1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <ctype.h> 45 #include <devid.h> 46 #include <dirent.h> 47 #include <errno.h> 48 #include <libintl.h> 49 #include <stddef.h> 50 #include <stdlib.h> 51 #include <string.h> 52 #include <sys/stat.h> 53 #include <unistd.h> 54 #include <fcntl.h> 55 #include <sys/vtoc.h> 56 #include <sys/dktp/fdisk.h> 57 #include <sys/efi_partition.h> 58 #include <thread_pool.h> 59 60 #include <sys/vdev_impl.h> 61 62 #include "libzfs.h" 63 #include "libzfs_impl.h" 64 65 /* 66 * Intermediate structures used to gather configuration information. 67 */ 68 typedef struct config_entry { 69 uint64_t ce_txg; 70 nvlist_t *ce_config; 71 struct config_entry *ce_next; 72 } config_entry_t; 73 74 typedef struct vdev_entry { 75 uint64_t ve_guid; 76 config_entry_t *ve_configs; 77 struct vdev_entry *ve_next; 78 } vdev_entry_t; 79 80 typedef struct pool_entry { 81 uint64_t pe_guid; 82 vdev_entry_t *pe_vdevs; 83 struct pool_entry *pe_next; 84 } pool_entry_t; 85 86 typedef struct name_entry { 87 char *ne_name; 88 uint64_t ne_guid; 89 struct name_entry *ne_next; 90 } name_entry_t; 91 92 typedef struct pool_list { 93 pool_entry_t *pools; 94 name_entry_t *names; 95 } pool_list_t; 96 97 static char * 98 get_devid(const char *path) 99 { 100 int fd; 101 ddi_devid_t devid; 102 char *minor, *ret; 103 104 if ((fd = open(path, O_RDONLY)) < 0) 105 return (NULL); 106 107 minor = NULL; 108 ret = NULL; 109 if (devid_get(fd, &devid) == 0) { 110 if (devid_get_minor_name(fd, &minor) == 0) 111 ret = devid_str_encode(devid, minor); 112 if (minor != NULL) 113 devid_str_free(minor); 114 devid_free(devid); 115 } 116 (void) close(fd); 117 118 return (ret); 119 } 120 121 122 /* 123 * Go through and fix up any path and/or devid information for the given vdev 124 * configuration. 125 */ 126 static int 127 fix_paths(nvlist_t *nv, name_entry_t *names) 128 { 129 nvlist_t **child; 130 uint_t c, children; 131 uint64_t guid; 132 name_entry_t *ne, *best; 133 char *path, *devid; 134 int matched; 135 136 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 137 &child, &children) == 0) { 138 for (c = 0; c < children; c++) 139 if (fix_paths(child[c], names) != 0) 140 return (-1); 141 return (0); 142 } 143 144 /* 145 * This is a leaf (file or disk) vdev. In either case, go through 146 * the name list and see if we find a matching guid. If so, replace 147 * the path and see if we can calculate a new devid. 148 * 149 * There may be multiple names associated with a particular guid, in 150 * which case we have overlapping slices or multiple paths to the same 151 * disk. If this is the case, then we want to pick the path that is 152 * the most similar to the original, where "most similar" is the number 153 * of matching characters starting from the end of the path. This will 154 * preserve slice numbers even if the disks have been reorganized, and 155 * will also catch preferred disk names if multiple paths exist. 156 */ 157 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 158 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 159 path = NULL; 160 161 matched = 0; 162 best = NULL; 163 for (ne = names; ne != NULL; ne = ne->ne_next) { 164 if (ne->ne_guid == guid) { 165 const char *src, *dst; 166 int count; 167 168 if (path == NULL) { 169 best = ne; 170 break; 171 } 172 173 src = ne->ne_name + strlen(ne->ne_name) - 1; 174 dst = path + strlen(path) - 1; 175 for (count = 0; src >= ne->ne_name && dst >= path; 176 src--, dst--, count++) 177 if (*src != *dst) 178 break; 179 180 /* 181 * At this point, 'count' is the number of characters 182 * matched from the end. 183 */ 184 if (count > matched || best == NULL) { 185 best = ne; 186 matched = count; 187 } 188 } 189 } 190 191 if (best == NULL) 192 return (0); 193 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 195 return (-1); 196 197 if ((devid = get_devid(best->ne_name)) == NULL) { 198 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 199 } else { 200 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 201 devid_str_free(devid); 202 return (-1); 203 } 204 devid_str_free(devid); 205 } 206 207 return (0); 208 } 209 210 /* 211 * Add the given configuration to the list of known devices. 212 */ 213 static int 214 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 215 nvlist_t *config) 216 { 217 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 218 pool_entry_t *pe; 219 vdev_entry_t *ve; 220 config_entry_t *ce; 221 name_entry_t *ne; 222 223 /* 224 * If this is a hot spare not currently in use or level 2 cache 225 * device, add it to the list of names to translate, but don't do 226 * anything else. 227 */ 228 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 229 &state) == 0 && 230 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 231 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 232 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 233 return (-1); 234 235 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 236 free(ne); 237 return (-1); 238 } 239 ne->ne_guid = vdev_guid; 240 ne->ne_next = pl->names; 241 pl->names = ne; 242 return (0); 243 } 244 245 /* 246 * If we have a valid config but cannot read any of these fields, then 247 * it means we have a half-initialized label. In vdev_label_init() 248 * we write a label with txg == 0 so that we can identify the device 249 * in case the user refers to the same disk later on. If we fail to 250 * create the pool, we'll be left with a label in this state 251 * which should not be considered part of a valid pool. 252 */ 253 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 254 &pool_guid) != 0 || 255 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 256 &vdev_guid) != 0 || 257 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 258 &top_guid) != 0 || 259 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 260 &txg) != 0 || txg == 0) { 261 nvlist_free(config); 262 return (0); 263 } 264 265 /* 266 * First, see if we know about this pool. If not, then add it to the 267 * list of known pools. 268 */ 269 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 270 if (pe->pe_guid == pool_guid) 271 break; 272 } 273 274 if (pe == NULL) { 275 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 276 nvlist_free(config); 277 return (-1); 278 } 279 pe->pe_guid = pool_guid; 280 pe->pe_next = pl->pools; 281 pl->pools = pe; 282 } 283 284 /* 285 * Second, see if we know about this toplevel vdev. Add it if its 286 * missing. 287 */ 288 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 289 if (ve->ve_guid == top_guid) 290 break; 291 } 292 293 if (ve == NULL) { 294 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 295 nvlist_free(config); 296 return (-1); 297 } 298 ve->ve_guid = top_guid; 299 ve->ve_next = pe->pe_vdevs; 300 pe->pe_vdevs = ve; 301 } 302 303 /* 304 * Third, see if we have a config with a matching transaction group. If 305 * so, then we do nothing. Otherwise, add it to the list of known 306 * configs. 307 */ 308 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 309 if (ce->ce_txg == txg) 310 break; 311 } 312 313 if (ce == NULL) { 314 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 315 nvlist_free(config); 316 return (-1); 317 } 318 ce->ce_txg = txg; 319 ce->ce_config = config; 320 ce->ce_next = ve->ve_configs; 321 ve->ve_configs = ce; 322 } else { 323 nvlist_free(config); 324 } 325 326 /* 327 * At this point we've successfully added our config to the list of 328 * known configs. The last thing to do is add the vdev guid -> path 329 * mappings so that we can fix up the configuration as necessary before 330 * doing the import. 331 */ 332 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 333 return (-1); 334 335 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 336 free(ne); 337 return (-1); 338 } 339 340 ne->ne_guid = vdev_guid; 341 ne->ne_next = pl->names; 342 pl->names = ne; 343 344 return (0); 345 } 346 347 /* 348 * Returns true if the named pool matches the given GUID. 349 */ 350 static int 351 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 352 boolean_t *isactive) 353 { 354 zpool_handle_t *zhp; 355 uint64_t theguid; 356 357 if (zpool_open_silent(hdl, name, &zhp) != 0) 358 return (-1); 359 360 if (zhp == NULL) { 361 *isactive = B_FALSE; 362 return (0); 363 } 364 365 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 366 &theguid) == 0); 367 368 zpool_close(zhp); 369 370 *isactive = (theguid == guid); 371 return (0); 372 } 373 374 static nvlist_t * 375 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 376 { 377 nvlist_t *nvl; 378 zfs_cmd_t zc = { 0 }; 379 int err; 380 381 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 382 return (NULL); 383 384 if (zcmd_alloc_dst_nvlist(hdl, &zc, 385 zc.zc_nvlist_conf_size * 2) != 0) { 386 zcmd_free_nvlists(&zc); 387 return (NULL); 388 } 389 390 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 391 &zc)) != 0 && errno == ENOMEM) { 392 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 393 zcmd_free_nvlists(&zc); 394 return (NULL); 395 } 396 } 397 398 if (err) { 399 zcmd_free_nvlists(&zc); 400 return (NULL); 401 } 402 403 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 404 zcmd_free_nvlists(&zc); 405 return (NULL); 406 } 407 408 zcmd_free_nvlists(&zc); 409 return (nvl); 410 } 411 412 /* 413 * Determine if the vdev id is a hole in the namespace. 414 */ 415 boolean_t 416 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 417 { 418 for (int c = 0; c < holes; c++) { 419 420 /* Top-level is a hole */ 421 if (hole_array[c] == id) 422 return (B_TRUE); 423 } 424 return (B_FALSE); 425 } 426 427 /* 428 * Convert our list of pools into the definitive set of configurations. We 429 * start by picking the best config for each toplevel vdev. Once that's done, 430 * we assemble the toplevel vdevs into a full config for the pool. We make a 431 * pass to fix up any incorrect paths, and then add it to the main list to 432 * return to the user. 433 */ 434 static nvlist_t * 435 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 436 { 437 pool_entry_t *pe; 438 vdev_entry_t *ve; 439 config_entry_t *ce; 440 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 441 nvlist_t **spares, **l2cache; 442 uint_t i, nspares, nl2cache; 443 boolean_t config_seen; 444 uint64_t best_txg; 445 char *name, *hostname; 446 uint64_t guid; 447 uint_t children = 0; 448 nvlist_t **child = NULL; 449 uint_t holes; 450 uint64_t *hole_array, max_id; 451 uint_t c; 452 boolean_t isactive; 453 uint64_t hostid; 454 nvlist_t *nvl; 455 boolean_t found_one = B_FALSE; 456 boolean_t valid_top_config = B_FALSE; 457 458 if (nvlist_alloc(&ret, 0, 0) != 0) 459 goto nomem; 460 461 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 462 uint64_t id, max_txg = 0; 463 464 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 465 goto nomem; 466 config_seen = B_FALSE; 467 468 /* 469 * Iterate over all toplevel vdevs. Grab the pool configuration 470 * from the first one we find, and then go through the rest and 471 * add them as necessary to the 'vdevs' member of the config. 472 */ 473 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 474 475 /* 476 * Determine the best configuration for this vdev by 477 * selecting the config with the latest transaction 478 * group. 479 */ 480 best_txg = 0; 481 for (ce = ve->ve_configs; ce != NULL; 482 ce = ce->ce_next) { 483 484 if (ce->ce_txg > best_txg) { 485 tmp = ce->ce_config; 486 best_txg = ce->ce_txg; 487 } 488 } 489 490 /* 491 * We rely on the fact that the max txg for the 492 * pool will contain the most up-to-date information 493 * about the valid top-levels in the vdev namespace. 494 */ 495 if (best_txg > max_txg) { 496 (void) nvlist_remove(config, 497 ZPOOL_CONFIG_VDEV_CHILDREN, 498 DATA_TYPE_UINT64); 499 (void) nvlist_remove(config, 500 ZPOOL_CONFIG_HOLE_ARRAY, 501 DATA_TYPE_UINT64_ARRAY); 502 503 max_txg = best_txg; 504 hole_array = NULL; 505 holes = 0; 506 max_id = 0; 507 valid_top_config = B_FALSE; 508 509 if (nvlist_lookup_uint64(tmp, 510 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 511 verify(nvlist_add_uint64(config, 512 ZPOOL_CONFIG_VDEV_CHILDREN, 513 max_id) == 0); 514 valid_top_config = B_TRUE; 515 } 516 517 if (nvlist_lookup_uint64_array(tmp, 518 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 519 &holes) == 0) { 520 verify(nvlist_add_uint64_array(config, 521 ZPOOL_CONFIG_HOLE_ARRAY, 522 hole_array, holes) == 0); 523 } 524 } 525 526 if (!config_seen) { 527 /* 528 * Copy the relevant pieces of data to the pool 529 * configuration: 530 * 531 * version 532 * pool guid 533 * name 534 * comment (if available) 535 * pool state 536 * hostid (if available) 537 * hostname (if available) 538 */ 539 uint64_t state, version; 540 char *comment = NULL; 541 542 version = fnvlist_lookup_uint64(tmp, 543 ZPOOL_CONFIG_VERSION); 544 fnvlist_add_uint64(config, 545 ZPOOL_CONFIG_VERSION, version); 546 guid = fnvlist_lookup_uint64(tmp, 547 ZPOOL_CONFIG_POOL_GUID); 548 fnvlist_add_uint64(config, 549 ZPOOL_CONFIG_POOL_GUID, guid); 550 name = fnvlist_lookup_string(tmp, 551 ZPOOL_CONFIG_POOL_NAME); 552 fnvlist_add_string(config, 553 ZPOOL_CONFIG_POOL_NAME, name); 554 555 if (nvlist_lookup_string(tmp, 556 ZPOOL_CONFIG_COMMENT, &comment) == 0) 557 fnvlist_add_string(config, 558 ZPOOL_CONFIG_COMMENT, comment); 559 560 state = fnvlist_lookup_uint64(tmp, 561 ZPOOL_CONFIG_POOL_STATE); 562 fnvlist_add_uint64(config, 563 ZPOOL_CONFIG_POOL_STATE, state); 564 565 hostid = 0; 566 if (nvlist_lookup_uint64(tmp, 567 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 568 fnvlist_add_uint64(config, 569 ZPOOL_CONFIG_HOSTID, hostid); 570 hostname = fnvlist_lookup_string(tmp, 571 ZPOOL_CONFIG_HOSTNAME); 572 fnvlist_add_string(config, 573 ZPOOL_CONFIG_HOSTNAME, hostname); 574 } 575 576 config_seen = B_TRUE; 577 } 578 579 /* 580 * Add this top-level vdev to the child array. 581 */ 582 verify(nvlist_lookup_nvlist(tmp, 583 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 584 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 585 &id) == 0); 586 587 if (id >= children) { 588 nvlist_t **newchild; 589 590 newchild = zfs_alloc(hdl, (id + 1) * 591 sizeof (nvlist_t *)); 592 if (newchild == NULL) 593 goto nomem; 594 595 for (c = 0; c < children; c++) 596 newchild[c] = child[c]; 597 598 free(child); 599 child = newchild; 600 children = id + 1; 601 } 602 if (nvlist_dup(nvtop, &child[id], 0) != 0) 603 goto nomem; 604 605 } 606 607 /* 608 * If we have information about all the top-levels then 609 * clean up the nvlist which we've constructed. This 610 * means removing any extraneous devices that are 611 * beyond the valid range or adding devices to the end 612 * of our array which appear to be missing. 613 */ 614 if (valid_top_config) { 615 if (max_id < children) { 616 for (c = max_id; c < children; c++) 617 nvlist_free(child[c]); 618 children = max_id; 619 } else if (max_id > children) { 620 nvlist_t **newchild; 621 622 newchild = zfs_alloc(hdl, (max_id) * 623 sizeof (nvlist_t *)); 624 if (newchild == NULL) 625 goto nomem; 626 627 for (c = 0; c < children; c++) 628 newchild[c] = child[c]; 629 630 free(child); 631 child = newchild; 632 children = max_id; 633 } 634 } 635 636 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 637 &guid) == 0); 638 639 /* 640 * The vdev namespace may contain holes as a result of 641 * device removal. We must add them back into the vdev 642 * tree before we process any missing devices. 643 */ 644 if (holes > 0) { 645 ASSERT(valid_top_config); 646 647 for (c = 0; c < children; c++) { 648 nvlist_t *holey; 649 650 if (child[c] != NULL || 651 !vdev_is_hole(hole_array, holes, c)) 652 continue; 653 654 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 655 0) != 0) 656 goto nomem; 657 658 /* 659 * Holes in the namespace are treated as 660 * "hole" top-level vdevs and have a 661 * special flag set on them. 662 */ 663 if (nvlist_add_string(holey, 664 ZPOOL_CONFIG_TYPE, 665 VDEV_TYPE_HOLE) != 0 || 666 nvlist_add_uint64(holey, 667 ZPOOL_CONFIG_ID, c) != 0 || 668 nvlist_add_uint64(holey, 669 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 670 nvlist_free(holey); 671 goto nomem; 672 } 673 child[c] = holey; 674 } 675 } 676 677 /* 678 * Look for any missing top-level vdevs. If this is the case, 679 * create a faked up 'missing' vdev as a placeholder. We cannot 680 * simply compress the child array, because the kernel performs 681 * certain checks to make sure the vdev IDs match their location 682 * in the configuration. 683 */ 684 for (c = 0; c < children; c++) { 685 if (child[c] == NULL) { 686 nvlist_t *missing; 687 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 688 0) != 0) 689 goto nomem; 690 if (nvlist_add_string(missing, 691 ZPOOL_CONFIG_TYPE, 692 VDEV_TYPE_MISSING) != 0 || 693 nvlist_add_uint64(missing, 694 ZPOOL_CONFIG_ID, c) != 0 || 695 nvlist_add_uint64(missing, 696 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 697 nvlist_free(missing); 698 goto nomem; 699 } 700 child[c] = missing; 701 } 702 } 703 704 /* 705 * Put all of this pool's top-level vdevs into a root vdev. 706 */ 707 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 708 goto nomem; 709 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 710 VDEV_TYPE_ROOT) != 0 || 711 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 713 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 714 child, children) != 0) { 715 nvlist_free(nvroot); 716 goto nomem; 717 } 718 719 for (c = 0; c < children; c++) 720 nvlist_free(child[c]); 721 free(child); 722 children = 0; 723 child = NULL; 724 725 /* 726 * Go through and fix up any paths and/or devids based on our 727 * known list of vdev GUID -> path mappings. 728 */ 729 if (fix_paths(nvroot, pl->names) != 0) { 730 nvlist_free(nvroot); 731 goto nomem; 732 } 733 734 /* 735 * Add the root vdev to this pool's configuration. 736 */ 737 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 738 nvroot) != 0) { 739 nvlist_free(nvroot); 740 goto nomem; 741 } 742 nvlist_free(nvroot); 743 744 /* 745 * zdb uses this path to report on active pools that were 746 * imported or created using -R. 747 */ 748 if (active_ok) 749 goto add_pool; 750 751 /* 752 * Determine if this pool is currently active, in which case we 753 * can't actually import it. 754 */ 755 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 756 &name) == 0); 757 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 758 &guid) == 0); 759 760 if (pool_active(hdl, name, guid, &isactive) != 0) 761 goto error; 762 763 if (isactive) { 764 nvlist_free(config); 765 config = NULL; 766 continue; 767 } 768 769 if ((nvl = refresh_config(hdl, config)) == NULL) { 770 nvlist_free(config); 771 config = NULL; 772 continue; 773 } 774 775 nvlist_free(config); 776 config = nvl; 777 778 /* 779 * Go through and update the paths for spares, now that we have 780 * them. 781 */ 782 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 783 &nvroot) == 0); 784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 785 &spares, &nspares) == 0) { 786 for (i = 0; i < nspares; i++) { 787 if (fix_paths(spares[i], pl->names) != 0) 788 goto nomem; 789 } 790 } 791 792 /* 793 * Update the paths for l2cache devices. 794 */ 795 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 796 &l2cache, &nl2cache) == 0) { 797 for (i = 0; i < nl2cache; i++) { 798 if (fix_paths(l2cache[i], pl->names) != 0) 799 goto nomem; 800 } 801 } 802 803 /* 804 * Restore the original information read from the actual label. 805 */ 806 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 807 DATA_TYPE_UINT64); 808 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 809 DATA_TYPE_STRING); 810 if (hostid != 0) { 811 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 812 hostid) == 0); 813 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 814 hostname) == 0); 815 } 816 817 add_pool: 818 /* 819 * Add this pool to the list of configs. 820 */ 821 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 822 &name) == 0); 823 if (nvlist_add_nvlist(ret, name, config) != 0) 824 goto nomem; 825 826 found_one = B_TRUE; 827 nvlist_free(config); 828 config = NULL; 829 } 830 831 if (!found_one) { 832 nvlist_free(ret); 833 ret = NULL; 834 } 835 836 return (ret); 837 838 nomem: 839 (void) no_memory(hdl); 840 error: 841 nvlist_free(config); 842 nvlist_free(ret); 843 for (c = 0; c < children; c++) 844 nvlist_free(child[c]); 845 free(child); 846 847 return (NULL); 848 } 849 850 /* 851 * Return the offset of the given label. 852 */ 853 static uint64_t 854 label_offset(uint64_t size, int l) 855 { 856 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 857 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 858 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 859 } 860 861 /* 862 * Given a file descriptor, read the label information and return an nvlist 863 * describing the configuration, if there is one. 864 */ 865 int 866 zpool_read_label(int fd, nvlist_t **config) 867 { 868 struct stat64 statbuf; 869 int l; 870 vdev_label_t *label; 871 uint64_t state, txg, size; 872 873 *config = NULL; 874 875 if (fstat64(fd, &statbuf) == -1) 876 return (0); 877 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 878 879 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 880 return (-1); 881 882 for (l = 0; l < VDEV_LABELS; l++) { 883 if (pread64(fd, label, sizeof (vdev_label_t), 884 label_offset(size, l)) != sizeof (vdev_label_t)) 885 continue; 886 887 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 888 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 889 continue; 890 891 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 892 &state) != 0 || state > POOL_STATE_L2CACHE) { 893 nvlist_free(*config); 894 continue; 895 } 896 897 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 898 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 899 &txg) != 0 || txg == 0)) { 900 nvlist_free(*config); 901 continue; 902 } 903 904 free(label); 905 return (0); 906 } 907 908 free(label); 909 *config = NULL; 910 return (0); 911 } 912 913 typedef struct rdsk_node { 914 char *rn_name; 915 int rn_dfd; 916 libzfs_handle_t *rn_hdl; 917 nvlist_t *rn_config; 918 avl_tree_t *rn_avl; 919 avl_node_t rn_node; 920 boolean_t rn_nozpool; 921 } rdsk_node_t; 922 923 static int 924 slice_cache_compare(const void *arg1, const void *arg2) 925 { 926 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 927 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 928 char *nm1slice, *nm2slice; 929 int rv; 930 931 /* 932 * slices zero and two are the most likely to provide results, 933 * so put those first 934 */ 935 nm1slice = strstr(nm1, "s0"); 936 nm2slice = strstr(nm2, "s0"); 937 if (nm1slice && !nm2slice) { 938 return (-1); 939 } 940 if (!nm1slice && nm2slice) { 941 return (1); 942 } 943 nm1slice = strstr(nm1, "s2"); 944 nm2slice = strstr(nm2, "s2"); 945 if (nm1slice && !nm2slice) { 946 return (-1); 947 } 948 if (!nm1slice && nm2slice) { 949 return (1); 950 } 951 952 rv = strcmp(nm1, nm2); 953 if (rv == 0) 954 return (0); 955 return (rv > 0 ? 1 : -1); 956 } 957 958 static void 959 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 960 diskaddr_t size, uint_t blksz) 961 { 962 rdsk_node_t tmpnode; 963 rdsk_node_t *node; 964 char sname[MAXNAMELEN]; 965 966 tmpnode.rn_name = &sname[0]; 967 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 968 diskname, partno); 969 /* 970 * protect against division by zero for disk labels that 971 * contain a bogus sector size 972 */ 973 if (blksz == 0) 974 blksz = DEV_BSIZE; 975 /* too small to contain a zpool? */ 976 if ((size < (SPA_MINDEVSIZE / blksz)) && 977 (node = avl_find(r, &tmpnode, NULL))) 978 node->rn_nozpool = B_TRUE; 979 } 980 981 static void 982 nozpool_all_slices(avl_tree_t *r, const char *sname) 983 { 984 char diskname[MAXNAMELEN]; 985 char *ptr; 986 int i; 987 988 (void) strncpy(diskname, sname, MAXNAMELEN); 989 if (((ptr = strrchr(diskname, 's')) == NULL) && 990 ((ptr = strrchr(diskname, 'p')) == NULL)) 991 return; 992 ptr[0] = 's'; 993 ptr[1] = '\0'; 994 for (i = 0; i < NDKMAP; i++) 995 check_one_slice(r, diskname, i, 0, 1); 996 ptr[0] = 'p'; 997 for (i = 0; i <= FD_NUMPART; i++) 998 check_one_slice(r, diskname, i, 0, 1); 999 } 1000 1001 static void 1002 check_slices(avl_tree_t *r, int fd, const char *sname) 1003 { 1004 struct extvtoc vtoc; 1005 struct dk_gpt *gpt; 1006 char diskname[MAXNAMELEN]; 1007 char *ptr; 1008 int i; 1009 1010 (void) strncpy(diskname, sname, MAXNAMELEN); 1011 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1012 return; 1013 ptr[1] = '\0'; 1014 1015 if (read_extvtoc(fd, &vtoc) >= 0) { 1016 for (i = 0; i < NDKMAP; i++) 1017 check_one_slice(r, diskname, i, 1018 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1019 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1020 /* 1021 * on x86 we'll still have leftover links that point 1022 * to slices s[9-15], so use NDKMAP instead 1023 */ 1024 for (i = 0; i < NDKMAP; i++) 1025 check_one_slice(r, diskname, i, 1026 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1027 /* nodes p[1-4] are never used with EFI labels */ 1028 ptr[0] = 'p'; 1029 for (i = 1; i <= FD_NUMPART; i++) 1030 check_one_slice(r, diskname, i, 0, 1); 1031 efi_free(gpt); 1032 } 1033 } 1034 1035 static void 1036 zpool_open_func(void *arg) 1037 { 1038 rdsk_node_t *rn = arg; 1039 struct stat64 statbuf; 1040 nvlist_t *config; 1041 int fd; 1042 1043 if (rn->rn_nozpool) 1044 return; 1045 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1046 /* symlink to a device that's no longer there */ 1047 if (errno == ENOENT) 1048 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1049 return; 1050 } 1051 /* 1052 * Ignore failed stats. We only want regular 1053 * files, character devs and block devs. 1054 */ 1055 if (fstat64(fd, &statbuf) != 0 || 1056 (!S_ISREG(statbuf.st_mode) && 1057 !S_ISCHR(statbuf.st_mode) && 1058 !S_ISBLK(statbuf.st_mode))) { 1059 (void) close(fd); 1060 return; 1061 } 1062 /* this file is too small to hold a zpool */ 1063 if (S_ISREG(statbuf.st_mode) && 1064 statbuf.st_size < SPA_MINDEVSIZE) { 1065 (void) close(fd); 1066 return; 1067 } else if (!S_ISREG(statbuf.st_mode)) { 1068 /* 1069 * Try to read the disk label first so we don't have to 1070 * open a bunch of minor nodes that can't have a zpool. 1071 */ 1072 check_slices(rn->rn_avl, fd, rn->rn_name); 1073 } 1074 1075 if ((zpool_read_label(fd, &config)) != 0) { 1076 (void) close(fd); 1077 (void) no_memory(rn->rn_hdl); 1078 return; 1079 } 1080 (void) close(fd); 1081 1082 1083 rn->rn_config = config; 1084 if (config != NULL) { 1085 assert(rn->rn_nozpool == B_FALSE); 1086 } 1087 } 1088 1089 /* 1090 * Given a file descriptor, clear (zero) the label information. This function 1091 * is currently only used in the appliance stack as part of the ZFS sysevent 1092 * module. 1093 */ 1094 int 1095 zpool_clear_label(int fd) 1096 { 1097 struct stat64 statbuf; 1098 int l; 1099 vdev_label_t *label; 1100 uint64_t size; 1101 1102 if (fstat64(fd, &statbuf) == -1) 1103 return (0); 1104 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1105 1106 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1107 return (-1); 1108 1109 for (l = 0; l < VDEV_LABELS; l++) { 1110 if (pwrite64(fd, label, sizeof (vdev_label_t), 1111 label_offset(size, l)) != sizeof (vdev_label_t)) { 1112 free(label); 1113 return (-1); 1114 } 1115 } 1116 1117 free(label); 1118 return (0); 1119 } 1120 1121 /* 1122 * Given a list of directories to search, find all pools stored on disk. This 1123 * includes partial pools which are not available to import. If no args are 1124 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1125 * poolname or guid (but not both) are provided by the caller when trying 1126 * to import a specific pool. 1127 */ 1128 static nvlist_t * 1129 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1130 { 1131 int i, dirs = iarg->paths; 1132 struct dirent64 *dp; 1133 char path[MAXPATHLEN]; 1134 char *end, **dir = iarg->path; 1135 size_t pathleft; 1136 nvlist_t *ret = NULL; 1137 static char *default_dir = "/dev/dsk"; 1138 pool_list_t pools = { 0 }; 1139 pool_entry_t *pe, *penext; 1140 vdev_entry_t *ve, *venext; 1141 config_entry_t *ce, *cenext; 1142 name_entry_t *ne, *nenext; 1143 avl_tree_t slice_cache; 1144 rdsk_node_t *slice; 1145 void *cookie; 1146 1147 if (dirs == 0) { 1148 dirs = 1; 1149 dir = &default_dir; 1150 } 1151 1152 /* 1153 * Go through and read the label configuration information from every 1154 * possible device, organizing the information according to pool GUID 1155 * and toplevel GUID. 1156 */ 1157 for (i = 0; i < dirs; i++) { 1158 tpool_t *t; 1159 char *rdsk; 1160 int dfd; 1161 boolean_t config_failed = B_FALSE; 1162 DIR *dirp; 1163 1164 /* use realpath to normalize the path */ 1165 if (realpath(dir[i], path) == 0) { 1166 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1167 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1168 goto error; 1169 } 1170 end = &path[strlen(path)]; 1171 *end++ = '/'; 1172 *end = 0; 1173 pathleft = &path[sizeof (path)] - end; 1174 1175 /* 1176 * Using raw devices instead of block devices when we're 1177 * reading the labels skips a bunch of slow operations during 1178 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1179 */ 1180 if (strcmp(path, "/dev/dsk/") == 0) 1181 rdsk = "/dev/rdsk/"; 1182 else 1183 rdsk = path; 1184 1185 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1186 (dirp = fdopendir(dfd)) == NULL) { 1187 if (dfd >= 0) 1188 (void) close(dfd); 1189 zfs_error_aux(hdl, strerror(errno)); 1190 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1191 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1192 rdsk); 1193 goto error; 1194 } 1195 1196 avl_create(&slice_cache, slice_cache_compare, 1197 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1198 /* 1199 * This is not MT-safe, but we have no MT consumers of libzfs 1200 */ 1201 while ((dp = readdir64(dirp)) != NULL) { 1202 const char *name = dp->d_name; 1203 if (name[0] == '.' && 1204 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1205 continue; 1206 1207 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1208 slice->rn_name = zfs_strdup(hdl, name); 1209 slice->rn_avl = &slice_cache; 1210 slice->rn_dfd = dfd; 1211 slice->rn_hdl = hdl; 1212 slice->rn_nozpool = B_FALSE; 1213 avl_add(&slice_cache, slice); 1214 } 1215 /* 1216 * create a thread pool to do all of this in parallel; 1217 * rn_nozpool is not protected, so this is racy in that 1218 * multiple tasks could decide that the same slice can 1219 * not hold a zpool, which is benign. Also choose 1220 * double the number of processors; we hold a lot of 1221 * locks in the kernel, so going beyond this doesn't 1222 * buy us much. 1223 */ 1224 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1225 0, NULL); 1226 for (slice = avl_first(&slice_cache); slice; 1227 (slice = avl_walk(&slice_cache, slice, 1228 AVL_AFTER))) 1229 (void) tpool_dispatch(t, zpool_open_func, slice); 1230 tpool_wait(t); 1231 tpool_destroy(t); 1232 1233 cookie = NULL; 1234 while ((slice = avl_destroy_nodes(&slice_cache, 1235 &cookie)) != NULL) { 1236 if (slice->rn_config != NULL && !config_failed) { 1237 nvlist_t *config = slice->rn_config; 1238 boolean_t matched = B_TRUE; 1239 1240 if (iarg->poolname != NULL) { 1241 char *pname; 1242 1243 matched = nvlist_lookup_string(config, 1244 ZPOOL_CONFIG_POOL_NAME, 1245 &pname) == 0 && 1246 strcmp(iarg->poolname, pname) == 0; 1247 } else if (iarg->guid != 0) { 1248 uint64_t this_guid; 1249 1250 matched = nvlist_lookup_uint64(config, 1251 ZPOOL_CONFIG_POOL_GUID, 1252 &this_guid) == 0 && 1253 iarg->guid == this_guid; 1254 } 1255 if (!matched) { 1256 nvlist_free(config); 1257 } else { 1258 /* 1259 * use the non-raw path for the config 1260 */ 1261 (void) strlcpy(end, slice->rn_name, 1262 pathleft); 1263 if (add_config(hdl, &pools, path, 1264 config) != 0) 1265 config_failed = B_TRUE; 1266 } 1267 } 1268 free(slice->rn_name); 1269 free(slice); 1270 } 1271 avl_destroy(&slice_cache); 1272 1273 (void) closedir(dirp); 1274 1275 if (config_failed) 1276 goto error; 1277 } 1278 1279 ret = get_configs(hdl, &pools, iarg->can_be_active); 1280 1281 error: 1282 for (pe = pools.pools; pe != NULL; pe = penext) { 1283 penext = pe->pe_next; 1284 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1285 venext = ve->ve_next; 1286 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1287 cenext = ce->ce_next; 1288 if (ce->ce_config) 1289 nvlist_free(ce->ce_config); 1290 free(ce); 1291 } 1292 free(ve); 1293 } 1294 free(pe); 1295 } 1296 1297 for (ne = pools.names; ne != NULL; ne = nenext) { 1298 nenext = ne->ne_next; 1299 free(ne->ne_name); 1300 free(ne); 1301 } 1302 1303 return (ret); 1304 } 1305 1306 nvlist_t * 1307 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1308 { 1309 importargs_t iarg = { 0 }; 1310 1311 iarg.paths = argc; 1312 iarg.path = argv; 1313 1314 return (zpool_find_import_impl(hdl, &iarg)); 1315 } 1316 1317 /* 1318 * Given a cache file, return the contents as a list of importable pools. 1319 * poolname or guid (but not both) are provided by the caller when trying 1320 * to import a specific pool. 1321 */ 1322 nvlist_t * 1323 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1324 char *poolname, uint64_t guid) 1325 { 1326 char *buf; 1327 int fd; 1328 struct stat64 statbuf; 1329 nvlist_t *raw, *src, *dst; 1330 nvlist_t *pools; 1331 nvpair_t *elem; 1332 char *name; 1333 uint64_t this_guid; 1334 boolean_t active; 1335 1336 verify(poolname == NULL || guid == 0); 1337 1338 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1339 zfs_error_aux(hdl, "%s", strerror(errno)); 1340 (void) zfs_error(hdl, EZFS_BADCACHE, 1341 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1342 return (NULL); 1343 } 1344 1345 if (fstat64(fd, &statbuf) != 0) { 1346 zfs_error_aux(hdl, "%s", strerror(errno)); 1347 (void) close(fd); 1348 (void) zfs_error(hdl, EZFS_BADCACHE, 1349 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1350 return (NULL); 1351 } 1352 1353 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1354 (void) close(fd); 1355 return (NULL); 1356 } 1357 1358 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1359 (void) close(fd); 1360 free(buf); 1361 (void) zfs_error(hdl, EZFS_BADCACHE, 1362 dgettext(TEXT_DOMAIN, 1363 "failed to read cache file contents")); 1364 return (NULL); 1365 } 1366 1367 (void) close(fd); 1368 1369 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1370 free(buf); 1371 (void) zfs_error(hdl, EZFS_BADCACHE, 1372 dgettext(TEXT_DOMAIN, 1373 "invalid or corrupt cache file contents")); 1374 return (NULL); 1375 } 1376 1377 free(buf); 1378 1379 /* 1380 * Go through and get the current state of the pools and refresh their 1381 * state. 1382 */ 1383 if (nvlist_alloc(&pools, 0, 0) != 0) { 1384 (void) no_memory(hdl); 1385 nvlist_free(raw); 1386 return (NULL); 1387 } 1388 1389 elem = NULL; 1390 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1391 src = fnvpair_value_nvlist(elem); 1392 1393 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1394 if (poolname != NULL && strcmp(poolname, name) != 0) 1395 continue; 1396 1397 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1398 if (guid != 0 && guid != this_guid) 1399 continue; 1400 1401 if (pool_active(hdl, name, this_guid, &active) != 0) { 1402 nvlist_free(raw); 1403 nvlist_free(pools); 1404 return (NULL); 1405 } 1406 1407 if (active) 1408 continue; 1409 1410 if ((dst = refresh_config(hdl, src)) == NULL) { 1411 nvlist_free(raw); 1412 nvlist_free(pools); 1413 return (NULL); 1414 } 1415 1416 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1417 (void) no_memory(hdl); 1418 nvlist_free(dst); 1419 nvlist_free(raw); 1420 nvlist_free(pools); 1421 return (NULL); 1422 } 1423 nvlist_free(dst); 1424 } 1425 1426 nvlist_free(raw); 1427 return (pools); 1428 } 1429 1430 static int 1431 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1432 { 1433 importargs_t *import = data; 1434 int found = 0; 1435 1436 if (import->poolname != NULL) { 1437 char *pool_name; 1438 1439 verify(nvlist_lookup_string(zhp->zpool_config, 1440 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1441 if (strcmp(pool_name, import->poolname) == 0) 1442 found = 1; 1443 } else { 1444 uint64_t pool_guid; 1445 1446 verify(nvlist_lookup_uint64(zhp->zpool_config, 1447 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1448 if (pool_guid == import->guid) 1449 found = 1; 1450 } 1451 1452 zpool_close(zhp); 1453 return (found); 1454 } 1455 1456 nvlist_t * 1457 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1458 { 1459 verify(import->poolname == NULL || import->guid == 0); 1460 1461 if (import->unique) 1462 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1463 1464 if (import->cachefile != NULL) 1465 return (zpool_find_import_cached(hdl, import->cachefile, 1466 import->poolname, import->guid)); 1467 1468 return (zpool_find_import_impl(hdl, import)); 1469 } 1470 1471 boolean_t 1472 find_guid(nvlist_t *nv, uint64_t guid) 1473 { 1474 uint64_t tmp; 1475 nvlist_t **child; 1476 uint_t c, children; 1477 1478 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1479 if (tmp == guid) 1480 return (B_TRUE); 1481 1482 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1483 &child, &children) == 0) { 1484 for (c = 0; c < children; c++) 1485 if (find_guid(child[c], guid)) 1486 return (B_TRUE); 1487 } 1488 1489 return (B_FALSE); 1490 } 1491 1492 typedef struct aux_cbdata { 1493 const char *cb_type; 1494 uint64_t cb_guid; 1495 zpool_handle_t *cb_zhp; 1496 } aux_cbdata_t; 1497 1498 static int 1499 find_aux(zpool_handle_t *zhp, void *data) 1500 { 1501 aux_cbdata_t *cbp = data; 1502 nvlist_t **list; 1503 uint_t i, count; 1504 uint64_t guid; 1505 nvlist_t *nvroot; 1506 1507 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1508 &nvroot) == 0); 1509 1510 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1511 &list, &count) == 0) { 1512 for (i = 0; i < count; i++) { 1513 verify(nvlist_lookup_uint64(list[i], 1514 ZPOOL_CONFIG_GUID, &guid) == 0); 1515 if (guid == cbp->cb_guid) { 1516 cbp->cb_zhp = zhp; 1517 return (1); 1518 } 1519 } 1520 } 1521 1522 zpool_close(zhp); 1523 return (0); 1524 } 1525 1526 /* 1527 * Determines if the pool is in use. If so, it returns true and the state of 1528 * the pool as well as the name of the pool. Both strings are allocated and 1529 * must be freed by the caller. 1530 */ 1531 int 1532 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1533 boolean_t *inuse) 1534 { 1535 nvlist_t *config; 1536 char *name; 1537 boolean_t ret; 1538 uint64_t guid, vdev_guid; 1539 zpool_handle_t *zhp; 1540 nvlist_t *pool_config; 1541 uint64_t stateval, isspare; 1542 aux_cbdata_t cb = { 0 }; 1543 boolean_t isactive; 1544 1545 *inuse = B_FALSE; 1546 1547 if (zpool_read_label(fd, &config) != 0) { 1548 (void) no_memory(hdl); 1549 return (-1); 1550 } 1551 1552 if (config == NULL) 1553 return (0); 1554 1555 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1556 &stateval) == 0); 1557 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1558 &vdev_guid) == 0); 1559 1560 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1561 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1562 &name) == 0); 1563 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1564 &guid) == 0); 1565 } 1566 1567 switch (stateval) { 1568 case POOL_STATE_EXPORTED: 1569 /* 1570 * A pool with an exported state may in fact be imported 1571 * read-only, so check the in-core state to see if it's 1572 * active and imported read-only. If it is, set 1573 * its state to active. 1574 */ 1575 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1576 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1577 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1578 stateval = POOL_STATE_ACTIVE; 1579 1580 /* 1581 * All we needed the zpool handle for is the 1582 * readonly prop check. 1583 */ 1584 zpool_close(zhp); 1585 } 1586 1587 ret = B_TRUE; 1588 break; 1589 1590 case POOL_STATE_ACTIVE: 1591 /* 1592 * For an active pool, we have to determine if it's really part 1593 * of a currently active pool (in which case the pool will exist 1594 * and the guid will be the same), or whether it's part of an 1595 * active pool that was disconnected without being explicitly 1596 * exported. 1597 */ 1598 if (pool_active(hdl, name, guid, &isactive) != 0) { 1599 nvlist_free(config); 1600 return (-1); 1601 } 1602 1603 if (isactive) { 1604 /* 1605 * Because the device may have been removed while 1606 * offlined, we only report it as active if the vdev is 1607 * still present in the config. Otherwise, pretend like 1608 * it's not in use. 1609 */ 1610 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1611 (pool_config = zpool_get_config(zhp, NULL)) 1612 != NULL) { 1613 nvlist_t *nvroot; 1614 1615 verify(nvlist_lookup_nvlist(pool_config, 1616 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1617 ret = find_guid(nvroot, vdev_guid); 1618 } else { 1619 ret = B_FALSE; 1620 } 1621 1622 /* 1623 * If this is an active spare within another pool, we 1624 * treat it like an unused hot spare. This allows the 1625 * user to create a pool with a hot spare that currently 1626 * in use within another pool. Since we return B_TRUE, 1627 * libdiskmgt will continue to prevent generic consumers 1628 * from using the device. 1629 */ 1630 if (ret && nvlist_lookup_uint64(config, 1631 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1632 stateval = POOL_STATE_SPARE; 1633 1634 if (zhp != NULL) 1635 zpool_close(zhp); 1636 } else { 1637 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1638 ret = B_TRUE; 1639 } 1640 break; 1641 1642 case POOL_STATE_SPARE: 1643 /* 1644 * For a hot spare, it can be either definitively in use, or 1645 * potentially active. To determine if it's in use, we iterate 1646 * over all pools in the system and search for one with a spare 1647 * with a matching guid. 1648 * 1649 * Due to the shared nature of spares, we don't actually report 1650 * the potentially active case as in use. This means the user 1651 * can freely create pools on the hot spares of exported pools, 1652 * but to do otherwise makes the resulting code complicated, and 1653 * we end up having to deal with this case anyway. 1654 */ 1655 cb.cb_zhp = NULL; 1656 cb.cb_guid = vdev_guid; 1657 cb.cb_type = ZPOOL_CONFIG_SPARES; 1658 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1659 name = (char *)zpool_get_name(cb.cb_zhp); 1660 ret = B_TRUE; 1661 } else { 1662 ret = B_FALSE; 1663 } 1664 break; 1665 1666 case POOL_STATE_L2CACHE: 1667 1668 /* 1669 * Check if any pool is currently using this l2cache device. 1670 */ 1671 cb.cb_zhp = NULL; 1672 cb.cb_guid = vdev_guid; 1673 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1674 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1675 name = (char *)zpool_get_name(cb.cb_zhp); 1676 ret = B_TRUE; 1677 } else { 1678 ret = B_FALSE; 1679 } 1680 break; 1681 1682 default: 1683 ret = B_FALSE; 1684 } 1685 1686 1687 if (ret) { 1688 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1689 if (cb.cb_zhp) 1690 zpool_close(cb.cb_zhp); 1691 nvlist_free(config); 1692 return (-1); 1693 } 1694 *state = (pool_state_t)stateval; 1695 } 1696 1697 if (cb.cb_zhp) 1698 zpool_close(cb.cb_zhp); 1699 1700 nvlist_free(config); 1701 *inuse = ret; 1702 return (0); 1703 } 1704