1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2021 Joyent, Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/stack.h> 32 #include <sys/pcb.h> 33 #include <sys/user.h> 34 #include <sys/systm.h> 35 #include <sys/sysinfo.h> 36 #include <sys/errno.h> 37 #include <sys/cmn_err.h> 38 #include <sys/cred.h> 39 #include <sys/resource.h> 40 #include <sys/task.h> 41 #include <sys/project.h> 42 #include <sys/proc.h> 43 #include <sys/debug.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/machlock.h> 49 #include <sys/kmem.h> 50 #include <sys/varargs.h> 51 #include <sys/turnstile.h> 52 #include <sys/poll.h> 53 #include <sys/vtrace.h> 54 #include <sys/callb.h> 55 #include <c2/audit.h> 56 #include <sys/tnf.h> 57 #include <sys/sobject.h> 58 #include <sys/cpupart.h> 59 #include <sys/pset.h> 60 #include <sys/door.h> 61 #include <sys/spl.h> 62 #include <sys/copyops.h> 63 #include <sys/rctl.h> 64 #include <sys/brand.h> 65 #include <sys/pool.h> 66 #include <sys/zone.h> 67 #include <sys/tsol/label.h> 68 #include <sys/tsol/tndb.h> 69 #include <sys/cpc_impl.h> 70 #include <sys/sdt.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi.h> 73 #include <sys/schedctl.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 #include <sys/kiconv.h> 77 #include <sys/ctype.h> 78 #include <sys/smt.h> 79 80 struct kmem_cache *thread_cache; /* cache of free threads */ 81 struct kmem_cache *lwp_cache; /* cache of free lwps */ 82 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 83 84 /* 85 * allthreads is only for use by kmem_readers. All kernel loops can use 86 * the current thread as a start/end point. 87 */ 88 kthread_t *allthreads = &t0; /* circular list of all threads */ 89 90 static kcondvar_t reaper_cv; /* synchronization var */ 91 kthread_t *thread_deathrow; /* circular list of reapable threads */ 92 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 93 kmutex_t reaplock; /* protects lwp and thread deathrows */ 94 int thread_reapcnt = 0; /* number of threads on deathrow */ 95 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 96 int reaplimit = 16; /* delay reaping until reaplimit */ 97 98 thread_free_lock_t *thread_free_lock; 99 /* protects tick thread from reaper */ 100 101 extern int nthread; 102 103 /* System Scheduling classes. */ 104 id_t syscid; /* system scheduling class ID */ 105 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */ 106 107 void *segkp_thread; /* cookie for segkp pool */ 108 109 int lwp_cache_sz = 32; 110 int t_cache_sz = 8; 111 static kt_did_t next_t_id = 1; 112 113 /* Default mode for thread binding to CPUs and processor sets */ 114 int default_binding_mode = TB_ALLHARD; 115 116 /* 117 * Min/Max stack sizes for stack size parameters 118 */ 119 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 120 #define MIN_STKSIZE DEFAULTSTKSZ 121 122 /* 123 * default_stksize overrides lwp_default_stksize if it is set. 124 */ 125 int default_stksize; 126 int lwp_default_stksize; 127 128 static zone_key_t zone_thread_key; 129 130 unsigned int kmem_stackinfo; /* stackinfo feature on-off */ 131 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */ 132 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */ 133 134 /* 135 * forward declarations for internal thread specific data (tsd) 136 */ 137 static void *tsd_realloc(void *, size_t, size_t); 138 139 void thread_reaper(void); 140 141 /* forward declarations for stackinfo feature */ 142 static void stkinfo_begin(kthread_t *); 143 static void stkinfo_end(kthread_t *); 144 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t); 145 146 /*ARGSUSED*/ 147 static int 148 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 149 { 150 bzero(buf, sizeof (turnstile_t)); 151 return (0); 152 } 153 154 /*ARGSUSED*/ 155 static void 156 turnstile_destructor(void *buf, void *cdrarg) 157 { 158 turnstile_t *ts = buf; 159 160 ASSERT(ts->ts_free == NULL); 161 ASSERT(ts->ts_waiters == 0); 162 ASSERT(ts->ts_inheritor == NULL); 163 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 164 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 165 } 166 167 void 168 thread_init(void) 169 { 170 kthread_t *tp; 171 extern char sys_name[]; 172 extern void idle(); 173 struct cpu *cpu = CPU; 174 int i; 175 kmutex_t *lp; 176 177 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 178 thread_free_lock = 179 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP); 180 for (i = 0; i < THREAD_FREE_NUM; i++) { 181 lp = &thread_free_lock[i].tf_lock; 182 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL); 183 } 184 185 #if defined(__x86) 186 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 187 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 188 189 /* 190 * "struct _klwp" includes a "struct pcb", which includes a 191 * "struct fpu", which needs to be 64-byte aligned on amd64 192 * (and even on i386) for xsave/xrstor. 193 */ 194 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 195 64, NULL, NULL, NULL, NULL, NULL, 0); 196 #else 197 /* 198 * Allocate thread structures from static_arena. This prevents 199 * issues where a thread tries to relocate its own thread 200 * structure and touches it after the mapping has been suspended. 201 */ 202 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 203 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 204 205 lwp_stk_cache_init(); 206 207 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 208 0, NULL, NULL, NULL, NULL, NULL, 0); 209 #endif 210 211 turnstile_cache = kmem_cache_create("turnstile_cache", 212 sizeof (turnstile_t), 0, 213 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 214 215 label_init(); 216 cred_init(); 217 218 /* 219 * Initialize various resource management facilities. 220 */ 221 rctl_init(); 222 cpucaps_init(); 223 /* 224 * Zone_init() should be called before project_init() so that project ID 225 * for the first project is initialized correctly. 226 */ 227 zone_init(); 228 project_init(); 229 brand_init(); 230 kiconv_init(); 231 task_init(); 232 tcache_init(); 233 pool_init(); 234 235 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 236 237 /* 238 * Originally, we had two parameters to set default stack 239 * size: one for lwp's (lwp_default_stksize), and one for 240 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 241 * Now we have a third parameter that overrides both if it is 242 * set to a legal stack size, called default_stksize. 243 */ 244 245 if (default_stksize == 0) { 246 default_stksize = DEFAULTSTKSZ; 247 } else if (default_stksize % PAGESIZE != 0 || 248 default_stksize > MAX_STKSIZE || 249 default_stksize < MIN_STKSIZE) { 250 cmn_err(CE_WARN, "Illegal stack size. Using %d", 251 (int)DEFAULTSTKSZ); 252 default_stksize = DEFAULTSTKSZ; 253 } else { 254 lwp_default_stksize = default_stksize; 255 } 256 257 if (lwp_default_stksize == 0) { 258 lwp_default_stksize = default_stksize; 259 } else if (lwp_default_stksize % PAGESIZE != 0 || 260 lwp_default_stksize > MAX_STKSIZE || 261 lwp_default_stksize < MIN_STKSIZE) { 262 cmn_err(CE_WARN, "Illegal stack size. Using %d", 263 default_stksize); 264 lwp_default_stksize = default_stksize; 265 } 266 267 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 268 lwp_default_stksize, 269 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 270 271 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 272 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 273 274 (void) getcid(sys_name, &syscid); 275 curthread->t_cid = syscid; /* current thread is t0 */ 276 277 /* 278 * Set up the first CPU's idle thread. 279 * It runs whenever the CPU has nothing worthwhile to do. 280 */ 281 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 282 cpu->cpu_idle_thread = tp; 283 tp->t_preempt = 1; 284 tp->t_disp_queue = cpu->cpu_disp; 285 ASSERT(tp->t_disp_queue != NULL); 286 tp->t_bound_cpu = cpu; 287 tp->t_affinitycnt = 1; 288 289 /* 290 * Registering a thread in the callback table is usually 291 * done in the initialization code of the thread. In this 292 * case, we do it right after thread creation to avoid 293 * blocking idle thread while registering itself. It also 294 * avoids the possibility of reregistration in case a CPU 295 * restarts its idle thread. 296 */ 297 CALLB_CPR_INIT_SAFE(tp, "idle"); 298 299 /* 300 * Create the thread_reaper daemon. From this point on, exited 301 * threads will get reaped. 302 */ 303 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 304 NULL, 0, &p0, TS_RUN, minclsyspri); 305 306 /* 307 * Finish initializing the kernel memory allocator now that 308 * thread_create() is available. 309 */ 310 kmem_thread_init(); 311 312 if (boothowto & RB_DEBUG) 313 kdi_dvec_thravail(); 314 } 315 316 /* 317 * Create a thread. 318 * 319 * thread_create() blocks for memory if necessary. It never fails. 320 * 321 * If stk is NULL, the thread is created at the base of the stack 322 * and cannot be swapped. 323 */ 324 kthread_t * 325 thread_create( 326 caddr_t stk, 327 size_t stksize, 328 void (*proc)(), 329 void *arg, 330 size_t len, 331 proc_t *pp, 332 int state, 333 pri_t pri) 334 { 335 kthread_t *t; 336 extern struct classfuncs sys_classfuncs; 337 turnstile_t *ts; 338 339 /* 340 * Every thread keeps a turnstile around in case it needs to block. 341 * The only reason the turnstile is not simply part of the thread 342 * structure is that we may have to break the association whenever 343 * more than one thread blocks on a given synchronization object. 344 * From a memory-management standpoint, turnstiles are like the 345 * "attached mblks" that hang off dblks in the streams allocator. 346 */ 347 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 348 349 if (stk == NULL) { 350 /* 351 * alloc both thread and stack in segkp chunk 352 */ 353 354 if (stksize < default_stksize) 355 stksize = default_stksize; 356 357 if (stksize == default_stksize) { 358 stk = (caddr_t)segkp_cache_get(segkp_thread); 359 } else { 360 stksize = roundup(stksize, PAGESIZE); 361 stk = (caddr_t)segkp_get(segkp, stksize, 362 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 363 } 364 365 ASSERT(stk != NULL); 366 367 /* 368 * The machine-dependent mutex code may require that 369 * thread pointers (since they may be used for mutex owner 370 * fields) have certain alignment requirements. 371 * PTR24_ALIGN is the size of the alignment quanta. 372 * XXX - assumes stack grows toward low addresses. 373 */ 374 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 375 cmn_err(CE_PANIC, "thread_create: proposed stack size" 376 " too small to hold thread."); 377 #ifdef STACK_GROWTH_DOWN 378 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 379 stksize &= -PTR24_ALIGN; /* make thread aligned */ 380 t = (kthread_t *)(stk + stksize); 381 bzero(t, sizeof (kthread_t)); 382 if (audit_active) 383 audit_thread_create(t); 384 t->t_stk = stk + stksize; 385 t->t_stkbase = stk; 386 #else /* stack grows to larger addresses */ 387 stksize -= SA(sizeof (kthread_t)); 388 t = (kthread_t *)(stk); 389 bzero(t, sizeof (kthread_t)); 390 t->t_stk = stk + sizeof (kthread_t); 391 t->t_stkbase = stk + stksize + sizeof (kthread_t); 392 #endif /* STACK_GROWTH_DOWN */ 393 t->t_flag |= T_TALLOCSTK; 394 t->t_swap = stk; 395 } else { 396 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 397 bzero(t, sizeof (kthread_t)); 398 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 399 if (audit_active) 400 audit_thread_create(t); 401 /* 402 * Initialize t_stk to the kernel stack pointer to use 403 * upon entry to the kernel 404 */ 405 #ifdef STACK_GROWTH_DOWN 406 t->t_stk = stk + stksize; 407 t->t_stkbase = stk; 408 #else 409 t->t_stk = stk; /* 3b2-like */ 410 t->t_stkbase = stk + stksize; 411 #endif /* STACK_GROWTH_DOWN */ 412 } 413 414 if (kmem_stackinfo != 0) { 415 stkinfo_begin(t); 416 } 417 418 t->t_ts = ts; 419 420 /* 421 * p_cred could be NULL if it thread_create is called before cred_init 422 * is called in main. 423 */ 424 mutex_enter(&pp->p_crlock); 425 if (pp->p_cred) 426 crhold(t->t_cred = pp->p_cred); 427 mutex_exit(&pp->p_crlock); 428 t->t_start = gethrestime_sec(); 429 t->t_startpc = proc; 430 t->t_procp = pp; 431 t->t_clfuncs = &sys_classfuncs.thread; 432 t->t_cid = syscid; 433 t->t_pri = pri; 434 t->t_stime = ddi_get_lbolt(); 435 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 436 t->t_bind_cpu = PBIND_NONE; 437 t->t_bindflag = (uchar_t)default_binding_mode; 438 t->t_bind_pset = PS_NONE; 439 t->t_plockp = &pp->p_lock; 440 t->t_copyops = NULL; 441 t->t_taskq = NULL; 442 t->t_anttime = 0; 443 t->t_hatdepth = 0; 444 445 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 446 447 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 448 #ifndef NPROBE 449 /* Kernel probe */ 450 tnf_thread_create(t); 451 #endif /* NPROBE */ 452 LOCK_INIT_CLEAR(&t->t_lock); 453 454 /* 455 * Callers who give us a NULL proc must do their own 456 * stack initialization. e.g. lwp_create() 457 */ 458 if (proc != NULL) { 459 t->t_stk = thread_stk_init(t->t_stk); 460 thread_load(t, proc, arg, len); 461 } 462 463 /* 464 * Put a hold on project0. If this thread is actually in a 465 * different project, then t_proj will be changed later in 466 * lwp_create(). All kernel-only threads must be in project 0. 467 */ 468 t->t_proj = project_hold(proj0p); 469 470 lgrp_affinity_init(&t->t_lgrp_affinity); 471 472 mutex_enter(&pidlock); 473 nthread++; 474 t->t_did = next_t_id++; 475 t->t_prev = curthread->t_prev; 476 t->t_next = curthread; 477 478 /* 479 * Add the thread to the list of all threads, and initialize 480 * its t_cpu pointer. We need to block preemption since 481 * cpu_offline walks the thread list looking for threads 482 * with t_cpu pointing to the CPU being offlined. We want 483 * to make sure that the list is consistent and that if t_cpu 484 * is set, the thread is on the list. 485 */ 486 kpreempt_disable(); 487 curthread->t_prev->t_next = t; 488 curthread->t_prev = t; 489 490 /* 491 * We'll always create in the default partition since that's where 492 * kernel threads go (we'll change this later if needed, in 493 * lwp_create()). 494 */ 495 t->t_cpupart = &cp_default; 496 497 /* 498 * For now, affiliate this thread with the root lgroup. 499 * Since the kernel does not (presently) allocate its memory 500 * in a locality aware fashion, the root is an appropriate home. 501 * If this thread is later associated with an lwp, it will have 502 * its lgroup re-assigned at that time. 503 */ 504 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 505 506 /* 507 * If the current CPU is in the default cpupart, use it. Otherwise, 508 * pick one that is; before entering the dispatcher code, we'll 509 * make sure to keep the invariant that ->t_cpu is set. (In fact, we 510 * rely on this, in ht_should_run(), in the call tree of 511 * disp_lowpri_cpu().) 512 */ 513 if (CPU->cpu_part == &cp_default) { 514 t->t_cpu = CPU; 515 } else { 516 t->t_cpu = cp_default.cp_cpulist; 517 t->t_cpu = disp_lowpri_cpu(t->t_cpu, t, t->t_pri); 518 } 519 520 t->t_disp_queue = t->t_cpu->cpu_disp; 521 kpreempt_enable(); 522 523 /* 524 * Initialize thread state and the dispatcher lock pointer. 525 * Need to hold onto pidlock to block allthreads walkers until 526 * the state is set. 527 */ 528 switch (state) { 529 case TS_RUN: 530 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 531 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 532 CL_SETRUN(t); 533 thread_unlock(t); 534 break; 535 536 case TS_ONPROC: 537 THREAD_ONPROC(t, t->t_cpu); 538 break; 539 540 case TS_FREE: 541 /* 542 * Free state will be used for intr threads. 543 * The interrupt routine must set the thread dispatcher 544 * lock pointer (t_lockp) if starting on a CPU 545 * other than the current one. 546 */ 547 THREAD_FREEINTR(t, CPU); 548 break; 549 550 case TS_STOPPED: 551 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 552 break; 553 554 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 555 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 556 } 557 mutex_exit(&pidlock); 558 return (t); 559 } 560 561 /* 562 * Move thread to project0 and take care of project reference counters. 563 */ 564 void 565 thread_rele(kthread_t *t) 566 { 567 kproject_t *kpj; 568 569 thread_lock(t); 570 571 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 572 kpj = ttoproj(t); 573 t->t_proj = proj0p; 574 575 thread_unlock(t); 576 577 if (kpj != proj0p) { 578 project_rele(kpj); 579 (void) project_hold(proj0p); 580 } 581 } 582 583 void 584 thread_exit(void) 585 { 586 kthread_t *t = curthread; 587 588 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 589 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 590 591 tsd_exit(); /* Clean up this thread's TSD */ 592 593 kcpc_passivate(); /* clean up performance counter state */ 594 595 /* 596 * No kernel thread should have called poll() without arranging 597 * calling pollcleanup() here. 598 */ 599 ASSERT(t->t_pollstate == NULL); 600 ASSERT(t->t_schedctl == NULL); 601 if (t->t_door) 602 door_slam(); /* in case thread did an upcall */ 603 604 #ifndef NPROBE 605 /* Kernel probe */ 606 if (t->t_tnf_tpdp) 607 tnf_thread_exit(); 608 #endif /* NPROBE */ 609 610 thread_rele(t); 611 t->t_preempt++; 612 613 /* 614 * remove thread from the all threads list so that 615 * death-row can use the same pointers. 616 */ 617 mutex_enter(&pidlock); 618 t->t_next->t_prev = t->t_prev; 619 t->t_prev->t_next = t->t_next; 620 ASSERT(allthreads != t); /* t0 never exits */ 621 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 622 mutex_exit(&pidlock); 623 624 if (t->t_ctx != NULL) 625 exitctx(t); 626 if (t->t_procp->p_pctx != NULL) 627 exitpctx(t->t_procp); 628 629 if (kmem_stackinfo != 0) { 630 stkinfo_end(t); 631 } 632 633 t->t_state = TS_ZOMB; /* set zombie thread */ 634 635 swtch_from_zombie(); /* give up the CPU */ 636 /* NOTREACHED */ 637 } 638 639 /* 640 * Check to see if the specified thread is active (defined as being on 641 * the thread list). This is certainly a slow way to do this; if there's 642 * ever a reason to speed it up, we could maintain a hash table of active 643 * threads indexed by their t_did. 644 */ 645 static kthread_t * 646 did_to_thread(kt_did_t tid) 647 { 648 kthread_t *t; 649 650 ASSERT(MUTEX_HELD(&pidlock)); 651 for (t = curthread->t_next; t != curthread; t = t->t_next) { 652 if (t->t_did == tid) 653 break; 654 } 655 if (t->t_did == tid) 656 return (t); 657 else 658 return (NULL); 659 } 660 661 /* 662 * Wait for specified thread to exit. Returns immediately if the thread 663 * could not be found, meaning that it has either already exited or never 664 * existed. 665 */ 666 void 667 thread_join(kt_did_t tid) 668 { 669 kthread_t *t; 670 671 ASSERT(tid != curthread->t_did); 672 ASSERT(tid != t0.t_did); 673 674 mutex_enter(&pidlock); 675 /* 676 * Make sure we check that the thread is on the thread list 677 * before blocking on it; otherwise we could end up blocking on 678 * a cv that's already been freed. In other words, don't cache 679 * the thread pointer across calls to cv_wait. 680 * 681 * The choice of loop invariant means that whenever a thread 682 * is taken off the allthreads list, a cv_broadcast must be 683 * performed on that thread's t_joincv to wake up any waiters. 684 * The broadcast doesn't have to happen right away, but it 685 * shouldn't be postponed indefinitely (e.g., by doing it in 686 * thread_free which may only be executed when the deathrow 687 * queue is processed. 688 */ 689 while (t = did_to_thread(tid)) 690 cv_wait(&t->t_joincv, &pidlock); 691 mutex_exit(&pidlock); 692 } 693 694 void 695 thread_free_prevent(kthread_t *t) 696 { 697 kmutex_t *lp; 698 699 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 700 mutex_enter(lp); 701 } 702 703 void 704 thread_free_allow(kthread_t *t) 705 { 706 kmutex_t *lp; 707 708 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 709 mutex_exit(lp); 710 } 711 712 static void 713 thread_free_barrier(kthread_t *t) 714 { 715 kmutex_t *lp; 716 717 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock; 718 mutex_enter(lp); 719 mutex_exit(lp); 720 } 721 722 void 723 thread_free(kthread_t *t) 724 { 725 boolean_t allocstk = (t->t_flag & T_TALLOCSTK); 726 klwp_t *lwp = t->t_lwp; 727 caddr_t swap = t->t_swap; 728 729 ASSERT(t != &t0 && t->t_state == TS_FREE); 730 ASSERT(t->t_door == NULL); 731 ASSERT(t->t_schedctl == NULL); 732 ASSERT(t->t_pollstate == NULL); 733 734 t->t_pri = 0; 735 t->t_pc = 0; 736 t->t_sp = 0; 737 t->t_wchan0 = NULL; 738 t->t_wchan = NULL; 739 if (t->t_cred != NULL) { 740 crfree(t->t_cred); 741 t->t_cred = 0; 742 } 743 if (t->t_pdmsg) { 744 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 745 t->t_pdmsg = NULL; 746 } 747 if (audit_active) 748 audit_thread_free(t); 749 #ifndef NPROBE 750 if (t->t_tnf_tpdp) 751 tnf_thread_free(t); 752 #endif /* NPROBE */ 753 if (t->t_cldata) { 754 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 755 } 756 if (t->t_rprof != NULL) { 757 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 758 t->t_rprof = NULL; 759 } 760 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 761 if (lwp) 762 lwp_freeregs(lwp, 0); 763 if (t->t_ctx) 764 freectx(t, 0); 765 t->t_stk = NULL; 766 if (lwp) 767 lwp_stk_fini(lwp); 768 lock_clear(&t->t_lock); 769 770 if (t->t_ts->ts_waiters > 0) 771 panic("thread_free: turnstile still active"); 772 773 kmem_cache_free(turnstile_cache, t->t_ts); 774 775 free_afd(&t->t_activefd); 776 777 /* 778 * Barrier for the tick accounting code. The tick accounting code 779 * holds this lock to keep the thread from going away while it's 780 * looking at it. 781 */ 782 thread_free_barrier(t); 783 784 ASSERT(ttoproj(t) == proj0p); 785 project_rele(ttoproj(t)); 786 787 lgrp_affinity_free(&t->t_lgrp_affinity); 788 789 mutex_enter(&pidlock); 790 nthread--; 791 mutex_exit(&pidlock); 792 793 if (t->t_name != NULL) { 794 kmem_free(t->t_name, THREAD_NAME_MAX); 795 t->t_name = NULL; 796 } 797 798 /* 799 * Free thread, lwp and stack. This needs to be done carefully, since 800 * if T_TALLOCSTK is set, the thread is part of the stack. 801 */ 802 t->t_lwp = NULL; 803 t->t_swap = NULL; 804 805 if (swap) { 806 segkp_release(segkp, swap); 807 } 808 if (lwp) { 809 kmem_cache_free(lwp_cache, lwp); 810 } 811 if (!allocstk) { 812 kmem_cache_free(thread_cache, t); 813 } 814 } 815 816 /* 817 * Removes threads associated with the given zone from a deathrow queue. 818 * tp is a pointer to the head of the deathrow queue, and countp is a 819 * pointer to the current deathrow count. Returns a linked list of 820 * threads removed from the list. 821 */ 822 static kthread_t * 823 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 824 { 825 kthread_t *tmp, *list = NULL; 826 cred_t *cr; 827 828 ASSERT(MUTEX_HELD(&reaplock)); 829 while (*tp != NULL) { 830 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 831 tmp = *tp; 832 *tp = tmp->t_forw; 833 tmp->t_forw = list; 834 list = tmp; 835 (*countp)--; 836 } else { 837 tp = &(*tp)->t_forw; 838 } 839 } 840 return (list); 841 } 842 843 static void 844 thread_reap_list(kthread_t *t) 845 { 846 kthread_t *next; 847 848 while (t != NULL) { 849 next = t->t_forw; 850 thread_free(t); 851 t = next; 852 } 853 } 854 855 /* ARGSUSED */ 856 static void 857 thread_zone_destroy(zoneid_t zoneid, void *unused) 858 { 859 kthread_t *t, *l; 860 861 mutex_enter(&reaplock); 862 /* 863 * Pull threads and lwps associated with zone off deathrow lists. 864 */ 865 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 866 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 867 mutex_exit(&reaplock); 868 869 /* 870 * Guard against race condition in mutex_owner_running: 871 * thread=owner(mutex) 872 * <interrupt> 873 * thread exits mutex 874 * thread exits 875 * thread reaped 876 * thread struct freed 877 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 878 * A cross call to all cpus will cause the interrupt handler 879 * to reset the PC if it is in mutex_owner_running, refreshing 880 * stale thread pointers. 881 */ 882 mutex_sync(); /* sync with mutex code */ 883 884 /* 885 * Reap threads 886 */ 887 thread_reap_list(t); 888 889 /* 890 * Reap lwps 891 */ 892 thread_reap_list(l); 893 } 894 895 /* 896 * cleanup zombie threads that are on deathrow. 897 */ 898 void 899 thread_reaper() 900 { 901 kthread_t *t, *l; 902 callb_cpr_t cprinfo; 903 904 /* 905 * Register callback to clean up threads when zone is destroyed. 906 */ 907 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 908 909 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 910 for (;;) { 911 mutex_enter(&reaplock); 912 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 913 CALLB_CPR_SAFE_BEGIN(&cprinfo); 914 cv_wait(&reaper_cv, &reaplock); 915 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 916 } 917 /* 918 * mutex_sync() needs to be called when reaping, but 919 * not too often. We limit reaping rate to once 920 * per second. Reaplimit is max rate at which threads can 921 * be freed. Does not impact thread destruction/creation. 922 */ 923 t = thread_deathrow; 924 l = lwp_deathrow; 925 thread_deathrow = NULL; 926 lwp_deathrow = NULL; 927 thread_reapcnt = 0; 928 lwp_reapcnt = 0; 929 mutex_exit(&reaplock); 930 931 /* 932 * Guard against race condition in mutex_owner_running: 933 * thread=owner(mutex) 934 * <interrupt> 935 * thread exits mutex 936 * thread exits 937 * thread reaped 938 * thread struct freed 939 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE. 940 * A cross call to all cpus will cause the interrupt handler 941 * to reset the PC if it is in mutex_owner_running, refreshing 942 * stale thread pointers. 943 */ 944 mutex_sync(); /* sync with mutex code */ 945 /* 946 * Reap threads 947 */ 948 thread_reap_list(t); 949 950 /* 951 * Reap lwps 952 */ 953 thread_reap_list(l); 954 delay(hz); 955 } 956 } 957 958 /* 959 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto 960 * thread_deathrow. The thread's state is changed already TS_FREE to indicate 961 * that is reapable. The thread already holds the reaplock, and was already 962 * freed. 963 */ 964 void 965 reapq_move_lq_to_tq(kthread_t *t) 966 { 967 ASSERT(t->t_state == TS_FREE); 968 ASSERT(MUTEX_HELD(&reaplock)); 969 t->t_forw = thread_deathrow; 970 thread_deathrow = t; 971 thread_reapcnt++; 972 if (lwp_reapcnt + thread_reapcnt > reaplimit) 973 cv_signal(&reaper_cv); /* wake the reaper */ 974 } 975 976 /* 977 * This is called by resume() to put a zombie thread onto deathrow. 978 * The thread's state is changed to TS_FREE to indicate that is reapable. 979 * This is called from the idle thread so it must not block - just spin. 980 */ 981 void 982 reapq_add(kthread_t *t) 983 { 984 mutex_enter(&reaplock); 985 986 /* 987 * lwp_deathrow contains threads with lwp linkage and 988 * swappable thread stacks which have the default stacksize. 989 * These threads' lwps and stacks may be reused by lwp_create(). 990 * 991 * Anything else goes on thread_deathrow(), where it will eventually 992 * be thread_free()d. 993 */ 994 if (t->t_flag & T_LWPREUSE) { 995 ASSERT(ttolwp(t) != NULL); 996 t->t_forw = lwp_deathrow; 997 lwp_deathrow = t; 998 lwp_reapcnt++; 999 } else { 1000 t->t_forw = thread_deathrow; 1001 thread_deathrow = t; 1002 thread_reapcnt++; 1003 } 1004 if (lwp_reapcnt + thread_reapcnt > reaplimit) 1005 cv_signal(&reaper_cv); /* wake the reaper */ 1006 t->t_state = TS_FREE; 1007 lock_clear(&t->t_lock); 1008 1009 /* 1010 * Before we return, we need to grab and drop the thread lock for 1011 * the dead thread. At this point, the current thread is the idle 1012 * thread, and the dead thread's CPU lock points to the current 1013 * CPU -- and we must grab and drop the lock to synchronize with 1014 * a racing thread walking a blocking chain that the zombie thread 1015 * was recently in. By this point, that blocking chain is (by 1016 * definition) stale: the dead thread is not holding any locks, and 1017 * is therefore not in any blocking chains -- but if we do not regrab 1018 * our lock before freeing the dead thread's data structures, the 1019 * thread walking the (stale) blocking chain will die on memory 1020 * corruption when it attempts to drop the dead thread's lock. We 1021 * only need do this once because there is no way for the dead thread 1022 * to ever again be on a blocking chain: once we have grabbed and 1023 * dropped the thread lock, we are guaranteed that anyone that could 1024 * have seen this thread in a blocking chain can no longer see it. 1025 */ 1026 thread_lock(t); 1027 thread_unlock(t); 1028 1029 mutex_exit(&reaplock); 1030 } 1031 1032 /* 1033 * Provide an allocation function for callers of installctx() that, for 1034 * reasons of incomplete context-op initialization, must call installctx() 1035 * in a kpreempt_disable() block. The caller, therefore, must call this 1036 * without being in such a block. 1037 */ 1038 struct ctxop * 1039 installctx_preallocate(void) 1040 { 1041 /* 1042 * NOTE: We could ASSERT/VERIFY that we are not in a place where 1043 * a KM_SLEEP allocation could block indefinitely. 1044 * 1045 * ASSERT(curthread->t_preempt == 0); 1046 */ 1047 1048 return (kmem_alloc(sizeof (struct ctxop), KM_SLEEP)); 1049 } 1050 1051 /* 1052 * Install thread context ops for the current thread. 1053 * The caller can pass in a preallocated struct ctxop, eliminating the need 1054 * for the requirement of entering with kernel preemption still enabled. 1055 */ 1056 void 1057 installctx( 1058 kthread_t *t, 1059 void *arg, 1060 void (*save)(void *), 1061 void (*restore)(void *), 1062 void (*fork)(void *, void *), 1063 void (*lwp_create)(void *, void *), 1064 void (*exit)(void *), 1065 void (*free)(void *, int), 1066 struct ctxop *ctx) 1067 { 1068 if (ctx == NULL) 1069 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 1070 1071 ctx->save_op = save; 1072 ctx->restore_op = restore; 1073 ctx->fork_op = fork; 1074 ctx->lwp_create_op = lwp_create; 1075 ctx->exit_op = exit; 1076 ctx->free_op = free; 1077 ctx->arg = arg; 1078 ctx->save_ts = 0; 1079 ctx->restore_ts = 0; 1080 1081 /* 1082 * Keep ctxops in a doubly-linked list to allow traversal in both 1083 * directions. Using only the newest-to-oldest ordering was adequate 1084 * previously, but reversing the order for restore_op actions is 1085 * necessary if later-added ctxops depends on earlier ones. 1086 * 1087 * One example of such a dependency: Hypervisor software handling the 1088 * guest FPU expects that it save FPU state prior to host FPU handling 1089 * and consequently handle the guest logic _after_ the host FPU has 1090 * been restored. 1091 * 1092 * The t_ctx member points to the most recently added ctxop or is NULL 1093 * if no ctxops are associated with the thread. The 'next' pointers 1094 * form a loop of the ctxops in newest-to-oldest order. The 'prev' 1095 * pointers form a loop in the reverse direction, where t_ctx->prev is 1096 * the oldest entry associated with the thread. 1097 * 1098 * The protection of kpreempt_disable is required to safely perform the 1099 * list insertion, since there are inconsistent states between some of 1100 * the pointer assignments. 1101 */ 1102 kpreempt_disable(); 1103 if (t->t_ctx == NULL) { 1104 ctx->next = ctx; 1105 ctx->prev = ctx; 1106 } else { 1107 struct ctxop *head = t->t_ctx, *tail = t->t_ctx->prev; 1108 1109 ctx->next = head; 1110 ctx->prev = tail; 1111 head->prev = ctx; 1112 tail->next = ctx; 1113 } 1114 t->t_ctx = ctx; 1115 kpreempt_enable(); 1116 } 1117 1118 /* 1119 * Remove the thread context ops from a thread. 1120 */ 1121 int 1122 removectx( 1123 kthread_t *t, 1124 void *arg, 1125 void (*save)(void *), 1126 void (*restore)(void *), 1127 void (*fork)(void *, void *), 1128 void (*lwp_create)(void *, void *), 1129 void (*exit)(void *), 1130 void (*free)(void *, int)) 1131 { 1132 struct ctxop *ctx, *head; 1133 1134 /* 1135 * The incoming kthread_t (which is the thread for which the 1136 * context ops will be removed) should be one of the following: 1137 * 1138 * a) the current thread, 1139 * 1140 * b) a thread of a process that's being forked (SIDL), 1141 * 1142 * c) a thread that belongs to the same process as the current 1143 * thread and for which the current thread is the agent thread, 1144 * 1145 * d) a thread that is TS_STOPPED which is indicative of it 1146 * being (if curthread is not an agent) a thread being created 1147 * as part of an lwp creation. 1148 */ 1149 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 1150 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1151 1152 /* 1153 * Serialize modifications to t->t_ctx to prevent the agent thread 1154 * and the target thread from racing with each other during lwp exit. 1155 */ 1156 mutex_enter(&t->t_ctx_lock); 1157 kpreempt_disable(); 1158 1159 if (t->t_ctx == NULL) { 1160 mutex_exit(&t->t_ctx_lock); 1161 kpreempt_enable(); 1162 return (0); 1163 } 1164 1165 ctx = head = t->t_ctx; 1166 do { 1167 if (ctx->save_op == save && ctx->restore_op == restore && 1168 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 1169 ctx->exit_op == exit && ctx->free_op == free && 1170 ctx->arg == arg) { 1171 ctx->prev->next = ctx->next; 1172 ctx->next->prev = ctx->prev; 1173 if (ctx->next == ctx) { 1174 /* last remaining item */ 1175 t->t_ctx = NULL; 1176 } else if (ctx == t->t_ctx) { 1177 /* fix up head of list */ 1178 t->t_ctx = ctx->next; 1179 } 1180 ctx->next = ctx->prev = NULL; 1181 1182 mutex_exit(&t->t_ctx_lock); 1183 if (ctx->free_op != NULL) 1184 (ctx->free_op)(ctx->arg, 0); 1185 kmem_free(ctx, sizeof (struct ctxop)); 1186 kpreempt_enable(); 1187 return (1); 1188 } 1189 1190 ctx = ctx->next; 1191 } while (ctx != head); 1192 1193 mutex_exit(&t->t_ctx_lock); 1194 kpreempt_enable(); 1195 return (0); 1196 } 1197 1198 void 1199 savectx(kthread_t *t) 1200 { 1201 ASSERT(t == curthread); 1202 1203 if (t->t_ctx != NULL) { 1204 struct ctxop *ctx, *head; 1205 1206 /* Forward traversal */ 1207 ctx = head = t->t_ctx; 1208 do { 1209 if (ctx->save_op != NULL) { 1210 ctx->save_ts = gethrtime_unscaled(); 1211 (ctx->save_op)(ctx->arg); 1212 } 1213 ctx = ctx->next; 1214 } while (ctx != head); 1215 } 1216 } 1217 1218 void 1219 restorectx(kthread_t *t) 1220 { 1221 ASSERT(t == curthread); 1222 1223 if (t->t_ctx != NULL) { 1224 struct ctxop *ctx, *tail; 1225 1226 /* Backward traversal (starting at the tail) */ 1227 ctx = tail = t->t_ctx->prev; 1228 do { 1229 if (ctx->restore_op != NULL) { 1230 ctx->restore_ts = gethrtime_unscaled(); 1231 (ctx->restore_op)(ctx->arg); 1232 } 1233 ctx = ctx->prev; 1234 } while (ctx != tail); 1235 } 1236 } 1237 1238 void 1239 forkctx(kthread_t *t, kthread_t *ct) 1240 { 1241 if (t->t_ctx != NULL) { 1242 struct ctxop *ctx, *head; 1243 1244 /* Forward traversal */ 1245 ctx = head = t->t_ctx; 1246 do { 1247 if (ctx->fork_op != NULL) { 1248 (ctx->fork_op)(t, ct); 1249 } 1250 ctx = ctx->next; 1251 } while (ctx != head); 1252 } 1253 } 1254 1255 /* 1256 * Note that this operator is only invoked via the _lwp_create 1257 * system call. The system may have other reasons to create lwps 1258 * e.g. the agent lwp or the doors unreferenced lwp. 1259 */ 1260 void 1261 lwp_createctx(kthread_t *t, kthread_t *ct) 1262 { 1263 if (t->t_ctx != NULL) { 1264 struct ctxop *ctx, *head; 1265 1266 /* Forward traversal */ 1267 ctx = head = t->t_ctx; 1268 do { 1269 if (ctx->lwp_create_op != NULL) { 1270 (ctx->lwp_create_op)(t, ct); 1271 } 1272 ctx = ctx->next; 1273 } while (ctx != head); 1274 } 1275 } 1276 1277 /* 1278 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1279 * needed when the thread/LWP leaves the processor for the last time. This 1280 * routine is not intended to deal with freeing memory; freectx() is used for 1281 * that purpose during thread_free(). This routine is provided to allow for 1282 * clean-up that can't wait until thread_free(). 1283 */ 1284 void 1285 exitctx(kthread_t *t) 1286 { 1287 if (t->t_ctx != NULL) { 1288 struct ctxop *ctx, *head; 1289 1290 /* Forward traversal */ 1291 ctx = head = t->t_ctx; 1292 do { 1293 if (ctx->exit_op != NULL) { 1294 (ctx->exit_op)(t); 1295 } 1296 ctx = ctx->next; 1297 } while (ctx != head); 1298 } 1299 } 1300 1301 /* 1302 * freectx is called from thread_free() and exec() to get 1303 * rid of old thread context ops. 1304 */ 1305 void 1306 freectx(kthread_t *t, int isexec) 1307 { 1308 kpreempt_disable(); 1309 if (t->t_ctx != NULL) { 1310 struct ctxop *ctx, *head; 1311 1312 ctx = head = t->t_ctx; 1313 t->t_ctx = NULL; 1314 do { 1315 struct ctxop *next = ctx->next; 1316 1317 if (ctx->free_op != NULL) { 1318 (ctx->free_op)(ctx->arg, isexec); 1319 } 1320 kmem_free(ctx, sizeof (struct ctxop)); 1321 ctx = next; 1322 } while (ctx != head); 1323 } 1324 kpreempt_enable(); 1325 } 1326 1327 /* 1328 * freectx_ctx is called from lwp_create() when lwp is reused from 1329 * lwp_deathrow and its thread structure is added to thread_deathrow. 1330 * The thread structure to which this ctx was attached may be already 1331 * freed by the thread reaper so free_op implementations shouldn't rely 1332 * on thread structure to which this ctx was attached still being around. 1333 */ 1334 void 1335 freectx_ctx(struct ctxop *ctx) 1336 { 1337 struct ctxop *head = ctx; 1338 1339 ASSERT(ctx != NULL); 1340 1341 kpreempt_disable(); 1342 1343 head = ctx; 1344 do { 1345 struct ctxop *next = ctx->next; 1346 1347 if (ctx->free_op != NULL) { 1348 (ctx->free_op)(ctx->arg, 0); 1349 } 1350 kmem_free(ctx, sizeof (struct ctxop)); 1351 ctx = next; 1352 } while (ctx != head); 1353 kpreempt_enable(); 1354 } 1355 1356 /* 1357 * Set the thread running; arrange for it to be swapped in if necessary. 1358 */ 1359 void 1360 setrun_locked(kthread_t *t) 1361 { 1362 ASSERT(THREAD_LOCK_HELD(t)); 1363 if (t->t_state == TS_SLEEP) { 1364 /* 1365 * Take off sleep queue. 1366 */ 1367 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1368 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1369 /* 1370 * Already on dispatcher queue. 1371 */ 1372 return; 1373 } else if (t->t_state == TS_WAIT) { 1374 waitq_setrun(t); 1375 } else if (t->t_state == TS_STOPPED) { 1376 /* 1377 * All of the sending of SIGCONT (TC_XSTART) and /proc 1378 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1379 * requested that the thread be run. 1380 * Just calling setrun() is not sufficient to set a stopped 1381 * thread running. TP_TXSTART is always set if the thread 1382 * is not stopped by a jobcontrol stop signal. 1383 * TP_TPSTART is always set if /proc is not controlling it. 1384 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1385 * The thread won't be stopped unless one of these 1386 * three mechanisms did it. 1387 * 1388 * These flags must be set before calling setrun_locked(t). 1389 * They can't be passed as arguments because the streams 1390 * code calls setrun() indirectly and the mechanism for 1391 * doing so admits only one argument. Note that the 1392 * thread must be locked in order to change t_schedflags. 1393 */ 1394 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1395 return; 1396 /* 1397 * Process is no longer stopped (a thread is running). 1398 */ 1399 t->t_whystop = 0; 1400 t->t_whatstop = 0; 1401 /* 1402 * Strictly speaking, we do not have to clear these 1403 * flags here; they are cleared on entry to stop(). 1404 * However, they are confusing when doing kernel 1405 * debugging or when they are revealed by ps(1). 1406 */ 1407 t->t_schedflag &= ~TS_ALLSTART; 1408 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1409 ASSERT(t->t_lockp == &transition_lock); 1410 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1411 /* 1412 * Let the class put the process on the dispatcher queue. 1413 */ 1414 CL_SETRUN(t); 1415 } 1416 } 1417 1418 void 1419 setrun(kthread_t *t) 1420 { 1421 thread_lock(t); 1422 setrun_locked(t); 1423 thread_unlock(t); 1424 } 1425 1426 /* 1427 * Unpin an interrupted thread. 1428 * When an interrupt occurs, the interrupt is handled on the stack 1429 * of an interrupt thread, taken from a pool linked to the CPU structure. 1430 * 1431 * When swtch() is switching away from an interrupt thread because it 1432 * blocked or was preempted, this routine is called to complete the 1433 * saving of the interrupted thread state, and returns the interrupted 1434 * thread pointer so it may be resumed. 1435 * 1436 * Called by swtch() only at high spl. 1437 */ 1438 kthread_t * 1439 thread_unpin() 1440 { 1441 kthread_t *t = curthread; /* current thread */ 1442 kthread_t *itp; /* interrupted thread */ 1443 int i; /* interrupt level */ 1444 extern int intr_passivate(); 1445 1446 ASSERT(t->t_intr != NULL); 1447 1448 itp = t->t_intr; /* interrupted thread */ 1449 t->t_intr = NULL; /* clear interrupt ptr */ 1450 1451 smt_end_intr(); 1452 1453 /* 1454 * Get state from interrupt thread for the one 1455 * it interrupted. 1456 */ 1457 1458 i = intr_passivate(t, itp); 1459 1460 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1461 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1462 i, t, t, itp, itp); 1463 1464 /* 1465 * Dissociate the current thread from the interrupted thread's LWP. 1466 */ 1467 t->t_lwp = NULL; 1468 1469 /* 1470 * Interrupt handlers above the level that spinlocks block must 1471 * not block. 1472 */ 1473 #if DEBUG 1474 if (i < 0 || i > LOCK_LEVEL) 1475 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1476 #endif 1477 1478 /* 1479 * Compute the CPU's base interrupt level based on the active 1480 * interrupts. 1481 */ 1482 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1483 set_base_spl(); 1484 1485 return (itp); 1486 } 1487 1488 /* 1489 * Create and initialize an interrupt thread. 1490 * Returns non-zero on error. 1491 * Called at spl7() or better. 1492 */ 1493 void 1494 thread_create_intr(struct cpu *cp) 1495 { 1496 kthread_t *tp; 1497 1498 tp = thread_create(NULL, 0, 1499 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1500 1501 /* 1502 * Set the thread in the TS_FREE state. The state will change 1503 * to TS_ONPROC only while the interrupt is active. Think of these 1504 * as being on a private free list for the CPU. Being TS_FREE keeps 1505 * inactive interrupt threads out of debugger thread lists. 1506 * 1507 * We cannot call thread_create with TS_FREE because of the current 1508 * checks there for ONPROC. Fix this when thread_create takes flags. 1509 */ 1510 THREAD_FREEINTR(tp, cp); 1511 1512 /* 1513 * Nobody should ever reference the credentials of an interrupt 1514 * thread so make it NULL to catch any such references. 1515 */ 1516 tp->t_cred = NULL; 1517 tp->t_flag |= T_INTR_THREAD; 1518 tp->t_cpu = cp; 1519 tp->t_bound_cpu = cp; 1520 tp->t_disp_queue = cp->cpu_disp; 1521 tp->t_affinitycnt = 1; 1522 tp->t_preempt = 1; 1523 1524 /* 1525 * Don't make a user-requested binding on this thread so that 1526 * the processor can be offlined. 1527 */ 1528 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1529 tp->t_bind_pset = PS_NONE; 1530 1531 #if defined(__x86) 1532 tp->t_stk -= STACK_ALIGN; 1533 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1534 #endif 1535 1536 /* 1537 * Link onto CPU's interrupt pool. 1538 */ 1539 tp->t_link = cp->cpu_intr_thread; 1540 cp->cpu_intr_thread = tp; 1541 } 1542 1543 /* 1544 * TSD -- THREAD SPECIFIC DATA 1545 */ 1546 static kmutex_t tsd_mutex; /* linked list spin lock */ 1547 static uint_t tsd_nkeys; /* size of destructor array */ 1548 /* per-key destructor funcs */ 1549 static void (**tsd_destructor)(void *); 1550 /* list of tsd_thread's */ 1551 static struct tsd_thread *tsd_list; 1552 1553 /* 1554 * Default destructor 1555 * Needed because NULL destructor means that the key is unused 1556 */ 1557 /* ARGSUSED */ 1558 void 1559 tsd_defaultdestructor(void *value) 1560 {} 1561 1562 /* 1563 * Create a key (index into per thread array) 1564 * Locks out tsd_create, tsd_destroy, and tsd_exit 1565 * May allocate memory with lock held 1566 */ 1567 void 1568 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1569 { 1570 int i; 1571 uint_t nkeys; 1572 1573 /* 1574 * if key is allocated, do nothing 1575 */ 1576 mutex_enter(&tsd_mutex); 1577 if (*keyp) { 1578 mutex_exit(&tsd_mutex); 1579 return; 1580 } 1581 /* 1582 * find an unused key 1583 */ 1584 if (destructor == NULL) 1585 destructor = tsd_defaultdestructor; 1586 1587 for (i = 0; i < tsd_nkeys; ++i) 1588 if (tsd_destructor[i] == NULL) 1589 break; 1590 1591 /* 1592 * if no unused keys, increase the size of the destructor array 1593 */ 1594 if (i == tsd_nkeys) { 1595 if ((nkeys = (tsd_nkeys << 1)) == 0) 1596 nkeys = 1; 1597 tsd_destructor = 1598 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1599 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1600 (size_t)(nkeys * sizeof (void (*)(void *)))); 1601 tsd_nkeys = nkeys; 1602 } 1603 1604 /* 1605 * allocate the next available unused key 1606 */ 1607 tsd_destructor[i] = destructor; 1608 *keyp = i + 1; 1609 mutex_exit(&tsd_mutex); 1610 } 1611 1612 /* 1613 * Destroy a key -- this is for unloadable modules 1614 * 1615 * Assumes that the caller is preventing tsd_set and tsd_get 1616 * Locks out tsd_create, tsd_destroy, and tsd_exit 1617 * May free memory with lock held 1618 */ 1619 void 1620 tsd_destroy(uint_t *keyp) 1621 { 1622 uint_t key; 1623 struct tsd_thread *tsd; 1624 1625 /* 1626 * protect the key namespace and our destructor lists 1627 */ 1628 mutex_enter(&tsd_mutex); 1629 key = *keyp; 1630 *keyp = 0; 1631 1632 ASSERT(key <= tsd_nkeys); 1633 1634 /* 1635 * if the key is valid 1636 */ 1637 if (key != 0) { 1638 uint_t k = key - 1; 1639 /* 1640 * for every thread with TSD, call key's destructor 1641 */ 1642 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1643 /* 1644 * no TSD for key in this thread 1645 */ 1646 if (key > tsd->ts_nkeys) 1647 continue; 1648 /* 1649 * call destructor for key 1650 */ 1651 if (tsd->ts_value[k] && tsd_destructor[k]) 1652 (*tsd_destructor[k])(tsd->ts_value[k]); 1653 /* 1654 * reset value for key 1655 */ 1656 tsd->ts_value[k] = NULL; 1657 } 1658 /* 1659 * actually free the key (NULL destructor == unused) 1660 */ 1661 tsd_destructor[k] = NULL; 1662 } 1663 1664 mutex_exit(&tsd_mutex); 1665 } 1666 1667 /* 1668 * Quickly return the per thread value that was stored with the specified key 1669 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1670 */ 1671 void * 1672 tsd_get(uint_t key) 1673 { 1674 return (tsd_agent_get(curthread, key)); 1675 } 1676 1677 /* 1678 * Set a per thread value indexed with the specified key 1679 */ 1680 int 1681 tsd_set(uint_t key, void *value) 1682 { 1683 return (tsd_agent_set(curthread, key, value)); 1684 } 1685 1686 /* 1687 * Like tsd_get(), except that the agent lwp can get the tsd of 1688 * another thread in the same process (the agent thread only runs when the 1689 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1690 */ 1691 void * 1692 tsd_agent_get(kthread_t *t, uint_t key) 1693 { 1694 struct tsd_thread *tsd = t->t_tsd; 1695 1696 ASSERT(t == curthread || 1697 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1698 1699 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1700 return (tsd->ts_value[key - 1]); 1701 return (NULL); 1702 } 1703 1704 /* 1705 * Like tsd_set(), except that the agent lwp can set the tsd of 1706 * another thread in the same process, or syslwp can set the tsd 1707 * of a thread it's in the middle of creating. 1708 * 1709 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1710 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1711 * lock held 1712 */ 1713 int 1714 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1715 { 1716 struct tsd_thread *tsd = t->t_tsd; 1717 1718 ASSERT(t == curthread || 1719 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1720 1721 if (key == 0) 1722 return (EINVAL); 1723 if (tsd == NULL) 1724 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1725 if (key <= tsd->ts_nkeys) { 1726 tsd->ts_value[key - 1] = value; 1727 return (0); 1728 } 1729 1730 ASSERT(key <= tsd_nkeys); 1731 1732 /* 1733 * lock out tsd_destroy() 1734 */ 1735 mutex_enter(&tsd_mutex); 1736 if (tsd->ts_nkeys == 0) { 1737 /* 1738 * Link onto list of threads with TSD 1739 */ 1740 if ((tsd->ts_next = tsd_list) != NULL) 1741 tsd_list->ts_prev = tsd; 1742 tsd_list = tsd; 1743 } 1744 1745 /* 1746 * Allocate thread local storage and set the value for key 1747 */ 1748 tsd->ts_value = tsd_realloc(tsd->ts_value, 1749 tsd->ts_nkeys * sizeof (void *), 1750 key * sizeof (void *)); 1751 tsd->ts_nkeys = key; 1752 tsd->ts_value[key - 1] = value; 1753 mutex_exit(&tsd_mutex); 1754 1755 return (0); 1756 } 1757 1758 1759 /* 1760 * Return the per thread value that was stored with the specified key 1761 * If necessary, create the key and the value 1762 * Assumes the caller is protecting *keyp from tsd_destroy 1763 */ 1764 void * 1765 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1766 { 1767 void *value; 1768 uint_t key = *keyp; 1769 struct tsd_thread *tsd = curthread->t_tsd; 1770 1771 if (tsd == NULL) 1772 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1773 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1774 return (value); 1775 if (key == 0) 1776 tsd_create(keyp, destroy); 1777 (void) tsd_set(*keyp, value = (*allocate)()); 1778 1779 return (value); 1780 } 1781 1782 /* 1783 * Called from thread_exit() to run the destructor function for each tsd 1784 * Locks out tsd_create and tsd_destroy 1785 * Assumes that the destructor *DOES NOT* use tsd 1786 */ 1787 void 1788 tsd_exit(void) 1789 { 1790 int i; 1791 struct tsd_thread *tsd = curthread->t_tsd; 1792 1793 if (tsd == NULL) 1794 return; 1795 1796 if (tsd->ts_nkeys == 0) { 1797 kmem_free(tsd, sizeof (*tsd)); 1798 curthread->t_tsd = NULL; 1799 return; 1800 } 1801 1802 /* 1803 * lock out tsd_create and tsd_destroy, call 1804 * the destructor, and mark the value as destroyed. 1805 */ 1806 mutex_enter(&tsd_mutex); 1807 1808 for (i = 0; i < tsd->ts_nkeys; i++) { 1809 if (tsd->ts_value[i] && tsd_destructor[i]) 1810 (*tsd_destructor[i])(tsd->ts_value[i]); 1811 tsd->ts_value[i] = NULL; 1812 } 1813 1814 /* 1815 * remove from linked list of threads with TSD 1816 */ 1817 if (tsd->ts_next) 1818 tsd->ts_next->ts_prev = tsd->ts_prev; 1819 if (tsd->ts_prev) 1820 tsd->ts_prev->ts_next = tsd->ts_next; 1821 if (tsd_list == tsd) 1822 tsd_list = tsd->ts_next; 1823 1824 mutex_exit(&tsd_mutex); 1825 1826 /* 1827 * free up the TSD 1828 */ 1829 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1830 kmem_free(tsd, sizeof (struct tsd_thread)); 1831 curthread->t_tsd = NULL; 1832 } 1833 1834 /* 1835 * realloc 1836 */ 1837 static void * 1838 tsd_realloc(void *old, size_t osize, size_t nsize) 1839 { 1840 void *new; 1841 1842 new = kmem_zalloc(nsize, KM_SLEEP); 1843 if (old) { 1844 bcopy(old, new, osize); 1845 kmem_free(old, osize); 1846 } 1847 return (new); 1848 } 1849 1850 /* 1851 * Return non-zero if an interrupt is being serviced. 1852 */ 1853 int 1854 servicing_interrupt() 1855 { 1856 int onintr = 0; 1857 1858 /* Are we an interrupt thread */ 1859 if (curthread->t_flag & T_INTR_THREAD) 1860 return (1); 1861 /* Are we servicing a high level interrupt? */ 1862 if (CPU_ON_INTR(CPU)) { 1863 kpreempt_disable(); 1864 onintr = CPU_ON_INTR(CPU); 1865 kpreempt_enable(); 1866 } 1867 return (onintr); 1868 } 1869 1870 1871 /* 1872 * Change the dispatch priority of a thread in the system. 1873 * Used when raising or lowering a thread's priority. 1874 * (E.g., priority inheritance) 1875 * 1876 * Since threads are queued according to their priority, we 1877 * we must check the thread's state to determine whether it 1878 * is on a queue somewhere. If it is, we've got to: 1879 * 1880 * o Dequeue the thread. 1881 * o Change its effective priority. 1882 * o Enqueue the thread. 1883 * 1884 * Assumptions: The thread whose priority we wish to change 1885 * must be locked before we call thread_change_(e)pri(). 1886 * The thread_change(e)pri() function doesn't drop the thread 1887 * lock--that must be done by its caller. 1888 */ 1889 void 1890 thread_change_epri(kthread_t *t, pri_t disp_pri) 1891 { 1892 uint_t state; 1893 1894 ASSERT(THREAD_LOCK_HELD(t)); 1895 1896 /* 1897 * If the inherited priority hasn't actually changed, 1898 * just return. 1899 */ 1900 if (t->t_epri == disp_pri) 1901 return; 1902 1903 state = t->t_state; 1904 1905 /* 1906 * If it's not on a queue, change the priority with impunity. 1907 */ 1908 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1909 t->t_epri = disp_pri; 1910 if (state == TS_ONPROC) { 1911 cpu_t *cp = t->t_disp_queue->disp_cpu; 1912 1913 if (t == cp->cpu_dispthread) 1914 cp->cpu_dispatch_pri = DISP_PRIO(t); 1915 } 1916 } else if (state == TS_SLEEP) { 1917 /* 1918 * Take the thread out of its sleep queue. 1919 * Change the inherited priority. 1920 * Re-enqueue the thread. 1921 * Each synchronization object exports a function 1922 * to do this in an appropriate manner. 1923 */ 1924 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1925 } else if (state == TS_WAIT) { 1926 /* 1927 * Re-enqueue a thread on the wait queue if its 1928 * effective priority needs to change. 1929 */ 1930 if (disp_pri != t->t_epri) 1931 waitq_change_pri(t, disp_pri); 1932 } else { 1933 /* 1934 * The thread is on a run queue. 1935 * Note: setbackdq() may not put the thread 1936 * back on the same run queue where it originally 1937 * resided. 1938 */ 1939 (void) dispdeq(t); 1940 t->t_epri = disp_pri; 1941 setbackdq(t); 1942 } 1943 schedctl_set_cidpri(t); 1944 } 1945 1946 /* 1947 * Function: Change the t_pri field of a thread. 1948 * Side Effects: Adjust the thread ordering on a run queue 1949 * or sleep queue, if necessary. 1950 * Returns: 1 if the thread was on a run queue, else 0. 1951 */ 1952 int 1953 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1954 { 1955 uint_t state; 1956 int on_rq = 0; 1957 1958 ASSERT(THREAD_LOCK_HELD(t)); 1959 1960 state = t->t_state; 1961 THREAD_WILLCHANGE_PRI(t, disp_pri); 1962 1963 /* 1964 * If it's not on a queue, change the priority with impunity. 1965 */ 1966 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1967 t->t_pri = disp_pri; 1968 1969 if (state == TS_ONPROC) { 1970 cpu_t *cp = t->t_disp_queue->disp_cpu; 1971 1972 if (t == cp->cpu_dispthread) 1973 cp->cpu_dispatch_pri = DISP_PRIO(t); 1974 } 1975 } else if (state == TS_SLEEP) { 1976 /* 1977 * If the priority has changed, take the thread out of 1978 * its sleep queue and change the priority. 1979 * Re-enqueue the thread. 1980 * Each synchronization object exports a function 1981 * to do this in an appropriate manner. 1982 */ 1983 if (disp_pri != t->t_pri) 1984 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1985 } else if (state == TS_WAIT) { 1986 /* 1987 * Re-enqueue a thread on the wait queue if its 1988 * priority needs to change. 1989 */ 1990 if (disp_pri != t->t_pri) 1991 waitq_change_pri(t, disp_pri); 1992 } else { 1993 /* 1994 * The thread is on a run queue. 1995 * Note: setbackdq() may not put the thread 1996 * back on the same run queue where it originally 1997 * resided. 1998 * 1999 * We still requeue the thread even if the priority 2000 * is unchanged to preserve round-robin (and other) 2001 * effects between threads of the same priority. 2002 */ 2003 on_rq = dispdeq(t); 2004 ASSERT(on_rq); 2005 t->t_pri = disp_pri; 2006 if (front) { 2007 setfrontdq(t); 2008 } else { 2009 setbackdq(t); 2010 } 2011 } 2012 schedctl_set_cidpri(t); 2013 return (on_rq); 2014 } 2015 2016 /* 2017 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a 2018 * specific pattern. 2019 */ 2020 static void 2021 stkinfo_begin(kthread_t *t) 2022 { 2023 caddr_t start; /* stack start */ 2024 caddr_t end; /* stack end */ 2025 uint64_t *ptr; /* pattern pointer */ 2026 2027 /* 2028 * Stack grows up or down, see thread_create(), 2029 * compute stack memory area start and end (start < end). 2030 */ 2031 if (t->t_stk > t->t_stkbase) { 2032 /* stack grows down */ 2033 start = t->t_stkbase; 2034 end = t->t_stk; 2035 } else { 2036 /* stack grows up */ 2037 start = t->t_stk; 2038 end = t->t_stkbase; 2039 } 2040 2041 /* 2042 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2043 * alignement for start and end in stack area boundaries 2044 * (protection against corrupt t_stkbase/t_stk data). 2045 */ 2046 if ((((uintptr_t)start) & 0x7) != 0) { 2047 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2048 } 2049 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2050 2051 if ((end <= start) || (end - start) > (1024 * 1024)) { 2052 /* negative or stack size > 1 meg, assume bogus */ 2053 return; 2054 } 2055 2056 /* fill stack area with a pattern (instead of zeros) */ 2057 ptr = (uint64_t *)((void *)start); 2058 while (ptr < (uint64_t *)((void *)end)) { 2059 *ptr++ = KMEM_STKINFO_PATTERN; 2060 } 2061 } 2062 2063 2064 /* 2065 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist, 2066 * compute the percentage of kernel stack really used, and set in the log 2067 * if it's the latest highest percentage. 2068 */ 2069 static void 2070 stkinfo_end(kthread_t *t) 2071 { 2072 caddr_t start; /* stack start */ 2073 caddr_t end; /* stack end */ 2074 uint64_t *ptr; /* pattern pointer */ 2075 size_t stksz; /* stack size */ 2076 size_t smallest = 0; 2077 size_t percent = 0; 2078 uint_t index = 0; 2079 uint_t i; 2080 static size_t smallest_percent = (size_t)-1; 2081 static uint_t full = 0; 2082 2083 /* create the stackinfo log, if doesn't already exist */ 2084 mutex_enter(&kmem_stkinfo_lock); 2085 if (kmem_stkinfo_log == NULL) { 2086 kmem_stkinfo_log = (kmem_stkinfo_t *) 2087 kmem_zalloc(KMEM_STKINFO_LOG_SIZE * 2088 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP); 2089 if (kmem_stkinfo_log == NULL) { 2090 mutex_exit(&kmem_stkinfo_lock); 2091 return; 2092 } 2093 } 2094 mutex_exit(&kmem_stkinfo_lock); 2095 2096 /* 2097 * Stack grows up or down, see thread_create(), 2098 * compute stack memory area start and end (start < end). 2099 */ 2100 if (t->t_stk > t->t_stkbase) { 2101 /* stack grows down */ 2102 start = t->t_stkbase; 2103 end = t->t_stk; 2104 } else { 2105 /* stack grows up */ 2106 start = t->t_stk; 2107 end = t->t_stkbase; 2108 } 2109 2110 /* stack size as found in kthread_t */ 2111 stksz = end - start; 2112 2113 /* 2114 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes 2115 * alignement for start and end in stack area boundaries 2116 * (protection against corrupt t_stkbase/t_stk data). 2117 */ 2118 if ((((uintptr_t)start) & 0x7) != 0) { 2119 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); 2120 } 2121 end = (caddr_t)(((uintptr_t)end) & (~0x7)); 2122 2123 if ((end <= start) || (end - start) > (1024 * 1024)) { 2124 /* negative or stack size > 1 meg, assume bogus */ 2125 return; 2126 } 2127 2128 /* search until no pattern in the stack */ 2129 if (t->t_stk > t->t_stkbase) { 2130 /* stack grows down */ 2131 #if defined(__x86) 2132 /* 2133 * 6 longs are pushed on stack, see thread_load(). Skip 2134 * them, so if kthread has never run, percent is zero. 2135 * 8 bytes alignement is preserved for a 32 bit kernel, 2136 * 6 x 4 = 24, 24 is a multiple of 8. 2137 * 2138 */ 2139 end -= (6 * sizeof (long)); 2140 #endif 2141 ptr = (uint64_t *)((void *)start); 2142 while (ptr < (uint64_t *)((void *)end)) { 2143 if (*ptr != KMEM_STKINFO_PATTERN) { 2144 percent = stkinfo_percent(end, 2145 start, (caddr_t)ptr); 2146 break; 2147 } 2148 ptr++; 2149 } 2150 } else { 2151 /* stack grows up */ 2152 ptr = (uint64_t *)((void *)end); 2153 ptr--; 2154 while (ptr >= (uint64_t *)((void *)start)) { 2155 if (*ptr != KMEM_STKINFO_PATTERN) { 2156 percent = stkinfo_percent(start, 2157 end, (caddr_t)ptr); 2158 break; 2159 } 2160 ptr--; 2161 } 2162 } 2163 2164 DTRACE_PROBE3(stack__usage, kthread_t *, t, 2165 size_t, stksz, size_t, percent); 2166 2167 if (percent == 0) { 2168 return; 2169 } 2170 2171 mutex_enter(&kmem_stkinfo_lock); 2172 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) { 2173 /* 2174 * The log is full and already contains the highest values 2175 */ 2176 mutex_exit(&kmem_stkinfo_lock); 2177 return; 2178 } 2179 2180 /* keep a log of the highest used stack */ 2181 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { 2182 if (kmem_stkinfo_log[i].percent == 0) { 2183 index = i; 2184 full++; 2185 break; 2186 } 2187 if (smallest == 0) { 2188 smallest = kmem_stkinfo_log[i].percent; 2189 index = i; 2190 continue; 2191 } 2192 if (kmem_stkinfo_log[i].percent < smallest) { 2193 smallest = kmem_stkinfo_log[i].percent; 2194 index = i; 2195 } 2196 } 2197 2198 if (percent >= kmem_stkinfo_log[index].percent) { 2199 kmem_stkinfo_log[index].kthread = (caddr_t)t; 2200 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc; 2201 kmem_stkinfo_log[index].start = start; 2202 kmem_stkinfo_log[index].stksz = stksz; 2203 kmem_stkinfo_log[index].percent = percent; 2204 kmem_stkinfo_log[index].t_tid = t->t_tid; 2205 kmem_stkinfo_log[index].cmd[0] = '\0'; 2206 if (t->t_tid != 0) { 2207 stksz = strlen((t->t_procp)->p_user.u_comm); 2208 if (stksz >= KMEM_STKINFO_STR_SIZE) { 2209 stksz = KMEM_STKINFO_STR_SIZE - 1; 2210 kmem_stkinfo_log[index].cmd[stksz] = '\0'; 2211 } else { 2212 stksz += 1; 2213 } 2214 (void) memcpy(kmem_stkinfo_log[index].cmd, 2215 (t->t_procp)->p_user.u_comm, stksz); 2216 } 2217 if (percent < smallest_percent) { 2218 smallest_percent = percent; 2219 } 2220 } 2221 mutex_exit(&kmem_stkinfo_lock); 2222 } 2223 2224 /* 2225 * Tunable kmem_stackinfo is set, compute stack utilization percentage. 2226 */ 2227 static size_t 2228 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) 2229 { 2230 size_t percent; 2231 size_t s; 2232 2233 if (t_stk > t_stkbase) { 2234 /* stack grows down */ 2235 if (sp > t_stk) { 2236 return (0); 2237 } 2238 if (sp < t_stkbase) { 2239 return (100); 2240 } 2241 percent = t_stk - sp + 1; 2242 s = t_stk - t_stkbase + 1; 2243 } else { 2244 /* stack grows up */ 2245 if (sp < t_stk) { 2246 return (0); 2247 } 2248 if (sp > t_stkbase) { 2249 return (100); 2250 } 2251 percent = sp - t_stk + 1; 2252 s = t_stkbase - t_stk + 1; 2253 } 2254 percent = ((100 * percent) / s) + 1; 2255 if (percent > 100) { 2256 percent = 100; 2257 } 2258 return (percent); 2259 } 2260 2261 /* 2262 * NOTE: This will silently truncate a name > THREAD_NAME_MAX - 1 characters 2263 * long. It is expected that callers (acting on behalf of userland clients) 2264 * will perform any required checks to return the correct error semantics. 2265 * It is also expected callers on behalf of userland clients have done 2266 * any necessary permission checks. 2267 */ 2268 int 2269 thread_setname(kthread_t *t, const char *name) 2270 { 2271 char *buf = NULL; 2272 2273 /* 2274 * We optimistically assume that a thread's name will only be set 2275 * once and so allocate memory in preparation of setting t_name. 2276 * If it turns out a name has already been set, we just discard (free) 2277 * the buffer we just allocated and reuse the current buffer 2278 * (as all should be THREAD_NAME_MAX large). 2279 * 2280 * Such an arrangement means over the lifetime of a kthread_t, t_name 2281 * is either NULL or has one value (the address of the buffer holding 2282 * the current thread name). The assumption is that most kthread_t 2283 * instances will not have a name assigned, so dynamically allocating 2284 * the memory should minimize the footprint of this feature, but by 2285 * having the buffer persist for the life of the thread, it simplifies 2286 * usage in highly constrained situations (e.g. dtrace). 2287 */ 2288 if (name != NULL && name[0] != '\0') { 2289 for (size_t i = 0; name[i] != '\0'; i++) { 2290 if (!isprint(name[i])) 2291 return (EINVAL); 2292 } 2293 2294 buf = kmem_zalloc(THREAD_NAME_MAX, KM_SLEEP); 2295 (void) strlcpy(buf, name, THREAD_NAME_MAX); 2296 } 2297 2298 mutex_enter(&ttoproc(t)->p_lock); 2299 if (t->t_name == NULL) { 2300 t->t_name = buf; 2301 } else { 2302 if (buf != NULL) { 2303 (void) strlcpy(t->t_name, name, THREAD_NAME_MAX); 2304 kmem_free(buf, THREAD_NAME_MAX); 2305 } else { 2306 bzero(t->t_name, THREAD_NAME_MAX); 2307 } 2308 } 2309 mutex_exit(&ttoproc(t)->p_lock); 2310 return (0); 2311 } 2312 2313 int 2314 thread_vsetname(kthread_t *t, const char *fmt, ...) 2315 { 2316 char name[THREAD_NAME_MAX]; 2317 va_list va; 2318 int rc; 2319 2320 va_start(va, fmt); 2321 rc = vsnprintf(name, sizeof (name), fmt, va); 2322 va_end(va); 2323 2324 if (rc < 0) 2325 return (EINVAL); 2326 2327 if (rc >= sizeof (name)) 2328 return (ENAMETOOLONG); 2329 2330 return (thread_setname(t, name)); 2331 } 2332