = TRUE; 13397 *go_otwp = FALSE; 13398 return; 13399 } 13400 13401 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13402 if (ep->error == EAGAIN) { 13403 lock_owner_rele(lop); 13404 *lopp = NULL; 13405 return; 13406 } 13407 13408 mutex_enter(&lop->lo_lock); 13409 locku_args->lock_stateid = lop->lock_stateid; 13410 mutex_exit(&lop->lo_lock); 13411 locku_args->seqid = lop->lock_seqid + 1; 13412 13413 /* leave the ref count on lop, rele after RPC call */ 13414 13415 locku_args->offset = flk->l_start; 13416 locku_args->length = flk->l_len; 13417 if (flk->l_len == 0) 13418 locku_args->length = ~locku_args->length; 13419 13420 *go_otwp = TRUE; 13421 } 13422 13423 /* 13424 * Setup the LOCK4 arguments. 13425 * 13426 * Returns errors via the nfs4_error_t. 13427 * NFS4_OK no problems 13428 * NFS4ERR_DELAY caller should retry (like recovery retry) 13429 * (other) unrecoverable error 13430 */ 13431 static void 13432 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13433 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13434 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13435 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13436 { 13437 LOCK4args *lock_args; 13438 nfs4_open_owner_t *oop = NULL; 13439 nfs4_open_stream_t *osp = NULL; 13440 nfs4_lock_owner_t *lop = NULL; 13441 pid_t pid; 13442 rnode4_t *rp = VTOR4(vp); 13443 13444 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13445 13446 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13447 if (ep->error || ep->stat != NFS4_OK) 13448 return; 13449 13450 argop->argop = OP_LOCK; 13451 if (ctype == NFS4_LCK_CTYPE_NORM) 13452 argsp->ctag = TAG_LOCK; 13453 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13454 argsp->ctag = TAG_RELOCK; 13455 else 13456 argsp->ctag = TAG_LOCK_REINSTATE; 13457 lock_args = &argop->nfs_argop4_u.oplock; 13458 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13459 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13460 /* 13461 * Get the lock owner. If no lock owner exists, 13462 * create a 'temporary' one and grab the open seqid 13463 * synchronization (which puts a hold on the open 13464 * owner and open stream). 13465 * This also grabs the lock seqid synchronization. 13466 */ 13467 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13468 ep->stat = 13469 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13470 13471 if (ep->stat != NFS4_OK) 13472 goto out; 13473 13474 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13475 &lock_args->locker); 13476 13477 lock_args->offset = flk->l_start; 13478 lock_args->length = flk->l_len; 13479 if (flk->l_len == 0) 13480 lock_args->length = ~lock_args->length; 13481 *lock_argsp = lock_args; 13482 out: 13483 *oopp = oop; 13484 *ospp = osp; 13485 *lopp = lop; 13486 } 13487 13488 /* 13489 * After we get the reply from the server, record the proper information 13490 * for possible resend lock requests. 13491 */ 13492 static void 13493 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13494 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13495 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13496 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13497 { 13498 bool_t unlock = (flk->l_type == F_UNLCK); 13499 13500 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13501 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13502 ctype == NFS4_LCK_CTYPE_REINSTATE); 13503 13504 if (error != 0 && !unlock) { 13505 NFS4_DEBUG((nfs4_lost_rqst_debug || 13506 nfs4_client_lock_debug), (CE_NOTE, 13507 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13508 " for lop %p", (void *)lop)); 13509 ASSERT(lop != NULL); 13510 mutex_enter(&lop->lo_lock); 13511 lop->lo_pending_rqsts = 1; 13512 mutex_exit(&lop->lo_lock); 13513 } 13514 13515 lost_rqstp->lr_putfirst = FALSE; 13516 lost_rqstp->lr_op = 0; 13517 13518 /* 13519 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13520 * recovery purposes so that the lock request that was sent 13521 * can be saved and re-issued later. Ditto for EIO from a forced 13522 * unmount. This is done to have the client's local locking state 13523 * match the v4 server's state; that is, the request was 13524 * potentially received and accepted by the server but the client 13525 * thinks it was not. 13526 */ 13527 if (error == ETIMEDOUT || error == EINTR || 13528 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13529 NFS4_DEBUG((nfs4_lost_rqst_debug || 13530 nfs4_client_lock_debug), (CE_NOTE, 13531 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13532 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13533 (void *)lop, (void *)oop, (void *)osp)); 13534 if (unlock) 13535 lost_rqstp->lr_op = OP_LOCKU; 13536 else { 13537 lost_rqstp->lr_op = OP_LOCK; 13538 lost_rqstp->lr_locktype = locktype; 13539 } 13540 /* 13541 * Objects are held and rele'd via the recovery code. 13542 * See nfs4_save_lost_rqst. 13543 */ 13544 lost_rqstp->lr_vp = vp; 13545 lost_rqstp->lr_dvp = NULL; 13546 lost_rqstp->lr_oop = oop; 13547 lost_rqstp->lr_osp = osp; 13548 lost_rqstp->lr_lop = lop; 13549 lost_rqstp->lr_cr = cr; 13550 switch (ctype) { 13551 case NFS4_LCK_CTYPE_NORM: 13552 flk->l_pid = ttoproc(curthread)->p_pid; 13553 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13554 break; 13555 case NFS4_LCK_CTYPE_REINSTATE: 13556 lost_rqstp->lr_putfirst = TRUE; 13557 lost_rqstp->lr_ctype = ctype; 13558 break; 13559 default: 13560 break; 13561 } 13562 lost_rqstp->lr_flk = flk; 13563 } 13564 } 13565 13566 /* 13567 * Update lop's seqid. Also update the seqid stored in a resend request, 13568 * if any. (Some recovery errors increment the seqid, and we may have to 13569 * send the resend request again.) 13570 */ 13571 13572 static void 13573 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13574 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13575 { 13576 if (lock_args) { 13577 if (lock_args->locker.new_lock_owner == TRUE) 13578 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13579 else { 13580 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13581 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13582 } 13583 } else if (locku_args) { 13584 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13585 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13586 } 13587 } 13588 13589 /* 13590 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13591 * COMPOUND4 args/res for calls that need to retry. 13592 * Switches the *cred_otwp to base_cr. 13593 */ 13594 static void 13595 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13596 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13597 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13598 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13599 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13600 { 13601 nfs4_open_owner_t *oop = *oopp; 13602 nfs4_open_stream_t *osp = *ospp; 13603 nfs4_lock_owner_t *lop = *lopp; 13604 nfs_argop4 *argop = (*argspp)->array; 13605 13606 if (*did_start_fop) { 13607 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13608 needrecov); 13609 *did_start_fop = FALSE; 13610 } 13611 ASSERT((*argspp)->array_len == 2); 13612 if (argop[1].argop == OP_LOCK) 13613 nfs4args_lock_free(&argop[1]); 13614 else if (argop[1].argop == OP_LOCKT) 13615 nfs4args_lockt_free(&argop[1]); 13616 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13617 if (!error) 13618 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13619 *argspp = NULL; 13620 *respp = NULL; 13621 13622 if (lop) { 13623 nfs4_end_lock_seqid_sync(lop); 13624 lock_owner_rele(lop); 13625 *lopp = NULL; 13626 } 13627 13628 /* need to free up the reference on osp for lock args */ 13629 if (osp != NULL) { 13630 open_stream_rele(osp, VTOR4(vp)); 13631 *ospp = NULL; 13632 } 13633 13634 /* need to free up the reference on oop for lock args */ 13635 if (oop != NULL) { 13636 nfs4_end_open_seqid_sync(oop); 13637 open_owner_rele(oop); 13638 *oopp = NULL; 13639 } 13640 13641 crfree(*cred_otwp); 13642 *cred_otwp = base_cr; 13643 crhold(*cred_otwp); 13644 } 13645 13646 /* 13647 * Function to process the client's recovery for nfs4frlock. 13648 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13649 * 13650 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13651 * COMPOUND4 args/res for calls that need to retry. 13652 * 13653 * Note: the rp's r_lkserlock is *not* dropped during this path. 13654 */ 13655 static bool_t 13656 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13657 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13658 LOCK4args *lock_args, LOCKU4args *locku_args, 13659 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13660 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13661 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13662 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13663 { 13664 nfs4_open_owner_t *oop = *oopp; 13665 nfs4_open_stream_t *osp = *ospp; 13666 nfs4_lock_owner_t *lop = *lopp; 13667 13668 bool_t abort, retry; 13669 13670 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13671 ASSERT((*argspp) != NULL); 13672 ASSERT((*respp) != NULL); 13673 if (lock_args || locku_args) 13674 ASSERT(lop != NULL); 13675 13676 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13677 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13678 13679 retry = TRUE; 13680 abort = FALSE; 13681 if (needrecov) { 13682 nfs4_bseqid_entry_t *bsep = NULL; 13683 nfs_opnum4 op; 13684 13685 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13686 13687 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13688 seqid4 seqid; 13689 13690 if (lock_args) { 13691 if (lock_args->locker.new_lock_owner == TRUE) 13692 seqid = lock_args->locker.locker4_u. 13693 open_owner.open_seqid; 13694 else 13695 seqid = lock_args->locker.locker4_u. 13696 lock_owner.lock_seqid; 13697 } else if (locku_args) { 13698 seqid = locku_args->seqid; 13699 } else { 13700 seqid = 0; 13701 } 13702 13703 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13704 flk->l_pid, (*argspp)->ctag, seqid); 13705 } 13706 13707 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13708 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13709 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13710 NULL, op, bsep, NULL, NULL); 13711 13712 if (bsep) 13713 kmem_free(bsep, sizeof (*bsep)); 13714 } 13715 13716 /* 13717 * Return that we do not want to retry the request for 3 cases: 13718 * 1. If we received EINTR or are bailing out because of a forced 13719 * unmount, we came into this code path just for the sake of 13720 * initiating recovery, we now need to return the error. 13721 * 2. If we have aborted recovery. 13722 * 3. We received NFS4ERR_BAD_SEQID. 13723 */ 13724 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13725 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13726 retry = FALSE; 13727 13728 if (*did_start_fop == TRUE) { 13729 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13730 needrecov); 13731 *did_start_fop = FALSE; 13732 } 13733 13734 if (retry == TRUE) { 13735 nfs_argop4 *argop; 13736 13737 argop = (*argspp)->array; 13738 ASSERT((*argspp)->array_len == 2); 13739 13740 if (argop[1].argop == OP_LOCK) 13741 nfs4args_lock_free(&argop[1]); 13742 else if (argop[1].argop == OP_LOCKT) 13743 nfs4args_lockt_free(&argop[1]); 13744 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13745 if (!ep->error) 13746 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13747 *respp = NULL; 13748 *argspp = NULL; 13749 } 13750 13751 if (lop != NULL) { 13752 nfs4_end_lock_seqid_sync(lop); 13753 lock_owner_rele(lop); 13754 } 13755 13756 *lopp = NULL; 13757 13758 /* need to free up the reference on osp for lock args */ 13759 if (osp != NULL) { 13760 open_stream_rele(osp, rp); 13761 *ospp = NULL; 13762 } 13763 13764 /* need to free up the reference on oop for lock args */ 13765 if (oop != NULL) { 13766 nfs4_end_open_seqid_sync(oop); 13767 open_owner_rele(oop); 13768 *oopp = NULL; 13769 } 13770 13771 return (retry); 13772 } 13773 13774 /* 13775 * Handles the successful reply from the server for nfs4frlock. 13776 */ 13777 static void 13778 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13779 vnode_t *vp, int flag, u_offset_t offset, 13780 nfs4_lost_rqst_t *resend_rqstp) 13781 { 13782 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13783 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13784 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13785 if (ctype == NFS4_LCK_CTYPE_NORM) { 13786 flk->l_pid = ttoproc(curthread)->p_pid; 13787 /* 13788 * We do not register lost locks locally in 13789 * the 'resend' case since the user/application 13790 * doesn't think we have the lock. 13791 */ 13792 ASSERT(!resend_rqstp); 13793 nfs4_register_lock_locally(vp, flk, flag, offset); 13794 } 13795 } 13796 } 13797 13798 /* 13799 * Handle the DENIED reply from the server for nfs4frlock. 13800 * Returns TRUE if we should retry the request; FALSE otherwise. 13801 * 13802 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13803 * COMPOUND4 args/res for calls that need to retry. Can also 13804 * drop and regrab the r_lkserlock. 13805 */ 13806 static bool_t 13807 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13808 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13809 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13810 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13811 nfs4_recov_state_t *recov_statep, int needrecov, 13812 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13813 clock_t *tick_delayp, short *whencep, int *errorp, 13814 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13815 bool_t *skip_get_err) 13816 { 13817 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13818 13819 if (lock_args) { 13820 nfs4_open_owner_t *oop = *oopp; 13821 nfs4_open_stream_t *osp = *ospp; 13822 nfs4_lock_owner_t *lop = *lopp; 13823 int intr; 13824 13825 /* 13826 * Blocking lock needs to sleep and retry from the request. 13827 * 13828 * Do not block and wait for 'resend' or 'reinstate' 13829 * lock requests, just return the error. 13830 * 13831 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13832 */ 13833 if (cmd == F_SETLKW) { 13834 rnode4_t *rp = VTOR4(vp); 13835 nfs_argop4 *argop = (*argspp)->array; 13836 13837 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13838 13839 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13840 recov_statep, needrecov); 13841 *did_start_fop = FALSE; 13842 ASSERT((*argspp)->array_len == 2); 13843 if (argop[1].argop == OP_LOCK) 13844 nfs4args_lock_free(&argop[1]); 13845 else if (argop[1].argop == OP_LOCKT) 13846 nfs4args_lockt_free(&argop[1]); 13847 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13848 if (*respp) 13849 xdr_free(xdr_COMPOUND4res_clnt, 13850 (caddr_t)*respp); 13851 *argspp = NULL; 13852 *respp = NULL; 13853 nfs4_end_lock_seqid_sync(lop); 13854 lock_owner_rele(lop); 13855 *lopp = NULL; 13856 if (osp != NULL) { 13857 open_stream_rele(osp, rp); 13858 *ospp = NULL; 13859 } 13860 if (oop != NULL) { 13861 nfs4_end_open_seqid_sync(oop); 13862 open_owner_rele(oop); 13863 *oopp = NULL; 13864 } 13865 13866 nfs_rw_exit(&rp->r_lkserlock); 13867 13868 intr = nfs4_block_and_wait(tick_delayp, rp); 13869 13870 if (intr) { 13871 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13872 RW_WRITER, FALSE); 13873 *errorp = EINTR; 13874 return (FALSE); 13875 } 13876 13877 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13878 RW_WRITER, FALSE); 13879 13880 /* 13881 * Make sure we are still safe to lock with 13882 * regards to mmapping. 13883 */ 13884 if (!nfs4_safelock(vp, flk, cr)) { 13885 *errorp = EAGAIN; 13886 return (FALSE); 13887 } 13888 13889 return (TRUE); 13890 } 13891 if (ctype == NFS4_LCK_CTYPE_NORM) 13892 *errorp = EAGAIN; 13893 *skip_get_err = TRUE; 13894 flk->l_whence = 0; 13895 *whencep = 0; 13896 return (FALSE); 13897 } else if (lockt_args) { 13898 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13899 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13900 13901 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13902 flk, lockt_args); 13903 13904 /* according to NLM code */ 13905 *errorp = 0; 13906 *whencep = 0; 13907 *skip_get_err = TRUE; 13908 return (FALSE); 13909 } 13910 return (FALSE); 13911 } 13912 13913 /* 13914 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13915 */ 13916 static void 13917 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13918 { 13919 switch (resp->status) { 13920 case NFS4ERR_ACCESS: 13921 case NFS4ERR_ADMIN_REVOKED: 13922 case NFS4ERR_BADHANDLE: 13923 case NFS4ERR_BAD_RANGE: 13924 case NFS4ERR_BAD_SEQID: 13925 case NFS4ERR_BAD_STATEID: 13926 case NFS4ERR_BADXDR: 13927 case NFS4ERR_DEADLOCK: 13928 case NFS4ERR_DELAY: 13929 case NFS4ERR_EXPIRED: 13930 case NFS4ERR_FHEXPIRED: 13931 case NFS4ERR_GRACE: 13932 case NFS4ERR_INVAL: 13933 case NFS4ERR_ISDIR: 13934 case NFS4ERR_LEASE_MOVED: 13935 case NFS4ERR_LOCK_NOTSUPP: 13936 case NFS4ERR_LOCK_RANGE: 13937 case NFS4ERR_MOVED: 13938 case NFS4ERR_NOFILEHANDLE: 13939 case NFS4ERR_NO_GRACE: 13940 case NFS4ERR_OLD_STATEID: 13941 case NFS4ERR_OPENMODE: 13942 case NFS4ERR_RECLAIM_BAD: 13943 case NFS4ERR_RECLAIM_CONFLICT: 13944 case NFS4ERR_RESOURCE: 13945 case NFS4ERR_SERVERFAULT: 13946 case NFS4ERR_STALE: 13947 case NFS4ERR_STALE_CLIENTID: 13948 case NFS4ERR_STALE_STATEID: 13949 return; 13950 default: 13951 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13952 "nfs4frlock_results_default: got unrecognizable " 13953 "res.status %d", resp->status)); 13954 *errorp = NFS4ERR_INVAL; 13955 } 13956 } 13957 13958 /* 13959 * The lock request was successful, so update the client's state. 13960 */ 13961 static void 13962 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13963 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13964 vnode_t *vp, flock64_t *flk, cred_t *cr, 13965 nfs4_lost_rqst_t *resend_rqstp) 13966 { 13967 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13968 13969 if (lock_args) { 13970 LOCK4res *lock_res; 13971 13972 lock_res = &resop->nfs_resop4_u.oplock; 13973 /* update the stateid with server's response */ 13974 13975 if (lock_args->locker.new_lock_owner == TRUE) { 13976 mutex_enter(&lop->lo_lock); 13977 lop->lo_just_created = NFS4_PERM_CREATED; 13978 mutex_exit(&lop->lo_lock); 13979 } 13980 13981 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13982 13983 /* 13984 * If the lock was the result of a resending a lost 13985 * request, we've synched up the stateid and seqid 13986 * with the server, but now the server might be out of sync 13987 * with what the application thinks it has for locks. 13988 * Clean that up here. It's unclear whether we should do 13989 * this even if the filesystem has been forcibly unmounted. 13990 * For most servers, it's probably wasted effort, but 13991 * RFC 7530 lets servers require that unlocks exactly match 13992 * the locks that are held. 13993 */ 13994 if (resend_rqstp != NULL && 13995 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13996 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13997 } else { 13998 flk->l_whence = 0; 13999 } 14000 } else if (locku_args) { 14001 LOCKU4res *locku_res; 14002 14003 locku_res = &resop->nfs_resop4_u.oplocku; 14004 14005 /* Update the stateid with the server's response */ 14006 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14007 } else if (lockt_args) { 14008 /* Switch the lock type to express success, see fcntl */ 14009 flk->l_type = F_UNLCK; 14010 flk->l_whence = 0; 14011 } 14012 } 14013 14014 /* 14015 * Do final cleanup before exiting nfs4frlock. 14016 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14017 * COMPOUND4 args/res for calls that haven't already. 14018 */ 14019 static void 14020 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14021 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14022 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14023 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14024 short whence, u_offset_t offset, struct lm_sysid *ls, 14025 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14026 bool_t did_start_fop, bool_t skip_get_err, 14027 cred_t *cred_otw, cred_t *cred) 14028 { 14029 mntinfo4_t *mi = VTOMI4(vp); 14030 rnode4_t *rp = VTOR4(vp); 14031 int error = *errorp; 14032 nfs_argop4 *argop; 14033 int do_flush_pages = 0; 14034 14035 ASSERT(nfs_zone() == mi->mi_zone); 14036 /* 14037 * The client recovery code wants the raw status information, 14038 * so don't map the NFS status code to an errno value for 14039 * non-normal call types. 14040 */ 14041 if (ctype == NFS4_LCK_CTYPE_NORM) { 14042 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14043 *errorp = geterrno4(resp->status); 14044 if (did_start_fop == TRUE) 14045 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14046 needrecov); 14047 14048 /* 14049 * We've established a new lock on the server, so invalidate 14050 * the pages associated with the vnode to get the most up to 14051 * date pages from the server after acquiring the lock. We 14052 * want to be sure that the read operation gets the newest data. 14053 * N.B. 14054 * We used to do this in nfs4frlock_results_ok but that doesn't 14055 * work since VOP_PUTPAGE can call nfs4_commit which calls 14056 * nfs4_start_fop. We flush the pages below after calling 14057 * nfs4_end_fop above 14058 * The flush of the page cache must be done after 14059 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14060 */ 14061 if (!error && resp && resp->status == NFS4_OK) 14062 do_flush_pages = 1; 14063 } 14064 if (argsp) { 14065 ASSERT(argsp->array_len == 2); 14066 argop = argsp->array; 14067 if (argop[1].argop == OP_LOCK) 14068 nfs4args_lock_free(&argop[1]); 14069 else if (argop[1].argop == OP_LOCKT) 14070 nfs4args_lockt_free(&argop[1]); 14071 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14072 if (resp) 14073 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14074 } 14075 14076 /* free the reference on the lock owner */ 14077 if (lop != NULL) { 14078 nfs4_end_lock_seqid_sync(lop); 14079 lock_owner_rele(lop); 14080 } 14081 14082 /* need to free up the reference on osp for lock args */ 14083 if (osp != NULL) 14084 open_stream_rele(osp, rp); 14085 14086 /* need to free up the reference on oop for lock args */ 14087 if (oop != NULL) { 14088 nfs4_end_open_seqid_sync(oop); 14089 open_owner_rele(oop); 14090 } 14091 14092 if (do_flush_pages) 14093 nfs4_flush_pages(vp, cred); 14094 14095 (void) convoff(vp, flk, whence, offset); 14096 14097 lm_rel_sysid(ls); 14098 14099 /* 14100 * Record debug information in the event we get EINVAL. 14101 */ 14102 mutex_enter(&mi->mi_lock); 14103 if (*errorp == EINVAL && (lock_args || locku_args) && 14104 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14105 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14106 zcmn_err(getzoneid(), CE_NOTE, 14107 "%s operation failed with " 14108 "EINVAL probably since the server, %s," 14109 " doesn't support POSIX style locking", 14110 lock_args ? "LOCK" : "LOCKU", 14111 mi->mi_curr_serv->sv_hostname); 14112 mi->mi_flags |= MI4_LOCK_DEBUG; 14113 } 14114 } 14115 mutex_exit(&mi->mi_lock); 14116 14117 if (cred_otw) 14118 crfree(cred_otw); 14119 } 14120 14121 /* 14122 * This calls the server and the local locking code. 14123 * 14124 * Client locks are registerred locally by oring the sysid with 14125 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14126 * We need to distinguish between the two to avoid collision in case one 14127 * machine is used as both client and server. 14128 * 14129 * Blocking lock requests will continually retry to acquire the lock 14130 * forever. 14131 * 14132 * The ctype is defined as follows: 14133 * NFS4_LCK_CTYPE_NORM: normal lock request. 14134 * 14135 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14136 * recovery, get the pid from flk instead of curproc, and don't reregister 14137 * the lock locally. 14138 * 14139 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14140 * that we will use the information passed in via resend_rqstp to setup the 14141 * lock/locku request. This resend is the exact same request as the 'lost 14142 * lock', and is initiated by the recovery framework. A successful resend 14143 * request can initiate one or more reinstate requests. 14144 * 14145 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14146 * does not trigger additional reinstate requests. This lock call type is 14147 * set for setting the v4 server's locking state back to match what the 14148 * client's local locking state is in the event of a received 'lost lock'. 14149 * 14150 * Errors are returned via the nfs4_error_t parameter. 14151 */ 14152 void 14153 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14154 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14155 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14156 { 14157 COMPOUND4args_clnt args, *argsp = NULL; 14158 COMPOUND4res_clnt res, *resp = NULL; 14159 nfs_argop4 *argop; 14160 nfs_resop4 *resop; 14161 rnode4_t *rp; 14162 int doqueue = 1; 14163 clock_t tick_delay; /* delay in clock ticks */ 14164 struct lm_sysid *ls; 14165 LOCK4args *lock_args = NULL; 14166 LOCKU4args *locku_args = NULL; 14167 LOCKT4args *lockt_args = NULL; 14168 nfs4_open_owner_t *oop = NULL; 14169 nfs4_open_stream_t *osp = NULL; 14170 nfs4_lock_owner_t *lop = NULL; 14171 bool_t needrecov = FALSE; 14172 nfs4_recov_state_t recov_state; 14173 short whence; 14174 nfs4_op_hint_t op_hint; 14175 nfs4_lost_rqst_t lost_rqst; 14176 bool_t retry = FALSE; 14177 bool_t did_start_fop = FALSE; 14178 bool_t skip_get_err = FALSE; 14179 cred_t *cred_otw = NULL; 14180 bool_t recovonly; /* just queue request */ 14181 int frc_no_reclaim = 0; 14182 #ifdef DEBUG 14183 char *name; 14184 #endif 14185 14186 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14187 14188 #ifdef DEBUG 14189 name = fn_name(VTOSV(vp)->sv_name); 14190 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14191 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14192 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14193 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14194 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14195 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14196 resend_rqstp ? "TRUE" : "FALSE")); 14197 kmem_free(name, MAXNAMELEN); 14198 #endif 14199 14200 nfs4_error_zinit(ep); 14201 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14202 if (ep->error) 14203 return; 14204 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14205 if (ep->error) 14206 return; 14207 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14208 vp, cr, &cred_otw); 14209 14210 recov_retry: 14211 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14212 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14213 rp = VTOR4(vp); 14214 14215 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14216 &did_start_fop, &recovonly); 14217 14218 if (ep->error) 14219 goto out; 14220 14221 if (recovonly) { 14222 /* 14223 * Leave the request for the recovery system to deal with. 14224 */ 14225 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14226 ASSERT(cmd != F_GETLK); 14227 ASSERT(flk->l_type == F_UNLCK); 14228 14229 nfs4_error_init(ep, EINTR); 14230 needrecov = TRUE; 14231 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14232 if (lop != NULL) { 14233 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14234 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14235 (void) nfs4_start_recovery(ep, 14236 VTOMI4(vp), vp, NULL, NULL, 14237 (lost_rqst.lr_op == OP_LOCK || 14238 lost_rqst.lr_op == OP_LOCKU) ? 14239 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14240 lock_owner_rele(lop); 14241 lop = NULL; 14242 } 14243 flk->l_pid = curproc->p_pid; 14244 nfs4_register_lock_locally(vp, flk, flag, offset); 14245 goto out; 14246 } 14247 14248 /* putfh directory fh */ 14249 argop[0].argop = OP_CPUTFH; 14250 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14251 14252 /* 14253 * Set up the over-the-wire arguments and get references to the 14254 * open owner, etc. 14255 */ 14256 14257 if (ctype == NFS4_LCK_CTYPE_RESEND || 14258 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14259 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14260 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14261 } else { 14262 bool_t go_otw = TRUE; 14263 14264 ASSERT(resend_rqstp == NULL); 14265 14266 switch (cmd) { 14267 case F_GETLK: 14268 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14269 &lockt_args, argsp, flk, rp); 14270 break; 14271 case F_SETLKW: 14272 case F_SETLK: 14273 if (flk->l_type == F_UNLCK) 14274 nfs4frlock_setup_locku_args(ctype, 14275 &argop[1], &locku_args, flk, 14276 &lop, ep, argsp, 14277 vp, flag, offset, cr, 14278 &skip_get_err, &go_otw); 14279 else 14280 nfs4frlock_setup_lock_args(ctype, 14281 &lock_args, &oop, &osp, &lop, &argop[1], 14282 argsp, flk, cmd, vp, cr, ep); 14283 14284 if (ep->error) 14285 goto out; 14286 14287 switch (ep->stat) { 14288 case NFS4_OK: 14289 break; 14290 case NFS4ERR_DELAY: 14291 /* recov thread never gets this error */ 14292 ASSERT(resend_rqstp == NULL); 14293 ASSERT(did_start_fop); 14294 14295 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14296 &recov_state, TRUE); 14297 did_start_fop = FALSE; 14298 if (argop[1].argop == OP_LOCK) 14299 nfs4args_lock_free(&argop[1]); 14300 else if (argop[1].argop == OP_LOCKT) 14301 nfs4args_lockt_free(&argop[1]); 14302 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14303 argsp = NULL; 14304 goto recov_retry; 14305 default: 14306 ep->error = EIO; 14307 goto out; 14308 } 14309 break; 14310 default: 14311 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14312 "nfs4_frlock: invalid cmd %d", cmd)); 14313 ep->error = EINVAL; 14314 goto out; 14315 } 14316 14317 if (!go_otw) 14318 goto out; 14319 } 14320 14321 /* XXX should we use the local reclock as a cache ? */ 14322 /* 14323 * Unregister the lock with the local locking code before 14324 * contacting the server. This avoids a potential race where 14325 * another process gets notified that it has been granted a lock 14326 * before we can unregister ourselves locally. 14327 */ 14328 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14329 if (ctype == NFS4_LCK_CTYPE_NORM) 14330 flk->l_pid = ttoproc(curthread)->p_pid; 14331 nfs4_register_lock_locally(vp, flk, flag, offset); 14332 } 14333 14334 /* 14335 * Send the server the lock request. Continually loop with a delay 14336 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14337 */ 14338 resp = &res; 14339 14340 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14341 (CE_NOTE, 14342 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14343 rnode4info(rp))); 14344 14345 if (lock_args && frc_no_reclaim) { 14346 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14347 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14348 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14349 lock_args->reclaim = FALSE; 14350 if (did_reclaimp) 14351 *did_reclaimp = 0; 14352 } 14353 14354 /* 14355 * Do the OTW call. 14356 */ 14357 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14358 14359 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14360 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14361 14362 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14363 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14364 "nfs4frlock: needrecov %d", needrecov)); 14365 14366 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14367 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14368 args.ctag); 14369 14370 /* 14371 * Check if one of these mutually exclusive error cases has 14372 * happened: 14373 * need to swap credentials due to access error 14374 * recovery is needed 14375 * different error (only known case is missing Kerberos ticket) 14376 */ 14377 14378 if ((ep->error == EACCES || 14379 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14380 cred_otw != cr) { 14381 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14382 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14383 cr, &cred_otw); 14384 goto recov_retry; 14385 } 14386 14387 if (needrecov) { 14388 /* 14389 * LOCKT requests don't need to recover from lost 14390 * requests since they don't create/modify state. 14391 */ 14392 if ((ep->error == EINTR || 14393 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14394 lockt_args) 14395 goto out; 14396 /* 14397 * Do not attempt recovery for requests initiated by 14398 * the recovery framework. Let the framework redrive them. 14399 */ 14400 if (ctype != NFS4_LCK_CTYPE_NORM) 14401 goto out; 14402 else { 14403 ASSERT(resend_rqstp == NULL); 14404 } 14405 14406 nfs4frlock_save_lost_rqst(ctype, ep->error, 14407 flk_to_locktype(cmd, flk->l_type), 14408 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14409 14410 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14411 &resp, lock_args, locku_args, &oop, &osp, &lop, 14412 rp, vp, &recov_state, op_hint, &did_start_fop, 14413 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14414 14415 if (retry) { 14416 ASSERT(oop == NULL); 14417 ASSERT(osp == NULL); 14418 ASSERT(lop == NULL); 14419 goto recov_retry; 14420 } 14421 goto out; 14422 } 14423 14424 /* 14425 * Bail out if have reached this point with ep->error set. Can 14426 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14427 * This happens if Kerberos ticket has expired or has been 14428 * destroyed. 14429 */ 14430 if (ep->error != 0) 14431 goto out; 14432 14433 /* 14434 * Process the reply. 14435 */ 14436 switch (resp->status) { 14437 case NFS4_OK: 14438 resop = &resp->array[1]; 14439 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14440 resend_rqstp); 14441 /* 14442 * Have a successful lock operation, now update state. 14443 */ 14444 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14445 resop, lop, vp, flk, cr, resend_rqstp); 14446 break; 14447 14448 case NFS4ERR_DENIED: 14449 resop = &resp->array[1]; 14450 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14451 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14452 &recov_state, needrecov, &argsp, &resp, 14453 &tick_delay, &whence, &ep->error, resop, cr, 14454 &did_start_fop, &skip_get_err); 14455 14456 if (retry) { 14457 ASSERT(oop == NULL); 14458 ASSERT(osp == NULL); 14459 ASSERT(lop == NULL); 14460 goto recov_retry; 14461 } 14462 break; 14463 /* 14464 * If the server won't let us reclaim, fall-back to trying to lock 14465 * the file from scratch. Code elsewhere will check the changeinfo 14466 * to ensure the file hasn't been changed. 14467 */ 14468 case NFS4ERR_NO_GRACE: 14469 if (lock_args && lock_args->reclaim == TRUE) { 14470 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14471 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14472 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14473 frc_no_reclaim = 1; 14474 /* clean up before retrying */ 14475 needrecov = 0; 14476 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14477 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14478 &recov_state, op_hint, &did_start_fop, NULL, flk); 14479 goto recov_retry; 14480 } 14481 /* FALLTHROUGH */ 14482 14483 default: 14484 nfs4frlock_results_default(resp, &ep->error); 14485 break; 14486 } 14487 out: 14488 /* 14489 * Process and cleanup from error. Make interrupted unlock 14490 * requests look successful, since they will be handled by the 14491 * client recovery code. 14492 */ 14493 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14494 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14495 lock_args, locku_args, did_start_fop, 14496 skip_get_err, cred_otw, cr); 14497 14498 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14499 (cmd == F_SETLK || cmd == F_SETLKW)) 14500 ep->error = 0; 14501 } 14502 14503 /* 14504 * nfs4_safelock: 14505 * 14506 * Return non-zero if the given lock request can be handled without 14507 * violating the constraints on concurrent mapping and locking. 14508 */ 14509 14510 static int 14511 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14512 { 14513 rnode4_t *rp = VTOR4(vp); 14514 struct vattr va; 14515 int error; 14516 14517 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14518 ASSERT(rp->r_mapcnt >= 0); 14519 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14520 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14521 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14522 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14523 14524 if (rp->r_mapcnt == 0) 14525 return (1); /* always safe if not mapped */ 14526 14527 /* 14528 * If the file is already mapped and there are locks, then they 14529 * should be all safe locks. So adding or removing a lock is safe 14530 * as long as the new request is safe (i.e., whole-file, meaning 14531 * length and starting offset are both zero). 14532 */ 14533 14534 if (bfp->l_start != 0 || bfp->l_len != 0) { 14535 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14536 "cannot lock a memory mapped file unless locking the " 14537 "entire file: start %"PRIx64", len %"PRIx64, 14538 bfp->l_start, bfp->l_len)); 14539 return (0); 14540 } 14541 14542 /* mandatory locking and mapping don't mix */ 14543 va.va_mask = AT_MODE; 14544 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14545 if (error != 0) { 14546 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14547 "getattr error %d", error)); 14548 return (0); /* treat errors conservatively */ 14549 } 14550 if (MANDLOCK(vp, va.va_mode)) { 14551 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14552 "cannot mandatory lock and mmap a file")); 14553 return (0); 14554 } 14555 14556 return (1); 14557 } 14558 14559 14560 /* 14561 * Register the lock locally within Solaris. 14562 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14563 * recording locks locally. 14564 * 14565 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14566 * are registered locally. 14567 */ 14568 void 14569 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14570 u_offset_t offset) 14571 { 14572 int oldsysid; 14573 int error; 14574 #ifdef DEBUG 14575 char *name; 14576 #endif 14577 14578 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14579 14580 #ifdef DEBUG 14581 name = fn_name(VTOSV(vp)->sv_name); 14582 NFS4_DEBUG(nfs4_client_lock_debug, 14583 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14584 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14585 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14586 flk->l_sysid)); 14587 kmem_free(name, MAXNAMELEN); 14588 #endif 14589 14590 /* register the lock with local locking */ 14591 oldsysid = flk->l_sysid; 14592 flk->l_sysid |= LM_SYSID_CLIENT; 14593 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14594 #ifdef DEBUG 14595 if (error != 0) { 14596 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14597 "nfs4_register_lock_locally: could not register with" 14598 " local locking")); 14599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14600 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14601 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14602 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14603 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14604 flk->l_type, flk->l_start, flk->l_len)); 14605 (void) reclock(vp, flk, 0, flag, offset, NULL); 14606 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14607 "blocked by pid %d sysid 0x%x type %d " 14608 "off 0x%" PRIx64 " len 0x%" PRIx64, 14609 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14610 flk->l_len)); 14611 } 14612 #endif 14613 flk->l_sysid = oldsysid; 14614 } 14615 14616 /* 14617 * nfs4_lockrelease: 14618 * 14619 * Release any locks on the given vnode that are held by the current 14620 * process. Also removes the lock owner (if one exists) from the rnode's 14621 * list. 14622 */ 14623 static int 14624 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14625 { 14626 flock64_t ld; 14627 int ret, error; 14628 rnode4_t *rp; 14629 nfs4_lock_owner_t *lop; 14630 nfs4_recov_state_t recov_state; 14631 mntinfo4_t *mi; 14632 bool_t possible_orphan = FALSE; 14633 bool_t recovonly; 14634 14635 ASSERT((uintptr_t)vp > KERNELBASE); 14636 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14637 14638 rp = VTOR4(vp); 14639 mi = VTOMI4(vp); 14640 14641 /* 14642 * If we have not locked anything then we can 14643 * just return since we have no work to do. 14644 */ 14645 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14646 return (0); 14647 } 14648 14649 /* 14650 * We need to comprehend that another thread may 14651 * kick off recovery and the lock_owner we have stashed 14652 * in lop might be invalid so we should NOT cache it 14653 * locally! 14654 */ 14655 recov_state.rs_flags = 0; 14656 recov_state.rs_num_retry_despite_err = 0; 14657 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14658 &recovonly); 14659 if (error) { 14660 mutex_enter(&rp->r_statelock); 14661 rp->r_flags |= R4LODANGLERS; 14662 mutex_exit(&rp->r_statelock); 14663 return (error); 14664 } 14665 14666 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14667 14668 /* 14669 * Check if the lock owner might have a lock (request was sent but 14670 * no response was received). Also check if there are any remote 14671 * locks on the file. (In theory we shouldn't have to make this 14672 * second check if there's no lock owner, but for now we'll be 14673 * conservative and do it anyway.) If either condition is true, 14674 * send an unlock for the entire file to the server. 14675 * 14676 * Note that no explicit synchronization is needed here. At worst, 14677 * flk_has_remote_locks() will return a false positive, in which case 14678 * the unlock call wastes time but doesn't harm correctness. 14679 */ 14680 14681 if (lop) { 14682 mutex_enter(&lop->lo_lock); 14683 possible_orphan = lop->lo_pending_rqsts; 14684 mutex_exit(&lop->lo_lock); 14685 lock_owner_rele(lop); 14686 } 14687 14688 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14689 14690 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14691 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14692 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14693 (void *)lop)); 14694 14695 if (possible_orphan || flk_has_remote_locks(vp)) { 14696 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14697 ld.l_whence = 0; /* unlock from start of file */ 14698 ld.l_start = 0; 14699 ld.l_len = 0; /* do entire file */ 14700 14701 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14702 cr, NULL); 14703 14704 if (ret != 0) { 14705 /* 14706 * If VOP_FRLOCK fails, make sure we unregister 14707 * local locks before we continue. 14708 */ 14709 ld.l_pid = ttoproc(curthread)->p_pid; 14710 nfs4_register_lock_locally(vp, &ld, flag, offset); 14711 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14712 "nfs4_lockrelease: lock release error on vp" 14713 " %p: error %d.\n", (void *)vp, ret)); 14714 } 14715 } 14716 14717 recov_state.rs_flags = 0; 14718 recov_state.rs_num_retry_despite_err = 0; 14719 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14720 &recovonly); 14721 if (error) { 14722 mutex_enter(&rp->r_statelock); 14723 rp->r_flags |= R4LODANGLERS; 14724 mutex_exit(&rp->r_statelock); 14725 return (error); 14726 } 14727 14728 /* 14729 * So, here we're going to need to retrieve the lock-owner 14730 * again (in case recovery has done a switch-a-roo) and 14731 * remove it because we can. 14732 */ 14733 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14734 14735 if (lop) { 14736 nfs4_rnode_remove_lock_owner(rp, lop); 14737 lock_owner_rele(lop); 14738 } 14739 14740 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14741 return (0); 14742 } 14743 14744 /* 14745 * Wait for 'tick_delay' clock ticks. 14746 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14747 * NOTE: lock_lease_time is in seconds. 14748 * 14749 * XXX For future improvements, should implement a waiting queue scheme. 14750 */ 14751 static int 14752 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14753 { 14754 long milliseconds_delay; 14755 time_t lock_lease_time; 14756 14757 /* wait tick_delay clock ticks or siginteruptus */ 14758 if (delay_sig(*tick_delay)) { 14759 return (EINTR); 14760 } 14761 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14762 "reissue the lock request: blocked for %ld clock ticks: %ld " 14763 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14764 14765 /* get the lease time */ 14766 lock_lease_time = r2lease_time(rp); 14767 14768 /* drv_hztousec converts ticks to microseconds */ 14769 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14770 if (milliseconds_delay < lock_lease_time * 1000) { 14771 *tick_delay = 2 * *tick_delay; 14772 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14773 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14774 } 14775 return (0); 14776 } 14777 14778 14779 void 14780 nfs4_vnops_init(void) 14781 { 14782 } 14783 14784 void 14785 nfs4_vnops_fini(void) 14786 { 14787 } 14788 14789 /* 14790 * Return a reference to the directory (parent) vnode for a given vnode, 14791 * using the saved pathname information and the directory file handle. The 14792 * caller is responsible for disposing of the reference. 14793 * Returns zero or an errno value. 14794 * 14795 * Caller should set need_start_op to FALSE if it is the recovery 14796 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14797 */ 14798 int 14799 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14800 { 14801 svnode_t *svnp; 14802 vnode_t *dvp = NULL; 14803 servinfo4_t *svp; 14804 nfs4_fname_t *mfname; 14805 int error; 14806 14807 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14808 14809 if (vp->v_flag & VROOT) { 14810 nfs4_sharedfh_t *sfh; 14811 nfs_fh4 fh; 14812 mntinfo4_t *mi; 14813 14814 ASSERT(vp->v_type == VREG); 14815 14816 mi = VTOMI4(vp); 14817 svp = mi->mi_curr_serv; 14818 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14819 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14820 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14821 sfh = sfh4_get(&fh, VTOMI4(vp)); 14822 nfs_rw_exit(&svp->sv_lock); 14823 mfname = mi->mi_fname; 14824 fn_hold(mfname); 14825 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14826 sfh4_rele(&sfh); 14827 14828 if (dvp->v_type == VNON) 14829 dvp->v_type = VDIR; 14830 *dvpp = dvp; 14831 return (0); 14832 } 14833 14834 svnp = VTOSV(vp); 14835 14836 if (svnp == NULL) { 14837 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14838 "shadow node is NULL")); 14839 return (EINVAL); 14840 } 14841 14842 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14843 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14844 "shadow node name or dfh val == NULL")); 14845 return (EINVAL); 14846 } 14847 14848 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14849 (int)need_start_op); 14850 if (error != 0) { 14851 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14852 "nfs4_make_dotdot returned %d", error)); 14853 return (error); 14854 } 14855 if (!dvp) { 14856 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14857 "nfs4_make_dotdot returned a NULL dvp")); 14858 return (EIO); 14859 } 14860 if (dvp->v_type == VNON) 14861 dvp->v_type = VDIR; 14862 ASSERT(dvp->v_type == VDIR); 14863 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14864 mutex_enter(&dvp->v_lock); 14865 dvp->v_flag |= V_XATTRDIR; 14866 mutex_exit(&dvp->v_lock); 14867 } 14868 *dvpp = dvp; 14869 return (0); 14870 } 14871 14872 /* 14873 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14874 * length that fnamep can accept, including the trailing null. 14875 * Returns 0 if okay, returns an errno value if there was a problem. 14876 */ 14877 14878 int 14879 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14880 { 14881 char *fn; 14882 int err = 0; 14883 servinfo4_t *svp; 14884 svnode_t *shvp; 14885 14886 /* 14887 * If the file being opened has VROOT set, then this is 14888 * a "file" mount. sv_name will not be interesting, so 14889 * go back to the servinfo4 to get the original mount 14890 * path and strip off all but the final edge. Otherwise 14891 * just return the name from the shadow vnode. 14892 */ 14893 14894 if (vp->v_flag & VROOT) { 14895 14896 svp = VTOMI4(vp)->mi_curr_serv; 14897 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14898 14899 fn = strrchr(svp->sv_path, '/'); 14900 if (fn == NULL) 14901 err = EINVAL; 14902 else 14903 fn++; 14904 } else { 14905 shvp = VTOSV(vp); 14906 fn = fn_name(shvp->sv_name); 14907 } 14908 14909 if (err == 0) 14910 if (strlen(fn) < maxlen) 14911 (void) strcpy(fnamep, fn); 14912 else 14913 err = ENAMETOOLONG; 14914 14915 if (vp->v_flag & VROOT) 14916 nfs_rw_exit(&svp->sv_lock); 14917 else 14918 kmem_free(fn, MAXNAMELEN); 14919 14920 return (err); 14921 } 14922 14923 /* 14924 * Bookkeeping for a close that doesn't need to go over the wire. 14925 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14926 * it is left at 1. 14927 */ 14928 void 14929 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14930 { 14931 rnode4_t *rp; 14932 mntinfo4_t *mi; 14933 14934 mi = VTOMI4(vp); 14935 rp = VTOR4(vp); 14936 14937 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14938 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14939 ASSERT(nfs_zone() == mi->mi_zone); 14940 ASSERT(mutex_owned(&osp->os_sync_lock)); 14941 ASSERT(*have_lockp); 14942 14943 if (!osp->os_valid || 14944 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14945 return; 14946 } 14947 14948 /* 14949 * This removes the reference obtained at OPEN; ie, 14950 * when the open stream structure was created. 14951 * 14952 * We don't have to worry about calling 'open_stream_rele' 14953 * since we our currently holding a reference to this 14954 * open stream which means the count can not go to 0 with 14955 * this decrement. 14956 */ 14957 ASSERT(osp->os_ref_count >= 2); 14958 osp->os_ref_count--; 14959 osp->os_valid = 0; 14960 mutex_exit(&osp->os_sync_lock); 14961 *have_lockp = 0; 14962 14963 nfs4_dec_state_ref_count(mi); 14964 } 14965 14966 /* 14967 * Close all remaining open streams on the rnode. These open streams 14968 * could be here because: 14969 * - The close attempted at either close or delmap failed 14970 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14971 * - Someone did mknod on a regular file but never opened it 14972 */ 14973 int 14974 nfs4close_all(vnode_t *vp, cred_t *cr) 14975 { 14976 nfs4_open_stream_t *osp; 14977 int error; 14978 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14979 rnode4_t *rp; 14980 14981 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14982 14983 error = 0; 14984 rp = VTOR4(vp); 14985 14986 /* 14987 * At this point, all we know is that the last time 14988 * someone called vn_rele, the count was 1. Since then, 14989 * the vnode could have been re-activated. We want to 14990 * loop through the open streams and close each one, but 14991 * we have to be careful since once we release the rnode 14992 * hash bucket lock, someone else is free to come in and 14993 * re-activate the rnode and add new open streams. The 14994 * strategy is take the rnode hash bucket lock, verify that 14995 * the count is still 1, grab the open stream off the 14996 * head of the list and mark it invalid, then release the 14997 * rnode hash bucket lock and proceed with that open stream. 14998 * This is ok because nfs4close_one() will acquire the proper 14999 * open/create to close/destroy synchronization for open 15000 * streams, and will ensure that if someone has reopened 15001 * the open stream after we've dropped the hash bucket lock 15002 * then we'll just simply return without destroying the 15003 * open stream. 15004 * Repeat until the list is empty. 15005 */ 15006 15007 for (;;) { 15008 15009 /* make sure vnode hasn't been reactivated */ 15010 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15011 mutex_enter(&vp->v_lock); 15012 if (vp->v_count > 1) { 15013 mutex_exit(&vp->v_lock); 15014 rw_exit(&rp->r_hashq->r_lock); 15015 break; 15016 } 15017 /* 15018 * Grabbing r_os_lock before releasing v_lock prevents 15019 * a window where the rnode/open stream could get 15020 * reactivated (and os_force_close set to 0) before we 15021 * had a chance to set os_force_close to 1. 15022 */ 15023 mutex_enter(&rp->r_os_lock); 15024 mutex_exit(&vp->v_lock); 15025 15026 osp = list_head(&rp->r_open_streams); 15027 if (!osp) { 15028 /* nothing left to CLOSE OTW, so return */ 15029 mutex_exit(&rp->r_os_lock); 15030 rw_exit(&rp->r_hashq->r_lock); 15031 break; 15032 } 15033 15034 mutex_enter(&rp->r_statev4_lock); 15035 /* the file can't still be mem mapped */ 15036 ASSERT(rp->r_mapcnt == 0); 15037 if (rp->created_v4) 15038 rp->created_v4 = 0; 15039 mutex_exit(&rp->r_statev4_lock); 15040 15041 /* 15042 * Grab a ref on this open stream; nfs4close_one 15043 * will mark it as invalid 15044 */ 15045 mutex_enter(&osp->os_sync_lock); 15046 osp->os_ref_count++; 15047 osp->os_force_close = 1; 15048 mutex_exit(&osp->os_sync_lock); 15049 mutex_exit(&rp->r_os_lock); 15050 rw_exit(&rp->r_hashq->r_lock); 15051 15052 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15053 15054 /* Update error if it isn't already non-zero */ 15055 if (error == 0) { 15056 if (e.error) 15057 error = e.error; 15058 else if (e.stat) 15059 error = geterrno4(e.stat); 15060 } 15061 15062 #ifdef DEBUG 15063 nfs4close_all_cnt++; 15064 #endif 15065 /* Release the ref on osp acquired above. */ 15066 open_stream_rele(osp, rp); 15067 15068 /* Proceed to the next open stream, if any */ 15069 } 15070 return (error); 15071 } 15072 15073 /* 15074 * nfs4close_one - close one open stream for a file if needed. 15075 * 15076 * "close_type" indicates which close path this is: 15077 * CLOSE_NORM: close initiated via VOP_CLOSE. 15078 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15079 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15080 * the close and release of client state for this open stream 15081 * (unless someone else has the open stream open). 15082 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15083 * (e.g., due to abort because of a signal). 15084 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15085 * 15086 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15087 * recovery. Instead, the caller is expected to deal with retries. 15088 * 15089 * The caller can either pass in the osp ('provided_osp') or not. 15090 * 15091 * 'access_bits' represents the access we are closing/downgrading. 15092 * 15093 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15094 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15095 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15096 * 15097 * Errors are returned via the nfs4_error_t. 15098 */ 15099 void 15100 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15101 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15102 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15103 uint_t mmap_flags) 15104 { 15105 nfs4_open_owner_t *oop; 15106 nfs4_open_stream_t *osp = NULL; 15107 int retry = 0; 15108 int num_retries = NFS4_NUM_RECOV_RETRIES; 15109 rnode4_t *rp; 15110 mntinfo4_t *mi; 15111 nfs4_recov_state_t recov_state; 15112 cred_t *cred_otw = NULL; 15113 bool_t recovonly = FALSE; 15114 int isrecov; 15115 int force_close; 15116 int close_failed = 0; 15117 int did_dec_count = 0; 15118 int did_start_op = 0; 15119 int did_force_recovlock = 0; 15120 int did_start_seqid_sync = 0; 15121 int have_sync_lock = 0; 15122 15123 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15124 15125 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15126 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15127 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15128 len, maxprot, mmap_flags, access_bits)); 15129 15130 nfs4_error_zinit(ep); 15131 rp = VTOR4(vp); 15132 mi = VTOMI4(vp); 15133 isrecov = (close_type == CLOSE_RESEND || 15134 close_type == CLOSE_AFTER_RESEND); 15135 15136 /* 15137 * First get the open owner. 15138 */ 15139 if (!provided_osp) { 15140 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15141 } else { 15142 oop = provided_osp->os_open_owner; 15143 ASSERT(oop != NULL); 15144 open_owner_hold(oop); 15145 } 15146 15147 if (!oop) { 15148 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15149 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15150 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15151 (void *)provided_osp, close_type)); 15152 ep->error = EIO; 15153 goto out; 15154 } 15155 15156 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15157 recov_retry: 15158 osp = NULL; 15159 close_failed = 0; 15160 force_close = (close_type == CLOSE_FORCE); 15161 retry = 0; 15162 did_start_op = 0; 15163 did_force_recovlock = 0; 15164 did_start_seqid_sync = 0; 15165 have_sync_lock = 0; 15166 recovonly = FALSE; 15167 recov_state.rs_flags = 0; 15168 recov_state.rs_num_retry_despite_err = 0; 15169 15170 /* 15171 * Second synchronize with recovery. 15172 */ 15173 if (!isrecov) { 15174 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15175 &recov_state, &recovonly); 15176 if (!ep->error) { 15177 did_start_op = 1; 15178 } else { 15179 close_failed = 1; 15180 /* 15181 * If we couldn't get start_fop, but have to 15182 * cleanup state, then at least acquire the 15183 * mi_recovlock so we can synchronize with 15184 * recovery. 15185 */ 15186 if (close_type == CLOSE_FORCE) { 15187 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15188 RW_READER, FALSE); 15189 did_force_recovlock = 1; 15190 } else 15191 goto out; 15192 } 15193 } 15194 15195 /* 15196 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15197 * set 'recovonly' to TRUE since most likely this is due to 15198 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15199 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15200 * to retry, causing us to loop until recovery finishes. Plus we 15201 * don't need protection over the open seqid since we're not going 15202 * OTW, hence don't need to use the seqid. 15203 */ 15204 if (recovonly == FALSE) { 15205 /* need to grab the open owner sync before 'os_sync_lock' */ 15206 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15207 if (ep->error == EAGAIN) { 15208 ASSERT(!isrecov); 15209 if (did_start_op) 15210 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15211 &recov_state, TRUE); 15212 if (did_force_recovlock) 15213 nfs_rw_exit(&mi->mi_recovlock); 15214 goto recov_retry; 15215 } 15216 did_start_seqid_sync = 1; 15217 } 15218 15219 /* 15220 * Third get an open stream and acquire 'os_sync_lock' to 15221 * sychronize the opening/creating of an open stream with the 15222 * closing/destroying of an open stream. 15223 */ 15224 if (!provided_osp) { 15225 /* returns with 'os_sync_lock' held */ 15226 osp = find_open_stream(oop, rp); 15227 if (!osp) { 15228 ep->error = EIO; 15229 goto out; 15230 } 15231 } else { 15232 osp = provided_osp; 15233 open_stream_hold(osp); 15234 mutex_enter(&osp->os_sync_lock); 15235 } 15236 have_sync_lock = 1; 15237 15238 ASSERT(oop == osp->os_open_owner); 15239 15240 /* 15241 * Fourth, do any special pre-OTW CLOSE processing 15242 * based on the specific close type. 15243 */ 15244 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15245 !did_dec_count) { 15246 ASSERT(osp->os_open_ref_count > 0); 15247 osp->os_open_ref_count--; 15248 did_dec_count = 1; 15249 if (osp->os_open_ref_count == 0) 15250 osp->os_final_close = 1; 15251 } 15252 15253 if (close_type == CLOSE_FORCE) { 15254 /* see if somebody reopened the open stream. */ 15255 if (!osp->os_force_close) { 15256 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15257 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15258 "was reopened, vp %p", (void *)osp, (void *)vp)); 15259 ep->error = 0; 15260 ep->stat = NFS4_OK; 15261 goto out; 15262 } 15263 15264 if (!osp->os_final_close && !did_dec_count) { 15265 osp->os_open_ref_count--; 15266 did_dec_count = 1; 15267 } 15268 15269 /* 15270 * We can't depend on os_open_ref_count being 0 due to the 15271 * way executables are opened (VN_RELE to match a VOP_OPEN). 15272 */ 15273 #ifdef NOTYET 15274 ASSERT(osp->os_open_ref_count == 0); 15275 #endif 15276 if (osp->os_open_ref_count != 0) { 15277 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15278 "nfs4close_one: should panic here on an " 15279 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15280 "since this is probably the exec problem.")); 15281 15282 osp->os_open_ref_count = 0; 15283 } 15284 15285 /* 15286 * There is the possibility that nfs4close_one() 15287 * for close_type == CLOSE_DELMAP couldn't find the 15288 * open stream, thus couldn't decrement its os_mapcnt; 15289 * therefore we can't use this ASSERT yet. 15290 */ 15291 #ifdef NOTYET 15292 ASSERT(osp->os_mapcnt == 0); 15293 #endif 15294 osp->os_mapcnt = 0; 15295 } 15296 15297 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15298 ASSERT(osp->os_mapcnt >= btopr(len)); 15299 15300 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15301 osp->os_mmap_write -= btopr(len); 15302 if (maxprot & PROT_READ) 15303 osp->os_mmap_read -= btopr(len); 15304 if (maxprot & PROT_EXEC) 15305 osp->os_mmap_read -= btopr(len); 15306 /* mirror the PROT_NONE check in nfs4_addmap() */ 15307 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15308 !(maxprot & PROT_EXEC)) 15309 osp->os_mmap_read -= btopr(len); 15310 osp->os_mapcnt -= btopr(len); 15311 did_dec_count = 1; 15312 } 15313 15314 if (recovonly) { 15315 nfs4_lost_rqst_t lost_rqst; 15316 15317 /* request should not already be in recovery queue */ 15318 ASSERT(lrp == NULL); 15319 nfs4_error_init(ep, EINTR); 15320 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15321 osp, cred_otw, vp); 15322 mutex_exit(&osp->os_sync_lock); 15323 have_sync_lock = 0; 15324 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15325 lost_rqst.lr_op == OP_CLOSE ? 15326 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15327 close_failed = 1; 15328 force_close = 0; 15329 goto close_cleanup; 15330 } 15331 15332 /* 15333 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15334 * we stopped operating on the open owner's <old oo_name, old seqid> 15335 * space, which means we stopped operating on the open stream 15336 * too. So don't go OTW (as the seqid is likely bad, and the 15337 * stateid could be stale, potentially triggering a false 15338 * setclientid), and just clean up the client's internal state. 15339 */ 15340 if (osp->os_orig_oo_name != oop->oo_name) { 15341 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15342 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15343 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15344 "oo_name %" PRIx64")", 15345 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15346 oop->oo_name)); 15347 close_failed = 1; 15348 } 15349 15350 /* If the file failed recovery, just quit. */ 15351 mutex_enter(&rp->r_statelock); 15352 if (rp->r_flags & R4RECOVERR) { 15353 close_failed = 1; 15354 } 15355 mutex_exit(&rp->r_statelock); 15356 15357 /* 15358 * If the force close path failed to obtain start_fop 15359 * then skip the OTW close and just remove the state. 15360 */ 15361 if (close_failed) 15362 goto close_cleanup; 15363 15364 /* 15365 * Fifth, check to see if there are still mapped pages or other 15366 * opens using this open stream. If there are then we can't 15367 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15368 */ 15369 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15370 nfs4_lost_rqst_t new_lost_rqst; 15371 bool_t needrecov = FALSE; 15372 cred_t *odg_cred_otw = NULL; 15373 seqid4 open_dg_seqid = 0; 15374 15375 if (osp->os_delegation) { 15376 /* 15377 * If this open stream was never OPENed OTW then we 15378 * surely can't DOWNGRADE it (especially since the 15379 * osp->open_stateid is really a delegation stateid 15380 * when os_delegation is 1). 15381 */ 15382 if (access_bits & FREAD) 15383 osp->os_share_acc_read--; 15384 if (access_bits & FWRITE) 15385 osp->os_share_acc_write--; 15386 osp->os_share_deny_none--; 15387 nfs4_error_zinit(ep); 15388 goto out; 15389 } 15390 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15391 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15392 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15393 if (needrecov && !isrecov) { 15394 bool_t abort; 15395 nfs4_bseqid_entry_t *bsep = NULL; 15396 15397 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15398 bsep = nfs4_create_bseqid_entry(oop, NULL, 15399 vp, 0, 15400 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15401 open_dg_seqid); 15402 15403 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15404 oop, osp, odg_cred_otw, vp, access_bits, 0); 15405 mutex_exit(&osp->os_sync_lock); 15406 have_sync_lock = 0; 15407 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15408 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15409 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15410 bsep, NULL, NULL); 15411 if (odg_cred_otw) 15412 crfree(odg_cred_otw); 15413 if (bsep) 15414 kmem_free(bsep, sizeof (*bsep)); 15415 15416 if (abort == TRUE) 15417 goto out; 15418 15419 if (did_start_seqid_sync) { 15420 nfs4_end_open_seqid_sync(oop); 15421 did_start_seqid_sync = 0; 15422 } 15423 open_stream_rele(osp, rp); 15424 15425 if (did_start_op) 15426 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15427 &recov_state, FALSE); 15428 if (did_force_recovlock) 15429 nfs_rw_exit(&mi->mi_recovlock); 15430 15431 goto recov_retry; 15432 } else { 15433 if (odg_cred_otw) 15434 crfree(odg_cred_otw); 15435 } 15436 goto out; 15437 } 15438 15439 /* 15440 * If this open stream was created as the results of an open 15441 * while holding a delegation, then just release it; no need 15442 * to do an OTW close. Otherwise do a "normal" OTW close. 15443 */ 15444 if (osp->os_delegation) { 15445 nfs4close_notw(vp, osp, &have_sync_lock); 15446 nfs4_error_zinit(ep); 15447 goto out; 15448 } 15449 15450 /* 15451 * If this stream is not valid, we're done. 15452 */ 15453 if (!osp->os_valid) { 15454 nfs4_error_zinit(ep); 15455 goto out; 15456 } 15457 15458 /* 15459 * Last open or mmap ref has vanished, need to do an OTW close. 15460 * First check to see if a close is still necessary. 15461 */ 15462 if (osp->os_failed_reopen) { 15463 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15464 "don't close OTW osp %p since reopen failed.", 15465 (void *)osp)); 15466 /* 15467 * Reopen of the open stream failed, hence the 15468 * stateid of the open stream is invalid/stale, and 15469 * sending this OTW would incorrectly cause another 15470 * round of recovery. In this case, we need to set 15471 * the 'os_valid' bit to 0 so another thread doesn't 15472 * come in and re-open this open stream before 15473 * this "closing" thread cleans up state (decrementing 15474 * the nfs4_server_t's state_ref_count and decrementing 15475 * the os_ref_count). 15476 */ 15477 osp->os_valid = 0; 15478 /* 15479 * This removes the reference obtained at OPEN; ie, 15480 * when the open stream structure was created. 15481 * 15482 * We don't have to worry about calling 'open_stream_rele' 15483 * since we our currently holding a reference to this 15484 * open stream which means the count can not go to 0 with 15485 * this decrement. 15486 */ 15487 ASSERT(osp->os_ref_count >= 2); 15488 osp->os_ref_count--; 15489 nfs4_error_zinit(ep); 15490 close_failed = 0; 15491 goto close_cleanup; 15492 } 15493 15494 ASSERT(osp->os_ref_count > 1); 15495 15496 /* 15497 * Sixth, try the CLOSE OTW. 15498 */ 15499 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15500 close_type, ep, &have_sync_lock); 15501 15502 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15503 /* 15504 * Let the recovery thread be responsible for 15505 * removing the state for CLOSE. 15506 */ 15507 close_failed = 1; 15508 force_close = 0; 15509 retry = 0; 15510 } 15511 15512 /* See if we need to retry with a different cred */ 15513 if ((ep->error == EACCES || 15514 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15515 cred_otw != cr) { 15516 crfree(cred_otw); 15517 cred_otw = cr; 15518 crhold(cred_otw); 15519 retry = 1; 15520 } 15521 15522 if (ep->error || ep->stat) 15523 close_failed = 1; 15524 15525 if (retry && !isrecov && num_retries-- > 0) { 15526 if (have_sync_lock) { 15527 mutex_exit(&osp->os_sync_lock); 15528 have_sync_lock = 0; 15529 } 15530 if (did_start_seqid_sync) { 15531 nfs4_end_open_seqid_sync(oop); 15532 did_start_seqid_sync = 0; 15533 } 15534 open_stream_rele(osp, rp); 15535 15536 if (did_start_op) 15537 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15538 &recov_state, FALSE); 15539 if (did_force_recovlock) 15540 nfs_rw_exit(&mi->mi_recovlock); 15541 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15542 "nfs4close_one: need to retry the close " 15543 "operation")); 15544 goto recov_retry; 15545 } 15546 close_cleanup: 15547 /* 15548 * Seventh and lastly, process our results. 15549 */ 15550 if (close_failed && force_close) { 15551 /* 15552 * It's ok to drop and regrab the 'os_sync_lock' since 15553 * nfs4close_notw() will recheck to make sure the 15554 * "close"/removal of state should happen. 15555 */ 15556 if (!have_sync_lock) { 15557 mutex_enter(&osp->os_sync_lock); 15558 have_sync_lock = 1; 15559 } 15560 /* 15561 * This is last call, remove the ref on the open 15562 * stream created by open and clean everything up. 15563 */ 15564 osp->os_pending_close = 0; 15565 nfs4close_notw(vp, osp, &have_sync_lock); 15566 nfs4_error_zinit(ep); 15567 } 15568 15569 if (!close_failed) { 15570 if (have_sync_lock) { 15571 osp->os_pending_close = 0; 15572 mutex_exit(&osp->os_sync_lock); 15573 have_sync_lock = 0; 15574 } else { 15575 mutex_enter(&osp->os_sync_lock); 15576 osp->os_pending_close = 0; 15577 mutex_exit(&osp->os_sync_lock); 15578 } 15579 if (did_start_op && recov_state.rs_sp != NULL) { 15580 mutex_enter(&recov_state.rs_sp->s_lock); 15581 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15582 mutex_exit(&recov_state.rs_sp->s_lock); 15583 } else { 15584 nfs4_dec_state_ref_count(mi); 15585 } 15586 nfs4_error_zinit(ep); 15587 } 15588 15589 out: 15590 if (have_sync_lock) 15591 mutex_exit(&osp->os_sync_lock); 15592 if (did_start_op) 15593 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15594 recovonly ? TRUE : FALSE); 15595 if (did_force_recovlock) 15596 nfs_rw_exit(&mi->mi_recovlock); 15597 if (cred_otw) 15598 crfree(cred_otw); 15599 if (osp) 15600 open_stream_rele(osp, rp); 15601 if (oop) { 15602 if (did_start_seqid_sync) 15603 nfs4_end_open_seqid_sync(oop); 15604 open_owner_rele(oop); 15605 } 15606 } 15607 15608 /* 15609 * Convert information returned by the server in the LOCK4denied 15610 * structure to the form required by fcntl. 15611 */ 15612 static void 15613 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15614 { 15615 nfs4_lo_name_t *lo; 15616 15617 #ifdef DEBUG 15618 if (denied_to_flk_debug) { 15619 lockt_denied_debug = lockt_denied; 15620 debug_enter("lockt_denied"); 15621 } 15622 #endif 15623 15624 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15625 flk->l_whence = 0; /* aka SEEK_SET */ 15626 flk->l_start = lockt_denied->offset; 15627 flk->l_len = lockt_denied->length; 15628 15629 /* 15630 * If the blocking clientid matches our client id, then we can 15631 * interpret the lockowner (since we built it). If not, then 15632 * fabricate a sysid and pid. Note that the l_sysid field 15633 * in *flk already has the local sysid. 15634 */ 15635 15636 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15637 15638 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15639 lo = (nfs4_lo_name_t *) 15640 lockt_denied->owner.owner_val; 15641 15642 flk->l_pid = lo->ln_pid; 15643 } else { 15644 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15645 "denied_to_flk: bad lock owner length\n")); 15646 15647 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15648 } 15649 } else { 15650 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15651 "denied_to_flk: foreign clientid\n")); 15652 15653 /* 15654 * Construct a new sysid which should be different from 15655 * sysids of other systems. 15656 */ 15657 15658 flk->l_sysid++; 15659 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15660 } 15661 } 15662 15663 static pid_t 15664 lo_to_pid(lock_owner4 *lop) 15665 { 15666 pid_t pid = 0; 15667 uchar_t *cp; 15668 int i; 15669 15670 cp = (uchar_t *)&lop->clientid; 15671 15672 for (i = 0; i < sizeof (lop->clientid); i++) 15673 pid += (pid_t)*cp++; 15674 15675 cp = (uchar_t *)lop->owner_val; 15676 15677 for (i = 0; i < lop->owner_len; i++) 15678 pid += (pid_t)*cp++; 15679 15680 return (pid); 15681 } 15682 15683 /* 15684 * Given a lock pointer, returns the length of that lock. 15685 * "end" is the last locked offset the "l_len" covers from 15686 * the start of the lock. 15687 */ 15688 static off64_t 15689 lock_to_end(flock64_t *lock) 15690 { 15691 off64_t lock_end; 15692 15693 if (lock->l_len == 0) 15694 lock_end = (off64_t)MAXEND; 15695 else 15696 lock_end = lock->l_start + lock->l_len - 1; 15697 15698 return (lock_end); 15699 } 15700 15701 /* 15702 * Given the end of a lock, it will return you the length "l_len" for that lock. 15703 */ 15704 static off64_t 15705 end_to_len(off64_t start, off64_t end) 15706 { 15707 off64_t lock_len; 15708 15709 ASSERT(end >= start); 15710 if (end == MAXEND) 15711 lock_len = 0; 15712 else 15713 lock_len = end - start + 1; 15714 15715 return (lock_len); 15716 } 15717 15718 /* 15719 * On given end for a lock it determines if it is the last locked offset 15720 * or not, if so keeps it as is, else adds one to return the length for 15721 * valid start. 15722 */ 15723 static off64_t 15724 start_check(off64_t x) 15725 { 15726 if (x == MAXEND) 15727 return (x); 15728 else 15729 return (x + 1); 15730 } 15731 15732 /* 15733 * See if these two locks overlap, and if so return 1; 15734 * otherwise, return 0. 15735 */ 15736 static int 15737 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15738 { 15739 off64_t llfp_end, curfp_end; 15740 15741 llfp_end = lock_to_end(llfp); 15742 curfp_end = lock_to_end(curfp); 15743 15744 if (((llfp_end >= curfp->l_start) && 15745 (llfp->l_start <= curfp->l_start)) || 15746 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15747 return (1); 15748 return (0); 15749 } 15750 15751 /* 15752 * Determine what the intersecting lock region is, and add that to the 15753 * 'nl_llpp' locklist in increasing order (by l_start). 15754 */ 15755 static void 15756 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15757 locklist_t **nl_llpp, vnode_t *vp) 15758 { 15759 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15760 off64_t lost_flp_end, local_flp_end, len, start; 15761 15762 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15763 15764 if (!locks_intersect(lost_flp, local_flp)) 15765 return; 15766 15767 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15768 "locks intersect")); 15769 15770 lost_flp_end = lock_to_end(lost_flp); 15771 local_flp_end = lock_to_end(local_flp); 15772 15773 /* Find the starting point of the intersecting region */ 15774 if (local_flp->l_start > lost_flp->l_start) 15775 start = local_flp->l_start; 15776 else 15777 start = lost_flp->l_start; 15778 15779 /* Find the lenght of the intersecting region */ 15780 if (lost_flp_end < local_flp_end) 15781 len = end_to_len(start, lost_flp_end); 15782 else 15783 len = end_to_len(start, local_flp_end); 15784 15785 /* 15786 * Prepare the flock structure for the intersection found and insert 15787 * it into the new list in increasing l_start order. This list contains 15788 * intersections of locks registered by the client with the local host 15789 * and the lost lock. 15790 * The lock type of this lock is the same as that of the local_flp. 15791 */ 15792 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15793 intersect_llp->ll_flock.l_start = start; 15794 intersect_llp->ll_flock.l_len = len; 15795 intersect_llp->ll_flock.l_type = local_flp->l_type; 15796 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15797 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15798 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15799 intersect_llp->ll_vp = vp; 15800 15801 tmp_fllp = *nl_llpp; 15802 cur_fllp = NULL; 15803 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15804 intersect_llp->ll_flock.l_start) { 15805 cur_fllp = tmp_fllp; 15806 tmp_fllp = tmp_fllp->ll_next; 15807 } 15808 if (cur_fllp == NULL) { 15809 /* first on the list */ 15810 intersect_llp->ll_next = *nl_llpp; 15811 *nl_llpp = intersect_llp; 15812 } else { 15813 intersect_llp->ll_next = cur_fllp->ll_next; 15814 cur_fllp->ll_next = intersect_llp; 15815 } 15816 15817 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15818 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15819 intersect_llp->ll_flock.l_start, 15820 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15821 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15822 } 15823 15824 /* 15825 * Our local locking current state is potentially different than 15826 * what the NFSv4 server thinks we have due to a lost lock that was 15827 * resent and then received. We need to reset our "NFSv4" locking 15828 * state to match the current local locking state for this pid since 15829 * that is what the user/application sees as what the world is. 15830 * 15831 * We cannot afford to drop the open/lock seqid sync since then we can 15832 * get confused about what the current local locking state "is" versus 15833 * "was". 15834 * 15835 * If we are unable to fix up the locks, we send SIGLOST to the affected 15836 * process. This is not done if the filesystem has been forcibly 15837 * unmounted, in case the process has already exited and a new process 15838 * exists with the same pid. 15839 */ 15840 static void 15841 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15842 nfs4_lock_owner_t *lop) 15843 { 15844 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15845 mntinfo4_t *mi = VTOMI4(vp); 15846 const int cmd = F_SETLK; 15847 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15848 flock64_t ul_fl; 15849 15850 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15851 "nfs4_reinstitute_local_lock_state")); 15852 15853 /* 15854 * Find active locks for this vp from the local locking code. 15855 * Scan through this list and find out the locks that intersect with 15856 * the lost lock. Once we find the lock that intersects, add the 15857 * intersection area as a new lock to a new list "ri_llp". The lock 15858 * type of the intersection region lock added to ri_llp is the same 15859 * as that found in the active lock list, "list". The intersecting 15860 * region locks are added to ri_llp in increasing l_start order. 15861 */ 15862 ASSERT(nfs_zone() == mi->mi_zone); 15863 15864 locks = flk_active_locks_for_vp(vp); 15865 ri_llp = NULL; 15866 15867 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15868 ASSERT(llp->ll_vp == vp); 15869 /* 15870 * Pick locks that belong to this pid/lockowner 15871 */ 15872 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15873 continue; 15874 15875 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15876 } 15877 15878 /* 15879 * Now we have the list of intersections with the lost lock. These are 15880 * the locks that were/are active before the server replied to the 15881 * last/lost lock. Issue these locks to the server here. Playing these 15882 * locks to the server will re-establish our current local locking state 15883 * with the v4 server. 15884 * If we get an error, send SIGLOST to the application for that lock. 15885 */ 15886 15887 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15888 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15889 "nfs4_reinstitute_local_lock_state: need to issue " 15890 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15891 llp->ll_flock.l_start, 15892 llp->ll_flock.l_start + llp->ll_flock.l_len, 15893 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15894 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15895 /* 15896 * No need to relock what we already have 15897 */ 15898 if (llp->ll_flock.l_type == lost_flp->l_type) 15899 continue; 15900 15901 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15902 } 15903 15904 /* 15905 * Now keeping the start of the lost lock as our reference parse the 15906 * newly created ri_llp locklist to find the ranges that we have locked 15907 * with the v4 server but not in the current local locking. We need 15908 * to unlock these ranges. 15909 * These ranges can also be reffered to as those ranges, where the lost 15910 * lock does not overlap with the locks in the ri_llp but are locked 15911 * since the server replied to the lost lock. 15912 */ 15913 cur_start = lost_flp->l_start; 15914 lost_flp_end = lock_to_end(lost_flp); 15915 15916 ul_fl.l_type = F_UNLCK; 15917 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15918 ul_fl.l_sysid = lost_flp->l_sysid; 15919 ul_fl.l_pid = lost_flp->l_pid; 15920 15921 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15922 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15923 15924 if (llp->ll_flock.l_start <= cur_start) { 15925 cur_start = start_check(llp_ll_flock_end); 15926 continue; 15927 } 15928 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15929 "nfs4_reinstitute_local_lock_state: " 15930 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15931 cur_start, llp->ll_flock.l_start)); 15932 15933 ul_fl.l_start = cur_start; 15934 ul_fl.l_len = end_to_len(cur_start, 15935 (llp->ll_flock.l_start - 1)); 15936 15937 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15938 cur_start = start_check(llp_ll_flock_end); 15939 } 15940 15941 /* 15942 * In the case where the lost lock ends after all intersecting locks, 15943 * unlock the last part of the lost lock range. 15944 */ 15945 if (cur_start != start_check(lost_flp_end)) { 15946 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15947 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15948 "lost lock region [%"PRIx64" - %"PRIx64"]", 15949 cur_start, lost_flp->l_start + lost_flp->l_len)); 15950 15951 ul_fl.l_start = cur_start; 15952 /* 15953 * Is it an to-EOF lock? if so unlock till the end 15954 */ 15955 if (lost_flp->l_len == 0) 15956 ul_fl.l_len = 0; 15957 else 15958 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15959 15960 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15961 } 15962 15963 if (locks != NULL) 15964 flk_free_locklist(locks); 15965 15966 /* Free up our newly created locklist */ 15967 for (llp = ri_llp; llp != NULL; ) { 15968 tmp_llp = llp->ll_next; 15969 kmem_free(llp, sizeof (locklist_t)); 15970 llp = tmp_llp; 15971 } 15972 15973 /* 15974 * Now return back to the original calling nfs4frlock() 15975 * and let us naturally drop our seqid syncs. 15976 */ 15977 } 15978 15979 /* 15980 * Create a lost state record for the given lock reinstantiation request 15981 * and push it onto the lost state queue. 15982 */ 15983 static void 15984 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15985 nfs4_lock_owner_t *lop) 15986 { 15987 nfs4_lost_rqst_t req; 15988 nfs_lock_type4 locktype; 15989 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15990 15991 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15992 15993 locktype = flk_to_locktype(cmd, flk->l_type); 15994 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15995 NULL, NULL, lop, flk, &req, cr, vp); 15996 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15997 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15998 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15999 NULL, NULL, NULL); 16000 } 16001