1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 /* BEGIN CSTYLED */ 571 DTRACE_LOADFUNC(8) 572 DTRACE_LOADFUNC(16) 573 DTRACE_LOADFUNC(32) 574 DTRACE_LOADFUNC(64) 575 /* END CSTYLED */ 576 577 static int 578 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 579 { 580 if (dest < mstate->dtms_scratch_base) 581 return (0); 582 583 if (dest + size < dest) 584 return (0); 585 586 if (dest + size > mstate->dtms_scratch_ptr) 587 return (0); 588 589 return (1); 590 } 591 592 static int 593 dtrace_canstore_statvar(uint64_t addr, size_t sz, 594 dtrace_statvar_t **svars, int nsvars) 595 { 596 int i; 597 size_t maxglobalsize, maxlocalsize; 598 599 if (nsvars == 0) 600 return (0); 601 602 maxglobalsize = dtrace_statvar_maxsize; 603 maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU; 604 605 for (i = 0; i < nsvars; i++) { 606 dtrace_statvar_t *svar = svars[i]; 607 uint8_t scope; 608 size_t size; 609 610 if (svar == NULL || (size = svar->dtsv_size) == 0) 611 continue; 612 613 scope = svar->dtsv_var.dtdv_scope; 614 615 /* 616 * We verify that our size is valid in the spirit of providing 617 * defense in depth: we want to prevent attackers from using 618 * DTrace to escalate an orthogonal kernel heap corruption bug 619 * into the ability to store to arbitrary locations in memory. 620 */ 621 VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) || 622 (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize)); 623 624 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 625 return (1); 626 } 627 628 return (0); 629 } 630 631 /* 632 * Check to see if the address is within a memory region to which a store may 633 * be issued. This includes the DTrace scratch areas, and any DTrace variable 634 * region. The caller of dtrace_canstore() is responsible for performing any 635 * alignment checks that are needed before stores are actually executed. 636 */ 637 static int 638 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 639 dtrace_vstate_t *vstate) 640 { 641 /* 642 * First, check to see if the address is in scratch space... 643 */ 644 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 645 mstate->dtms_scratch_size)) 646 return (1); 647 648 /* 649 * Now check to see if it's a dynamic variable. This check will pick 650 * up both thread-local variables and any global dynamically-allocated 651 * variables. 652 */ 653 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 654 vstate->dtvs_dynvars.dtds_size)) { 655 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 656 uintptr_t base = (uintptr_t)dstate->dtds_base + 657 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 658 uintptr_t chunkoffs; 659 dtrace_dynvar_t *dvar; 660 661 /* 662 * Before we assume that we can store here, we need to make 663 * sure that it isn't in our metadata -- storing to our 664 * dynamic variable metadata would corrupt our state. For 665 * the range to not include any dynamic variable metadata, 666 * it must: 667 * 668 * (1) Start above the hash table that is at the base of 669 * the dynamic variable space 670 * 671 * (2) Have a starting chunk offset that is beyond the 672 * dtrace_dynvar_t that is at the base of every chunk 673 * 674 * (3) Not span a chunk boundary 675 * 676 * (4) Not be in the tuple space of a dynamic variable 677 * 678 */ 679 if (addr < base) 680 return (0); 681 682 chunkoffs = (addr - base) % dstate->dtds_chunksize; 683 684 if (chunkoffs < sizeof (dtrace_dynvar_t)) 685 return (0); 686 687 if (chunkoffs + sz > dstate->dtds_chunksize) 688 return (0); 689 690 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 691 692 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 693 return (0); 694 695 if (chunkoffs < sizeof (dtrace_dynvar_t) + 696 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 697 return (0); 698 699 return (1); 700 } 701 702 /* 703 * Finally, check the static local and global variables. These checks 704 * take the longest, so we perform them last. 705 */ 706 if (dtrace_canstore_statvar(addr, sz, 707 vstate->dtvs_locals, vstate->dtvs_nlocals)) 708 return (1); 709 710 if (dtrace_canstore_statvar(addr, sz, 711 vstate->dtvs_globals, vstate->dtvs_nglobals)) 712 return (1); 713 714 return (0); 715 } 716 717 718 /* 719 * Convenience routine to check to see if the address is within a memory 720 * region in which a load may be issued given the user's privilege level; 721 * if not, it sets the appropriate error flags and loads 'addr' into the 722 * illegal value slot. 723 * 724 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 725 * appropriate memory access protection. 726 */ 727 static int 728 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 729 dtrace_vstate_t *vstate) 730 { 731 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 732 file_t *fp; 733 734 /* 735 * If we hold the privilege to read from kernel memory, then 736 * everything is readable. 737 */ 738 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 739 return (1); 740 741 /* 742 * You can obviously read that which you can store. 743 */ 744 if (dtrace_canstore(addr, sz, mstate, vstate)) 745 return (1); 746 747 /* 748 * We're allowed to read from our own string table. 749 */ 750 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 751 mstate->dtms_difo->dtdo_strlen)) 752 return (1); 753 754 if (vstate->dtvs_state != NULL && 755 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 756 proc_t *p; 757 758 /* 759 * When we have privileges to the current process, there are 760 * several context-related kernel structures that are safe to 761 * read, even absent the privilege to read from kernel memory. 762 * These reads are safe because these structures contain only 763 * state that (1) we're permitted to read, (2) is harmless or 764 * (3) contains pointers to additional kernel state that we're 765 * not permitted to read (and as such, do not present an 766 * opportunity for privilege escalation). Finally (and 767 * critically), because of the nature of their relation with 768 * the current thread context, the memory associated with these 769 * structures cannot change over the duration of probe context, 770 * and it is therefore impossible for this memory to be 771 * deallocated and reallocated as something else while it's 772 * being operated upon. 773 */ 774 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 775 return (1); 776 777 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 778 sz, curthread->t_procp, sizeof (proc_t))) { 779 return (1); 780 } 781 782 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 783 curthread->t_cred, sizeof (cred_t))) { 784 return (1); 785 } 786 787 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 788 &(p->p_pidp->pid_id), sizeof (pid_t))) { 789 return (1); 790 } 791 792 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 793 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 794 return (1); 795 } 796 } 797 798 if ((fp = mstate->dtms_getf) != NULL) { 799 uintptr_t psz = sizeof (void *); 800 vnode_t *vp; 801 vnodeops_t *op; 802 803 /* 804 * When getf() returns a file_t, the enabling is implicitly 805 * granted the (transient) right to read the returned file_t 806 * as well as the v_path and v_op->vnop_name of the underlying 807 * vnode. These accesses are allowed after a successful 808 * getf() because the members that they refer to cannot change 809 * once set -- and the barrier logic in the kernel's closef() 810 * path assures that the file_t and its referenced vode_t 811 * cannot themselves be stale (that is, it impossible for 812 * either dtms_getf itself or its f_vnode member to reference 813 * freed memory). 814 */ 815 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 816 return (1); 817 818 if ((vp = fp->f_vnode) != NULL) { 819 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 820 return (1); 821 822 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 823 vp->v_path, strlen(vp->v_path) + 1)) { 824 return (1); 825 } 826 827 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 828 return (1); 829 830 if ((op = vp->v_op) != NULL && 831 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 832 return (1); 833 } 834 835 if (op != NULL && op->vnop_name != NULL && 836 DTRACE_INRANGE(addr, sz, op->vnop_name, 837 strlen(op->vnop_name) + 1)) { 838 return (1); 839 } 840 } 841 } 842 843 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 844 *illval = addr; 845 return (0); 846 } 847 848 /* 849 * Convenience routine to check to see if a given string is within a memory 850 * region in which a load may be issued given the user's privilege level; 851 * this exists so that we don't need to issue unnecessary dtrace_strlen() 852 * calls in the event that the user has all privileges. 853 */ 854 static int 855 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 856 dtrace_vstate_t *vstate) 857 { 858 size_t strsz; 859 860 /* 861 * If we hold the privilege to read from kernel memory, then 862 * everything is readable. 863 */ 864 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 865 return (1); 866 867 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 868 if (dtrace_canload(addr, strsz, mstate, vstate)) 869 return (1); 870 871 return (0); 872 } 873 874 /* 875 * Convenience routine to check to see if a given variable is within a memory 876 * region in which a load may be issued given the user's privilege level. 877 */ 878 static int 879 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 880 dtrace_vstate_t *vstate) 881 { 882 size_t sz; 883 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 884 885 /* 886 * If we hold the privilege to read from kernel memory, then 887 * everything is readable. 888 */ 889 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 890 return (1); 891 892 if (type->dtdt_kind == DIF_TYPE_STRING) 893 sz = dtrace_strlen(src, 894 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 895 else 896 sz = type->dtdt_size; 897 898 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 899 } 900 901 /* 902 * Convert a string to a signed integer using safe loads. 903 * 904 * NOTE: This function uses various macros from strtolctype.h to manipulate 905 * digit values, etc -- these have all been checked to ensure they make 906 * no additional function calls. 907 */ 908 static int64_t 909 dtrace_strtoll(char *input, int base, size_t limit) 910 { 911 uintptr_t pos = (uintptr_t)input; 912 int64_t val = 0; 913 int x; 914 boolean_t neg = B_FALSE; 915 char c, cc, ccc; 916 uintptr_t end = pos + limit; 917 918 /* 919 * Consume any whitespace preceding digits. 920 */ 921 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 922 pos++; 923 924 /* 925 * Handle an explicit sign if one is present. 926 */ 927 if (c == '-' || c == '+') { 928 if (c == '-') 929 neg = B_TRUE; 930 c = dtrace_load8(++pos); 931 } 932 933 /* 934 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 935 * if present. 936 */ 937 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 938 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 939 pos += 2; 940 c = ccc; 941 } 942 943 /* 944 * Read in contiguous digits until the first non-digit character. 945 */ 946 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 947 c = dtrace_load8(++pos)) 948 val = val * base + x; 949 950 return (neg ? -val : val); 951 } 952 953 /* 954 * Compare two strings using safe loads. 955 */ 956 static int 957 dtrace_strncmp(char *s1, char *s2, size_t limit) 958 { 959 uint8_t c1, c2; 960 volatile uint16_t *flags; 961 962 if (s1 == s2 || limit == 0) 963 return (0); 964 965 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 966 967 do { 968 if (s1 == NULL) { 969 c1 = '\0'; 970 } else { 971 c1 = dtrace_load8((uintptr_t)s1++); 972 } 973 974 if (s2 == NULL) { 975 c2 = '\0'; 976 } else { 977 c2 = dtrace_load8((uintptr_t)s2++); 978 } 979 980 if (c1 != c2) 981 return (c1 - c2); 982 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 983 984 return (0); 985 } 986 987 /* 988 * Compute strlen(s) for a string using safe memory accesses. The additional 989 * len parameter is used to specify a maximum length to ensure completion. 990 */ 991 static size_t 992 dtrace_strlen(const char *s, size_t lim) 993 { 994 uint_t len; 995 996 for (len = 0; len != lim; len++) { 997 if (dtrace_load8((uintptr_t)s++) == '\0') 998 break; 999 } 1000 1001 return (len); 1002 } 1003 1004 /* 1005 * Check if an address falls within a toxic region. 1006 */ 1007 static int 1008 dtrace_istoxic(uintptr_t kaddr, size_t size) 1009 { 1010 uintptr_t taddr, tsize; 1011 int i; 1012 1013 for (i = 0; i < dtrace_toxranges; i++) { 1014 taddr = dtrace_toxrange[i].dtt_base; 1015 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1016 1017 if (kaddr - taddr < tsize) { 1018 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1019 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1020 return (1); 1021 } 1022 1023 if (taddr - kaddr < size) { 1024 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1025 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1026 return (1); 1027 } 1028 } 1029 1030 return (0); 1031 } 1032 1033 /* 1034 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1035 * memory specified by the DIF program. The dst is assumed to be safe memory 1036 * that we can store to directly because it is managed by DTrace. As with 1037 * standard bcopy, overlapping copies are handled properly. 1038 */ 1039 static void 1040 dtrace_bcopy(const void *src, void *dst, size_t len) 1041 { 1042 if (len != 0) { 1043 uint8_t *s1 = dst; 1044 const uint8_t *s2 = src; 1045 1046 if (s1 <= s2) { 1047 do { 1048 *s1++ = dtrace_load8((uintptr_t)s2++); 1049 } while (--len != 0); 1050 } else { 1051 s2 += len; 1052 s1 += len; 1053 1054 do { 1055 *--s1 = dtrace_load8((uintptr_t)--s2); 1056 } while (--len != 0); 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Copy src to dst using safe memory accesses, up to either the specified 1063 * length, or the point that a nul byte is encountered. The src is assumed to 1064 * be unsafe memory specified by the DIF program. The dst is assumed to be 1065 * safe memory that we can store to directly because it is managed by DTrace. 1066 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1067 */ 1068 static void 1069 dtrace_strcpy(const void *src, void *dst, size_t len) 1070 { 1071 if (len != 0) { 1072 uint8_t *s1 = dst, c; 1073 const uint8_t *s2 = src; 1074 1075 do { 1076 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1077 } while (--len != 0 && c != '\0'); 1078 } 1079 } 1080 1081 /* 1082 * Copy src to dst, deriving the size and type from the specified (BYREF) 1083 * variable type. The src is assumed to be unsafe memory specified by the DIF 1084 * program. The dst is assumed to be DTrace variable memory that is of the 1085 * specified type; we assume that we can store to directly. 1086 */ 1087 static void 1088 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1089 { 1090 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1091 1092 if (type->dtdt_kind == DIF_TYPE_STRING) { 1093 dtrace_strcpy(src, dst, type->dtdt_size); 1094 } else { 1095 dtrace_bcopy(src, dst, type->dtdt_size); 1096 } 1097 } 1098 1099 /* 1100 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1101 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1102 * safe memory that we can access directly because it is managed by DTrace. 1103 */ 1104 static int 1105 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1106 { 1107 volatile uint16_t *flags; 1108 1109 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1110 1111 if (s1 == s2) 1112 return (0); 1113 1114 if (s1 == NULL || s2 == NULL) 1115 return (1); 1116 1117 if (s1 != s2 && len != 0) { 1118 const uint8_t *ps1 = s1; 1119 const uint8_t *ps2 = s2; 1120 1121 do { 1122 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1123 return (1); 1124 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1125 } 1126 return (0); 1127 } 1128 1129 /* 1130 * Zero the specified region using a simple byte-by-byte loop. Note that this 1131 * is for safe DTrace-managed memory only. 1132 */ 1133 static void 1134 dtrace_bzero(void *dst, size_t len) 1135 { 1136 uchar_t *cp; 1137 1138 for (cp = dst; len != 0; len--) 1139 *cp++ = 0; 1140 } 1141 1142 static void 1143 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1144 { 1145 uint64_t result[2]; 1146 1147 result[0] = addend1[0] + addend2[0]; 1148 result[1] = addend1[1] + addend2[1] + 1149 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1150 1151 sum[0] = result[0]; 1152 sum[1] = result[1]; 1153 } 1154 1155 /* 1156 * Shift the 128-bit value in a by b. If b is positive, shift left. 1157 * If b is negative, shift right. 1158 */ 1159 static void 1160 dtrace_shift_128(uint64_t *a, int b) 1161 { 1162 uint64_t mask; 1163 1164 if (b == 0) 1165 return; 1166 1167 if (b < 0) { 1168 b = -b; 1169 if (b >= 64) { 1170 a[0] = a[1] >> (b - 64); 1171 a[1] = 0; 1172 } else { 1173 a[0] >>= b; 1174 mask = 1LL << (64 - b); 1175 mask -= 1; 1176 a[0] |= ((a[1] & mask) << (64 - b)); 1177 a[1] >>= b; 1178 } 1179 } else { 1180 if (b >= 64) { 1181 a[1] = a[0] << (b - 64); 1182 a[0] = 0; 1183 } else { 1184 a[1] <<= b; 1185 mask = a[0] >> (64 - b); 1186 a[1] |= mask; 1187 a[0] <<= b; 1188 } 1189 } 1190 } 1191 1192 /* 1193 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1194 * use native multiplication on those, and then re-combine into the 1195 * resulting 128-bit value. 1196 * 1197 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1198 * hi1 * hi2 << 64 + 1199 * hi1 * lo2 << 32 + 1200 * hi2 * lo1 << 32 + 1201 * lo1 * lo2 1202 */ 1203 static void 1204 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1205 { 1206 uint64_t hi1, hi2, lo1, lo2; 1207 uint64_t tmp[2]; 1208 1209 hi1 = factor1 >> 32; 1210 hi2 = factor2 >> 32; 1211 1212 lo1 = factor1 & DT_MASK_LO; 1213 lo2 = factor2 & DT_MASK_LO; 1214 1215 product[0] = lo1 * lo2; 1216 product[1] = hi1 * hi2; 1217 1218 tmp[0] = hi1 * lo2; 1219 tmp[1] = 0; 1220 dtrace_shift_128(tmp, 32); 1221 dtrace_add_128(product, tmp, product); 1222 1223 tmp[0] = hi2 * lo1; 1224 tmp[1] = 0; 1225 dtrace_shift_128(tmp, 32); 1226 dtrace_add_128(product, tmp, product); 1227 } 1228 1229 /* 1230 * This privilege check should be used by actions and subroutines to 1231 * verify that the user credentials of the process that enabled the 1232 * invoking ECB match the target credentials 1233 */ 1234 static int 1235 dtrace_priv_proc_common_user(dtrace_state_t *state) 1236 { 1237 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1238 1239 /* 1240 * We should always have a non-NULL state cred here, since if cred 1241 * is null (anonymous tracing), we fast-path bypass this routine. 1242 */ 1243 ASSERT(s_cr != NULL); 1244 1245 if ((cr = CRED()) != NULL && 1246 s_cr->cr_uid == cr->cr_uid && 1247 s_cr->cr_uid == cr->cr_ruid && 1248 s_cr->cr_uid == cr->cr_suid && 1249 s_cr->cr_gid == cr->cr_gid && 1250 s_cr->cr_gid == cr->cr_rgid && 1251 s_cr->cr_gid == cr->cr_sgid) 1252 return (1); 1253 1254 return (0); 1255 } 1256 1257 /* 1258 * This privilege check should be used by actions and subroutines to 1259 * verify that the zone of the process that enabled the invoking ECB 1260 * matches the target credentials 1261 */ 1262 static int 1263 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1264 { 1265 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1266 1267 /* 1268 * We should always have a non-NULL state cred here, since if cred 1269 * is null (anonymous tracing), we fast-path bypass this routine. 1270 */ 1271 ASSERT(s_cr != NULL); 1272 1273 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1274 return (1); 1275 1276 return (0); 1277 } 1278 1279 /* 1280 * This privilege check should be used by actions and subroutines to 1281 * verify that the process has not setuid or changed credentials. 1282 */ 1283 static int 1284 dtrace_priv_proc_common_nocd() 1285 { 1286 proc_t *proc; 1287 1288 if ((proc = ttoproc(curthread)) != NULL && 1289 !(proc->p_flag & SNOCD)) 1290 return (1); 1291 1292 return (0); 1293 } 1294 1295 static int 1296 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1297 { 1298 int action = state->dts_cred.dcr_action; 1299 1300 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1301 goto bad; 1302 1303 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1304 dtrace_priv_proc_common_zone(state) == 0) 1305 goto bad; 1306 1307 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1308 dtrace_priv_proc_common_user(state) == 0) 1309 goto bad; 1310 1311 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1312 dtrace_priv_proc_common_nocd() == 0) 1313 goto bad; 1314 1315 return (1); 1316 1317 bad: 1318 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1319 1320 return (0); 1321 } 1322 1323 static int 1324 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1325 { 1326 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1327 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1328 return (1); 1329 1330 if (dtrace_priv_proc_common_zone(state) && 1331 dtrace_priv_proc_common_user(state) && 1332 dtrace_priv_proc_common_nocd()) 1333 return (1); 1334 } 1335 1336 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1337 1338 return (0); 1339 } 1340 1341 static int 1342 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1343 { 1344 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1345 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1346 return (1); 1347 1348 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1349 1350 return (0); 1351 } 1352 1353 static int 1354 dtrace_priv_kernel(dtrace_state_t *state) 1355 { 1356 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1357 return (1); 1358 1359 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1360 1361 return (0); 1362 } 1363 1364 static int 1365 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1366 { 1367 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1368 return (1); 1369 1370 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * Determine if the dte_cond of the specified ECB allows for processing of 1377 * the current probe to continue. Note that this routine may allow continued 1378 * processing, but with access(es) stripped from the mstate's dtms_access 1379 * field. 1380 */ 1381 static int 1382 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1383 dtrace_ecb_t *ecb) 1384 { 1385 dtrace_probe_t *probe = ecb->dte_probe; 1386 dtrace_provider_t *prov = probe->dtpr_provider; 1387 dtrace_pops_t *pops = &prov->dtpv_pops; 1388 int mode = DTRACE_MODE_NOPRIV_DROP; 1389 1390 ASSERT(ecb->dte_cond); 1391 1392 if (pops->dtps_mode != NULL) { 1393 mode = pops->dtps_mode(prov->dtpv_arg, 1394 probe->dtpr_id, probe->dtpr_arg); 1395 1396 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1397 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1398 DTRACE_MODE_NOPRIV_DROP)); 1399 } 1400 1401 /* 1402 * If the dte_cond bits indicate that this consumer is only allowed to 1403 * see user-mode firings of this probe, check that the probe was fired 1404 * while in a user context. If that's not the case, use the policy 1405 * specified by the provider to determine if we drop the probe or 1406 * merely restrict operation. 1407 */ 1408 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1409 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1410 1411 if (!(mode & DTRACE_MODE_USER)) { 1412 if (mode & DTRACE_MODE_NOPRIV_DROP) 1413 return (0); 1414 1415 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1416 } 1417 } 1418 1419 /* 1420 * This is more subtle than it looks. We have to be absolutely certain 1421 * that CRED() isn't going to change out from under us so it's only 1422 * legit to examine that structure if we're in constrained situations. 1423 * Currently, the only times we'll this check is if a non-super-user 1424 * has enabled the profile or syscall providers -- providers that 1425 * allow visibility of all processes. For the profile case, the check 1426 * above will ensure that we're examining a user context. 1427 */ 1428 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1429 cred_t *cr; 1430 cred_t *s_cr = state->dts_cred.dcr_cred; 1431 proc_t *proc; 1432 1433 ASSERT(s_cr != NULL); 1434 1435 if ((cr = CRED()) == NULL || 1436 s_cr->cr_uid != cr->cr_uid || 1437 s_cr->cr_uid != cr->cr_ruid || 1438 s_cr->cr_uid != cr->cr_suid || 1439 s_cr->cr_gid != cr->cr_gid || 1440 s_cr->cr_gid != cr->cr_rgid || 1441 s_cr->cr_gid != cr->cr_sgid || 1442 (proc = ttoproc(curthread)) == NULL || 1443 (proc->p_flag & SNOCD)) { 1444 if (mode & DTRACE_MODE_NOPRIV_DROP) 1445 return (0); 1446 1447 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1448 } 1449 } 1450 1451 /* 1452 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1453 * in our zone, check to see if our mode policy is to restrict rather 1454 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1455 * and DTRACE_ACCESS_ARGS 1456 */ 1457 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1458 cred_t *cr; 1459 cred_t *s_cr = state->dts_cred.dcr_cred; 1460 1461 ASSERT(s_cr != NULL); 1462 1463 if ((cr = CRED()) == NULL || 1464 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1465 if (mode & DTRACE_MODE_NOPRIV_DROP) 1466 return (0); 1467 1468 mstate->dtms_access &= 1469 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1470 } 1471 } 1472 1473 /* 1474 * By merits of being in this code path at all, we have limited 1475 * privileges. If the provider has indicated that limited privileges 1476 * are to denote restricted operation, strip off the ability to access 1477 * arguments. 1478 */ 1479 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1480 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1481 1482 return (1); 1483 } 1484 1485 /* 1486 * Note: not called from probe context. This function is called 1487 * asynchronously (and at a regular interval) from outside of probe context to 1488 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1489 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1490 */ 1491 void 1492 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1493 { 1494 dtrace_dynvar_t *dirty; 1495 dtrace_dstate_percpu_t *dcpu; 1496 dtrace_dynvar_t **rinsep; 1497 int i, j, work = 0; 1498 1499 for (i = 0; i < NCPU; i++) { 1500 dcpu = &dstate->dtds_percpu[i]; 1501 rinsep = &dcpu->dtdsc_rinsing; 1502 1503 /* 1504 * If the dirty list is NULL, there is no dirty work to do. 1505 */ 1506 if (dcpu->dtdsc_dirty == NULL) 1507 continue; 1508 1509 if (dcpu->dtdsc_rinsing != NULL) { 1510 /* 1511 * If the rinsing list is non-NULL, then it is because 1512 * this CPU was selected to accept another CPU's 1513 * dirty list -- and since that time, dirty buffers 1514 * have accumulated. This is a highly unlikely 1515 * condition, but we choose to ignore the dirty 1516 * buffers -- they'll be picked up a future cleanse. 1517 */ 1518 continue; 1519 } 1520 1521 if (dcpu->dtdsc_clean != NULL) { 1522 /* 1523 * If the clean list is non-NULL, then we're in a 1524 * situation where a CPU has done deallocations (we 1525 * have a non-NULL dirty list) but no allocations (we 1526 * also have a non-NULL clean list). We can't simply 1527 * move the dirty list into the clean list on this 1528 * CPU, yet we also don't want to allow this condition 1529 * to persist, lest a short clean list prevent a 1530 * massive dirty list from being cleaned (which in 1531 * turn could lead to otherwise avoidable dynamic 1532 * drops). To deal with this, we look for some CPU 1533 * with a NULL clean list, NULL dirty list, and NULL 1534 * rinsing list -- and then we borrow this CPU to 1535 * rinse our dirty list. 1536 */ 1537 for (j = 0; j < NCPU; j++) { 1538 dtrace_dstate_percpu_t *rinser; 1539 1540 rinser = &dstate->dtds_percpu[j]; 1541 1542 if (rinser->dtdsc_rinsing != NULL) 1543 continue; 1544 1545 if (rinser->dtdsc_dirty != NULL) 1546 continue; 1547 1548 if (rinser->dtdsc_clean != NULL) 1549 continue; 1550 1551 rinsep = &rinser->dtdsc_rinsing; 1552 break; 1553 } 1554 1555 if (j == NCPU) { 1556 /* 1557 * We were unable to find another CPU that 1558 * could accept this dirty list -- we are 1559 * therefore unable to clean it now. 1560 */ 1561 dtrace_dynvar_failclean++; 1562 continue; 1563 } 1564 } 1565 1566 work = 1; 1567 1568 /* 1569 * Atomically move the dirty list aside. 1570 */ 1571 do { 1572 dirty = dcpu->dtdsc_dirty; 1573 1574 /* 1575 * Before we zap the dirty list, set the rinsing list. 1576 * (This allows for a potential assertion in 1577 * dtrace_dynvar(): if a free dynamic variable appears 1578 * on a hash chain, either the dirty list or the 1579 * rinsing list for some CPU must be non-NULL.) 1580 */ 1581 *rinsep = dirty; 1582 dtrace_membar_producer(); 1583 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1584 dirty, NULL) != dirty); 1585 } 1586 1587 if (!work) { 1588 /* 1589 * We have no work to do; we can simply return. 1590 */ 1591 return; 1592 } 1593 1594 dtrace_sync(); 1595 1596 for (i = 0; i < NCPU; i++) { 1597 dcpu = &dstate->dtds_percpu[i]; 1598 1599 if (dcpu->dtdsc_rinsing == NULL) 1600 continue; 1601 1602 /* 1603 * We are now guaranteed that no hash chain contains a pointer 1604 * into this dirty list; we can make it clean. 1605 */ 1606 ASSERT(dcpu->dtdsc_clean == NULL); 1607 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1608 dcpu->dtdsc_rinsing = NULL; 1609 } 1610 1611 /* 1612 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1613 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1614 * This prevents a race whereby a CPU incorrectly decides that 1615 * the state should be something other than DTRACE_DSTATE_CLEAN 1616 * after dtrace_dynvar_clean() has completed. 1617 */ 1618 dtrace_sync(); 1619 1620 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1621 } 1622 1623 /* 1624 * Depending on the value of the op parameter, this function looks-up, 1625 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1626 * allocation is requested, this function will return a pointer to a 1627 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1628 * variable can be allocated. If NULL is returned, the appropriate counter 1629 * will be incremented. 1630 */ 1631 dtrace_dynvar_t * 1632 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1633 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1634 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1635 { 1636 uint64_t hashval = DTRACE_DYNHASH_VALID; 1637 dtrace_dynhash_t *hash = dstate->dtds_hash; 1638 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1639 processorid_t me = CPU->cpu_id, cpu = me; 1640 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1641 size_t bucket, ksize; 1642 size_t chunksize = dstate->dtds_chunksize; 1643 uintptr_t kdata, lock, nstate; 1644 uint_t i; 1645 1646 ASSERT(nkeys != 0); 1647 1648 /* 1649 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1650 * algorithm. For the by-value portions, we perform the algorithm in 1651 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1652 * bit, and seems to have only a minute effect on distribution. For 1653 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1654 * over each referenced byte. It's painful to do this, but it's much 1655 * better than pathological hash distribution. The efficacy of the 1656 * hashing algorithm (and a comparison with other algorithms) may be 1657 * found by running the ::dtrace_dynstat MDB dcmd. 1658 */ 1659 for (i = 0; i < nkeys; i++) { 1660 if (key[i].dttk_size == 0) { 1661 uint64_t val = key[i].dttk_value; 1662 1663 hashval += (val >> 48) & 0xffff; 1664 hashval += (hashval << 10); 1665 hashval ^= (hashval >> 6); 1666 1667 hashval += (val >> 32) & 0xffff; 1668 hashval += (hashval << 10); 1669 hashval ^= (hashval >> 6); 1670 1671 hashval += (val >> 16) & 0xffff; 1672 hashval += (hashval << 10); 1673 hashval ^= (hashval >> 6); 1674 1675 hashval += val & 0xffff; 1676 hashval += (hashval << 10); 1677 hashval ^= (hashval >> 6); 1678 } else { 1679 /* 1680 * This is incredibly painful, but it beats the hell 1681 * out of the alternative. 1682 */ 1683 uint64_t j, size = key[i].dttk_size; 1684 uintptr_t base = (uintptr_t)key[i].dttk_value; 1685 1686 if (!dtrace_canload(base, size, mstate, vstate)) 1687 break; 1688 1689 for (j = 0; j < size; j++) { 1690 hashval += dtrace_load8(base + j); 1691 hashval += (hashval << 10); 1692 hashval ^= (hashval >> 6); 1693 } 1694 } 1695 } 1696 1697 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1698 return (NULL); 1699 1700 hashval += (hashval << 3); 1701 hashval ^= (hashval >> 11); 1702 hashval += (hashval << 15); 1703 1704 /* 1705 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1706 * comes out to be one of our two sentinel hash values. If this 1707 * actually happens, we set the hashval to be a value known to be a 1708 * non-sentinel value. 1709 */ 1710 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1711 hashval = DTRACE_DYNHASH_VALID; 1712 1713 /* 1714 * Yes, it's painful to do a divide here. If the cycle count becomes 1715 * important here, tricks can be pulled to reduce it. (However, it's 1716 * critical that hash collisions be kept to an absolute minimum; 1717 * they're much more painful than a divide.) It's better to have a 1718 * solution that generates few collisions and still keeps things 1719 * relatively simple. 1720 */ 1721 bucket = hashval % dstate->dtds_hashsize; 1722 1723 if (op == DTRACE_DYNVAR_DEALLOC) { 1724 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1725 1726 for (;;) { 1727 while ((lock = *lockp) & 1) 1728 continue; 1729 1730 if (dtrace_casptr((void *)lockp, 1731 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1732 break; 1733 } 1734 1735 dtrace_membar_producer(); 1736 } 1737 1738 top: 1739 prev = NULL; 1740 lock = hash[bucket].dtdh_lock; 1741 1742 dtrace_membar_consumer(); 1743 1744 start = hash[bucket].dtdh_chain; 1745 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1746 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1747 op != DTRACE_DYNVAR_DEALLOC)); 1748 1749 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1750 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1751 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1752 1753 if (dvar->dtdv_hashval != hashval) { 1754 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1755 /* 1756 * We've reached the sink, and therefore the 1757 * end of the hash chain; we can kick out of 1758 * the loop knowing that we have seen a valid 1759 * snapshot of state. 1760 */ 1761 ASSERT(dvar->dtdv_next == NULL); 1762 ASSERT(dvar == &dtrace_dynhash_sink); 1763 break; 1764 } 1765 1766 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1767 /* 1768 * We've gone off the rails: somewhere along 1769 * the line, one of the members of this hash 1770 * chain was deleted. Note that we could also 1771 * detect this by simply letting this loop run 1772 * to completion, as we would eventually hit 1773 * the end of the dirty list. However, we 1774 * want to avoid running the length of the 1775 * dirty list unnecessarily (it might be quite 1776 * long), so we catch this as early as 1777 * possible by detecting the hash marker. In 1778 * this case, we simply set dvar to NULL and 1779 * break; the conditional after the loop will 1780 * send us back to top. 1781 */ 1782 dvar = NULL; 1783 break; 1784 } 1785 1786 goto next; 1787 } 1788 1789 if (dtuple->dtt_nkeys != nkeys) 1790 goto next; 1791 1792 for (i = 0; i < nkeys; i++, dkey++) { 1793 if (dkey->dttk_size != key[i].dttk_size) 1794 goto next; /* size or type mismatch */ 1795 1796 if (dkey->dttk_size != 0) { 1797 if (dtrace_bcmp( 1798 (void *)(uintptr_t)key[i].dttk_value, 1799 (void *)(uintptr_t)dkey->dttk_value, 1800 dkey->dttk_size)) 1801 goto next; 1802 } else { 1803 if (dkey->dttk_value != key[i].dttk_value) 1804 goto next; 1805 } 1806 } 1807 1808 if (op != DTRACE_DYNVAR_DEALLOC) 1809 return (dvar); 1810 1811 ASSERT(dvar->dtdv_next == NULL || 1812 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1813 1814 if (prev != NULL) { 1815 ASSERT(hash[bucket].dtdh_chain != dvar); 1816 ASSERT(start != dvar); 1817 ASSERT(prev->dtdv_next == dvar); 1818 prev->dtdv_next = dvar->dtdv_next; 1819 } else { 1820 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1821 start, dvar->dtdv_next) != start) { 1822 /* 1823 * We have failed to atomically swing the 1824 * hash table head pointer, presumably because 1825 * of a conflicting allocation on another CPU. 1826 * We need to reread the hash chain and try 1827 * again. 1828 */ 1829 goto top; 1830 } 1831 } 1832 1833 dtrace_membar_producer(); 1834 1835 /* 1836 * Now set the hash value to indicate that it's free. 1837 */ 1838 ASSERT(hash[bucket].dtdh_chain != dvar); 1839 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1840 1841 dtrace_membar_producer(); 1842 1843 /* 1844 * Set the next pointer to point at the dirty list, and 1845 * atomically swing the dirty pointer to the newly freed dvar. 1846 */ 1847 do { 1848 next = dcpu->dtdsc_dirty; 1849 dvar->dtdv_next = next; 1850 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1851 1852 /* 1853 * Finally, unlock this hash bucket. 1854 */ 1855 ASSERT(hash[bucket].dtdh_lock == lock); 1856 ASSERT(lock & 1); 1857 hash[bucket].dtdh_lock++; 1858 1859 return (NULL); 1860 next: 1861 prev = dvar; 1862 continue; 1863 } 1864 1865 if (dvar == NULL) { 1866 /* 1867 * If dvar is NULL, it is because we went off the rails: 1868 * one of the elements that we traversed in the hash chain 1869 * was deleted while we were traversing it. In this case, 1870 * we assert that we aren't doing a dealloc (deallocs lock 1871 * the hash bucket to prevent themselves from racing with 1872 * one another), and retry the hash chain traversal. 1873 */ 1874 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1875 goto top; 1876 } 1877 1878 if (op != DTRACE_DYNVAR_ALLOC) { 1879 /* 1880 * If we are not to allocate a new variable, we want to 1881 * return NULL now. Before we return, check that the value 1882 * of the lock word hasn't changed. If it has, we may have 1883 * seen an inconsistent snapshot. 1884 */ 1885 if (op == DTRACE_DYNVAR_NOALLOC) { 1886 if (hash[bucket].dtdh_lock != lock) 1887 goto top; 1888 } else { 1889 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1890 ASSERT(hash[bucket].dtdh_lock == lock); 1891 ASSERT(lock & 1); 1892 hash[bucket].dtdh_lock++; 1893 } 1894 1895 return (NULL); 1896 } 1897 1898 /* 1899 * We need to allocate a new dynamic variable. The size we need is the 1900 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1901 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1902 * the size of any referred-to data (dsize). We then round the final 1903 * size up to the chunksize for allocation. 1904 */ 1905 for (ksize = 0, i = 0; i < nkeys; i++) 1906 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1907 1908 /* 1909 * This should be pretty much impossible, but could happen if, say, 1910 * strange DIF specified the tuple. Ideally, this should be an 1911 * assertion and not an error condition -- but that requires that the 1912 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1913 * bullet-proof. (That is, it must not be able to be fooled by 1914 * malicious DIF.) Given the lack of backwards branches in DIF, 1915 * solving this would presumably not amount to solving the Halting 1916 * Problem -- but it still seems awfully hard. 1917 */ 1918 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1919 ksize + dsize > chunksize) { 1920 dcpu->dtdsc_drops++; 1921 return (NULL); 1922 } 1923 1924 nstate = DTRACE_DSTATE_EMPTY; 1925 1926 do { 1927 retry: 1928 free = dcpu->dtdsc_free; 1929 1930 if (free == NULL) { 1931 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1932 void *rval; 1933 1934 if (clean == NULL) { 1935 /* 1936 * We're out of dynamic variable space on 1937 * this CPU. Unless we have tried all CPUs, 1938 * we'll try to allocate from a different 1939 * CPU. 1940 */ 1941 switch (dstate->dtds_state) { 1942 case DTRACE_DSTATE_CLEAN: { 1943 void *sp = &dstate->dtds_state; 1944 1945 if (++cpu >= NCPU) 1946 cpu = 0; 1947 1948 if (dcpu->dtdsc_dirty != NULL && 1949 nstate == DTRACE_DSTATE_EMPTY) 1950 nstate = DTRACE_DSTATE_DIRTY; 1951 1952 if (dcpu->dtdsc_rinsing != NULL) 1953 nstate = DTRACE_DSTATE_RINSING; 1954 1955 dcpu = &dstate->dtds_percpu[cpu]; 1956 1957 if (cpu != me) 1958 goto retry; 1959 1960 (void) dtrace_cas32(sp, 1961 DTRACE_DSTATE_CLEAN, nstate); 1962 1963 /* 1964 * To increment the correct bean 1965 * counter, take another lap. 1966 */ 1967 goto retry; 1968 } 1969 1970 case DTRACE_DSTATE_DIRTY: 1971 dcpu->dtdsc_dirty_drops++; 1972 break; 1973 1974 case DTRACE_DSTATE_RINSING: 1975 dcpu->dtdsc_rinsing_drops++; 1976 break; 1977 1978 case DTRACE_DSTATE_EMPTY: 1979 dcpu->dtdsc_drops++; 1980 break; 1981 } 1982 1983 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1984 return (NULL); 1985 } 1986 1987 /* 1988 * The clean list appears to be non-empty. We want to 1989 * move the clean list to the free list; we start by 1990 * moving the clean pointer aside. 1991 */ 1992 if (dtrace_casptr(&dcpu->dtdsc_clean, 1993 clean, NULL) != clean) { 1994 /* 1995 * We are in one of two situations: 1996 * 1997 * (a) The clean list was switched to the 1998 * free list by another CPU. 1999 * 2000 * (b) The clean list was added to by the 2001 * cleansing cyclic. 2002 * 2003 * In either of these situations, we can 2004 * just reattempt the free list allocation. 2005 */ 2006 goto retry; 2007 } 2008 2009 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2010 2011 /* 2012 * Now we'll move the clean list to our free list. 2013 * It's impossible for this to fail: the only way 2014 * the free list can be updated is through this 2015 * code path, and only one CPU can own the clean list. 2016 * Thus, it would only be possible for this to fail if 2017 * this code were racing with dtrace_dynvar_clean(). 2018 * (That is, if dtrace_dynvar_clean() updated the clean 2019 * list, and we ended up racing to update the free 2020 * list.) This race is prevented by the dtrace_sync() 2021 * in dtrace_dynvar_clean() -- which flushes the 2022 * owners of the clean lists out before resetting 2023 * the clean lists. 2024 */ 2025 dcpu = &dstate->dtds_percpu[me]; 2026 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2027 ASSERT(rval == NULL); 2028 goto retry; 2029 } 2030 2031 dvar = free; 2032 new_free = dvar->dtdv_next; 2033 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2034 2035 /* 2036 * We have now allocated a new chunk. We copy the tuple keys into the 2037 * tuple array and copy any referenced key data into the data space 2038 * following the tuple array. As we do this, we relocate dttk_value 2039 * in the final tuple to point to the key data address in the chunk. 2040 */ 2041 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2042 dvar->dtdv_data = (void *)(kdata + ksize); 2043 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2044 2045 for (i = 0; i < nkeys; i++) { 2046 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2047 size_t kesize = key[i].dttk_size; 2048 2049 if (kesize != 0) { 2050 dtrace_bcopy( 2051 (const void *)(uintptr_t)key[i].dttk_value, 2052 (void *)kdata, kesize); 2053 dkey->dttk_value = kdata; 2054 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2055 } else { 2056 dkey->dttk_value = key[i].dttk_value; 2057 } 2058 2059 dkey->dttk_size = kesize; 2060 } 2061 2062 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2063 dvar->dtdv_hashval = hashval; 2064 dvar->dtdv_next = start; 2065 2066 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2067 return (dvar); 2068 2069 /* 2070 * The cas has failed. Either another CPU is adding an element to 2071 * this hash chain, or another CPU is deleting an element from this 2072 * hash chain. The simplest way to deal with both of these cases 2073 * (though not necessarily the most efficient) is to free our 2074 * allocated block and re-attempt it all. Note that the free is 2075 * to the dirty list and _not_ to the free list. This is to prevent 2076 * races with allocators, above. 2077 */ 2078 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2079 2080 dtrace_membar_producer(); 2081 2082 do { 2083 free = dcpu->dtdsc_dirty; 2084 dvar->dtdv_next = free; 2085 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2086 2087 goto top; 2088 } 2089 2090 /*ARGSUSED*/ 2091 static void 2092 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2093 { 2094 if ((int64_t)nval < (int64_t)*oval) 2095 *oval = nval; 2096 } 2097 2098 /*ARGSUSED*/ 2099 static void 2100 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2101 { 2102 if ((int64_t)nval > (int64_t)*oval) 2103 *oval = nval; 2104 } 2105 2106 static void 2107 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2108 { 2109 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2110 int64_t val = (int64_t)nval; 2111 2112 if (val < 0) { 2113 for (i = 0; i < zero; i++) { 2114 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2115 quanta[i] += incr; 2116 return; 2117 } 2118 } 2119 } else { 2120 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2121 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2122 quanta[i - 1] += incr; 2123 return; 2124 } 2125 } 2126 2127 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2128 return; 2129 } 2130 2131 ASSERT(0); 2132 } 2133 2134 static void 2135 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2136 { 2137 uint64_t arg = *lquanta++; 2138 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2139 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2140 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2141 int32_t val = (int32_t)nval, level; 2142 2143 ASSERT(step != 0); 2144 ASSERT(levels != 0); 2145 2146 if (val < base) { 2147 /* 2148 * This is an underflow. 2149 */ 2150 lquanta[0] += incr; 2151 return; 2152 } 2153 2154 level = (val - base) / step; 2155 2156 if (level < levels) { 2157 lquanta[level + 1] += incr; 2158 return; 2159 } 2160 2161 /* 2162 * This is an overflow. 2163 */ 2164 lquanta[levels + 1] += incr; 2165 } 2166 2167 static int 2168 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2169 uint16_t high, uint16_t nsteps, int64_t value) 2170 { 2171 int64_t this = 1, last, next; 2172 int base = 1, order; 2173 2174 ASSERT(factor <= nsteps); 2175 ASSERT(nsteps % factor == 0); 2176 2177 for (order = 0; order < low; order++) 2178 this *= factor; 2179 2180 /* 2181 * If our value is less than our factor taken to the power of the 2182 * low order of magnitude, it goes into the zeroth bucket. 2183 */ 2184 if (value < (last = this)) 2185 return (0); 2186 2187 for (this *= factor; order <= high; order++) { 2188 int nbuckets = this > nsteps ? nsteps : this; 2189 2190 if ((next = this * factor) < this) { 2191 /* 2192 * We should not generally get log/linear quantizations 2193 * with a high magnitude that allows 64-bits to 2194 * overflow, but we nonetheless protect against this 2195 * by explicitly checking for overflow, and clamping 2196 * our value accordingly. 2197 */ 2198 value = this - 1; 2199 } 2200 2201 if (value < this) { 2202 /* 2203 * If our value lies within this order of magnitude, 2204 * determine its position by taking the offset within 2205 * the order of magnitude, dividing by the bucket 2206 * width, and adding to our (accumulated) base. 2207 */ 2208 return (base + (value - last) / (this / nbuckets)); 2209 } 2210 2211 base += nbuckets - (nbuckets / factor); 2212 last = this; 2213 this = next; 2214 } 2215 2216 /* 2217 * Our value is greater than or equal to our factor taken to the 2218 * power of one plus the high magnitude -- return the top bucket. 2219 */ 2220 return (base); 2221 } 2222 2223 static void 2224 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2225 { 2226 uint64_t arg = *llquanta++; 2227 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2228 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2229 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2230 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2231 2232 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2233 low, high, nsteps, nval)] += incr; 2234 } 2235 2236 /*ARGSUSED*/ 2237 static void 2238 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2239 { 2240 data[0]++; 2241 data[1] += nval; 2242 } 2243 2244 /*ARGSUSED*/ 2245 static void 2246 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2247 { 2248 int64_t snval = (int64_t)nval; 2249 uint64_t tmp[2]; 2250 2251 data[0]++; 2252 data[1] += nval; 2253 2254 /* 2255 * What we want to say here is: 2256 * 2257 * data[2] += nval * nval; 2258 * 2259 * But given that nval is 64-bit, we could easily overflow, so 2260 * we do this as 128-bit arithmetic. 2261 */ 2262 if (snval < 0) 2263 snval = -snval; 2264 2265 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2266 dtrace_add_128(data + 2, tmp, data + 2); 2267 } 2268 2269 /*ARGSUSED*/ 2270 static void 2271 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2272 { 2273 *oval = *oval + 1; 2274 } 2275 2276 /*ARGSUSED*/ 2277 static void 2278 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2279 { 2280 *oval += nval; 2281 } 2282 2283 /* 2284 * Aggregate given the tuple in the principal data buffer, and the aggregating 2285 * action denoted by the specified dtrace_aggregation_t. The aggregation 2286 * buffer is specified as the buf parameter. This routine does not return 2287 * failure; if there is no space in the aggregation buffer, the data will be 2288 * dropped, and a corresponding counter incremented. 2289 */ 2290 static void 2291 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2292 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2293 { 2294 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2295 uint32_t i, ndx, size, fsize; 2296 uint32_t align = sizeof (uint64_t) - 1; 2297 dtrace_aggbuffer_t *agb; 2298 dtrace_aggkey_t *key; 2299 uint32_t hashval = 0, limit, isstr; 2300 caddr_t tomax, data, kdata; 2301 dtrace_actkind_t action; 2302 dtrace_action_t *act; 2303 uintptr_t offs; 2304 2305 if (buf == NULL) 2306 return; 2307 2308 if (!agg->dtag_hasarg) { 2309 /* 2310 * Currently, only quantize() and lquantize() take additional 2311 * arguments, and they have the same semantics: an increment 2312 * value that defaults to 1 when not present. If additional 2313 * aggregating actions take arguments, the setting of the 2314 * default argument value will presumably have to become more 2315 * sophisticated... 2316 */ 2317 arg = 1; 2318 } 2319 2320 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2321 size = rec->dtrd_offset - agg->dtag_base; 2322 fsize = size + rec->dtrd_size; 2323 2324 ASSERT(dbuf->dtb_tomax != NULL); 2325 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2326 2327 if ((tomax = buf->dtb_tomax) == NULL) { 2328 dtrace_buffer_drop(buf); 2329 return; 2330 } 2331 2332 /* 2333 * The metastructure is always at the bottom of the buffer. 2334 */ 2335 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2336 sizeof (dtrace_aggbuffer_t)); 2337 2338 if (buf->dtb_offset == 0) { 2339 /* 2340 * We just kludge up approximately 1/8th of the size to be 2341 * buckets. If this guess ends up being routinely 2342 * off-the-mark, we may need to dynamically readjust this 2343 * based on past performance. 2344 */ 2345 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2346 2347 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2348 (uintptr_t)tomax || hashsize == 0) { 2349 /* 2350 * We've been given a ludicrously small buffer; 2351 * increment our drop count and leave. 2352 */ 2353 dtrace_buffer_drop(buf); 2354 return; 2355 } 2356 2357 /* 2358 * And now, a pathetic attempt to try to get a an odd (or 2359 * perchance, a prime) hash size for better hash distribution. 2360 */ 2361 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2362 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2363 2364 agb->dtagb_hashsize = hashsize; 2365 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2366 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2367 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2368 2369 for (i = 0; i < agb->dtagb_hashsize; i++) 2370 agb->dtagb_hash[i] = NULL; 2371 } 2372 2373 ASSERT(agg->dtag_first != NULL); 2374 ASSERT(agg->dtag_first->dta_intuple); 2375 2376 /* 2377 * Calculate the hash value based on the key. Note that we _don't_ 2378 * include the aggid in the hashing (but we will store it as part of 2379 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2380 * algorithm: a simple, quick algorithm that has no known funnels, and 2381 * gets good distribution in practice. The efficacy of the hashing 2382 * algorithm (and a comparison with other algorithms) may be found by 2383 * running the ::dtrace_aggstat MDB dcmd. 2384 */ 2385 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2386 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2387 limit = i + act->dta_rec.dtrd_size; 2388 ASSERT(limit <= size); 2389 isstr = DTRACEACT_ISSTRING(act); 2390 2391 for (; i < limit; i++) { 2392 hashval += data[i]; 2393 hashval += (hashval << 10); 2394 hashval ^= (hashval >> 6); 2395 2396 if (isstr && data[i] == '\0') 2397 break; 2398 } 2399 } 2400 2401 hashval += (hashval << 3); 2402 hashval ^= (hashval >> 11); 2403 hashval += (hashval << 15); 2404 2405 /* 2406 * Yes, the divide here is expensive -- but it's generally the least 2407 * of the performance issues given the amount of data that we iterate 2408 * over to compute hash values, compare data, etc. 2409 */ 2410 ndx = hashval % agb->dtagb_hashsize; 2411 2412 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2413 ASSERT((caddr_t)key >= tomax); 2414 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2415 2416 if (hashval != key->dtak_hashval || key->dtak_size != size) 2417 continue; 2418 2419 kdata = key->dtak_data; 2420 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2421 2422 for (act = agg->dtag_first; act->dta_intuple; 2423 act = act->dta_next) { 2424 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2425 limit = i + act->dta_rec.dtrd_size; 2426 ASSERT(limit <= size); 2427 isstr = DTRACEACT_ISSTRING(act); 2428 2429 for (; i < limit; i++) { 2430 if (kdata[i] != data[i]) 2431 goto next; 2432 2433 if (isstr && data[i] == '\0') 2434 break; 2435 } 2436 } 2437 2438 if (action != key->dtak_action) { 2439 /* 2440 * We are aggregating on the same value in the same 2441 * aggregation with two different aggregating actions. 2442 * (This should have been picked up in the compiler, 2443 * so we may be dealing with errant or devious DIF.) 2444 * This is an error condition; we indicate as much, 2445 * and return. 2446 */ 2447 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2448 return; 2449 } 2450 2451 /* 2452 * This is a hit: we need to apply the aggregator to 2453 * the value at this key. 2454 */ 2455 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2456 return; 2457 next: 2458 continue; 2459 } 2460 2461 /* 2462 * We didn't find it. We need to allocate some zero-filled space, 2463 * link it into the hash table appropriately, and apply the aggregator 2464 * to the (zero-filled) value. 2465 */ 2466 offs = buf->dtb_offset; 2467 while (offs & (align - 1)) 2468 offs += sizeof (uint32_t); 2469 2470 /* 2471 * If we don't have enough room to both allocate a new key _and_ 2472 * its associated data, increment the drop count and return. 2473 */ 2474 if ((uintptr_t)tomax + offs + fsize > 2475 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2476 dtrace_buffer_drop(buf); 2477 return; 2478 } 2479 2480 /*CONSTCOND*/ 2481 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2482 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2483 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2484 2485 key->dtak_data = kdata = tomax + offs; 2486 buf->dtb_offset = offs + fsize; 2487 2488 /* 2489 * Now copy the data across. 2490 */ 2491 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2492 2493 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2494 kdata[i] = data[i]; 2495 2496 /* 2497 * Because strings are not zeroed out by default, we need to iterate 2498 * looking for actions that store strings, and we need to explicitly 2499 * pad these strings out with zeroes. 2500 */ 2501 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2502 int nul; 2503 2504 if (!DTRACEACT_ISSTRING(act)) 2505 continue; 2506 2507 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2508 limit = i + act->dta_rec.dtrd_size; 2509 ASSERT(limit <= size); 2510 2511 for (nul = 0; i < limit; i++) { 2512 if (nul) { 2513 kdata[i] = '\0'; 2514 continue; 2515 } 2516 2517 if (data[i] != '\0') 2518 continue; 2519 2520 nul = 1; 2521 } 2522 } 2523 2524 for (i = size; i < fsize; i++) 2525 kdata[i] = 0; 2526 2527 key->dtak_hashval = hashval; 2528 key->dtak_size = size; 2529 key->dtak_action = action; 2530 key->dtak_next = agb->dtagb_hash[ndx]; 2531 agb->dtagb_hash[ndx] = key; 2532 2533 /* 2534 * Finally, apply the aggregator. 2535 */ 2536 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2537 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2538 } 2539 2540 /* 2541 * Given consumer state, this routine finds a speculation in the INACTIVE 2542 * state and transitions it into the ACTIVE state. If there is no speculation 2543 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2544 * incremented -- it is up to the caller to take appropriate action. 2545 */ 2546 static int 2547 dtrace_speculation(dtrace_state_t *state) 2548 { 2549 int i = 0; 2550 dtrace_speculation_state_t current; 2551 uint32_t *stat = &state->dts_speculations_unavail, count; 2552 2553 while (i < state->dts_nspeculations) { 2554 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2555 2556 current = spec->dtsp_state; 2557 2558 if (current != DTRACESPEC_INACTIVE) { 2559 if (current == DTRACESPEC_COMMITTINGMANY || 2560 current == DTRACESPEC_COMMITTING || 2561 current == DTRACESPEC_DISCARDING) 2562 stat = &state->dts_speculations_busy; 2563 i++; 2564 continue; 2565 } 2566 2567 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2568 current, DTRACESPEC_ACTIVE) == current) 2569 return (i + 1); 2570 } 2571 2572 /* 2573 * We couldn't find a speculation. If we found as much as a single 2574 * busy speculation buffer, we'll attribute this failure as "busy" 2575 * instead of "unavail". 2576 */ 2577 do { 2578 count = *stat; 2579 } while (dtrace_cas32(stat, count, count + 1) != count); 2580 2581 return (0); 2582 } 2583 2584 /* 2585 * This routine commits an active speculation. If the specified speculation 2586 * is not in a valid state to perform a commit(), this routine will silently do 2587 * nothing. The state of the specified speculation is transitioned according 2588 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2589 */ 2590 static void 2591 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2592 dtrace_specid_t which) 2593 { 2594 dtrace_speculation_t *spec; 2595 dtrace_buffer_t *src, *dest; 2596 uintptr_t daddr, saddr, dlimit, slimit; 2597 dtrace_speculation_state_t current, new; 2598 intptr_t offs; 2599 uint64_t timestamp; 2600 2601 if (which == 0) 2602 return; 2603 2604 if (which > state->dts_nspeculations) { 2605 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2606 return; 2607 } 2608 2609 spec = &state->dts_speculations[which - 1]; 2610 src = &spec->dtsp_buffer[cpu]; 2611 dest = &state->dts_buffer[cpu]; 2612 2613 do { 2614 current = spec->dtsp_state; 2615 2616 if (current == DTRACESPEC_COMMITTINGMANY) 2617 break; 2618 2619 switch (current) { 2620 case DTRACESPEC_INACTIVE: 2621 case DTRACESPEC_DISCARDING: 2622 return; 2623 2624 case DTRACESPEC_COMMITTING: 2625 /* 2626 * This is only possible if we are (a) commit()'ing 2627 * without having done a prior speculate() on this CPU 2628 * and (b) racing with another commit() on a different 2629 * CPU. There's nothing to do -- we just assert that 2630 * our offset is 0. 2631 */ 2632 ASSERT(src->dtb_offset == 0); 2633 return; 2634 2635 case DTRACESPEC_ACTIVE: 2636 new = DTRACESPEC_COMMITTING; 2637 break; 2638 2639 case DTRACESPEC_ACTIVEONE: 2640 /* 2641 * This speculation is active on one CPU. If our 2642 * buffer offset is non-zero, we know that the one CPU 2643 * must be us. Otherwise, we are committing on a 2644 * different CPU from the speculate(), and we must 2645 * rely on being asynchronously cleaned. 2646 */ 2647 if (src->dtb_offset != 0) { 2648 new = DTRACESPEC_COMMITTING; 2649 break; 2650 } 2651 /*FALLTHROUGH*/ 2652 2653 case DTRACESPEC_ACTIVEMANY: 2654 new = DTRACESPEC_COMMITTINGMANY; 2655 break; 2656 2657 default: 2658 ASSERT(0); 2659 } 2660 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2661 current, new) != current); 2662 2663 /* 2664 * We have set the state to indicate that we are committing this 2665 * speculation. Now reserve the necessary space in the destination 2666 * buffer. 2667 */ 2668 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2669 sizeof (uint64_t), state, NULL)) < 0) { 2670 dtrace_buffer_drop(dest); 2671 goto out; 2672 } 2673 2674 /* 2675 * We have sufficient space to copy the speculative buffer into the 2676 * primary buffer. First, modify the speculative buffer, filling 2677 * in the timestamp of all entries with the current time. The data 2678 * must have the commit() time rather than the time it was traced, 2679 * so that all entries in the primary buffer are in timestamp order. 2680 */ 2681 timestamp = dtrace_gethrtime(); 2682 saddr = (uintptr_t)src->dtb_tomax; 2683 slimit = saddr + src->dtb_offset; 2684 while (saddr < slimit) { 2685 size_t size; 2686 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2687 2688 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2689 saddr += sizeof (dtrace_epid_t); 2690 continue; 2691 } 2692 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2693 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2694 2695 ASSERT3U(saddr + size, <=, slimit); 2696 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2697 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2698 2699 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2700 2701 saddr += size; 2702 } 2703 2704 /* 2705 * Copy the buffer across. (Note that this is a 2706 * highly subobtimal bcopy(); in the unlikely event that this becomes 2707 * a serious performance issue, a high-performance DTrace-specific 2708 * bcopy() should obviously be invented.) 2709 */ 2710 daddr = (uintptr_t)dest->dtb_tomax + offs; 2711 dlimit = daddr + src->dtb_offset; 2712 saddr = (uintptr_t)src->dtb_tomax; 2713 2714 /* 2715 * First, the aligned portion. 2716 */ 2717 while (dlimit - daddr >= sizeof (uint64_t)) { 2718 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2719 2720 daddr += sizeof (uint64_t); 2721 saddr += sizeof (uint64_t); 2722 } 2723 2724 /* 2725 * Now any left-over bit... 2726 */ 2727 while (dlimit - daddr) 2728 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2729 2730 /* 2731 * Finally, commit the reserved space in the destination buffer. 2732 */ 2733 dest->dtb_offset = offs + src->dtb_offset; 2734 2735 out: 2736 /* 2737 * If we're lucky enough to be the only active CPU on this speculation 2738 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2739 */ 2740 if (current == DTRACESPEC_ACTIVE || 2741 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2742 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2743 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2744 2745 ASSERT(rval == DTRACESPEC_COMMITTING); 2746 } 2747 2748 src->dtb_offset = 0; 2749 src->dtb_xamot_drops += src->dtb_drops; 2750 src->dtb_drops = 0; 2751 } 2752 2753 /* 2754 * This routine discards an active speculation. If the specified speculation 2755 * is not in a valid state to perform a discard(), this routine will silently 2756 * do nothing. The state of the specified speculation is transitioned 2757 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2758 */ 2759 static void 2760 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2761 dtrace_specid_t which) 2762 { 2763 dtrace_speculation_t *spec; 2764 dtrace_speculation_state_t current, new; 2765 dtrace_buffer_t *buf; 2766 2767 if (which == 0) 2768 return; 2769 2770 if (which > state->dts_nspeculations) { 2771 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2772 return; 2773 } 2774 2775 spec = &state->dts_speculations[which - 1]; 2776 buf = &spec->dtsp_buffer[cpu]; 2777 2778 do { 2779 current = spec->dtsp_state; 2780 2781 switch (current) { 2782 case DTRACESPEC_INACTIVE: 2783 case DTRACESPEC_COMMITTINGMANY: 2784 case DTRACESPEC_COMMITTING: 2785 case DTRACESPEC_DISCARDING: 2786 return; 2787 2788 case DTRACESPEC_ACTIVE: 2789 case DTRACESPEC_ACTIVEMANY: 2790 new = DTRACESPEC_DISCARDING; 2791 break; 2792 2793 case DTRACESPEC_ACTIVEONE: 2794 if (buf->dtb_offset != 0) { 2795 new = DTRACESPEC_INACTIVE; 2796 } else { 2797 new = DTRACESPEC_DISCARDING; 2798 } 2799 break; 2800 2801 default: 2802 ASSERT(0); 2803 } 2804 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2805 current, new) != current); 2806 2807 buf->dtb_offset = 0; 2808 buf->dtb_drops = 0; 2809 } 2810 2811 /* 2812 * Note: not called from probe context. This function is called 2813 * asynchronously from cross call context to clean any speculations that are 2814 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2815 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2816 * speculation. 2817 */ 2818 static void 2819 dtrace_speculation_clean_here(dtrace_state_t *state) 2820 { 2821 dtrace_icookie_t cookie; 2822 processorid_t cpu = CPU->cpu_id; 2823 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2824 dtrace_specid_t i; 2825 2826 cookie = dtrace_interrupt_disable(); 2827 2828 if (dest->dtb_tomax == NULL) { 2829 dtrace_interrupt_enable(cookie); 2830 return; 2831 } 2832 2833 for (i = 0; i < state->dts_nspeculations; i++) { 2834 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2835 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2836 2837 if (src->dtb_tomax == NULL) 2838 continue; 2839 2840 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2841 src->dtb_offset = 0; 2842 continue; 2843 } 2844 2845 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2846 continue; 2847 2848 if (src->dtb_offset == 0) 2849 continue; 2850 2851 dtrace_speculation_commit(state, cpu, i + 1); 2852 } 2853 2854 dtrace_interrupt_enable(cookie); 2855 } 2856 2857 /* 2858 * Note: not called from probe context. This function is called 2859 * asynchronously (and at a regular interval) to clean any speculations that 2860 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2861 * is work to be done, it cross calls all CPUs to perform that work; 2862 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2863 * INACTIVE state until they have been cleaned by all CPUs. 2864 */ 2865 static void 2866 dtrace_speculation_clean(dtrace_state_t *state) 2867 { 2868 int work = 0, rv; 2869 dtrace_specid_t i; 2870 2871 for (i = 0; i < state->dts_nspeculations; i++) { 2872 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2873 2874 ASSERT(!spec->dtsp_cleaning); 2875 2876 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2877 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2878 continue; 2879 2880 work++; 2881 spec->dtsp_cleaning = 1; 2882 } 2883 2884 if (!work) 2885 return; 2886 2887 dtrace_xcall(DTRACE_CPUALL, 2888 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2889 2890 /* 2891 * We now know that all CPUs have committed or discarded their 2892 * speculation buffers, as appropriate. We can now set the state 2893 * to inactive. 2894 */ 2895 for (i = 0; i < state->dts_nspeculations; i++) { 2896 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2897 dtrace_speculation_state_t current, new; 2898 2899 if (!spec->dtsp_cleaning) 2900 continue; 2901 2902 current = spec->dtsp_state; 2903 ASSERT(current == DTRACESPEC_DISCARDING || 2904 current == DTRACESPEC_COMMITTINGMANY); 2905 2906 new = DTRACESPEC_INACTIVE; 2907 2908 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2909 ASSERT(rv == current); 2910 spec->dtsp_cleaning = 0; 2911 } 2912 } 2913 2914 /* 2915 * Called as part of a speculate() to get the speculative buffer associated 2916 * with a given speculation. Returns NULL if the specified speculation is not 2917 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2918 * the active CPU is not the specified CPU -- the speculation will be 2919 * atomically transitioned into the ACTIVEMANY state. 2920 */ 2921 static dtrace_buffer_t * 2922 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2923 dtrace_specid_t which) 2924 { 2925 dtrace_speculation_t *spec; 2926 dtrace_speculation_state_t current, new; 2927 dtrace_buffer_t *buf; 2928 2929 if (which == 0) 2930 return (NULL); 2931 2932 if (which > state->dts_nspeculations) { 2933 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2934 return (NULL); 2935 } 2936 2937 spec = &state->dts_speculations[which - 1]; 2938 buf = &spec->dtsp_buffer[cpuid]; 2939 2940 do { 2941 current = spec->dtsp_state; 2942 2943 switch (current) { 2944 case DTRACESPEC_INACTIVE: 2945 case DTRACESPEC_COMMITTINGMANY: 2946 case DTRACESPEC_DISCARDING: 2947 return (NULL); 2948 2949 case DTRACESPEC_COMMITTING: 2950 ASSERT(buf->dtb_offset == 0); 2951 return (NULL); 2952 2953 case DTRACESPEC_ACTIVEONE: 2954 /* 2955 * This speculation is currently active on one CPU. 2956 * Check the offset in the buffer; if it's non-zero, 2957 * that CPU must be us (and we leave the state alone). 2958 * If it's zero, assume that we're starting on a new 2959 * CPU -- and change the state to indicate that the 2960 * speculation is active on more than one CPU. 2961 */ 2962 if (buf->dtb_offset != 0) 2963 return (buf); 2964 2965 new = DTRACESPEC_ACTIVEMANY; 2966 break; 2967 2968 case DTRACESPEC_ACTIVEMANY: 2969 return (buf); 2970 2971 case DTRACESPEC_ACTIVE: 2972 new = DTRACESPEC_ACTIVEONE; 2973 break; 2974 2975 default: 2976 ASSERT(0); 2977 } 2978 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2979 current, new) != current); 2980 2981 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2982 return (buf); 2983 } 2984 2985 /* 2986 * Return a string. In the event that the user lacks the privilege to access 2987 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2988 * don't fail access checking. 2989 * 2990 * dtrace_dif_variable() uses this routine as a helper for various 2991 * builtin values such as 'execname' and 'probefunc.' 2992 */ 2993 uintptr_t 2994 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2995 dtrace_mstate_t *mstate) 2996 { 2997 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2998 uintptr_t ret; 2999 size_t strsz; 3000 3001 /* 3002 * The easy case: this probe is allowed to read all of memory, so 3003 * we can just return this as a vanilla pointer. 3004 */ 3005 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3006 return (addr); 3007 3008 /* 3009 * This is the tougher case: we copy the string in question from 3010 * kernel memory into scratch memory and return it that way: this 3011 * ensures that we won't trip up when access checking tests the 3012 * BYREF return value. 3013 */ 3014 strsz = dtrace_strlen((char *)addr, size) + 1; 3015 3016 if (mstate->dtms_scratch_ptr + strsz > 3017 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3018 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3019 return (NULL); 3020 } 3021 3022 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3023 strsz); 3024 ret = mstate->dtms_scratch_ptr; 3025 mstate->dtms_scratch_ptr += strsz; 3026 return (ret); 3027 } 3028 3029 /* 3030 * This function implements the DIF emulator's variable lookups. The emulator 3031 * passes a reserved variable identifier and optional built-in array index. 3032 */ 3033 static uint64_t 3034 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3035 uint64_t ndx) 3036 { 3037 /* 3038 * If we're accessing one of the uncached arguments, we'll turn this 3039 * into a reference in the args array. 3040 */ 3041 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3042 ndx = v - DIF_VAR_ARG0; 3043 v = DIF_VAR_ARGS; 3044 } 3045 3046 switch (v) { 3047 case DIF_VAR_ARGS: 3048 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3049 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3050 CPU_DTRACE_KPRIV; 3051 return (0); 3052 } 3053 3054 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3055 if (ndx >= sizeof (mstate->dtms_arg) / 3056 sizeof (mstate->dtms_arg[0])) { 3057 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3058 dtrace_provider_t *pv; 3059 uint64_t val; 3060 3061 pv = mstate->dtms_probe->dtpr_provider; 3062 if (pv->dtpv_pops.dtps_getargval != NULL) 3063 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3064 mstate->dtms_probe->dtpr_id, 3065 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3066 else 3067 val = dtrace_getarg(ndx, aframes); 3068 3069 /* 3070 * This is regrettably required to keep the compiler 3071 * from tail-optimizing the call to dtrace_getarg(). 3072 * The condition always evaluates to true, but the 3073 * compiler has no way of figuring that out a priori. 3074 * (None of this would be necessary if the compiler 3075 * could be relied upon to _always_ tail-optimize 3076 * the call to dtrace_getarg() -- but it can't.) 3077 */ 3078 if (mstate->dtms_probe != NULL) 3079 return (val); 3080 3081 ASSERT(0); 3082 } 3083 3084 return (mstate->dtms_arg[ndx]); 3085 3086 case DIF_VAR_UREGS: { 3087 klwp_t *lwp; 3088 3089 if (!dtrace_priv_proc(state, mstate)) 3090 return (0); 3091 3092 if ((lwp = curthread->t_lwp) == NULL) { 3093 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3094 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3095 return (0); 3096 } 3097 3098 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3099 } 3100 3101 case DIF_VAR_VMREGS: { 3102 uint64_t rval; 3103 3104 if (!dtrace_priv_kernel(state)) 3105 return (0); 3106 3107 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3108 3109 rval = dtrace_getvmreg(ndx, 3110 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3111 3112 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3113 3114 return (rval); 3115 } 3116 3117 case DIF_VAR_CURTHREAD: 3118 if (!dtrace_priv_proc(state, mstate)) 3119 return (0); 3120 return ((uint64_t)(uintptr_t)curthread); 3121 3122 case DIF_VAR_TIMESTAMP: 3123 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3124 mstate->dtms_timestamp = dtrace_gethrtime(); 3125 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3126 } 3127 return (mstate->dtms_timestamp); 3128 3129 case DIF_VAR_VTIMESTAMP: 3130 ASSERT(dtrace_vtime_references != 0); 3131 return (curthread->t_dtrace_vtime); 3132 3133 case DIF_VAR_WALLTIMESTAMP: 3134 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3135 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3136 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3137 } 3138 return (mstate->dtms_walltimestamp); 3139 3140 case DIF_VAR_IPL: 3141 if (!dtrace_priv_kernel(state)) 3142 return (0); 3143 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3144 mstate->dtms_ipl = dtrace_getipl(); 3145 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3146 } 3147 return (mstate->dtms_ipl); 3148 3149 case DIF_VAR_EPID: 3150 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3151 return (mstate->dtms_epid); 3152 3153 case DIF_VAR_ID: 3154 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3155 return (mstate->dtms_probe->dtpr_id); 3156 3157 case DIF_VAR_STACKDEPTH: 3158 if (!dtrace_priv_kernel(state)) 3159 return (0); 3160 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3161 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3162 3163 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3164 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3165 } 3166 return (mstate->dtms_stackdepth); 3167 3168 case DIF_VAR_USTACKDEPTH: 3169 if (!dtrace_priv_proc(state, mstate)) 3170 return (0); 3171 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3172 /* 3173 * See comment in DIF_VAR_PID. 3174 */ 3175 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3176 CPU_ON_INTR(CPU)) { 3177 mstate->dtms_ustackdepth = 0; 3178 } else { 3179 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3180 mstate->dtms_ustackdepth = 3181 dtrace_getustackdepth(); 3182 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3183 } 3184 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3185 } 3186 return (mstate->dtms_ustackdepth); 3187 3188 case DIF_VAR_CALLER: 3189 if (!dtrace_priv_kernel(state)) 3190 return (0); 3191 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3192 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3193 3194 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3195 /* 3196 * If this is an unanchored probe, we are 3197 * required to go through the slow path: 3198 * dtrace_caller() only guarantees correct 3199 * results for anchored probes. 3200 */ 3201 pc_t caller[2]; 3202 3203 dtrace_getpcstack(caller, 2, aframes, 3204 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3205 mstate->dtms_caller = caller[1]; 3206 } else if ((mstate->dtms_caller = 3207 dtrace_caller(aframes)) == -1) { 3208 /* 3209 * We have failed to do this the quick way; 3210 * we must resort to the slower approach of 3211 * calling dtrace_getpcstack(). 3212 */ 3213 pc_t caller; 3214 3215 dtrace_getpcstack(&caller, 1, aframes, NULL); 3216 mstate->dtms_caller = caller; 3217 } 3218 3219 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3220 } 3221 return (mstate->dtms_caller); 3222 3223 case DIF_VAR_UCALLER: 3224 if (!dtrace_priv_proc(state, mstate)) 3225 return (0); 3226 3227 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3228 uint64_t ustack[3]; 3229 3230 /* 3231 * dtrace_getupcstack() fills in the first uint64_t 3232 * with the current PID. The second uint64_t will 3233 * be the program counter at user-level. The third 3234 * uint64_t will contain the caller, which is what 3235 * we're after. 3236 */ 3237 ustack[2] = NULL; 3238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3239 dtrace_getupcstack(ustack, 3); 3240 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3241 mstate->dtms_ucaller = ustack[2]; 3242 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3243 } 3244 3245 return (mstate->dtms_ucaller); 3246 3247 case DIF_VAR_PROBEPROV: 3248 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3249 return (dtrace_dif_varstr( 3250 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3251 state, mstate)); 3252 3253 case DIF_VAR_PROBEMOD: 3254 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3255 return (dtrace_dif_varstr( 3256 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3257 state, mstate)); 3258 3259 case DIF_VAR_PROBEFUNC: 3260 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3261 return (dtrace_dif_varstr( 3262 (uintptr_t)mstate->dtms_probe->dtpr_func, 3263 state, mstate)); 3264 3265 case DIF_VAR_PROBENAME: 3266 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3267 return (dtrace_dif_varstr( 3268 (uintptr_t)mstate->dtms_probe->dtpr_name, 3269 state, mstate)); 3270 3271 case DIF_VAR_PID: 3272 if (!dtrace_priv_proc(state, mstate)) 3273 return (0); 3274 3275 /* 3276 * Note that we are assuming that an unanchored probe is 3277 * always due to a high-level interrupt. (And we're assuming 3278 * that there is only a single high level interrupt.) 3279 */ 3280 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3281 return (pid0.pid_id); 3282 3283 /* 3284 * It is always safe to dereference one's own t_procp pointer: 3285 * it always points to a valid, allocated proc structure. 3286 * Further, it is always safe to dereference the p_pidp member 3287 * of one's own proc structure. (These are truisms becuase 3288 * threads and processes don't clean up their own state -- 3289 * they leave that task to whomever reaps them.) 3290 */ 3291 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3292 3293 case DIF_VAR_PPID: 3294 if (!dtrace_priv_proc(state, mstate)) 3295 return (0); 3296 3297 /* 3298 * See comment in DIF_VAR_PID. 3299 */ 3300 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3301 return (pid0.pid_id); 3302 3303 /* 3304 * It is always safe to dereference one's own t_procp pointer: 3305 * it always points to a valid, allocated proc structure. 3306 * (This is true because threads don't clean up their own 3307 * state -- they leave that task to whomever reaps them.) 3308 */ 3309 return ((uint64_t)curthread->t_procp->p_ppid); 3310 3311 case DIF_VAR_TID: 3312 /* 3313 * See comment in DIF_VAR_PID. 3314 */ 3315 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3316 return (0); 3317 3318 return ((uint64_t)curthread->t_tid); 3319 3320 case DIF_VAR_EXECNAME: 3321 if (!dtrace_priv_proc(state, mstate)) 3322 return (0); 3323 3324 /* 3325 * See comment in DIF_VAR_PID. 3326 */ 3327 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3328 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3329 3330 /* 3331 * It is always safe to dereference one's own t_procp pointer: 3332 * it always points to a valid, allocated proc structure. 3333 * (This is true because threads don't clean up their own 3334 * state -- they leave that task to whomever reaps them.) 3335 */ 3336 return (dtrace_dif_varstr( 3337 (uintptr_t)curthread->t_procp->p_user.u_comm, 3338 state, mstate)); 3339 3340 case DIF_VAR_ZONENAME: 3341 if (!dtrace_priv_proc(state, mstate)) 3342 return (0); 3343 3344 /* 3345 * See comment in DIF_VAR_PID. 3346 */ 3347 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3348 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3349 3350 /* 3351 * It is always safe to dereference one's own t_procp pointer: 3352 * it always points to a valid, allocated proc structure. 3353 * (This is true because threads don't clean up their own 3354 * state -- they leave that task to whomever reaps them.) 3355 */ 3356 return (dtrace_dif_varstr( 3357 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3358 state, mstate)); 3359 3360 case DIF_VAR_UID: 3361 if (!dtrace_priv_proc(state, mstate)) 3362 return (0); 3363 3364 /* 3365 * See comment in DIF_VAR_PID. 3366 */ 3367 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3368 return ((uint64_t)p0.p_cred->cr_uid); 3369 3370 /* 3371 * It is always safe to dereference one's own t_procp pointer: 3372 * it always points to a valid, allocated proc structure. 3373 * (This is true because threads don't clean up their own 3374 * state -- they leave that task to whomever reaps them.) 3375 * 3376 * Additionally, it is safe to dereference one's own process 3377 * credential, since this is never NULL after process birth. 3378 */ 3379 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3380 3381 case DIF_VAR_GID: 3382 if (!dtrace_priv_proc(state, mstate)) 3383 return (0); 3384 3385 /* 3386 * See comment in DIF_VAR_PID. 3387 */ 3388 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3389 return ((uint64_t)p0.p_cred->cr_gid); 3390 3391 /* 3392 * It is always safe to dereference one's own t_procp pointer: 3393 * it always points to a valid, allocated proc structure. 3394 * (This is true because threads don't clean up their own 3395 * state -- they leave that task to whomever reaps them.) 3396 * 3397 * Additionally, it is safe to dereference one's own process 3398 * credential, since this is never NULL after process birth. 3399 */ 3400 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3401 3402 case DIF_VAR_ERRNO: { 3403 klwp_t *lwp; 3404 if (!dtrace_priv_proc(state, mstate)) 3405 return (0); 3406 3407 /* 3408 * See comment in DIF_VAR_PID. 3409 */ 3410 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3411 return (0); 3412 3413 /* 3414 * It is always safe to dereference one's own t_lwp pointer in 3415 * the event that this pointer is non-NULL. (This is true 3416 * because threads and lwps don't clean up their own state -- 3417 * they leave that task to whomever reaps them.) 3418 */ 3419 if ((lwp = curthread->t_lwp) == NULL) 3420 return (0); 3421 3422 return ((uint64_t)lwp->lwp_errno); 3423 } 3424 default: 3425 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3426 return (0); 3427 } 3428 } 3429 3430 3431 typedef enum dtrace_json_state { 3432 DTRACE_JSON_REST = 1, 3433 DTRACE_JSON_OBJECT, 3434 DTRACE_JSON_STRING, 3435 DTRACE_JSON_STRING_ESCAPE, 3436 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3437 DTRACE_JSON_COLON, 3438 DTRACE_JSON_COMMA, 3439 DTRACE_JSON_VALUE, 3440 DTRACE_JSON_IDENTIFIER, 3441 DTRACE_JSON_NUMBER, 3442 DTRACE_JSON_NUMBER_FRAC, 3443 DTRACE_JSON_NUMBER_EXP, 3444 DTRACE_JSON_COLLECT_OBJECT 3445 } dtrace_json_state_t; 3446 3447 /* 3448 * This function possesses just enough knowledge about JSON to extract a single 3449 * value from a JSON string and store it in the scratch buffer. It is able 3450 * to extract nested object values, and members of arrays by index. 3451 * 3452 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3453 * be looked up as we descend into the object tree. e.g. 3454 * 3455 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3456 * with nelems = 5. 3457 * 3458 * The run time of this function must be bounded above by strsize to limit the 3459 * amount of work done in probe context. As such, it is implemented as a 3460 * simple state machine, reading one character at a time using safe loads 3461 * until we find the requested element, hit a parsing error or run off the 3462 * end of the object or string. 3463 * 3464 * As there is no way for a subroutine to return an error without interrupting 3465 * clause execution, we simply return NULL in the event of a missing key or any 3466 * other error condition. Each NULL return in this function is commented with 3467 * the error condition it represents -- parsing or otherwise. 3468 * 3469 * The set of states for the state machine closely matches the JSON 3470 * specification (http://json.org/). Briefly: 3471 * 3472 * DTRACE_JSON_REST: 3473 * Skip whitespace until we find either a top-level Object, moving 3474 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3475 * 3476 * DTRACE_JSON_OBJECT: 3477 * Locate the next key String in an Object. Sets a flag to denote 3478 * the next String as a key string and moves to DTRACE_JSON_STRING. 3479 * 3480 * DTRACE_JSON_COLON: 3481 * Skip whitespace until we find the colon that separates key Strings 3482 * from their values. Once found, move to DTRACE_JSON_VALUE. 3483 * 3484 * DTRACE_JSON_VALUE: 3485 * Detects the type of the next value (String, Number, Identifier, Object 3486 * or Array) and routes to the states that process that type. Here we also 3487 * deal with the element selector list if we are requested to traverse down 3488 * into the object tree. 3489 * 3490 * DTRACE_JSON_COMMA: 3491 * Skip whitespace until we find the comma that separates key-value pairs 3492 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3493 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3494 * states return to this state at the end of their value, unless otherwise 3495 * noted. 3496 * 3497 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3498 * Processes a Number literal from the JSON, including any exponent 3499 * component that may be present. Numbers are returned as strings, which 3500 * may be passed to strtoll() if an integer is required. 3501 * 3502 * DTRACE_JSON_IDENTIFIER: 3503 * Processes a "true", "false" or "null" literal in the JSON. 3504 * 3505 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3506 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3507 * Processes a String literal from the JSON, whether the String denotes 3508 * a key, a value or part of a larger Object. Handles all escape sequences 3509 * present in the specification, including four-digit unicode characters, 3510 * but merely includes the escape sequence without converting it to the 3511 * actual escaped character. If the String is flagged as a key, we 3512 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3513 * 3514 * DTRACE_JSON_COLLECT_OBJECT: 3515 * This state collects an entire Object (or Array), correctly handling 3516 * embedded strings. If the full element selector list matches this nested 3517 * object, we return the Object in full as a string. If not, we use this 3518 * state to skip to the next value at this level and continue processing. 3519 * 3520 * NOTE: This function uses various macros from strtolctype.h to manipulate 3521 * digit values, etc -- these have all been checked to ensure they make 3522 * no additional function calls. 3523 */ 3524 static char * 3525 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3526 char *dest) 3527 { 3528 dtrace_json_state_t state = DTRACE_JSON_REST; 3529 int64_t array_elem = INT64_MIN; 3530 int64_t array_pos = 0; 3531 uint8_t escape_unicount = 0; 3532 boolean_t string_is_key = B_FALSE; 3533 boolean_t collect_object = B_FALSE; 3534 boolean_t found_key = B_FALSE; 3535 boolean_t in_array = B_FALSE; 3536 uint32_t braces = 0, brackets = 0; 3537 char *elem = elemlist; 3538 char *dd = dest; 3539 uintptr_t cur; 3540 3541 for (cur = json; cur < json + size; cur++) { 3542 char cc = dtrace_load8(cur); 3543 if (cc == '\0') 3544 return (NULL); 3545 3546 switch (state) { 3547 case DTRACE_JSON_REST: 3548 if (isspace(cc)) 3549 break; 3550 3551 if (cc == '{') { 3552 state = DTRACE_JSON_OBJECT; 3553 break; 3554 } 3555 3556 if (cc == '[') { 3557 in_array = B_TRUE; 3558 array_pos = 0; 3559 array_elem = dtrace_strtoll(elem, 10, size); 3560 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3561 state = DTRACE_JSON_VALUE; 3562 break; 3563 } 3564 3565 /* 3566 * ERROR: expected to find a top-level object or array. 3567 */ 3568 return (NULL); 3569 case DTRACE_JSON_OBJECT: 3570 if (isspace(cc)) 3571 break; 3572 3573 if (cc == '"') { 3574 state = DTRACE_JSON_STRING; 3575 string_is_key = B_TRUE; 3576 break; 3577 } 3578 3579 /* 3580 * ERROR: either the object did not start with a key 3581 * string, or we've run off the end of the object 3582 * without finding the requested key. 3583 */ 3584 return (NULL); 3585 case DTRACE_JSON_STRING: 3586 if (cc == '\\') { 3587 *dd++ = '\\'; 3588 state = DTRACE_JSON_STRING_ESCAPE; 3589 break; 3590 } 3591 3592 if (cc == '"') { 3593 if (collect_object) { 3594 /* 3595 * We don't reset the dest here, as 3596 * the string is part of a larger 3597 * object being collected. 3598 */ 3599 *dd++ = cc; 3600 collect_object = B_FALSE; 3601 state = DTRACE_JSON_COLLECT_OBJECT; 3602 break; 3603 } 3604 *dd = '\0'; 3605 dd = dest; /* reset string buffer */ 3606 if (string_is_key) { 3607 if (dtrace_strncmp(dest, elem, 3608 size) == 0) 3609 found_key = B_TRUE; 3610 } else if (found_key) { 3611 if (nelems > 1) { 3612 /* 3613 * We expected an object, not 3614 * this string. 3615 */ 3616 return (NULL); 3617 } 3618 return (dest); 3619 } 3620 state = string_is_key ? DTRACE_JSON_COLON : 3621 DTRACE_JSON_COMMA; 3622 string_is_key = B_FALSE; 3623 break; 3624 } 3625 3626 *dd++ = cc; 3627 break; 3628 case DTRACE_JSON_STRING_ESCAPE: 3629 *dd++ = cc; 3630 if (cc == 'u') { 3631 escape_unicount = 0; 3632 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3633 } else { 3634 state = DTRACE_JSON_STRING; 3635 } 3636 break; 3637 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3638 if (!isxdigit(cc)) { 3639 /* 3640 * ERROR: invalid unicode escape, expected 3641 * four valid hexidecimal digits. 3642 */ 3643 return (NULL); 3644 } 3645 3646 *dd++ = cc; 3647 if (++escape_unicount == 4) 3648 state = DTRACE_JSON_STRING; 3649 break; 3650 case DTRACE_JSON_COLON: 3651 if (isspace(cc)) 3652 break; 3653 3654 if (cc == ':') { 3655 state = DTRACE_JSON_VALUE; 3656 break; 3657 } 3658 3659 /* 3660 * ERROR: expected a colon. 3661 */ 3662 return (NULL); 3663 case DTRACE_JSON_COMMA: 3664 if (isspace(cc)) 3665 break; 3666 3667 if (cc == ',') { 3668 if (in_array) { 3669 state = DTRACE_JSON_VALUE; 3670 if (++array_pos == array_elem) 3671 found_key = B_TRUE; 3672 } else { 3673 state = DTRACE_JSON_OBJECT; 3674 } 3675 break; 3676 } 3677 3678 /* 3679 * ERROR: either we hit an unexpected character, or 3680 * we reached the end of the object or array without 3681 * finding the requested key. 3682 */ 3683 return (NULL); 3684 case DTRACE_JSON_IDENTIFIER: 3685 if (islower(cc)) { 3686 *dd++ = cc; 3687 break; 3688 } 3689 3690 *dd = '\0'; 3691 dd = dest; /* reset string buffer */ 3692 3693 if (dtrace_strncmp(dest, "true", 5) == 0 || 3694 dtrace_strncmp(dest, "false", 6) == 0 || 3695 dtrace_strncmp(dest, "null", 5) == 0) { 3696 if (found_key) { 3697 if (nelems > 1) { 3698 /* 3699 * ERROR: We expected an object, 3700 * not this identifier. 3701 */ 3702 return (NULL); 3703 } 3704 return (dest); 3705 } else { 3706 cur--; 3707 state = DTRACE_JSON_COMMA; 3708 break; 3709 } 3710 } 3711 3712 /* 3713 * ERROR: we did not recognise the identifier as one 3714 * of those in the JSON specification. 3715 */ 3716 return (NULL); 3717 case DTRACE_JSON_NUMBER: 3718 if (cc == '.') { 3719 *dd++ = cc; 3720 state = DTRACE_JSON_NUMBER_FRAC; 3721 break; 3722 } 3723 3724 if (cc == 'x' || cc == 'X') { 3725 /* 3726 * ERROR: specification explicitly excludes 3727 * hexidecimal or octal numbers. 3728 */ 3729 return (NULL); 3730 } 3731 3732 /* FALLTHRU */ 3733 case DTRACE_JSON_NUMBER_FRAC: 3734 if (cc == 'e' || cc == 'E') { 3735 *dd++ = cc; 3736 state = DTRACE_JSON_NUMBER_EXP; 3737 break; 3738 } 3739 3740 if (cc == '+' || cc == '-') { 3741 /* 3742 * ERROR: expect sign as part of exponent only. 3743 */ 3744 return (NULL); 3745 } 3746 /* FALLTHRU */ 3747 case DTRACE_JSON_NUMBER_EXP: 3748 if (isdigit(cc) || cc == '+' || cc == '-') { 3749 *dd++ = cc; 3750 break; 3751 } 3752 3753 *dd = '\0'; 3754 dd = dest; /* reset string buffer */ 3755 if (found_key) { 3756 if (nelems > 1) { 3757 /* 3758 * ERROR: We expected an object, not 3759 * this number. 3760 */ 3761 return (NULL); 3762 } 3763 return (dest); 3764 } 3765 3766 cur--; 3767 state = DTRACE_JSON_COMMA; 3768 break; 3769 case DTRACE_JSON_VALUE: 3770 if (isspace(cc)) 3771 break; 3772 3773 if (cc == '{' || cc == '[') { 3774 if (nelems > 1 && found_key) { 3775 in_array = cc == '[' ? B_TRUE : B_FALSE; 3776 /* 3777 * If our element selector directs us 3778 * to descend into this nested object, 3779 * then move to the next selector 3780 * element in the list and restart the 3781 * state machine. 3782 */ 3783 while (*elem != '\0') 3784 elem++; 3785 elem++; /* skip the inter-element NUL */ 3786 nelems--; 3787 dd = dest; 3788 if (in_array) { 3789 state = DTRACE_JSON_VALUE; 3790 array_pos = 0; 3791 array_elem = dtrace_strtoll( 3792 elem, 10, size); 3793 found_key = array_elem == 0 ? 3794 B_TRUE : B_FALSE; 3795 } else { 3796 found_key = B_FALSE; 3797 state = DTRACE_JSON_OBJECT; 3798 } 3799 break; 3800 } 3801 3802 /* 3803 * Otherwise, we wish to either skip this 3804 * nested object or return it in full. 3805 */ 3806 if (cc == '[') 3807 brackets = 1; 3808 else 3809 braces = 1; 3810 *dd++ = cc; 3811 state = DTRACE_JSON_COLLECT_OBJECT; 3812 break; 3813 } 3814 3815 if (cc == '"') { 3816 state = DTRACE_JSON_STRING; 3817 break; 3818 } 3819 3820 if (islower(cc)) { 3821 /* 3822 * Here we deal with true, false and null. 3823 */ 3824 *dd++ = cc; 3825 state = DTRACE_JSON_IDENTIFIER; 3826 break; 3827 } 3828 3829 if (cc == '-' || isdigit(cc)) { 3830 *dd++ = cc; 3831 state = DTRACE_JSON_NUMBER; 3832 break; 3833 } 3834 3835 /* 3836 * ERROR: unexpected character at start of value. 3837 */ 3838 return (NULL); 3839 case DTRACE_JSON_COLLECT_OBJECT: 3840 if (cc == '\0') 3841 /* 3842 * ERROR: unexpected end of input. 3843 */ 3844 return (NULL); 3845 3846 *dd++ = cc; 3847 if (cc == '"') { 3848 collect_object = B_TRUE; 3849 state = DTRACE_JSON_STRING; 3850 break; 3851 } 3852 3853 if (cc == ']') { 3854 if (brackets-- == 0) { 3855 /* 3856 * ERROR: unbalanced brackets. 3857 */ 3858 return (NULL); 3859 } 3860 } else if (cc == '}') { 3861 if (braces-- == 0) { 3862 /* 3863 * ERROR: unbalanced braces. 3864 */ 3865 return (NULL); 3866 } 3867 } else if (cc == '{') { 3868 braces++; 3869 } else if (cc == '[') { 3870 brackets++; 3871 } 3872 3873 if (brackets == 0 && braces == 0) { 3874 if (found_key) { 3875 *dd = '\0'; 3876 return (dest); 3877 } 3878 dd = dest; /* reset string buffer */ 3879 state = DTRACE_JSON_COMMA; 3880 } 3881 break; 3882 } 3883 } 3884 return (NULL); 3885 } 3886 3887 /* 3888 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3889 * Notice that we don't bother validating the proper number of arguments or 3890 * their types in the tuple stack. This isn't needed because all argument 3891 * interpretation is safe because of our load safety -- the worst that can 3892 * happen is that a bogus program can obtain bogus results. 3893 */ 3894 static void 3895 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3896 dtrace_key_t *tupregs, int nargs, 3897 dtrace_mstate_t *mstate, dtrace_state_t *state) 3898 { 3899 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3900 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3901 dtrace_vstate_t *vstate = &state->dts_vstate; 3902 3903 union { 3904 mutex_impl_t mi; 3905 uint64_t mx; 3906 } m; 3907 3908 union { 3909 krwlock_t ri; 3910 uintptr_t rw; 3911 } r; 3912 3913 switch (subr) { 3914 case DIF_SUBR_RAND: 3915 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3916 break; 3917 3918 case DIF_SUBR_MUTEX_OWNED: 3919 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3920 mstate, vstate)) { 3921 regs[rd] = NULL; 3922 break; 3923 } 3924 3925 m.mx = dtrace_load64(tupregs[0].dttk_value); 3926 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3927 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3928 else 3929 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3930 break; 3931 3932 case DIF_SUBR_MUTEX_OWNER: 3933 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3934 mstate, vstate)) { 3935 regs[rd] = NULL; 3936 break; 3937 } 3938 3939 m.mx = dtrace_load64(tupregs[0].dttk_value); 3940 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3941 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3942 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3943 else 3944 regs[rd] = 0; 3945 break; 3946 3947 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3948 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3949 mstate, vstate)) { 3950 regs[rd] = NULL; 3951 break; 3952 } 3953 3954 m.mx = dtrace_load64(tupregs[0].dttk_value); 3955 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3956 break; 3957 3958 case DIF_SUBR_MUTEX_TYPE_SPIN: 3959 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3960 mstate, vstate)) { 3961 regs[rd] = NULL; 3962 break; 3963 } 3964 3965 m.mx = dtrace_load64(tupregs[0].dttk_value); 3966 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3967 break; 3968 3969 case DIF_SUBR_RW_READ_HELD: { 3970 uintptr_t tmp; 3971 3972 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3973 mstate, vstate)) { 3974 regs[rd] = NULL; 3975 break; 3976 } 3977 3978 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3979 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3980 break; 3981 } 3982 3983 case DIF_SUBR_RW_WRITE_HELD: 3984 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3985 mstate, vstate)) { 3986 regs[rd] = NULL; 3987 break; 3988 } 3989 3990 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3991 regs[rd] = _RW_WRITE_HELD(&r.ri); 3992 break; 3993 3994 case DIF_SUBR_RW_ISWRITER: 3995 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3996 mstate, vstate)) { 3997 regs[rd] = NULL; 3998 break; 3999 } 4000 4001 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4002 regs[rd] = _RW_ISWRITER(&r.ri); 4003 break; 4004 4005 case DIF_SUBR_BCOPY: { 4006 /* 4007 * We need to be sure that the destination is in the scratch 4008 * region -- no other region is allowed. 4009 */ 4010 uintptr_t src = tupregs[0].dttk_value; 4011 uintptr_t dest = tupregs[1].dttk_value; 4012 size_t size = tupregs[2].dttk_value; 4013 4014 if (!dtrace_inscratch(dest, size, mstate)) { 4015 *flags |= CPU_DTRACE_BADADDR; 4016 *illval = regs[rd]; 4017 break; 4018 } 4019 4020 if (!dtrace_canload(src, size, mstate, vstate)) { 4021 regs[rd] = NULL; 4022 break; 4023 } 4024 4025 dtrace_bcopy((void *)src, (void *)dest, size); 4026 break; 4027 } 4028 4029 case DIF_SUBR_ALLOCA: 4030 case DIF_SUBR_COPYIN: { 4031 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4032 uint64_t size = 4033 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4034 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4035 4036 /* 4037 * This action doesn't require any credential checks since 4038 * probes will not activate in user contexts to which the 4039 * enabling user does not have permissions. 4040 */ 4041 4042 /* 4043 * Rounding up the user allocation size could have overflowed 4044 * a large, bogus allocation (like -1ULL) to 0. 4045 */ 4046 if (scratch_size < size || 4047 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4048 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4049 regs[rd] = NULL; 4050 break; 4051 } 4052 4053 if (subr == DIF_SUBR_COPYIN) { 4054 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4055 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4056 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4057 } 4058 4059 mstate->dtms_scratch_ptr += scratch_size; 4060 regs[rd] = dest; 4061 break; 4062 } 4063 4064 case DIF_SUBR_COPYINTO: { 4065 uint64_t size = tupregs[1].dttk_value; 4066 uintptr_t dest = tupregs[2].dttk_value; 4067 4068 /* 4069 * This action doesn't require any credential checks since 4070 * probes will not activate in user contexts to which the 4071 * enabling user does not have permissions. 4072 */ 4073 if (!dtrace_inscratch(dest, size, mstate)) { 4074 *flags |= CPU_DTRACE_BADADDR; 4075 *illval = regs[rd]; 4076 break; 4077 } 4078 4079 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4080 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4081 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4082 break; 4083 } 4084 4085 case DIF_SUBR_COPYINSTR: { 4086 uintptr_t dest = mstate->dtms_scratch_ptr; 4087 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4088 4089 if (nargs > 1 && tupregs[1].dttk_value < size) 4090 size = tupregs[1].dttk_value + 1; 4091 4092 /* 4093 * This action doesn't require any credential checks since 4094 * probes will not activate in user contexts to which the 4095 * enabling user does not have permissions. 4096 */ 4097 if (!DTRACE_INSCRATCH(mstate, size)) { 4098 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4099 regs[rd] = NULL; 4100 break; 4101 } 4102 4103 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4104 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4105 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4106 4107 ((char *)dest)[size - 1] = '\0'; 4108 mstate->dtms_scratch_ptr += size; 4109 regs[rd] = dest; 4110 break; 4111 } 4112 4113 case DIF_SUBR_MSGSIZE: 4114 case DIF_SUBR_MSGDSIZE: { 4115 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4116 uintptr_t wptr, rptr; 4117 size_t count = 0; 4118 int cont = 0; 4119 4120 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4121 4122 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4123 vstate)) { 4124 regs[rd] = NULL; 4125 break; 4126 } 4127 4128 wptr = dtrace_loadptr(baddr + 4129 offsetof(mblk_t, b_wptr)); 4130 4131 rptr = dtrace_loadptr(baddr + 4132 offsetof(mblk_t, b_rptr)); 4133 4134 if (wptr < rptr) { 4135 *flags |= CPU_DTRACE_BADADDR; 4136 *illval = tupregs[0].dttk_value; 4137 break; 4138 } 4139 4140 daddr = dtrace_loadptr(baddr + 4141 offsetof(mblk_t, b_datap)); 4142 4143 baddr = dtrace_loadptr(baddr + 4144 offsetof(mblk_t, b_cont)); 4145 4146 /* 4147 * We want to prevent against denial-of-service here, 4148 * so we're only going to search the list for 4149 * dtrace_msgdsize_max mblks. 4150 */ 4151 if (cont++ > dtrace_msgdsize_max) { 4152 *flags |= CPU_DTRACE_ILLOP; 4153 break; 4154 } 4155 4156 if (subr == DIF_SUBR_MSGDSIZE) { 4157 if (dtrace_load8(daddr + 4158 offsetof(dblk_t, db_type)) != M_DATA) 4159 continue; 4160 } 4161 4162 count += wptr - rptr; 4163 } 4164 4165 if (!(*flags & CPU_DTRACE_FAULT)) 4166 regs[rd] = count; 4167 4168 break; 4169 } 4170 4171 case DIF_SUBR_PROGENYOF: { 4172 pid_t pid = tupregs[0].dttk_value; 4173 proc_t *p; 4174 int rval = 0; 4175 4176 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4177 4178 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4179 if (p->p_pidp->pid_id == pid) { 4180 rval = 1; 4181 break; 4182 } 4183 } 4184 4185 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4186 4187 regs[rd] = rval; 4188 break; 4189 } 4190 4191 case DIF_SUBR_SPECULATION: 4192 regs[rd] = dtrace_speculation(state); 4193 break; 4194 4195 case DIF_SUBR_COPYOUT: { 4196 uintptr_t kaddr = tupregs[0].dttk_value; 4197 uintptr_t uaddr = tupregs[1].dttk_value; 4198 uint64_t size = tupregs[2].dttk_value; 4199 4200 if (!dtrace_destructive_disallow && 4201 dtrace_priv_proc_control(state, mstate) && 4202 !dtrace_istoxic(kaddr, size) && 4203 dtrace_canload(kaddr, size, mstate, vstate)) { 4204 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4205 dtrace_copyout(kaddr, uaddr, size, flags); 4206 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4207 } 4208 break; 4209 } 4210 4211 case DIF_SUBR_COPYOUTSTR: { 4212 uintptr_t kaddr = tupregs[0].dttk_value; 4213 uintptr_t uaddr = tupregs[1].dttk_value; 4214 uint64_t size = tupregs[2].dttk_value; 4215 4216 if (!dtrace_destructive_disallow && 4217 dtrace_priv_proc_control(state, mstate) && 4218 !dtrace_istoxic(kaddr, size) && 4219 dtrace_strcanload(kaddr, size, mstate, vstate)) { 4220 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4221 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4222 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4223 } 4224 break; 4225 } 4226 4227 case DIF_SUBR_STRLEN: { 4228 size_t sz; 4229 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4230 sz = dtrace_strlen((char *)addr, 4231 state->dts_options[DTRACEOPT_STRSIZE]); 4232 4233 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4234 regs[rd] = NULL; 4235 break; 4236 } 4237 4238 regs[rd] = sz; 4239 4240 break; 4241 } 4242 4243 case DIF_SUBR_STRCHR: 4244 case DIF_SUBR_STRRCHR: { 4245 /* 4246 * We're going to iterate over the string looking for the 4247 * specified character. We will iterate until we have reached 4248 * the string length or we have found the character. If this 4249 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4250 * of the specified character instead of the first. 4251 */ 4252 uintptr_t saddr = tupregs[0].dttk_value; 4253 uintptr_t addr = tupregs[0].dttk_value; 4254 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4255 char c, target = (char)tupregs[1].dttk_value; 4256 4257 for (regs[rd] = NULL; addr < limit; addr++) { 4258 if ((c = dtrace_load8(addr)) == target) { 4259 regs[rd] = addr; 4260 4261 if (subr == DIF_SUBR_STRCHR) 4262 break; 4263 } 4264 4265 if (c == '\0') 4266 break; 4267 } 4268 4269 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4270 regs[rd] = NULL; 4271 break; 4272 } 4273 4274 break; 4275 } 4276 4277 case DIF_SUBR_STRSTR: 4278 case DIF_SUBR_INDEX: 4279 case DIF_SUBR_RINDEX: { 4280 /* 4281 * We're going to iterate over the string looking for the 4282 * specified string. We will iterate until we have reached 4283 * the string length or we have found the string. (Yes, this 4284 * is done in the most naive way possible -- but considering 4285 * that the string we're searching for is likely to be 4286 * relatively short, the complexity of Rabin-Karp or similar 4287 * hardly seems merited.) 4288 */ 4289 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4290 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4291 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4292 size_t len = dtrace_strlen(addr, size); 4293 size_t sublen = dtrace_strlen(substr, size); 4294 char *limit = addr + len, *orig = addr; 4295 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4296 int inc = 1; 4297 4298 regs[rd] = notfound; 4299 4300 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4301 regs[rd] = NULL; 4302 break; 4303 } 4304 4305 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4306 vstate)) { 4307 regs[rd] = NULL; 4308 break; 4309 } 4310 4311 /* 4312 * strstr() and index()/rindex() have similar semantics if 4313 * both strings are the empty string: strstr() returns a 4314 * pointer to the (empty) string, and index() and rindex() 4315 * both return index 0 (regardless of any position argument). 4316 */ 4317 if (sublen == 0 && len == 0) { 4318 if (subr == DIF_SUBR_STRSTR) 4319 regs[rd] = (uintptr_t)addr; 4320 else 4321 regs[rd] = 0; 4322 break; 4323 } 4324 4325 if (subr != DIF_SUBR_STRSTR) { 4326 if (subr == DIF_SUBR_RINDEX) { 4327 limit = orig - 1; 4328 addr += len; 4329 inc = -1; 4330 } 4331 4332 /* 4333 * Both index() and rindex() take an optional position 4334 * argument that denotes the starting position. 4335 */ 4336 if (nargs == 3) { 4337 int64_t pos = (int64_t)tupregs[2].dttk_value; 4338 4339 /* 4340 * If the position argument to index() is 4341 * negative, Perl implicitly clamps it at 4342 * zero. This semantic is a little surprising 4343 * given the special meaning of negative 4344 * positions to similar Perl functions like 4345 * substr(), but it appears to reflect a 4346 * notion that index() can start from a 4347 * negative index and increment its way up to 4348 * the string. Given this notion, Perl's 4349 * rindex() is at least self-consistent in 4350 * that it implicitly clamps positions greater 4351 * than the string length to be the string 4352 * length. Where Perl completely loses 4353 * coherence, however, is when the specified 4354 * substring is the empty string (""). In 4355 * this case, even if the position is 4356 * negative, rindex() returns 0 -- and even if 4357 * the position is greater than the length, 4358 * index() returns the string length. These 4359 * semantics violate the notion that index() 4360 * should never return a value less than the 4361 * specified position and that rindex() should 4362 * never return a value greater than the 4363 * specified position. (One assumes that 4364 * these semantics are artifacts of Perl's 4365 * implementation and not the results of 4366 * deliberate design -- it beggars belief that 4367 * even Larry Wall could desire such oddness.) 4368 * While in the abstract one would wish for 4369 * consistent position semantics across 4370 * substr(), index() and rindex() -- or at the 4371 * very least self-consistent position 4372 * semantics for index() and rindex() -- we 4373 * instead opt to keep with the extant Perl 4374 * semantics, in all their broken glory. (Do 4375 * we have more desire to maintain Perl's 4376 * semantics than Perl does? Probably.) 4377 */ 4378 if (subr == DIF_SUBR_RINDEX) { 4379 if (pos < 0) { 4380 if (sublen == 0) 4381 regs[rd] = 0; 4382 break; 4383 } 4384 4385 if (pos > len) 4386 pos = len; 4387 } else { 4388 if (pos < 0) 4389 pos = 0; 4390 4391 if (pos >= len) { 4392 if (sublen == 0) 4393 regs[rd] = len; 4394 break; 4395 } 4396 } 4397 4398 addr = orig + pos; 4399 } 4400 } 4401 4402 for (regs[rd] = notfound; addr != limit; addr += inc) { 4403 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4404 if (subr != DIF_SUBR_STRSTR) { 4405 /* 4406 * As D index() and rindex() are 4407 * modeled on Perl (and not on awk), 4408 * we return a zero-based (and not a 4409 * one-based) index. (For you Perl 4410 * weenies: no, we're not going to add 4411 * $[ -- and shouldn't you be at a con 4412 * or something?) 4413 */ 4414 regs[rd] = (uintptr_t)(addr - orig); 4415 break; 4416 } 4417 4418 ASSERT(subr == DIF_SUBR_STRSTR); 4419 regs[rd] = (uintptr_t)addr; 4420 break; 4421 } 4422 } 4423 4424 break; 4425 } 4426 4427 case DIF_SUBR_STRTOK: { 4428 uintptr_t addr = tupregs[0].dttk_value; 4429 uintptr_t tokaddr = tupregs[1].dttk_value; 4430 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4431 uintptr_t limit, toklimit = tokaddr + size; 4432 uint8_t c, tokmap[32]; /* 256 / 8 */ 4433 char *dest = (char *)mstate->dtms_scratch_ptr; 4434 int i; 4435 4436 /* 4437 * Check both the token buffer and (later) the input buffer, 4438 * since both could be non-scratch addresses. 4439 */ 4440 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4441 regs[rd] = NULL; 4442 break; 4443 } 4444 4445 if (!DTRACE_INSCRATCH(mstate, size)) { 4446 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4447 regs[rd] = NULL; 4448 break; 4449 } 4450 4451 if (addr == NULL) { 4452 /* 4453 * If the address specified is NULL, we use our saved 4454 * strtok pointer from the mstate. Note that this 4455 * means that the saved strtok pointer is _only_ 4456 * valid within multiple enablings of the same probe -- 4457 * it behaves like an implicit clause-local variable. 4458 */ 4459 addr = mstate->dtms_strtok; 4460 } else { 4461 /* 4462 * If the user-specified address is non-NULL we must 4463 * access check it. This is the only time we have 4464 * a chance to do so, since this address may reside 4465 * in the string table of this clause-- future calls 4466 * (when we fetch addr from mstate->dtms_strtok) 4467 * would fail this access check. 4468 */ 4469 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4470 regs[rd] = NULL; 4471 break; 4472 } 4473 } 4474 4475 /* 4476 * First, zero the token map, and then process the token 4477 * string -- setting a bit in the map for every character 4478 * found in the token string. 4479 */ 4480 for (i = 0; i < sizeof (tokmap); i++) 4481 tokmap[i] = 0; 4482 4483 for (; tokaddr < toklimit; tokaddr++) { 4484 if ((c = dtrace_load8(tokaddr)) == '\0') 4485 break; 4486 4487 ASSERT((c >> 3) < sizeof (tokmap)); 4488 tokmap[c >> 3] |= (1 << (c & 0x7)); 4489 } 4490 4491 for (limit = addr + size; addr < limit; addr++) { 4492 /* 4493 * We're looking for a character that is _not_ contained 4494 * in the token string. 4495 */ 4496 if ((c = dtrace_load8(addr)) == '\0') 4497 break; 4498 4499 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4500 break; 4501 } 4502 4503 if (c == '\0') { 4504 /* 4505 * We reached the end of the string without finding 4506 * any character that was not in the token string. 4507 * We return NULL in this case, and we set the saved 4508 * address to NULL as well. 4509 */ 4510 regs[rd] = NULL; 4511 mstate->dtms_strtok = NULL; 4512 break; 4513 } 4514 4515 /* 4516 * From here on, we're copying into the destination string. 4517 */ 4518 for (i = 0; addr < limit && i < size - 1; addr++) { 4519 if ((c = dtrace_load8(addr)) == '\0') 4520 break; 4521 4522 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4523 break; 4524 4525 ASSERT(i < size); 4526 dest[i++] = c; 4527 } 4528 4529 ASSERT(i < size); 4530 dest[i] = '\0'; 4531 regs[rd] = (uintptr_t)dest; 4532 mstate->dtms_scratch_ptr += size; 4533 mstate->dtms_strtok = addr; 4534 break; 4535 } 4536 4537 case DIF_SUBR_SUBSTR: { 4538 uintptr_t s = tupregs[0].dttk_value; 4539 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4540 char *d = (char *)mstate->dtms_scratch_ptr; 4541 int64_t index = (int64_t)tupregs[1].dttk_value; 4542 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4543 size_t len = dtrace_strlen((char *)s, size); 4544 int64_t i; 4545 4546 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4547 regs[rd] = NULL; 4548 break; 4549 } 4550 4551 if (!DTRACE_INSCRATCH(mstate, size)) { 4552 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4553 regs[rd] = NULL; 4554 break; 4555 } 4556 4557 if (nargs <= 2) 4558 remaining = (int64_t)size; 4559 4560 if (index < 0) { 4561 index += len; 4562 4563 if (index < 0 && index + remaining > 0) { 4564 remaining += index; 4565 index = 0; 4566 } 4567 } 4568 4569 if (index >= len || index < 0) { 4570 remaining = 0; 4571 } else if (remaining < 0) { 4572 remaining += len - index; 4573 } else if (index + remaining > size) { 4574 remaining = size - index; 4575 } 4576 4577 for (i = 0; i < remaining; i++) { 4578 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4579 break; 4580 } 4581 4582 d[i] = '\0'; 4583 4584 mstate->dtms_scratch_ptr += size; 4585 regs[rd] = (uintptr_t)d; 4586 break; 4587 } 4588 4589 case DIF_SUBR_JSON: { 4590 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4591 uintptr_t json = tupregs[0].dttk_value; 4592 size_t jsonlen = dtrace_strlen((char *)json, size); 4593 uintptr_t elem = tupregs[1].dttk_value; 4594 size_t elemlen = dtrace_strlen((char *)elem, size); 4595 4596 char *dest = (char *)mstate->dtms_scratch_ptr; 4597 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4598 char *ee = elemlist; 4599 int nelems = 1; 4600 uintptr_t cur; 4601 4602 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4603 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4604 regs[rd] = NULL; 4605 break; 4606 } 4607 4608 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4609 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4610 regs[rd] = NULL; 4611 break; 4612 } 4613 4614 /* 4615 * Read the element selector and split it up into a packed list 4616 * of strings. 4617 */ 4618 for (cur = elem; cur < elem + elemlen; cur++) { 4619 char cc = dtrace_load8(cur); 4620 4621 if (cur == elem && cc == '[') { 4622 /* 4623 * If the first element selector key is 4624 * actually an array index then ignore the 4625 * bracket. 4626 */ 4627 continue; 4628 } 4629 4630 if (cc == ']') 4631 continue; 4632 4633 if (cc == '.' || cc == '[') { 4634 nelems++; 4635 cc = '\0'; 4636 } 4637 4638 *ee++ = cc; 4639 } 4640 *ee++ = '\0'; 4641 4642 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4643 nelems, dest)) != NULL) 4644 mstate->dtms_scratch_ptr += jsonlen + 1; 4645 break; 4646 } 4647 4648 case DIF_SUBR_TOUPPER: 4649 case DIF_SUBR_TOLOWER: { 4650 uintptr_t s = tupregs[0].dttk_value; 4651 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4652 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4653 size_t len = dtrace_strlen((char *)s, size); 4654 char lower, upper, convert; 4655 int64_t i; 4656 4657 if (subr == DIF_SUBR_TOUPPER) { 4658 lower = 'a'; 4659 upper = 'z'; 4660 convert = 'A'; 4661 } else { 4662 lower = 'A'; 4663 upper = 'Z'; 4664 convert = 'a'; 4665 } 4666 4667 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4668 regs[rd] = NULL; 4669 break; 4670 } 4671 4672 if (!DTRACE_INSCRATCH(mstate, size)) { 4673 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4674 regs[rd] = NULL; 4675 break; 4676 } 4677 4678 for (i = 0; i < size - 1; i++) { 4679 if ((c = dtrace_load8(s + i)) == '\0') 4680 break; 4681 4682 if (c >= lower && c <= upper) 4683 c = convert + (c - lower); 4684 4685 dest[i] = c; 4686 } 4687 4688 ASSERT(i < size); 4689 dest[i] = '\0'; 4690 regs[rd] = (uintptr_t)dest; 4691 mstate->dtms_scratch_ptr += size; 4692 break; 4693 } 4694 4695 case DIF_SUBR_GETMAJOR: 4696 #ifdef _LP64 4697 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4698 #else 4699 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4700 #endif 4701 break; 4702 4703 case DIF_SUBR_GETMINOR: 4704 #ifdef _LP64 4705 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4706 #else 4707 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4708 #endif 4709 break; 4710 4711 case DIF_SUBR_DDI_PATHNAME: { 4712 /* 4713 * This one is a galactic mess. We are going to roughly 4714 * emulate ddi_pathname(), but it's made more complicated 4715 * by the fact that we (a) want to include the minor name and 4716 * (b) must proceed iteratively instead of recursively. 4717 */ 4718 uintptr_t dest = mstate->dtms_scratch_ptr; 4719 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4720 char *start = (char *)dest, *end = start + size - 1; 4721 uintptr_t daddr = tupregs[0].dttk_value; 4722 int64_t minor = (int64_t)tupregs[1].dttk_value; 4723 char *s; 4724 int i, len, depth = 0; 4725 4726 /* 4727 * Due to all the pointer jumping we do and context we must 4728 * rely upon, we just mandate that the user must have kernel 4729 * read privileges to use this routine. 4730 */ 4731 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4732 *flags |= CPU_DTRACE_KPRIV; 4733 *illval = daddr; 4734 regs[rd] = NULL; 4735 } 4736 4737 if (!DTRACE_INSCRATCH(mstate, size)) { 4738 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4739 regs[rd] = NULL; 4740 break; 4741 } 4742 4743 *end = '\0'; 4744 4745 /* 4746 * We want to have a name for the minor. In order to do this, 4747 * we need to walk the minor list from the devinfo. We want 4748 * to be sure that we don't infinitely walk a circular list, 4749 * so we check for circularity by sending a scout pointer 4750 * ahead two elements for every element that we iterate over; 4751 * if the list is circular, these will ultimately point to the 4752 * same element. You may recognize this little trick as the 4753 * answer to a stupid interview question -- one that always 4754 * seems to be asked by those who had to have it laboriously 4755 * explained to them, and who can't even concisely describe 4756 * the conditions under which one would be forced to resort to 4757 * this technique. Needless to say, those conditions are 4758 * found here -- and probably only here. Is this the only use 4759 * of this infamous trick in shipping, production code? If it 4760 * isn't, it probably should be... 4761 */ 4762 if (minor != -1) { 4763 uintptr_t maddr = dtrace_loadptr(daddr + 4764 offsetof(struct dev_info, devi_minor)); 4765 4766 uintptr_t next = offsetof(struct ddi_minor_data, next); 4767 uintptr_t name = offsetof(struct ddi_minor_data, 4768 d_minor) + offsetof(struct ddi_minor, name); 4769 uintptr_t dev = offsetof(struct ddi_minor_data, 4770 d_minor) + offsetof(struct ddi_minor, dev); 4771 uintptr_t scout; 4772 4773 if (maddr != NULL) 4774 scout = dtrace_loadptr(maddr + next); 4775 4776 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4777 uint64_t m; 4778 #ifdef _LP64 4779 m = dtrace_load64(maddr + dev) & MAXMIN64; 4780 #else 4781 m = dtrace_load32(maddr + dev) & MAXMIN; 4782 #endif 4783 if (m != minor) { 4784 maddr = dtrace_loadptr(maddr + next); 4785 4786 if (scout == NULL) 4787 continue; 4788 4789 scout = dtrace_loadptr(scout + next); 4790 4791 if (scout == NULL) 4792 continue; 4793 4794 scout = dtrace_loadptr(scout + next); 4795 4796 if (scout == NULL) 4797 continue; 4798 4799 if (scout == maddr) { 4800 *flags |= CPU_DTRACE_ILLOP; 4801 break; 4802 } 4803 4804 continue; 4805 } 4806 4807 /* 4808 * We have the minor data. Now we need to 4809 * copy the minor's name into the end of the 4810 * pathname. 4811 */ 4812 s = (char *)dtrace_loadptr(maddr + name); 4813 len = dtrace_strlen(s, size); 4814 4815 if (*flags & CPU_DTRACE_FAULT) 4816 break; 4817 4818 if (len != 0) { 4819 if ((end -= (len + 1)) < start) 4820 break; 4821 4822 *end = ':'; 4823 } 4824 4825 for (i = 1; i <= len; i++) 4826 end[i] = dtrace_load8((uintptr_t)s++); 4827 break; 4828 } 4829 } 4830 4831 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4832 ddi_node_state_t devi_state; 4833 4834 devi_state = dtrace_load32(daddr + 4835 offsetof(struct dev_info, devi_node_state)); 4836 4837 if (*flags & CPU_DTRACE_FAULT) 4838 break; 4839 4840 if (devi_state >= DS_INITIALIZED) { 4841 s = (char *)dtrace_loadptr(daddr + 4842 offsetof(struct dev_info, devi_addr)); 4843 len = dtrace_strlen(s, size); 4844 4845 if (*flags & CPU_DTRACE_FAULT) 4846 break; 4847 4848 if (len != 0) { 4849 if ((end -= (len + 1)) < start) 4850 break; 4851 4852 *end = '@'; 4853 } 4854 4855 for (i = 1; i <= len; i++) 4856 end[i] = dtrace_load8((uintptr_t)s++); 4857 } 4858 4859 /* 4860 * Now for the node name... 4861 */ 4862 s = (char *)dtrace_loadptr(daddr + 4863 offsetof(struct dev_info, devi_node_name)); 4864 4865 daddr = dtrace_loadptr(daddr + 4866 offsetof(struct dev_info, devi_parent)); 4867 4868 /* 4869 * If our parent is NULL (that is, if we're the root 4870 * node), we're going to use the special path 4871 * "devices". 4872 */ 4873 if (daddr == NULL) 4874 s = "devices"; 4875 4876 len = dtrace_strlen(s, size); 4877 if (*flags & CPU_DTRACE_FAULT) 4878 break; 4879 4880 if ((end -= (len + 1)) < start) 4881 break; 4882 4883 for (i = 1; i <= len; i++) 4884 end[i] = dtrace_load8((uintptr_t)s++); 4885 *end = '/'; 4886 4887 if (depth++ > dtrace_devdepth_max) { 4888 *flags |= CPU_DTRACE_ILLOP; 4889 break; 4890 } 4891 } 4892 4893 if (end < start) 4894 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4895 4896 if (daddr == NULL) { 4897 regs[rd] = (uintptr_t)end; 4898 mstate->dtms_scratch_ptr += size; 4899 } 4900 4901 break; 4902 } 4903 4904 case DIF_SUBR_STRJOIN: { 4905 char *d = (char *)mstate->dtms_scratch_ptr; 4906 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4907 uintptr_t s1 = tupregs[0].dttk_value; 4908 uintptr_t s2 = tupregs[1].dttk_value; 4909 int i = 0; 4910 4911 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4912 !dtrace_strcanload(s2, size, mstate, vstate)) { 4913 regs[rd] = NULL; 4914 break; 4915 } 4916 4917 if (!DTRACE_INSCRATCH(mstate, size)) { 4918 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4919 regs[rd] = NULL; 4920 break; 4921 } 4922 4923 for (;;) { 4924 if (i >= size) { 4925 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4926 regs[rd] = NULL; 4927 break; 4928 } 4929 4930 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4931 i--; 4932 break; 4933 } 4934 } 4935 4936 for (;;) { 4937 if (i >= size) { 4938 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4939 regs[rd] = NULL; 4940 break; 4941 } 4942 4943 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4944 break; 4945 } 4946 4947 if (i < size) { 4948 mstate->dtms_scratch_ptr += i; 4949 regs[rd] = (uintptr_t)d; 4950 } 4951 4952 break; 4953 } 4954 4955 case DIF_SUBR_STRTOLL: { 4956 uintptr_t s = tupregs[0].dttk_value; 4957 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4958 int base = 10; 4959 4960 if (nargs > 1) { 4961 if ((base = tupregs[1].dttk_value) <= 1 || 4962 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4963 *flags |= CPU_DTRACE_ILLOP; 4964 break; 4965 } 4966 } 4967 4968 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4969 regs[rd] = INT64_MIN; 4970 break; 4971 } 4972 4973 regs[rd] = dtrace_strtoll((char *)s, base, size); 4974 break; 4975 } 4976 4977 case DIF_SUBR_LLTOSTR: { 4978 int64_t i = (int64_t)tupregs[0].dttk_value; 4979 uint64_t val, digit; 4980 uint64_t size = 65; /* enough room for 2^64 in binary */ 4981 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4982 int base = 10; 4983 4984 if (nargs > 1) { 4985 if ((base = tupregs[1].dttk_value) <= 1 || 4986 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4987 *flags |= CPU_DTRACE_ILLOP; 4988 break; 4989 } 4990 } 4991 4992 val = (base == 10 && i < 0) ? i * -1 : i; 4993 4994 if (!DTRACE_INSCRATCH(mstate, size)) { 4995 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4996 regs[rd] = NULL; 4997 break; 4998 } 4999 5000 for (*end-- = '\0'; val; val /= base) { 5001 if ((digit = val % base) <= '9' - '0') { 5002 *end-- = '0' + digit; 5003 } else { 5004 *end-- = 'a' + (digit - ('9' - '0') - 1); 5005 } 5006 } 5007 5008 if (i == 0 && base == 16) 5009 *end-- = '0'; 5010 5011 if (base == 16) 5012 *end-- = 'x'; 5013 5014 if (i == 0 || base == 8 || base == 16) 5015 *end-- = '0'; 5016 5017 if (i < 0 && base == 10) 5018 *end-- = '-'; 5019 5020 regs[rd] = (uintptr_t)end + 1; 5021 mstate->dtms_scratch_ptr += size; 5022 break; 5023 } 5024 5025 case DIF_SUBR_HTONS: 5026 case DIF_SUBR_NTOHS: 5027 #ifdef _BIG_ENDIAN 5028 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5029 #else 5030 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5031 #endif 5032 break; 5033 5034 5035 case DIF_SUBR_HTONL: 5036 case DIF_SUBR_NTOHL: 5037 #ifdef _BIG_ENDIAN 5038 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5039 #else 5040 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5041 #endif 5042 break; 5043 5044 5045 case DIF_SUBR_HTONLL: 5046 case DIF_SUBR_NTOHLL: 5047 #ifdef _BIG_ENDIAN 5048 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5049 #else 5050 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5051 #endif 5052 break; 5053 5054 5055 case DIF_SUBR_DIRNAME: 5056 case DIF_SUBR_BASENAME: { 5057 char *dest = (char *)mstate->dtms_scratch_ptr; 5058 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5059 uintptr_t src = tupregs[0].dttk_value; 5060 int i, j, len = dtrace_strlen((char *)src, size); 5061 int lastbase = -1, firstbase = -1, lastdir = -1; 5062 int start, end; 5063 5064 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5065 regs[rd] = NULL; 5066 break; 5067 } 5068 5069 if (!DTRACE_INSCRATCH(mstate, size)) { 5070 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5071 regs[rd] = NULL; 5072 break; 5073 } 5074 5075 /* 5076 * The basename and dirname for a zero-length string is 5077 * defined to be "." 5078 */ 5079 if (len == 0) { 5080 len = 1; 5081 src = (uintptr_t)"."; 5082 } 5083 5084 /* 5085 * Start from the back of the string, moving back toward the 5086 * front until we see a character that isn't a slash. That 5087 * character is the last character in the basename. 5088 */ 5089 for (i = len - 1; i >= 0; i--) { 5090 if (dtrace_load8(src + i) != '/') 5091 break; 5092 } 5093 5094 if (i >= 0) 5095 lastbase = i; 5096 5097 /* 5098 * Starting from the last character in the basename, move 5099 * towards the front until we find a slash. The character 5100 * that we processed immediately before that is the first 5101 * character in the basename. 5102 */ 5103 for (; i >= 0; i--) { 5104 if (dtrace_load8(src + i) == '/') 5105 break; 5106 } 5107 5108 if (i >= 0) 5109 firstbase = i + 1; 5110 5111 /* 5112 * Now keep going until we find a non-slash character. That 5113 * character is the last character in the dirname. 5114 */ 5115 for (; i >= 0; i--) { 5116 if (dtrace_load8(src + i) != '/') 5117 break; 5118 } 5119 5120 if (i >= 0) 5121 lastdir = i; 5122 5123 ASSERT(!(lastbase == -1 && firstbase != -1)); 5124 ASSERT(!(firstbase == -1 && lastdir != -1)); 5125 5126 if (lastbase == -1) { 5127 /* 5128 * We didn't find a non-slash character. We know that 5129 * the length is non-zero, so the whole string must be 5130 * slashes. In either the dirname or the basename 5131 * case, we return '/'. 5132 */ 5133 ASSERT(firstbase == -1); 5134 firstbase = lastbase = lastdir = 0; 5135 } 5136 5137 if (firstbase == -1) { 5138 /* 5139 * The entire string consists only of a basename 5140 * component. If we're looking for dirname, we need 5141 * to change our string to be just "."; if we're 5142 * looking for a basename, we'll just set the first 5143 * character of the basename to be 0. 5144 */ 5145 if (subr == DIF_SUBR_DIRNAME) { 5146 ASSERT(lastdir == -1); 5147 src = (uintptr_t)"."; 5148 lastdir = 0; 5149 } else { 5150 firstbase = 0; 5151 } 5152 } 5153 5154 if (subr == DIF_SUBR_DIRNAME) { 5155 if (lastdir == -1) { 5156 /* 5157 * We know that we have a slash in the name -- 5158 * or lastdir would be set to 0, above. And 5159 * because lastdir is -1, we know that this 5160 * slash must be the first character. (That 5161 * is, the full string must be of the form 5162 * "/basename".) In this case, the last 5163 * character of the directory name is 0. 5164 */ 5165 lastdir = 0; 5166 } 5167 5168 start = 0; 5169 end = lastdir; 5170 } else { 5171 ASSERT(subr == DIF_SUBR_BASENAME); 5172 ASSERT(firstbase != -1 && lastbase != -1); 5173 start = firstbase; 5174 end = lastbase; 5175 } 5176 5177 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5178 dest[j] = dtrace_load8(src + i); 5179 5180 dest[j] = '\0'; 5181 regs[rd] = (uintptr_t)dest; 5182 mstate->dtms_scratch_ptr += size; 5183 break; 5184 } 5185 5186 case DIF_SUBR_GETF: { 5187 uintptr_t fd = tupregs[0].dttk_value; 5188 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5189 file_t *fp; 5190 5191 if (!dtrace_priv_proc(state, mstate)) { 5192 regs[rd] = NULL; 5193 break; 5194 } 5195 5196 /* 5197 * This is safe because fi_nfiles only increases, and the 5198 * fi_list array is not freed when the array size doubles. 5199 * (See the comment in flist_grow() for details on the 5200 * management of the u_finfo structure.) 5201 */ 5202 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5203 5204 mstate->dtms_getf = fp; 5205 regs[rd] = (uintptr_t)fp; 5206 break; 5207 } 5208 5209 case DIF_SUBR_CLEANPATH: { 5210 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5211 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5212 uintptr_t src = tupregs[0].dttk_value; 5213 int i = 0, j = 0; 5214 zone_t *z; 5215 5216 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5217 regs[rd] = NULL; 5218 break; 5219 } 5220 5221 if (!DTRACE_INSCRATCH(mstate, size)) { 5222 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5223 regs[rd] = NULL; 5224 break; 5225 } 5226 5227 /* 5228 * Move forward, loading each character. 5229 */ 5230 do { 5231 c = dtrace_load8(src + i++); 5232 next: 5233 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5234 break; 5235 5236 if (c != '/') { 5237 dest[j++] = c; 5238 continue; 5239 } 5240 5241 c = dtrace_load8(src + i++); 5242 5243 if (c == '/') { 5244 /* 5245 * We have two slashes -- we can just advance 5246 * to the next character. 5247 */ 5248 goto next; 5249 } 5250 5251 if (c != '.') { 5252 /* 5253 * This is not "." and it's not ".." -- we can 5254 * just store the "/" and this character and 5255 * drive on. 5256 */ 5257 dest[j++] = '/'; 5258 dest[j++] = c; 5259 continue; 5260 } 5261 5262 c = dtrace_load8(src + i++); 5263 5264 if (c == '/') { 5265 /* 5266 * This is a "/./" component. We're not going 5267 * to store anything in the destination buffer; 5268 * we're just going to go to the next component. 5269 */ 5270 goto next; 5271 } 5272 5273 if (c != '.') { 5274 /* 5275 * This is not ".." -- we can just store the 5276 * "/." and this character and continue 5277 * processing. 5278 */ 5279 dest[j++] = '/'; 5280 dest[j++] = '.'; 5281 dest[j++] = c; 5282 continue; 5283 } 5284 5285 c = dtrace_load8(src + i++); 5286 5287 if (c != '/' && c != '\0') { 5288 /* 5289 * This is not ".." -- it's "..[mumble]". 5290 * We'll store the "/.." and this character 5291 * and continue processing. 5292 */ 5293 dest[j++] = '/'; 5294 dest[j++] = '.'; 5295 dest[j++] = '.'; 5296 dest[j++] = c; 5297 continue; 5298 } 5299 5300 /* 5301 * This is "/../" or "/..\0". We need to back up 5302 * our destination pointer until we find a "/". 5303 */ 5304 i--; 5305 while (j != 0 && dest[--j] != '/') 5306 continue; 5307 5308 if (c == '\0') 5309 dest[++j] = '/'; 5310 } while (c != '\0'); 5311 5312 dest[j] = '\0'; 5313 5314 if (mstate->dtms_getf != NULL && 5315 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5316 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5317 /* 5318 * If we've done a getf() as a part of this ECB and we 5319 * don't have kernel access (and we're not in the global 5320 * zone), check if the path we cleaned up begins with 5321 * the zone's root path, and trim it off if so. Note 5322 * that this is an output cleanliness issue, not a 5323 * security issue: knowing one's zone root path does 5324 * not enable privilege escalation. 5325 */ 5326 if (strstr(dest, z->zone_rootpath) == dest) 5327 dest += strlen(z->zone_rootpath) - 1; 5328 } 5329 5330 regs[rd] = (uintptr_t)dest; 5331 mstate->dtms_scratch_ptr += size; 5332 break; 5333 } 5334 5335 case DIF_SUBR_INET_NTOA: 5336 case DIF_SUBR_INET_NTOA6: 5337 case DIF_SUBR_INET_NTOP: { 5338 size_t size; 5339 int af, argi, i; 5340 char *base, *end; 5341 5342 if (subr == DIF_SUBR_INET_NTOP) { 5343 af = (int)tupregs[0].dttk_value; 5344 argi = 1; 5345 } else { 5346 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5347 argi = 0; 5348 } 5349 5350 if (af == AF_INET) { 5351 ipaddr_t ip4; 5352 uint8_t *ptr8, val; 5353 5354 if (!dtrace_canload(tupregs[argi].dttk_value, 5355 sizeof (ipaddr_t), mstate, vstate)) { 5356 regs[rd] = NULL; 5357 break; 5358 } 5359 5360 /* 5361 * Safely load the IPv4 address. 5362 */ 5363 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5364 5365 /* 5366 * Check an IPv4 string will fit in scratch. 5367 */ 5368 size = INET_ADDRSTRLEN; 5369 if (!DTRACE_INSCRATCH(mstate, size)) { 5370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5371 regs[rd] = NULL; 5372 break; 5373 } 5374 base = (char *)mstate->dtms_scratch_ptr; 5375 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5376 5377 /* 5378 * Stringify as a dotted decimal quad. 5379 */ 5380 *end-- = '\0'; 5381 ptr8 = (uint8_t *)&ip4; 5382 for (i = 3; i >= 0; i--) { 5383 val = ptr8[i]; 5384 5385 if (val == 0) { 5386 *end-- = '0'; 5387 } else { 5388 for (; val; val /= 10) { 5389 *end-- = '0' + (val % 10); 5390 } 5391 } 5392 5393 if (i > 0) 5394 *end-- = '.'; 5395 } 5396 ASSERT(end + 1 >= base); 5397 5398 } else if (af == AF_INET6) { 5399 struct in6_addr ip6; 5400 int firstzero, tryzero, numzero, v6end; 5401 uint16_t val; 5402 const char digits[] = "0123456789abcdef"; 5403 5404 /* 5405 * Stringify using RFC 1884 convention 2 - 16 bit 5406 * hexadecimal values with a zero-run compression. 5407 * Lower case hexadecimal digits are used. 5408 * eg, fe80::214:4fff:fe0b:76c8. 5409 * The IPv4 embedded form is returned for inet_ntop, 5410 * just the IPv4 string is returned for inet_ntoa6. 5411 */ 5412 5413 if (!dtrace_canload(tupregs[argi].dttk_value, 5414 sizeof (struct in6_addr), mstate, vstate)) { 5415 regs[rd] = NULL; 5416 break; 5417 } 5418 5419 /* 5420 * Safely load the IPv6 address. 5421 */ 5422 dtrace_bcopy( 5423 (void *)(uintptr_t)tupregs[argi].dttk_value, 5424 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5425 5426 /* 5427 * Check an IPv6 string will fit in scratch. 5428 */ 5429 size = INET6_ADDRSTRLEN; 5430 if (!DTRACE_INSCRATCH(mstate, size)) { 5431 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5432 regs[rd] = NULL; 5433 break; 5434 } 5435 base = (char *)mstate->dtms_scratch_ptr; 5436 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5437 *end-- = '\0'; 5438 5439 /* 5440 * Find the longest run of 16 bit zero values 5441 * for the single allowed zero compression - "::". 5442 */ 5443 firstzero = -1; 5444 tryzero = -1; 5445 numzero = 1; 5446 for (i = 0; i < sizeof (struct in6_addr); i++) { 5447 if (ip6._S6_un._S6_u8[i] == 0 && 5448 tryzero == -1 && i % 2 == 0) { 5449 tryzero = i; 5450 continue; 5451 } 5452 5453 if (tryzero != -1 && 5454 (ip6._S6_un._S6_u8[i] != 0 || 5455 i == sizeof (struct in6_addr) - 1)) { 5456 5457 if (i - tryzero <= numzero) { 5458 tryzero = -1; 5459 continue; 5460 } 5461 5462 firstzero = tryzero; 5463 numzero = i - i % 2 - tryzero; 5464 tryzero = -1; 5465 5466 if (ip6._S6_un._S6_u8[i] == 0 && 5467 i == sizeof (struct in6_addr) - 1) 5468 numzero += 2; 5469 } 5470 } 5471 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5472 5473 /* 5474 * Check for an IPv4 embedded address. 5475 */ 5476 v6end = sizeof (struct in6_addr) - 2; 5477 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5478 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5479 for (i = sizeof (struct in6_addr) - 1; 5480 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5481 ASSERT(end >= base); 5482 5483 val = ip6._S6_un._S6_u8[i]; 5484 5485 if (val == 0) { 5486 *end-- = '0'; 5487 } else { 5488 for (; val; val /= 10) { 5489 *end-- = '0' + val % 10; 5490 } 5491 } 5492 5493 if (i > DTRACE_V4MAPPED_OFFSET) 5494 *end-- = '.'; 5495 } 5496 5497 if (subr == DIF_SUBR_INET_NTOA6) 5498 goto inetout; 5499 5500 /* 5501 * Set v6end to skip the IPv4 address that 5502 * we have already stringified. 5503 */ 5504 v6end = 10; 5505 } 5506 5507 /* 5508 * Build the IPv6 string by working through the 5509 * address in reverse. 5510 */ 5511 for (i = v6end; i >= 0; i -= 2) { 5512 ASSERT(end >= base); 5513 5514 if (i == firstzero + numzero - 2) { 5515 *end-- = ':'; 5516 *end-- = ':'; 5517 i -= numzero - 2; 5518 continue; 5519 } 5520 5521 if (i < 14 && i != firstzero - 2) 5522 *end-- = ':'; 5523 5524 val = (ip6._S6_un._S6_u8[i] << 8) + 5525 ip6._S6_un._S6_u8[i + 1]; 5526 5527 if (val == 0) { 5528 *end-- = '0'; 5529 } else { 5530 for (; val; val /= 16) { 5531 *end-- = digits[val % 16]; 5532 } 5533 } 5534 } 5535 ASSERT(end + 1 >= base); 5536 5537 } else { 5538 /* 5539 * The user didn't use AH_INET or AH_INET6. 5540 */ 5541 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5542 regs[rd] = NULL; 5543 break; 5544 } 5545 5546 inetout: regs[rd] = (uintptr_t)end + 1; 5547 mstate->dtms_scratch_ptr += size; 5548 break; 5549 } 5550 5551 } 5552 } 5553 5554 /* 5555 * Emulate the execution of DTrace IR instructions specified by the given 5556 * DIF object. This function is deliberately void of assertions as all of 5557 * the necessary checks are handled by a call to dtrace_difo_validate(). 5558 */ 5559 static uint64_t 5560 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5561 dtrace_vstate_t *vstate, dtrace_state_t *state) 5562 { 5563 const dif_instr_t *text = difo->dtdo_buf; 5564 const uint_t textlen = difo->dtdo_len; 5565 const char *strtab = difo->dtdo_strtab; 5566 const uint64_t *inttab = difo->dtdo_inttab; 5567 5568 uint64_t rval = 0; 5569 dtrace_statvar_t *svar; 5570 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5571 dtrace_difv_t *v; 5572 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5573 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5574 5575 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5576 uint64_t regs[DIF_DIR_NREGS]; 5577 uint64_t *tmp; 5578 5579 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5580 int64_t cc_r; 5581 uint_t pc = 0, id, opc; 5582 uint8_t ttop = 0; 5583 dif_instr_t instr; 5584 uint_t r1, r2, rd; 5585 5586 /* 5587 * We stash the current DIF object into the machine state: we need it 5588 * for subsequent access checking. 5589 */ 5590 mstate->dtms_difo = difo; 5591 5592 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5593 5594 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5595 opc = pc; 5596 5597 instr = text[pc++]; 5598 r1 = DIF_INSTR_R1(instr); 5599 r2 = DIF_INSTR_R2(instr); 5600 rd = DIF_INSTR_RD(instr); 5601 5602 switch (DIF_INSTR_OP(instr)) { 5603 case DIF_OP_OR: 5604 regs[rd] = regs[r1] | regs[r2]; 5605 break; 5606 case DIF_OP_XOR: 5607 regs[rd] = regs[r1] ^ regs[r2]; 5608 break; 5609 case DIF_OP_AND: 5610 regs[rd] = regs[r1] & regs[r2]; 5611 break; 5612 case DIF_OP_SLL: 5613 regs[rd] = regs[r1] << regs[r2]; 5614 break; 5615 case DIF_OP_SRL: 5616 regs[rd] = regs[r1] >> regs[r2]; 5617 break; 5618 case DIF_OP_SUB: 5619 regs[rd] = regs[r1] - regs[r2]; 5620 break; 5621 case DIF_OP_ADD: 5622 regs[rd] = regs[r1] + regs[r2]; 5623 break; 5624 case DIF_OP_MUL: 5625 regs[rd] = regs[r1] * regs[r2]; 5626 break; 5627 case DIF_OP_SDIV: 5628 if (regs[r2] == 0) { 5629 regs[rd] = 0; 5630 *flags |= CPU_DTRACE_DIVZERO; 5631 } else { 5632 regs[rd] = (int64_t)regs[r1] / 5633 (int64_t)regs[r2]; 5634 } 5635 break; 5636 5637 case DIF_OP_UDIV: 5638 if (regs[r2] == 0) { 5639 regs[rd] = 0; 5640 *flags |= CPU_DTRACE_DIVZERO; 5641 } else { 5642 regs[rd] = regs[r1] / regs[r2]; 5643 } 5644 break; 5645 5646 case DIF_OP_SREM: 5647 if (regs[r2] == 0) { 5648 regs[rd] = 0; 5649 *flags |= CPU_DTRACE_DIVZERO; 5650 } else { 5651 regs[rd] = (int64_t)regs[r1] % 5652 (int64_t)regs[r2]; 5653 } 5654 break; 5655 5656 case DIF_OP_UREM: 5657 if (regs[r2] == 0) { 5658 regs[rd] = 0; 5659 *flags |= CPU_DTRACE_DIVZERO; 5660 } else { 5661 regs[rd] = regs[r1] % regs[r2]; 5662 } 5663 break; 5664 5665 case DIF_OP_NOT: 5666 regs[rd] = ~regs[r1]; 5667 break; 5668 case DIF_OP_MOV: 5669 regs[rd] = regs[r1]; 5670 break; 5671 case DIF_OP_CMP: 5672 cc_r = regs[r1] - regs[r2]; 5673 cc_n = cc_r < 0; 5674 cc_z = cc_r == 0; 5675 cc_v = 0; 5676 cc_c = regs[r1] < regs[r2]; 5677 break; 5678 case DIF_OP_TST: 5679 cc_n = cc_v = cc_c = 0; 5680 cc_z = regs[r1] == 0; 5681 break; 5682 case DIF_OP_BA: 5683 pc = DIF_INSTR_LABEL(instr); 5684 break; 5685 case DIF_OP_BE: 5686 if (cc_z) 5687 pc = DIF_INSTR_LABEL(instr); 5688 break; 5689 case DIF_OP_BNE: 5690 if (cc_z == 0) 5691 pc = DIF_INSTR_LABEL(instr); 5692 break; 5693 case DIF_OP_BG: 5694 if ((cc_z | (cc_n ^ cc_v)) == 0) 5695 pc = DIF_INSTR_LABEL(instr); 5696 break; 5697 case DIF_OP_BGU: 5698 if ((cc_c | cc_z) == 0) 5699 pc = DIF_INSTR_LABEL(instr); 5700 break; 5701 case DIF_OP_BGE: 5702 if ((cc_n ^ cc_v) == 0) 5703 pc = DIF_INSTR_LABEL(instr); 5704 break; 5705 case DIF_OP_BGEU: 5706 if (cc_c == 0) 5707 pc = DIF_INSTR_LABEL(instr); 5708 break; 5709 case DIF_OP_BL: 5710 if (cc_n ^ cc_v) 5711 pc = DIF_INSTR_LABEL(instr); 5712 break; 5713 case DIF_OP_BLU: 5714 if (cc_c) 5715 pc = DIF_INSTR_LABEL(instr); 5716 break; 5717 case DIF_OP_BLE: 5718 if (cc_z | (cc_n ^ cc_v)) 5719 pc = DIF_INSTR_LABEL(instr); 5720 break; 5721 case DIF_OP_BLEU: 5722 if (cc_c | cc_z) 5723 pc = DIF_INSTR_LABEL(instr); 5724 break; 5725 case DIF_OP_RLDSB: 5726 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5727 break; 5728 /*FALLTHROUGH*/ 5729 case DIF_OP_LDSB: 5730 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5731 break; 5732 case DIF_OP_RLDSH: 5733 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5734 break; 5735 /*FALLTHROUGH*/ 5736 case DIF_OP_LDSH: 5737 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5738 break; 5739 case DIF_OP_RLDSW: 5740 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5741 break; 5742 /*FALLTHROUGH*/ 5743 case DIF_OP_LDSW: 5744 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5745 break; 5746 case DIF_OP_RLDUB: 5747 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5748 break; 5749 /*FALLTHROUGH*/ 5750 case DIF_OP_LDUB: 5751 regs[rd] = dtrace_load8(regs[r1]); 5752 break; 5753 case DIF_OP_RLDUH: 5754 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5755 break; 5756 /*FALLTHROUGH*/ 5757 case DIF_OP_LDUH: 5758 regs[rd] = dtrace_load16(regs[r1]); 5759 break; 5760 case DIF_OP_RLDUW: 5761 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5762 break; 5763 /*FALLTHROUGH*/ 5764 case DIF_OP_LDUW: 5765 regs[rd] = dtrace_load32(regs[r1]); 5766 break; 5767 case DIF_OP_RLDX: 5768 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5769 break; 5770 /*FALLTHROUGH*/ 5771 case DIF_OP_LDX: 5772 regs[rd] = dtrace_load64(regs[r1]); 5773 break; 5774 case DIF_OP_ULDSB: 5775 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5776 regs[rd] = (int8_t) 5777 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5778 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5779 break; 5780 case DIF_OP_ULDSH: 5781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5782 regs[rd] = (int16_t) 5783 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5784 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5785 break; 5786 case DIF_OP_ULDSW: 5787 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5788 regs[rd] = (int32_t) 5789 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5790 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5791 break; 5792 case DIF_OP_ULDUB: 5793 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5794 regs[rd] = 5795 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5796 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5797 break; 5798 case DIF_OP_ULDUH: 5799 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5800 regs[rd] = 5801 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5802 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5803 break; 5804 case DIF_OP_ULDUW: 5805 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5806 regs[rd] = 5807 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5808 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5809 break; 5810 case DIF_OP_ULDX: 5811 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5812 regs[rd] = 5813 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5814 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5815 break; 5816 case DIF_OP_RET: 5817 rval = regs[rd]; 5818 pc = textlen; 5819 break; 5820 case DIF_OP_NOP: 5821 break; 5822 case DIF_OP_SETX: 5823 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5824 break; 5825 case DIF_OP_SETS: 5826 regs[rd] = (uint64_t)(uintptr_t) 5827 (strtab + DIF_INSTR_STRING(instr)); 5828 break; 5829 case DIF_OP_SCMP: { 5830 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5831 uintptr_t s1 = regs[r1]; 5832 uintptr_t s2 = regs[r2]; 5833 5834 if (s1 != NULL && 5835 !dtrace_strcanload(s1, sz, mstate, vstate)) 5836 break; 5837 if (s2 != NULL && 5838 !dtrace_strcanload(s2, sz, mstate, vstate)) 5839 break; 5840 5841 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5842 5843 cc_n = cc_r < 0; 5844 cc_z = cc_r == 0; 5845 cc_v = cc_c = 0; 5846 break; 5847 } 5848 case DIF_OP_LDGA: 5849 regs[rd] = dtrace_dif_variable(mstate, state, 5850 r1, regs[r2]); 5851 break; 5852 case DIF_OP_LDGS: 5853 id = DIF_INSTR_VAR(instr); 5854 5855 if (id >= DIF_VAR_OTHER_UBASE) { 5856 uintptr_t a; 5857 5858 id -= DIF_VAR_OTHER_UBASE; 5859 svar = vstate->dtvs_globals[id]; 5860 ASSERT(svar != NULL); 5861 v = &svar->dtsv_var; 5862 5863 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5864 regs[rd] = svar->dtsv_data; 5865 break; 5866 } 5867 5868 a = (uintptr_t)svar->dtsv_data; 5869 5870 if (*(uint8_t *)a == UINT8_MAX) { 5871 /* 5872 * If the 0th byte is set to UINT8_MAX 5873 * then this is to be treated as a 5874 * reference to a NULL variable. 5875 */ 5876 regs[rd] = NULL; 5877 } else { 5878 regs[rd] = a + sizeof (uint64_t); 5879 } 5880 5881 break; 5882 } 5883 5884 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5885 break; 5886 5887 case DIF_OP_STGS: 5888 id = DIF_INSTR_VAR(instr); 5889 5890 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5891 id -= DIF_VAR_OTHER_UBASE; 5892 5893 VERIFY(id < vstate->dtvs_nglobals); 5894 svar = vstate->dtvs_globals[id]; 5895 ASSERT(svar != NULL); 5896 v = &svar->dtsv_var; 5897 5898 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5899 uintptr_t a = (uintptr_t)svar->dtsv_data; 5900 5901 ASSERT(a != NULL); 5902 ASSERT(svar->dtsv_size != 0); 5903 5904 if (regs[rd] == NULL) { 5905 *(uint8_t *)a = UINT8_MAX; 5906 break; 5907 } else { 5908 *(uint8_t *)a = 0; 5909 a += sizeof (uint64_t); 5910 } 5911 if (!dtrace_vcanload( 5912 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5913 mstate, vstate)) 5914 break; 5915 5916 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5917 (void *)a, &v->dtdv_type); 5918 break; 5919 } 5920 5921 svar->dtsv_data = regs[rd]; 5922 break; 5923 5924 case DIF_OP_LDTA: 5925 /* 5926 * There are no DTrace built-in thread-local arrays at 5927 * present. This opcode is saved for future work. 5928 */ 5929 *flags |= CPU_DTRACE_ILLOP; 5930 regs[rd] = 0; 5931 break; 5932 5933 case DIF_OP_LDLS: 5934 id = DIF_INSTR_VAR(instr); 5935 5936 if (id < DIF_VAR_OTHER_UBASE) { 5937 /* 5938 * For now, this has no meaning. 5939 */ 5940 regs[rd] = 0; 5941 break; 5942 } 5943 5944 id -= DIF_VAR_OTHER_UBASE; 5945 5946 ASSERT(id < vstate->dtvs_nlocals); 5947 ASSERT(vstate->dtvs_locals != NULL); 5948 5949 svar = vstate->dtvs_locals[id]; 5950 ASSERT(svar != NULL); 5951 v = &svar->dtsv_var; 5952 5953 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5954 uintptr_t a = (uintptr_t)svar->dtsv_data; 5955 size_t sz = v->dtdv_type.dtdt_size; 5956 5957 sz += sizeof (uint64_t); 5958 ASSERT(svar->dtsv_size == NCPU * sz); 5959 a += CPU->cpu_id * sz; 5960 5961 if (*(uint8_t *)a == UINT8_MAX) { 5962 /* 5963 * If the 0th byte is set to UINT8_MAX 5964 * then this is to be treated as a 5965 * reference to a NULL variable. 5966 */ 5967 regs[rd] = NULL; 5968 } else { 5969 regs[rd] = a + sizeof (uint64_t); 5970 } 5971 5972 break; 5973 } 5974 5975 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5976 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5977 regs[rd] = tmp[CPU->cpu_id]; 5978 break; 5979 5980 case DIF_OP_STLS: 5981 id = DIF_INSTR_VAR(instr); 5982 5983 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5984 id -= DIF_VAR_OTHER_UBASE; 5985 VERIFY(id < vstate->dtvs_nlocals); 5986 5987 ASSERT(vstate->dtvs_locals != NULL); 5988 svar = vstate->dtvs_locals[id]; 5989 ASSERT(svar != NULL); 5990 v = &svar->dtsv_var; 5991 5992 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5993 uintptr_t a = (uintptr_t)svar->dtsv_data; 5994 size_t sz = v->dtdv_type.dtdt_size; 5995 5996 sz += sizeof (uint64_t); 5997 ASSERT(svar->dtsv_size == NCPU * sz); 5998 a += CPU->cpu_id * sz; 5999 6000 if (regs[rd] == NULL) { 6001 *(uint8_t *)a = UINT8_MAX; 6002 break; 6003 } else { 6004 *(uint8_t *)a = 0; 6005 a += sizeof (uint64_t); 6006 } 6007 6008 if (!dtrace_vcanload( 6009 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6010 mstate, vstate)) 6011 break; 6012 6013 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6014 (void *)a, &v->dtdv_type); 6015 break; 6016 } 6017 6018 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6019 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6020 tmp[CPU->cpu_id] = regs[rd]; 6021 break; 6022 6023 case DIF_OP_LDTS: { 6024 dtrace_dynvar_t *dvar; 6025 dtrace_key_t *key; 6026 6027 id = DIF_INSTR_VAR(instr); 6028 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6029 id -= DIF_VAR_OTHER_UBASE; 6030 v = &vstate->dtvs_tlocals[id]; 6031 6032 key = &tupregs[DIF_DTR_NREGS]; 6033 key[0].dttk_value = (uint64_t)id; 6034 key[0].dttk_size = 0; 6035 DTRACE_TLS_THRKEY(key[1].dttk_value); 6036 key[1].dttk_size = 0; 6037 6038 dvar = dtrace_dynvar(dstate, 2, key, 6039 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6040 mstate, vstate); 6041 6042 if (dvar == NULL) { 6043 regs[rd] = 0; 6044 break; 6045 } 6046 6047 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6048 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6049 } else { 6050 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6051 } 6052 6053 break; 6054 } 6055 6056 case DIF_OP_STTS: { 6057 dtrace_dynvar_t *dvar; 6058 dtrace_key_t *key; 6059 6060 id = DIF_INSTR_VAR(instr); 6061 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6062 id -= DIF_VAR_OTHER_UBASE; 6063 VERIFY(id < vstate->dtvs_ntlocals); 6064 6065 key = &tupregs[DIF_DTR_NREGS]; 6066 key[0].dttk_value = (uint64_t)id; 6067 key[0].dttk_size = 0; 6068 DTRACE_TLS_THRKEY(key[1].dttk_value); 6069 key[1].dttk_size = 0; 6070 v = &vstate->dtvs_tlocals[id]; 6071 6072 dvar = dtrace_dynvar(dstate, 2, key, 6073 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6074 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6075 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6076 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6077 6078 /* 6079 * Given that we're storing to thread-local data, 6080 * we need to flush our predicate cache. 6081 */ 6082 curthread->t_predcache = NULL; 6083 6084 if (dvar == NULL) 6085 break; 6086 6087 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6088 if (!dtrace_vcanload( 6089 (void *)(uintptr_t)regs[rd], 6090 &v->dtdv_type, mstate, vstate)) 6091 break; 6092 6093 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6094 dvar->dtdv_data, &v->dtdv_type); 6095 } else { 6096 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6097 } 6098 6099 break; 6100 } 6101 6102 case DIF_OP_SRA: 6103 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6104 break; 6105 6106 case DIF_OP_CALL: 6107 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6108 regs, tupregs, ttop, mstate, state); 6109 break; 6110 6111 case DIF_OP_PUSHTR: 6112 if (ttop == DIF_DTR_NREGS) { 6113 *flags |= CPU_DTRACE_TUPOFLOW; 6114 break; 6115 } 6116 6117 if (r1 == DIF_TYPE_STRING) { 6118 /* 6119 * If this is a string type and the size is 0, 6120 * we'll use the system-wide default string 6121 * size. Note that we are _not_ looking at 6122 * the value of the DTRACEOPT_STRSIZE option; 6123 * had this been set, we would expect to have 6124 * a non-zero size value in the "pushtr". 6125 */ 6126 tupregs[ttop].dttk_size = 6127 dtrace_strlen((char *)(uintptr_t)regs[rd], 6128 regs[r2] ? regs[r2] : 6129 dtrace_strsize_default) + 1; 6130 } else { 6131 if (regs[r2] > LONG_MAX) { 6132 *flags |= CPU_DTRACE_ILLOP; 6133 break; 6134 } 6135 6136 tupregs[ttop].dttk_size = regs[r2]; 6137 } 6138 6139 tupregs[ttop++].dttk_value = regs[rd]; 6140 break; 6141 6142 case DIF_OP_PUSHTV: 6143 if (ttop == DIF_DTR_NREGS) { 6144 *flags |= CPU_DTRACE_TUPOFLOW; 6145 break; 6146 } 6147 6148 tupregs[ttop].dttk_value = regs[rd]; 6149 tupregs[ttop++].dttk_size = 0; 6150 break; 6151 6152 case DIF_OP_POPTS: 6153 if (ttop != 0) 6154 ttop--; 6155 break; 6156 6157 case DIF_OP_FLUSHTS: 6158 ttop = 0; 6159 break; 6160 6161 case DIF_OP_LDGAA: 6162 case DIF_OP_LDTAA: { 6163 dtrace_dynvar_t *dvar; 6164 dtrace_key_t *key = tupregs; 6165 uint_t nkeys = ttop; 6166 6167 id = DIF_INSTR_VAR(instr); 6168 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6169 id -= DIF_VAR_OTHER_UBASE; 6170 6171 key[nkeys].dttk_value = (uint64_t)id; 6172 key[nkeys++].dttk_size = 0; 6173 6174 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6175 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6176 key[nkeys++].dttk_size = 0; 6177 VERIFY(id < vstate->dtvs_ntlocals); 6178 v = &vstate->dtvs_tlocals[id]; 6179 } else { 6180 VERIFY(id < vstate->dtvs_nglobals); 6181 v = &vstate->dtvs_globals[id]->dtsv_var; 6182 } 6183 6184 dvar = dtrace_dynvar(dstate, nkeys, key, 6185 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6186 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6187 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6188 6189 if (dvar == NULL) { 6190 regs[rd] = 0; 6191 break; 6192 } 6193 6194 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6195 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6196 } else { 6197 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6198 } 6199 6200 break; 6201 } 6202 6203 case DIF_OP_STGAA: 6204 case DIF_OP_STTAA: { 6205 dtrace_dynvar_t *dvar; 6206 dtrace_key_t *key = tupregs; 6207 uint_t nkeys = ttop; 6208 6209 id = DIF_INSTR_VAR(instr); 6210 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6211 id -= DIF_VAR_OTHER_UBASE; 6212 6213 key[nkeys].dttk_value = (uint64_t)id; 6214 key[nkeys++].dttk_size = 0; 6215 6216 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6217 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6218 key[nkeys++].dttk_size = 0; 6219 VERIFY(id < vstate->dtvs_ntlocals); 6220 v = &vstate->dtvs_tlocals[id]; 6221 } else { 6222 VERIFY(id < vstate->dtvs_nglobals); 6223 v = &vstate->dtvs_globals[id]->dtsv_var; 6224 } 6225 6226 dvar = dtrace_dynvar(dstate, nkeys, key, 6227 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6228 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6229 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6230 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6231 6232 if (dvar == NULL) 6233 break; 6234 6235 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6236 if (!dtrace_vcanload( 6237 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6238 mstate, vstate)) 6239 break; 6240 6241 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6242 dvar->dtdv_data, &v->dtdv_type); 6243 } else { 6244 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6245 } 6246 6247 break; 6248 } 6249 6250 case DIF_OP_ALLOCS: { 6251 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6252 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6253 6254 /* 6255 * Rounding up the user allocation size could have 6256 * overflowed large, bogus allocations (like -1ULL) to 6257 * 0. 6258 */ 6259 if (size < regs[r1] || 6260 !DTRACE_INSCRATCH(mstate, size)) { 6261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6262 regs[rd] = NULL; 6263 break; 6264 } 6265 6266 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6267 mstate->dtms_scratch_ptr += size; 6268 regs[rd] = ptr; 6269 break; 6270 } 6271 6272 case DIF_OP_COPYS: 6273 if (!dtrace_canstore(regs[rd], regs[r2], 6274 mstate, vstate)) { 6275 *flags |= CPU_DTRACE_BADADDR; 6276 *illval = regs[rd]; 6277 break; 6278 } 6279 6280 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6281 break; 6282 6283 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6284 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6285 break; 6286 6287 case DIF_OP_STB: 6288 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6289 *flags |= CPU_DTRACE_BADADDR; 6290 *illval = regs[rd]; 6291 break; 6292 } 6293 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6294 break; 6295 6296 case DIF_OP_STH: 6297 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6298 *flags |= CPU_DTRACE_BADADDR; 6299 *illval = regs[rd]; 6300 break; 6301 } 6302 if (regs[rd] & 1) { 6303 *flags |= CPU_DTRACE_BADALIGN; 6304 *illval = regs[rd]; 6305 break; 6306 } 6307 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6308 break; 6309 6310 case DIF_OP_STW: 6311 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6312 *flags |= CPU_DTRACE_BADADDR; 6313 *illval = regs[rd]; 6314 break; 6315 } 6316 if (regs[rd] & 3) { 6317 *flags |= CPU_DTRACE_BADALIGN; 6318 *illval = regs[rd]; 6319 break; 6320 } 6321 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6322 break; 6323 6324 case DIF_OP_STX: 6325 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6326 *flags |= CPU_DTRACE_BADADDR; 6327 *illval = regs[rd]; 6328 break; 6329 } 6330 if (regs[rd] & 7) { 6331 *flags |= CPU_DTRACE_BADALIGN; 6332 *illval = regs[rd]; 6333 break; 6334 } 6335 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6336 break; 6337 } 6338 } 6339 6340 if (!(*flags & CPU_DTRACE_FAULT)) 6341 return (rval); 6342 6343 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6344 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6345 6346 return (0); 6347 } 6348 6349 static void 6350 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6351 { 6352 dtrace_probe_t *probe = ecb->dte_probe; 6353 dtrace_provider_t *prov = probe->dtpr_provider; 6354 char c[DTRACE_FULLNAMELEN + 80], *str; 6355 char *msg = "dtrace: breakpoint action at probe "; 6356 char *ecbmsg = " (ecb "; 6357 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6358 uintptr_t val = (uintptr_t)ecb; 6359 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6360 6361 if (dtrace_destructive_disallow) 6362 return; 6363 6364 /* 6365 * It's impossible to be taking action on the NULL probe. 6366 */ 6367 ASSERT(probe != NULL); 6368 6369 /* 6370 * This is a poor man's (destitute man's?) sprintf(): we want to 6371 * print the provider name, module name, function name and name of 6372 * the probe, along with the hex address of the ECB with the breakpoint 6373 * action -- all of which we must place in the character buffer by 6374 * hand. 6375 */ 6376 while (*msg != '\0') 6377 c[i++] = *msg++; 6378 6379 for (str = prov->dtpv_name; *str != '\0'; str++) 6380 c[i++] = *str; 6381 c[i++] = ':'; 6382 6383 for (str = probe->dtpr_mod; *str != '\0'; str++) 6384 c[i++] = *str; 6385 c[i++] = ':'; 6386 6387 for (str = probe->dtpr_func; *str != '\0'; str++) 6388 c[i++] = *str; 6389 c[i++] = ':'; 6390 6391 for (str = probe->dtpr_name; *str != '\0'; str++) 6392 c[i++] = *str; 6393 6394 while (*ecbmsg != '\0') 6395 c[i++] = *ecbmsg++; 6396 6397 while (shift >= 0) { 6398 mask = (uintptr_t)0xf << shift; 6399 6400 if (val >= ((uintptr_t)1 << shift)) 6401 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6402 shift -= 4; 6403 } 6404 6405 c[i++] = ')'; 6406 c[i] = '\0'; 6407 6408 debug_enter(c); 6409 } 6410 6411 static void 6412 dtrace_action_panic(dtrace_ecb_t *ecb) 6413 { 6414 dtrace_probe_t *probe = ecb->dte_probe; 6415 6416 /* 6417 * It's impossible to be taking action on the NULL probe. 6418 */ 6419 ASSERT(probe != NULL); 6420 6421 if (dtrace_destructive_disallow) 6422 return; 6423 6424 if (dtrace_panicked != NULL) 6425 return; 6426 6427 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6428 return; 6429 6430 /* 6431 * We won the right to panic. (We want to be sure that only one 6432 * thread calls panic() from dtrace_probe(), and that panic() is 6433 * called exactly once.) 6434 */ 6435 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6436 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6437 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6438 } 6439 6440 static void 6441 dtrace_action_raise(uint64_t sig) 6442 { 6443 if (dtrace_destructive_disallow) 6444 return; 6445 6446 if (sig >= NSIG) { 6447 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6448 return; 6449 } 6450 6451 /* 6452 * raise() has a queue depth of 1 -- we ignore all subsequent 6453 * invocations of the raise() action. 6454 */ 6455 if (curthread->t_dtrace_sig == 0) 6456 curthread->t_dtrace_sig = (uint8_t)sig; 6457 6458 curthread->t_sig_check = 1; 6459 aston(curthread); 6460 } 6461 6462 static void 6463 dtrace_action_stop(void) 6464 { 6465 if (dtrace_destructive_disallow) 6466 return; 6467 6468 if (!curthread->t_dtrace_stop) { 6469 curthread->t_dtrace_stop = 1; 6470 curthread->t_sig_check = 1; 6471 aston(curthread); 6472 } 6473 } 6474 6475 static void 6476 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6477 { 6478 hrtime_t now; 6479 volatile uint16_t *flags; 6480 cpu_t *cpu = CPU; 6481 6482 if (dtrace_destructive_disallow) 6483 return; 6484 6485 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6486 6487 now = dtrace_gethrtime(); 6488 6489 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6490 /* 6491 * We need to advance the mark to the current time. 6492 */ 6493 cpu->cpu_dtrace_chillmark = now; 6494 cpu->cpu_dtrace_chilled = 0; 6495 } 6496 6497 /* 6498 * Now check to see if the requested chill time would take us over 6499 * the maximum amount of time allowed in the chill interval. (Or 6500 * worse, if the calculation itself induces overflow.) 6501 */ 6502 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6503 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6504 *flags |= CPU_DTRACE_ILLOP; 6505 return; 6506 } 6507 6508 while (dtrace_gethrtime() - now < val) 6509 continue; 6510 6511 /* 6512 * Normally, we assure that the value of the variable "timestamp" does 6513 * not change within an ECB. The presence of chill() represents an 6514 * exception to this rule, however. 6515 */ 6516 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6517 cpu->cpu_dtrace_chilled += val; 6518 } 6519 6520 static void 6521 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6522 uint64_t *buf, uint64_t arg) 6523 { 6524 int nframes = DTRACE_USTACK_NFRAMES(arg); 6525 int strsize = DTRACE_USTACK_STRSIZE(arg); 6526 uint64_t *pcs = &buf[1], *fps; 6527 char *str = (char *)&pcs[nframes]; 6528 int size, offs = 0, i, j; 6529 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6530 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6531 char *sym; 6532 6533 /* 6534 * Should be taking a faster path if string space has not been 6535 * allocated. 6536 */ 6537 ASSERT(strsize != 0); 6538 6539 /* 6540 * We will first allocate some temporary space for the frame pointers. 6541 */ 6542 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6543 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6544 (nframes * sizeof (uint64_t)); 6545 6546 if (!DTRACE_INSCRATCH(mstate, size)) { 6547 /* 6548 * Not enough room for our frame pointers -- need to indicate 6549 * that we ran out of scratch space. 6550 */ 6551 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6552 return; 6553 } 6554 6555 mstate->dtms_scratch_ptr += size; 6556 saved = mstate->dtms_scratch_ptr; 6557 6558 /* 6559 * Now get a stack with both program counters and frame pointers. 6560 */ 6561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6562 dtrace_getufpstack(buf, fps, nframes + 1); 6563 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6564 6565 /* 6566 * If that faulted, we're cooked. 6567 */ 6568 if (*flags & CPU_DTRACE_FAULT) 6569 goto out; 6570 6571 /* 6572 * Now we want to walk up the stack, calling the USTACK helper. For 6573 * each iteration, we restore the scratch pointer. 6574 */ 6575 for (i = 0; i < nframes; i++) { 6576 mstate->dtms_scratch_ptr = saved; 6577 6578 if (offs >= strsize) 6579 break; 6580 6581 sym = (char *)(uintptr_t)dtrace_helper( 6582 DTRACE_HELPER_ACTION_USTACK, 6583 mstate, state, pcs[i], fps[i]); 6584 6585 /* 6586 * If we faulted while running the helper, we're going to 6587 * clear the fault and null out the corresponding string. 6588 */ 6589 if (*flags & CPU_DTRACE_FAULT) { 6590 *flags &= ~CPU_DTRACE_FAULT; 6591 str[offs++] = '\0'; 6592 continue; 6593 } 6594 6595 if (sym == NULL) { 6596 str[offs++] = '\0'; 6597 continue; 6598 } 6599 6600 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6601 6602 /* 6603 * Now copy in the string that the helper returned to us. 6604 */ 6605 for (j = 0; offs + j < strsize; j++) { 6606 if ((str[offs + j] = sym[j]) == '\0') 6607 break; 6608 } 6609 6610 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6611 6612 offs += j + 1; 6613 } 6614 6615 if (offs >= strsize) { 6616 /* 6617 * If we didn't have room for all of the strings, we don't 6618 * abort processing -- this needn't be a fatal error -- but we 6619 * still want to increment a counter (dts_stkstroverflows) to 6620 * allow this condition to be warned about. (If this is from 6621 * a jstack() action, it is easily tuned via jstackstrsize.) 6622 */ 6623 dtrace_error(&state->dts_stkstroverflows); 6624 } 6625 6626 while (offs < strsize) 6627 str[offs++] = '\0'; 6628 6629 out: 6630 mstate->dtms_scratch_ptr = old; 6631 } 6632 6633 static void 6634 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6635 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6636 { 6637 volatile uint16_t *flags; 6638 uint64_t val = *valp; 6639 size_t valoffs = *valoffsp; 6640 6641 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6642 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6643 6644 /* 6645 * If this is a string, we're going to only load until we find the zero 6646 * byte -- after which we'll store zero bytes. 6647 */ 6648 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6649 char c = '\0' + 1; 6650 size_t s; 6651 6652 for (s = 0; s < size; s++) { 6653 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6654 c = dtrace_load8(val++); 6655 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6656 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6657 c = dtrace_fuword8((void *)(uintptr_t)val++); 6658 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6659 if (*flags & CPU_DTRACE_FAULT) 6660 break; 6661 } 6662 6663 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6664 6665 if (c == '\0' && intuple) 6666 break; 6667 } 6668 } else { 6669 uint8_t c; 6670 while (valoffs < end) { 6671 if (dtkind == DIF_TF_BYREF) { 6672 c = dtrace_load8(val++); 6673 } else if (dtkind == DIF_TF_BYUREF) { 6674 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6675 c = dtrace_fuword8((void *)(uintptr_t)val++); 6676 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6677 if (*flags & CPU_DTRACE_FAULT) 6678 break; 6679 } 6680 6681 DTRACE_STORE(uint8_t, tomax, 6682 valoffs++, c); 6683 } 6684 } 6685 6686 *valp = val; 6687 *valoffsp = valoffs; 6688 } 6689 6690 /* 6691 * If you're looking for the epicenter of DTrace, you just found it. This 6692 * is the function called by the provider to fire a probe -- from which all 6693 * subsequent probe-context DTrace activity emanates. 6694 */ 6695 void 6696 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6697 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6698 { 6699 processorid_t cpuid; 6700 dtrace_icookie_t cookie; 6701 dtrace_probe_t *probe; 6702 dtrace_mstate_t mstate; 6703 dtrace_ecb_t *ecb; 6704 dtrace_action_t *act; 6705 intptr_t offs; 6706 size_t size; 6707 int vtime, onintr; 6708 volatile uint16_t *flags; 6709 hrtime_t now, end; 6710 6711 /* 6712 * Kick out immediately if this CPU is still being born (in which case 6713 * curthread will be set to -1) or the current thread can't allow 6714 * probes in its current context. 6715 */ 6716 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6717 return; 6718 6719 cookie = dtrace_interrupt_disable(); 6720 probe = dtrace_probes[id - 1]; 6721 cpuid = CPU->cpu_id; 6722 onintr = CPU_ON_INTR(CPU); 6723 6724 CPU->cpu_dtrace_probes++; 6725 6726 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6727 probe->dtpr_predcache == curthread->t_predcache) { 6728 /* 6729 * We have hit in the predicate cache; we know that 6730 * this predicate would evaluate to be false. 6731 */ 6732 dtrace_interrupt_enable(cookie); 6733 return; 6734 } 6735 6736 if (panic_quiesce) { 6737 /* 6738 * We don't trace anything if we're panicking. 6739 */ 6740 dtrace_interrupt_enable(cookie); 6741 return; 6742 } 6743 6744 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6745 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6746 vtime = dtrace_vtime_references != 0; 6747 6748 if (vtime && curthread->t_dtrace_start) 6749 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6750 6751 mstate.dtms_difo = NULL; 6752 mstate.dtms_probe = probe; 6753 mstate.dtms_strtok = NULL; 6754 mstate.dtms_arg[0] = arg0; 6755 mstate.dtms_arg[1] = arg1; 6756 mstate.dtms_arg[2] = arg2; 6757 mstate.dtms_arg[3] = arg3; 6758 mstate.dtms_arg[4] = arg4; 6759 6760 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6761 6762 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6763 dtrace_predicate_t *pred = ecb->dte_predicate; 6764 dtrace_state_t *state = ecb->dte_state; 6765 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6766 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6767 dtrace_vstate_t *vstate = &state->dts_vstate; 6768 dtrace_provider_t *prov = probe->dtpr_provider; 6769 uint64_t tracememsize = 0; 6770 int committed = 0; 6771 caddr_t tomax; 6772 6773 /* 6774 * A little subtlety with the following (seemingly innocuous) 6775 * declaration of the automatic 'val': by looking at the 6776 * code, you might think that it could be declared in the 6777 * action processing loop, below. (That is, it's only used in 6778 * the action processing loop.) However, it must be declared 6779 * out of that scope because in the case of DIF expression 6780 * arguments to aggregating actions, one iteration of the 6781 * action loop will use the last iteration's value. 6782 */ 6783 #ifdef lint 6784 uint64_t val = 0; 6785 #else 6786 uint64_t val; 6787 #endif 6788 6789 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6790 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6791 mstate.dtms_getf = NULL; 6792 6793 *flags &= ~CPU_DTRACE_ERROR; 6794 6795 if (prov == dtrace_provider) { 6796 /* 6797 * If dtrace itself is the provider of this probe, 6798 * we're only going to continue processing the ECB if 6799 * arg0 (the dtrace_state_t) is equal to the ECB's 6800 * creating state. (This prevents disjoint consumers 6801 * from seeing one another's metaprobes.) 6802 */ 6803 if (arg0 != (uint64_t)(uintptr_t)state) 6804 continue; 6805 } 6806 6807 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6808 /* 6809 * We're not currently active. If our provider isn't 6810 * the dtrace pseudo provider, we're not interested. 6811 */ 6812 if (prov != dtrace_provider) 6813 continue; 6814 6815 /* 6816 * Now we must further check if we are in the BEGIN 6817 * probe. If we are, we will only continue processing 6818 * if we're still in WARMUP -- if one BEGIN enabling 6819 * has invoked the exit() action, we don't want to 6820 * evaluate subsequent BEGIN enablings. 6821 */ 6822 if (probe->dtpr_id == dtrace_probeid_begin && 6823 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6824 ASSERT(state->dts_activity == 6825 DTRACE_ACTIVITY_DRAINING); 6826 continue; 6827 } 6828 } 6829 6830 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6831 continue; 6832 6833 if (now - state->dts_alive > dtrace_deadman_timeout) { 6834 /* 6835 * We seem to be dead. Unless we (a) have kernel 6836 * destructive permissions (b) have explicitly enabled 6837 * destructive actions and (c) destructive actions have 6838 * not been disabled, we're going to transition into 6839 * the KILLED state, from which no further processing 6840 * on this state will be performed. 6841 */ 6842 if (!dtrace_priv_kernel_destructive(state) || 6843 !state->dts_cred.dcr_destructive || 6844 dtrace_destructive_disallow) { 6845 void *activity = &state->dts_activity; 6846 dtrace_activity_t current; 6847 6848 do { 6849 current = state->dts_activity; 6850 } while (dtrace_cas32(activity, current, 6851 DTRACE_ACTIVITY_KILLED) != current); 6852 6853 continue; 6854 } 6855 } 6856 6857 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6858 ecb->dte_alignment, state, &mstate)) < 0) 6859 continue; 6860 6861 tomax = buf->dtb_tomax; 6862 ASSERT(tomax != NULL); 6863 6864 if (ecb->dte_size != 0) { 6865 dtrace_rechdr_t dtrh; 6866 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6867 mstate.dtms_timestamp = dtrace_gethrtime(); 6868 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6869 } 6870 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6871 dtrh.dtrh_epid = ecb->dte_epid; 6872 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6873 mstate.dtms_timestamp); 6874 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6875 } 6876 6877 mstate.dtms_epid = ecb->dte_epid; 6878 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6879 6880 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6881 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6882 6883 if (pred != NULL) { 6884 dtrace_difo_t *dp = pred->dtp_difo; 6885 int rval; 6886 6887 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6888 6889 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6890 dtrace_cacheid_t cid = probe->dtpr_predcache; 6891 6892 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6893 /* 6894 * Update the predicate cache... 6895 */ 6896 ASSERT(cid == pred->dtp_cacheid); 6897 curthread->t_predcache = cid; 6898 } 6899 6900 continue; 6901 } 6902 } 6903 6904 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6905 act != NULL; act = act->dta_next) { 6906 size_t valoffs; 6907 dtrace_difo_t *dp; 6908 dtrace_recdesc_t *rec = &act->dta_rec; 6909 6910 size = rec->dtrd_size; 6911 valoffs = offs + rec->dtrd_offset; 6912 6913 if (DTRACEACT_ISAGG(act->dta_kind)) { 6914 uint64_t v = 0xbad; 6915 dtrace_aggregation_t *agg; 6916 6917 agg = (dtrace_aggregation_t *)act; 6918 6919 if ((dp = act->dta_difo) != NULL) 6920 v = dtrace_dif_emulate(dp, 6921 &mstate, vstate, state); 6922 6923 if (*flags & CPU_DTRACE_ERROR) 6924 continue; 6925 6926 /* 6927 * Note that we always pass the expression 6928 * value from the previous iteration of the 6929 * action loop. This value will only be used 6930 * if there is an expression argument to the 6931 * aggregating action, denoted by the 6932 * dtag_hasarg field. 6933 */ 6934 dtrace_aggregate(agg, buf, 6935 offs, aggbuf, v, val); 6936 continue; 6937 } 6938 6939 switch (act->dta_kind) { 6940 case DTRACEACT_STOP: 6941 if (dtrace_priv_proc_destructive(state, 6942 &mstate)) 6943 dtrace_action_stop(); 6944 continue; 6945 6946 case DTRACEACT_BREAKPOINT: 6947 if (dtrace_priv_kernel_destructive(state)) 6948 dtrace_action_breakpoint(ecb); 6949 continue; 6950 6951 case DTRACEACT_PANIC: 6952 if (dtrace_priv_kernel_destructive(state)) 6953 dtrace_action_panic(ecb); 6954 continue; 6955 6956 case DTRACEACT_STACK: 6957 if (!dtrace_priv_kernel(state)) 6958 continue; 6959 6960 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6961 size / sizeof (pc_t), probe->dtpr_aframes, 6962 DTRACE_ANCHORED(probe) ? NULL : 6963 (uint32_t *)arg0); 6964 6965 continue; 6966 6967 case DTRACEACT_JSTACK: 6968 case DTRACEACT_USTACK: 6969 if (!dtrace_priv_proc(state, &mstate)) 6970 continue; 6971 6972 /* 6973 * See comment in DIF_VAR_PID. 6974 */ 6975 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6976 CPU_ON_INTR(CPU)) { 6977 int depth = DTRACE_USTACK_NFRAMES( 6978 rec->dtrd_arg) + 1; 6979 6980 dtrace_bzero((void *)(tomax + valoffs), 6981 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6982 + depth * sizeof (uint64_t)); 6983 6984 continue; 6985 } 6986 6987 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6988 curproc->p_dtrace_helpers != NULL) { 6989 /* 6990 * This is the slow path -- we have 6991 * allocated string space, and we're 6992 * getting the stack of a process that 6993 * has helpers. Call into a separate 6994 * routine to perform this processing. 6995 */ 6996 dtrace_action_ustack(&mstate, state, 6997 (uint64_t *)(tomax + valoffs), 6998 rec->dtrd_arg); 6999 continue; 7000 } 7001 7002 /* 7003 * Clear the string space, since there's no 7004 * helper to do it for us. 7005 */ 7006 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7007 int depth = DTRACE_USTACK_NFRAMES( 7008 rec->dtrd_arg); 7009 size_t strsize = DTRACE_USTACK_STRSIZE( 7010 rec->dtrd_arg); 7011 uint64_t *buf = (uint64_t *)(tomax + 7012 valoffs); 7013 void *strspace = &buf[depth + 1]; 7014 7015 dtrace_bzero(strspace, 7016 MIN(depth, strsize)); 7017 } 7018 7019 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7020 dtrace_getupcstack((uint64_t *) 7021 (tomax + valoffs), 7022 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7023 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7024 continue; 7025 7026 default: 7027 break; 7028 } 7029 7030 dp = act->dta_difo; 7031 ASSERT(dp != NULL); 7032 7033 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7034 7035 if (*flags & CPU_DTRACE_ERROR) 7036 continue; 7037 7038 switch (act->dta_kind) { 7039 case DTRACEACT_SPECULATE: { 7040 dtrace_rechdr_t *dtrh; 7041 7042 ASSERT(buf == &state->dts_buffer[cpuid]); 7043 buf = dtrace_speculation_buffer(state, 7044 cpuid, val); 7045 7046 if (buf == NULL) { 7047 *flags |= CPU_DTRACE_DROP; 7048 continue; 7049 } 7050 7051 offs = dtrace_buffer_reserve(buf, 7052 ecb->dte_needed, ecb->dte_alignment, 7053 state, NULL); 7054 7055 if (offs < 0) { 7056 *flags |= CPU_DTRACE_DROP; 7057 continue; 7058 } 7059 7060 tomax = buf->dtb_tomax; 7061 ASSERT(tomax != NULL); 7062 7063 if (ecb->dte_size == 0) 7064 continue; 7065 7066 ASSERT3U(ecb->dte_size, >=, 7067 sizeof (dtrace_rechdr_t)); 7068 dtrh = ((void *)(tomax + offs)); 7069 dtrh->dtrh_epid = ecb->dte_epid; 7070 /* 7071 * When the speculation is committed, all of 7072 * the records in the speculative buffer will 7073 * have their timestamps set to the commit 7074 * time. Until then, it is set to a sentinel 7075 * value, for debugability. 7076 */ 7077 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7078 continue; 7079 } 7080 7081 case DTRACEACT_CHILL: 7082 if (dtrace_priv_kernel_destructive(state)) 7083 dtrace_action_chill(&mstate, val); 7084 continue; 7085 7086 case DTRACEACT_RAISE: 7087 if (dtrace_priv_proc_destructive(state, 7088 &mstate)) 7089 dtrace_action_raise(val); 7090 continue; 7091 7092 case DTRACEACT_COMMIT: 7093 ASSERT(!committed); 7094 7095 /* 7096 * We need to commit our buffer state. 7097 */ 7098 if (ecb->dte_size) 7099 buf->dtb_offset = offs + ecb->dte_size; 7100 buf = &state->dts_buffer[cpuid]; 7101 dtrace_speculation_commit(state, cpuid, val); 7102 committed = 1; 7103 continue; 7104 7105 case DTRACEACT_DISCARD: 7106 dtrace_speculation_discard(state, cpuid, val); 7107 continue; 7108 7109 case DTRACEACT_DIFEXPR: 7110 case DTRACEACT_LIBACT: 7111 case DTRACEACT_PRINTF: 7112 case DTRACEACT_PRINTA: 7113 case DTRACEACT_SYSTEM: 7114 case DTRACEACT_FREOPEN: 7115 case DTRACEACT_TRACEMEM: 7116 break; 7117 7118 case DTRACEACT_TRACEMEM_DYNSIZE: 7119 tracememsize = val; 7120 break; 7121 7122 case DTRACEACT_SYM: 7123 case DTRACEACT_MOD: 7124 if (!dtrace_priv_kernel(state)) 7125 continue; 7126 break; 7127 7128 case DTRACEACT_USYM: 7129 case DTRACEACT_UMOD: 7130 case DTRACEACT_UADDR: { 7131 struct pid *pid = curthread->t_procp->p_pidp; 7132 7133 if (!dtrace_priv_proc(state, &mstate)) 7134 continue; 7135 7136 DTRACE_STORE(uint64_t, tomax, 7137 valoffs, (uint64_t)pid->pid_id); 7138 DTRACE_STORE(uint64_t, tomax, 7139 valoffs + sizeof (uint64_t), val); 7140 7141 continue; 7142 } 7143 7144 case DTRACEACT_EXIT: { 7145 /* 7146 * For the exit action, we are going to attempt 7147 * to atomically set our activity to be 7148 * draining. If this fails (either because 7149 * another CPU has beat us to the exit action, 7150 * or because our current activity is something 7151 * other than ACTIVE or WARMUP), we will 7152 * continue. This assures that the exit action 7153 * can be successfully recorded at most once 7154 * when we're in the ACTIVE state. If we're 7155 * encountering the exit() action while in 7156 * COOLDOWN, however, we want to honor the new 7157 * status code. (We know that we're the only 7158 * thread in COOLDOWN, so there is no race.) 7159 */ 7160 void *activity = &state->dts_activity; 7161 dtrace_activity_t current = state->dts_activity; 7162 7163 if (current == DTRACE_ACTIVITY_COOLDOWN) 7164 break; 7165 7166 if (current != DTRACE_ACTIVITY_WARMUP) 7167 current = DTRACE_ACTIVITY_ACTIVE; 7168 7169 if (dtrace_cas32(activity, current, 7170 DTRACE_ACTIVITY_DRAINING) != current) { 7171 *flags |= CPU_DTRACE_DROP; 7172 continue; 7173 } 7174 7175 break; 7176 } 7177 7178 default: 7179 ASSERT(0); 7180 } 7181 7182 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7183 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7184 uintptr_t end = valoffs + size; 7185 7186 if (tracememsize != 0 && 7187 valoffs + tracememsize < end) { 7188 end = valoffs + tracememsize; 7189 tracememsize = 0; 7190 } 7191 7192 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7193 !dtrace_vcanload((void *)(uintptr_t)val, 7194 &dp->dtdo_rtype, &mstate, vstate)) 7195 continue; 7196 7197 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7198 &val, end, act->dta_intuple, 7199 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7200 DIF_TF_BYREF: DIF_TF_BYUREF); 7201 continue; 7202 } 7203 7204 switch (size) { 7205 case 0: 7206 break; 7207 7208 case sizeof (uint8_t): 7209 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7210 break; 7211 case sizeof (uint16_t): 7212 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7213 break; 7214 case sizeof (uint32_t): 7215 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7216 break; 7217 case sizeof (uint64_t): 7218 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7219 break; 7220 default: 7221 /* 7222 * Any other size should have been returned by 7223 * reference, not by value. 7224 */ 7225 ASSERT(0); 7226 break; 7227 } 7228 } 7229 7230 if (*flags & CPU_DTRACE_DROP) 7231 continue; 7232 7233 if (*flags & CPU_DTRACE_FAULT) { 7234 int ndx; 7235 dtrace_action_t *err; 7236 7237 buf->dtb_errors++; 7238 7239 if (probe->dtpr_id == dtrace_probeid_error) { 7240 /* 7241 * There's nothing we can do -- we had an 7242 * error on the error probe. We bump an 7243 * error counter to at least indicate that 7244 * this condition happened. 7245 */ 7246 dtrace_error(&state->dts_dblerrors); 7247 continue; 7248 } 7249 7250 if (vtime) { 7251 /* 7252 * Before recursing on dtrace_probe(), we 7253 * need to explicitly clear out our start 7254 * time to prevent it from being accumulated 7255 * into t_dtrace_vtime. 7256 */ 7257 curthread->t_dtrace_start = 0; 7258 } 7259 7260 /* 7261 * Iterate over the actions to figure out which action 7262 * we were processing when we experienced the error. 7263 * Note that act points _past_ the faulting action; if 7264 * act is ecb->dte_action, the fault was in the 7265 * predicate, if it's ecb->dte_action->dta_next it's 7266 * in action #1, and so on. 7267 */ 7268 for (err = ecb->dte_action, ndx = 0; 7269 err != act; err = err->dta_next, ndx++) 7270 continue; 7271 7272 dtrace_probe_error(state, ecb->dte_epid, ndx, 7273 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7274 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7275 cpu_core[cpuid].cpuc_dtrace_illval); 7276 7277 continue; 7278 } 7279 7280 if (!committed) 7281 buf->dtb_offset = offs + ecb->dte_size; 7282 } 7283 7284 end = dtrace_gethrtime(); 7285 if (vtime) 7286 curthread->t_dtrace_start = end; 7287 7288 CPU->cpu_dtrace_nsec += end - now; 7289 7290 dtrace_interrupt_enable(cookie); 7291 } 7292 7293 /* 7294 * DTrace Probe Hashing Functions 7295 * 7296 * The functions in this section (and indeed, the functions in remaining 7297 * sections) are not _called_ from probe context. (Any exceptions to this are 7298 * marked with a "Note:".) Rather, they are called from elsewhere in the 7299 * DTrace framework to look-up probes in, add probes to and remove probes from 7300 * the DTrace probe hashes. (Each probe is hashed by each element of the 7301 * probe tuple -- allowing for fast lookups, regardless of what was 7302 * specified.) 7303 */ 7304 static uint_t 7305 dtrace_hash_str(char *p) 7306 { 7307 unsigned int g; 7308 uint_t hval = 0; 7309 7310 while (*p) { 7311 hval = (hval << 4) + *p++; 7312 if ((g = (hval & 0xf0000000)) != 0) 7313 hval ^= g >> 24; 7314 hval &= ~g; 7315 } 7316 return (hval); 7317 } 7318 7319 static dtrace_hash_t * 7320 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7321 { 7322 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7323 7324 hash->dth_stroffs = stroffs; 7325 hash->dth_nextoffs = nextoffs; 7326 hash->dth_prevoffs = prevoffs; 7327 7328 hash->dth_size = 1; 7329 hash->dth_mask = hash->dth_size - 1; 7330 7331 hash->dth_tab = kmem_zalloc(hash->dth_size * 7332 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7333 7334 return (hash); 7335 } 7336 7337 static void 7338 dtrace_hash_destroy(dtrace_hash_t *hash) 7339 { 7340 #ifdef DEBUG 7341 int i; 7342 7343 for (i = 0; i < hash->dth_size; i++) 7344 ASSERT(hash->dth_tab[i] == NULL); 7345 #endif 7346 7347 kmem_free(hash->dth_tab, 7348 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7349 kmem_free(hash, sizeof (dtrace_hash_t)); 7350 } 7351 7352 static void 7353 dtrace_hash_resize(dtrace_hash_t *hash) 7354 { 7355 int size = hash->dth_size, i, ndx; 7356 int new_size = hash->dth_size << 1; 7357 int new_mask = new_size - 1; 7358 dtrace_hashbucket_t **new_tab, *bucket, *next; 7359 7360 ASSERT((new_size & new_mask) == 0); 7361 7362 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7363 7364 for (i = 0; i < size; i++) { 7365 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7366 dtrace_probe_t *probe = bucket->dthb_chain; 7367 7368 ASSERT(probe != NULL); 7369 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7370 7371 next = bucket->dthb_next; 7372 bucket->dthb_next = new_tab[ndx]; 7373 new_tab[ndx] = bucket; 7374 } 7375 } 7376 7377 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7378 hash->dth_tab = new_tab; 7379 hash->dth_size = new_size; 7380 hash->dth_mask = new_mask; 7381 } 7382 7383 static void 7384 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7385 { 7386 int hashval = DTRACE_HASHSTR(hash, new); 7387 int ndx = hashval & hash->dth_mask; 7388 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7389 dtrace_probe_t **nextp, **prevp; 7390 7391 for (; bucket != NULL; bucket = bucket->dthb_next) { 7392 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7393 goto add; 7394 } 7395 7396 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7397 dtrace_hash_resize(hash); 7398 dtrace_hash_add(hash, new); 7399 return; 7400 } 7401 7402 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7403 bucket->dthb_next = hash->dth_tab[ndx]; 7404 hash->dth_tab[ndx] = bucket; 7405 hash->dth_nbuckets++; 7406 7407 add: 7408 nextp = DTRACE_HASHNEXT(hash, new); 7409 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7410 *nextp = bucket->dthb_chain; 7411 7412 if (bucket->dthb_chain != NULL) { 7413 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7414 ASSERT(*prevp == NULL); 7415 *prevp = new; 7416 } 7417 7418 bucket->dthb_chain = new; 7419 bucket->dthb_len++; 7420 } 7421 7422 static dtrace_probe_t * 7423 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7424 { 7425 int hashval = DTRACE_HASHSTR(hash, template); 7426 int ndx = hashval & hash->dth_mask; 7427 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7428 7429 for (; bucket != NULL; bucket = bucket->dthb_next) { 7430 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7431 return (bucket->dthb_chain); 7432 } 7433 7434 return (NULL); 7435 } 7436 7437 static int 7438 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7439 { 7440 int hashval = DTRACE_HASHSTR(hash, template); 7441 int ndx = hashval & hash->dth_mask; 7442 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7443 7444 for (; bucket != NULL; bucket = bucket->dthb_next) { 7445 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7446 return (bucket->dthb_len); 7447 } 7448 7449 return (NULL); 7450 } 7451 7452 static void 7453 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7454 { 7455 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7456 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7457 7458 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7459 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7460 7461 /* 7462 * Find the bucket that we're removing this probe from. 7463 */ 7464 for (; bucket != NULL; bucket = bucket->dthb_next) { 7465 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7466 break; 7467 } 7468 7469 ASSERT(bucket != NULL); 7470 7471 if (*prevp == NULL) { 7472 if (*nextp == NULL) { 7473 /* 7474 * The removed probe was the only probe on this 7475 * bucket; we need to remove the bucket. 7476 */ 7477 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7478 7479 ASSERT(bucket->dthb_chain == probe); 7480 ASSERT(b != NULL); 7481 7482 if (b == bucket) { 7483 hash->dth_tab[ndx] = bucket->dthb_next; 7484 } else { 7485 while (b->dthb_next != bucket) 7486 b = b->dthb_next; 7487 b->dthb_next = bucket->dthb_next; 7488 } 7489 7490 ASSERT(hash->dth_nbuckets > 0); 7491 hash->dth_nbuckets--; 7492 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7493 return; 7494 } 7495 7496 bucket->dthb_chain = *nextp; 7497 } else { 7498 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7499 } 7500 7501 if (*nextp != NULL) 7502 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7503 } 7504 7505 /* 7506 * DTrace Utility Functions 7507 * 7508 * These are random utility functions that are _not_ called from probe context. 7509 */ 7510 static int 7511 dtrace_badattr(const dtrace_attribute_t *a) 7512 { 7513 return (a->dtat_name > DTRACE_STABILITY_MAX || 7514 a->dtat_data > DTRACE_STABILITY_MAX || 7515 a->dtat_class > DTRACE_CLASS_MAX); 7516 } 7517 7518 /* 7519 * Return a duplicate copy of a string. If the specified string is NULL, 7520 * this function returns a zero-length string. 7521 */ 7522 static char * 7523 dtrace_strdup(const char *str) 7524 { 7525 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7526 7527 if (str != NULL) 7528 (void) strcpy(new, str); 7529 7530 return (new); 7531 } 7532 7533 #define DTRACE_ISALPHA(c) \ 7534 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7535 7536 static int 7537 dtrace_badname(const char *s) 7538 { 7539 char c; 7540 7541 if (s == NULL || (c = *s++) == '\0') 7542 return (0); 7543 7544 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7545 return (1); 7546 7547 while ((c = *s++) != '\0') { 7548 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7549 c != '-' && c != '_' && c != '.' && c != '`') 7550 return (1); 7551 } 7552 7553 return (0); 7554 } 7555 7556 static void 7557 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7558 { 7559 uint32_t priv; 7560 7561 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7562 /* 7563 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7564 */ 7565 priv = DTRACE_PRIV_ALL; 7566 } else { 7567 *uidp = crgetuid(cr); 7568 *zoneidp = crgetzoneid(cr); 7569 7570 priv = 0; 7571 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7572 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7573 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7574 priv |= DTRACE_PRIV_USER; 7575 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7576 priv |= DTRACE_PRIV_PROC; 7577 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7578 priv |= DTRACE_PRIV_OWNER; 7579 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7580 priv |= DTRACE_PRIV_ZONEOWNER; 7581 } 7582 7583 *privp = priv; 7584 } 7585 7586 #ifdef DTRACE_ERRDEBUG 7587 static void 7588 dtrace_errdebug(const char *str) 7589 { 7590 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7591 int occupied = 0; 7592 7593 mutex_enter(&dtrace_errlock); 7594 dtrace_errlast = str; 7595 dtrace_errthread = curthread; 7596 7597 while (occupied++ < DTRACE_ERRHASHSZ) { 7598 if (dtrace_errhash[hval].dter_msg == str) { 7599 dtrace_errhash[hval].dter_count++; 7600 goto out; 7601 } 7602 7603 if (dtrace_errhash[hval].dter_msg != NULL) { 7604 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7605 continue; 7606 } 7607 7608 dtrace_errhash[hval].dter_msg = str; 7609 dtrace_errhash[hval].dter_count = 1; 7610 goto out; 7611 } 7612 7613 panic("dtrace: undersized error hash"); 7614 out: 7615 mutex_exit(&dtrace_errlock); 7616 } 7617 #endif 7618 7619 /* 7620 * DTrace Matching Functions 7621 * 7622 * These functions are used to match groups of probes, given some elements of 7623 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7624 */ 7625 static int 7626 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7627 zoneid_t zoneid) 7628 { 7629 if (priv != DTRACE_PRIV_ALL) { 7630 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7631 uint32_t match = priv & ppriv; 7632 7633 /* 7634 * No PRIV_DTRACE_* privileges... 7635 */ 7636 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7637 DTRACE_PRIV_KERNEL)) == 0) 7638 return (0); 7639 7640 /* 7641 * No matching bits, but there were bits to match... 7642 */ 7643 if (match == 0 && ppriv != 0) 7644 return (0); 7645 7646 /* 7647 * Need to have permissions to the process, but don't... 7648 */ 7649 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7650 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7651 return (0); 7652 } 7653 7654 /* 7655 * Need to be in the same zone unless we possess the 7656 * privilege to examine all zones. 7657 */ 7658 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7659 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7660 return (0); 7661 } 7662 } 7663 7664 return (1); 7665 } 7666 7667 /* 7668 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7669 * consists of input pattern strings and an ops-vector to evaluate them. 7670 * This function returns >0 for match, 0 for no match, and <0 for error. 7671 */ 7672 static int 7673 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7674 uint32_t priv, uid_t uid, zoneid_t zoneid) 7675 { 7676 dtrace_provider_t *pvp = prp->dtpr_provider; 7677 int rv; 7678 7679 if (pvp->dtpv_defunct) 7680 return (0); 7681 7682 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7683 return (rv); 7684 7685 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7686 return (rv); 7687 7688 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7689 return (rv); 7690 7691 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7692 return (rv); 7693 7694 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7695 return (0); 7696 7697 return (rv); 7698 } 7699 7700 /* 7701 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7702 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7703 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7704 * In addition, all of the recursion cases except for '*' matching have been 7705 * unwound. For '*', we still implement recursive evaluation, but a depth 7706 * counter is maintained and matching is aborted if we recurse too deep. 7707 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7708 */ 7709 static int 7710 dtrace_match_glob(const char *s, const char *p, int depth) 7711 { 7712 const char *olds; 7713 char s1, c; 7714 int gs; 7715 7716 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7717 return (-1); 7718 7719 if (s == NULL) 7720 s = ""; /* treat NULL as empty string */ 7721 7722 top: 7723 olds = s; 7724 s1 = *s++; 7725 7726 if (p == NULL) 7727 return (0); 7728 7729 if ((c = *p++) == '\0') 7730 return (s1 == '\0'); 7731 7732 switch (c) { 7733 case '[': { 7734 int ok = 0, notflag = 0; 7735 char lc = '\0'; 7736 7737 if (s1 == '\0') 7738 return (0); 7739 7740 if (*p == '!') { 7741 notflag = 1; 7742 p++; 7743 } 7744 7745 if ((c = *p++) == '\0') 7746 return (0); 7747 7748 do { 7749 if (c == '-' && lc != '\0' && *p != ']') { 7750 if ((c = *p++) == '\0') 7751 return (0); 7752 if (c == '\\' && (c = *p++) == '\0') 7753 return (0); 7754 7755 if (notflag) { 7756 if (s1 < lc || s1 > c) 7757 ok++; 7758 else 7759 return (0); 7760 } else if (lc <= s1 && s1 <= c) 7761 ok++; 7762 7763 } else if (c == '\\' && (c = *p++) == '\0') 7764 return (0); 7765 7766 lc = c; /* save left-hand 'c' for next iteration */ 7767 7768 if (notflag) { 7769 if (s1 != c) 7770 ok++; 7771 else 7772 return (0); 7773 } else if (s1 == c) 7774 ok++; 7775 7776 if ((c = *p++) == '\0') 7777 return (0); 7778 7779 } while (c != ']'); 7780 7781 if (ok) 7782 goto top; 7783 7784 return (0); 7785 } 7786 7787 case '\\': 7788 if ((c = *p++) == '\0') 7789 return (0); 7790 /*FALLTHRU*/ 7791 7792 default: 7793 if (c != s1) 7794 return (0); 7795 /*FALLTHRU*/ 7796 7797 case '?': 7798 if (s1 != '\0') 7799 goto top; 7800 return (0); 7801 7802 case '*': 7803 while (*p == '*') 7804 p++; /* consecutive *'s are identical to a single one */ 7805 7806 if (*p == '\0') 7807 return (1); 7808 7809 for (s = olds; *s != '\0'; s++) { 7810 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7811 return (gs); 7812 } 7813 7814 return (0); 7815 } 7816 } 7817 7818 /*ARGSUSED*/ 7819 static int 7820 dtrace_match_string(const char *s, const char *p, int depth) 7821 { 7822 return (s != NULL && strcmp(s, p) == 0); 7823 } 7824 7825 /*ARGSUSED*/ 7826 static int 7827 dtrace_match_nul(const char *s, const char *p, int depth) 7828 { 7829 return (1); /* always match the empty pattern */ 7830 } 7831 7832 /*ARGSUSED*/ 7833 static int 7834 dtrace_match_nonzero(const char *s, const char *p, int depth) 7835 { 7836 return (s != NULL && s[0] != '\0'); 7837 } 7838 7839 static int 7840 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7841 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7842 { 7843 dtrace_probe_t template, *probe; 7844 dtrace_hash_t *hash = NULL; 7845 int len, rc, best = INT_MAX, nmatched = 0; 7846 dtrace_id_t i; 7847 7848 ASSERT(MUTEX_HELD(&dtrace_lock)); 7849 7850 /* 7851 * If the probe ID is specified in the key, just lookup by ID and 7852 * invoke the match callback once if a matching probe is found. 7853 */ 7854 if (pkp->dtpk_id != DTRACE_IDNONE) { 7855 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7856 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7857 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7858 return (DTRACE_MATCH_FAIL); 7859 nmatched++; 7860 } 7861 return (nmatched); 7862 } 7863 7864 template.dtpr_mod = (char *)pkp->dtpk_mod; 7865 template.dtpr_func = (char *)pkp->dtpk_func; 7866 template.dtpr_name = (char *)pkp->dtpk_name; 7867 7868 /* 7869 * We want to find the most distinct of the module name, function 7870 * name, and name. So for each one that is not a glob pattern or 7871 * empty string, we perform a lookup in the corresponding hash and 7872 * use the hash table with the fewest collisions to do our search. 7873 */ 7874 if (pkp->dtpk_mmatch == &dtrace_match_string && 7875 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7876 best = len; 7877 hash = dtrace_bymod; 7878 } 7879 7880 if (pkp->dtpk_fmatch == &dtrace_match_string && 7881 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7882 best = len; 7883 hash = dtrace_byfunc; 7884 } 7885 7886 if (pkp->dtpk_nmatch == &dtrace_match_string && 7887 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7888 best = len; 7889 hash = dtrace_byname; 7890 } 7891 7892 /* 7893 * If we did not select a hash table, iterate over every probe and 7894 * invoke our callback for each one that matches our input probe key. 7895 */ 7896 if (hash == NULL) { 7897 for (i = 0; i < dtrace_nprobes; i++) { 7898 if ((probe = dtrace_probes[i]) == NULL || 7899 dtrace_match_probe(probe, pkp, priv, uid, 7900 zoneid) <= 0) 7901 continue; 7902 7903 nmatched++; 7904 7905 if ((rc = (*matched)(probe, arg)) != 7906 DTRACE_MATCH_NEXT) { 7907 if (rc == DTRACE_MATCH_FAIL) 7908 return (DTRACE_MATCH_FAIL); 7909 break; 7910 } 7911 } 7912 7913 return (nmatched); 7914 } 7915 7916 /* 7917 * If we selected a hash table, iterate over each probe of the same key 7918 * name and invoke the callback for every probe that matches the other 7919 * attributes of our input probe key. 7920 */ 7921 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7922 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7923 7924 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7925 continue; 7926 7927 nmatched++; 7928 7929 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7930 if (rc == DTRACE_MATCH_FAIL) 7931 return (DTRACE_MATCH_FAIL); 7932 break; 7933 } 7934 } 7935 7936 return (nmatched); 7937 } 7938 7939 /* 7940 * Return the function pointer dtrace_probecmp() should use to compare the 7941 * specified pattern with a string. For NULL or empty patterns, we select 7942 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7943 * For non-empty non-glob strings, we use dtrace_match_string(). 7944 */ 7945 static dtrace_probekey_f * 7946 dtrace_probekey_func(const char *p) 7947 { 7948 char c; 7949 7950 if (p == NULL || *p == '\0') 7951 return (&dtrace_match_nul); 7952 7953 while ((c = *p++) != '\0') { 7954 if (c == '[' || c == '?' || c == '*' || c == '\\') 7955 return (&dtrace_match_glob); 7956 } 7957 7958 return (&dtrace_match_string); 7959 } 7960 7961 /* 7962 * Build a probe comparison key for use with dtrace_match_probe() from the 7963 * given probe description. By convention, a null key only matches anchored 7964 * probes: if each field is the empty string, reset dtpk_fmatch to 7965 * dtrace_match_nonzero(). 7966 */ 7967 static void 7968 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7969 { 7970 pkp->dtpk_prov = pdp->dtpd_provider; 7971 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7972 7973 pkp->dtpk_mod = pdp->dtpd_mod; 7974 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7975 7976 pkp->dtpk_func = pdp->dtpd_func; 7977 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7978 7979 pkp->dtpk_name = pdp->dtpd_name; 7980 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7981 7982 pkp->dtpk_id = pdp->dtpd_id; 7983 7984 if (pkp->dtpk_id == DTRACE_IDNONE && 7985 pkp->dtpk_pmatch == &dtrace_match_nul && 7986 pkp->dtpk_mmatch == &dtrace_match_nul && 7987 pkp->dtpk_fmatch == &dtrace_match_nul && 7988 pkp->dtpk_nmatch == &dtrace_match_nul) 7989 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7990 } 7991 7992 /* 7993 * DTrace Provider-to-Framework API Functions 7994 * 7995 * These functions implement much of the Provider-to-Framework API, as 7996 * described in <sys/dtrace.h>. The parts of the API not in this section are 7997 * the functions in the API for probe management (found below), and 7998 * dtrace_probe() itself (found above). 7999 */ 8000 8001 /* 8002 * Register the calling provider with the DTrace framework. This should 8003 * generally be called by DTrace providers in their attach(9E) entry point. 8004 */ 8005 int 8006 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8007 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8008 { 8009 dtrace_provider_t *provider; 8010 8011 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8012 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8013 "arguments", name ? name : "<NULL>"); 8014 return (EINVAL); 8015 } 8016 8017 if (name[0] == '\0' || dtrace_badname(name)) { 8018 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8019 "provider name", name); 8020 return (EINVAL); 8021 } 8022 8023 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8024 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8025 pops->dtps_destroy == NULL || 8026 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8027 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8028 "provider ops", name); 8029 return (EINVAL); 8030 } 8031 8032 if (dtrace_badattr(&pap->dtpa_provider) || 8033 dtrace_badattr(&pap->dtpa_mod) || 8034 dtrace_badattr(&pap->dtpa_func) || 8035 dtrace_badattr(&pap->dtpa_name) || 8036 dtrace_badattr(&pap->dtpa_args)) { 8037 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8038 "provider attributes", name); 8039 return (EINVAL); 8040 } 8041 8042 if (priv & ~DTRACE_PRIV_ALL) { 8043 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8044 "privilege attributes", name); 8045 return (EINVAL); 8046 } 8047 8048 if ((priv & DTRACE_PRIV_KERNEL) && 8049 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8050 pops->dtps_mode == NULL) { 8051 cmn_err(CE_WARN, "failed to register provider '%s': need " 8052 "dtps_mode() op for given privilege attributes", name); 8053 return (EINVAL); 8054 } 8055 8056 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8057 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8058 (void) strcpy(provider->dtpv_name, name); 8059 8060 provider->dtpv_attr = *pap; 8061 provider->dtpv_priv.dtpp_flags = priv; 8062 if (cr != NULL) { 8063 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8064 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8065 } 8066 provider->dtpv_pops = *pops; 8067 8068 if (pops->dtps_provide == NULL) { 8069 ASSERT(pops->dtps_provide_module != NULL); 8070 provider->dtpv_pops.dtps_provide = 8071 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8072 } 8073 8074 if (pops->dtps_provide_module == NULL) { 8075 ASSERT(pops->dtps_provide != NULL); 8076 provider->dtpv_pops.dtps_provide_module = 8077 (void (*)(void *, struct modctl *))dtrace_nullop; 8078 } 8079 8080 if (pops->dtps_suspend == NULL) { 8081 ASSERT(pops->dtps_resume == NULL); 8082 provider->dtpv_pops.dtps_suspend = 8083 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8084 provider->dtpv_pops.dtps_resume = 8085 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8086 } 8087 8088 provider->dtpv_arg = arg; 8089 *idp = (dtrace_provider_id_t)provider; 8090 8091 if (pops == &dtrace_provider_ops) { 8092 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8093 ASSERT(MUTEX_HELD(&dtrace_lock)); 8094 ASSERT(dtrace_anon.dta_enabling == NULL); 8095 8096 /* 8097 * We make sure that the DTrace provider is at the head of 8098 * the provider chain. 8099 */ 8100 provider->dtpv_next = dtrace_provider; 8101 dtrace_provider = provider; 8102 return (0); 8103 } 8104 8105 mutex_enter(&dtrace_provider_lock); 8106 mutex_enter(&dtrace_lock); 8107 8108 /* 8109 * If there is at least one provider registered, we'll add this 8110 * provider after the first provider. 8111 */ 8112 if (dtrace_provider != NULL) { 8113 provider->dtpv_next = dtrace_provider->dtpv_next; 8114 dtrace_provider->dtpv_next = provider; 8115 } else { 8116 dtrace_provider = provider; 8117 } 8118 8119 if (dtrace_retained != NULL) { 8120 dtrace_enabling_provide(provider); 8121 8122 /* 8123 * Now we need to call dtrace_enabling_matchall() -- which 8124 * will acquire cpu_lock and dtrace_lock. We therefore need 8125 * to drop all of our locks before calling into it... 8126 */ 8127 mutex_exit(&dtrace_lock); 8128 mutex_exit(&dtrace_provider_lock); 8129 dtrace_enabling_matchall(); 8130 8131 return (0); 8132 } 8133 8134 mutex_exit(&dtrace_lock); 8135 mutex_exit(&dtrace_provider_lock); 8136 8137 return (0); 8138 } 8139 8140 /* 8141 * Unregister the specified provider from the DTrace framework. This should 8142 * generally be called by DTrace providers in their detach(9E) entry point. 8143 */ 8144 int 8145 dtrace_unregister(dtrace_provider_id_t id) 8146 { 8147 dtrace_provider_t *old = (dtrace_provider_t *)id; 8148 dtrace_provider_t *prev = NULL; 8149 int i, self = 0, noreap = 0; 8150 dtrace_probe_t *probe, *first = NULL; 8151 8152 if (old->dtpv_pops.dtps_enable == 8153 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8154 /* 8155 * If DTrace itself is the provider, we're called with locks 8156 * already held. 8157 */ 8158 ASSERT(old == dtrace_provider); 8159 ASSERT(dtrace_devi != NULL); 8160 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8161 ASSERT(MUTEX_HELD(&dtrace_lock)); 8162 self = 1; 8163 8164 if (dtrace_provider->dtpv_next != NULL) { 8165 /* 8166 * There's another provider here; return failure. 8167 */ 8168 return (EBUSY); 8169 } 8170 } else { 8171 mutex_enter(&dtrace_provider_lock); 8172 mutex_enter(&mod_lock); 8173 mutex_enter(&dtrace_lock); 8174 } 8175 8176 /* 8177 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8178 * probes, we refuse to let providers slither away, unless this 8179 * provider has already been explicitly invalidated. 8180 */ 8181 if (!old->dtpv_defunct && 8182 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8183 dtrace_anon.dta_state->dts_necbs > 0))) { 8184 if (!self) { 8185 mutex_exit(&dtrace_lock); 8186 mutex_exit(&mod_lock); 8187 mutex_exit(&dtrace_provider_lock); 8188 } 8189 return (EBUSY); 8190 } 8191 8192 /* 8193 * Attempt to destroy the probes associated with this provider. 8194 */ 8195 for (i = 0; i < dtrace_nprobes; i++) { 8196 if ((probe = dtrace_probes[i]) == NULL) 8197 continue; 8198 8199 if (probe->dtpr_provider != old) 8200 continue; 8201 8202 if (probe->dtpr_ecb == NULL) 8203 continue; 8204 8205 /* 8206 * If we are trying to unregister a defunct provider, and the 8207 * provider was made defunct within the interval dictated by 8208 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8209 * attempt to reap our enablings. To denote that the provider 8210 * should reattempt to unregister itself at some point in the 8211 * future, we will return a differentiable error code (EAGAIN 8212 * instead of EBUSY) in this case. 8213 */ 8214 if (dtrace_gethrtime() - old->dtpv_defunct > 8215 dtrace_unregister_defunct_reap) 8216 noreap = 1; 8217 8218 if (!self) { 8219 mutex_exit(&dtrace_lock); 8220 mutex_exit(&mod_lock); 8221 mutex_exit(&dtrace_provider_lock); 8222 } 8223 8224 if (noreap) 8225 return (EBUSY); 8226 8227 (void) taskq_dispatch(dtrace_taskq, 8228 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8229 8230 return (EAGAIN); 8231 } 8232 8233 /* 8234 * All of the probes for this provider are disabled; we can safely 8235 * remove all of them from their hash chains and from the probe array. 8236 */ 8237 for (i = 0; i < dtrace_nprobes; i++) { 8238 if ((probe = dtrace_probes[i]) == NULL) 8239 continue; 8240 8241 if (probe->dtpr_provider != old) 8242 continue; 8243 8244 dtrace_probes[i] = NULL; 8245 8246 dtrace_hash_remove(dtrace_bymod, probe); 8247 dtrace_hash_remove(dtrace_byfunc, probe); 8248 dtrace_hash_remove(dtrace_byname, probe); 8249 8250 if (first == NULL) { 8251 first = probe; 8252 probe->dtpr_nextmod = NULL; 8253 } else { 8254 probe->dtpr_nextmod = first; 8255 first = probe; 8256 } 8257 } 8258 8259 /* 8260 * The provider's probes have been removed from the hash chains and 8261 * from the probe array. Now issue a dtrace_sync() to be sure that 8262 * everyone has cleared out from any probe array processing. 8263 */ 8264 dtrace_sync(); 8265 8266 for (probe = first; probe != NULL; probe = first) { 8267 first = probe->dtpr_nextmod; 8268 8269 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8270 probe->dtpr_arg); 8271 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8272 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8273 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8274 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8275 kmem_free(probe, sizeof (dtrace_probe_t)); 8276 } 8277 8278 if ((prev = dtrace_provider) == old) { 8279 ASSERT(self || dtrace_devi == NULL); 8280 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8281 dtrace_provider = old->dtpv_next; 8282 } else { 8283 while (prev != NULL && prev->dtpv_next != old) 8284 prev = prev->dtpv_next; 8285 8286 if (prev == NULL) { 8287 panic("attempt to unregister non-existent " 8288 "dtrace provider %p\n", (void *)id); 8289 } 8290 8291 prev->dtpv_next = old->dtpv_next; 8292 } 8293 8294 if (!self) { 8295 mutex_exit(&dtrace_lock); 8296 mutex_exit(&mod_lock); 8297 mutex_exit(&dtrace_provider_lock); 8298 } 8299 8300 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8301 kmem_free(old, sizeof (dtrace_provider_t)); 8302 8303 return (0); 8304 } 8305 8306 /* 8307 * Invalidate the specified provider. All subsequent probe lookups for the 8308 * specified provider will fail, but its probes will not be removed. 8309 */ 8310 void 8311 dtrace_invalidate(dtrace_provider_id_t id) 8312 { 8313 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8314 8315 ASSERT(pvp->dtpv_pops.dtps_enable != 8316 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8317 8318 mutex_enter(&dtrace_provider_lock); 8319 mutex_enter(&dtrace_lock); 8320 8321 pvp->dtpv_defunct = dtrace_gethrtime(); 8322 8323 mutex_exit(&dtrace_lock); 8324 mutex_exit(&dtrace_provider_lock); 8325 } 8326 8327 /* 8328 * Indicate whether or not DTrace has attached. 8329 */ 8330 int 8331 dtrace_attached(void) 8332 { 8333 /* 8334 * dtrace_provider will be non-NULL iff the DTrace driver has 8335 * attached. (It's non-NULL because DTrace is always itself a 8336 * provider.) 8337 */ 8338 return (dtrace_provider != NULL); 8339 } 8340 8341 /* 8342 * Remove all the unenabled probes for the given provider. This function is 8343 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8344 * -- just as many of its associated probes as it can. 8345 */ 8346 int 8347 dtrace_condense(dtrace_provider_id_t id) 8348 { 8349 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8350 int i; 8351 dtrace_probe_t *probe; 8352 8353 /* 8354 * Make sure this isn't the dtrace provider itself. 8355 */ 8356 ASSERT(prov->dtpv_pops.dtps_enable != 8357 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8358 8359 mutex_enter(&dtrace_provider_lock); 8360 mutex_enter(&dtrace_lock); 8361 8362 /* 8363 * Attempt to destroy the probes associated with this provider. 8364 */ 8365 for (i = 0; i < dtrace_nprobes; i++) { 8366 if ((probe = dtrace_probes[i]) == NULL) 8367 continue; 8368 8369 if (probe->dtpr_provider != prov) 8370 continue; 8371 8372 if (probe->dtpr_ecb != NULL) 8373 continue; 8374 8375 dtrace_probes[i] = NULL; 8376 8377 dtrace_hash_remove(dtrace_bymod, probe); 8378 dtrace_hash_remove(dtrace_byfunc, probe); 8379 dtrace_hash_remove(dtrace_byname, probe); 8380 8381 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8382 probe->dtpr_arg); 8383 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8384 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8385 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8386 kmem_free(probe, sizeof (dtrace_probe_t)); 8387 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8388 } 8389 8390 mutex_exit(&dtrace_lock); 8391 mutex_exit(&dtrace_provider_lock); 8392 8393 return (0); 8394 } 8395 8396 /* 8397 * DTrace Probe Management Functions 8398 * 8399 * The functions in this section perform the DTrace probe management, 8400 * including functions to create probes, look-up probes, and call into the 8401 * providers to request that probes be provided. Some of these functions are 8402 * in the Provider-to-Framework API; these functions can be identified by the 8403 * fact that they are not declared "static". 8404 */ 8405 8406 /* 8407 * Create a probe with the specified module name, function name, and name. 8408 */ 8409 dtrace_id_t 8410 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8411 const char *func, const char *name, int aframes, void *arg) 8412 { 8413 dtrace_probe_t *probe, **probes; 8414 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8415 dtrace_id_t id; 8416 8417 if (provider == dtrace_provider) { 8418 ASSERT(MUTEX_HELD(&dtrace_lock)); 8419 } else { 8420 mutex_enter(&dtrace_lock); 8421 } 8422 8423 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8424 VM_BESTFIT | VM_SLEEP); 8425 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8426 8427 probe->dtpr_id = id; 8428 probe->dtpr_gen = dtrace_probegen++; 8429 probe->dtpr_mod = dtrace_strdup(mod); 8430 probe->dtpr_func = dtrace_strdup(func); 8431 probe->dtpr_name = dtrace_strdup(name); 8432 probe->dtpr_arg = arg; 8433 probe->dtpr_aframes = aframes; 8434 probe->dtpr_provider = provider; 8435 8436 dtrace_hash_add(dtrace_bymod, probe); 8437 dtrace_hash_add(dtrace_byfunc, probe); 8438 dtrace_hash_add(dtrace_byname, probe); 8439 8440 if (id - 1 >= dtrace_nprobes) { 8441 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8442 size_t nsize = osize << 1; 8443 8444 if (nsize == 0) { 8445 ASSERT(osize == 0); 8446 ASSERT(dtrace_probes == NULL); 8447 nsize = sizeof (dtrace_probe_t *); 8448 } 8449 8450 probes = kmem_zalloc(nsize, KM_SLEEP); 8451 8452 if (dtrace_probes == NULL) { 8453 ASSERT(osize == 0); 8454 dtrace_probes = probes; 8455 dtrace_nprobes = 1; 8456 } else { 8457 dtrace_probe_t **oprobes = dtrace_probes; 8458 8459 bcopy(oprobes, probes, osize); 8460 dtrace_membar_producer(); 8461 dtrace_probes = probes; 8462 8463 dtrace_sync(); 8464 8465 /* 8466 * All CPUs are now seeing the new probes array; we can 8467 * safely free the old array. 8468 */ 8469 kmem_free(oprobes, osize); 8470 dtrace_nprobes <<= 1; 8471 } 8472 8473 ASSERT(id - 1 < dtrace_nprobes); 8474 } 8475 8476 ASSERT(dtrace_probes[id - 1] == NULL); 8477 dtrace_probes[id - 1] = probe; 8478 8479 if (provider != dtrace_provider) 8480 mutex_exit(&dtrace_lock); 8481 8482 return (id); 8483 } 8484 8485 static dtrace_probe_t * 8486 dtrace_probe_lookup_id(dtrace_id_t id) 8487 { 8488 ASSERT(MUTEX_HELD(&dtrace_lock)); 8489 8490 if (id == 0 || id > dtrace_nprobes) 8491 return (NULL); 8492 8493 return (dtrace_probes[id - 1]); 8494 } 8495 8496 static int 8497 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8498 { 8499 *((dtrace_id_t *)arg) = probe->dtpr_id; 8500 8501 return (DTRACE_MATCH_DONE); 8502 } 8503 8504 /* 8505 * Look up a probe based on provider and one or more of module name, function 8506 * name and probe name. 8507 */ 8508 dtrace_id_t 8509 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8510 const char *func, const char *name) 8511 { 8512 dtrace_probekey_t pkey; 8513 dtrace_id_t id; 8514 int match; 8515 8516 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8517 pkey.dtpk_pmatch = &dtrace_match_string; 8518 pkey.dtpk_mod = mod; 8519 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8520 pkey.dtpk_func = func; 8521 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8522 pkey.dtpk_name = name; 8523 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8524 pkey.dtpk_id = DTRACE_IDNONE; 8525 8526 mutex_enter(&dtrace_lock); 8527 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8528 dtrace_probe_lookup_match, &id); 8529 mutex_exit(&dtrace_lock); 8530 8531 ASSERT(match == 1 || match == 0); 8532 return (match ? id : 0); 8533 } 8534 8535 /* 8536 * Returns the probe argument associated with the specified probe. 8537 */ 8538 void * 8539 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8540 { 8541 dtrace_probe_t *probe; 8542 void *rval = NULL; 8543 8544 mutex_enter(&dtrace_lock); 8545 8546 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8547 probe->dtpr_provider == (dtrace_provider_t *)id) 8548 rval = probe->dtpr_arg; 8549 8550 mutex_exit(&dtrace_lock); 8551 8552 return (rval); 8553 } 8554 8555 /* 8556 * Copy a probe into a probe description. 8557 */ 8558 static void 8559 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8560 { 8561 bzero(pdp, sizeof (dtrace_probedesc_t)); 8562 pdp->dtpd_id = prp->dtpr_id; 8563 8564 (void) strncpy(pdp->dtpd_provider, 8565 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8566 8567 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8568 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8569 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8570 } 8571 8572 /* 8573 * Called to indicate that a probe -- or probes -- should be provided by a 8574 * specfied provider. If the specified description is NULL, the provider will 8575 * be told to provide all of its probes. (This is done whenever a new 8576 * consumer comes along, or whenever a retained enabling is to be matched.) If 8577 * the specified description is non-NULL, the provider is given the 8578 * opportunity to dynamically provide the specified probe, allowing providers 8579 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8580 * probes.) If the provider is NULL, the operations will be applied to all 8581 * providers; if the provider is non-NULL the operations will only be applied 8582 * to the specified provider. The dtrace_provider_lock must be held, and the 8583 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8584 * will need to grab the dtrace_lock when it reenters the framework through 8585 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8586 */ 8587 static void 8588 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8589 { 8590 struct modctl *ctl; 8591 int all = 0; 8592 8593 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8594 8595 if (prv == NULL) { 8596 all = 1; 8597 prv = dtrace_provider; 8598 } 8599 8600 do { 8601 /* 8602 * First, call the blanket provide operation. 8603 */ 8604 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8605 8606 /* 8607 * Now call the per-module provide operation. We will grab 8608 * mod_lock to prevent the list from being modified. Note 8609 * that this also prevents the mod_busy bits from changing. 8610 * (mod_busy can only be changed with mod_lock held.) 8611 */ 8612 mutex_enter(&mod_lock); 8613 8614 ctl = &modules; 8615 do { 8616 if (ctl->mod_busy || ctl->mod_mp == NULL) 8617 continue; 8618 8619 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8620 8621 } while ((ctl = ctl->mod_next) != &modules); 8622 8623 mutex_exit(&mod_lock); 8624 } while (all && (prv = prv->dtpv_next) != NULL); 8625 } 8626 8627 /* 8628 * Iterate over each probe, and call the Framework-to-Provider API function 8629 * denoted by offs. 8630 */ 8631 static void 8632 dtrace_probe_foreach(uintptr_t offs) 8633 { 8634 dtrace_provider_t *prov; 8635 void (*func)(void *, dtrace_id_t, void *); 8636 dtrace_probe_t *probe; 8637 dtrace_icookie_t cookie; 8638 int i; 8639 8640 /* 8641 * We disable interrupts to walk through the probe array. This is 8642 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8643 * won't see stale data. 8644 */ 8645 cookie = dtrace_interrupt_disable(); 8646 8647 for (i = 0; i < dtrace_nprobes; i++) { 8648 if ((probe = dtrace_probes[i]) == NULL) 8649 continue; 8650 8651 if (probe->dtpr_ecb == NULL) { 8652 /* 8653 * This probe isn't enabled -- don't call the function. 8654 */ 8655 continue; 8656 } 8657 8658 prov = probe->dtpr_provider; 8659 func = *((void(**)(void *, dtrace_id_t, void *)) 8660 ((uintptr_t)&prov->dtpv_pops + offs)); 8661 8662 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8663 } 8664 8665 dtrace_interrupt_enable(cookie); 8666 } 8667 8668 static int 8669 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8670 { 8671 dtrace_probekey_t pkey; 8672 uint32_t priv; 8673 uid_t uid; 8674 zoneid_t zoneid; 8675 8676 ASSERT(MUTEX_HELD(&dtrace_lock)); 8677 dtrace_ecb_create_cache = NULL; 8678 8679 if (desc == NULL) { 8680 /* 8681 * If we're passed a NULL description, we're being asked to 8682 * create an ECB with a NULL probe. 8683 */ 8684 (void) dtrace_ecb_create_enable(NULL, enab); 8685 return (0); 8686 } 8687 8688 dtrace_probekey(desc, &pkey); 8689 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8690 &priv, &uid, &zoneid); 8691 8692 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8693 enab)); 8694 } 8695 8696 /* 8697 * DTrace Helper Provider Functions 8698 */ 8699 static void 8700 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8701 { 8702 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8703 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8704 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8705 } 8706 8707 static void 8708 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8709 const dof_provider_t *dofprov, char *strtab) 8710 { 8711 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8712 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8713 dofprov->dofpv_provattr); 8714 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8715 dofprov->dofpv_modattr); 8716 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8717 dofprov->dofpv_funcattr); 8718 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8719 dofprov->dofpv_nameattr); 8720 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8721 dofprov->dofpv_argsattr); 8722 } 8723 8724 static void 8725 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8726 { 8727 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8728 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8729 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8730 dof_provider_t *provider; 8731 dof_probe_t *probe; 8732 uint32_t *off, *enoff; 8733 uint8_t *arg; 8734 char *strtab; 8735 uint_t i, nprobes; 8736 dtrace_helper_provdesc_t dhpv; 8737 dtrace_helper_probedesc_t dhpb; 8738 dtrace_meta_t *meta = dtrace_meta_pid; 8739 dtrace_mops_t *mops = &meta->dtm_mops; 8740 void *parg; 8741 8742 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8743 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8744 provider->dofpv_strtab * dof->dofh_secsize); 8745 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8746 provider->dofpv_probes * dof->dofh_secsize); 8747 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8748 provider->dofpv_prargs * dof->dofh_secsize); 8749 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8750 provider->dofpv_proffs * dof->dofh_secsize); 8751 8752 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8753 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8754 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8755 enoff = NULL; 8756 8757 /* 8758 * See dtrace_helper_provider_validate(). 8759 */ 8760 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8761 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8762 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8763 provider->dofpv_prenoffs * dof->dofh_secsize); 8764 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8765 } 8766 8767 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8768 8769 /* 8770 * Create the provider. 8771 */ 8772 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8773 8774 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8775 return; 8776 8777 meta->dtm_count++; 8778 8779 /* 8780 * Create the probes. 8781 */ 8782 for (i = 0; i < nprobes; i++) { 8783 probe = (dof_probe_t *)(uintptr_t)(daddr + 8784 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8785 8786 dhpb.dthpb_mod = dhp->dofhp_mod; 8787 dhpb.dthpb_func = strtab + probe->dofpr_func; 8788 dhpb.dthpb_name = strtab + probe->dofpr_name; 8789 dhpb.dthpb_base = probe->dofpr_addr; 8790 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8791 dhpb.dthpb_noffs = probe->dofpr_noffs; 8792 if (enoff != NULL) { 8793 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8794 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8795 } else { 8796 dhpb.dthpb_enoffs = NULL; 8797 dhpb.dthpb_nenoffs = 0; 8798 } 8799 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8800 dhpb.dthpb_nargc = probe->dofpr_nargc; 8801 dhpb.dthpb_xargc = probe->dofpr_xargc; 8802 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8803 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8804 8805 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8806 } 8807 } 8808 8809 static void 8810 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8811 { 8812 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8813 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8814 int i; 8815 8816 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8817 8818 for (i = 0; i < dof->dofh_secnum; i++) { 8819 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8820 dof->dofh_secoff + i * dof->dofh_secsize); 8821 8822 if (sec->dofs_type != DOF_SECT_PROVIDER) 8823 continue; 8824 8825 dtrace_helper_provide_one(dhp, sec, pid); 8826 } 8827 8828 /* 8829 * We may have just created probes, so we must now rematch against 8830 * any retained enablings. Note that this call will acquire both 8831 * cpu_lock and dtrace_lock; the fact that we are holding 8832 * dtrace_meta_lock now is what defines the ordering with respect to 8833 * these three locks. 8834 */ 8835 dtrace_enabling_matchall(); 8836 } 8837 8838 static void 8839 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8840 { 8841 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8842 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8843 dof_sec_t *str_sec; 8844 dof_provider_t *provider; 8845 char *strtab; 8846 dtrace_helper_provdesc_t dhpv; 8847 dtrace_meta_t *meta = dtrace_meta_pid; 8848 dtrace_mops_t *mops = &meta->dtm_mops; 8849 8850 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8851 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8852 provider->dofpv_strtab * dof->dofh_secsize); 8853 8854 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8855 8856 /* 8857 * Create the provider. 8858 */ 8859 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8860 8861 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8862 8863 meta->dtm_count--; 8864 } 8865 8866 static void 8867 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8868 { 8869 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8870 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8871 int i; 8872 8873 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8874 8875 for (i = 0; i < dof->dofh_secnum; i++) { 8876 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8877 dof->dofh_secoff + i * dof->dofh_secsize); 8878 8879 if (sec->dofs_type != DOF_SECT_PROVIDER) 8880 continue; 8881 8882 dtrace_helper_provider_remove_one(dhp, sec, pid); 8883 } 8884 } 8885 8886 /* 8887 * DTrace Meta Provider-to-Framework API Functions 8888 * 8889 * These functions implement the Meta Provider-to-Framework API, as described 8890 * in <sys/dtrace.h>. 8891 */ 8892 int 8893 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8894 dtrace_meta_provider_id_t *idp) 8895 { 8896 dtrace_meta_t *meta; 8897 dtrace_helpers_t *help, *next; 8898 int i; 8899 8900 *idp = DTRACE_METAPROVNONE; 8901 8902 /* 8903 * We strictly don't need the name, but we hold onto it for 8904 * debuggability. All hail error queues! 8905 */ 8906 if (name == NULL) { 8907 cmn_err(CE_WARN, "failed to register meta-provider: " 8908 "invalid name"); 8909 return (EINVAL); 8910 } 8911 8912 if (mops == NULL || 8913 mops->dtms_create_probe == NULL || 8914 mops->dtms_provide_pid == NULL || 8915 mops->dtms_remove_pid == NULL) { 8916 cmn_err(CE_WARN, "failed to register meta-register %s: " 8917 "invalid ops", name); 8918 return (EINVAL); 8919 } 8920 8921 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8922 meta->dtm_mops = *mops; 8923 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8924 (void) strcpy(meta->dtm_name, name); 8925 meta->dtm_arg = arg; 8926 8927 mutex_enter(&dtrace_meta_lock); 8928 mutex_enter(&dtrace_lock); 8929 8930 if (dtrace_meta_pid != NULL) { 8931 mutex_exit(&dtrace_lock); 8932 mutex_exit(&dtrace_meta_lock); 8933 cmn_err(CE_WARN, "failed to register meta-register %s: " 8934 "user-land meta-provider exists", name); 8935 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8936 kmem_free(meta, sizeof (dtrace_meta_t)); 8937 return (EINVAL); 8938 } 8939 8940 dtrace_meta_pid = meta; 8941 *idp = (dtrace_meta_provider_id_t)meta; 8942 8943 /* 8944 * If there are providers and probes ready to go, pass them 8945 * off to the new meta provider now. 8946 */ 8947 8948 help = dtrace_deferred_pid; 8949 dtrace_deferred_pid = NULL; 8950 8951 mutex_exit(&dtrace_lock); 8952 8953 while (help != NULL) { 8954 for (i = 0; i < help->dthps_nprovs; i++) { 8955 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8956 help->dthps_pid); 8957 } 8958 8959 next = help->dthps_next; 8960 help->dthps_next = NULL; 8961 help->dthps_prev = NULL; 8962 help->dthps_deferred = 0; 8963 help = next; 8964 } 8965 8966 mutex_exit(&dtrace_meta_lock); 8967 8968 return (0); 8969 } 8970 8971 int 8972 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8973 { 8974 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8975 8976 mutex_enter(&dtrace_meta_lock); 8977 mutex_enter(&dtrace_lock); 8978 8979 if (old == dtrace_meta_pid) { 8980 pp = &dtrace_meta_pid; 8981 } else { 8982 panic("attempt to unregister non-existent " 8983 "dtrace meta-provider %p\n", (void *)old); 8984 } 8985 8986 if (old->dtm_count != 0) { 8987 mutex_exit(&dtrace_lock); 8988 mutex_exit(&dtrace_meta_lock); 8989 return (EBUSY); 8990 } 8991 8992 *pp = NULL; 8993 8994 mutex_exit(&dtrace_lock); 8995 mutex_exit(&dtrace_meta_lock); 8996 8997 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8998 kmem_free(old, sizeof (dtrace_meta_t)); 8999 9000 return (0); 9001 } 9002 9003 9004 /* 9005 * DTrace DIF Object Functions 9006 */ 9007 static int 9008 dtrace_difo_err(uint_t pc, const char *format, ...) 9009 { 9010 if (dtrace_err_verbose) { 9011 va_list alist; 9012 9013 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9014 va_start(alist, format); 9015 (void) vuprintf(format, alist); 9016 va_end(alist); 9017 } 9018 9019 #ifdef DTRACE_ERRDEBUG 9020 dtrace_errdebug(format); 9021 #endif 9022 return (1); 9023 } 9024 9025 /* 9026 * Validate a DTrace DIF object by checking the IR instructions. The following 9027 * rules are currently enforced by dtrace_difo_validate(): 9028 * 9029 * 1. Each instruction must have a valid opcode 9030 * 2. Each register, string, variable, or subroutine reference must be valid 9031 * 3. No instruction can modify register %r0 (must be zero) 9032 * 4. All instruction reserved bits must be set to zero 9033 * 5. The last instruction must be a "ret" instruction 9034 * 6. All branch targets must reference a valid instruction _after_ the branch 9035 */ 9036 static int 9037 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9038 cred_t *cr) 9039 { 9040 int err = 0, i; 9041 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9042 int kcheckload; 9043 uint_t pc; 9044 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9045 9046 kcheckload = cr == NULL || 9047 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9048 9049 dp->dtdo_destructive = 0; 9050 9051 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9052 dif_instr_t instr = dp->dtdo_buf[pc]; 9053 9054 uint_t r1 = DIF_INSTR_R1(instr); 9055 uint_t r2 = DIF_INSTR_R2(instr); 9056 uint_t rd = DIF_INSTR_RD(instr); 9057 uint_t rs = DIF_INSTR_RS(instr); 9058 uint_t label = DIF_INSTR_LABEL(instr); 9059 uint_t v = DIF_INSTR_VAR(instr); 9060 uint_t subr = DIF_INSTR_SUBR(instr); 9061 uint_t type = DIF_INSTR_TYPE(instr); 9062 uint_t op = DIF_INSTR_OP(instr); 9063 9064 switch (op) { 9065 case DIF_OP_OR: 9066 case DIF_OP_XOR: 9067 case DIF_OP_AND: 9068 case DIF_OP_SLL: 9069 case DIF_OP_SRL: 9070 case DIF_OP_SRA: 9071 case DIF_OP_SUB: 9072 case DIF_OP_ADD: 9073 case DIF_OP_MUL: 9074 case DIF_OP_SDIV: 9075 case DIF_OP_UDIV: 9076 case DIF_OP_SREM: 9077 case DIF_OP_UREM: 9078 case DIF_OP_COPYS: 9079 if (r1 >= nregs) 9080 err += efunc(pc, "invalid register %u\n", r1); 9081 if (r2 >= nregs) 9082 err += efunc(pc, "invalid register %u\n", r2); 9083 if (rd >= nregs) 9084 err += efunc(pc, "invalid register %u\n", rd); 9085 if (rd == 0) 9086 err += efunc(pc, "cannot write to %r0\n"); 9087 break; 9088 case DIF_OP_NOT: 9089 case DIF_OP_MOV: 9090 case DIF_OP_ALLOCS: 9091 if (r1 >= nregs) 9092 err += efunc(pc, "invalid register %u\n", r1); 9093 if (r2 != 0) 9094 err += efunc(pc, "non-zero reserved bits\n"); 9095 if (rd >= nregs) 9096 err += efunc(pc, "invalid register %u\n", rd); 9097 if (rd == 0) 9098 err += efunc(pc, "cannot write to %r0\n"); 9099 break; 9100 case DIF_OP_LDSB: 9101 case DIF_OP_LDSH: 9102 case DIF_OP_LDSW: 9103 case DIF_OP_LDUB: 9104 case DIF_OP_LDUH: 9105 case DIF_OP_LDUW: 9106 case DIF_OP_LDX: 9107 if (r1 >= nregs) 9108 err += efunc(pc, "invalid register %u\n", r1); 9109 if (r2 != 0) 9110 err += efunc(pc, "non-zero reserved bits\n"); 9111 if (rd >= nregs) 9112 err += efunc(pc, "invalid register %u\n", rd); 9113 if (rd == 0) 9114 err += efunc(pc, "cannot write to %r0\n"); 9115 if (kcheckload) 9116 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9117 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9118 break; 9119 case DIF_OP_RLDSB: 9120 case DIF_OP_RLDSH: 9121 case DIF_OP_RLDSW: 9122 case DIF_OP_RLDUB: 9123 case DIF_OP_RLDUH: 9124 case DIF_OP_RLDUW: 9125 case DIF_OP_RLDX: 9126 if (r1 >= nregs) 9127 err += efunc(pc, "invalid register %u\n", r1); 9128 if (r2 != 0) 9129 err += efunc(pc, "non-zero reserved bits\n"); 9130 if (rd >= nregs) 9131 err += efunc(pc, "invalid register %u\n", rd); 9132 if (rd == 0) 9133 err += efunc(pc, "cannot write to %r0\n"); 9134 break; 9135 case DIF_OP_ULDSB: 9136 case DIF_OP_ULDSH: 9137 case DIF_OP_ULDSW: 9138 case DIF_OP_ULDUB: 9139 case DIF_OP_ULDUH: 9140 case DIF_OP_ULDUW: 9141 case DIF_OP_ULDX: 9142 if (r1 >= nregs) 9143 err += efunc(pc, "invalid register %u\n", r1); 9144 if (r2 != 0) 9145 err += efunc(pc, "non-zero reserved bits\n"); 9146 if (rd >= nregs) 9147 err += efunc(pc, "invalid register %u\n", rd); 9148 if (rd == 0) 9149 err += efunc(pc, "cannot write to %r0\n"); 9150 break; 9151 case DIF_OP_STB: 9152 case DIF_OP_STH: 9153 case DIF_OP_STW: 9154 case DIF_OP_STX: 9155 if (r1 >= nregs) 9156 err += efunc(pc, "invalid register %u\n", r1); 9157 if (r2 != 0) 9158 err += efunc(pc, "non-zero reserved bits\n"); 9159 if (rd >= nregs) 9160 err += efunc(pc, "invalid register %u\n", rd); 9161 if (rd == 0) 9162 err += efunc(pc, "cannot write to 0 address\n"); 9163 break; 9164 case DIF_OP_CMP: 9165 case DIF_OP_SCMP: 9166 if (r1 >= nregs) 9167 err += efunc(pc, "invalid register %u\n", r1); 9168 if (r2 >= nregs) 9169 err += efunc(pc, "invalid register %u\n", r2); 9170 if (rd != 0) 9171 err += efunc(pc, "non-zero reserved bits\n"); 9172 break; 9173 case DIF_OP_TST: 9174 if (r1 >= nregs) 9175 err += efunc(pc, "invalid register %u\n", r1); 9176 if (r2 != 0 || rd != 0) 9177 err += efunc(pc, "non-zero reserved bits\n"); 9178 break; 9179 case DIF_OP_BA: 9180 case DIF_OP_BE: 9181 case DIF_OP_BNE: 9182 case DIF_OP_BG: 9183 case DIF_OP_BGU: 9184 case DIF_OP_BGE: 9185 case DIF_OP_BGEU: 9186 case DIF_OP_BL: 9187 case DIF_OP_BLU: 9188 case DIF_OP_BLE: 9189 case DIF_OP_BLEU: 9190 if (label >= dp->dtdo_len) { 9191 err += efunc(pc, "invalid branch target %u\n", 9192 label); 9193 } 9194 if (label <= pc) { 9195 err += efunc(pc, "backward branch to %u\n", 9196 label); 9197 } 9198 break; 9199 case DIF_OP_RET: 9200 if (r1 != 0 || r2 != 0) 9201 err += efunc(pc, "non-zero reserved bits\n"); 9202 if (rd >= nregs) 9203 err += efunc(pc, "invalid register %u\n", rd); 9204 break; 9205 case DIF_OP_NOP: 9206 case DIF_OP_POPTS: 9207 case DIF_OP_FLUSHTS: 9208 if (r1 != 0 || r2 != 0 || rd != 0) 9209 err += efunc(pc, "non-zero reserved bits\n"); 9210 break; 9211 case DIF_OP_SETX: 9212 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9213 err += efunc(pc, "invalid integer ref %u\n", 9214 DIF_INSTR_INTEGER(instr)); 9215 } 9216 if (rd >= nregs) 9217 err += efunc(pc, "invalid register %u\n", rd); 9218 if (rd == 0) 9219 err += efunc(pc, "cannot write to %r0\n"); 9220 break; 9221 case DIF_OP_SETS: 9222 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9223 err += efunc(pc, "invalid string ref %u\n", 9224 DIF_INSTR_STRING(instr)); 9225 } 9226 if (rd >= nregs) 9227 err += efunc(pc, "invalid register %u\n", rd); 9228 if (rd == 0) 9229 err += efunc(pc, "cannot write to %r0\n"); 9230 break; 9231 case DIF_OP_LDGA: 9232 case DIF_OP_LDTA: 9233 if (r1 > DIF_VAR_ARRAY_MAX) 9234 err += efunc(pc, "invalid array %u\n", r1); 9235 if (r2 >= nregs) 9236 err += efunc(pc, "invalid register %u\n", r2); 9237 if (rd >= nregs) 9238 err += efunc(pc, "invalid register %u\n", rd); 9239 if (rd == 0) 9240 err += efunc(pc, "cannot write to %r0\n"); 9241 break; 9242 case DIF_OP_LDGS: 9243 case DIF_OP_LDTS: 9244 case DIF_OP_LDLS: 9245 case DIF_OP_LDGAA: 9246 case DIF_OP_LDTAA: 9247 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9248 err += efunc(pc, "invalid variable %u\n", v); 9249 if (rd >= nregs) 9250 err += efunc(pc, "invalid register %u\n", rd); 9251 if (rd == 0) 9252 err += efunc(pc, "cannot write to %r0\n"); 9253 break; 9254 case DIF_OP_STGS: 9255 case DIF_OP_STTS: 9256 case DIF_OP_STLS: 9257 case DIF_OP_STGAA: 9258 case DIF_OP_STTAA: 9259 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9260 err += efunc(pc, "invalid variable %u\n", v); 9261 if (rs >= nregs) 9262 err += efunc(pc, "invalid register %u\n", rd); 9263 break; 9264 case DIF_OP_CALL: 9265 if (subr > DIF_SUBR_MAX) 9266 err += efunc(pc, "invalid subr %u\n", subr); 9267 if (rd >= nregs) 9268 err += efunc(pc, "invalid register %u\n", rd); 9269 if (rd == 0) 9270 err += efunc(pc, "cannot write to %r0\n"); 9271 9272 if (subr == DIF_SUBR_COPYOUT || 9273 subr == DIF_SUBR_COPYOUTSTR) { 9274 dp->dtdo_destructive = 1; 9275 } 9276 9277 if (subr == DIF_SUBR_GETF) { 9278 /* 9279 * If we have a getf() we need to record that 9280 * in our state. Note that our state can be 9281 * NULL if this is a helper -- but in that 9282 * case, the call to getf() is itself illegal, 9283 * and will be caught (slightly later) when 9284 * the helper is validated. 9285 */ 9286 if (vstate->dtvs_state != NULL) 9287 vstate->dtvs_state->dts_getf++; 9288 } 9289 9290 break; 9291 case DIF_OP_PUSHTR: 9292 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9293 err += efunc(pc, "invalid ref type %u\n", type); 9294 if (r2 >= nregs) 9295 err += efunc(pc, "invalid register %u\n", r2); 9296 if (rs >= nregs) 9297 err += efunc(pc, "invalid register %u\n", rs); 9298 break; 9299 case DIF_OP_PUSHTV: 9300 if (type != DIF_TYPE_CTF) 9301 err += efunc(pc, "invalid val type %u\n", type); 9302 if (r2 >= nregs) 9303 err += efunc(pc, "invalid register %u\n", r2); 9304 if (rs >= nregs) 9305 err += efunc(pc, "invalid register %u\n", rs); 9306 break; 9307 default: 9308 err += efunc(pc, "invalid opcode %u\n", 9309 DIF_INSTR_OP(instr)); 9310 } 9311 } 9312 9313 if (dp->dtdo_len != 0 && 9314 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9315 err += efunc(dp->dtdo_len - 1, 9316 "expected 'ret' as last DIF instruction\n"); 9317 } 9318 9319 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9320 /* 9321 * If we're not returning by reference, the size must be either 9322 * 0 or the size of one of the base types. 9323 */ 9324 switch (dp->dtdo_rtype.dtdt_size) { 9325 case 0: 9326 case sizeof (uint8_t): 9327 case sizeof (uint16_t): 9328 case sizeof (uint32_t): 9329 case sizeof (uint64_t): 9330 break; 9331 9332 default: 9333 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9334 } 9335 } 9336 9337 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9338 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9339 dtrace_diftype_t *vt, *et; 9340 uint_t id, ndx; 9341 9342 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9343 v->dtdv_scope != DIFV_SCOPE_THREAD && 9344 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9345 err += efunc(i, "unrecognized variable scope %d\n", 9346 v->dtdv_scope); 9347 break; 9348 } 9349 9350 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9351 v->dtdv_kind != DIFV_KIND_SCALAR) { 9352 err += efunc(i, "unrecognized variable type %d\n", 9353 v->dtdv_kind); 9354 break; 9355 } 9356 9357 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9358 err += efunc(i, "%d exceeds variable id limit\n", id); 9359 break; 9360 } 9361 9362 if (id < DIF_VAR_OTHER_UBASE) 9363 continue; 9364 9365 /* 9366 * For user-defined variables, we need to check that this 9367 * definition is identical to any previous definition that we 9368 * encountered. 9369 */ 9370 ndx = id - DIF_VAR_OTHER_UBASE; 9371 9372 switch (v->dtdv_scope) { 9373 case DIFV_SCOPE_GLOBAL: 9374 if (maxglobal == -1 || ndx > maxglobal) 9375 maxglobal = ndx; 9376 9377 if (ndx < vstate->dtvs_nglobals) { 9378 dtrace_statvar_t *svar; 9379 9380 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9381 existing = &svar->dtsv_var; 9382 } 9383 9384 break; 9385 9386 case DIFV_SCOPE_THREAD: 9387 if (maxtlocal == -1 || ndx > maxtlocal) 9388 maxtlocal = ndx; 9389 9390 if (ndx < vstate->dtvs_ntlocals) 9391 existing = &vstate->dtvs_tlocals[ndx]; 9392 break; 9393 9394 case DIFV_SCOPE_LOCAL: 9395 if (maxlocal == -1 || ndx > maxlocal) 9396 maxlocal = ndx; 9397 9398 if (ndx < vstate->dtvs_nlocals) { 9399 dtrace_statvar_t *svar; 9400 9401 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9402 existing = &svar->dtsv_var; 9403 } 9404 9405 break; 9406 } 9407 9408 vt = &v->dtdv_type; 9409 9410 if (vt->dtdt_flags & DIF_TF_BYREF) { 9411 if (vt->dtdt_size == 0) { 9412 err += efunc(i, "zero-sized variable\n"); 9413 break; 9414 } 9415 9416 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9417 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9418 vt->dtdt_size > dtrace_statvar_maxsize) { 9419 err += efunc(i, "oversized by-ref static\n"); 9420 break; 9421 } 9422 } 9423 9424 if (existing == NULL || existing->dtdv_id == 0) 9425 continue; 9426 9427 ASSERT(existing->dtdv_id == v->dtdv_id); 9428 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9429 9430 if (existing->dtdv_kind != v->dtdv_kind) 9431 err += efunc(i, "%d changed variable kind\n", id); 9432 9433 et = &existing->dtdv_type; 9434 9435 if (vt->dtdt_flags != et->dtdt_flags) { 9436 err += efunc(i, "%d changed variable type flags\n", id); 9437 break; 9438 } 9439 9440 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9441 err += efunc(i, "%d changed variable type size\n", id); 9442 break; 9443 } 9444 } 9445 9446 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9447 dif_instr_t instr = dp->dtdo_buf[pc]; 9448 9449 uint_t v = DIF_INSTR_VAR(instr); 9450 uint_t op = DIF_INSTR_OP(instr); 9451 9452 switch (op) { 9453 case DIF_OP_LDGS: 9454 case DIF_OP_LDGAA: 9455 case DIF_OP_STGS: 9456 case DIF_OP_STGAA: 9457 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9458 err += efunc(pc, "invalid variable %u\n", v); 9459 break; 9460 case DIF_OP_LDTS: 9461 case DIF_OP_LDTAA: 9462 case DIF_OP_STTS: 9463 case DIF_OP_STTAA: 9464 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9465 err += efunc(pc, "invalid variable %u\n", v); 9466 break; 9467 case DIF_OP_LDLS: 9468 case DIF_OP_STLS: 9469 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9470 err += efunc(pc, "invalid variable %u\n", v); 9471 break; 9472 default: 9473 break; 9474 } 9475 } 9476 9477 return (err); 9478 } 9479 9480 /* 9481 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9482 * are much more constrained than normal DIFOs. Specifically, they may 9483 * not: 9484 * 9485 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9486 * miscellaneous string routines 9487 * 2. Access DTrace variables other than the args[] array, and the 9488 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9489 * 3. Have thread-local variables. 9490 * 4. Have dynamic variables. 9491 */ 9492 static int 9493 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9494 { 9495 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9496 int err = 0; 9497 uint_t pc; 9498 9499 for (pc = 0; pc < dp->dtdo_len; pc++) { 9500 dif_instr_t instr = dp->dtdo_buf[pc]; 9501 9502 uint_t v = DIF_INSTR_VAR(instr); 9503 uint_t subr = DIF_INSTR_SUBR(instr); 9504 uint_t op = DIF_INSTR_OP(instr); 9505 9506 switch (op) { 9507 case DIF_OP_OR: 9508 case DIF_OP_XOR: 9509 case DIF_OP_AND: 9510 case DIF_OP_SLL: 9511 case DIF_OP_SRL: 9512 case DIF_OP_SRA: 9513 case DIF_OP_SUB: 9514 case DIF_OP_ADD: 9515 case DIF_OP_MUL: 9516 case DIF_OP_SDIV: 9517 case DIF_OP_UDIV: 9518 case DIF_OP_SREM: 9519 case DIF_OP_UREM: 9520 case DIF_OP_COPYS: 9521 case DIF_OP_NOT: 9522 case DIF_OP_MOV: 9523 case DIF_OP_RLDSB: 9524 case DIF_OP_RLDSH: 9525 case DIF_OP_RLDSW: 9526 case DIF_OP_RLDUB: 9527 case DIF_OP_RLDUH: 9528 case DIF_OP_RLDUW: 9529 case DIF_OP_RLDX: 9530 case DIF_OP_ULDSB: 9531 case DIF_OP_ULDSH: 9532 case DIF_OP_ULDSW: 9533 case DIF_OP_ULDUB: 9534 case DIF_OP_ULDUH: 9535 case DIF_OP_ULDUW: 9536 case DIF_OP_ULDX: 9537 case DIF_OP_STB: 9538 case DIF_OP_STH: 9539 case DIF_OP_STW: 9540 case DIF_OP_STX: 9541 case DIF_OP_ALLOCS: 9542 case DIF_OP_CMP: 9543 case DIF_OP_SCMP: 9544 case DIF_OP_TST: 9545 case DIF_OP_BA: 9546 case DIF_OP_BE: 9547 case DIF_OP_BNE: 9548 case DIF_OP_BG: 9549 case DIF_OP_BGU: 9550 case DIF_OP_BGE: 9551 case DIF_OP_BGEU: 9552 case DIF_OP_BL: 9553 case DIF_OP_BLU: 9554 case DIF_OP_BLE: 9555 case DIF_OP_BLEU: 9556 case DIF_OP_RET: 9557 case DIF_OP_NOP: 9558 case DIF_OP_POPTS: 9559 case DIF_OP_FLUSHTS: 9560 case DIF_OP_SETX: 9561 case DIF_OP_SETS: 9562 case DIF_OP_LDGA: 9563 case DIF_OP_LDLS: 9564 case DIF_OP_STGS: 9565 case DIF_OP_STLS: 9566 case DIF_OP_PUSHTR: 9567 case DIF_OP_PUSHTV: 9568 break; 9569 9570 case DIF_OP_LDGS: 9571 if (v >= DIF_VAR_OTHER_UBASE) 9572 break; 9573 9574 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9575 break; 9576 9577 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9578 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9579 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9580 v == DIF_VAR_UID || v == DIF_VAR_GID) 9581 break; 9582 9583 err += efunc(pc, "illegal variable %u\n", v); 9584 break; 9585 9586 case DIF_OP_LDTA: 9587 case DIF_OP_LDTS: 9588 case DIF_OP_LDGAA: 9589 case DIF_OP_LDTAA: 9590 err += efunc(pc, "illegal dynamic variable load\n"); 9591 break; 9592 9593 case DIF_OP_STTS: 9594 case DIF_OP_STGAA: 9595 case DIF_OP_STTAA: 9596 err += efunc(pc, "illegal dynamic variable store\n"); 9597 break; 9598 9599 case DIF_OP_CALL: 9600 if (subr == DIF_SUBR_ALLOCA || 9601 subr == DIF_SUBR_BCOPY || 9602 subr == DIF_SUBR_COPYIN || 9603 subr == DIF_SUBR_COPYINTO || 9604 subr == DIF_SUBR_COPYINSTR || 9605 subr == DIF_SUBR_INDEX || 9606 subr == DIF_SUBR_INET_NTOA || 9607 subr == DIF_SUBR_INET_NTOA6 || 9608 subr == DIF_SUBR_INET_NTOP || 9609 subr == DIF_SUBR_JSON || 9610 subr == DIF_SUBR_LLTOSTR || 9611 subr == DIF_SUBR_STRTOLL || 9612 subr == DIF_SUBR_RINDEX || 9613 subr == DIF_SUBR_STRCHR || 9614 subr == DIF_SUBR_STRJOIN || 9615 subr == DIF_SUBR_STRRCHR || 9616 subr == DIF_SUBR_STRSTR || 9617 subr == DIF_SUBR_HTONS || 9618 subr == DIF_SUBR_HTONL || 9619 subr == DIF_SUBR_HTONLL || 9620 subr == DIF_SUBR_NTOHS || 9621 subr == DIF_SUBR_NTOHL || 9622 subr == DIF_SUBR_NTOHLL) 9623 break; 9624 9625 err += efunc(pc, "invalid subr %u\n", subr); 9626 break; 9627 9628 default: 9629 err += efunc(pc, "invalid opcode %u\n", 9630 DIF_INSTR_OP(instr)); 9631 } 9632 } 9633 9634 return (err); 9635 } 9636 9637 /* 9638 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9639 * basis; 0 if not. 9640 */ 9641 static int 9642 dtrace_difo_cacheable(dtrace_difo_t *dp) 9643 { 9644 int i; 9645 9646 if (dp == NULL) 9647 return (0); 9648 9649 for (i = 0; i < dp->dtdo_varlen; i++) { 9650 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9651 9652 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9653 continue; 9654 9655 switch (v->dtdv_id) { 9656 case DIF_VAR_CURTHREAD: 9657 case DIF_VAR_PID: 9658 case DIF_VAR_TID: 9659 case DIF_VAR_EXECNAME: 9660 case DIF_VAR_ZONENAME: 9661 break; 9662 9663 default: 9664 return (0); 9665 } 9666 } 9667 9668 /* 9669 * This DIF object may be cacheable. Now we need to look for any 9670 * array loading instructions, any memory loading instructions, or 9671 * any stores to thread-local variables. 9672 */ 9673 for (i = 0; i < dp->dtdo_len; i++) { 9674 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9675 9676 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9677 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9678 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9679 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9680 return (0); 9681 } 9682 9683 return (1); 9684 } 9685 9686 static void 9687 dtrace_difo_hold(dtrace_difo_t *dp) 9688 { 9689 int i; 9690 9691 ASSERT(MUTEX_HELD(&dtrace_lock)); 9692 9693 dp->dtdo_refcnt++; 9694 ASSERT(dp->dtdo_refcnt != 0); 9695 9696 /* 9697 * We need to check this DIF object for references to the variable 9698 * DIF_VAR_VTIMESTAMP. 9699 */ 9700 for (i = 0; i < dp->dtdo_varlen; i++) { 9701 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9702 9703 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9704 continue; 9705 9706 if (dtrace_vtime_references++ == 0) 9707 dtrace_vtime_enable(); 9708 } 9709 } 9710 9711 /* 9712 * This routine calculates the dynamic variable chunksize for a given DIF 9713 * object. The calculation is not fool-proof, and can probably be tricked by 9714 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9715 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9716 * if a dynamic variable size exceeds the chunksize. 9717 */ 9718 static void 9719 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9720 { 9721 uint64_t sval; 9722 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9723 const dif_instr_t *text = dp->dtdo_buf; 9724 uint_t pc, srd = 0; 9725 uint_t ttop = 0; 9726 size_t size, ksize; 9727 uint_t id, i; 9728 9729 for (pc = 0; pc < dp->dtdo_len; pc++) { 9730 dif_instr_t instr = text[pc]; 9731 uint_t op = DIF_INSTR_OP(instr); 9732 uint_t rd = DIF_INSTR_RD(instr); 9733 uint_t r1 = DIF_INSTR_R1(instr); 9734 uint_t nkeys = 0; 9735 uchar_t scope; 9736 9737 dtrace_key_t *key = tupregs; 9738 9739 switch (op) { 9740 case DIF_OP_SETX: 9741 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9742 srd = rd; 9743 continue; 9744 9745 case DIF_OP_STTS: 9746 key = &tupregs[DIF_DTR_NREGS]; 9747 key[0].dttk_size = 0; 9748 key[1].dttk_size = 0; 9749 nkeys = 2; 9750 scope = DIFV_SCOPE_THREAD; 9751 break; 9752 9753 case DIF_OP_STGAA: 9754 case DIF_OP_STTAA: 9755 nkeys = ttop; 9756 9757 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9758 key[nkeys++].dttk_size = 0; 9759 9760 key[nkeys++].dttk_size = 0; 9761 9762 if (op == DIF_OP_STTAA) { 9763 scope = DIFV_SCOPE_THREAD; 9764 } else { 9765 scope = DIFV_SCOPE_GLOBAL; 9766 } 9767 9768 break; 9769 9770 case DIF_OP_PUSHTR: 9771 if (ttop == DIF_DTR_NREGS) 9772 return; 9773 9774 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9775 /* 9776 * If the register for the size of the "pushtr" 9777 * is %r0 (or the value is 0) and the type is 9778 * a string, we'll use the system-wide default 9779 * string size. 9780 */ 9781 tupregs[ttop++].dttk_size = 9782 dtrace_strsize_default; 9783 } else { 9784 if (srd == 0) 9785 return; 9786 9787 if (sval > LONG_MAX) 9788 return; 9789 9790 tupregs[ttop++].dttk_size = sval; 9791 } 9792 9793 break; 9794 9795 case DIF_OP_PUSHTV: 9796 if (ttop == DIF_DTR_NREGS) 9797 return; 9798 9799 tupregs[ttop++].dttk_size = 0; 9800 break; 9801 9802 case DIF_OP_FLUSHTS: 9803 ttop = 0; 9804 break; 9805 9806 case DIF_OP_POPTS: 9807 if (ttop != 0) 9808 ttop--; 9809 break; 9810 } 9811 9812 sval = 0; 9813 srd = 0; 9814 9815 if (nkeys == 0) 9816 continue; 9817 9818 /* 9819 * We have a dynamic variable allocation; calculate its size. 9820 */ 9821 for (ksize = 0, i = 0; i < nkeys; i++) 9822 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9823 9824 size = sizeof (dtrace_dynvar_t); 9825 size += sizeof (dtrace_key_t) * (nkeys - 1); 9826 size += ksize; 9827 9828 /* 9829 * Now we need to determine the size of the stored data. 9830 */ 9831 id = DIF_INSTR_VAR(instr); 9832 9833 for (i = 0; i < dp->dtdo_varlen; i++) { 9834 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9835 9836 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9837 size += v->dtdv_type.dtdt_size; 9838 break; 9839 } 9840 } 9841 9842 if (i == dp->dtdo_varlen) 9843 return; 9844 9845 /* 9846 * We have the size. If this is larger than the chunk size 9847 * for our dynamic variable state, reset the chunk size. 9848 */ 9849 size = P2ROUNDUP(size, sizeof (uint64_t)); 9850 9851 /* 9852 * Before setting the chunk size, check that we're not going 9853 * to set it to a negative value... 9854 */ 9855 if (size > LONG_MAX) 9856 return; 9857 9858 /* 9859 * ...and make certain that we didn't badly overflow. 9860 */ 9861 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 9862 return; 9863 9864 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9865 vstate->dtvs_dynvars.dtds_chunksize = size; 9866 } 9867 } 9868 9869 static void 9870 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9871 { 9872 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9873 uint_t id; 9874 9875 ASSERT(MUTEX_HELD(&dtrace_lock)); 9876 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9877 9878 for (i = 0; i < dp->dtdo_varlen; i++) { 9879 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9880 dtrace_statvar_t *svar, ***svarp; 9881 size_t dsize = 0; 9882 uint8_t scope = v->dtdv_scope; 9883 int *np; 9884 9885 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9886 continue; 9887 9888 id -= DIF_VAR_OTHER_UBASE; 9889 9890 switch (scope) { 9891 case DIFV_SCOPE_THREAD: 9892 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9893 dtrace_difv_t *tlocals; 9894 9895 if ((ntlocals = (otlocals << 1)) == 0) 9896 ntlocals = 1; 9897 9898 osz = otlocals * sizeof (dtrace_difv_t); 9899 nsz = ntlocals * sizeof (dtrace_difv_t); 9900 9901 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9902 9903 if (osz != 0) { 9904 bcopy(vstate->dtvs_tlocals, 9905 tlocals, osz); 9906 kmem_free(vstate->dtvs_tlocals, osz); 9907 } 9908 9909 vstate->dtvs_tlocals = tlocals; 9910 vstate->dtvs_ntlocals = ntlocals; 9911 } 9912 9913 vstate->dtvs_tlocals[id] = *v; 9914 continue; 9915 9916 case DIFV_SCOPE_LOCAL: 9917 np = &vstate->dtvs_nlocals; 9918 svarp = &vstate->dtvs_locals; 9919 9920 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9921 dsize = NCPU * (v->dtdv_type.dtdt_size + 9922 sizeof (uint64_t)); 9923 else 9924 dsize = NCPU * sizeof (uint64_t); 9925 9926 break; 9927 9928 case DIFV_SCOPE_GLOBAL: 9929 np = &vstate->dtvs_nglobals; 9930 svarp = &vstate->dtvs_globals; 9931 9932 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9933 dsize = v->dtdv_type.dtdt_size + 9934 sizeof (uint64_t); 9935 9936 break; 9937 9938 default: 9939 ASSERT(0); 9940 } 9941 9942 while (id >= (oldsvars = *np)) { 9943 dtrace_statvar_t **statics; 9944 int newsvars, oldsize, newsize; 9945 9946 if ((newsvars = (oldsvars << 1)) == 0) 9947 newsvars = 1; 9948 9949 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9950 newsize = newsvars * sizeof (dtrace_statvar_t *); 9951 9952 statics = kmem_zalloc(newsize, KM_SLEEP); 9953 9954 if (oldsize != 0) { 9955 bcopy(*svarp, statics, oldsize); 9956 kmem_free(*svarp, oldsize); 9957 } 9958 9959 *svarp = statics; 9960 *np = newsvars; 9961 } 9962 9963 if ((svar = (*svarp)[id]) == NULL) { 9964 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9965 svar->dtsv_var = *v; 9966 9967 if ((svar->dtsv_size = dsize) != 0) { 9968 svar->dtsv_data = (uint64_t)(uintptr_t) 9969 kmem_zalloc(dsize, KM_SLEEP); 9970 } 9971 9972 (*svarp)[id] = svar; 9973 } 9974 9975 svar->dtsv_refcnt++; 9976 } 9977 9978 dtrace_difo_chunksize(dp, vstate); 9979 dtrace_difo_hold(dp); 9980 } 9981 9982 static dtrace_difo_t * 9983 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9984 { 9985 dtrace_difo_t *new; 9986 size_t sz; 9987 9988 ASSERT(dp->dtdo_buf != NULL); 9989 ASSERT(dp->dtdo_refcnt != 0); 9990 9991 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9992 9993 ASSERT(dp->dtdo_buf != NULL); 9994 sz = dp->dtdo_len * sizeof (dif_instr_t); 9995 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9996 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9997 new->dtdo_len = dp->dtdo_len; 9998 9999 if (dp->dtdo_strtab != NULL) { 10000 ASSERT(dp->dtdo_strlen != 0); 10001 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10002 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10003 new->dtdo_strlen = dp->dtdo_strlen; 10004 } 10005 10006 if (dp->dtdo_inttab != NULL) { 10007 ASSERT(dp->dtdo_intlen != 0); 10008 sz = dp->dtdo_intlen * sizeof (uint64_t); 10009 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10010 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10011 new->dtdo_intlen = dp->dtdo_intlen; 10012 } 10013 10014 if (dp->dtdo_vartab != NULL) { 10015 ASSERT(dp->dtdo_varlen != 0); 10016 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10017 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10018 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10019 new->dtdo_varlen = dp->dtdo_varlen; 10020 } 10021 10022 dtrace_difo_init(new, vstate); 10023 return (new); 10024 } 10025 10026 static void 10027 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10028 { 10029 int i; 10030 10031 ASSERT(dp->dtdo_refcnt == 0); 10032 10033 for (i = 0; i < dp->dtdo_varlen; i++) { 10034 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10035 dtrace_statvar_t *svar, **svarp; 10036 uint_t id; 10037 uint8_t scope = v->dtdv_scope; 10038 int *np; 10039 10040 switch (scope) { 10041 case DIFV_SCOPE_THREAD: 10042 continue; 10043 10044 case DIFV_SCOPE_LOCAL: 10045 np = &vstate->dtvs_nlocals; 10046 svarp = vstate->dtvs_locals; 10047 break; 10048 10049 case DIFV_SCOPE_GLOBAL: 10050 np = &vstate->dtvs_nglobals; 10051 svarp = vstate->dtvs_globals; 10052 break; 10053 10054 default: 10055 ASSERT(0); 10056 } 10057 10058 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10059 continue; 10060 10061 id -= DIF_VAR_OTHER_UBASE; 10062 ASSERT(id < *np); 10063 10064 svar = svarp[id]; 10065 ASSERT(svar != NULL); 10066 ASSERT(svar->dtsv_refcnt > 0); 10067 10068 if (--svar->dtsv_refcnt > 0) 10069 continue; 10070 10071 if (svar->dtsv_size != 0) { 10072 ASSERT(svar->dtsv_data != NULL); 10073 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10074 svar->dtsv_size); 10075 } 10076 10077 kmem_free(svar, sizeof (dtrace_statvar_t)); 10078 svarp[id] = NULL; 10079 } 10080 10081 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10082 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10083 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10084 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10085 10086 kmem_free(dp, sizeof (dtrace_difo_t)); 10087 } 10088 10089 static void 10090 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10091 { 10092 int i; 10093 10094 ASSERT(MUTEX_HELD(&dtrace_lock)); 10095 ASSERT(dp->dtdo_refcnt != 0); 10096 10097 for (i = 0; i < dp->dtdo_varlen; i++) { 10098 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10099 10100 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10101 continue; 10102 10103 ASSERT(dtrace_vtime_references > 0); 10104 if (--dtrace_vtime_references == 0) 10105 dtrace_vtime_disable(); 10106 } 10107 10108 if (--dp->dtdo_refcnt == 0) 10109 dtrace_difo_destroy(dp, vstate); 10110 } 10111 10112 /* 10113 * DTrace Format Functions 10114 */ 10115 static uint16_t 10116 dtrace_format_add(dtrace_state_t *state, char *str) 10117 { 10118 char *fmt, **new; 10119 uint16_t ndx, len = strlen(str) + 1; 10120 10121 fmt = kmem_zalloc(len, KM_SLEEP); 10122 bcopy(str, fmt, len); 10123 10124 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10125 if (state->dts_formats[ndx] == NULL) { 10126 state->dts_formats[ndx] = fmt; 10127 return (ndx + 1); 10128 } 10129 } 10130 10131 if (state->dts_nformats == USHRT_MAX) { 10132 /* 10133 * This is only likely if a denial-of-service attack is being 10134 * attempted. As such, it's okay to fail silently here. 10135 */ 10136 kmem_free(fmt, len); 10137 return (0); 10138 } 10139 10140 /* 10141 * For simplicity, we always resize the formats array to be exactly the 10142 * number of formats. 10143 */ 10144 ndx = state->dts_nformats++; 10145 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10146 10147 if (state->dts_formats != NULL) { 10148 ASSERT(ndx != 0); 10149 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10150 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10151 } 10152 10153 state->dts_formats = new; 10154 state->dts_formats[ndx] = fmt; 10155 10156 return (ndx + 1); 10157 } 10158 10159 static void 10160 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10161 { 10162 char *fmt; 10163 10164 ASSERT(state->dts_formats != NULL); 10165 ASSERT(format <= state->dts_nformats); 10166 ASSERT(state->dts_formats[format - 1] != NULL); 10167 10168 fmt = state->dts_formats[format - 1]; 10169 kmem_free(fmt, strlen(fmt) + 1); 10170 state->dts_formats[format - 1] = NULL; 10171 } 10172 10173 static void 10174 dtrace_format_destroy(dtrace_state_t *state) 10175 { 10176 int i; 10177 10178 if (state->dts_nformats == 0) { 10179 ASSERT(state->dts_formats == NULL); 10180 return; 10181 } 10182 10183 ASSERT(state->dts_formats != NULL); 10184 10185 for (i = 0; i < state->dts_nformats; i++) { 10186 char *fmt = state->dts_formats[i]; 10187 10188 if (fmt == NULL) 10189 continue; 10190 10191 kmem_free(fmt, strlen(fmt) + 1); 10192 } 10193 10194 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10195 state->dts_nformats = 0; 10196 state->dts_formats = NULL; 10197 } 10198 10199 /* 10200 * DTrace Predicate Functions 10201 */ 10202 static dtrace_predicate_t * 10203 dtrace_predicate_create(dtrace_difo_t *dp) 10204 { 10205 dtrace_predicate_t *pred; 10206 10207 ASSERT(MUTEX_HELD(&dtrace_lock)); 10208 ASSERT(dp->dtdo_refcnt != 0); 10209 10210 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10211 pred->dtp_difo = dp; 10212 pred->dtp_refcnt = 1; 10213 10214 if (!dtrace_difo_cacheable(dp)) 10215 return (pred); 10216 10217 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10218 /* 10219 * This is only theoretically possible -- we have had 2^32 10220 * cacheable predicates on this machine. We cannot allow any 10221 * more predicates to become cacheable: as unlikely as it is, 10222 * there may be a thread caching a (now stale) predicate cache 10223 * ID. (N.B.: the temptation is being successfully resisted to 10224 * have this cmn_err() "Holy shit -- we executed this code!") 10225 */ 10226 return (pred); 10227 } 10228 10229 pred->dtp_cacheid = dtrace_predcache_id++; 10230 10231 return (pred); 10232 } 10233 10234 static void 10235 dtrace_predicate_hold(dtrace_predicate_t *pred) 10236 { 10237 ASSERT(MUTEX_HELD(&dtrace_lock)); 10238 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10239 ASSERT(pred->dtp_refcnt > 0); 10240 10241 pred->dtp_refcnt++; 10242 } 10243 10244 static void 10245 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10246 { 10247 dtrace_difo_t *dp = pred->dtp_difo; 10248 10249 ASSERT(MUTEX_HELD(&dtrace_lock)); 10250 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10251 ASSERT(pred->dtp_refcnt > 0); 10252 10253 if (--pred->dtp_refcnt == 0) { 10254 dtrace_difo_release(pred->dtp_difo, vstate); 10255 kmem_free(pred, sizeof (dtrace_predicate_t)); 10256 } 10257 } 10258 10259 /* 10260 * DTrace Action Description Functions 10261 */ 10262 static dtrace_actdesc_t * 10263 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10264 uint64_t uarg, uint64_t arg) 10265 { 10266 dtrace_actdesc_t *act; 10267 10268 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10269 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10270 10271 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10272 act->dtad_kind = kind; 10273 act->dtad_ntuple = ntuple; 10274 act->dtad_uarg = uarg; 10275 act->dtad_arg = arg; 10276 act->dtad_refcnt = 1; 10277 10278 return (act); 10279 } 10280 10281 static void 10282 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10283 { 10284 ASSERT(act->dtad_refcnt >= 1); 10285 act->dtad_refcnt++; 10286 } 10287 10288 static void 10289 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10290 { 10291 dtrace_actkind_t kind = act->dtad_kind; 10292 dtrace_difo_t *dp; 10293 10294 ASSERT(act->dtad_refcnt >= 1); 10295 10296 if (--act->dtad_refcnt != 0) 10297 return; 10298 10299 if ((dp = act->dtad_difo) != NULL) 10300 dtrace_difo_release(dp, vstate); 10301 10302 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10303 char *str = (char *)(uintptr_t)act->dtad_arg; 10304 10305 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10306 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10307 10308 if (str != NULL) 10309 kmem_free(str, strlen(str) + 1); 10310 } 10311 10312 kmem_free(act, sizeof (dtrace_actdesc_t)); 10313 } 10314 10315 /* 10316 * DTrace ECB Functions 10317 */ 10318 static dtrace_ecb_t * 10319 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10320 { 10321 dtrace_ecb_t *ecb; 10322 dtrace_epid_t epid; 10323 10324 ASSERT(MUTEX_HELD(&dtrace_lock)); 10325 10326 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10327 ecb->dte_predicate = NULL; 10328 ecb->dte_probe = probe; 10329 10330 /* 10331 * The default size is the size of the default action: recording 10332 * the header. 10333 */ 10334 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10335 ecb->dte_alignment = sizeof (dtrace_epid_t); 10336 10337 epid = state->dts_epid++; 10338 10339 if (epid - 1 >= state->dts_necbs) { 10340 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10341 int necbs = state->dts_necbs << 1; 10342 10343 ASSERT(epid == state->dts_necbs + 1); 10344 10345 if (necbs == 0) { 10346 ASSERT(oecbs == NULL); 10347 necbs = 1; 10348 } 10349 10350 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10351 10352 if (oecbs != NULL) 10353 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10354 10355 dtrace_membar_producer(); 10356 state->dts_ecbs = ecbs; 10357 10358 if (oecbs != NULL) { 10359 /* 10360 * If this state is active, we must dtrace_sync() 10361 * before we can free the old dts_ecbs array: we're 10362 * coming in hot, and there may be active ring 10363 * buffer processing (which indexes into the dts_ecbs 10364 * array) on another CPU. 10365 */ 10366 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10367 dtrace_sync(); 10368 10369 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10370 } 10371 10372 dtrace_membar_producer(); 10373 state->dts_necbs = necbs; 10374 } 10375 10376 ecb->dte_state = state; 10377 10378 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10379 dtrace_membar_producer(); 10380 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10381 10382 return (ecb); 10383 } 10384 10385 static int 10386 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10387 { 10388 dtrace_probe_t *probe = ecb->dte_probe; 10389 10390 ASSERT(MUTEX_HELD(&cpu_lock)); 10391 ASSERT(MUTEX_HELD(&dtrace_lock)); 10392 ASSERT(ecb->dte_next == NULL); 10393 10394 if (probe == NULL) { 10395 /* 10396 * This is the NULL probe -- there's nothing to do. 10397 */ 10398 return (0); 10399 } 10400 10401 if (probe->dtpr_ecb == NULL) { 10402 dtrace_provider_t *prov = probe->dtpr_provider; 10403 10404 /* 10405 * We're the first ECB on this probe. 10406 */ 10407 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10408 10409 if (ecb->dte_predicate != NULL) 10410 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10411 10412 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10413 probe->dtpr_id, probe->dtpr_arg)); 10414 } else { 10415 /* 10416 * This probe is already active. Swing the last pointer to 10417 * point to the new ECB, and issue a dtrace_sync() to assure 10418 * that all CPUs have seen the change. 10419 */ 10420 ASSERT(probe->dtpr_ecb_last != NULL); 10421 probe->dtpr_ecb_last->dte_next = ecb; 10422 probe->dtpr_ecb_last = ecb; 10423 probe->dtpr_predcache = 0; 10424 10425 dtrace_sync(); 10426 return (0); 10427 } 10428 } 10429 10430 static void 10431 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10432 { 10433 dtrace_action_t *act; 10434 uint32_t curneeded = UINT32_MAX; 10435 uint32_t aggbase = UINT32_MAX; 10436 10437 /* 10438 * If we record anything, we always record the dtrace_rechdr_t. (And 10439 * we always record it first.) 10440 */ 10441 ecb->dte_size = sizeof (dtrace_rechdr_t); 10442 ecb->dte_alignment = sizeof (dtrace_epid_t); 10443 10444 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10445 dtrace_recdesc_t *rec = &act->dta_rec; 10446 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10447 10448 ecb->dte_alignment = MAX(ecb->dte_alignment, 10449 rec->dtrd_alignment); 10450 10451 if (DTRACEACT_ISAGG(act->dta_kind)) { 10452 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10453 10454 ASSERT(rec->dtrd_size != 0); 10455 ASSERT(agg->dtag_first != NULL); 10456 ASSERT(act->dta_prev->dta_intuple); 10457 ASSERT(aggbase != UINT32_MAX); 10458 ASSERT(curneeded != UINT32_MAX); 10459 10460 agg->dtag_base = aggbase; 10461 10462 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10463 rec->dtrd_offset = curneeded; 10464 curneeded += rec->dtrd_size; 10465 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10466 10467 aggbase = UINT32_MAX; 10468 curneeded = UINT32_MAX; 10469 } else if (act->dta_intuple) { 10470 if (curneeded == UINT32_MAX) { 10471 /* 10472 * This is the first record in a tuple. Align 10473 * curneeded to be at offset 4 in an 8-byte 10474 * aligned block. 10475 */ 10476 ASSERT(act->dta_prev == NULL || 10477 !act->dta_prev->dta_intuple); 10478 ASSERT3U(aggbase, ==, UINT32_MAX); 10479 curneeded = P2PHASEUP(ecb->dte_size, 10480 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10481 10482 aggbase = curneeded - sizeof (dtrace_aggid_t); 10483 ASSERT(IS_P2ALIGNED(aggbase, 10484 sizeof (uint64_t))); 10485 } 10486 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10487 rec->dtrd_offset = curneeded; 10488 curneeded += rec->dtrd_size; 10489 } else { 10490 /* tuples must be followed by an aggregation */ 10491 ASSERT(act->dta_prev == NULL || 10492 !act->dta_prev->dta_intuple); 10493 10494 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10495 rec->dtrd_alignment); 10496 rec->dtrd_offset = ecb->dte_size; 10497 ecb->dte_size += rec->dtrd_size; 10498 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10499 } 10500 } 10501 10502 if ((act = ecb->dte_action) != NULL && 10503 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10504 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10505 /* 10506 * If the size is still sizeof (dtrace_rechdr_t), then all 10507 * actions store no data; set the size to 0. 10508 */ 10509 ecb->dte_size = 0; 10510 } 10511 10512 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10513 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10514 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10515 ecb->dte_needed); 10516 } 10517 10518 static dtrace_action_t * 10519 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10520 { 10521 dtrace_aggregation_t *agg; 10522 size_t size = sizeof (uint64_t); 10523 int ntuple = desc->dtad_ntuple; 10524 dtrace_action_t *act; 10525 dtrace_recdesc_t *frec; 10526 dtrace_aggid_t aggid; 10527 dtrace_state_t *state = ecb->dte_state; 10528 10529 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10530 agg->dtag_ecb = ecb; 10531 10532 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10533 10534 switch (desc->dtad_kind) { 10535 case DTRACEAGG_MIN: 10536 agg->dtag_initial = INT64_MAX; 10537 agg->dtag_aggregate = dtrace_aggregate_min; 10538 break; 10539 10540 case DTRACEAGG_MAX: 10541 agg->dtag_initial = INT64_MIN; 10542 agg->dtag_aggregate = dtrace_aggregate_max; 10543 break; 10544 10545 case DTRACEAGG_COUNT: 10546 agg->dtag_aggregate = dtrace_aggregate_count; 10547 break; 10548 10549 case DTRACEAGG_QUANTIZE: 10550 agg->dtag_aggregate = dtrace_aggregate_quantize; 10551 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10552 sizeof (uint64_t); 10553 break; 10554 10555 case DTRACEAGG_LQUANTIZE: { 10556 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10557 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10558 10559 agg->dtag_initial = desc->dtad_arg; 10560 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10561 10562 if (step == 0 || levels == 0) 10563 goto err; 10564 10565 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10566 break; 10567 } 10568 10569 case DTRACEAGG_LLQUANTIZE: { 10570 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10571 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10572 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10573 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10574 int64_t v; 10575 10576 agg->dtag_initial = desc->dtad_arg; 10577 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10578 10579 if (factor < 2 || low >= high || nsteps < factor) 10580 goto err; 10581 10582 /* 10583 * Now check that the number of steps evenly divides a power 10584 * of the factor. (This assures both integer bucket size and 10585 * linearity within each magnitude.) 10586 */ 10587 for (v = factor; v < nsteps; v *= factor) 10588 continue; 10589 10590 if ((v % nsteps) || (nsteps % factor)) 10591 goto err; 10592 10593 size = (dtrace_aggregate_llquantize_bucket(factor, 10594 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10595 break; 10596 } 10597 10598 case DTRACEAGG_AVG: 10599 agg->dtag_aggregate = dtrace_aggregate_avg; 10600 size = sizeof (uint64_t) * 2; 10601 break; 10602 10603 case DTRACEAGG_STDDEV: 10604 agg->dtag_aggregate = dtrace_aggregate_stddev; 10605 size = sizeof (uint64_t) * 4; 10606 break; 10607 10608 case DTRACEAGG_SUM: 10609 agg->dtag_aggregate = dtrace_aggregate_sum; 10610 break; 10611 10612 default: 10613 goto err; 10614 } 10615 10616 agg->dtag_action.dta_rec.dtrd_size = size; 10617 10618 if (ntuple == 0) 10619 goto err; 10620 10621 /* 10622 * We must make sure that we have enough actions for the n-tuple. 10623 */ 10624 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10625 if (DTRACEACT_ISAGG(act->dta_kind)) 10626 break; 10627 10628 if (--ntuple == 0) { 10629 /* 10630 * This is the action with which our n-tuple begins. 10631 */ 10632 agg->dtag_first = act; 10633 goto success; 10634 } 10635 } 10636 10637 /* 10638 * This n-tuple is short by ntuple elements. Return failure. 10639 */ 10640 ASSERT(ntuple != 0); 10641 err: 10642 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10643 return (NULL); 10644 10645 success: 10646 /* 10647 * If the last action in the tuple has a size of zero, it's actually 10648 * an expression argument for the aggregating action. 10649 */ 10650 ASSERT(ecb->dte_action_last != NULL); 10651 act = ecb->dte_action_last; 10652 10653 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10654 ASSERT(act->dta_difo != NULL); 10655 10656 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10657 agg->dtag_hasarg = 1; 10658 } 10659 10660 /* 10661 * We need to allocate an id for this aggregation. 10662 */ 10663 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10664 VM_BESTFIT | VM_SLEEP); 10665 10666 if (aggid - 1 >= state->dts_naggregations) { 10667 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10668 dtrace_aggregation_t **aggs; 10669 int naggs = state->dts_naggregations << 1; 10670 int onaggs = state->dts_naggregations; 10671 10672 ASSERT(aggid == state->dts_naggregations + 1); 10673 10674 if (naggs == 0) { 10675 ASSERT(oaggs == NULL); 10676 naggs = 1; 10677 } 10678 10679 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10680 10681 if (oaggs != NULL) { 10682 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10683 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10684 } 10685 10686 state->dts_aggregations = aggs; 10687 state->dts_naggregations = naggs; 10688 } 10689 10690 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10691 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10692 10693 frec = &agg->dtag_first->dta_rec; 10694 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10695 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10696 10697 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10698 ASSERT(!act->dta_intuple); 10699 act->dta_intuple = 1; 10700 } 10701 10702 return (&agg->dtag_action); 10703 } 10704 10705 static void 10706 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10707 { 10708 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10709 dtrace_state_t *state = ecb->dte_state; 10710 dtrace_aggid_t aggid = agg->dtag_id; 10711 10712 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10713 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10714 10715 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10716 state->dts_aggregations[aggid - 1] = NULL; 10717 10718 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10719 } 10720 10721 static int 10722 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10723 { 10724 dtrace_action_t *action, *last; 10725 dtrace_difo_t *dp = desc->dtad_difo; 10726 uint32_t size = 0, align = sizeof (uint8_t), mask; 10727 uint16_t format = 0; 10728 dtrace_recdesc_t *rec; 10729 dtrace_state_t *state = ecb->dte_state; 10730 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10731 uint64_t arg = desc->dtad_arg; 10732 10733 ASSERT(MUTEX_HELD(&dtrace_lock)); 10734 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10735 10736 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10737 /* 10738 * If this is an aggregating action, there must be neither 10739 * a speculate nor a commit on the action chain. 10740 */ 10741 dtrace_action_t *act; 10742 10743 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10744 if (act->dta_kind == DTRACEACT_COMMIT) 10745 return (EINVAL); 10746 10747 if (act->dta_kind == DTRACEACT_SPECULATE) 10748 return (EINVAL); 10749 } 10750 10751 action = dtrace_ecb_aggregation_create(ecb, desc); 10752 10753 if (action == NULL) 10754 return (EINVAL); 10755 } else { 10756 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10757 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10758 dp != NULL && dp->dtdo_destructive)) { 10759 state->dts_destructive = 1; 10760 } 10761 10762 switch (desc->dtad_kind) { 10763 case DTRACEACT_PRINTF: 10764 case DTRACEACT_PRINTA: 10765 case DTRACEACT_SYSTEM: 10766 case DTRACEACT_FREOPEN: 10767 case DTRACEACT_DIFEXPR: 10768 /* 10769 * We know that our arg is a string -- turn it into a 10770 * format. 10771 */ 10772 if (arg == NULL) { 10773 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10774 desc->dtad_kind == DTRACEACT_DIFEXPR); 10775 format = 0; 10776 } else { 10777 ASSERT(arg != NULL); 10778 ASSERT(arg > KERNELBASE); 10779 format = dtrace_format_add(state, 10780 (char *)(uintptr_t)arg); 10781 } 10782 10783 /*FALLTHROUGH*/ 10784 case DTRACEACT_LIBACT: 10785 case DTRACEACT_TRACEMEM: 10786 case DTRACEACT_TRACEMEM_DYNSIZE: 10787 if (dp == NULL) 10788 return (EINVAL); 10789 10790 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10791 break; 10792 10793 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10794 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10795 return (EINVAL); 10796 10797 size = opt[DTRACEOPT_STRSIZE]; 10798 } 10799 10800 break; 10801 10802 case DTRACEACT_STACK: 10803 if ((nframes = arg) == 0) { 10804 nframes = opt[DTRACEOPT_STACKFRAMES]; 10805 ASSERT(nframes > 0); 10806 arg = nframes; 10807 } 10808 10809 size = nframes * sizeof (pc_t); 10810 break; 10811 10812 case DTRACEACT_JSTACK: 10813 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10814 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10815 10816 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10817 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10818 10819 arg = DTRACE_USTACK_ARG(nframes, strsize); 10820 10821 /*FALLTHROUGH*/ 10822 case DTRACEACT_USTACK: 10823 if (desc->dtad_kind != DTRACEACT_JSTACK && 10824 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10825 strsize = DTRACE_USTACK_STRSIZE(arg); 10826 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10827 ASSERT(nframes > 0); 10828 arg = DTRACE_USTACK_ARG(nframes, strsize); 10829 } 10830 10831 /* 10832 * Save a slot for the pid. 10833 */ 10834 size = (nframes + 1) * sizeof (uint64_t); 10835 size += DTRACE_USTACK_STRSIZE(arg); 10836 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10837 10838 break; 10839 10840 case DTRACEACT_SYM: 10841 case DTRACEACT_MOD: 10842 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10843 sizeof (uint64_t)) || 10844 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10845 return (EINVAL); 10846 break; 10847 10848 case DTRACEACT_USYM: 10849 case DTRACEACT_UMOD: 10850 case DTRACEACT_UADDR: 10851 if (dp == NULL || 10852 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10853 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10854 return (EINVAL); 10855 10856 /* 10857 * We have a slot for the pid, plus a slot for the 10858 * argument. To keep things simple (aligned with 10859 * bitness-neutral sizing), we store each as a 64-bit 10860 * quantity. 10861 */ 10862 size = 2 * sizeof (uint64_t); 10863 break; 10864 10865 case DTRACEACT_STOP: 10866 case DTRACEACT_BREAKPOINT: 10867 case DTRACEACT_PANIC: 10868 break; 10869 10870 case DTRACEACT_CHILL: 10871 case DTRACEACT_DISCARD: 10872 case DTRACEACT_RAISE: 10873 if (dp == NULL) 10874 return (EINVAL); 10875 break; 10876 10877 case DTRACEACT_EXIT: 10878 if (dp == NULL || 10879 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10880 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10881 return (EINVAL); 10882 break; 10883 10884 case DTRACEACT_SPECULATE: 10885 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10886 return (EINVAL); 10887 10888 if (dp == NULL) 10889 return (EINVAL); 10890 10891 state->dts_speculates = 1; 10892 break; 10893 10894 case DTRACEACT_COMMIT: { 10895 dtrace_action_t *act = ecb->dte_action; 10896 10897 for (; act != NULL; act = act->dta_next) { 10898 if (act->dta_kind == DTRACEACT_COMMIT) 10899 return (EINVAL); 10900 } 10901 10902 if (dp == NULL) 10903 return (EINVAL); 10904 break; 10905 } 10906 10907 default: 10908 return (EINVAL); 10909 } 10910 10911 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10912 /* 10913 * If this is a data-storing action or a speculate, 10914 * we must be sure that there isn't a commit on the 10915 * action chain. 10916 */ 10917 dtrace_action_t *act = ecb->dte_action; 10918 10919 for (; act != NULL; act = act->dta_next) { 10920 if (act->dta_kind == DTRACEACT_COMMIT) 10921 return (EINVAL); 10922 } 10923 } 10924 10925 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10926 action->dta_rec.dtrd_size = size; 10927 } 10928 10929 action->dta_refcnt = 1; 10930 rec = &action->dta_rec; 10931 size = rec->dtrd_size; 10932 10933 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10934 if (!(size & mask)) { 10935 align = mask + 1; 10936 break; 10937 } 10938 } 10939 10940 action->dta_kind = desc->dtad_kind; 10941 10942 if ((action->dta_difo = dp) != NULL) 10943 dtrace_difo_hold(dp); 10944 10945 rec->dtrd_action = action->dta_kind; 10946 rec->dtrd_arg = arg; 10947 rec->dtrd_uarg = desc->dtad_uarg; 10948 rec->dtrd_alignment = (uint16_t)align; 10949 rec->dtrd_format = format; 10950 10951 if ((last = ecb->dte_action_last) != NULL) { 10952 ASSERT(ecb->dte_action != NULL); 10953 action->dta_prev = last; 10954 last->dta_next = action; 10955 } else { 10956 ASSERT(ecb->dte_action == NULL); 10957 ecb->dte_action = action; 10958 } 10959 10960 ecb->dte_action_last = action; 10961 10962 return (0); 10963 } 10964 10965 static void 10966 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10967 { 10968 dtrace_action_t *act = ecb->dte_action, *next; 10969 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10970 dtrace_difo_t *dp; 10971 uint16_t format; 10972 10973 if (act != NULL && act->dta_refcnt > 1) { 10974 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10975 act->dta_refcnt--; 10976 } else { 10977 for (; act != NULL; act = next) { 10978 next = act->dta_next; 10979 ASSERT(next != NULL || act == ecb->dte_action_last); 10980 ASSERT(act->dta_refcnt == 1); 10981 10982 if ((format = act->dta_rec.dtrd_format) != 0) 10983 dtrace_format_remove(ecb->dte_state, format); 10984 10985 if ((dp = act->dta_difo) != NULL) 10986 dtrace_difo_release(dp, vstate); 10987 10988 if (DTRACEACT_ISAGG(act->dta_kind)) { 10989 dtrace_ecb_aggregation_destroy(ecb, act); 10990 } else { 10991 kmem_free(act, sizeof (dtrace_action_t)); 10992 } 10993 } 10994 } 10995 10996 ecb->dte_action = NULL; 10997 ecb->dte_action_last = NULL; 10998 ecb->dte_size = 0; 10999 } 11000 11001 static void 11002 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11003 { 11004 /* 11005 * We disable the ECB by removing it from its probe. 11006 */ 11007 dtrace_ecb_t *pecb, *prev = NULL; 11008 dtrace_probe_t *probe = ecb->dte_probe; 11009 11010 ASSERT(MUTEX_HELD(&dtrace_lock)); 11011 11012 if (probe == NULL) { 11013 /* 11014 * This is the NULL probe; there is nothing to disable. 11015 */ 11016 return; 11017 } 11018 11019 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11020 if (pecb == ecb) 11021 break; 11022 prev = pecb; 11023 } 11024 11025 ASSERT(pecb != NULL); 11026 11027 if (prev == NULL) { 11028 probe->dtpr_ecb = ecb->dte_next; 11029 } else { 11030 prev->dte_next = ecb->dte_next; 11031 } 11032 11033 if (ecb == probe->dtpr_ecb_last) { 11034 ASSERT(ecb->dte_next == NULL); 11035 probe->dtpr_ecb_last = prev; 11036 } 11037 11038 /* 11039 * The ECB has been disconnected from the probe; now sync to assure 11040 * that all CPUs have seen the change before returning. 11041 */ 11042 dtrace_sync(); 11043 11044 if (probe->dtpr_ecb == NULL) { 11045 /* 11046 * That was the last ECB on the probe; clear the predicate 11047 * cache ID for the probe, disable it and sync one more time 11048 * to assure that we'll never hit it again. 11049 */ 11050 dtrace_provider_t *prov = probe->dtpr_provider; 11051 11052 ASSERT(ecb->dte_next == NULL); 11053 ASSERT(probe->dtpr_ecb_last == NULL); 11054 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11055 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11056 probe->dtpr_id, probe->dtpr_arg); 11057 dtrace_sync(); 11058 } else { 11059 /* 11060 * There is at least one ECB remaining on the probe. If there 11061 * is _exactly_ one, set the probe's predicate cache ID to be 11062 * the predicate cache ID of the remaining ECB. 11063 */ 11064 ASSERT(probe->dtpr_ecb_last != NULL); 11065 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11066 11067 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11068 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11069 11070 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11071 11072 if (p != NULL) 11073 probe->dtpr_predcache = p->dtp_cacheid; 11074 } 11075 11076 ecb->dte_next = NULL; 11077 } 11078 } 11079 11080 static void 11081 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11082 { 11083 dtrace_state_t *state = ecb->dte_state; 11084 dtrace_vstate_t *vstate = &state->dts_vstate; 11085 dtrace_predicate_t *pred; 11086 dtrace_epid_t epid = ecb->dte_epid; 11087 11088 ASSERT(MUTEX_HELD(&dtrace_lock)); 11089 ASSERT(ecb->dte_next == NULL); 11090 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11091 11092 if ((pred = ecb->dte_predicate) != NULL) 11093 dtrace_predicate_release(pred, vstate); 11094 11095 dtrace_ecb_action_remove(ecb); 11096 11097 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11098 state->dts_ecbs[epid - 1] = NULL; 11099 11100 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11101 } 11102 11103 static dtrace_ecb_t * 11104 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11105 dtrace_enabling_t *enab) 11106 { 11107 dtrace_ecb_t *ecb; 11108 dtrace_predicate_t *pred; 11109 dtrace_actdesc_t *act; 11110 dtrace_provider_t *prov; 11111 dtrace_ecbdesc_t *desc = enab->dten_current; 11112 11113 ASSERT(MUTEX_HELD(&dtrace_lock)); 11114 ASSERT(state != NULL); 11115 11116 ecb = dtrace_ecb_add(state, probe); 11117 ecb->dte_uarg = desc->dted_uarg; 11118 11119 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11120 dtrace_predicate_hold(pred); 11121 ecb->dte_predicate = pred; 11122 } 11123 11124 if (probe != NULL) { 11125 /* 11126 * If the provider shows more leg than the consumer is old 11127 * enough to see, we need to enable the appropriate implicit 11128 * predicate bits to prevent the ecb from activating at 11129 * revealing times. 11130 * 11131 * Providers specifying DTRACE_PRIV_USER at register time 11132 * are stating that they need the /proc-style privilege 11133 * model to be enforced, and this is what DTRACE_COND_OWNER 11134 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11135 */ 11136 prov = probe->dtpr_provider; 11137 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11138 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11139 ecb->dte_cond |= DTRACE_COND_OWNER; 11140 11141 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11142 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11143 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11144 11145 /* 11146 * If the provider shows us kernel innards and the user 11147 * is lacking sufficient privilege, enable the 11148 * DTRACE_COND_USERMODE implicit predicate. 11149 */ 11150 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11151 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11152 ecb->dte_cond |= DTRACE_COND_USERMODE; 11153 } 11154 11155 if (dtrace_ecb_create_cache != NULL) { 11156 /* 11157 * If we have a cached ecb, we'll use its action list instead 11158 * of creating our own (saving both time and space). 11159 */ 11160 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11161 dtrace_action_t *act = cached->dte_action; 11162 11163 if (act != NULL) { 11164 ASSERT(act->dta_refcnt > 0); 11165 act->dta_refcnt++; 11166 ecb->dte_action = act; 11167 ecb->dte_action_last = cached->dte_action_last; 11168 ecb->dte_needed = cached->dte_needed; 11169 ecb->dte_size = cached->dte_size; 11170 ecb->dte_alignment = cached->dte_alignment; 11171 } 11172 11173 return (ecb); 11174 } 11175 11176 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11177 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11178 dtrace_ecb_destroy(ecb); 11179 return (NULL); 11180 } 11181 } 11182 11183 dtrace_ecb_resize(ecb); 11184 11185 return (dtrace_ecb_create_cache = ecb); 11186 } 11187 11188 static int 11189 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11190 { 11191 dtrace_ecb_t *ecb; 11192 dtrace_enabling_t *enab = arg; 11193 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11194 11195 ASSERT(state != NULL); 11196 11197 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11198 /* 11199 * This probe was created in a generation for which this 11200 * enabling has previously created ECBs; we don't want to 11201 * enable it again, so just kick out. 11202 */ 11203 return (DTRACE_MATCH_NEXT); 11204 } 11205 11206 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11207 return (DTRACE_MATCH_DONE); 11208 11209 if (dtrace_ecb_enable(ecb) < 0) 11210 return (DTRACE_MATCH_FAIL); 11211 11212 return (DTRACE_MATCH_NEXT); 11213 } 11214 11215 static dtrace_ecb_t * 11216 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11217 { 11218 dtrace_ecb_t *ecb; 11219 11220 ASSERT(MUTEX_HELD(&dtrace_lock)); 11221 11222 if (id == 0 || id > state->dts_necbs) 11223 return (NULL); 11224 11225 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11226 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11227 11228 return (state->dts_ecbs[id - 1]); 11229 } 11230 11231 static dtrace_aggregation_t * 11232 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11233 { 11234 dtrace_aggregation_t *agg; 11235 11236 ASSERT(MUTEX_HELD(&dtrace_lock)); 11237 11238 if (id == 0 || id > state->dts_naggregations) 11239 return (NULL); 11240 11241 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11242 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11243 agg->dtag_id == id); 11244 11245 return (state->dts_aggregations[id - 1]); 11246 } 11247 11248 /* 11249 * DTrace Buffer Functions 11250 * 11251 * The following functions manipulate DTrace buffers. Most of these functions 11252 * are called in the context of establishing or processing consumer state; 11253 * exceptions are explicitly noted. 11254 */ 11255 11256 /* 11257 * Note: called from cross call context. This function switches the two 11258 * buffers on a given CPU. The atomicity of this operation is assured by 11259 * disabling interrupts while the actual switch takes place; the disabling of 11260 * interrupts serializes the execution with any execution of dtrace_probe() on 11261 * the same CPU. 11262 */ 11263 static void 11264 dtrace_buffer_switch(dtrace_buffer_t *buf) 11265 { 11266 caddr_t tomax = buf->dtb_tomax; 11267 caddr_t xamot = buf->dtb_xamot; 11268 dtrace_icookie_t cookie; 11269 hrtime_t now; 11270 11271 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11272 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11273 11274 cookie = dtrace_interrupt_disable(); 11275 now = dtrace_gethrtime(); 11276 buf->dtb_tomax = xamot; 11277 buf->dtb_xamot = tomax; 11278 buf->dtb_xamot_drops = buf->dtb_drops; 11279 buf->dtb_xamot_offset = buf->dtb_offset; 11280 buf->dtb_xamot_errors = buf->dtb_errors; 11281 buf->dtb_xamot_flags = buf->dtb_flags; 11282 buf->dtb_offset = 0; 11283 buf->dtb_drops = 0; 11284 buf->dtb_errors = 0; 11285 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11286 buf->dtb_interval = now - buf->dtb_switched; 11287 buf->dtb_switched = now; 11288 dtrace_interrupt_enable(cookie); 11289 } 11290 11291 /* 11292 * Note: called from cross call context. This function activates a buffer 11293 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11294 * is guaranteed by the disabling of interrupts. 11295 */ 11296 static void 11297 dtrace_buffer_activate(dtrace_state_t *state) 11298 { 11299 dtrace_buffer_t *buf; 11300 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11301 11302 buf = &state->dts_buffer[CPU->cpu_id]; 11303 11304 if (buf->dtb_tomax != NULL) { 11305 /* 11306 * We might like to assert that the buffer is marked inactive, 11307 * but this isn't necessarily true: the buffer for the CPU 11308 * that processes the BEGIN probe has its buffer activated 11309 * manually. In this case, we take the (harmless) action 11310 * re-clearing the bit INACTIVE bit. 11311 */ 11312 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11313 } 11314 11315 dtrace_interrupt_enable(cookie); 11316 } 11317 11318 static int 11319 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11320 processorid_t cpu, int *factor) 11321 { 11322 cpu_t *cp; 11323 dtrace_buffer_t *buf; 11324 int allocated = 0, desired = 0; 11325 11326 ASSERT(MUTEX_HELD(&cpu_lock)); 11327 ASSERT(MUTEX_HELD(&dtrace_lock)); 11328 11329 *factor = 1; 11330 11331 if (size > dtrace_nonroot_maxsize && 11332 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11333 return (EFBIG); 11334 11335 cp = cpu_list; 11336 11337 do { 11338 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11339 continue; 11340 11341 buf = &bufs[cp->cpu_id]; 11342 11343 /* 11344 * If there is already a buffer allocated for this CPU, it 11345 * is only possible that this is a DR event. In this case, 11346 * the buffer size must match our specified size. 11347 */ 11348 if (buf->dtb_tomax != NULL) { 11349 ASSERT(buf->dtb_size == size); 11350 continue; 11351 } 11352 11353 ASSERT(buf->dtb_xamot == NULL); 11354 11355 if ((buf->dtb_tomax = kmem_zalloc(size, 11356 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11357 goto err; 11358 11359 buf->dtb_size = size; 11360 buf->dtb_flags = flags; 11361 buf->dtb_offset = 0; 11362 buf->dtb_drops = 0; 11363 11364 if (flags & DTRACEBUF_NOSWITCH) 11365 continue; 11366 11367 if ((buf->dtb_xamot = kmem_zalloc(size, 11368 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11369 goto err; 11370 } while ((cp = cp->cpu_next) != cpu_list); 11371 11372 return (0); 11373 11374 err: 11375 cp = cpu_list; 11376 11377 do { 11378 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11379 continue; 11380 11381 buf = &bufs[cp->cpu_id]; 11382 desired += 2; 11383 11384 if (buf->dtb_xamot != NULL) { 11385 ASSERT(buf->dtb_tomax != NULL); 11386 ASSERT(buf->dtb_size == size); 11387 kmem_free(buf->dtb_xamot, size); 11388 allocated++; 11389 } 11390 11391 if (buf->dtb_tomax != NULL) { 11392 ASSERT(buf->dtb_size == size); 11393 kmem_free(buf->dtb_tomax, size); 11394 allocated++; 11395 } 11396 11397 buf->dtb_tomax = NULL; 11398 buf->dtb_xamot = NULL; 11399 buf->dtb_size = 0; 11400 } while ((cp = cp->cpu_next) != cpu_list); 11401 11402 *factor = desired / (allocated > 0 ? allocated : 1); 11403 11404 return (ENOMEM); 11405 } 11406 11407 /* 11408 * Note: called from probe context. This function just increments the drop 11409 * count on a buffer. It has been made a function to allow for the 11410 * possibility of understanding the source of mysterious drop counts. (A 11411 * problem for which one may be particularly disappointed that DTrace cannot 11412 * be used to understand DTrace.) 11413 */ 11414 static void 11415 dtrace_buffer_drop(dtrace_buffer_t *buf) 11416 { 11417 buf->dtb_drops++; 11418 } 11419 11420 /* 11421 * Note: called from probe context. This function is called to reserve space 11422 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11423 * mstate. Returns the new offset in the buffer, or a negative value if an 11424 * error has occurred. 11425 */ 11426 static intptr_t 11427 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11428 dtrace_state_t *state, dtrace_mstate_t *mstate) 11429 { 11430 intptr_t offs = buf->dtb_offset, soffs; 11431 intptr_t woffs; 11432 caddr_t tomax; 11433 size_t total; 11434 11435 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11436 return (-1); 11437 11438 if ((tomax = buf->dtb_tomax) == NULL) { 11439 dtrace_buffer_drop(buf); 11440 return (-1); 11441 } 11442 11443 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11444 while (offs & (align - 1)) { 11445 /* 11446 * Assert that our alignment is off by a number which 11447 * is itself sizeof (uint32_t) aligned. 11448 */ 11449 ASSERT(!((align - (offs & (align - 1))) & 11450 (sizeof (uint32_t) - 1))); 11451 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11452 offs += sizeof (uint32_t); 11453 } 11454 11455 if ((soffs = offs + needed) > buf->dtb_size) { 11456 dtrace_buffer_drop(buf); 11457 return (-1); 11458 } 11459 11460 if (mstate == NULL) 11461 return (offs); 11462 11463 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11464 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11465 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11466 11467 return (offs); 11468 } 11469 11470 if (buf->dtb_flags & DTRACEBUF_FILL) { 11471 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11472 (buf->dtb_flags & DTRACEBUF_FULL)) 11473 return (-1); 11474 goto out; 11475 } 11476 11477 total = needed + (offs & (align - 1)); 11478 11479 /* 11480 * For a ring buffer, life is quite a bit more complicated. Before 11481 * we can store any padding, we need to adjust our wrapping offset. 11482 * (If we've never before wrapped or we're not about to, no adjustment 11483 * is required.) 11484 */ 11485 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11486 offs + total > buf->dtb_size) { 11487 woffs = buf->dtb_xamot_offset; 11488 11489 if (offs + total > buf->dtb_size) { 11490 /* 11491 * We can't fit in the end of the buffer. First, a 11492 * sanity check that we can fit in the buffer at all. 11493 */ 11494 if (total > buf->dtb_size) { 11495 dtrace_buffer_drop(buf); 11496 return (-1); 11497 } 11498 11499 /* 11500 * We're going to be storing at the top of the buffer, 11501 * so now we need to deal with the wrapped offset. We 11502 * only reset our wrapped offset to 0 if it is 11503 * currently greater than the current offset. If it 11504 * is less than the current offset, it is because a 11505 * previous allocation induced a wrap -- but the 11506 * allocation didn't subsequently take the space due 11507 * to an error or false predicate evaluation. In this 11508 * case, we'll just leave the wrapped offset alone: if 11509 * the wrapped offset hasn't been advanced far enough 11510 * for this allocation, it will be adjusted in the 11511 * lower loop. 11512 */ 11513 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11514 if (woffs >= offs) 11515 woffs = 0; 11516 } else { 11517 woffs = 0; 11518 } 11519 11520 /* 11521 * Now we know that we're going to be storing to the 11522 * top of the buffer and that there is room for us 11523 * there. We need to clear the buffer from the current 11524 * offset to the end (there may be old gunk there). 11525 */ 11526 while (offs < buf->dtb_size) 11527 tomax[offs++] = 0; 11528 11529 /* 11530 * We need to set our offset to zero. And because we 11531 * are wrapping, we need to set the bit indicating as 11532 * much. We can also adjust our needed space back 11533 * down to the space required by the ECB -- we know 11534 * that the top of the buffer is aligned. 11535 */ 11536 offs = 0; 11537 total = needed; 11538 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11539 } else { 11540 /* 11541 * There is room for us in the buffer, so we simply 11542 * need to check the wrapped offset. 11543 */ 11544 if (woffs < offs) { 11545 /* 11546 * The wrapped offset is less than the offset. 11547 * This can happen if we allocated buffer space 11548 * that induced a wrap, but then we didn't 11549 * subsequently take the space due to an error 11550 * or false predicate evaluation. This is 11551 * okay; we know that _this_ allocation isn't 11552 * going to induce a wrap. We still can't 11553 * reset the wrapped offset to be zero, 11554 * however: the space may have been trashed in 11555 * the previous failed probe attempt. But at 11556 * least the wrapped offset doesn't need to 11557 * be adjusted at all... 11558 */ 11559 goto out; 11560 } 11561 } 11562 11563 while (offs + total > woffs) { 11564 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11565 size_t size; 11566 11567 if (epid == DTRACE_EPIDNONE) { 11568 size = sizeof (uint32_t); 11569 } else { 11570 ASSERT3U(epid, <=, state->dts_necbs); 11571 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11572 11573 size = state->dts_ecbs[epid - 1]->dte_size; 11574 } 11575 11576 ASSERT(woffs + size <= buf->dtb_size); 11577 ASSERT(size != 0); 11578 11579 if (woffs + size == buf->dtb_size) { 11580 /* 11581 * We've reached the end of the buffer; we want 11582 * to set the wrapped offset to 0 and break 11583 * out. However, if the offs is 0, then we're 11584 * in a strange edge-condition: the amount of 11585 * space that we want to reserve plus the size 11586 * of the record that we're overwriting is 11587 * greater than the size of the buffer. This 11588 * is problematic because if we reserve the 11589 * space but subsequently don't consume it (due 11590 * to a failed predicate or error) the wrapped 11591 * offset will be 0 -- yet the EPID at offset 0 11592 * will not be committed. This situation is 11593 * relatively easy to deal with: if we're in 11594 * this case, the buffer is indistinguishable 11595 * from one that hasn't wrapped; we need only 11596 * finish the job by clearing the wrapped bit, 11597 * explicitly setting the offset to be 0, and 11598 * zero'ing out the old data in the buffer. 11599 */ 11600 if (offs == 0) { 11601 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11602 buf->dtb_offset = 0; 11603 woffs = total; 11604 11605 while (woffs < buf->dtb_size) 11606 tomax[woffs++] = 0; 11607 } 11608 11609 woffs = 0; 11610 break; 11611 } 11612 11613 woffs += size; 11614 } 11615 11616 /* 11617 * We have a wrapped offset. It may be that the wrapped offset 11618 * has become zero -- that's okay. 11619 */ 11620 buf->dtb_xamot_offset = woffs; 11621 } 11622 11623 out: 11624 /* 11625 * Now we can plow the buffer with any necessary padding. 11626 */ 11627 while (offs & (align - 1)) { 11628 /* 11629 * Assert that our alignment is off by a number which 11630 * is itself sizeof (uint32_t) aligned. 11631 */ 11632 ASSERT(!((align - (offs & (align - 1))) & 11633 (sizeof (uint32_t) - 1))); 11634 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11635 offs += sizeof (uint32_t); 11636 } 11637 11638 if (buf->dtb_flags & DTRACEBUF_FILL) { 11639 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11640 buf->dtb_flags |= DTRACEBUF_FULL; 11641 return (-1); 11642 } 11643 } 11644 11645 if (mstate == NULL) 11646 return (offs); 11647 11648 /* 11649 * For ring buffers and fill buffers, the scratch space is always 11650 * the inactive buffer. 11651 */ 11652 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11653 mstate->dtms_scratch_size = buf->dtb_size; 11654 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11655 11656 return (offs); 11657 } 11658 11659 static void 11660 dtrace_buffer_polish(dtrace_buffer_t *buf) 11661 { 11662 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11663 ASSERT(MUTEX_HELD(&dtrace_lock)); 11664 11665 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11666 return; 11667 11668 /* 11669 * We need to polish the ring buffer. There are three cases: 11670 * 11671 * - The first (and presumably most common) is that there is no gap 11672 * between the buffer offset and the wrapped offset. In this case, 11673 * there is nothing in the buffer that isn't valid data; we can 11674 * mark the buffer as polished and return. 11675 * 11676 * - The second (less common than the first but still more common 11677 * than the third) is that there is a gap between the buffer offset 11678 * and the wrapped offset, and the wrapped offset is larger than the 11679 * buffer offset. This can happen because of an alignment issue, or 11680 * can happen because of a call to dtrace_buffer_reserve() that 11681 * didn't subsequently consume the buffer space. In this case, 11682 * we need to zero the data from the buffer offset to the wrapped 11683 * offset. 11684 * 11685 * - The third (and least common) is that there is a gap between the 11686 * buffer offset and the wrapped offset, but the wrapped offset is 11687 * _less_ than the buffer offset. This can only happen because a 11688 * call to dtrace_buffer_reserve() induced a wrap, but the space 11689 * was not subsequently consumed. In this case, we need to zero the 11690 * space from the offset to the end of the buffer _and_ from the 11691 * top of the buffer to the wrapped offset. 11692 */ 11693 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11694 bzero(buf->dtb_tomax + buf->dtb_offset, 11695 buf->dtb_xamot_offset - buf->dtb_offset); 11696 } 11697 11698 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11699 bzero(buf->dtb_tomax + buf->dtb_offset, 11700 buf->dtb_size - buf->dtb_offset); 11701 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11702 } 11703 } 11704 11705 /* 11706 * This routine determines if data generated at the specified time has likely 11707 * been entirely consumed at user-level. This routine is called to determine 11708 * if an ECB on a defunct probe (but for an active enabling) can be safely 11709 * disabled and destroyed. 11710 */ 11711 static int 11712 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11713 { 11714 int i; 11715 11716 for (i = 0; i < NCPU; i++) { 11717 dtrace_buffer_t *buf = &bufs[i]; 11718 11719 if (buf->dtb_size == 0) 11720 continue; 11721 11722 if (buf->dtb_flags & DTRACEBUF_RING) 11723 return (0); 11724 11725 if (!buf->dtb_switched && buf->dtb_offset != 0) 11726 return (0); 11727 11728 if (buf->dtb_switched - buf->dtb_interval < when) 11729 return (0); 11730 } 11731 11732 return (1); 11733 } 11734 11735 static void 11736 dtrace_buffer_free(dtrace_buffer_t *bufs) 11737 { 11738 int i; 11739 11740 for (i = 0; i < NCPU; i++) { 11741 dtrace_buffer_t *buf = &bufs[i]; 11742 11743 if (buf->dtb_tomax == NULL) { 11744 ASSERT(buf->dtb_xamot == NULL); 11745 ASSERT(buf->dtb_size == 0); 11746 continue; 11747 } 11748 11749 if (buf->dtb_xamot != NULL) { 11750 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11751 kmem_free(buf->dtb_xamot, buf->dtb_size); 11752 } 11753 11754 kmem_free(buf->dtb_tomax, buf->dtb_size); 11755 buf->dtb_size = 0; 11756 buf->dtb_tomax = NULL; 11757 buf->dtb_xamot = NULL; 11758 } 11759 } 11760 11761 /* 11762 * DTrace Enabling Functions 11763 */ 11764 static dtrace_enabling_t * 11765 dtrace_enabling_create(dtrace_vstate_t *vstate) 11766 { 11767 dtrace_enabling_t *enab; 11768 11769 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11770 enab->dten_vstate = vstate; 11771 11772 return (enab); 11773 } 11774 11775 static void 11776 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11777 { 11778 dtrace_ecbdesc_t **ndesc; 11779 size_t osize, nsize; 11780 11781 /* 11782 * We can't add to enablings after we've enabled them, or after we've 11783 * retained them. 11784 */ 11785 ASSERT(enab->dten_probegen == 0); 11786 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11787 11788 if (enab->dten_ndesc < enab->dten_maxdesc) { 11789 enab->dten_desc[enab->dten_ndesc++] = ecb; 11790 return; 11791 } 11792 11793 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11794 11795 if (enab->dten_maxdesc == 0) { 11796 enab->dten_maxdesc = 1; 11797 } else { 11798 enab->dten_maxdesc <<= 1; 11799 } 11800 11801 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11802 11803 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11804 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11805 bcopy(enab->dten_desc, ndesc, osize); 11806 kmem_free(enab->dten_desc, osize); 11807 11808 enab->dten_desc = ndesc; 11809 enab->dten_desc[enab->dten_ndesc++] = ecb; 11810 } 11811 11812 static void 11813 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11814 dtrace_probedesc_t *pd) 11815 { 11816 dtrace_ecbdesc_t *new; 11817 dtrace_predicate_t *pred; 11818 dtrace_actdesc_t *act; 11819 11820 /* 11821 * We're going to create a new ECB description that matches the 11822 * specified ECB in every way, but has the specified probe description. 11823 */ 11824 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11825 11826 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11827 dtrace_predicate_hold(pred); 11828 11829 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11830 dtrace_actdesc_hold(act); 11831 11832 new->dted_action = ecb->dted_action; 11833 new->dted_pred = ecb->dted_pred; 11834 new->dted_probe = *pd; 11835 new->dted_uarg = ecb->dted_uarg; 11836 11837 dtrace_enabling_add(enab, new); 11838 } 11839 11840 static void 11841 dtrace_enabling_dump(dtrace_enabling_t *enab) 11842 { 11843 int i; 11844 11845 for (i = 0; i < enab->dten_ndesc; i++) { 11846 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11847 11848 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11849 desc->dtpd_provider, desc->dtpd_mod, 11850 desc->dtpd_func, desc->dtpd_name); 11851 } 11852 } 11853 11854 static void 11855 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11856 { 11857 int i; 11858 dtrace_ecbdesc_t *ep; 11859 dtrace_vstate_t *vstate = enab->dten_vstate; 11860 11861 ASSERT(MUTEX_HELD(&dtrace_lock)); 11862 11863 for (i = 0; i < enab->dten_ndesc; i++) { 11864 dtrace_actdesc_t *act, *next; 11865 dtrace_predicate_t *pred; 11866 11867 ep = enab->dten_desc[i]; 11868 11869 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11870 dtrace_predicate_release(pred, vstate); 11871 11872 for (act = ep->dted_action; act != NULL; act = next) { 11873 next = act->dtad_next; 11874 dtrace_actdesc_release(act, vstate); 11875 } 11876 11877 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11878 } 11879 11880 kmem_free(enab->dten_desc, 11881 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11882 11883 /* 11884 * If this was a retained enabling, decrement the dts_nretained count 11885 * and take it off of the dtrace_retained list. 11886 */ 11887 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11888 dtrace_retained == enab) { 11889 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11890 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11891 enab->dten_vstate->dtvs_state->dts_nretained--; 11892 dtrace_retained_gen++; 11893 } 11894 11895 if (enab->dten_prev == NULL) { 11896 if (dtrace_retained == enab) { 11897 dtrace_retained = enab->dten_next; 11898 11899 if (dtrace_retained != NULL) 11900 dtrace_retained->dten_prev = NULL; 11901 } 11902 } else { 11903 ASSERT(enab != dtrace_retained); 11904 ASSERT(dtrace_retained != NULL); 11905 enab->dten_prev->dten_next = enab->dten_next; 11906 } 11907 11908 if (enab->dten_next != NULL) { 11909 ASSERT(dtrace_retained != NULL); 11910 enab->dten_next->dten_prev = enab->dten_prev; 11911 } 11912 11913 kmem_free(enab, sizeof (dtrace_enabling_t)); 11914 } 11915 11916 static int 11917 dtrace_enabling_retain(dtrace_enabling_t *enab) 11918 { 11919 dtrace_state_t *state; 11920 11921 ASSERT(MUTEX_HELD(&dtrace_lock)); 11922 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11923 ASSERT(enab->dten_vstate != NULL); 11924 11925 state = enab->dten_vstate->dtvs_state; 11926 ASSERT(state != NULL); 11927 11928 /* 11929 * We only allow each state to retain dtrace_retain_max enablings. 11930 */ 11931 if (state->dts_nretained >= dtrace_retain_max) 11932 return (ENOSPC); 11933 11934 state->dts_nretained++; 11935 dtrace_retained_gen++; 11936 11937 if (dtrace_retained == NULL) { 11938 dtrace_retained = enab; 11939 return (0); 11940 } 11941 11942 enab->dten_next = dtrace_retained; 11943 dtrace_retained->dten_prev = enab; 11944 dtrace_retained = enab; 11945 11946 return (0); 11947 } 11948 11949 static int 11950 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11951 dtrace_probedesc_t *create) 11952 { 11953 dtrace_enabling_t *new, *enab; 11954 int found = 0, err = ENOENT; 11955 11956 ASSERT(MUTEX_HELD(&dtrace_lock)); 11957 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11958 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11959 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11960 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11961 11962 new = dtrace_enabling_create(&state->dts_vstate); 11963 11964 /* 11965 * Iterate over all retained enablings, looking for enablings that 11966 * match the specified state. 11967 */ 11968 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11969 int i; 11970 11971 /* 11972 * dtvs_state can only be NULL for helper enablings -- and 11973 * helper enablings can't be retained. 11974 */ 11975 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11976 11977 if (enab->dten_vstate->dtvs_state != state) 11978 continue; 11979 11980 /* 11981 * Now iterate over each probe description; we're looking for 11982 * an exact match to the specified probe description. 11983 */ 11984 for (i = 0; i < enab->dten_ndesc; i++) { 11985 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11986 dtrace_probedesc_t *pd = &ep->dted_probe; 11987 11988 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11989 continue; 11990 11991 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11992 continue; 11993 11994 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11995 continue; 11996 11997 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11998 continue; 11999 12000 /* 12001 * We have a winning probe! Add it to our growing 12002 * enabling. 12003 */ 12004 found = 1; 12005 dtrace_enabling_addlike(new, ep, create); 12006 } 12007 } 12008 12009 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12010 dtrace_enabling_destroy(new); 12011 return (err); 12012 } 12013 12014 return (0); 12015 } 12016 12017 static void 12018 dtrace_enabling_retract(dtrace_state_t *state) 12019 { 12020 dtrace_enabling_t *enab, *next; 12021 12022 ASSERT(MUTEX_HELD(&dtrace_lock)); 12023 12024 /* 12025 * Iterate over all retained enablings, destroy the enablings retained 12026 * for the specified state. 12027 */ 12028 for (enab = dtrace_retained; enab != NULL; enab = next) { 12029 next = enab->dten_next; 12030 12031 /* 12032 * dtvs_state can only be NULL for helper enablings -- and 12033 * helper enablings can't be retained. 12034 */ 12035 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12036 12037 if (enab->dten_vstate->dtvs_state == state) { 12038 ASSERT(state->dts_nretained > 0); 12039 dtrace_enabling_destroy(enab); 12040 } 12041 } 12042 12043 ASSERT(state->dts_nretained == 0); 12044 } 12045 12046 static int 12047 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12048 { 12049 int i = 0; 12050 int total_matched = 0, matched = 0; 12051 12052 ASSERT(MUTEX_HELD(&cpu_lock)); 12053 ASSERT(MUTEX_HELD(&dtrace_lock)); 12054 12055 for (i = 0; i < enab->dten_ndesc; i++) { 12056 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12057 12058 enab->dten_current = ep; 12059 enab->dten_error = 0; 12060 12061 /* 12062 * If a provider failed to enable a probe then get out and 12063 * let the consumer know we failed. 12064 */ 12065 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12066 return (EBUSY); 12067 12068 total_matched += matched; 12069 12070 if (enab->dten_error != 0) { 12071 /* 12072 * If we get an error half-way through enabling the 12073 * probes, we kick out -- perhaps with some number of 12074 * them enabled. Leaving enabled probes enabled may 12075 * be slightly confusing for user-level, but we expect 12076 * that no one will attempt to actually drive on in 12077 * the face of such errors. If this is an anonymous 12078 * enabling (indicated with a NULL nmatched pointer), 12079 * we cmn_err() a message. We aren't expecting to 12080 * get such an error -- such as it can exist at all, 12081 * it would be a result of corrupted DOF in the driver 12082 * properties. 12083 */ 12084 if (nmatched == NULL) { 12085 cmn_err(CE_WARN, "dtrace_enabling_match() " 12086 "error on %p: %d", (void *)ep, 12087 enab->dten_error); 12088 } 12089 12090 return (enab->dten_error); 12091 } 12092 } 12093 12094 enab->dten_probegen = dtrace_probegen; 12095 if (nmatched != NULL) 12096 *nmatched = total_matched; 12097 12098 return (0); 12099 } 12100 12101 static void 12102 dtrace_enabling_matchall(void) 12103 { 12104 dtrace_enabling_t *enab; 12105 12106 mutex_enter(&cpu_lock); 12107 mutex_enter(&dtrace_lock); 12108 12109 /* 12110 * Iterate over all retained enablings to see if any probes match 12111 * against them. We only perform this operation on enablings for which 12112 * we have sufficient permissions by virtue of being in the global zone 12113 * or in the same zone as the DTrace client. Because we can be called 12114 * after dtrace_detach() has been called, we cannot assert that there 12115 * are retained enablings. We can safely load from dtrace_retained, 12116 * however: the taskq_destroy() at the end of dtrace_detach() will 12117 * block pending our completion. 12118 */ 12119 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12120 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12121 cred_t *cr = dcr->dcr_cred; 12122 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12123 12124 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12125 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12126 (void) dtrace_enabling_match(enab, NULL); 12127 } 12128 12129 mutex_exit(&dtrace_lock); 12130 mutex_exit(&cpu_lock); 12131 } 12132 12133 /* 12134 * If an enabling is to be enabled without having matched probes (that is, if 12135 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12136 * enabling must be _primed_ by creating an ECB for every ECB description. 12137 * This must be done to assure that we know the number of speculations, the 12138 * number of aggregations, the minimum buffer size needed, etc. before we 12139 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12140 * enabling any probes, we create ECBs for every ECB decription, but with a 12141 * NULL probe -- which is exactly what this function does. 12142 */ 12143 static void 12144 dtrace_enabling_prime(dtrace_state_t *state) 12145 { 12146 dtrace_enabling_t *enab; 12147 int i; 12148 12149 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12150 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12151 12152 if (enab->dten_vstate->dtvs_state != state) 12153 continue; 12154 12155 /* 12156 * We don't want to prime an enabling more than once, lest 12157 * we allow a malicious user to induce resource exhaustion. 12158 * (The ECBs that result from priming an enabling aren't 12159 * leaked -- but they also aren't deallocated until the 12160 * consumer state is destroyed.) 12161 */ 12162 if (enab->dten_primed) 12163 continue; 12164 12165 for (i = 0; i < enab->dten_ndesc; i++) { 12166 enab->dten_current = enab->dten_desc[i]; 12167 (void) dtrace_probe_enable(NULL, enab); 12168 } 12169 12170 enab->dten_primed = 1; 12171 } 12172 } 12173 12174 /* 12175 * Called to indicate that probes should be provided due to retained 12176 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12177 * must take an initial lap through the enabling calling the dtps_provide() 12178 * entry point explicitly to allow for autocreated probes. 12179 */ 12180 static void 12181 dtrace_enabling_provide(dtrace_provider_t *prv) 12182 { 12183 int i, all = 0; 12184 dtrace_probedesc_t desc; 12185 dtrace_genid_t gen; 12186 12187 ASSERT(MUTEX_HELD(&dtrace_lock)); 12188 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12189 12190 if (prv == NULL) { 12191 all = 1; 12192 prv = dtrace_provider; 12193 } 12194 12195 do { 12196 dtrace_enabling_t *enab; 12197 void *parg = prv->dtpv_arg; 12198 12199 retry: 12200 gen = dtrace_retained_gen; 12201 for (enab = dtrace_retained; enab != NULL; 12202 enab = enab->dten_next) { 12203 for (i = 0; i < enab->dten_ndesc; i++) { 12204 desc = enab->dten_desc[i]->dted_probe; 12205 mutex_exit(&dtrace_lock); 12206 prv->dtpv_pops.dtps_provide(parg, &desc); 12207 mutex_enter(&dtrace_lock); 12208 /* 12209 * Process the retained enablings again if 12210 * they have changed while we weren't holding 12211 * dtrace_lock. 12212 */ 12213 if (gen != dtrace_retained_gen) 12214 goto retry; 12215 } 12216 } 12217 } while (all && (prv = prv->dtpv_next) != NULL); 12218 12219 mutex_exit(&dtrace_lock); 12220 dtrace_probe_provide(NULL, all ? NULL : prv); 12221 mutex_enter(&dtrace_lock); 12222 } 12223 12224 /* 12225 * Called to reap ECBs that are attached to probes from defunct providers. 12226 */ 12227 static void 12228 dtrace_enabling_reap(void) 12229 { 12230 dtrace_provider_t *prov; 12231 dtrace_probe_t *probe; 12232 dtrace_ecb_t *ecb; 12233 hrtime_t when; 12234 int i; 12235 12236 mutex_enter(&cpu_lock); 12237 mutex_enter(&dtrace_lock); 12238 12239 for (i = 0; i < dtrace_nprobes; i++) { 12240 if ((probe = dtrace_probes[i]) == NULL) 12241 continue; 12242 12243 if (probe->dtpr_ecb == NULL) 12244 continue; 12245 12246 prov = probe->dtpr_provider; 12247 12248 if ((when = prov->dtpv_defunct) == 0) 12249 continue; 12250 12251 /* 12252 * We have ECBs on a defunct provider: we want to reap these 12253 * ECBs to allow the provider to unregister. The destruction 12254 * of these ECBs must be done carefully: if we destroy the ECB 12255 * and the consumer later wishes to consume an EPID that 12256 * corresponds to the destroyed ECB (and if the EPID metadata 12257 * has not been previously consumed), the consumer will abort 12258 * processing on the unknown EPID. To reduce (but not, sadly, 12259 * eliminate) the possibility of this, we will only destroy an 12260 * ECB for a defunct provider if, for the state that 12261 * corresponds to the ECB: 12262 * 12263 * (a) There is no speculative tracing (which can effectively 12264 * cache an EPID for an arbitrary amount of time). 12265 * 12266 * (b) The principal buffers have been switched twice since the 12267 * provider became defunct. 12268 * 12269 * (c) The aggregation buffers are of zero size or have been 12270 * switched twice since the provider became defunct. 12271 * 12272 * We use dts_speculates to determine (a) and call a function 12273 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12274 * that as soon as we've been unable to destroy one of the ECBs 12275 * associated with the probe, we quit trying -- reaping is only 12276 * fruitful in as much as we can destroy all ECBs associated 12277 * with the defunct provider's probes. 12278 */ 12279 while ((ecb = probe->dtpr_ecb) != NULL) { 12280 dtrace_state_t *state = ecb->dte_state; 12281 dtrace_buffer_t *buf = state->dts_buffer; 12282 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12283 12284 if (state->dts_speculates) 12285 break; 12286 12287 if (!dtrace_buffer_consumed(buf, when)) 12288 break; 12289 12290 if (!dtrace_buffer_consumed(aggbuf, when)) 12291 break; 12292 12293 dtrace_ecb_disable(ecb); 12294 ASSERT(probe->dtpr_ecb != ecb); 12295 dtrace_ecb_destroy(ecb); 12296 } 12297 } 12298 12299 mutex_exit(&dtrace_lock); 12300 mutex_exit(&cpu_lock); 12301 } 12302 12303 /* 12304 * DTrace DOF Functions 12305 */ 12306 /*ARGSUSED*/ 12307 static void 12308 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12309 { 12310 if (dtrace_err_verbose) 12311 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12312 12313 #ifdef DTRACE_ERRDEBUG 12314 dtrace_errdebug(str); 12315 #endif 12316 } 12317 12318 /* 12319 * Create DOF out of a currently enabled state. Right now, we only create 12320 * DOF containing the run-time options -- but this could be expanded to create 12321 * complete DOF representing the enabled state. 12322 */ 12323 static dof_hdr_t * 12324 dtrace_dof_create(dtrace_state_t *state) 12325 { 12326 dof_hdr_t *dof; 12327 dof_sec_t *sec; 12328 dof_optdesc_t *opt; 12329 int i, len = sizeof (dof_hdr_t) + 12330 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12331 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12332 12333 ASSERT(MUTEX_HELD(&dtrace_lock)); 12334 12335 dof = kmem_zalloc(len, KM_SLEEP); 12336 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12337 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12338 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12339 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12340 12341 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12342 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12343 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12344 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12345 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12346 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12347 12348 dof->dofh_flags = 0; 12349 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12350 dof->dofh_secsize = sizeof (dof_sec_t); 12351 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12352 dof->dofh_secoff = sizeof (dof_hdr_t); 12353 dof->dofh_loadsz = len; 12354 dof->dofh_filesz = len; 12355 dof->dofh_pad = 0; 12356 12357 /* 12358 * Fill in the option section header... 12359 */ 12360 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12361 sec->dofs_type = DOF_SECT_OPTDESC; 12362 sec->dofs_align = sizeof (uint64_t); 12363 sec->dofs_flags = DOF_SECF_LOAD; 12364 sec->dofs_entsize = sizeof (dof_optdesc_t); 12365 12366 opt = (dof_optdesc_t *)((uintptr_t)sec + 12367 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12368 12369 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12370 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12371 12372 for (i = 0; i < DTRACEOPT_MAX; i++) { 12373 opt[i].dofo_option = i; 12374 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12375 opt[i].dofo_value = state->dts_options[i]; 12376 } 12377 12378 return (dof); 12379 } 12380 12381 static dof_hdr_t * 12382 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12383 { 12384 dof_hdr_t hdr, *dof; 12385 12386 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12387 12388 /* 12389 * First, we're going to copyin() the sizeof (dof_hdr_t). 12390 */ 12391 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12392 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12393 *errp = EFAULT; 12394 return (NULL); 12395 } 12396 12397 /* 12398 * Now we'll allocate the entire DOF and copy it in -- provided 12399 * that the length isn't outrageous. 12400 */ 12401 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12402 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12403 *errp = E2BIG; 12404 return (NULL); 12405 } 12406 12407 if (hdr.dofh_loadsz < sizeof (hdr)) { 12408 dtrace_dof_error(&hdr, "invalid load size"); 12409 *errp = EINVAL; 12410 return (NULL); 12411 } 12412 12413 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12414 12415 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12416 dof->dofh_loadsz != hdr.dofh_loadsz) { 12417 kmem_free(dof, hdr.dofh_loadsz); 12418 *errp = EFAULT; 12419 return (NULL); 12420 } 12421 12422 return (dof); 12423 } 12424 12425 static dof_hdr_t * 12426 dtrace_dof_property(const char *name) 12427 { 12428 uchar_t *buf; 12429 uint64_t loadsz; 12430 unsigned int len, i; 12431 dof_hdr_t *dof; 12432 12433 /* 12434 * Unfortunately, array of values in .conf files are always (and 12435 * only) interpreted to be integer arrays. We must read our DOF 12436 * as an integer array, and then squeeze it into a byte array. 12437 */ 12438 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12439 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12440 return (NULL); 12441 12442 for (i = 0; i < len; i++) 12443 buf[i] = (uchar_t)(((int *)buf)[i]); 12444 12445 if (len < sizeof (dof_hdr_t)) { 12446 ddi_prop_free(buf); 12447 dtrace_dof_error(NULL, "truncated header"); 12448 return (NULL); 12449 } 12450 12451 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12452 ddi_prop_free(buf); 12453 dtrace_dof_error(NULL, "truncated DOF"); 12454 return (NULL); 12455 } 12456 12457 if (loadsz >= dtrace_dof_maxsize) { 12458 ddi_prop_free(buf); 12459 dtrace_dof_error(NULL, "oversized DOF"); 12460 return (NULL); 12461 } 12462 12463 dof = kmem_alloc(loadsz, KM_SLEEP); 12464 bcopy(buf, dof, loadsz); 12465 ddi_prop_free(buf); 12466 12467 return (dof); 12468 } 12469 12470 static void 12471 dtrace_dof_destroy(dof_hdr_t *dof) 12472 { 12473 kmem_free(dof, dof->dofh_loadsz); 12474 } 12475 12476 /* 12477 * Return the dof_sec_t pointer corresponding to a given section index. If the 12478 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12479 * a type other than DOF_SECT_NONE is specified, the header is checked against 12480 * this type and NULL is returned if the types do not match. 12481 */ 12482 static dof_sec_t * 12483 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12484 { 12485 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12486 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12487 12488 if (i >= dof->dofh_secnum) { 12489 dtrace_dof_error(dof, "referenced section index is invalid"); 12490 return (NULL); 12491 } 12492 12493 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12494 dtrace_dof_error(dof, "referenced section is not loadable"); 12495 return (NULL); 12496 } 12497 12498 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12499 dtrace_dof_error(dof, "referenced section is the wrong type"); 12500 return (NULL); 12501 } 12502 12503 return (sec); 12504 } 12505 12506 static dtrace_probedesc_t * 12507 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12508 { 12509 dof_probedesc_t *probe; 12510 dof_sec_t *strtab; 12511 uintptr_t daddr = (uintptr_t)dof; 12512 uintptr_t str; 12513 size_t size; 12514 12515 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12516 dtrace_dof_error(dof, "invalid probe section"); 12517 return (NULL); 12518 } 12519 12520 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12521 dtrace_dof_error(dof, "bad alignment in probe description"); 12522 return (NULL); 12523 } 12524 12525 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12526 dtrace_dof_error(dof, "truncated probe description"); 12527 return (NULL); 12528 } 12529 12530 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12531 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12532 12533 if (strtab == NULL) 12534 return (NULL); 12535 12536 str = daddr + strtab->dofs_offset; 12537 size = strtab->dofs_size; 12538 12539 if (probe->dofp_provider >= strtab->dofs_size) { 12540 dtrace_dof_error(dof, "corrupt probe provider"); 12541 return (NULL); 12542 } 12543 12544 (void) strncpy(desc->dtpd_provider, 12545 (char *)(str + probe->dofp_provider), 12546 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12547 12548 if (probe->dofp_mod >= strtab->dofs_size) { 12549 dtrace_dof_error(dof, "corrupt probe module"); 12550 return (NULL); 12551 } 12552 12553 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12554 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12555 12556 if (probe->dofp_func >= strtab->dofs_size) { 12557 dtrace_dof_error(dof, "corrupt probe function"); 12558 return (NULL); 12559 } 12560 12561 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12562 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12563 12564 if (probe->dofp_name >= strtab->dofs_size) { 12565 dtrace_dof_error(dof, "corrupt probe name"); 12566 return (NULL); 12567 } 12568 12569 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12570 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12571 12572 return (desc); 12573 } 12574 12575 static dtrace_difo_t * 12576 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12577 cred_t *cr) 12578 { 12579 dtrace_difo_t *dp; 12580 size_t ttl = 0; 12581 dof_difohdr_t *dofd; 12582 uintptr_t daddr = (uintptr_t)dof; 12583 size_t max = dtrace_difo_maxsize; 12584 int i, l, n; 12585 12586 static const struct { 12587 int section; 12588 int bufoffs; 12589 int lenoffs; 12590 int entsize; 12591 int align; 12592 const char *msg; 12593 } difo[] = { 12594 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12595 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12596 sizeof (dif_instr_t), "multiple DIF sections" }, 12597 12598 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12599 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12600 sizeof (uint64_t), "multiple integer tables" }, 12601 12602 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12603 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12604 sizeof (char), "multiple string tables" }, 12605 12606 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12607 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12608 sizeof (uint_t), "multiple variable tables" }, 12609 12610 { DOF_SECT_NONE, 0, 0, 0, NULL } 12611 }; 12612 12613 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12614 dtrace_dof_error(dof, "invalid DIFO header section"); 12615 return (NULL); 12616 } 12617 12618 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12619 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12620 return (NULL); 12621 } 12622 12623 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12624 sec->dofs_size % sizeof (dof_secidx_t)) { 12625 dtrace_dof_error(dof, "bad size in DIFO header"); 12626 return (NULL); 12627 } 12628 12629 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12630 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12631 12632 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12633 dp->dtdo_rtype = dofd->dofd_rtype; 12634 12635 for (l = 0; l < n; l++) { 12636 dof_sec_t *subsec; 12637 void **bufp; 12638 uint32_t *lenp; 12639 12640 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12641 dofd->dofd_links[l])) == NULL) 12642 goto err; /* invalid section link */ 12643 12644 if (ttl + subsec->dofs_size > max) { 12645 dtrace_dof_error(dof, "exceeds maximum size"); 12646 goto err; 12647 } 12648 12649 ttl += subsec->dofs_size; 12650 12651 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12652 if (subsec->dofs_type != difo[i].section) 12653 continue; 12654 12655 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12656 dtrace_dof_error(dof, "section not loaded"); 12657 goto err; 12658 } 12659 12660 if (subsec->dofs_align != difo[i].align) { 12661 dtrace_dof_error(dof, "bad alignment"); 12662 goto err; 12663 } 12664 12665 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12666 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12667 12668 if (*bufp != NULL) { 12669 dtrace_dof_error(dof, difo[i].msg); 12670 goto err; 12671 } 12672 12673 if (difo[i].entsize != subsec->dofs_entsize) { 12674 dtrace_dof_error(dof, "entry size mismatch"); 12675 goto err; 12676 } 12677 12678 if (subsec->dofs_entsize != 0 && 12679 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12680 dtrace_dof_error(dof, "corrupt entry size"); 12681 goto err; 12682 } 12683 12684 *lenp = subsec->dofs_size; 12685 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12686 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12687 *bufp, subsec->dofs_size); 12688 12689 if (subsec->dofs_entsize != 0) 12690 *lenp /= subsec->dofs_entsize; 12691 12692 break; 12693 } 12694 12695 /* 12696 * If we encounter a loadable DIFO sub-section that is not 12697 * known to us, assume this is a broken program and fail. 12698 */ 12699 if (difo[i].section == DOF_SECT_NONE && 12700 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12701 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12702 goto err; 12703 } 12704 } 12705 12706 if (dp->dtdo_buf == NULL) { 12707 /* 12708 * We can't have a DIF object without DIF text. 12709 */ 12710 dtrace_dof_error(dof, "missing DIF text"); 12711 goto err; 12712 } 12713 12714 /* 12715 * Before we validate the DIF object, run through the variable table 12716 * looking for the strings -- if any of their size are under, we'll set 12717 * their size to be the system-wide default string size. Note that 12718 * this should _not_ happen if the "strsize" option has been set -- 12719 * in this case, the compiler should have set the size to reflect the 12720 * setting of the option. 12721 */ 12722 for (i = 0; i < dp->dtdo_varlen; i++) { 12723 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12724 dtrace_diftype_t *t = &v->dtdv_type; 12725 12726 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12727 continue; 12728 12729 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12730 t->dtdt_size = dtrace_strsize_default; 12731 } 12732 12733 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12734 goto err; 12735 12736 dtrace_difo_init(dp, vstate); 12737 return (dp); 12738 12739 err: 12740 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12741 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12742 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12743 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12744 12745 kmem_free(dp, sizeof (dtrace_difo_t)); 12746 return (NULL); 12747 } 12748 12749 static dtrace_predicate_t * 12750 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12751 cred_t *cr) 12752 { 12753 dtrace_difo_t *dp; 12754 12755 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12756 return (NULL); 12757 12758 return (dtrace_predicate_create(dp)); 12759 } 12760 12761 static dtrace_actdesc_t * 12762 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12763 cred_t *cr) 12764 { 12765 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12766 dof_actdesc_t *desc; 12767 dof_sec_t *difosec; 12768 size_t offs; 12769 uintptr_t daddr = (uintptr_t)dof; 12770 uint64_t arg; 12771 dtrace_actkind_t kind; 12772 12773 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12774 dtrace_dof_error(dof, "invalid action section"); 12775 return (NULL); 12776 } 12777 12778 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12779 dtrace_dof_error(dof, "truncated action description"); 12780 return (NULL); 12781 } 12782 12783 if (sec->dofs_align != sizeof (uint64_t)) { 12784 dtrace_dof_error(dof, "bad alignment in action description"); 12785 return (NULL); 12786 } 12787 12788 if (sec->dofs_size < sec->dofs_entsize) { 12789 dtrace_dof_error(dof, "section entry size exceeds total size"); 12790 return (NULL); 12791 } 12792 12793 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12794 dtrace_dof_error(dof, "bad entry size in action description"); 12795 return (NULL); 12796 } 12797 12798 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12799 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12800 return (NULL); 12801 } 12802 12803 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12804 desc = (dof_actdesc_t *)(daddr + 12805 (uintptr_t)sec->dofs_offset + offs); 12806 kind = (dtrace_actkind_t)desc->dofa_kind; 12807 12808 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12809 (kind != DTRACEACT_PRINTA || 12810 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12811 (kind == DTRACEACT_DIFEXPR && 12812 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12813 dof_sec_t *strtab; 12814 char *str, *fmt; 12815 uint64_t i; 12816 12817 /* 12818 * The argument to these actions is an index into the 12819 * DOF string table. For printf()-like actions, this 12820 * is the format string. For print(), this is the 12821 * CTF type of the expression result. 12822 */ 12823 if ((strtab = dtrace_dof_sect(dof, 12824 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12825 goto err; 12826 12827 str = (char *)((uintptr_t)dof + 12828 (uintptr_t)strtab->dofs_offset); 12829 12830 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12831 if (str[i] == '\0') 12832 break; 12833 } 12834 12835 if (i >= strtab->dofs_size) { 12836 dtrace_dof_error(dof, "bogus format string"); 12837 goto err; 12838 } 12839 12840 if (i == desc->dofa_arg) { 12841 dtrace_dof_error(dof, "empty format string"); 12842 goto err; 12843 } 12844 12845 i -= desc->dofa_arg; 12846 fmt = kmem_alloc(i + 1, KM_SLEEP); 12847 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12848 arg = (uint64_t)(uintptr_t)fmt; 12849 } else { 12850 if (kind == DTRACEACT_PRINTA) { 12851 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12852 arg = 0; 12853 } else { 12854 arg = desc->dofa_arg; 12855 } 12856 } 12857 12858 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12859 desc->dofa_uarg, arg); 12860 12861 if (last != NULL) { 12862 last->dtad_next = act; 12863 } else { 12864 first = act; 12865 } 12866 12867 last = act; 12868 12869 if (desc->dofa_difo == DOF_SECIDX_NONE) 12870 continue; 12871 12872 if ((difosec = dtrace_dof_sect(dof, 12873 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12874 goto err; 12875 12876 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12877 12878 if (act->dtad_difo == NULL) 12879 goto err; 12880 } 12881 12882 ASSERT(first != NULL); 12883 return (first); 12884 12885 err: 12886 for (act = first; act != NULL; act = next) { 12887 next = act->dtad_next; 12888 dtrace_actdesc_release(act, vstate); 12889 } 12890 12891 return (NULL); 12892 } 12893 12894 static dtrace_ecbdesc_t * 12895 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12896 cred_t *cr) 12897 { 12898 dtrace_ecbdesc_t *ep; 12899 dof_ecbdesc_t *ecb; 12900 dtrace_probedesc_t *desc; 12901 dtrace_predicate_t *pred = NULL; 12902 12903 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12904 dtrace_dof_error(dof, "truncated ECB description"); 12905 return (NULL); 12906 } 12907 12908 if (sec->dofs_align != sizeof (uint64_t)) { 12909 dtrace_dof_error(dof, "bad alignment in ECB description"); 12910 return (NULL); 12911 } 12912 12913 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12914 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12915 12916 if (sec == NULL) 12917 return (NULL); 12918 12919 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12920 ep->dted_uarg = ecb->dofe_uarg; 12921 desc = &ep->dted_probe; 12922 12923 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12924 goto err; 12925 12926 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12927 if ((sec = dtrace_dof_sect(dof, 12928 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12929 goto err; 12930 12931 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12932 goto err; 12933 12934 ep->dted_pred.dtpdd_predicate = pred; 12935 } 12936 12937 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12938 if ((sec = dtrace_dof_sect(dof, 12939 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12940 goto err; 12941 12942 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12943 12944 if (ep->dted_action == NULL) 12945 goto err; 12946 } 12947 12948 return (ep); 12949 12950 err: 12951 if (pred != NULL) 12952 dtrace_predicate_release(pred, vstate); 12953 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12954 return (NULL); 12955 } 12956 12957 /* 12958 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12959 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12960 * site of any user SETX relocations to account for load object base address. 12961 * In the future, if we need other relocations, this function can be extended. 12962 */ 12963 static int 12964 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12965 { 12966 uintptr_t daddr = (uintptr_t)dof; 12967 dof_relohdr_t *dofr = 12968 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12969 dof_sec_t *ss, *rs, *ts; 12970 dof_relodesc_t *r; 12971 uint_t i, n; 12972 12973 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12974 sec->dofs_align != sizeof (dof_secidx_t)) { 12975 dtrace_dof_error(dof, "invalid relocation header"); 12976 return (-1); 12977 } 12978 12979 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12980 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12981 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12982 12983 if (ss == NULL || rs == NULL || ts == NULL) 12984 return (-1); /* dtrace_dof_error() has been called already */ 12985 12986 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12987 rs->dofs_align != sizeof (uint64_t)) { 12988 dtrace_dof_error(dof, "invalid relocation section"); 12989 return (-1); 12990 } 12991 12992 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12993 n = rs->dofs_size / rs->dofs_entsize; 12994 12995 for (i = 0; i < n; i++) { 12996 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12997 12998 switch (r->dofr_type) { 12999 case DOF_RELO_NONE: 13000 break; 13001 case DOF_RELO_SETX: 13002 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13003 sizeof (uint64_t) > ts->dofs_size) { 13004 dtrace_dof_error(dof, "bad relocation offset"); 13005 return (-1); 13006 } 13007 13008 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13009 dtrace_dof_error(dof, "misaligned setx relo"); 13010 return (-1); 13011 } 13012 13013 *(uint64_t *)taddr += ubase; 13014 break; 13015 default: 13016 dtrace_dof_error(dof, "invalid relocation type"); 13017 return (-1); 13018 } 13019 13020 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13021 } 13022 13023 return (0); 13024 } 13025 13026 /* 13027 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13028 * header: it should be at the front of a memory region that is at least 13029 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13030 * size. It need not be validated in any other way. 13031 */ 13032 static int 13033 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13034 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13035 { 13036 uint64_t len = dof->dofh_loadsz, seclen; 13037 uintptr_t daddr = (uintptr_t)dof; 13038 dtrace_ecbdesc_t *ep; 13039 dtrace_enabling_t *enab; 13040 uint_t i; 13041 13042 ASSERT(MUTEX_HELD(&dtrace_lock)); 13043 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13044 13045 /* 13046 * Check the DOF header identification bytes. In addition to checking 13047 * valid settings, we also verify that unused bits/bytes are zeroed so 13048 * we can use them later without fear of regressing existing binaries. 13049 */ 13050 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13051 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13052 dtrace_dof_error(dof, "DOF magic string mismatch"); 13053 return (-1); 13054 } 13055 13056 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13057 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13058 dtrace_dof_error(dof, "DOF has invalid data model"); 13059 return (-1); 13060 } 13061 13062 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13063 dtrace_dof_error(dof, "DOF encoding mismatch"); 13064 return (-1); 13065 } 13066 13067 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13068 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13069 dtrace_dof_error(dof, "DOF version mismatch"); 13070 return (-1); 13071 } 13072 13073 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13074 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13075 return (-1); 13076 } 13077 13078 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13079 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13080 return (-1); 13081 } 13082 13083 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13084 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13085 return (-1); 13086 } 13087 13088 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13089 if (dof->dofh_ident[i] != 0) { 13090 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13091 return (-1); 13092 } 13093 } 13094 13095 if (dof->dofh_flags & ~DOF_FL_VALID) { 13096 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13097 return (-1); 13098 } 13099 13100 if (dof->dofh_secsize == 0) { 13101 dtrace_dof_error(dof, "zero section header size"); 13102 return (-1); 13103 } 13104 13105 /* 13106 * Check that the section headers don't exceed the amount of DOF 13107 * data. Note that we cast the section size and number of sections 13108 * to uint64_t's to prevent possible overflow in the multiplication. 13109 */ 13110 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13111 13112 if (dof->dofh_secoff > len || seclen > len || 13113 dof->dofh_secoff + seclen > len) { 13114 dtrace_dof_error(dof, "truncated section headers"); 13115 return (-1); 13116 } 13117 13118 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13119 dtrace_dof_error(dof, "misaligned section headers"); 13120 return (-1); 13121 } 13122 13123 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13124 dtrace_dof_error(dof, "misaligned section size"); 13125 return (-1); 13126 } 13127 13128 /* 13129 * Take an initial pass through the section headers to be sure that 13130 * the headers don't have stray offsets. If the 'noprobes' flag is 13131 * set, do not permit sections relating to providers, probes, or args. 13132 */ 13133 for (i = 0; i < dof->dofh_secnum; i++) { 13134 dof_sec_t *sec = (dof_sec_t *)(daddr + 13135 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13136 13137 if (noprobes) { 13138 switch (sec->dofs_type) { 13139 case DOF_SECT_PROVIDER: 13140 case DOF_SECT_PROBES: 13141 case DOF_SECT_PRARGS: 13142 case DOF_SECT_PROFFS: 13143 dtrace_dof_error(dof, "illegal sections " 13144 "for enabling"); 13145 return (-1); 13146 } 13147 } 13148 13149 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13150 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13151 dtrace_dof_error(dof, "loadable section with load " 13152 "flag unset"); 13153 return (-1); 13154 } 13155 13156 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13157 continue; /* just ignore non-loadable sections */ 13158 13159 if (!ISP2(sec->dofs_align)) { 13160 dtrace_dof_error(dof, "bad section alignment"); 13161 return (-1); 13162 } 13163 13164 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13165 dtrace_dof_error(dof, "misaligned section"); 13166 return (-1); 13167 } 13168 13169 if (sec->dofs_offset > len || sec->dofs_size > len || 13170 sec->dofs_offset + sec->dofs_size > len) { 13171 dtrace_dof_error(dof, "corrupt section header"); 13172 return (-1); 13173 } 13174 13175 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13176 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13177 dtrace_dof_error(dof, "non-terminating string table"); 13178 return (-1); 13179 } 13180 } 13181 13182 /* 13183 * Take a second pass through the sections and locate and perform any 13184 * relocations that are present. We do this after the first pass to 13185 * be sure that all sections have had their headers validated. 13186 */ 13187 for (i = 0; i < dof->dofh_secnum; i++) { 13188 dof_sec_t *sec = (dof_sec_t *)(daddr + 13189 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13190 13191 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13192 continue; /* skip sections that are not loadable */ 13193 13194 switch (sec->dofs_type) { 13195 case DOF_SECT_URELHDR: 13196 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13197 return (-1); 13198 break; 13199 } 13200 } 13201 13202 if ((enab = *enabp) == NULL) 13203 enab = *enabp = dtrace_enabling_create(vstate); 13204 13205 for (i = 0; i < dof->dofh_secnum; i++) { 13206 dof_sec_t *sec = (dof_sec_t *)(daddr + 13207 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13208 13209 if (sec->dofs_type != DOF_SECT_ECBDESC) 13210 continue; 13211 13212 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13213 dtrace_enabling_destroy(enab); 13214 *enabp = NULL; 13215 return (-1); 13216 } 13217 13218 dtrace_enabling_add(enab, ep); 13219 } 13220 13221 return (0); 13222 } 13223 13224 /* 13225 * Process DOF for any options. This routine assumes that the DOF has been 13226 * at least processed by dtrace_dof_slurp(). 13227 */ 13228 static int 13229 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13230 { 13231 int i, rval; 13232 uint32_t entsize; 13233 size_t offs; 13234 dof_optdesc_t *desc; 13235 13236 for (i = 0; i < dof->dofh_secnum; i++) { 13237 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13238 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13239 13240 if (sec->dofs_type != DOF_SECT_OPTDESC) 13241 continue; 13242 13243 if (sec->dofs_align != sizeof (uint64_t)) { 13244 dtrace_dof_error(dof, "bad alignment in " 13245 "option description"); 13246 return (EINVAL); 13247 } 13248 13249 if ((entsize = sec->dofs_entsize) == 0) { 13250 dtrace_dof_error(dof, "zeroed option entry size"); 13251 return (EINVAL); 13252 } 13253 13254 if (entsize < sizeof (dof_optdesc_t)) { 13255 dtrace_dof_error(dof, "bad option entry size"); 13256 return (EINVAL); 13257 } 13258 13259 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13260 desc = (dof_optdesc_t *)((uintptr_t)dof + 13261 (uintptr_t)sec->dofs_offset + offs); 13262 13263 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13264 dtrace_dof_error(dof, "non-zero option string"); 13265 return (EINVAL); 13266 } 13267 13268 if (desc->dofo_value == DTRACEOPT_UNSET) { 13269 dtrace_dof_error(dof, "unset option"); 13270 return (EINVAL); 13271 } 13272 13273 if ((rval = dtrace_state_option(state, 13274 desc->dofo_option, desc->dofo_value)) != 0) { 13275 dtrace_dof_error(dof, "rejected option"); 13276 return (rval); 13277 } 13278 } 13279 } 13280 13281 return (0); 13282 } 13283 13284 /* 13285 * DTrace Consumer State Functions 13286 */ 13287 int 13288 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13289 { 13290 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13291 void *base; 13292 uintptr_t limit; 13293 dtrace_dynvar_t *dvar, *next, *start; 13294 int i; 13295 13296 ASSERT(MUTEX_HELD(&dtrace_lock)); 13297 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13298 13299 bzero(dstate, sizeof (dtrace_dstate_t)); 13300 13301 if ((dstate->dtds_chunksize = chunksize) == 0) 13302 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13303 13304 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13305 13306 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13307 size = min; 13308 13309 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13310 return (ENOMEM); 13311 13312 dstate->dtds_size = size; 13313 dstate->dtds_base = base; 13314 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13315 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13316 13317 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13318 13319 if (hashsize != 1 && (hashsize & 1)) 13320 hashsize--; 13321 13322 dstate->dtds_hashsize = hashsize; 13323 dstate->dtds_hash = dstate->dtds_base; 13324 13325 /* 13326 * Set all of our hash buckets to point to the single sink, and (if 13327 * it hasn't already been set), set the sink's hash value to be the 13328 * sink sentinel value. The sink is needed for dynamic variable 13329 * lookups to know that they have iterated over an entire, valid hash 13330 * chain. 13331 */ 13332 for (i = 0; i < hashsize; i++) 13333 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13334 13335 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13336 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13337 13338 /* 13339 * Determine number of active CPUs. Divide free list evenly among 13340 * active CPUs. 13341 */ 13342 start = (dtrace_dynvar_t *) 13343 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13344 limit = (uintptr_t)base + size; 13345 13346 VERIFY((uintptr_t)start < limit); 13347 VERIFY((uintptr_t)start >= (uintptr_t)base); 13348 13349 maxper = (limit - (uintptr_t)start) / NCPU; 13350 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13351 13352 for (i = 0; i < NCPU; i++) { 13353 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13354 13355 /* 13356 * If we don't even have enough chunks to make it once through 13357 * NCPUs, we're just going to allocate everything to the first 13358 * CPU. And if we're on the last CPU, we're going to allocate 13359 * whatever is left over. In either case, we set the limit to 13360 * be the limit of the dynamic variable space. 13361 */ 13362 if (maxper == 0 || i == NCPU - 1) { 13363 limit = (uintptr_t)base + size; 13364 start = NULL; 13365 } else { 13366 limit = (uintptr_t)start + maxper; 13367 start = (dtrace_dynvar_t *)limit; 13368 } 13369 13370 VERIFY(limit <= (uintptr_t)base + size); 13371 13372 for (;;) { 13373 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13374 dstate->dtds_chunksize); 13375 13376 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13377 break; 13378 13379 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13380 (uintptr_t)dvar <= (uintptr_t)base + size); 13381 dvar->dtdv_next = next; 13382 dvar = next; 13383 } 13384 13385 if (maxper == 0) 13386 break; 13387 } 13388 13389 return (0); 13390 } 13391 13392 void 13393 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13394 { 13395 ASSERT(MUTEX_HELD(&cpu_lock)); 13396 13397 if (dstate->dtds_base == NULL) 13398 return; 13399 13400 kmem_free(dstate->dtds_base, dstate->dtds_size); 13401 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13402 } 13403 13404 static void 13405 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13406 { 13407 /* 13408 * Logical XOR, where are you? 13409 */ 13410 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13411 13412 if (vstate->dtvs_nglobals > 0) { 13413 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13414 sizeof (dtrace_statvar_t *)); 13415 } 13416 13417 if (vstate->dtvs_ntlocals > 0) { 13418 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13419 sizeof (dtrace_difv_t)); 13420 } 13421 13422 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13423 13424 if (vstate->dtvs_nlocals > 0) { 13425 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13426 sizeof (dtrace_statvar_t *)); 13427 } 13428 } 13429 13430 static void 13431 dtrace_state_clean(dtrace_state_t *state) 13432 { 13433 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13434 return; 13435 13436 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13437 dtrace_speculation_clean(state); 13438 } 13439 13440 static void 13441 dtrace_state_deadman(dtrace_state_t *state) 13442 { 13443 hrtime_t now; 13444 13445 dtrace_sync(); 13446 13447 now = dtrace_gethrtime(); 13448 13449 if (state != dtrace_anon.dta_state && 13450 now - state->dts_laststatus >= dtrace_deadman_user) 13451 return; 13452 13453 /* 13454 * We must be sure that dts_alive never appears to be less than the 13455 * value upon entry to dtrace_state_deadman(), and because we lack a 13456 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13457 * store INT64_MAX to it, followed by a memory barrier, followed by 13458 * the new value. This assures that dts_alive never appears to be 13459 * less than its true value, regardless of the order in which the 13460 * stores to the underlying storage are issued. 13461 */ 13462 state->dts_alive = INT64_MAX; 13463 dtrace_membar_producer(); 13464 state->dts_alive = now; 13465 } 13466 13467 dtrace_state_t * 13468 dtrace_state_create(dev_t *devp, cred_t *cr) 13469 { 13470 minor_t minor; 13471 major_t major; 13472 char c[30]; 13473 dtrace_state_t *state; 13474 dtrace_optval_t *opt; 13475 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13476 13477 ASSERT(MUTEX_HELD(&dtrace_lock)); 13478 ASSERT(MUTEX_HELD(&cpu_lock)); 13479 13480 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13481 VM_BESTFIT | VM_SLEEP); 13482 13483 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13484 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13485 return (NULL); 13486 } 13487 13488 state = ddi_get_soft_state(dtrace_softstate, minor); 13489 state->dts_epid = DTRACE_EPIDNONE + 1; 13490 13491 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13492 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13493 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13494 13495 if (devp != NULL) { 13496 major = getemajor(*devp); 13497 } else { 13498 major = ddi_driver_major(dtrace_devi); 13499 } 13500 13501 state->dts_dev = makedevice(major, minor); 13502 13503 if (devp != NULL) 13504 *devp = state->dts_dev; 13505 13506 /* 13507 * We allocate NCPU buffers. On the one hand, this can be quite 13508 * a bit of memory per instance (nearly 36K on a Starcat). On the 13509 * other hand, it saves an additional memory reference in the probe 13510 * path. 13511 */ 13512 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13513 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13514 state->dts_cleaner = CYCLIC_NONE; 13515 state->dts_deadman = CYCLIC_NONE; 13516 state->dts_vstate.dtvs_state = state; 13517 13518 for (i = 0; i < DTRACEOPT_MAX; i++) 13519 state->dts_options[i] = DTRACEOPT_UNSET; 13520 13521 /* 13522 * Set the default options. 13523 */ 13524 opt = state->dts_options; 13525 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13526 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13527 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13528 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13529 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13530 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13531 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13532 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13533 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13534 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13535 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13536 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13537 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13538 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13539 13540 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13541 13542 /* 13543 * Depending on the user credentials, we set flag bits which alter probe 13544 * visibility or the amount of destructiveness allowed. In the case of 13545 * actual anonymous tracing, or the possession of all privileges, all of 13546 * the normal checks are bypassed. 13547 */ 13548 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13549 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13550 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13551 } else { 13552 /* 13553 * Set up the credentials for this instantiation. We take a 13554 * hold on the credential to prevent it from disappearing on 13555 * us; this in turn prevents the zone_t referenced by this 13556 * credential from disappearing. This means that we can 13557 * examine the credential and the zone from probe context. 13558 */ 13559 crhold(cr); 13560 state->dts_cred.dcr_cred = cr; 13561 13562 /* 13563 * CRA_PROC means "we have *some* privilege for dtrace" and 13564 * unlocks the use of variables like pid, zonename, etc. 13565 */ 13566 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13567 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13568 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13569 } 13570 13571 /* 13572 * dtrace_user allows use of syscall and profile providers. 13573 * If the user also has proc_owner and/or proc_zone, we 13574 * extend the scope to include additional visibility and 13575 * destructive power. 13576 */ 13577 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13578 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13579 state->dts_cred.dcr_visible |= 13580 DTRACE_CRV_ALLPROC; 13581 13582 state->dts_cred.dcr_action |= 13583 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13584 } 13585 13586 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13587 state->dts_cred.dcr_visible |= 13588 DTRACE_CRV_ALLZONE; 13589 13590 state->dts_cred.dcr_action |= 13591 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13592 } 13593 13594 /* 13595 * If we have all privs in whatever zone this is, 13596 * we can do destructive things to processes which 13597 * have altered credentials. 13598 */ 13599 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13600 cr->cr_zone->zone_privset)) { 13601 state->dts_cred.dcr_action |= 13602 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13603 } 13604 } 13605 13606 /* 13607 * Holding the dtrace_kernel privilege also implies that 13608 * the user has the dtrace_user privilege from a visibility 13609 * perspective. But without further privileges, some 13610 * destructive actions are not available. 13611 */ 13612 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13613 /* 13614 * Make all probes in all zones visible. However, 13615 * this doesn't mean that all actions become available 13616 * to all zones. 13617 */ 13618 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13619 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13620 13621 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13622 DTRACE_CRA_PROC; 13623 /* 13624 * Holding proc_owner means that destructive actions 13625 * for *this* zone are allowed. 13626 */ 13627 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13628 state->dts_cred.dcr_action |= 13629 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13630 13631 /* 13632 * Holding proc_zone means that destructive actions 13633 * for this user/group ID in all zones is allowed. 13634 */ 13635 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13636 state->dts_cred.dcr_action |= 13637 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13638 13639 /* 13640 * If we have all privs in whatever zone this is, 13641 * we can do destructive things to processes which 13642 * have altered credentials. 13643 */ 13644 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13645 cr->cr_zone->zone_privset)) { 13646 state->dts_cred.dcr_action |= 13647 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13648 } 13649 } 13650 13651 /* 13652 * Holding the dtrace_proc privilege gives control over fasttrap 13653 * and pid providers. We need to grant wider destructive 13654 * privileges in the event that the user has proc_owner and/or 13655 * proc_zone. 13656 */ 13657 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13658 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13659 state->dts_cred.dcr_action |= 13660 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13661 13662 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13663 state->dts_cred.dcr_action |= 13664 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13665 } 13666 } 13667 13668 return (state); 13669 } 13670 13671 static int 13672 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13673 { 13674 dtrace_optval_t *opt = state->dts_options, size; 13675 processorid_t cpu; 13676 int flags = 0, rval, factor, divisor = 1; 13677 13678 ASSERT(MUTEX_HELD(&dtrace_lock)); 13679 ASSERT(MUTEX_HELD(&cpu_lock)); 13680 ASSERT(which < DTRACEOPT_MAX); 13681 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13682 (state == dtrace_anon.dta_state && 13683 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13684 13685 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13686 return (0); 13687 13688 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13689 cpu = opt[DTRACEOPT_CPU]; 13690 13691 if (which == DTRACEOPT_SPECSIZE) 13692 flags |= DTRACEBUF_NOSWITCH; 13693 13694 if (which == DTRACEOPT_BUFSIZE) { 13695 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13696 flags |= DTRACEBUF_RING; 13697 13698 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13699 flags |= DTRACEBUF_FILL; 13700 13701 if (state != dtrace_anon.dta_state || 13702 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13703 flags |= DTRACEBUF_INACTIVE; 13704 } 13705 13706 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13707 /* 13708 * The size must be 8-byte aligned. If the size is not 8-byte 13709 * aligned, drop it down by the difference. 13710 */ 13711 if (size & (sizeof (uint64_t) - 1)) 13712 size -= size & (sizeof (uint64_t) - 1); 13713 13714 if (size < state->dts_reserve) { 13715 /* 13716 * Buffers always must be large enough to accommodate 13717 * their prereserved space. We return E2BIG instead 13718 * of ENOMEM in this case to allow for user-level 13719 * software to differentiate the cases. 13720 */ 13721 return (E2BIG); 13722 } 13723 13724 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13725 13726 if (rval != ENOMEM) { 13727 opt[which] = size; 13728 return (rval); 13729 } 13730 13731 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13732 return (rval); 13733 13734 for (divisor = 2; divisor < factor; divisor <<= 1) 13735 continue; 13736 } 13737 13738 return (ENOMEM); 13739 } 13740 13741 static int 13742 dtrace_state_buffers(dtrace_state_t *state) 13743 { 13744 dtrace_speculation_t *spec = state->dts_speculations; 13745 int rval, i; 13746 13747 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13748 DTRACEOPT_BUFSIZE)) != 0) 13749 return (rval); 13750 13751 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13752 DTRACEOPT_AGGSIZE)) != 0) 13753 return (rval); 13754 13755 for (i = 0; i < state->dts_nspeculations; i++) { 13756 if ((rval = dtrace_state_buffer(state, 13757 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13758 return (rval); 13759 } 13760 13761 return (0); 13762 } 13763 13764 static void 13765 dtrace_state_prereserve(dtrace_state_t *state) 13766 { 13767 dtrace_ecb_t *ecb; 13768 dtrace_probe_t *probe; 13769 13770 state->dts_reserve = 0; 13771 13772 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13773 return; 13774 13775 /* 13776 * If our buffer policy is a "fill" buffer policy, we need to set the 13777 * prereserved space to be the space required by the END probes. 13778 */ 13779 probe = dtrace_probes[dtrace_probeid_end - 1]; 13780 ASSERT(probe != NULL); 13781 13782 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13783 if (ecb->dte_state != state) 13784 continue; 13785 13786 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13787 } 13788 } 13789 13790 static int 13791 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13792 { 13793 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13794 dtrace_speculation_t *spec; 13795 dtrace_buffer_t *buf; 13796 cyc_handler_t hdlr; 13797 cyc_time_t when; 13798 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13799 dtrace_icookie_t cookie; 13800 13801 mutex_enter(&cpu_lock); 13802 mutex_enter(&dtrace_lock); 13803 13804 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13805 rval = EBUSY; 13806 goto out; 13807 } 13808 13809 /* 13810 * Before we can perform any checks, we must prime all of the 13811 * retained enablings that correspond to this state. 13812 */ 13813 dtrace_enabling_prime(state); 13814 13815 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13816 rval = EACCES; 13817 goto out; 13818 } 13819 13820 dtrace_state_prereserve(state); 13821 13822 /* 13823 * Now we want to do is try to allocate our speculations. 13824 * We do not automatically resize the number of speculations; if 13825 * this fails, we will fail the operation. 13826 */ 13827 nspec = opt[DTRACEOPT_NSPEC]; 13828 ASSERT(nspec != DTRACEOPT_UNSET); 13829 13830 if (nspec > INT_MAX) { 13831 rval = ENOMEM; 13832 goto out; 13833 } 13834 13835 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13836 KM_NOSLEEP | KM_NORMALPRI); 13837 13838 if (spec == NULL) { 13839 rval = ENOMEM; 13840 goto out; 13841 } 13842 13843 state->dts_speculations = spec; 13844 state->dts_nspeculations = (int)nspec; 13845 13846 for (i = 0; i < nspec; i++) { 13847 if ((buf = kmem_zalloc(bufsize, 13848 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13849 rval = ENOMEM; 13850 goto err; 13851 } 13852 13853 spec[i].dtsp_buffer = buf; 13854 } 13855 13856 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13857 if (dtrace_anon.dta_state == NULL) { 13858 rval = ENOENT; 13859 goto out; 13860 } 13861 13862 if (state->dts_necbs != 0) { 13863 rval = EALREADY; 13864 goto out; 13865 } 13866 13867 state->dts_anon = dtrace_anon_grab(); 13868 ASSERT(state->dts_anon != NULL); 13869 state = state->dts_anon; 13870 13871 /* 13872 * We want "grabanon" to be set in the grabbed state, so we'll 13873 * copy that option value from the grabbing state into the 13874 * grabbed state. 13875 */ 13876 state->dts_options[DTRACEOPT_GRABANON] = 13877 opt[DTRACEOPT_GRABANON]; 13878 13879 *cpu = dtrace_anon.dta_beganon; 13880 13881 /* 13882 * If the anonymous state is active (as it almost certainly 13883 * is if the anonymous enabling ultimately matched anything), 13884 * we don't allow any further option processing -- but we 13885 * don't return failure. 13886 */ 13887 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13888 goto out; 13889 } 13890 13891 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13892 opt[DTRACEOPT_AGGSIZE] != 0) { 13893 if (state->dts_aggregations == NULL) { 13894 /* 13895 * We're not going to create an aggregation buffer 13896 * because we don't have any ECBs that contain 13897 * aggregations -- set this option to 0. 13898 */ 13899 opt[DTRACEOPT_AGGSIZE] = 0; 13900 } else { 13901 /* 13902 * If we have an aggregation buffer, we must also have 13903 * a buffer to use as scratch. 13904 */ 13905 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13906 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13907 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13908 } 13909 } 13910 } 13911 13912 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13913 opt[DTRACEOPT_SPECSIZE] != 0) { 13914 if (!state->dts_speculates) { 13915 /* 13916 * We're not going to create speculation buffers 13917 * because we don't have any ECBs that actually 13918 * speculate -- set the speculation size to 0. 13919 */ 13920 opt[DTRACEOPT_SPECSIZE] = 0; 13921 } 13922 } 13923 13924 /* 13925 * The bare minimum size for any buffer that we're actually going to 13926 * do anything to is sizeof (uint64_t). 13927 */ 13928 sz = sizeof (uint64_t); 13929 13930 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13931 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13932 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13933 /* 13934 * A buffer size has been explicitly set to 0 (or to a size 13935 * that will be adjusted to 0) and we need the space -- we 13936 * need to return failure. We return ENOSPC to differentiate 13937 * it from failing to allocate a buffer due to failure to meet 13938 * the reserve (for which we return E2BIG). 13939 */ 13940 rval = ENOSPC; 13941 goto out; 13942 } 13943 13944 if ((rval = dtrace_state_buffers(state)) != 0) 13945 goto err; 13946 13947 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13948 sz = dtrace_dstate_defsize; 13949 13950 do { 13951 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13952 13953 if (rval == 0) 13954 break; 13955 13956 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13957 goto err; 13958 } while (sz >>= 1); 13959 13960 opt[DTRACEOPT_DYNVARSIZE] = sz; 13961 13962 if (rval != 0) 13963 goto err; 13964 13965 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13966 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13967 13968 if (opt[DTRACEOPT_CLEANRATE] == 0) 13969 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13970 13971 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13972 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13973 13974 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13975 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13976 13977 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13978 hdlr.cyh_arg = state; 13979 hdlr.cyh_level = CY_LOW_LEVEL; 13980 13981 when.cyt_when = 0; 13982 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13983 13984 state->dts_cleaner = cyclic_add(&hdlr, &when); 13985 13986 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13987 hdlr.cyh_arg = state; 13988 hdlr.cyh_level = CY_LOW_LEVEL; 13989 13990 when.cyt_when = 0; 13991 when.cyt_interval = dtrace_deadman_interval; 13992 13993 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13994 state->dts_deadman = cyclic_add(&hdlr, &when); 13995 13996 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13997 13998 if (state->dts_getf != 0 && 13999 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14000 /* 14001 * We don't have kernel privs but we have at least one call 14002 * to getf(); we need to bump our zone's count, and (if 14003 * this is the first enabling to have an unprivileged call 14004 * to getf()) we need to hook into closef(). 14005 */ 14006 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14007 14008 if (dtrace_getf++ == 0) { 14009 ASSERT(dtrace_closef == NULL); 14010 dtrace_closef = dtrace_getf_barrier; 14011 } 14012 } 14013 14014 /* 14015 * Now it's time to actually fire the BEGIN probe. We need to disable 14016 * interrupts here both to record the CPU on which we fired the BEGIN 14017 * probe (the data from this CPU will be processed first at user 14018 * level) and to manually activate the buffer for this CPU. 14019 */ 14020 cookie = dtrace_interrupt_disable(); 14021 *cpu = CPU->cpu_id; 14022 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14023 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14024 14025 dtrace_probe(dtrace_probeid_begin, 14026 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14027 dtrace_interrupt_enable(cookie); 14028 /* 14029 * We may have had an exit action from a BEGIN probe; only change our 14030 * state to ACTIVE if we're still in WARMUP. 14031 */ 14032 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14033 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14034 14035 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14036 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14037 14038 /* 14039 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14040 * want each CPU to transition its principal buffer out of the 14041 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14042 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14043 * atomically transition from processing none of a state's ECBs to 14044 * processing all of them. 14045 */ 14046 dtrace_xcall(DTRACE_CPUALL, 14047 (dtrace_xcall_t)dtrace_buffer_activate, state); 14048 goto out; 14049 14050 err: 14051 dtrace_buffer_free(state->dts_buffer); 14052 dtrace_buffer_free(state->dts_aggbuffer); 14053 14054 if ((nspec = state->dts_nspeculations) == 0) { 14055 ASSERT(state->dts_speculations == NULL); 14056 goto out; 14057 } 14058 14059 spec = state->dts_speculations; 14060 ASSERT(spec != NULL); 14061 14062 for (i = 0; i < state->dts_nspeculations; i++) { 14063 if ((buf = spec[i].dtsp_buffer) == NULL) 14064 break; 14065 14066 dtrace_buffer_free(buf); 14067 kmem_free(buf, bufsize); 14068 } 14069 14070 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14071 state->dts_nspeculations = 0; 14072 state->dts_speculations = NULL; 14073 14074 out: 14075 mutex_exit(&dtrace_lock); 14076 mutex_exit(&cpu_lock); 14077 14078 return (rval); 14079 } 14080 14081 static int 14082 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14083 { 14084 dtrace_icookie_t cookie; 14085 14086 ASSERT(MUTEX_HELD(&dtrace_lock)); 14087 14088 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14089 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14090 return (EINVAL); 14091 14092 /* 14093 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14094 * to be sure that every CPU has seen it. See below for the details 14095 * on why this is done. 14096 */ 14097 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14098 dtrace_sync(); 14099 14100 /* 14101 * By this point, it is impossible for any CPU to be still processing 14102 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14103 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14104 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14105 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14106 * iff we're in the END probe. 14107 */ 14108 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14109 dtrace_sync(); 14110 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14111 14112 /* 14113 * Finally, we can release the reserve and call the END probe. We 14114 * disable interrupts across calling the END probe to allow us to 14115 * return the CPU on which we actually called the END probe. This 14116 * allows user-land to be sure that this CPU's principal buffer is 14117 * processed last. 14118 */ 14119 state->dts_reserve = 0; 14120 14121 cookie = dtrace_interrupt_disable(); 14122 *cpu = CPU->cpu_id; 14123 dtrace_probe(dtrace_probeid_end, 14124 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14125 dtrace_interrupt_enable(cookie); 14126 14127 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14128 dtrace_sync(); 14129 14130 if (state->dts_getf != 0 && 14131 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14132 /* 14133 * We don't have kernel privs but we have at least one call 14134 * to getf(); we need to lower our zone's count, and (if 14135 * this is the last enabling to have an unprivileged call 14136 * to getf()) we need to clear the closef() hook. 14137 */ 14138 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14139 ASSERT(dtrace_closef == dtrace_getf_barrier); 14140 ASSERT(dtrace_getf > 0); 14141 14142 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14143 14144 if (--dtrace_getf == 0) 14145 dtrace_closef = NULL; 14146 } 14147 14148 return (0); 14149 } 14150 14151 static int 14152 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14153 dtrace_optval_t val) 14154 { 14155 ASSERT(MUTEX_HELD(&dtrace_lock)); 14156 14157 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14158 return (EBUSY); 14159 14160 if (option >= DTRACEOPT_MAX) 14161 return (EINVAL); 14162 14163 if (option != DTRACEOPT_CPU && val < 0) 14164 return (EINVAL); 14165 14166 switch (option) { 14167 case DTRACEOPT_DESTRUCTIVE: 14168 if (dtrace_destructive_disallow) 14169 return (EACCES); 14170 14171 state->dts_cred.dcr_destructive = 1; 14172 break; 14173 14174 case DTRACEOPT_BUFSIZE: 14175 case DTRACEOPT_DYNVARSIZE: 14176 case DTRACEOPT_AGGSIZE: 14177 case DTRACEOPT_SPECSIZE: 14178 case DTRACEOPT_STRSIZE: 14179 if (val < 0) 14180 return (EINVAL); 14181 14182 if (val >= LONG_MAX) { 14183 /* 14184 * If this is an otherwise negative value, set it to 14185 * the highest multiple of 128m less than LONG_MAX. 14186 * Technically, we're adjusting the size without 14187 * regard to the buffer resizing policy, but in fact, 14188 * this has no effect -- if we set the buffer size to 14189 * ~LONG_MAX and the buffer policy is ultimately set to 14190 * be "manual", the buffer allocation is guaranteed to 14191 * fail, if only because the allocation requires two 14192 * buffers. (We set the the size to the highest 14193 * multiple of 128m because it ensures that the size 14194 * will remain a multiple of a megabyte when 14195 * repeatedly halved -- all the way down to 15m.) 14196 */ 14197 val = LONG_MAX - (1 << 27) + 1; 14198 } 14199 } 14200 14201 state->dts_options[option] = val; 14202 14203 return (0); 14204 } 14205 14206 static void 14207 dtrace_state_destroy(dtrace_state_t *state) 14208 { 14209 dtrace_ecb_t *ecb; 14210 dtrace_vstate_t *vstate = &state->dts_vstate; 14211 minor_t minor = getminor(state->dts_dev); 14212 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14213 dtrace_speculation_t *spec = state->dts_speculations; 14214 int nspec = state->dts_nspeculations; 14215 uint32_t match; 14216 14217 ASSERT(MUTEX_HELD(&dtrace_lock)); 14218 ASSERT(MUTEX_HELD(&cpu_lock)); 14219 14220 /* 14221 * First, retract any retained enablings for this state. 14222 */ 14223 dtrace_enabling_retract(state); 14224 ASSERT(state->dts_nretained == 0); 14225 14226 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14227 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14228 /* 14229 * We have managed to come into dtrace_state_destroy() on a 14230 * hot enabling -- almost certainly because of a disorderly 14231 * shutdown of a consumer. (That is, a consumer that is 14232 * exiting without having called dtrace_stop().) In this case, 14233 * we're going to set our activity to be KILLED, and then 14234 * issue a sync to be sure that everyone is out of probe 14235 * context before we start blowing away ECBs. 14236 */ 14237 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14238 dtrace_sync(); 14239 } 14240 14241 /* 14242 * Release the credential hold we took in dtrace_state_create(). 14243 */ 14244 if (state->dts_cred.dcr_cred != NULL) 14245 crfree(state->dts_cred.dcr_cred); 14246 14247 /* 14248 * Now we can safely disable and destroy any enabled probes. Because 14249 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14250 * (especially if they're all enabled), we take two passes through the 14251 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14252 * in the second we disable whatever is left over. 14253 */ 14254 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14255 for (i = 0; i < state->dts_necbs; i++) { 14256 if ((ecb = state->dts_ecbs[i]) == NULL) 14257 continue; 14258 14259 if (match && ecb->dte_probe != NULL) { 14260 dtrace_probe_t *probe = ecb->dte_probe; 14261 dtrace_provider_t *prov = probe->dtpr_provider; 14262 14263 if (!(prov->dtpv_priv.dtpp_flags & match)) 14264 continue; 14265 } 14266 14267 dtrace_ecb_disable(ecb); 14268 dtrace_ecb_destroy(ecb); 14269 } 14270 14271 if (!match) 14272 break; 14273 } 14274 14275 /* 14276 * Before we free the buffers, perform one more sync to assure that 14277 * every CPU is out of probe context. 14278 */ 14279 dtrace_sync(); 14280 14281 dtrace_buffer_free(state->dts_buffer); 14282 dtrace_buffer_free(state->dts_aggbuffer); 14283 14284 for (i = 0; i < nspec; i++) 14285 dtrace_buffer_free(spec[i].dtsp_buffer); 14286 14287 if (state->dts_cleaner != CYCLIC_NONE) 14288 cyclic_remove(state->dts_cleaner); 14289 14290 if (state->dts_deadman != CYCLIC_NONE) 14291 cyclic_remove(state->dts_deadman); 14292 14293 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14294 dtrace_vstate_fini(vstate); 14295 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14296 14297 if (state->dts_aggregations != NULL) { 14298 #ifdef DEBUG 14299 for (i = 0; i < state->dts_naggregations; i++) 14300 ASSERT(state->dts_aggregations[i] == NULL); 14301 #endif 14302 ASSERT(state->dts_naggregations > 0); 14303 kmem_free(state->dts_aggregations, 14304 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14305 } 14306 14307 kmem_free(state->dts_buffer, bufsize); 14308 kmem_free(state->dts_aggbuffer, bufsize); 14309 14310 for (i = 0; i < nspec; i++) 14311 kmem_free(spec[i].dtsp_buffer, bufsize); 14312 14313 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14314 14315 dtrace_format_destroy(state); 14316 14317 vmem_destroy(state->dts_aggid_arena); 14318 ddi_soft_state_free(dtrace_softstate, minor); 14319 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14320 } 14321 14322 /* 14323 * DTrace Anonymous Enabling Functions 14324 */ 14325 static dtrace_state_t * 14326 dtrace_anon_grab(void) 14327 { 14328 dtrace_state_t *state; 14329 14330 ASSERT(MUTEX_HELD(&dtrace_lock)); 14331 14332 if ((state = dtrace_anon.dta_state) == NULL) { 14333 ASSERT(dtrace_anon.dta_enabling == NULL); 14334 return (NULL); 14335 } 14336 14337 ASSERT(dtrace_anon.dta_enabling != NULL); 14338 ASSERT(dtrace_retained != NULL); 14339 14340 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14341 dtrace_anon.dta_enabling = NULL; 14342 dtrace_anon.dta_state = NULL; 14343 14344 return (state); 14345 } 14346 14347 static void 14348 dtrace_anon_property(void) 14349 { 14350 int i, rv; 14351 dtrace_state_t *state; 14352 dof_hdr_t *dof; 14353 char c[32]; /* enough for "dof-data-" + digits */ 14354 14355 ASSERT(MUTEX_HELD(&dtrace_lock)); 14356 ASSERT(MUTEX_HELD(&cpu_lock)); 14357 14358 for (i = 0; ; i++) { 14359 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14360 14361 dtrace_err_verbose = 1; 14362 14363 if ((dof = dtrace_dof_property(c)) == NULL) { 14364 dtrace_err_verbose = 0; 14365 break; 14366 } 14367 14368 /* 14369 * We want to create anonymous state, so we need to transition 14370 * the kernel debugger to indicate that DTrace is active. If 14371 * this fails (e.g. because the debugger has modified text in 14372 * some way), we won't continue with the processing. 14373 */ 14374 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14375 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14376 "enabling ignored."); 14377 dtrace_dof_destroy(dof); 14378 break; 14379 } 14380 14381 /* 14382 * If we haven't allocated an anonymous state, we'll do so now. 14383 */ 14384 if ((state = dtrace_anon.dta_state) == NULL) { 14385 state = dtrace_state_create(NULL, NULL); 14386 dtrace_anon.dta_state = state; 14387 14388 if (state == NULL) { 14389 /* 14390 * This basically shouldn't happen: the only 14391 * failure mode from dtrace_state_create() is a 14392 * failure of ddi_soft_state_zalloc() that 14393 * itself should never happen. Still, the 14394 * interface allows for a failure mode, and 14395 * we want to fail as gracefully as possible: 14396 * we'll emit an error message and cease 14397 * processing anonymous state in this case. 14398 */ 14399 cmn_err(CE_WARN, "failed to create " 14400 "anonymous state"); 14401 dtrace_dof_destroy(dof); 14402 break; 14403 } 14404 } 14405 14406 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14407 &dtrace_anon.dta_enabling, 0, B_TRUE); 14408 14409 if (rv == 0) 14410 rv = dtrace_dof_options(dof, state); 14411 14412 dtrace_err_verbose = 0; 14413 dtrace_dof_destroy(dof); 14414 14415 if (rv != 0) { 14416 /* 14417 * This is malformed DOF; chuck any anonymous state 14418 * that we created. 14419 */ 14420 ASSERT(dtrace_anon.dta_enabling == NULL); 14421 dtrace_state_destroy(state); 14422 dtrace_anon.dta_state = NULL; 14423 break; 14424 } 14425 14426 ASSERT(dtrace_anon.dta_enabling != NULL); 14427 } 14428 14429 if (dtrace_anon.dta_enabling != NULL) { 14430 int rval; 14431 14432 /* 14433 * dtrace_enabling_retain() can only fail because we are 14434 * trying to retain more enablings than are allowed -- but 14435 * we only have one anonymous enabling, and we are guaranteed 14436 * to be allowed at least one retained enabling; we assert 14437 * that dtrace_enabling_retain() returns success. 14438 */ 14439 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14440 ASSERT(rval == 0); 14441 14442 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14443 } 14444 } 14445 14446 /* 14447 * DTrace Helper Functions 14448 */ 14449 static void 14450 dtrace_helper_trace(dtrace_helper_action_t *helper, 14451 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14452 { 14453 uint32_t size, next, nnext, i; 14454 dtrace_helptrace_t *ent, *buffer; 14455 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14456 14457 if ((buffer = dtrace_helptrace_buffer) == NULL) 14458 return; 14459 14460 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14461 14462 /* 14463 * What would a tracing framework be without its own tracing 14464 * framework? (Well, a hell of a lot simpler, for starters...) 14465 */ 14466 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14467 sizeof (uint64_t) - sizeof (uint64_t); 14468 14469 /* 14470 * Iterate until we can allocate a slot in the trace buffer. 14471 */ 14472 do { 14473 next = dtrace_helptrace_next; 14474 14475 if (next + size < dtrace_helptrace_bufsize) { 14476 nnext = next + size; 14477 } else { 14478 nnext = size; 14479 } 14480 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14481 14482 /* 14483 * We have our slot; fill it in. 14484 */ 14485 if (nnext == size) { 14486 dtrace_helptrace_wrapped++; 14487 next = 0; 14488 } 14489 14490 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14491 ent->dtht_helper = helper; 14492 ent->dtht_where = where; 14493 ent->dtht_nlocals = vstate->dtvs_nlocals; 14494 14495 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14496 mstate->dtms_fltoffs : -1; 14497 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14498 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14499 14500 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14501 dtrace_statvar_t *svar; 14502 14503 if ((svar = vstate->dtvs_locals[i]) == NULL) 14504 continue; 14505 14506 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14507 ent->dtht_locals[i] = 14508 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14509 } 14510 } 14511 14512 static uint64_t 14513 dtrace_helper(int which, dtrace_mstate_t *mstate, 14514 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14515 { 14516 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14517 uint64_t sarg0 = mstate->dtms_arg[0]; 14518 uint64_t sarg1 = mstate->dtms_arg[1]; 14519 uint64_t rval; 14520 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14521 dtrace_helper_action_t *helper; 14522 dtrace_vstate_t *vstate; 14523 dtrace_difo_t *pred; 14524 int i, trace = dtrace_helptrace_buffer != NULL; 14525 14526 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14527 14528 if (helpers == NULL) 14529 return (0); 14530 14531 if ((helper = helpers->dthps_actions[which]) == NULL) 14532 return (0); 14533 14534 vstate = &helpers->dthps_vstate; 14535 mstate->dtms_arg[0] = arg0; 14536 mstate->dtms_arg[1] = arg1; 14537 14538 /* 14539 * Now iterate over each helper. If its predicate evaluates to 'true', 14540 * we'll call the corresponding actions. Note that the below calls 14541 * to dtrace_dif_emulate() may set faults in machine state. This is 14542 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14543 * the stored DIF offset with its own (which is the desired behavior). 14544 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14545 * from machine state; this is okay, too. 14546 */ 14547 for (; helper != NULL; helper = helper->dtha_next) { 14548 if ((pred = helper->dtha_predicate) != NULL) { 14549 if (trace) 14550 dtrace_helper_trace(helper, mstate, vstate, 0); 14551 14552 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14553 goto next; 14554 14555 if (*flags & CPU_DTRACE_FAULT) 14556 goto err; 14557 } 14558 14559 for (i = 0; i < helper->dtha_nactions; i++) { 14560 if (trace) 14561 dtrace_helper_trace(helper, 14562 mstate, vstate, i + 1); 14563 14564 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14565 mstate, vstate, state); 14566 14567 if (*flags & CPU_DTRACE_FAULT) 14568 goto err; 14569 } 14570 14571 next: 14572 if (trace) 14573 dtrace_helper_trace(helper, mstate, vstate, 14574 DTRACE_HELPTRACE_NEXT); 14575 } 14576 14577 if (trace) 14578 dtrace_helper_trace(helper, mstate, vstate, 14579 DTRACE_HELPTRACE_DONE); 14580 14581 /* 14582 * Restore the arg0 that we saved upon entry. 14583 */ 14584 mstate->dtms_arg[0] = sarg0; 14585 mstate->dtms_arg[1] = sarg1; 14586 14587 return (rval); 14588 14589 err: 14590 if (trace) 14591 dtrace_helper_trace(helper, mstate, vstate, 14592 DTRACE_HELPTRACE_ERR); 14593 14594 /* 14595 * Restore the arg0 that we saved upon entry. 14596 */ 14597 mstate->dtms_arg[0] = sarg0; 14598 mstate->dtms_arg[1] = sarg1; 14599 14600 return (NULL); 14601 } 14602 14603 static void 14604 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14605 dtrace_vstate_t *vstate) 14606 { 14607 int i; 14608 14609 if (helper->dtha_predicate != NULL) 14610 dtrace_difo_release(helper->dtha_predicate, vstate); 14611 14612 for (i = 0; i < helper->dtha_nactions; i++) { 14613 ASSERT(helper->dtha_actions[i] != NULL); 14614 dtrace_difo_release(helper->dtha_actions[i], vstate); 14615 } 14616 14617 kmem_free(helper->dtha_actions, 14618 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14619 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14620 } 14621 14622 static int 14623 dtrace_helper_destroygen(int gen) 14624 { 14625 proc_t *p = curproc; 14626 dtrace_helpers_t *help = p->p_dtrace_helpers; 14627 dtrace_vstate_t *vstate; 14628 int i; 14629 14630 ASSERT(MUTEX_HELD(&dtrace_lock)); 14631 14632 if (help == NULL || gen > help->dthps_generation) 14633 return (EINVAL); 14634 14635 vstate = &help->dthps_vstate; 14636 14637 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14638 dtrace_helper_action_t *last = NULL, *h, *next; 14639 14640 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14641 next = h->dtha_next; 14642 14643 if (h->dtha_generation == gen) { 14644 if (last != NULL) { 14645 last->dtha_next = next; 14646 } else { 14647 help->dthps_actions[i] = next; 14648 } 14649 14650 dtrace_helper_action_destroy(h, vstate); 14651 } else { 14652 last = h; 14653 } 14654 } 14655 } 14656 14657 /* 14658 * Interate until we've cleared out all helper providers with the 14659 * given generation number. 14660 */ 14661 for (;;) { 14662 dtrace_helper_provider_t *prov; 14663 14664 /* 14665 * Look for a helper provider with the right generation. We 14666 * have to start back at the beginning of the list each time 14667 * because we drop dtrace_lock. It's unlikely that we'll make 14668 * more than two passes. 14669 */ 14670 for (i = 0; i < help->dthps_nprovs; i++) { 14671 prov = help->dthps_provs[i]; 14672 14673 if (prov->dthp_generation == gen) 14674 break; 14675 } 14676 14677 /* 14678 * If there were no matches, we're done. 14679 */ 14680 if (i == help->dthps_nprovs) 14681 break; 14682 14683 /* 14684 * Move the last helper provider into this slot. 14685 */ 14686 help->dthps_nprovs--; 14687 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14688 help->dthps_provs[help->dthps_nprovs] = NULL; 14689 14690 mutex_exit(&dtrace_lock); 14691 14692 /* 14693 * If we have a meta provider, remove this helper provider. 14694 */ 14695 mutex_enter(&dtrace_meta_lock); 14696 if (dtrace_meta_pid != NULL) { 14697 ASSERT(dtrace_deferred_pid == NULL); 14698 dtrace_helper_provider_remove(&prov->dthp_prov, 14699 p->p_pid); 14700 } 14701 mutex_exit(&dtrace_meta_lock); 14702 14703 dtrace_helper_provider_destroy(prov); 14704 14705 mutex_enter(&dtrace_lock); 14706 } 14707 14708 return (0); 14709 } 14710 14711 static int 14712 dtrace_helper_validate(dtrace_helper_action_t *helper) 14713 { 14714 int err = 0, i; 14715 dtrace_difo_t *dp; 14716 14717 if ((dp = helper->dtha_predicate) != NULL) 14718 err += dtrace_difo_validate_helper(dp); 14719 14720 for (i = 0; i < helper->dtha_nactions; i++) 14721 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14722 14723 return (err == 0); 14724 } 14725 14726 static int 14727 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14728 { 14729 dtrace_helpers_t *help; 14730 dtrace_helper_action_t *helper, *last; 14731 dtrace_actdesc_t *act; 14732 dtrace_vstate_t *vstate; 14733 dtrace_predicate_t *pred; 14734 int count = 0, nactions = 0, i; 14735 14736 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14737 return (EINVAL); 14738 14739 help = curproc->p_dtrace_helpers; 14740 last = help->dthps_actions[which]; 14741 vstate = &help->dthps_vstate; 14742 14743 for (count = 0; last != NULL; last = last->dtha_next) { 14744 count++; 14745 if (last->dtha_next == NULL) 14746 break; 14747 } 14748 14749 /* 14750 * If we already have dtrace_helper_actions_max helper actions for this 14751 * helper action type, we'll refuse to add a new one. 14752 */ 14753 if (count >= dtrace_helper_actions_max) 14754 return (ENOSPC); 14755 14756 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14757 helper->dtha_generation = help->dthps_generation; 14758 14759 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14760 ASSERT(pred->dtp_difo != NULL); 14761 dtrace_difo_hold(pred->dtp_difo); 14762 helper->dtha_predicate = pred->dtp_difo; 14763 } 14764 14765 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14766 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14767 goto err; 14768 14769 if (act->dtad_difo == NULL) 14770 goto err; 14771 14772 nactions++; 14773 } 14774 14775 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14776 (helper->dtha_nactions = nactions), KM_SLEEP); 14777 14778 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14779 dtrace_difo_hold(act->dtad_difo); 14780 helper->dtha_actions[i++] = act->dtad_difo; 14781 } 14782 14783 if (!dtrace_helper_validate(helper)) 14784 goto err; 14785 14786 if (last == NULL) { 14787 help->dthps_actions[which] = helper; 14788 } else { 14789 last->dtha_next = helper; 14790 } 14791 14792 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14793 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14794 dtrace_helptrace_next = 0; 14795 } 14796 14797 return (0); 14798 err: 14799 dtrace_helper_action_destroy(helper, vstate); 14800 return (EINVAL); 14801 } 14802 14803 static void 14804 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14805 dof_helper_t *dofhp) 14806 { 14807 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14808 14809 mutex_enter(&dtrace_meta_lock); 14810 mutex_enter(&dtrace_lock); 14811 14812 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14813 /* 14814 * If the dtrace module is loaded but not attached, or if 14815 * there aren't isn't a meta provider registered to deal with 14816 * these provider descriptions, we need to postpone creating 14817 * the actual providers until later. 14818 */ 14819 14820 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14821 dtrace_deferred_pid != help) { 14822 help->dthps_deferred = 1; 14823 help->dthps_pid = p->p_pid; 14824 help->dthps_next = dtrace_deferred_pid; 14825 help->dthps_prev = NULL; 14826 if (dtrace_deferred_pid != NULL) 14827 dtrace_deferred_pid->dthps_prev = help; 14828 dtrace_deferred_pid = help; 14829 } 14830 14831 mutex_exit(&dtrace_lock); 14832 14833 } else if (dofhp != NULL) { 14834 /* 14835 * If the dtrace module is loaded and we have a particular 14836 * helper provider description, pass that off to the 14837 * meta provider. 14838 */ 14839 14840 mutex_exit(&dtrace_lock); 14841 14842 dtrace_helper_provide(dofhp, p->p_pid); 14843 14844 } else { 14845 /* 14846 * Otherwise, just pass all the helper provider descriptions 14847 * off to the meta provider. 14848 */ 14849 14850 int i; 14851 mutex_exit(&dtrace_lock); 14852 14853 for (i = 0; i < help->dthps_nprovs; i++) { 14854 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14855 p->p_pid); 14856 } 14857 } 14858 14859 mutex_exit(&dtrace_meta_lock); 14860 } 14861 14862 static int 14863 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14864 { 14865 dtrace_helpers_t *help; 14866 dtrace_helper_provider_t *hprov, **tmp_provs; 14867 uint_t tmp_maxprovs, i; 14868 14869 ASSERT(MUTEX_HELD(&dtrace_lock)); 14870 14871 help = curproc->p_dtrace_helpers; 14872 ASSERT(help != NULL); 14873 14874 /* 14875 * If we already have dtrace_helper_providers_max helper providers, 14876 * we're refuse to add a new one. 14877 */ 14878 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14879 return (ENOSPC); 14880 14881 /* 14882 * Check to make sure this isn't a duplicate. 14883 */ 14884 for (i = 0; i < help->dthps_nprovs; i++) { 14885 if (dofhp->dofhp_addr == 14886 help->dthps_provs[i]->dthp_prov.dofhp_addr) 14887 return (EALREADY); 14888 } 14889 14890 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14891 hprov->dthp_prov = *dofhp; 14892 hprov->dthp_ref = 1; 14893 hprov->dthp_generation = gen; 14894 14895 /* 14896 * Allocate a bigger table for helper providers if it's already full. 14897 */ 14898 if (help->dthps_maxprovs == help->dthps_nprovs) { 14899 tmp_maxprovs = help->dthps_maxprovs; 14900 tmp_provs = help->dthps_provs; 14901 14902 if (help->dthps_maxprovs == 0) 14903 help->dthps_maxprovs = 2; 14904 else 14905 help->dthps_maxprovs *= 2; 14906 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14907 help->dthps_maxprovs = dtrace_helper_providers_max; 14908 14909 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14910 14911 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14912 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14913 14914 if (tmp_provs != NULL) { 14915 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14916 sizeof (dtrace_helper_provider_t *)); 14917 kmem_free(tmp_provs, tmp_maxprovs * 14918 sizeof (dtrace_helper_provider_t *)); 14919 } 14920 } 14921 14922 help->dthps_provs[help->dthps_nprovs] = hprov; 14923 help->dthps_nprovs++; 14924 14925 return (0); 14926 } 14927 14928 static void 14929 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14930 { 14931 mutex_enter(&dtrace_lock); 14932 14933 if (--hprov->dthp_ref == 0) { 14934 dof_hdr_t *dof; 14935 mutex_exit(&dtrace_lock); 14936 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14937 dtrace_dof_destroy(dof); 14938 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14939 } else { 14940 mutex_exit(&dtrace_lock); 14941 } 14942 } 14943 14944 static int 14945 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14946 { 14947 uintptr_t daddr = (uintptr_t)dof; 14948 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14949 dof_provider_t *provider; 14950 dof_probe_t *probe; 14951 uint8_t *arg; 14952 char *strtab, *typestr; 14953 dof_stridx_t typeidx; 14954 size_t typesz; 14955 uint_t nprobes, j, k; 14956 14957 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14958 14959 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14960 dtrace_dof_error(dof, "misaligned section offset"); 14961 return (-1); 14962 } 14963 14964 /* 14965 * The section needs to be large enough to contain the DOF provider 14966 * structure appropriate for the given version. 14967 */ 14968 if (sec->dofs_size < 14969 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14970 offsetof(dof_provider_t, dofpv_prenoffs) : 14971 sizeof (dof_provider_t))) { 14972 dtrace_dof_error(dof, "provider section too small"); 14973 return (-1); 14974 } 14975 14976 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14977 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14978 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14979 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14980 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14981 14982 if (str_sec == NULL || prb_sec == NULL || 14983 arg_sec == NULL || off_sec == NULL) 14984 return (-1); 14985 14986 enoff_sec = NULL; 14987 14988 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14989 provider->dofpv_prenoffs != DOF_SECT_NONE && 14990 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14991 provider->dofpv_prenoffs)) == NULL) 14992 return (-1); 14993 14994 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14995 14996 if (provider->dofpv_name >= str_sec->dofs_size || 14997 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14998 dtrace_dof_error(dof, "invalid provider name"); 14999 return (-1); 15000 } 15001 15002 if (prb_sec->dofs_entsize == 0 || 15003 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15004 dtrace_dof_error(dof, "invalid entry size"); 15005 return (-1); 15006 } 15007 15008 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15009 dtrace_dof_error(dof, "misaligned entry size"); 15010 return (-1); 15011 } 15012 15013 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15014 dtrace_dof_error(dof, "invalid entry size"); 15015 return (-1); 15016 } 15017 15018 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15019 dtrace_dof_error(dof, "misaligned section offset"); 15020 return (-1); 15021 } 15022 15023 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15024 dtrace_dof_error(dof, "invalid entry size"); 15025 return (-1); 15026 } 15027 15028 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15029 15030 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15031 15032 /* 15033 * Take a pass through the probes to check for errors. 15034 */ 15035 for (j = 0; j < nprobes; j++) { 15036 probe = (dof_probe_t *)(uintptr_t)(daddr + 15037 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15038 15039 if (probe->dofpr_func >= str_sec->dofs_size) { 15040 dtrace_dof_error(dof, "invalid function name"); 15041 return (-1); 15042 } 15043 15044 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15045 dtrace_dof_error(dof, "function name too long"); 15046 return (-1); 15047 } 15048 15049 if (probe->dofpr_name >= str_sec->dofs_size || 15050 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15051 dtrace_dof_error(dof, "invalid probe name"); 15052 return (-1); 15053 } 15054 15055 /* 15056 * The offset count must not wrap the index, and the offsets 15057 * must also not overflow the section's data. 15058 */ 15059 if (probe->dofpr_offidx + probe->dofpr_noffs < 15060 probe->dofpr_offidx || 15061 (probe->dofpr_offidx + probe->dofpr_noffs) * 15062 off_sec->dofs_entsize > off_sec->dofs_size) { 15063 dtrace_dof_error(dof, "invalid probe offset"); 15064 return (-1); 15065 } 15066 15067 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15068 /* 15069 * If there's no is-enabled offset section, make sure 15070 * there aren't any is-enabled offsets. Otherwise 15071 * perform the same checks as for probe offsets 15072 * (immediately above). 15073 */ 15074 if (enoff_sec == NULL) { 15075 if (probe->dofpr_enoffidx != 0 || 15076 probe->dofpr_nenoffs != 0) { 15077 dtrace_dof_error(dof, "is-enabled " 15078 "offsets with null section"); 15079 return (-1); 15080 } 15081 } else if (probe->dofpr_enoffidx + 15082 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15083 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15084 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15085 dtrace_dof_error(dof, "invalid is-enabled " 15086 "offset"); 15087 return (-1); 15088 } 15089 15090 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15091 dtrace_dof_error(dof, "zero probe and " 15092 "is-enabled offsets"); 15093 return (-1); 15094 } 15095 } else if (probe->dofpr_noffs == 0) { 15096 dtrace_dof_error(dof, "zero probe offsets"); 15097 return (-1); 15098 } 15099 15100 if (probe->dofpr_argidx + probe->dofpr_xargc < 15101 probe->dofpr_argidx || 15102 (probe->dofpr_argidx + probe->dofpr_xargc) * 15103 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15104 dtrace_dof_error(dof, "invalid args"); 15105 return (-1); 15106 } 15107 15108 typeidx = probe->dofpr_nargv; 15109 typestr = strtab + probe->dofpr_nargv; 15110 for (k = 0; k < probe->dofpr_nargc; k++) { 15111 if (typeidx >= str_sec->dofs_size) { 15112 dtrace_dof_error(dof, "bad " 15113 "native argument type"); 15114 return (-1); 15115 } 15116 15117 typesz = strlen(typestr) + 1; 15118 if (typesz > DTRACE_ARGTYPELEN) { 15119 dtrace_dof_error(dof, "native " 15120 "argument type too long"); 15121 return (-1); 15122 } 15123 typeidx += typesz; 15124 typestr += typesz; 15125 } 15126 15127 typeidx = probe->dofpr_xargv; 15128 typestr = strtab + probe->dofpr_xargv; 15129 for (k = 0; k < probe->dofpr_xargc; k++) { 15130 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15131 dtrace_dof_error(dof, "bad " 15132 "native argument index"); 15133 return (-1); 15134 } 15135 15136 if (typeidx >= str_sec->dofs_size) { 15137 dtrace_dof_error(dof, "bad " 15138 "translated argument type"); 15139 return (-1); 15140 } 15141 15142 typesz = strlen(typestr) + 1; 15143 if (typesz > DTRACE_ARGTYPELEN) { 15144 dtrace_dof_error(dof, "translated argument " 15145 "type too long"); 15146 return (-1); 15147 } 15148 15149 typeidx += typesz; 15150 typestr += typesz; 15151 } 15152 } 15153 15154 return (0); 15155 } 15156 15157 static int 15158 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15159 { 15160 dtrace_helpers_t *help; 15161 dtrace_vstate_t *vstate; 15162 dtrace_enabling_t *enab = NULL; 15163 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15164 uintptr_t daddr = (uintptr_t)dof; 15165 15166 ASSERT(MUTEX_HELD(&dtrace_lock)); 15167 15168 if ((help = curproc->p_dtrace_helpers) == NULL) 15169 help = dtrace_helpers_create(curproc); 15170 15171 vstate = &help->dthps_vstate; 15172 15173 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15174 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15175 dtrace_dof_destroy(dof); 15176 return (rv); 15177 } 15178 15179 /* 15180 * Look for helper providers and validate their descriptions. 15181 */ 15182 if (dhp != NULL) { 15183 for (i = 0; i < dof->dofh_secnum; i++) { 15184 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15185 dof->dofh_secoff + i * dof->dofh_secsize); 15186 15187 if (sec->dofs_type != DOF_SECT_PROVIDER) 15188 continue; 15189 15190 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15191 dtrace_enabling_destroy(enab); 15192 dtrace_dof_destroy(dof); 15193 return (-1); 15194 } 15195 15196 nprovs++; 15197 } 15198 } 15199 15200 /* 15201 * Now we need to walk through the ECB descriptions in the enabling. 15202 */ 15203 for (i = 0; i < enab->dten_ndesc; i++) { 15204 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15205 dtrace_probedesc_t *desc = &ep->dted_probe; 15206 15207 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15208 continue; 15209 15210 if (strcmp(desc->dtpd_mod, "helper") != 0) 15211 continue; 15212 15213 if (strcmp(desc->dtpd_func, "ustack") != 0) 15214 continue; 15215 15216 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15217 ep)) != 0) { 15218 /* 15219 * Adding this helper action failed -- we are now going 15220 * to rip out the entire generation and return failure. 15221 */ 15222 (void) dtrace_helper_destroygen(help->dthps_generation); 15223 dtrace_enabling_destroy(enab); 15224 dtrace_dof_destroy(dof); 15225 return (-1); 15226 } 15227 15228 nhelpers++; 15229 } 15230 15231 if (nhelpers < enab->dten_ndesc) 15232 dtrace_dof_error(dof, "unmatched helpers"); 15233 15234 gen = help->dthps_generation++; 15235 dtrace_enabling_destroy(enab); 15236 15237 if (dhp != NULL && nprovs > 0) { 15238 /* 15239 * Now that this is in-kernel, we change the sense of the 15240 * members: dofhp_dof denotes the in-kernel copy of the DOF 15241 * and dofhp_addr denotes the address at user-level. 15242 */ 15243 dhp->dofhp_addr = dhp->dofhp_dof; 15244 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15245 15246 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15247 mutex_exit(&dtrace_lock); 15248 dtrace_helper_provider_register(curproc, help, dhp); 15249 mutex_enter(&dtrace_lock); 15250 15251 destroy = 0; 15252 } 15253 } 15254 15255 if (destroy) 15256 dtrace_dof_destroy(dof); 15257 15258 return (gen); 15259 } 15260 15261 static dtrace_helpers_t * 15262 dtrace_helpers_create(proc_t *p) 15263 { 15264 dtrace_helpers_t *help; 15265 15266 ASSERT(MUTEX_HELD(&dtrace_lock)); 15267 ASSERT(p->p_dtrace_helpers == NULL); 15268 15269 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15270 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15271 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15272 15273 p->p_dtrace_helpers = help; 15274 dtrace_helpers++; 15275 15276 return (help); 15277 } 15278 15279 static void 15280 dtrace_helpers_destroy(void) 15281 { 15282 dtrace_helpers_t *help; 15283 dtrace_vstate_t *vstate; 15284 proc_t *p = curproc; 15285 int i; 15286 15287 mutex_enter(&dtrace_lock); 15288 15289 ASSERT(p->p_dtrace_helpers != NULL); 15290 ASSERT(dtrace_helpers > 0); 15291 15292 help = p->p_dtrace_helpers; 15293 vstate = &help->dthps_vstate; 15294 15295 /* 15296 * We're now going to lose the help from this process. 15297 */ 15298 p->p_dtrace_helpers = NULL; 15299 dtrace_sync(); 15300 15301 /* 15302 * Destory the helper actions. 15303 */ 15304 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15305 dtrace_helper_action_t *h, *next; 15306 15307 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15308 next = h->dtha_next; 15309 dtrace_helper_action_destroy(h, vstate); 15310 h = next; 15311 } 15312 } 15313 15314 mutex_exit(&dtrace_lock); 15315 15316 /* 15317 * Destroy the helper providers. 15318 */ 15319 if (help->dthps_maxprovs > 0) { 15320 mutex_enter(&dtrace_meta_lock); 15321 if (dtrace_meta_pid != NULL) { 15322 ASSERT(dtrace_deferred_pid == NULL); 15323 15324 for (i = 0; i < help->dthps_nprovs; i++) { 15325 dtrace_helper_provider_remove( 15326 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15327 } 15328 } else { 15329 mutex_enter(&dtrace_lock); 15330 ASSERT(help->dthps_deferred == 0 || 15331 help->dthps_next != NULL || 15332 help->dthps_prev != NULL || 15333 help == dtrace_deferred_pid); 15334 15335 /* 15336 * Remove the helper from the deferred list. 15337 */ 15338 if (help->dthps_next != NULL) 15339 help->dthps_next->dthps_prev = help->dthps_prev; 15340 if (help->dthps_prev != NULL) 15341 help->dthps_prev->dthps_next = help->dthps_next; 15342 if (dtrace_deferred_pid == help) { 15343 dtrace_deferred_pid = help->dthps_next; 15344 ASSERT(help->dthps_prev == NULL); 15345 } 15346 15347 mutex_exit(&dtrace_lock); 15348 } 15349 15350 mutex_exit(&dtrace_meta_lock); 15351 15352 for (i = 0; i < help->dthps_nprovs; i++) { 15353 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15354 } 15355 15356 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15357 sizeof (dtrace_helper_provider_t *)); 15358 } 15359 15360 mutex_enter(&dtrace_lock); 15361 15362 dtrace_vstate_fini(&help->dthps_vstate); 15363 kmem_free(help->dthps_actions, 15364 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15365 kmem_free(help, sizeof (dtrace_helpers_t)); 15366 15367 --dtrace_helpers; 15368 mutex_exit(&dtrace_lock); 15369 } 15370 15371 static void 15372 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15373 { 15374 dtrace_helpers_t *help, *newhelp; 15375 dtrace_helper_action_t *helper, *new, *last; 15376 dtrace_difo_t *dp; 15377 dtrace_vstate_t *vstate; 15378 int i, j, sz, hasprovs = 0; 15379 15380 mutex_enter(&dtrace_lock); 15381 ASSERT(from->p_dtrace_helpers != NULL); 15382 ASSERT(dtrace_helpers > 0); 15383 15384 help = from->p_dtrace_helpers; 15385 newhelp = dtrace_helpers_create(to); 15386 ASSERT(to->p_dtrace_helpers != NULL); 15387 15388 newhelp->dthps_generation = help->dthps_generation; 15389 vstate = &newhelp->dthps_vstate; 15390 15391 /* 15392 * Duplicate the helper actions. 15393 */ 15394 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15395 if ((helper = help->dthps_actions[i]) == NULL) 15396 continue; 15397 15398 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15399 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15400 KM_SLEEP); 15401 new->dtha_generation = helper->dtha_generation; 15402 15403 if ((dp = helper->dtha_predicate) != NULL) { 15404 dp = dtrace_difo_duplicate(dp, vstate); 15405 new->dtha_predicate = dp; 15406 } 15407 15408 new->dtha_nactions = helper->dtha_nactions; 15409 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15410 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15411 15412 for (j = 0; j < new->dtha_nactions; j++) { 15413 dtrace_difo_t *dp = helper->dtha_actions[j]; 15414 15415 ASSERT(dp != NULL); 15416 dp = dtrace_difo_duplicate(dp, vstate); 15417 new->dtha_actions[j] = dp; 15418 } 15419 15420 if (last != NULL) { 15421 last->dtha_next = new; 15422 } else { 15423 newhelp->dthps_actions[i] = new; 15424 } 15425 15426 last = new; 15427 } 15428 } 15429 15430 /* 15431 * Duplicate the helper providers and register them with the 15432 * DTrace framework. 15433 */ 15434 if (help->dthps_nprovs > 0) { 15435 newhelp->dthps_nprovs = help->dthps_nprovs; 15436 newhelp->dthps_maxprovs = help->dthps_nprovs; 15437 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15438 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15439 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15440 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15441 newhelp->dthps_provs[i]->dthp_ref++; 15442 } 15443 15444 hasprovs = 1; 15445 } 15446 15447 mutex_exit(&dtrace_lock); 15448 15449 if (hasprovs) 15450 dtrace_helper_provider_register(to, newhelp, NULL); 15451 } 15452 15453 /* 15454 * DTrace Hook Functions 15455 */ 15456 static void 15457 dtrace_module_loaded(struct modctl *ctl) 15458 { 15459 dtrace_provider_t *prv; 15460 15461 mutex_enter(&dtrace_provider_lock); 15462 mutex_enter(&mod_lock); 15463 15464 ASSERT(ctl->mod_busy); 15465 15466 /* 15467 * We're going to call each providers per-module provide operation 15468 * specifying only this module. 15469 */ 15470 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15471 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15472 15473 mutex_exit(&mod_lock); 15474 mutex_exit(&dtrace_provider_lock); 15475 15476 /* 15477 * If we have any retained enablings, we need to match against them. 15478 * Enabling probes requires that cpu_lock be held, and we cannot hold 15479 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15480 * module. (In particular, this happens when loading scheduling 15481 * classes.) So if we have any retained enablings, we need to dispatch 15482 * our task queue to do the match for us. 15483 */ 15484 mutex_enter(&dtrace_lock); 15485 15486 if (dtrace_retained == NULL) { 15487 mutex_exit(&dtrace_lock); 15488 return; 15489 } 15490 15491 (void) taskq_dispatch(dtrace_taskq, 15492 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15493 15494 mutex_exit(&dtrace_lock); 15495 15496 /* 15497 * And now, for a little heuristic sleaze: in general, we want to 15498 * match modules as soon as they load. However, we cannot guarantee 15499 * this, because it would lead us to the lock ordering violation 15500 * outlined above. The common case, of course, is that cpu_lock is 15501 * _not_ held -- so we delay here for a clock tick, hoping that that's 15502 * long enough for the task queue to do its work. If it's not, it's 15503 * not a serious problem -- it just means that the module that we 15504 * just loaded may not be immediately instrumentable. 15505 */ 15506 delay(1); 15507 } 15508 15509 static void 15510 dtrace_module_unloaded(struct modctl *ctl) 15511 { 15512 dtrace_probe_t template, *probe, *first, *next; 15513 dtrace_provider_t *prov; 15514 15515 template.dtpr_mod = ctl->mod_modname; 15516 15517 mutex_enter(&dtrace_provider_lock); 15518 mutex_enter(&mod_lock); 15519 mutex_enter(&dtrace_lock); 15520 15521 if (dtrace_bymod == NULL) { 15522 /* 15523 * The DTrace module is loaded (obviously) but not attached; 15524 * we don't have any work to do. 15525 */ 15526 mutex_exit(&dtrace_provider_lock); 15527 mutex_exit(&mod_lock); 15528 mutex_exit(&dtrace_lock); 15529 return; 15530 } 15531 15532 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15533 probe != NULL; probe = probe->dtpr_nextmod) { 15534 if (probe->dtpr_ecb != NULL) { 15535 mutex_exit(&dtrace_provider_lock); 15536 mutex_exit(&mod_lock); 15537 mutex_exit(&dtrace_lock); 15538 15539 /* 15540 * This shouldn't _actually_ be possible -- we're 15541 * unloading a module that has an enabled probe in it. 15542 * (It's normally up to the provider to make sure that 15543 * this can't happen.) However, because dtps_enable() 15544 * doesn't have a failure mode, there can be an 15545 * enable/unload race. Upshot: we don't want to 15546 * assert, but we're not going to disable the 15547 * probe, either. 15548 */ 15549 if (dtrace_err_verbose) { 15550 cmn_err(CE_WARN, "unloaded module '%s' had " 15551 "enabled probes", ctl->mod_modname); 15552 } 15553 15554 return; 15555 } 15556 } 15557 15558 probe = first; 15559 15560 for (first = NULL; probe != NULL; probe = next) { 15561 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15562 15563 dtrace_probes[probe->dtpr_id - 1] = NULL; 15564 15565 next = probe->dtpr_nextmod; 15566 dtrace_hash_remove(dtrace_bymod, probe); 15567 dtrace_hash_remove(dtrace_byfunc, probe); 15568 dtrace_hash_remove(dtrace_byname, probe); 15569 15570 if (first == NULL) { 15571 first = probe; 15572 probe->dtpr_nextmod = NULL; 15573 } else { 15574 probe->dtpr_nextmod = first; 15575 first = probe; 15576 } 15577 } 15578 15579 /* 15580 * We've removed all of the module's probes from the hash chains and 15581 * from the probe array. Now issue a dtrace_sync() to be sure that 15582 * everyone has cleared out from any probe array processing. 15583 */ 15584 dtrace_sync(); 15585 15586 for (probe = first; probe != NULL; probe = first) { 15587 first = probe->dtpr_nextmod; 15588 prov = probe->dtpr_provider; 15589 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15590 probe->dtpr_arg); 15591 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15592 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15593 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15594 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15595 kmem_free(probe, sizeof (dtrace_probe_t)); 15596 } 15597 15598 mutex_exit(&dtrace_lock); 15599 mutex_exit(&mod_lock); 15600 mutex_exit(&dtrace_provider_lock); 15601 } 15602 15603 void 15604 dtrace_suspend(void) 15605 { 15606 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15607 } 15608 15609 void 15610 dtrace_resume(void) 15611 { 15612 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15613 } 15614 15615 static int 15616 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15617 { 15618 ASSERT(MUTEX_HELD(&cpu_lock)); 15619 mutex_enter(&dtrace_lock); 15620 15621 switch (what) { 15622 case CPU_CONFIG: { 15623 dtrace_state_t *state; 15624 dtrace_optval_t *opt, rs, c; 15625 15626 /* 15627 * For now, we only allocate a new buffer for anonymous state. 15628 */ 15629 if ((state = dtrace_anon.dta_state) == NULL) 15630 break; 15631 15632 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15633 break; 15634 15635 opt = state->dts_options; 15636 c = opt[DTRACEOPT_CPU]; 15637 15638 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15639 break; 15640 15641 /* 15642 * Regardless of what the actual policy is, we're going to 15643 * temporarily set our resize policy to be manual. We're 15644 * also going to temporarily set our CPU option to denote 15645 * the newly configured CPU. 15646 */ 15647 rs = opt[DTRACEOPT_BUFRESIZE]; 15648 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15649 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15650 15651 (void) dtrace_state_buffers(state); 15652 15653 opt[DTRACEOPT_BUFRESIZE] = rs; 15654 opt[DTRACEOPT_CPU] = c; 15655 15656 break; 15657 } 15658 15659 case CPU_UNCONFIG: 15660 /* 15661 * We don't free the buffer in the CPU_UNCONFIG case. (The 15662 * buffer will be freed when the consumer exits.) 15663 */ 15664 break; 15665 15666 default: 15667 break; 15668 } 15669 15670 mutex_exit(&dtrace_lock); 15671 return (0); 15672 } 15673 15674 static void 15675 dtrace_cpu_setup_initial(processorid_t cpu) 15676 { 15677 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15678 } 15679 15680 static void 15681 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15682 { 15683 if (dtrace_toxranges >= dtrace_toxranges_max) { 15684 int osize, nsize; 15685 dtrace_toxrange_t *range; 15686 15687 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15688 15689 if (osize == 0) { 15690 ASSERT(dtrace_toxrange == NULL); 15691 ASSERT(dtrace_toxranges_max == 0); 15692 dtrace_toxranges_max = 1; 15693 } else { 15694 dtrace_toxranges_max <<= 1; 15695 } 15696 15697 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15698 range = kmem_zalloc(nsize, KM_SLEEP); 15699 15700 if (dtrace_toxrange != NULL) { 15701 ASSERT(osize != 0); 15702 bcopy(dtrace_toxrange, range, osize); 15703 kmem_free(dtrace_toxrange, osize); 15704 } 15705 15706 dtrace_toxrange = range; 15707 } 15708 15709 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15710 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15711 15712 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15713 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15714 dtrace_toxranges++; 15715 } 15716 15717 static void 15718 dtrace_getf_barrier() 15719 { 15720 /* 15721 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15722 * that contain calls to getf(), this routine will be called on every 15723 * closef() before either the underlying vnode is released or the 15724 * file_t itself is freed. By the time we are here, it is essential 15725 * that the file_t can no longer be accessed from a call to getf() 15726 * in probe context -- that assures that a dtrace_sync() can be used 15727 * to clear out any enablings referring to the old structures. 15728 */ 15729 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15730 kcred->cr_zone->zone_dtrace_getf != 0) 15731 dtrace_sync(); 15732 } 15733 15734 /* 15735 * DTrace Driver Cookbook Functions 15736 */ 15737 /*ARGSUSED*/ 15738 static int 15739 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15740 { 15741 dtrace_provider_id_t id; 15742 dtrace_state_t *state = NULL; 15743 dtrace_enabling_t *enab; 15744 15745 mutex_enter(&cpu_lock); 15746 mutex_enter(&dtrace_provider_lock); 15747 mutex_enter(&dtrace_lock); 15748 15749 if (ddi_soft_state_init(&dtrace_softstate, 15750 sizeof (dtrace_state_t), 0) != 0) { 15751 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15752 mutex_exit(&cpu_lock); 15753 mutex_exit(&dtrace_provider_lock); 15754 mutex_exit(&dtrace_lock); 15755 return (DDI_FAILURE); 15756 } 15757 15758 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15759 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15760 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15761 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15762 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15763 ddi_remove_minor_node(devi, NULL); 15764 ddi_soft_state_fini(&dtrace_softstate); 15765 mutex_exit(&cpu_lock); 15766 mutex_exit(&dtrace_provider_lock); 15767 mutex_exit(&dtrace_lock); 15768 return (DDI_FAILURE); 15769 } 15770 15771 ddi_report_dev(devi); 15772 dtrace_devi = devi; 15773 15774 dtrace_modload = dtrace_module_loaded; 15775 dtrace_modunload = dtrace_module_unloaded; 15776 dtrace_cpu_init = dtrace_cpu_setup_initial; 15777 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15778 dtrace_helpers_fork = dtrace_helpers_duplicate; 15779 dtrace_cpustart_init = dtrace_suspend; 15780 dtrace_cpustart_fini = dtrace_resume; 15781 dtrace_debugger_init = dtrace_suspend; 15782 dtrace_debugger_fini = dtrace_resume; 15783 15784 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15785 15786 ASSERT(MUTEX_HELD(&cpu_lock)); 15787 15788 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15789 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15790 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15791 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15792 VM_SLEEP | VMC_IDENTIFIER); 15793 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15794 1, INT_MAX, 0); 15795 15796 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15797 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15798 NULL, NULL, NULL, NULL, NULL, 0); 15799 15800 ASSERT(MUTEX_HELD(&cpu_lock)); 15801 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15802 offsetof(dtrace_probe_t, dtpr_nextmod), 15803 offsetof(dtrace_probe_t, dtpr_prevmod)); 15804 15805 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15806 offsetof(dtrace_probe_t, dtpr_nextfunc), 15807 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15808 15809 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15810 offsetof(dtrace_probe_t, dtpr_nextname), 15811 offsetof(dtrace_probe_t, dtpr_prevname)); 15812 15813 if (dtrace_retain_max < 1) { 15814 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15815 "setting to 1", dtrace_retain_max); 15816 dtrace_retain_max = 1; 15817 } 15818 15819 /* 15820 * Now discover our toxic ranges. 15821 */ 15822 dtrace_toxic_ranges(dtrace_toxrange_add); 15823 15824 /* 15825 * Before we register ourselves as a provider to our own framework, 15826 * we would like to assert that dtrace_provider is NULL -- but that's 15827 * not true if we were loaded as a dependency of a DTrace provider. 15828 * Once we've registered, we can assert that dtrace_provider is our 15829 * pseudo provider. 15830 */ 15831 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15832 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15833 15834 ASSERT(dtrace_provider != NULL); 15835 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15836 15837 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15838 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15839 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15840 dtrace_provider, NULL, NULL, "END", 0, NULL); 15841 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15842 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15843 15844 dtrace_anon_property(); 15845 mutex_exit(&cpu_lock); 15846 15847 /* 15848 * If there are already providers, we must ask them to provide their 15849 * probes, and then match any anonymous enabling against them. Note 15850 * that there should be no other retained enablings at this time: 15851 * the only retained enablings at this time should be the anonymous 15852 * enabling. 15853 */ 15854 if (dtrace_anon.dta_enabling != NULL) { 15855 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15856 15857 dtrace_enabling_provide(NULL); 15858 state = dtrace_anon.dta_state; 15859 15860 /* 15861 * We couldn't hold cpu_lock across the above call to 15862 * dtrace_enabling_provide(), but we must hold it to actually 15863 * enable the probes. We have to drop all of our locks, pick 15864 * up cpu_lock, and regain our locks before matching the 15865 * retained anonymous enabling. 15866 */ 15867 mutex_exit(&dtrace_lock); 15868 mutex_exit(&dtrace_provider_lock); 15869 15870 mutex_enter(&cpu_lock); 15871 mutex_enter(&dtrace_provider_lock); 15872 mutex_enter(&dtrace_lock); 15873 15874 if ((enab = dtrace_anon.dta_enabling) != NULL) 15875 (void) dtrace_enabling_match(enab, NULL); 15876 15877 mutex_exit(&cpu_lock); 15878 } 15879 15880 mutex_exit(&dtrace_lock); 15881 mutex_exit(&dtrace_provider_lock); 15882 15883 if (state != NULL) { 15884 /* 15885 * If we created any anonymous state, set it going now. 15886 */ 15887 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15888 } 15889 15890 return (DDI_SUCCESS); 15891 } 15892 15893 /*ARGSUSED*/ 15894 static int 15895 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15896 { 15897 dtrace_state_t *state; 15898 uint32_t priv; 15899 uid_t uid; 15900 zoneid_t zoneid; 15901 15902 if (getminor(*devp) == DTRACEMNRN_HELPER) 15903 return (0); 15904 15905 /* 15906 * If this wasn't an open with the "helper" minor, then it must be 15907 * the "dtrace" minor. 15908 */ 15909 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15910 return (ENXIO); 15911 15912 /* 15913 * If no DTRACE_PRIV_* bits are set in the credential, then the 15914 * caller lacks sufficient permission to do anything with DTrace. 15915 */ 15916 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15917 if (priv == DTRACE_PRIV_NONE) 15918 return (EACCES); 15919 15920 /* 15921 * Ask all providers to provide all their probes. 15922 */ 15923 mutex_enter(&dtrace_provider_lock); 15924 dtrace_probe_provide(NULL, NULL); 15925 mutex_exit(&dtrace_provider_lock); 15926 15927 mutex_enter(&cpu_lock); 15928 mutex_enter(&dtrace_lock); 15929 dtrace_opens++; 15930 dtrace_membar_producer(); 15931 15932 /* 15933 * If the kernel debugger is active (that is, if the kernel debugger 15934 * modified text in some way), we won't allow the open. 15935 */ 15936 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15937 dtrace_opens--; 15938 mutex_exit(&cpu_lock); 15939 mutex_exit(&dtrace_lock); 15940 return (EBUSY); 15941 } 15942 15943 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15944 /* 15945 * If DTrace helper tracing is enabled, we need to allocate the 15946 * trace buffer and initialize the values. 15947 */ 15948 dtrace_helptrace_buffer = 15949 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15950 dtrace_helptrace_next = 0; 15951 dtrace_helptrace_wrapped = 0; 15952 dtrace_helptrace_enable = 0; 15953 } 15954 15955 state = dtrace_state_create(devp, cred_p); 15956 mutex_exit(&cpu_lock); 15957 15958 if (state == NULL) { 15959 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15960 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15961 mutex_exit(&dtrace_lock); 15962 return (EAGAIN); 15963 } 15964 15965 mutex_exit(&dtrace_lock); 15966 15967 return (0); 15968 } 15969 15970 /*ARGSUSED*/ 15971 static int 15972 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15973 { 15974 minor_t minor = getminor(dev); 15975 dtrace_state_t *state; 15976 dtrace_helptrace_t *buf = NULL; 15977 15978 if (minor == DTRACEMNRN_HELPER) 15979 return (0); 15980 15981 state = ddi_get_soft_state(dtrace_softstate, minor); 15982 15983 mutex_enter(&cpu_lock); 15984 mutex_enter(&dtrace_lock); 15985 15986 if (state->dts_anon) { 15987 /* 15988 * There is anonymous state. Destroy that first. 15989 */ 15990 ASSERT(dtrace_anon.dta_state == NULL); 15991 dtrace_state_destroy(state->dts_anon); 15992 } 15993 15994 if (dtrace_helptrace_disable) { 15995 /* 15996 * If we have been told to disable helper tracing, set the 15997 * buffer to NULL before calling into dtrace_state_destroy(); 15998 * we take advantage of its dtrace_sync() to know that no 15999 * CPU is in probe context with enabled helper tracing 16000 * after it returns. 16001 */ 16002 buf = dtrace_helptrace_buffer; 16003 dtrace_helptrace_buffer = NULL; 16004 } 16005 16006 dtrace_state_destroy(state); 16007 ASSERT(dtrace_opens > 0); 16008 16009 /* 16010 * Only relinquish control of the kernel debugger interface when there 16011 * are no consumers and no anonymous enablings. 16012 */ 16013 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16014 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16015 16016 if (buf != NULL) { 16017 kmem_free(buf, dtrace_helptrace_bufsize); 16018 dtrace_helptrace_disable = 0; 16019 } 16020 16021 mutex_exit(&dtrace_lock); 16022 mutex_exit(&cpu_lock); 16023 16024 return (0); 16025 } 16026 16027 /*ARGSUSED*/ 16028 static int 16029 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16030 { 16031 int rval; 16032 dof_helper_t help, *dhp = NULL; 16033 16034 switch (cmd) { 16035 case DTRACEHIOC_ADDDOF: 16036 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16037 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16038 return (EFAULT); 16039 } 16040 16041 dhp = &help; 16042 arg = (intptr_t)help.dofhp_dof; 16043 /*FALLTHROUGH*/ 16044 16045 case DTRACEHIOC_ADD: { 16046 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16047 16048 if (dof == NULL) 16049 return (rval); 16050 16051 mutex_enter(&dtrace_lock); 16052 16053 /* 16054 * dtrace_helper_slurp() takes responsibility for the dof -- 16055 * it may free it now or it may save it and free it later. 16056 */ 16057 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16058 *rv = rval; 16059 rval = 0; 16060 } else { 16061 rval = EINVAL; 16062 } 16063 16064 mutex_exit(&dtrace_lock); 16065 return (rval); 16066 } 16067 16068 case DTRACEHIOC_REMOVE: { 16069 mutex_enter(&dtrace_lock); 16070 rval = dtrace_helper_destroygen(arg); 16071 mutex_exit(&dtrace_lock); 16072 16073 return (rval); 16074 } 16075 16076 default: 16077 break; 16078 } 16079 16080 return (ENOTTY); 16081 } 16082 16083 /*ARGSUSED*/ 16084 static int 16085 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16086 { 16087 minor_t minor = getminor(dev); 16088 dtrace_state_t *state; 16089 int rval; 16090 16091 if (minor == DTRACEMNRN_HELPER) 16092 return (dtrace_ioctl_helper(cmd, arg, rv)); 16093 16094 state = ddi_get_soft_state(dtrace_softstate, minor); 16095 16096 if (state->dts_anon) { 16097 ASSERT(dtrace_anon.dta_state == NULL); 16098 state = state->dts_anon; 16099 } 16100 16101 switch (cmd) { 16102 case DTRACEIOC_PROVIDER: { 16103 dtrace_providerdesc_t pvd; 16104 dtrace_provider_t *pvp; 16105 16106 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16107 return (EFAULT); 16108 16109 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16110 mutex_enter(&dtrace_provider_lock); 16111 16112 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16113 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16114 break; 16115 } 16116 16117 mutex_exit(&dtrace_provider_lock); 16118 16119 if (pvp == NULL) 16120 return (ESRCH); 16121 16122 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16123 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16124 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16125 return (EFAULT); 16126 16127 return (0); 16128 } 16129 16130 case DTRACEIOC_EPROBE: { 16131 dtrace_eprobedesc_t epdesc; 16132 dtrace_ecb_t *ecb; 16133 dtrace_action_t *act; 16134 void *buf; 16135 size_t size; 16136 uintptr_t dest; 16137 int nrecs; 16138 16139 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16140 return (EFAULT); 16141 16142 mutex_enter(&dtrace_lock); 16143 16144 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16145 mutex_exit(&dtrace_lock); 16146 return (EINVAL); 16147 } 16148 16149 if (ecb->dte_probe == NULL) { 16150 mutex_exit(&dtrace_lock); 16151 return (EINVAL); 16152 } 16153 16154 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16155 epdesc.dtepd_uarg = ecb->dte_uarg; 16156 epdesc.dtepd_size = ecb->dte_size; 16157 16158 nrecs = epdesc.dtepd_nrecs; 16159 epdesc.dtepd_nrecs = 0; 16160 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16161 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16162 continue; 16163 16164 epdesc.dtepd_nrecs++; 16165 } 16166 16167 /* 16168 * Now that we have the size, we need to allocate a temporary 16169 * buffer in which to store the complete description. We need 16170 * the temporary buffer to be able to drop dtrace_lock() 16171 * across the copyout(), below. 16172 */ 16173 size = sizeof (dtrace_eprobedesc_t) + 16174 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16175 16176 buf = kmem_alloc(size, KM_SLEEP); 16177 dest = (uintptr_t)buf; 16178 16179 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16180 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16181 16182 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16183 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16184 continue; 16185 16186 if (nrecs-- == 0) 16187 break; 16188 16189 bcopy(&act->dta_rec, (void *)dest, 16190 sizeof (dtrace_recdesc_t)); 16191 dest += sizeof (dtrace_recdesc_t); 16192 } 16193 16194 mutex_exit(&dtrace_lock); 16195 16196 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16197 kmem_free(buf, size); 16198 return (EFAULT); 16199 } 16200 16201 kmem_free(buf, size); 16202 return (0); 16203 } 16204 16205 case DTRACEIOC_AGGDESC: { 16206 dtrace_aggdesc_t aggdesc; 16207 dtrace_action_t *act; 16208 dtrace_aggregation_t *agg; 16209 int nrecs; 16210 uint32_t offs; 16211 dtrace_recdesc_t *lrec; 16212 void *buf; 16213 size_t size; 16214 uintptr_t dest; 16215 16216 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16217 return (EFAULT); 16218 16219 mutex_enter(&dtrace_lock); 16220 16221 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16222 mutex_exit(&dtrace_lock); 16223 return (EINVAL); 16224 } 16225 16226 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16227 16228 nrecs = aggdesc.dtagd_nrecs; 16229 aggdesc.dtagd_nrecs = 0; 16230 16231 offs = agg->dtag_base; 16232 lrec = &agg->dtag_action.dta_rec; 16233 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16234 16235 for (act = agg->dtag_first; ; act = act->dta_next) { 16236 ASSERT(act->dta_intuple || 16237 DTRACEACT_ISAGG(act->dta_kind)); 16238 16239 /* 16240 * If this action has a record size of zero, it 16241 * denotes an argument to the aggregating action. 16242 * Because the presence of this record doesn't (or 16243 * shouldn't) affect the way the data is interpreted, 16244 * we don't copy it out to save user-level the 16245 * confusion of dealing with a zero-length record. 16246 */ 16247 if (act->dta_rec.dtrd_size == 0) { 16248 ASSERT(agg->dtag_hasarg); 16249 continue; 16250 } 16251 16252 aggdesc.dtagd_nrecs++; 16253 16254 if (act == &agg->dtag_action) 16255 break; 16256 } 16257 16258 /* 16259 * Now that we have the size, we need to allocate a temporary 16260 * buffer in which to store the complete description. We need 16261 * the temporary buffer to be able to drop dtrace_lock() 16262 * across the copyout(), below. 16263 */ 16264 size = sizeof (dtrace_aggdesc_t) + 16265 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16266 16267 buf = kmem_alloc(size, KM_SLEEP); 16268 dest = (uintptr_t)buf; 16269 16270 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16271 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16272 16273 for (act = agg->dtag_first; ; act = act->dta_next) { 16274 dtrace_recdesc_t rec = act->dta_rec; 16275 16276 /* 16277 * See the comment in the above loop for why we pass 16278 * over zero-length records. 16279 */ 16280 if (rec.dtrd_size == 0) { 16281 ASSERT(agg->dtag_hasarg); 16282 continue; 16283 } 16284 16285 if (nrecs-- == 0) 16286 break; 16287 16288 rec.dtrd_offset -= offs; 16289 bcopy(&rec, (void *)dest, sizeof (rec)); 16290 dest += sizeof (dtrace_recdesc_t); 16291 16292 if (act == &agg->dtag_action) 16293 break; 16294 } 16295 16296 mutex_exit(&dtrace_lock); 16297 16298 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16299 kmem_free(buf, size); 16300 return (EFAULT); 16301 } 16302 16303 kmem_free(buf, size); 16304 return (0); 16305 } 16306 16307 case DTRACEIOC_ENABLE: { 16308 dof_hdr_t *dof; 16309 dtrace_enabling_t *enab = NULL; 16310 dtrace_vstate_t *vstate; 16311 int err = 0; 16312 16313 *rv = 0; 16314 16315 /* 16316 * If a NULL argument has been passed, we take this as our 16317 * cue to reevaluate our enablings. 16318 */ 16319 if (arg == NULL) { 16320 dtrace_enabling_matchall(); 16321 16322 return (0); 16323 } 16324 16325 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16326 return (rval); 16327 16328 mutex_enter(&cpu_lock); 16329 mutex_enter(&dtrace_lock); 16330 vstate = &state->dts_vstate; 16331 16332 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16333 mutex_exit(&dtrace_lock); 16334 mutex_exit(&cpu_lock); 16335 dtrace_dof_destroy(dof); 16336 return (EBUSY); 16337 } 16338 16339 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16340 mutex_exit(&dtrace_lock); 16341 mutex_exit(&cpu_lock); 16342 dtrace_dof_destroy(dof); 16343 return (EINVAL); 16344 } 16345 16346 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16347 dtrace_enabling_destroy(enab); 16348 mutex_exit(&dtrace_lock); 16349 mutex_exit(&cpu_lock); 16350 dtrace_dof_destroy(dof); 16351 return (rval); 16352 } 16353 16354 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16355 err = dtrace_enabling_retain(enab); 16356 } else { 16357 dtrace_enabling_destroy(enab); 16358 } 16359 16360 mutex_exit(&cpu_lock); 16361 mutex_exit(&dtrace_lock); 16362 dtrace_dof_destroy(dof); 16363 16364 return (err); 16365 } 16366 16367 case DTRACEIOC_REPLICATE: { 16368 dtrace_repldesc_t desc; 16369 dtrace_probedesc_t *match = &desc.dtrpd_match; 16370 dtrace_probedesc_t *create = &desc.dtrpd_create; 16371 int err; 16372 16373 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16374 return (EFAULT); 16375 16376 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16377 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16378 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16379 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16380 16381 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16382 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16383 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16384 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16385 16386 mutex_enter(&dtrace_lock); 16387 err = dtrace_enabling_replicate(state, match, create); 16388 mutex_exit(&dtrace_lock); 16389 16390 return (err); 16391 } 16392 16393 case DTRACEIOC_PROBEMATCH: 16394 case DTRACEIOC_PROBES: { 16395 dtrace_probe_t *probe = NULL; 16396 dtrace_probedesc_t desc; 16397 dtrace_probekey_t pkey; 16398 dtrace_id_t i; 16399 int m = 0; 16400 uint32_t priv; 16401 uid_t uid; 16402 zoneid_t zoneid; 16403 16404 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16405 return (EFAULT); 16406 16407 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16408 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16409 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16410 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16411 16412 /* 16413 * Before we attempt to match this probe, we want to give 16414 * all providers the opportunity to provide it. 16415 */ 16416 if (desc.dtpd_id == DTRACE_IDNONE) { 16417 mutex_enter(&dtrace_provider_lock); 16418 dtrace_probe_provide(&desc, NULL); 16419 mutex_exit(&dtrace_provider_lock); 16420 desc.dtpd_id++; 16421 } 16422 16423 if (cmd == DTRACEIOC_PROBEMATCH) { 16424 dtrace_probekey(&desc, &pkey); 16425 pkey.dtpk_id = DTRACE_IDNONE; 16426 } 16427 16428 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16429 16430 mutex_enter(&dtrace_lock); 16431 16432 if (cmd == DTRACEIOC_PROBEMATCH) { 16433 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16434 if ((probe = dtrace_probes[i - 1]) != NULL && 16435 (m = dtrace_match_probe(probe, &pkey, 16436 priv, uid, zoneid)) != 0) 16437 break; 16438 } 16439 16440 if (m < 0) { 16441 mutex_exit(&dtrace_lock); 16442 return (EINVAL); 16443 } 16444 16445 } else { 16446 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16447 if ((probe = dtrace_probes[i - 1]) != NULL && 16448 dtrace_match_priv(probe, priv, uid, zoneid)) 16449 break; 16450 } 16451 } 16452 16453 if (probe == NULL) { 16454 mutex_exit(&dtrace_lock); 16455 return (ESRCH); 16456 } 16457 16458 dtrace_probe_description(probe, &desc); 16459 mutex_exit(&dtrace_lock); 16460 16461 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16462 return (EFAULT); 16463 16464 return (0); 16465 } 16466 16467 case DTRACEIOC_PROBEARG: { 16468 dtrace_argdesc_t desc; 16469 dtrace_probe_t *probe; 16470 dtrace_provider_t *prov; 16471 16472 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16473 return (EFAULT); 16474 16475 if (desc.dtargd_id == DTRACE_IDNONE) 16476 return (EINVAL); 16477 16478 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16479 return (EINVAL); 16480 16481 mutex_enter(&dtrace_provider_lock); 16482 mutex_enter(&mod_lock); 16483 mutex_enter(&dtrace_lock); 16484 16485 if (desc.dtargd_id > dtrace_nprobes) { 16486 mutex_exit(&dtrace_lock); 16487 mutex_exit(&mod_lock); 16488 mutex_exit(&dtrace_provider_lock); 16489 return (EINVAL); 16490 } 16491 16492 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16493 mutex_exit(&dtrace_lock); 16494 mutex_exit(&mod_lock); 16495 mutex_exit(&dtrace_provider_lock); 16496 return (EINVAL); 16497 } 16498 16499 mutex_exit(&dtrace_lock); 16500 16501 prov = probe->dtpr_provider; 16502 16503 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16504 /* 16505 * There isn't any typed information for this probe. 16506 * Set the argument number to DTRACE_ARGNONE. 16507 */ 16508 desc.dtargd_ndx = DTRACE_ARGNONE; 16509 } else { 16510 desc.dtargd_native[0] = '\0'; 16511 desc.dtargd_xlate[0] = '\0'; 16512 desc.dtargd_mapping = desc.dtargd_ndx; 16513 16514 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16515 probe->dtpr_id, probe->dtpr_arg, &desc); 16516 } 16517 16518 mutex_exit(&mod_lock); 16519 mutex_exit(&dtrace_provider_lock); 16520 16521 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16522 return (EFAULT); 16523 16524 return (0); 16525 } 16526 16527 case DTRACEIOC_GO: { 16528 processorid_t cpuid; 16529 rval = dtrace_state_go(state, &cpuid); 16530 16531 if (rval != 0) 16532 return (rval); 16533 16534 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16535 return (EFAULT); 16536 16537 return (0); 16538 } 16539 16540 case DTRACEIOC_STOP: { 16541 processorid_t cpuid; 16542 16543 mutex_enter(&dtrace_lock); 16544 rval = dtrace_state_stop(state, &cpuid); 16545 mutex_exit(&dtrace_lock); 16546 16547 if (rval != 0) 16548 return (rval); 16549 16550 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16551 return (EFAULT); 16552 16553 return (0); 16554 } 16555 16556 case DTRACEIOC_DOFGET: { 16557 dof_hdr_t hdr, *dof; 16558 uint64_t len; 16559 16560 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16561 return (EFAULT); 16562 16563 mutex_enter(&dtrace_lock); 16564 dof = dtrace_dof_create(state); 16565 mutex_exit(&dtrace_lock); 16566 16567 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16568 rval = copyout(dof, (void *)arg, len); 16569 dtrace_dof_destroy(dof); 16570 16571 return (rval == 0 ? 0 : EFAULT); 16572 } 16573 16574 case DTRACEIOC_AGGSNAP: 16575 case DTRACEIOC_BUFSNAP: { 16576 dtrace_bufdesc_t desc; 16577 caddr_t cached; 16578 dtrace_buffer_t *buf; 16579 16580 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16581 return (EFAULT); 16582 16583 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16584 return (EINVAL); 16585 16586 mutex_enter(&dtrace_lock); 16587 16588 if (cmd == DTRACEIOC_BUFSNAP) { 16589 buf = &state->dts_buffer[desc.dtbd_cpu]; 16590 } else { 16591 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16592 } 16593 16594 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16595 size_t sz = buf->dtb_offset; 16596 16597 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16598 mutex_exit(&dtrace_lock); 16599 return (EBUSY); 16600 } 16601 16602 /* 16603 * If this buffer has already been consumed, we're 16604 * going to indicate that there's nothing left here 16605 * to consume. 16606 */ 16607 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16608 mutex_exit(&dtrace_lock); 16609 16610 desc.dtbd_size = 0; 16611 desc.dtbd_drops = 0; 16612 desc.dtbd_errors = 0; 16613 desc.dtbd_oldest = 0; 16614 sz = sizeof (desc); 16615 16616 if (copyout(&desc, (void *)arg, sz) != 0) 16617 return (EFAULT); 16618 16619 return (0); 16620 } 16621 16622 /* 16623 * If this is a ring buffer that has wrapped, we want 16624 * to copy the whole thing out. 16625 */ 16626 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16627 dtrace_buffer_polish(buf); 16628 sz = buf->dtb_size; 16629 } 16630 16631 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16632 mutex_exit(&dtrace_lock); 16633 return (EFAULT); 16634 } 16635 16636 desc.dtbd_size = sz; 16637 desc.dtbd_drops = buf->dtb_drops; 16638 desc.dtbd_errors = buf->dtb_errors; 16639 desc.dtbd_oldest = buf->dtb_xamot_offset; 16640 desc.dtbd_timestamp = dtrace_gethrtime(); 16641 16642 mutex_exit(&dtrace_lock); 16643 16644 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16645 return (EFAULT); 16646 16647 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16648 16649 return (0); 16650 } 16651 16652 if (buf->dtb_tomax == NULL) { 16653 ASSERT(buf->dtb_xamot == NULL); 16654 mutex_exit(&dtrace_lock); 16655 return (ENOENT); 16656 } 16657 16658 cached = buf->dtb_tomax; 16659 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16660 16661 dtrace_xcall(desc.dtbd_cpu, 16662 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16663 16664 state->dts_errors += buf->dtb_xamot_errors; 16665 16666 /* 16667 * If the buffers did not actually switch, then the cross call 16668 * did not take place -- presumably because the given CPU is 16669 * not in the ready set. If this is the case, we'll return 16670 * ENOENT. 16671 */ 16672 if (buf->dtb_tomax == cached) { 16673 ASSERT(buf->dtb_xamot != cached); 16674 mutex_exit(&dtrace_lock); 16675 return (ENOENT); 16676 } 16677 16678 ASSERT(cached == buf->dtb_xamot); 16679 16680 /* 16681 * We have our snapshot; now copy it out. 16682 */ 16683 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16684 buf->dtb_xamot_offset) != 0) { 16685 mutex_exit(&dtrace_lock); 16686 return (EFAULT); 16687 } 16688 16689 desc.dtbd_size = buf->dtb_xamot_offset; 16690 desc.dtbd_drops = buf->dtb_xamot_drops; 16691 desc.dtbd_errors = buf->dtb_xamot_errors; 16692 desc.dtbd_oldest = 0; 16693 desc.dtbd_timestamp = buf->dtb_switched; 16694 16695 mutex_exit(&dtrace_lock); 16696 16697 /* 16698 * Finally, copy out the buffer description. 16699 */ 16700 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16701 return (EFAULT); 16702 16703 return (0); 16704 } 16705 16706 case DTRACEIOC_CONF: { 16707 dtrace_conf_t conf; 16708 16709 bzero(&conf, sizeof (conf)); 16710 conf.dtc_difversion = DIF_VERSION; 16711 conf.dtc_difintregs = DIF_DIR_NREGS; 16712 conf.dtc_diftupregs = DIF_DTR_NREGS; 16713 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16714 16715 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16716 return (EFAULT); 16717 16718 return (0); 16719 } 16720 16721 case DTRACEIOC_STATUS: { 16722 dtrace_status_t stat; 16723 dtrace_dstate_t *dstate; 16724 int i, j; 16725 uint64_t nerrs; 16726 16727 /* 16728 * See the comment in dtrace_state_deadman() for the reason 16729 * for setting dts_laststatus to INT64_MAX before setting 16730 * it to the correct value. 16731 */ 16732 state->dts_laststatus = INT64_MAX; 16733 dtrace_membar_producer(); 16734 state->dts_laststatus = dtrace_gethrtime(); 16735 16736 bzero(&stat, sizeof (stat)); 16737 16738 mutex_enter(&dtrace_lock); 16739 16740 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16741 mutex_exit(&dtrace_lock); 16742 return (ENOENT); 16743 } 16744 16745 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16746 stat.dtst_exiting = 1; 16747 16748 nerrs = state->dts_errors; 16749 dstate = &state->dts_vstate.dtvs_dynvars; 16750 16751 for (i = 0; i < NCPU; i++) { 16752 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16753 16754 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16755 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16756 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16757 16758 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16759 stat.dtst_filled++; 16760 16761 nerrs += state->dts_buffer[i].dtb_errors; 16762 16763 for (j = 0; j < state->dts_nspeculations; j++) { 16764 dtrace_speculation_t *spec; 16765 dtrace_buffer_t *buf; 16766 16767 spec = &state->dts_speculations[j]; 16768 buf = &spec->dtsp_buffer[i]; 16769 stat.dtst_specdrops += buf->dtb_xamot_drops; 16770 } 16771 } 16772 16773 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16774 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16775 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16776 stat.dtst_dblerrors = state->dts_dblerrors; 16777 stat.dtst_killed = 16778 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16779 stat.dtst_errors = nerrs; 16780 16781 mutex_exit(&dtrace_lock); 16782 16783 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16784 return (EFAULT); 16785 16786 return (0); 16787 } 16788 16789 case DTRACEIOC_FORMAT: { 16790 dtrace_fmtdesc_t fmt; 16791 char *str; 16792 int len; 16793 16794 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16795 return (EFAULT); 16796 16797 mutex_enter(&dtrace_lock); 16798 16799 if (fmt.dtfd_format == 0 || 16800 fmt.dtfd_format > state->dts_nformats) { 16801 mutex_exit(&dtrace_lock); 16802 return (EINVAL); 16803 } 16804 16805 /* 16806 * Format strings are allocated contiguously and they are 16807 * never freed; if a format index is less than the number 16808 * of formats, we can assert that the format map is non-NULL 16809 * and that the format for the specified index is non-NULL. 16810 */ 16811 ASSERT(state->dts_formats != NULL); 16812 str = state->dts_formats[fmt.dtfd_format - 1]; 16813 ASSERT(str != NULL); 16814 16815 len = strlen(str) + 1; 16816 16817 if (len > fmt.dtfd_length) { 16818 fmt.dtfd_length = len; 16819 16820 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16821 mutex_exit(&dtrace_lock); 16822 return (EINVAL); 16823 } 16824 } else { 16825 if (copyout(str, fmt.dtfd_string, len) != 0) { 16826 mutex_exit(&dtrace_lock); 16827 return (EINVAL); 16828 } 16829 } 16830 16831 mutex_exit(&dtrace_lock); 16832 return (0); 16833 } 16834 16835 default: 16836 break; 16837 } 16838 16839 return (ENOTTY); 16840 } 16841 16842 /*ARGSUSED*/ 16843 static int 16844 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16845 { 16846 dtrace_state_t *state; 16847 16848 switch (cmd) { 16849 case DDI_DETACH: 16850 break; 16851 16852 case DDI_SUSPEND: 16853 return (DDI_SUCCESS); 16854 16855 default: 16856 return (DDI_FAILURE); 16857 } 16858 16859 mutex_enter(&cpu_lock); 16860 mutex_enter(&dtrace_provider_lock); 16861 mutex_enter(&dtrace_lock); 16862 16863 ASSERT(dtrace_opens == 0); 16864 16865 if (dtrace_helpers > 0) { 16866 mutex_exit(&dtrace_provider_lock); 16867 mutex_exit(&dtrace_lock); 16868 mutex_exit(&cpu_lock); 16869 return (DDI_FAILURE); 16870 } 16871 16872 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16873 mutex_exit(&dtrace_provider_lock); 16874 mutex_exit(&dtrace_lock); 16875 mutex_exit(&cpu_lock); 16876 return (DDI_FAILURE); 16877 } 16878 16879 dtrace_provider = NULL; 16880 16881 if ((state = dtrace_anon_grab()) != NULL) { 16882 /* 16883 * If there were ECBs on this state, the provider should 16884 * have not been allowed to detach; assert that there is 16885 * none. 16886 */ 16887 ASSERT(state->dts_necbs == 0); 16888 dtrace_state_destroy(state); 16889 16890 /* 16891 * If we're being detached with anonymous state, we need to 16892 * indicate to the kernel debugger that DTrace is now inactive. 16893 */ 16894 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16895 } 16896 16897 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16898 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16899 dtrace_cpu_init = NULL; 16900 dtrace_helpers_cleanup = NULL; 16901 dtrace_helpers_fork = NULL; 16902 dtrace_cpustart_init = NULL; 16903 dtrace_cpustart_fini = NULL; 16904 dtrace_debugger_init = NULL; 16905 dtrace_debugger_fini = NULL; 16906 dtrace_modload = NULL; 16907 dtrace_modunload = NULL; 16908 16909 ASSERT(dtrace_getf == 0); 16910 ASSERT(dtrace_closef == NULL); 16911 16912 mutex_exit(&cpu_lock); 16913 16914 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16915 dtrace_probes = NULL; 16916 dtrace_nprobes = 0; 16917 16918 dtrace_hash_destroy(dtrace_bymod); 16919 dtrace_hash_destroy(dtrace_byfunc); 16920 dtrace_hash_destroy(dtrace_byname); 16921 dtrace_bymod = NULL; 16922 dtrace_byfunc = NULL; 16923 dtrace_byname = NULL; 16924 16925 kmem_cache_destroy(dtrace_state_cache); 16926 vmem_destroy(dtrace_minor); 16927 vmem_destroy(dtrace_arena); 16928 16929 if (dtrace_toxrange != NULL) { 16930 kmem_free(dtrace_toxrange, 16931 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16932 dtrace_toxrange = NULL; 16933 dtrace_toxranges = 0; 16934 dtrace_toxranges_max = 0; 16935 } 16936 16937 ddi_remove_minor_node(dtrace_devi, NULL); 16938 dtrace_devi = NULL; 16939 16940 ddi_soft_state_fini(&dtrace_softstate); 16941 16942 ASSERT(dtrace_vtime_references == 0); 16943 ASSERT(dtrace_opens == 0); 16944 ASSERT(dtrace_retained == NULL); 16945 16946 mutex_exit(&dtrace_lock); 16947 mutex_exit(&dtrace_provider_lock); 16948 16949 /* 16950 * We don't destroy the task queue until after we have dropped our 16951 * locks (taskq_destroy() may block on running tasks). To prevent 16952 * attempting to do work after we have effectively detached but before 16953 * the task queue has been destroyed, all tasks dispatched via the 16954 * task queue must check that DTrace is still attached before 16955 * performing any operation. 16956 */ 16957 taskq_destroy(dtrace_taskq); 16958 dtrace_taskq = NULL; 16959 16960 return (DDI_SUCCESS); 16961 } 16962 16963 /*ARGSUSED*/ 16964 static int 16965 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16966 { 16967 int error; 16968 16969 switch (infocmd) { 16970 case DDI_INFO_DEVT2DEVINFO: 16971 *result = (void *)dtrace_devi; 16972 error = DDI_SUCCESS; 16973 break; 16974 case DDI_INFO_DEVT2INSTANCE: 16975 *result = (void *)0; 16976 error = DDI_SUCCESS; 16977 break; 16978 default: 16979 error = DDI_FAILURE; 16980 } 16981 return (error); 16982 } 16983 16984 static struct cb_ops dtrace_cb_ops = { 16985 dtrace_open, /* open */ 16986 dtrace_close, /* close */ 16987 nulldev, /* strategy */ 16988 nulldev, /* print */ 16989 nodev, /* dump */ 16990 nodev, /* read */ 16991 nodev, /* write */ 16992 dtrace_ioctl, /* ioctl */ 16993 nodev, /* devmap */ 16994 nodev, /* mmap */ 16995 nodev, /* segmap */ 16996 nochpoll, /* poll */ 16997 ddi_prop_op, /* cb_prop_op */ 16998 0, /* streamtab */ 16999 D_NEW | D_MP /* Driver compatibility flag */ 17000 }; 17001 17002 static struct dev_ops dtrace_ops = { 17003 DEVO_REV, /* devo_rev */ 17004 0, /* refcnt */ 17005 dtrace_info, /* get_dev_info */ 17006 nulldev, /* identify */ 17007 nulldev, /* probe */ 17008 dtrace_attach, /* attach */ 17009 dtrace_detach, /* detach */ 17010 nodev, /* reset */ 17011 &dtrace_cb_ops, /* driver operations */ 17012 NULL, /* bus operations */ 17013 nodev, /* dev power */ 17014 ddi_quiesce_not_needed, /* quiesce */ 17015 }; 17016 17017 static struct modldrv modldrv = { 17018 &mod_driverops, /* module type (this is a pseudo driver) */ 17019 "Dynamic Tracing", /* name of module */ 17020 &dtrace_ops, /* driver ops */ 17021 }; 17022 17023 static struct modlinkage modlinkage = { 17024 MODREV_1, 17025 (void *)&modldrv, 17026 NULL 17027 }; 17028 17029 int 17030 _init(void) 17031 { 17032 return (mod_install(&modlinkage)); 17033 } 17034 17035 int 17036 _info(struct modinfo *modinfop) 17037 { 17038 return (mod_info(&modlinkage, modinfop)); 17039 } 17040 17041 int 17042 _fini(void) 17043 { 17044 return (mod_remove(&modlinkage)); 17045 } 17046