1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2021 Oxide Computer Company 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/sysctl.h> 50 #include <sys/ioctl.h> 51 #ifdef __FreeBSD__ 52 #include <sys/linker.h> 53 #endif 54 #include <sys/mman.h> 55 #include <sys/module.h> 56 #include <sys/_iovec.h> 57 #include <sys/cpuset.h> 58 59 #include <x86/segments.h> 60 #include <machine/specialreg.h> 61 62 #include <errno.h> 63 #include <stdio.h> 64 #include <stdlib.h> 65 #include <assert.h> 66 #include <string.h> 67 #include <fcntl.h> 68 #include <unistd.h> 69 70 #include <libutil.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 75 #include "vmmapi.h" 76 77 #define MB (1024 * 1024UL) 78 #define GB (1024 * 1024 * 1024UL) 79 80 #ifndef __FreeBSD__ 81 /* shim to no-op for now */ 82 #define MAP_NOCORE 0 83 #define MAP_ALIGNED_SUPER 0 84 85 /* Rely on PROT_NONE for guard purposes */ 86 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE) 87 #endif 88 89 /* 90 * Size of the guard region before and after the virtual address space 91 * mapping the guest physical memory. This must be a multiple of the 92 * superpage size for performance reasons. 93 */ 94 #define VM_MMAP_GUARD_SIZE (4 * MB) 95 96 #define PROT_RW (PROT_READ | PROT_WRITE) 97 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 98 99 struct vmctx { 100 int fd; 101 uint32_t lowmem_limit; 102 int memflags; 103 size_t lowmem; 104 size_t highmem; 105 char *baseaddr; 106 char *name; 107 }; 108 109 #ifdef __FreeBSD__ 110 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 111 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 112 113 int 114 vm_create(const char *name) 115 { 116 /* Try to load vmm(4) module before creating a guest. */ 117 if (modfind("vmm") < 0) 118 kldload("vmm"); 119 return (CREATE((char *)name)); 120 } 121 122 void 123 vm_destroy(struct vmctx *vm) 124 { 125 assert(vm != NULL); 126 127 if (vm->fd >= 0) 128 close(vm->fd); 129 DESTROY(vm->name); 130 131 free(vm); 132 } 133 134 #else 135 static int 136 vm_do_ctl(int cmd, void *req) 137 { 138 int ctl_fd; 139 140 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR); 141 if (ctl_fd < 0) { 142 return (-1); 143 } 144 145 if (ioctl(ctl_fd, cmd, req) == -1) { 146 int err = errno; 147 148 /* Do not lose ioctl errno through the close(2) */ 149 (void) close(ctl_fd); 150 errno = err; 151 return (-1); 152 } 153 (void) close(ctl_fd); 154 155 return (0); 156 } 157 158 int 159 vm_create(const char *name, uint64_t flags) 160 { 161 struct vm_create_req req; 162 163 (void) strncpy(req.name, name, VM_MAX_NAMELEN); 164 req.flags = flags; 165 166 return (vm_do_ctl(VMM_CREATE_VM, &req)); 167 } 168 169 void 170 vm_close(struct vmctx *vm) 171 { 172 assert(vm != NULL); 173 assert(vm->fd >= 0); 174 175 (void) close(vm->fd); 176 177 free(vm); 178 } 179 180 void 181 vm_destroy(struct vmctx *vm) 182 { 183 struct vm_destroy_req req; 184 185 assert(vm != NULL); 186 187 if (vm->fd >= 0) { 188 (void) close(vm->fd); 189 vm->fd = -1; 190 } 191 192 (void) strncpy(req.name, vm->name, VM_MAX_NAMELEN); 193 (void) vm_do_ctl(VMM_DESTROY_VM, &req); 194 195 free(vm); 196 } 197 #endif 198 199 static int 200 vm_device_open(const char *name) 201 { 202 int fd, len; 203 char *vmfile; 204 205 len = strlen("/dev/vmm/") + strlen(name) + 1; 206 vmfile = malloc(len); 207 assert(vmfile != NULL); 208 snprintf(vmfile, len, "/dev/vmm/%s", name); 209 210 /* Open the device file */ 211 fd = open(vmfile, O_RDWR, 0); 212 213 free(vmfile); 214 return (fd); 215 } 216 217 struct vmctx * 218 vm_open(const char *name) 219 { 220 struct vmctx *vm; 221 222 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 223 assert(vm != NULL); 224 225 vm->fd = -1; 226 vm->memflags = 0; 227 vm->lowmem_limit = 3 * GB; 228 vm->name = (char *)(vm + 1); 229 strcpy(vm->name, name); 230 231 if ((vm->fd = vm_device_open(vm->name)) < 0) 232 goto err; 233 234 return (vm); 235 err: 236 free(vm); 237 return (NULL); 238 } 239 240 241 int 242 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 243 { 244 char *endptr; 245 size_t optval; 246 int error; 247 248 optval = strtoul(optarg, &endptr, 0); 249 if (*optarg != '\0' && *endptr == '\0') { 250 /* 251 * For the sake of backward compatibility if the memory size 252 * specified on the command line is less than a megabyte then 253 * it is interpreted as being in units of MB. 254 */ 255 if (optval < MB) 256 optval *= MB; 257 *ret_memsize = optval; 258 error = 0; 259 } else 260 error = expand_number(optarg, ret_memsize); 261 262 return (error); 263 } 264 265 uint32_t 266 vm_get_lowmem_limit(struct vmctx *ctx) 267 { 268 269 return (ctx->lowmem_limit); 270 } 271 272 void 273 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 274 { 275 276 ctx->lowmem_limit = limit; 277 } 278 279 void 280 vm_set_memflags(struct vmctx *ctx, int flags) 281 { 282 283 ctx->memflags = flags; 284 } 285 286 int 287 vm_get_memflags(struct vmctx *ctx) 288 { 289 290 return (ctx->memflags); 291 } 292 293 /* 294 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 295 */ 296 int 297 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 298 size_t len, int prot) 299 { 300 struct vm_memmap memmap; 301 int error, flags; 302 303 memmap.gpa = gpa; 304 memmap.segid = segid; 305 memmap.segoff = off; 306 memmap.len = len; 307 memmap.prot = prot; 308 memmap.flags = 0; 309 310 if (ctx->memflags & VM_MEM_F_WIRED) 311 memmap.flags |= VM_MEMMAP_F_WIRED; 312 313 /* 314 * If this mapping already exists then don't create it again. This 315 * is the common case for SYSMEM mappings created by bhyveload(8). 316 */ 317 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 318 if (error == 0 && gpa == memmap.gpa) { 319 if (segid != memmap.segid || off != memmap.segoff || 320 prot != memmap.prot || flags != memmap.flags) { 321 errno = EEXIST; 322 return (-1); 323 } else { 324 return (0); 325 } 326 } 327 328 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 329 return (error); 330 } 331 332 int 333 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 334 { 335 struct vm_munmap munmap; 336 int error; 337 338 munmap.gpa = gpa; 339 munmap.len = len; 340 341 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 342 return (error); 343 } 344 345 int 346 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 347 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 348 { 349 struct vm_memmap memmap; 350 int error; 351 352 bzero(&memmap, sizeof(struct vm_memmap)); 353 memmap.gpa = *gpa; 354 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 355 if (error == 0) { 356 *gpa = memmap.gpa; 357 *segid = memmap.segid; 358 *segoff = memmap.segoff; 359 *len = memmap.len; 360 *prot = memmap.prot; 361 *flags = memmap.flags; 362 } 363 return (error); 364 } 365 366 /* 367 * Return 0 if the segments are identical and non-zero otherwise. 368 * 369 * This is slightly complicated by the fact that only device memory segments 370 * are named. 371 */ 372 static int 373 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 374 { 375 376 if (len == len2) { 377 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 378 return (0); 379 } 380 return (-1); 381 } 382 383 static int 384 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 385 { 386 struct vm_memseg memseg; 387 size_t n; 388 int error; 389 390 /* 391 * If the memory segment has already been created then just return. 392 * This is the usual case for the SYSMEM segment created by userspace 393 * loaders like bhyveload(8). 394 */ 395 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 396 sizeof(memseg.name)); 397 if (error) 398 return (error); 399 400 if (memseg.len != 0) { 401 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 402 errno = EINVAL; 403 return (-1); 404 } else { 405 return (0); 406 } 407 } 408 409 bzero(&memseg, sizeof(struct vm_memseg)); 410 memseg.segid = segid; 411 memseg.len = len; 412 if (name != NULL) { 413 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 414 if (n >= sizeof(memseg.name)) { 415 errno = ENAMETOOLONG; 416 return (-1); 417 } 418 } 419 420 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 421 return (error); 422 } 423 424 int 425 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 426 size_t bufsize) 427 { 428 struct vm_memseg memseg; 429 size_t n; 430 int error; 431 432 memseg.segid = segid; 433 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 434 if (error == 0) { 435 *lenp = memseg.len; 436 n = strlcpy(namebuf, memseg.name, bufsize); 437 if (n >= bufsize) { 438 errno = ENAMETOOLONG; 439 error = -1; 440 } 441 } 442 return (error); 443 } 444 445 static int 446 #ifdef __FreeBSD__ 447 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 448 #else 449 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len, 450 char *base) 451 #endif 452 { 453 char *ptr; 454 int error, flags; 455 456 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 457 #ifdef __FreeBSD__ 458 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 459 #else 460 /* 461 * As we use two segments for lowmem/highmem the offset within the 462 * segment is 0 on illumos. 463 */ 464 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL); 465 #endif 466 if (error) 467 return (error); 468 469 flags = MAP_SHARED | MAP_FIXED; 470 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 471 flags |= MAP_NOCORE; 472 473 /* mmap into the process address space on the host */ 474 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 475 if (ptr == MAP_FAILED) 476 return (-1); 477 478 return (0); 479 } 480 481 int 482 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 483 { 484 size_t objsize, len; 485 vm_paddr_t gpa; 486 char *baseaddr, *ptr; 487 int error; 488 489 assert(vms == VM_MMAP_ALL); 490 491 /* 492 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 493 * create another 'highmem' segment above 4GB for the remainder. 494 */ 495 if (memsize > ctx->lowmem_limit) { 496 ctx->lowmem = ctx->lowmem_limit; 497 ctx->highmem = memsize - ctx->lowmem_limit; 498 objsize = 4*GB + ctx->highmem; 499 } else { 500 ctx->lowmem = memsize; 501 ctx->highmem = 0; 502 objsize = ctx->lowmem; 503 } 504 505 #ifdef __FreeBSD__ 506 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 507 if (error) 508 return (error); 509 #endif 510 511 /* 512 * Stake out a contiguous region covering the guest physical memory 513 * and the adjoining guard regions. 514 */ 515 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 516 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 517 if (ptr == MAP_FAILED) 518 return (-1); 519 520 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 521 522 #ifdef __FreeBSD__ 523 if (ctx->highmem > 0) { 524 gpa = 4*GB; 525 len = ctx->highmem; 526 error = setup_memory_segment(ctx, gpa, len, baseaddr); 527 if (error) 528 return (error); 529 } 530 531 if (ctx->lowmem > 0) { 532 gpa = 0; 533 len = ctx->lowmem; 534 error = setup_memory_segment(ctx, gpa, len, baseaddr); 535 if (error) 536 return (error); 537 } 538 #else 539 if (ctx->highmem > 0) { 540 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL); 541 if (error) 542 return (error); 543 gpa = 4*GB; 544 len = ctx->highmem; 545 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr); 546 if (error) 547 return (error); 548 } 549 550 if (ctx->lowmem > 0) { 551 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL); 552 if (error) 553 return (error); 554 gpa = 0; 555 len = ctx->lowmem; 556 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr); 557 if (error) 558 return (error); 559 } 560 #endif 561 562 ctx->baseaddr = baseaddr; 563 564 return (0); 565 } 566 567 /* 568 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 569 * the lowmem or highmem regions. 570 * 571 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 572 * The instruction emulation code depends on this behavior. 573 */ 574 void * 575 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 576 { 577 578 if (ctx->lowmem > 0) { 579 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 580 gaddr + len <= ctx->lowmem) 581 return (ctx->baseaddr + gaddr); 582 } 583 584 if (ctx->highmem > 0) { 585 if (gaddr >= 4*GB) { 586 if (gaddr < 4*GB + ctx->highmem && 587 len <= ctx->highmem && 588 gaddr + len <= 4*GB + ctx->highmem) 589 return (ctx->baseaddr + gaddr); 590 } 591 } 592 593 return (NULL); 594 } 595 596 size_t 597 vm_get_lowmem_size(struct vmctx *ctx) 598 { 599 600 return (ctx->lowmem); 601 } 602 603 size_t 604 vm_get_highmem_size(struct vmctx *ctx) 605 { 606 607 return (ctx->highmem); 608 } 609 610 #ifndef __FreeBSD__ 611 int 612 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff) 613 { 614 struct vm_devmem_offset vdo; 615 int error; 616 617 vdo.segid = segid; 618 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo); 619 if (error == 0) 620 *mapoff = vdo.offset; 621 622 return (error); 623 } 624 #endif 625 626 void * 627 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 628 { 629 #ifdef __FreeBSD__ 630 char pathname[MAXPATHLEN]; 631 #endif 632 size_t len2; 633 char *base, *ptr; 634 int fd, error, flags; 635 off_t mapoff; 636 637 fd = -1; 638 ptr = MAP_FAILED; 639 if (name == NULL || strlen(name) == 0) { 640 errno = EINVAL; 641 goto done; 642 } 643 644 error = vm_alloc_memseg(ctx, segid, len, name); 645 if (error) 646 goto done; 647 648 #ifdef __FreeBSD__ 649 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 650 strlcat(pathname, ctx->name, sizeof(pathname)); 651 strlcat(pathname, ".", sizeof(pathname)); 652 strlcat(pathname, name, sizeof(pathname)); 653 654 fd = open(pathname, O_RDWR); 655 if (fd < 0) 656 goto done; 657 #else 658 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0) 659 goto done; 660 #endif 661 662 /* 663 * Stake out a contiguous region covering the device memory and the 664 * adjoining guard regions. 665 */ 666 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 667 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 668 0); 669 if (base == MAP_FAILED) 670 goto done; 671 672 flags = MAP_SHARED | MAP_FIXED; 673 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 674 flags |= MAP_NOCORE; 675 676 #ifdef __FreeBSD__ 677 /* mmap the devmem region in the host address space */ 678 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 679 #else 680 /* mmap the devmem region in the host address space */ 681 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd, 682 mapoff); 683 #endif 684 done: 685 if (fd >= 0) 686 close(fd); 687 return (ptr); 688 } 689 690 int 691 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 692 uint64_t base, uint32_t limit, uint32_t access) 693 { 694 int error; 695 struct vm_seg_desc vmsegdesc; 696 697 bzero(&vmsegdesc, sizeof(vmsegdesc)); 698 vmsegdesc.cpuid = vcpu; 699 vmsegdesc.regnum = reg; 700 vmsegdesc.desc.base = base; 701 vmsegdesc.desc.limit = limit; 702 vmsegdesc.desc.access = access; 703 704 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 705 return (error); 706 } 707 708 int 709 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 710 uint64_t *base, uint32_t *limit, uint32_t *access) 711 { 712 int error; 713 struct vm_seg_desc vmsegdesc; 714 715 bzero(&vmsegdesc, sizeof(vmsegdesc)); 716 vmsegdesc.cpuid = vcpu; 717 vmsegdesc.regnum = reg; 718 719 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 720 if (error == 0) { 721 *base = vmsegdesc.desc.base; 722 *limit = vmsegdesc.desc.limit; 723 *access = vmsegdesc.desc.access; 724 } 725 return (error); 726 } 727 728 int 729 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 730 { 731 int error; 732 733 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 734 &seg_desc->access); 735 return (error); 736 } 737 738 int 739 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 740 { 741 int error; 742 struct vm_register vmreg; 743 744 bzero(&vmreg, sizeof(vmreg)); 745 vmreg.cpuid = vcpu; 746 vmreg.regnum = reg; 747 vmreg.regval = val; 748 749 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 750 return (error); 751 } 752 753 int 754 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 755 { 756 int error; 757 struct vm_register vmreg; 758 759 bzero(&vmreg, sizeof(vmreg)); 760 vmreg.cpuid = vcpu; 761 vmreg.regnum = reg; 762 763 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 764 *ret_val = vmreg.regval; 765 return (error); 766 } 767 768 int 769 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 770 const int *regnums, uint64_t *regvals) 771 { 772 int error; 773 struct vm_register_set vmregset; 774 775 bzero(&vmregset, sizeof(vmregset)); 776 vmregset.cpuid = vcpu; 777 vmregset.count = count; 778 vmregset.regnums = regnums; 779 vmregset.regvals = regvals; 780 781 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 782 return (error); 783 } 784 785 int 786 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 787 const int *regnums, uint64_t *regvals) 788 { 789 int error; 790 struct vm_register_set vmregset; 791 792 bzero(&vmregset, sizeof(vmregset)); 793 vmregset.cpuid = vcpu; 794 vmregset.count = count; 795 vmregset.regnums = regnums; 796 vmregset.regvals = regvals; 797 798 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 799 return (error); 800 } 801 802 int 803 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry, 804 struct vm_exit *vm_exit) 805 { 806 struct vm_entry entry; 807 808 bcopy(vm_entry, &entry, sizeof (entry)); 809 entry.cpuid = vcpu; 810 entry.exit_data = vm_exit; 811 812 return (ioctl(ctx->fd, VM_RUN, &entry)); 813 } 814 815 int 816 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 817 { 818 struct vm_suspend vmsuspend; 819 820 bzero(&vmsuspend, sizeof(vmsuspend)); 821 vmsuspend.how = how; 822 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 823 } 824 825 int 826 vm_reinit(struct vmctx *ctx) 827 { 828 829 return (ioctl(ctx->fd, VM_REINIT, 0)); 830 } 831 832 int 833 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 834 uint32_t errcode, int restart_instruction) 835 { 836 struct vm_exception exc; 837 838 exc.cpuid = vcpu; 839 exc.vector = vector; 840 exc.error_code = errcode; 841 exc.error_code_valid = errcode_valid; 842 exc.restart_instruction = restart_instruction; 843 844 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 845 } 846 847 #ifndef __FreeBSD__ 848 void 849 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 850 int errcode) 851 { 852 int error; 853 struct vm_exception exc; 854 855 exc.cpuid = vcpu; 856 exc.vector = vector; 857 exc.error_code = errcode; 858 exc.error_code_valid = errcode_valid; 859 exc.restart_instruction = 1; 860 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc); 861 862 assert(error == 0); 863 } 864 #endif /* __FreeBSD__ */ 865 866 int 867 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 868 { 869 /* 870 * The apic id associated with the 'vcpu' has the same numerical value 871 * as the 'vcpu' itself. 872 */ 873 return (apicid); 874 } 875 876 int 877 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 878 { 879 struct vm_lapic_irq vmirq; 880 881 bzero(&vmirq, sizeof(vmirq)); 882 vmirq.cpuid = vcpu; 883 vmirq.vector = vector; 884 885 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 886 } 887 888 int 889 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 890 { 891 struct vm_lapic_irq vmirq; 892 893 bzero(&vmirq, sizeof(vmirq)); 894 vmirq.cpuid = vcpu; 895 vmirq.vector = vector; 896 897 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 898 } 899 900 int 901 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 902 { 903 struct vm_lapic_msi vmmsi; 904 905 bzero(&vmmsi, sizeof(vmmsi)); 906 vmmsi.addr = addr; 907 vmmsi.msg = msg; 908 909 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 910 } 911 912 int 913 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 914 { 915 struct vm_ioapic_irq ioapic_irq; 916 917 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 918 ioapic_irq.irq = irq; 919 920 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 921 } 922 923 int 924 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 925 { 926 struct vm_ioapic_irq ioapic_irq; 927 928 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 929 ioapic_irq.irq = irq; 930 931 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 932 } 933 934 int 935 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 936 { 937 struct vm_ioapic_irq ioapic_irq; 938 939 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 940 ioapic_irq.irq = irq; 941 942 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 943 } 944 945 int 946 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 947 { 948 949 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 950 } 951 952 int 953 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 954 bool write, int size, uint64_t *value) 955 { 956 struct vm_readwrite_kernemu_device irp = { 957 .vcpuid = vcpu, 958 .access_width = fls(size) - 1, 959 .gpa = gpa, 960 .value = write ? *value : ~0ul, 961 }; 962 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 963 int rc; 964 965 rc = ioctl(ctx->fd, cmd, &irp); 966 if (rc == 0 && !write) 967 *value = irp.value; 968 return (rc); 969 } 970 971 int 972 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 973 { 974 struct vm_isa_irq isa_irq; 975 976 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 977 isa_irq.atpic_irq = atpic_irq; 978 isa_irq.ioapic_irq = ioapic_irq; 979 980 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 981 } 982 983 int 984 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 985 { 986 struct vm_isa_irq isa_irq; 987 988 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 989 isa_irq.atpic_irq = atpic_irq; 990 isa_irq.ioapic_irq = ioapic_irq; 991 992 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 993 } 994 995 int 996 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 997 { 998 struct vm_isa_irq isa_irq; 999 1000 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 1001 isa_irq.atpic_irq = atpic_irq; 1002 isa_irq.ioapic_irq = ioapic_irq; 1003 1004 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 1005 } 1006 1007 int 1008 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 1009 enum vm_intr_trigger trigger) 1010 { 1011 struct vm_isa_irq_trigger isa_irq_trigger; 1012 1013 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 1014 isa_irq_trigger.atpic_irq = atpic_irq; 1015 isa_irq_trigger.trigger = trigger; 1016 1017 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 1018 } 1019 1020 int 1021 vm_inject_nmi(struct vmctx *ctx, int vcpu) 1022 { 1023 struct vm_nmi vmnmi; 1024 1025 bzero(&vmnmi, sizeof(vmnmi)); 1026 vmnmi.cpuid = vcpu; 1027 1028 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 1029 } 1030 1031 static const char *capstrmap[] = { 1032 [VM_CAP_HALT_EXIT] = "hlt_exit", 1033 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 1034 [VM_CAP_PAUSE_EXIT] = "pause_exit", 1035 #ifdef __FreeBSD__ 1036 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 1037 #endif 1038 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 1039 [VM_CAP_BPT_EXIT] = "bpt_exit", 1040 }; 1041 1042 int 1043 vm_capability_name2type(const char *capname) 1044 { 1045 int i; 1046 1047 for (i = 0; i < nitems(capstrmap); i++) { 1048 if (strcmp(capstrmap[i], capname) == 0) 1049 return (i); 1050 } 1051 1052 return (-1); 1053 } 1054 1055 const char * 1056 vm_capability_type2name(int type) 1057 { 1058 if (type >= 0 && type < nitems(capstrmap)) 1059 return (capstrmap[type]); 1060 1061 return (NULL); 1062 } 1063 1064 int 1065 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 1066 int *retval) 1067 { 1068 int error; 1069 struct vm_capability vmcap; 1070 1071 bzero(&vmcap, sizeof(vmcap)); 1072 vmcap.cpuid = vcpu; 1073 vmcap.captype = cap; 1074 1075 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 1076 *retval = vmcap.capval; 1077 return (error); 1078 } 1079 1080 int 1081 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 1082 { 1083 struct vm_capability vmcap; 1084 1085 bzero(&vmcap, sizeof(vmcap)); 1086 vmcap.cpuid = vcpu; 1087 vmcap.captype = cap; 1088 vmcap.capval = val; 1089 1090 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 1091 } 1092 1093 #ifdef __FreeBSD__ 1094 int 1095 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1096 { 1097 struct vm_pptdev pptdev; 1098 1099 bzero(&pptdev, sizeof(pptdev)); 1100 pptdev.bus = bus; 1101 pptdev.slot = slot; 1102 pptdev.func = func; 1103 1104 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1105 } 1106 1107 int 1108 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1109 { 1110 struct vm_pptdev pptdev; 1111 1112 bzero(&pptdev, sizeof(pptdev)); 1113 pptdev.bus = bus; 1114 pptdev.slot = slot; 1115 pptdev.func = func; 1116 1117 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1118 } 1119 1120 int 1121 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1122 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 1123 { 1124 struct vm_pptdev_mmio pptmmio; 1125 1126 bzero(&pptmmio, sizeof(pptmmio)); 1127 pptmmio.bus = bus; 1128 pptmmio.slot = slot; 1129 pptmmio.func = func; 1130 pptmmio.gpa = gpa; 1131 pptmmio.len = len; 1132 pptmmio.hpa = hpa; 1133 1134 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1135 } 1136 1137 int 1138 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1139 vm_paddr_t gpa, size_t len) 1140 { 1141 struct vm_pptdev_mmio pptmmio; 1142 1143 bzero(&pptmmio, sizeof(pptmmio)); 1144 pptmmio.bus = bus; 1145 pptmmio.slot = slot; 1146 pptmmio.func = func; 1147 pptmmio.gpa = gpa; 1148 pptmmio.len = len; 1149 1150 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1151 } 1152 1153 int 1154 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1155 uint64_t addr, uint64_t msg, int numvec) 1156 { 1157 struct vm_pptdev_msi pptmsi; 1158 1159 bzero(&pptmsi, sizeof(pptmsi)); 1160 pptmsi.vcpu = vcpu; 1161 pptmsi.bus = bus; 1162 pptmsi.slot = slot; 1163 pptmsi.func = func; 1164 pptmsi.msg = msg; 1165 pptmsi.addr = addr; 1166 pptmsi.numvec = numvec; 1167 1168 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1169 } 1170 1171 int 1172 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1173 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1174 { 1175 struct vm_pptdev_msix pptmsix; 1176 1177 bzero(&pptmsix, sizeof(pptmsix)); 1178 pptmsix.vcpu = vcpu; 1179 pptmsix.bus = bus; 1180 pptmsix.slot = slot; 1181 pptmsix.func = func; 1182 pptmsix.idx = idx; 1183 pptmsix.msg = msg; 1184 pptmsix.addr = addr; 1185 pptmsix.vector_control = vector_control; 1186 1187 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1188 } 1189 1190 int 1191 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func, 1192 int *msi_limit, int *msix_limit) 1193 { 1194 struct vm_pptdev_limits pptlimits; 1195 int error; 1196 1197 bzero(&pptlimits, sizeof (pptlimits)); 1198 pptlimits.bus = bus; 1199 pptlimits.slot = slot; 1200 pptlimits.func = func; 1201 1202 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1203 1204 *msi_limit = pptlimits.msi_limit; 1205 *msix_limit = pptlimits.msix_limit; 1206 1207 return (error); 1208 } 1209 1210 int 1211 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1212 { 1213 struct vm_pptdev ppt; 1214 1215 bzero(&ppt, sizeof(ppt)); 1216 ppt.bus = bus; 1217 ppt.slot = slot; 1218 ppt.func = func; 1219 1220 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1221 } 1222 1223 #else /* __FreeBSD__ */ 1224 1225 int 1226 vm_assign_pptdev(struct vmctx *ctx, int pptfd) 1227 { 1228 struct vm_pptdev pptdev; 1229 1230 pptdev.pptfd = pptfd; 1231 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1232 } 1233 1234 int 1235 vm_unassign_pptdev(struct vmctx *ctx, int pptfd) 1236 { 1237 struct vm_pptdev pptdev; 1238 1239 pptdev.pptfd = pptfd; 1240 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1241 } 1242 1243 int 1244 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len, 1245 vm_paddr_t hpa) 1246 { 1247 struct vm_pptdev_mmio pptmmio; 1248 1249 pptmmio.pptfd = pptfd; 1250 pptmmio.gpa = gpa; 1251 pptmmio.len = len; 1252 pptmmio.hpa = hpa; 1253 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1254 } 1255 1256 int 1257 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len) 1258 { 1259 struct vm_pptdev_mmio pptmmio; 1260 1261 bzero(&pptmmio, sizeof(pptmmio)); 1262 pptmmio.pptfd = pptfd; 1263 pptmmio.gpa = gpa; 1264 pptmmio.len = len; 1265 1266 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1267 } 1268 1269 int 1270 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr, 1271 uint64_t msg, int numvec) 1272 { 1273 struct vm_pptdev_msi pptmsi; 1274 1275 pptmsi.vcpu = vcpu; 1276 pptmsi.pptfd = pptfd; 1277 pptmsi.msg = msg; 1278 pptmsi.addr = addr; 1279 pptmsi.numvec = numvec; 1280 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1281 } 1282 1283 int 1284 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx, 1285 uint64_t addr, uint64_t msg, uint32_t vector_control) 1286 { 1287 struct vm_pptdev_msix pptmsix; 1288 1289 pptmsix.vcpu = vcpu; 1290 pptmsix.pptfd = pptfd; 1291 pptmsix.idx = idx; 1292 pptmsix.msg = msg; 1293 pptmsix.addr = addr; 1294 pptmsix.vector_control = vector_control; 1295 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1296 } 1297 1298 int 1299 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit, 1300 int *msix_limit) 1301 { 1302 struct vm_pptdev_limits pptlimits; 1303 int error; 1304 1305 bzero(&pptlimits, sizeof (pptlimits)); 1306 pptlimits.pptfd = pptfd; 1307 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1308 1309 *msi_limit = pptlimits.msi_limit; 1310 *msix_limit = pptlimits.msix_limit; 1311 return (error); 1312 } 1313 1314 int 1315 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd) 1316 { 1317 struct vm_pptdev pptdev; 1318 1319 pptdev.pptfd = pptfd; 1320 return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev)); 1321 } 1322 #endif /* __FreeBSD__ */ 1323 1324 uint64_t * 1325 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1326 int *ret_entries) 1327 { 1328 int error; 1329 1330 static struct vm_stats vmstats; 1331 1332 vmstats.cpuid = vcpu; 1333 1334 error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats); 1335 if (error == 0) { 1336 if (ret_entries) 1337 *ret_entries = vmstats.num_entries; 1338 if (ret_tv) 1339 *ret_tv = vmstats.tv; 1340 return (vmstats.statbuf); 1341 } else 1342 return (NULL); 1343 } 1344 1345 const char * 1346 vm_get_stat_desc(struct vmctx *ctx, int index) 1347 { 1348 static struct vm_stat_desc statdesc; 1349 1350 statdesc.index = index; 1351 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1352 return (statdesc.desc); 1353 else 1354 return (NULL); 1355 } 1356 1357 int 1358 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1359 { 1360 int error; 1361 struct vm_x2apic x2apic; 1362 1363 bzero(&x2apic, sizeof(x2apic)); 1364 x2apic.cpuid = vcpu; 1365 1366 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1367 *state = x2apic.state; 1368 return (error); 1369 } 1370 1371 int 1372 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1373 { 1374 int error; 1375 struct vm_x2apic x2apic; 1376 1377 bzero(&x2apic, sizeof(x2apic)); 1378 x2apic.cpuid = vcpu; 1379 x2apic.state = state; 1380 1381 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1382 1383 return (error); 1384 } 1385 1386 #ifndef __FreeBSD__ 1387 int 1388 vcpu_reset(struct vmctx *vmctx, int vcpu) 1389 { 1390 struct vm_vcpu_reset vvr; 1391 1392 vvr.vcpuid = vcpu; 1393 vvr.kind = VRK_RESET; 1394 1395 return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr)); 1396 } 1397 #else /* __FreeBSD__ */ 1398 /* 1399 * From Intel Vol 3a: 1400 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1401 */ 1402 int 1403 vcpu_reset(struct vmctx *vmctx, int vcpu) 1404 { 1405 int error; 1406 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1407 uint32_t desc_access, desc_limit; 1408 uint16_t sel; 1409 1410 zero = 0; 1411 1412 rflags = 0x2; 1413 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1414 if (error) 1415 goto done; 1416 1417 rip = 0xfff0; 1418 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1419 goto done; 1420 1421 cr0 = CR0_NE; 1422 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1423 goto done; 1424 1425 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1426 goto done; 1427 1428 cr4 = 0; 1429 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1430 goto done; 1431 1432 /* 1433 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1434 */ 1435 desc_base = 0xffff0000; 1436 desc_limit = 0xffff; 1437 desc_access = 0x0093; 1438 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1439 desc_base, desc_limit, desc_access); 1440 if (error) 1441 goto done; 1442 1443 sel = 0xf000; 1444 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1445 goto done; 1446 1447 /* 1448 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1449 */ 1450 desc_base = 0; 1451 desc_limit = 0xffff; 1452 desc_access = 0x0093; 1453 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1454 desc_base, desc_limit, desc_access); 1455 if (error) 1456 goto done; 1457 1458 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1459 desc_base, desc_limit, desc_access); 1460 if (error) 1461 goto done; 1462 1463 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1464 desc_base, desc_limit, desc_access); 1465 if (error) 1466 goto done; 1467 1468 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1469 desc_base, desc_limit, desc_access); 1470 if (error) 1471 goto done; 1472 1473 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1474 desc_base, desc_limit, desc_access); 1475 if (error) 1476 goto done; 1477 1478 sel = 0; 1479 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1480 goto done; 1481 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1482 goto done; 1483 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1484 goto done; 1485 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1486 goto done; 1487 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1488 goto done; 1489 1490 /* General purpose registers */ 1491 rdx = 0xf00; 1492 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1493 goto done; 1494 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1495 goto done; 1496 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1497 goto done; 1498 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1499 goto done; 1500 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1501 goto done; 1502 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1503 goto done; 1504 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1505 goto done; 1506 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1507 goto done; 1508 1509 /* GDTR, IDTR */ 1510 desc_base = 0; 1511 desc_limit = 0xffff; 1512 desc_access = 0; 1513 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1514 desc_base, desc_limit, desc_access); 1515 if (error != 0) 1516 goto done; 1517 1518 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1519 desc_base, desc_limit, desc_access); 1520 if (error != 0) 1521 goto done; 1522 1523 /* TR */ 1524 desc_base = 0; 1525 desc_limit = 0xffff; 1526 desc_access = 0x0000008b; 1527 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1528 if (error) 1529 goto done; 1530 1531 sel = 0; 1532 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1533 goto done; 1534 1535 /* LDTR */ 1536 desc_base = 0; 1537 desc_limit = 0xffff; 1538 desc_access = 0x00000082; 1539 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1540 desc_limit, desc_access); 1541 if (error) 1542 goto done; 1543 1544 sel = 0; 1545 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1546 goto done; 1547 1548 /* XXX cr2, debug registers */ 1549 1550 error = 0; 1551 done: 1552 return (error); 1553 } 1554 #endif /* __FreeBSD__ */ 1555 1556 int 1557 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1558 { 1559 int error, i; 1560 struct vm_gpa_pte gpapte; 1561 1562 bzero(&gpapte, sizeof(gpapte)); 1563 gpapte.gpa = gpa; 1564 1565 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1566 1567 if (error == 0) { 1568 *num = gpapte.ptenum; 1569 for (i = 0; i < gpapte.ptenum; i++) 1570 pte[i] = gpapte.pte[i]; 1571 } 1572 1573 return (error); 1574 } 1575 1576 int 1577 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1578 { 1579 int error; 1580 struct vm_hpet_cap cap; 1581 1582 bzero(&cap, sizeof(struct vm_hpet_cap)); 1583 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1584 if (capabilities != NULL) 1585 *capabilities = cap.capabilities; 1586 return (error); 1587 } 1588 1589 int 1590 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1591 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1592 { 1593 struct vm_gla2gpa gg; 1594 int error; 1595 1596 bzero(&gg, sizeof(struct vm_gla2gpa)); 1597 gg.vcpuid = vcpu; 1598 gg.prot = prot; 1599 gg.gla = gla; 1600 gg.paging = *paging; 1601 1602 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1603 if (error == 0) { 1604 *fault = gg.fault; 1605 *gpa = gg.gpa; 1606 } 1607 return (error); 1608 } 1609 1610 int 1611 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1612 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1613 { 1614 struct vm_gla2gpa gg; 1615 int error; 1616 1617 bzero(&gg, sizeof(struct vm_gla2gpa)); 1618 gg.vcpuid = vcpu; 1619 gg.prot = prot; 1620 gg.gla = gla; 1621 gg.paging = *paging; 1622 1623 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1624 if (error == 0) { 1625 *fault = gg.fault; 1626 *gpa = gg.gpa; 1627 } 1628 return (error); 1629 } 1630 1631 #ifndef min 1632 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1633 #endif 1634 1635 int 1636 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1637 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1638 int *fault) 1639 { 1640 void *va; 1641 uint64_t gpa; 1642 int error, i, n, off; 1643 1644 for (i = 0; i < iovcnt; i++) { 1645 iov[i].iov_base = 0; 1646 iov[i].iov_len = 0; 1647 } 1648 1649 while (len) { 1650 assert(iovcnt > 0); 1651 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1652 if (error || *fault) 1653 return (error); 1654 1655 off = gpa & PAGE_MASK; 1656 n = min(len, PAGE_SIZE - off); 1657 1658 va = vm_map_gpa(ctx, gpa, n); 1659 if (va == NULL) 1660 return (EFAULT); 1661 1662 iov->iov_base = va; 1663 iov->iov_len = n; 1664 iov++; 1665 iovcnt--; 1666 1667 gla += n; 1668 len -= n; 1669 } 1670 return (0); 1671 } 1672 1673 void 1674 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1675 { 1676 1677 return; 1678 } 1679 1680 void 1681 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1682 { 1683 const char *src; 1684 char *dst; 1685 size_t n; 1686 1687 dst = vp; 1688 while (len) { 1689 assert(iov->iov_len); 1690 n = min(len, iov->iov_len); 1691 src = iov->iov_base; 1692 bcopy(src, dst, n); 1693 1694 iov++; 1695 dst += n; 1696 len -= n; 1697 } 1698 } 1699 1700 void 1701 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1702 size_t len) 1703 { 1704 const char *src; 1705 char *dst; 1706 size_t n; 1707 1708 src = vp; 1709 while (len) { 1710 assert(iov->iov_len); 1711 n = min(len, iov->iov_len); 1712 dst = iov->iov_base; 1713 bcopy(src, dst, n); 1714 1715 iov++; 1716 src += n; 1717 len -= n; 1718 } 1719 } 1720 1721 static int 1722 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1723 { 1724 struct vm_cpuset vm_cpuset; 1725 int error; 1726 1727 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1728 vm_cpuset.which = which; 1729 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1730 vm_cpuset.cpus = cpus; 1731 1732 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1733 return (error); 1734 } 1735 1736 int 1737 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1738 { 1739 1740 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1741 } 1742 1743 int 1744 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1745 { 1746 1747 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1748 } 1749 1750 int 1751 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1752 { 1753 1754 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1755 } 1756 1757 int 1758 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1759 { 1760 struct vm_activate_cpu ac; 1761 int error; 1762 1763 bzero(&ac, sizeof(struct vm_activate_cpu)); 1764 ac.vcpuid = vcpu; 1765 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1766 return (error); 1767 } 1768 1769 int 1770 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1771 { 1772 struct vm_activate_cpu ac; 1773 int error; 1774 1775 bzero(&ac, sizeof(struct vm_activate_cpu)); 1776 ac.vcpuid = vcpu; 1777 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1778 return (error); 1779 } 1780 1781 int 1782 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1783 { 1784 struct vm_activate_cpu ac; 1785 int error; 1786 1787 bzero(&ac, sizeof(struct vm_activate_cpu)); 1788 ac.vcpuid = vcpu; 1789 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1790 return (error); 1791 } 1792 1793 int 1794 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1795 { 1796 struct vm_intinfo vmii; 1797 int error; 1798 1799 bzero(&vmii, sizeof(struct vm_intinfo)); 1800 vmii.vcpuid = vcpu; 1801 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1802 if (error == 0) { 1803 *info1 = vmii.info1; 1804 *info2 = vmii.info2; 1805 } 1806 return (error); 1807 } 1808 1809 int 1810 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1811 { 1812 struct vm_intinfo vmii; 1813 int error; 1814 1815 bzero(&vmii, sizeof(struct vm_intinfo)); 1816 vmii.vcpuid = vcpu; 1817 vmii.info1 = info1; 1818 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1819 return (error); 1820 } 1821 1822 int 1823 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1824 { 1825 struct vm_rtc_data rtcdata; 1826 int error; 1827 1828 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1829 rtcdata.offset = offset; 1830 rtcdata.value = value; 1831 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1832 return (error); 1833 } 1834 1835 int 1836 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1837 { 1838 struct vm_rtc_data rtcdata; 1839 int error; 1840 1841 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1842 rtcdata.offset = offset; 1843 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1844 if (error == 0) 1845 *retval = rtcdata.value; 1846 return (error); 1847 } 1848 1849 int 1850 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1851 { 1852 struct vm_rtc_time rtctime; 1853 int error; 1854 1855 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1856 rtctime.secs = secs; 1857 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1858 return (error); 1859 } 1860 1861 int 1862 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1863 { 1864 struct vm_rtc_time rtctime; 1865 int error; 1866 1867 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1868 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1869 if (error == 0) 1870 *secs = rtctime.secs; 1871 return (error); 1872 } 1873 1874 int 1875 vm_restart_instruction(void *arg, int vcpu) 1876 { 1877 struct vmctx *ctx = arg; 1878 1879 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1880 } 1881 1882 int 1883 vm_set_topology(struct vmctx *ctx, 1884 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1885 { 1886 struct vm_cpu_topology topology; 1887 1888 bzero(&topology, sizeof (struct vm_cpu_topology)); 1889 topology.sockets = sockets; 1890 topology.cores = cores; 1891 topology.threads = threads; 1892 topology.maxcpus = maxcpus; 1893 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1894 } 1895 1896 int 1897 vm_get_topology(struct vmctx *ctx, 1898 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1899 { 1900 struct vm_cpu_topology topology; 1901 int error; 1902 1903 bzero(&topology, sizeof (struct vm_cpu_topology)); 1904 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1905 if (error == 0) { 1906 *sockets = topology.sockets; 1907 *cores = topology.cores; 1908 *threads = topology.threads; 1909 *maxcpus = topology.maxcpus; 1910 } 1911 return (error); 1912 } 1913 1914 int 1915 vm_get_device_fd(struct vmctx *ctx) 1916 { 1917 1918 return (ctx->fd); 1919 } 1920 1921 #ifndef __FreeBSD__ 1922 int 1923 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport) 1924 { 1925 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport)); 1926 } 1927 1928 int 1929 vm_wrlock_cycle(struct vmctx *ctx) 1930 { 1931 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) { 1932 return (errno); 1933 } 1934 return (0); 1935 } 1936 1937 int 1938 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state, 1939 uint8_t *sipi_vector) 1940 { 1941 struct vm_run_state data; 1942 1943 data.vcpuid = vcpu; 1944 if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) { 1945 return (errno); 1946 } 1947 1948 *state = data.state; 1949 *sipi_vector = data.sipi_vector; 1950 return (0); 1951 } 1952 1953 int 1954 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state, 1955 uint8_t sipi_vector) 1956 { 1957 struct vm_run_state data; 1958 1959 data.vcpuid = vcpu; 1960 data.state = state; 1961 data.sipi_vector = sipi_vector; 1962 if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) { 1963 return (errno); 1964 } 1965 1966 return (0); 1967 } 1968 1969 #endif /* __FreeBSD__ */ 1970 1971 #ifdef __FreeBSD__ 1972 const cap_ioctl_t * 1973 vm_get_ioctls(size_t *len) 1974 { 1975 cap_ioctl_t *cmds; 1976 /* keep in sync with machine/vmm_dev.h */ 1977 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1978 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1979 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1980 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1981 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1982 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1983 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1984 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1985 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1986 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1987 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1988 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1989 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1990 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1991 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1992 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1993 VM_GLA2GPA_NOFAULT, 1994 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1995 VM_SET_INTINFO, VM_GET_INTINFO, 1996 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1997 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1998 1999 if (len == NULL) { 2000 cmds = malloc(sizeof(vm_ioctl_cmds)); 2001 if (cmds == NULL) 2002 return (NULL); 2003 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 2004 return (cmds); 2005 } 2006 2007 *len = nitems(vm_ioctl_cmds); 2008 return (NULL); 2009 } 2010 #endif /* __FreeBSD__ */ 2011