1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2022 Oxide Computer Company 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/sysctl.h> 50 #include <sys/ioctl.h> 51 #ifdef __FreeBSD__ 52 #include <sys/linker.h> 53 #endif 54 #include <sys/mman.h> 55 #include <sys/module.h> 56 #include <sys/_iovec.h> 57 #include <sys/cpuset.h> 58 59 #include <x86/segments.h> 60 #include <machine/specialreg.h> 61 62 #include <errno.h> 63 #ifdef __FreeBSD__ 64 #include <stdbool.h> 65 #endif 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <assert.h> 69 #include <string.h> 70 #include <fcntl.h> 71 #include <unistd.h> 72 73 #include <libutil.h> 74 75 #ifdef __FreeBSD__ 76 #include <vm/vm.h> 77 #endif 78 #include <machine/vmm.h> 79 #include <machine/vmm_dev.h> 80 81 #include "vmmapi.h" 82 83 #define MB (1024 * 1024UL) 84 #define GB (1024 * 1024 * 1024UL) 85 86 #ifndef __FreeBSD__ 87 /* shim to no-op for now */ 88 #define MAP_NOCORE 0 89 #define MAP_ALIGNED_SUPER 0 90 91 /* Rely on PROT_NONE for guard purposes */ 92 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE) 93 94 #define _Thread_local __thread 95 #endif 96 97 /* 98 * Size of the guard region before and after the virtual address space 99 * mapping the guest physical memory. This must be a multiple of the 100 * superpage size for performance reasons. 101 */ 102 #define VM_MMAP_GUARD_SIZE (4 * MB) 103 104 #define PROT_RW (PROT_READ | PROT_WRITE) 105 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 106 107 struct vmctx { 108 int fd; 109 uint32_t lowmem_limit; 110 int memflags; 111 size_t lowmem; 112 size_t highmem; 113 char *baseaddr; 114 char *name; 115 }; 116 117 #ifdef __FreeBSD__ 118 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 119 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 120 #endif 121 122 static int 123 vm_device_open(const char *name) 124 { 125 int fd, len; 126 char *vmfile; 127 128 len = strlen("/dev/vmm/") + strlen(name) + 1; 129 vmfile = malloc(len); 130 assert(vmfile != NULL); 131 snprintf(vmfile, len, "/dev/vmm/%s", name); 132 133 /* Open the device file */ 134 fd = open(vmfile, O_RDWR, 0); 135 136 free(vmfile); 137 return (fd); 138 } 139 140 #ifdef __FreeBSD__ 141 int 142 vm_create(const char *name) 143 { 144 /* Try to load vmm(4) module before creating a guest. */ 145 if (modfind("vmm") < 0) 146 kldload("vmm"); 147 return (CREATE(name)); 148 } 149 #else 150 static int 151 vm_do_ctl(int cmd, void *req) 152 { 153 int ctl_fd; 154 155 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR); 156 if (ctl_fd < 0) { 157 return (-1); 158 } 159 160 if (ioctl(ctl_fd, cmd, req) == -1) { 161 int err = errno; 162 163 /* Do not lose ioctl errno through the close(2) */ 164 (void) close(ctl_fd); 165 errno = err; 166 return (-1); 167 } 168 (void) close(ctl_fd); 169 170 return (0); 171 } 172 173 int 174 vm_create(const char *name, uint64_t flags) 175 { 176 struct vm_create_req req; 177 178 (void) strncpy(req.name, name, VM_MAX_NAMELEN); 179 req.flags = flags; 180 181 return (vm_do_ctl(VMM_CREATE_VM, &req)); 182 } 183 #endif 184 185 struct vmctx * 186 vm_open(const char *name) 187 { 188 struct vmctx *vm; 189 int saved_errno; 190 191 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 192 assert(vm != NULL); 193 194 vm->fd = -1; 195 vm->memflags = 0; 196 vm->lowmem_limit = 3 * GB; 197 vm->name = (char *)(vm + 1); 198 strcpy(vm->name, name); 199 200 if ((vm->fd = vm_device_open(vm->name)) < 0) 201 goto err; 202 203 return (vm); 204 err: 205 saved_errno = errno; 206 free(vm); 207 errno = saved_errno; 208 return (NULL); 209 } 210 211 #ifdef __FreeBSD__ 212 void 213 vm_close(struct vmctx *vm) 214 { 215 assert(vm != NULL); 216 217 close(vm->fd); 218 free(vm); 219 } 220 221 void 222 vm_destroy(struct vmctx *vm) 223 { 224 assert(vm != NULL); 225 226 if (vm->fd >= 0) 227 close(vm->fd); 228 DESTROY(vm->name); 229 230 free(vm); 231 } 232 #else 233 void 234 vm_close(struct vmctx *vm) 235 { 236 assert(vm != NULL); 237 assert(vm->fd >= 0); 238 239 (void) close(vm->fd); 240 241 free(vm); 242 } 243 244 void 245 vm_destroy(struct vmctx *vm) 246 { 247 assert(vm != NULL); 248 249 if (vm->fd >= 0) { 250 (void) ioctl(vm->fd, VM_DESTROY_SELF, 0); 251 (void) close(vm->fd); 252 vm->fd = -1; 253 } 254 255 free(vm); 256 } 257 #endif 258 259 int 260 vm_parse_memsize(const char *opt, size_t *ret_memsize) 261 { 262 char *endptr; 263 size_t optval; 264 int error; 265 266 optval = strtoul(opt, &endptr, 0); 267 if (*opt != '\0' && *endptr == '\0') { 268 /* 269 * For the sake of backward compatibility if the memory size 270 * specified on the command line is less than a megabyte then 271 * it is interpreted as being in units of MB. 272 */ 273 if (optval < MB) 274 optval *= MB; 275 *ret_memsize = optval; 276 error = 0; 277 } else 278 error = expand_number(opt, ret_memsize); 279 280 return (error); 281 } 282 283 uint32_t 284 vm_get_lowmem_limit(struct vmctx *ctx) 285 { 286 287 return (ctx->lowmem_limit); 288 } 289 290 void 291 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 292 { 293 294 ctx->lowmem_limit = limit; 295 } 296 297 void 298 vm_set_memflags(struct vmctx *ctx, int flags) 299 { 300 301 ctx->memflags = flags; 302 } 303 304 int 305 vm_get_memflags(struct vmctx *ctx) 306 { 307 308 return (ctx->memflags); 309 } 310 311 /* 312 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 313 */ 314 int 315 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 316 size_t len, int prot) 317 { 318 struct vm_memmap memmap; 319 int error, flags; 320 321 memmap.gpa = gpa; 322 memmap.segid = segid; 323 memmap.segoff = off; 324 memmap.len = len; 325 memmap.prot = prot; 326 memmap.flags = 0; 327 328 if (ctx->memflags & VM_MEM_F_WIRED) 329 memmap.flags |= VM_MEMMAP_F_WIRED; 330 331 /* 332 * If this mapping already exists then don't create it again. This 333 * is the common case for SYSMEM mappings created by bhyveload(8). 334 */ 335 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 336 if (error == 0 && gpa == memmap.gpa) { 337 if (segid != memmap.segid || off != memmap.segoff || 338 prot != memmap.prot || flags != memmap.flags) { 339 errno = EEXIST; 340 return (-1); 341 } else { 342 return (0); 343 } 344 } 345 346 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 347 return (error); 348 } 349 350 #ifdef __FreeBSD__ 351 int 352 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 353 size_t *lowmem_size, size_t *highmem_size) 354 { 355 356 *guest_baseaddr = ctx->baseaddr; 357 *lowmem_size = ctx->lowmem; 358 *highmem_size = ctx->highmem; 359 return (0); 360 } 361 #endif 362 363 int 364 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 365 { 366 struct vm_munmap munmap; 367 int error; 368 369 munmap.gpa = gpa; 370 munmap.len = len; 371 372 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 373 return (error); 374 } 375 376 int 377 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 378 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 379 { 380 struct vm_memmap memmap; 381 int error; 382 383 bzero(&memmap, sizeof(struct vm_memmap)); 384 memmap.gpa = *gpa; 385 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 386 if (error == 0) { 387 *gpa = memmap.gpa; 388 *segid = memmap.segid; 389 *segoff = memmap.segoff; 390 *len = memmap.len; 391 *prot = memmap.prot; 392 *flags = memmap.flags; 393 } 394 return (error); 395 } 396 397 /* 398 * Return 0 if the segments are identical and non-zero otherwise. 399 * 400 * This is slightly complicated by the fact that only device memory segments 401 * are named. 402 */ 403 static int 404 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 405 { 406 407 if (len == len2) { 408 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 409 return (0); 410 } 411 return (-1); 412 } 413 414 static int 415 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 416 { 417 struct vm_memseg memseg; 418 size_t n; 419 int error; 420 421 /* 422 * If the memory segment has already been created then just return. 423 * This is the usual case for the SYSMEM segment created by userspace 424 * loaders like bhyveload(8). 425 */ 426 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 427 sizeof(memseg.name)); 428 if (error) 429 return (error); 430 431 if (memseg.len != 0) { 432 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 433 errno = EINVAL; 434 return (-1); 435 } else { 436 return (0); 437 } 438 } 439 440 bzero(&memseg, sizeof(struct vm_memseg)); 441 memseg.segid = segid; 442 memseg.len = len; 443 if (name != NULL) { 444 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 445 if (n >= sizeof(memseg.name)) { 446 errno = ENAMETOOLONG; 447 return (-1); 448 } 449 } 450 451 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 452 return (error); 453 } 454 455 int 456 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 457 size_t bufsize) 458 { 459 struct vm_memseg memseg; 460 size_t n; 461 int error; 462 463 memseg.segid = segid; 464 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 465 if (error == 0) { 466 *lenp = memseg.len; 467 n = strlcpy(namebuf, memseg.name, bufsize); 468 if (n >= bufsize) { 469 errno = ENAMETOOLONG; 470 error = -1; 471 } 472 } 473 return (error); 474 } 475 476 static int 477 #ifdef __FreeBSD__ 478 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 479 #else 480 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len, 481 char *base) 482 #endif 483 { 484 char *ptr; 485 int error, flags; 486 487 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 488 #ifdef __FreeBSD__ 489 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 490 #else 491 /* 492 * As we use two segments for lowmem/highmem the offset within the 493 * segment is 0 on illumos. 494 */ 495 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL); 496 #endif 497 if (error) 498 return (error); 499 500 flags = MAP_SHARED | MAP_FIXED; 501 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 502 flags |= MAP_NOCORE; 503 504 /* mmap into the process address space on the host */ 505 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 506 if (ptr == MAP_FAILED) 507 return (-1); 508 509 return (0); 510 } 511 512 int 513 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 514 { 515 size_t objsize, len; 516 vm_paddr_t gpa; 517 char *baseaddr, *ptr; 518 int error; 519 520 assert(vms == VM_MMAP_ALL); 521 522 /* 523 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 524 * create another 'highmem' segment above 4GB for the remainder. 525 */ 526 if (memsize > ctx->lowmem_limit) { 527 ctx->lowmem = ctx->lowmem_limit; 528 ctx->highmem = memsize - ctx->lowmem_limit; 529 objsize = 4*GB + ctx->highmem; 530 } else { 531 ctx->lowmem = memsize; 532 ctx->highmem = 0; 533 objsize = ctx->lowmem; 534 } 535 536 #ifdef __FreeBSD__ 537 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 538 if (error) 539 return (error); 540 #endif 541 542 /* 543 * Stake out a contiguous region covering the guest physical memory 544 * and the adjoining guard regions. 545 */ 546 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 547 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 548 if (ptr == MAP_FAILED) 549 return (-1); 550 551 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 552 553 #ifdef __FreeBSD__ 554 if (ctx->highmem > 0) { 555 gpa = 4*GB; 556 len = ctx->highmem; 557 error = setup_memory_segment(ctx, gpa, len, baseaddr); 558 if (error) 559 return (error); 560 } 561 562 if (ctx->lowmem > 0) { 563 gpa = 0; 564 len = ctx->lowmem; 565 error = setup_memory_segment(ctx, gpa, len, baseaddr); 566 if (error) 567 return (error); 568 } 569 #else 570 if (ctx->highmem > 0) { 571 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL); 572 if (error) 573 return (error); 574 gpa = 4*GB; 575 len = ctx->highmem; 576 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr); 577 if (error) 578 return (error); 579 } 580 581 if (ctx->lowmem > 0) { 582 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL); 583 if (error) 584 return (error); 585 gpa = 0; 586 len = ctx->lowmem; 587 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr); 588 if (error) 589 return (error); 590 } 591 #endif 592 593 ctx->baseaddr = baseaddr; 594 595 return (0); 596 } 597 598 /* 599 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 600 * the lowmem or highmem regions. 601 * 602 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 603 * The instruction emulation code depends on this behavior. 604 */ 605 void * 606 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 607 { 608 609 if (ctx->lowmem > 0) { 610 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 611 gaddr + len <= ctx->lowmem) 612 return (ctx->baseaddr + gaddr); 613 } 614 615 if (ctx->highmem > 0) { 616 if (gaddr >= 4*GB) { 617 if (gaddr < 4*GB + ctx->highmem && 618 len <= ctx->highmem && 619 gaddr + len <= 4*GB + ctx->highmem) 620 return (ctx->baseaddr + gaddr); 621 } 622 } 623 624 return (NULL); 625 } 626 627 #ifdef __FreeBSD__ 628 vm_paddr_t 629 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 630 { 631 vm_paddr_t offaddr; 632 633 offaddr = (char *)addr - ctx->baseaddr; 634 635 if (ctx->lowmem > 0) 636 if (offaddr <= ctx->lowmem) 637 return (offaddr); 638 639 if (ctx->highmem > 0) 640 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 641 return (offaddr); 642 643 return ((vm_paddr_t)-1); 644 } 645 646 const char * 647 vm_get_name(struct vmctx *ctx) 648 { 649 650 return (ctx->name); 651 } 652 #endif /* __FreeBSD__ */ 653 654 size_t 655 vm_get_lowmem_size(struct vmctx *ctx) 656 { 657 658 return (ctx->lowmem); 659 } 660 661 size_t 662 vm_get_highmem_size(struct vmctx *ctx) 663 { 664 665 return (ctx->highmem); 666 } 667 668 #ifndef __FreeBSD__ 669 int 670 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff) 671 { 672 struct vm_devmem_offset vdo; 673 int error; 674 675 vdo.segid = segid; 676 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo); 677 if (error == 0) 678 *mapoff = vdo.offset; 679 680 return (error); 681 } 682 #endif 683 684 void * 685 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 686 { 687 #ifdef __FreeBSD__ 688 char pathname[MAXPATHLEN]; 689 #endif 690 size_t len2; 691 char *base, *ptr; 692 int fd, error, flags; 693 off_t mapoff; 694 695 fd = -1; 696 ptr = MAP_FAILED; 697 if (name == NULL || strlen(name) == 0) { 698 errno = EINVAL; 699 goto done; 700 } 701 702 error = vm_alloc_memseg(ctx, segid, len, name); 703 if (error) 704 goto done; 705 706 #ifdef __FreeBSD__ 707 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 708 strlcat(pathname, ctx->name, sizeof(pathname)); 709 strlcat(pathname, ".", sizeof(pathname)); 710 strlcat(pathname, name, sizeof(pathname)); 711 712 fd = open(pathname, O_RDWR); 713 if (fd < 0) 714 goto done; 715 #else 716 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0) 717 goto done; 718 #endif 719 720 /* 721 * Stake out a contiguous region covering the device memory and the 722 * adjoining guard regions. 723 */ 724 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 725 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 726 0); 727 if (base == MAP_FAILED) 728 goto done; 729 730 flags = MAP_SHARED | MAP_FIXED; 731 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 732 flags |= MAP_NOCORE; 733 734 #ifdef __FreeBSD__ 735 /* mmap the devmem region in the host address space */ 736 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 737 #else 738 /* mmap the devmem region in the host address space */ 739 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd, 740 mapoff); 741 #endif 742 done: 743 if (fd >= 0) 744 close(fd); 745 return (ptr); 746 } 747 748 int 749 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 750 uint64_t base, uint32_t limit, uint32_t access) 751 { 752 int error; 753 struct vm_seg_desc vmsegdesc; 754 755 bzero(&vmsegdesc, sizeof(vmsegdesc)); 756 vmsegdesc.cpuid = vcpu; 757 vmsegdesc.regnum = reg; 758 vmsegdesc.desc.base = base; 759 vmsegdesc.desc.limit = limit; 760 vmsegdesc.desc.access = access; 761 762 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 763 return (error); 764 } 765 766 int 767 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 768 uint64_t *base, uint32_t *limit, uint32_t *access) 769 { 770 int error; 771 struct vm_seg_desc vmsegdesc; 772 773 bzero(&vmsegdesc, sizeof(vmsegdesc)); 774 vmsegdesc.cpuid = vcpu; 775 vmsegdesc.regnum = reg; 776 777 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 778 if (error == 0) { 779 *base = vmsegdesc.desc.base; 780 *limit = vmsegdesc.desc.limit; 781 *access = vmsegdesc.desc.access; 782 } 783 return (error); 784 } 785 786 int 787 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 788 { 789 int error; 790 791 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 792 &seg_desc->access); 793 return (error); 794 } 795 796 int 797 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 798 { 799 int error; 800 struct vm_register vmreg; 801 802 bzero(&vmreg, sizeof(vmreg)); 803 vmreg.cpuid = vcpu; 804 vmreg.regnum = reg; 805 vmreg.regval = val; 806 807 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 808 return (error); 809 } 810 811 int 812 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 813 { 814 int error; 815 struct vm_register vmreg; 816 817 bzero(&vmreg, sizeof(vmreg)); 818 vmreg.cpuid = vcpu; 819 vmreg.regnum = reg; 820 821 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 822 *ret_val = vmreg.regval; 823 return (error); 824 } 825 826 int 827 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 828 const int *regnums, uint64_t *regvals) 829 { 830 int error; 831 struct vm_register_set vmregset; 832 833 bzero(&vmregset, sizeof(vmregset)); 834 vmregset.cpuid = vcpu; 835 vmregset.count = count; 836 vmregset.regnums = regnums; 837 vmregset.regvals = regvals; 838 839 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 840 return (error); 841 } 842 843 int 844 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 845 const int *regnums, uint64_t *regvals) 846 { 847 int error; 848 struct vm_register_set vmregset; 849 850 bzero(&vmregset, sizeof(vmregset)); 851 vmregset.cpuid = vcpu; 852 vmregset.count = count; 853 vmregset.regnums = regnums; 854 vmregset.regvals = regvals; 855 856 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 857 return (error); 858 } 859 860 #ifdef __FreeBSD__ 861 int 862 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 863 { 864 int error; 865 struct vm_run vmrun; 866 867 bzero(&vmrun, sizeof(vmrun)); 868 vmrun.cpuid = vcpu; 869 870 error = ioctl(ctx->fd, VM_RUN, &vmrun); 871 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 872 return (error); 873 } 874 #else 875 int 876 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry, 877 struct vm_exit *vm_exit) 878 { 879 struct vm_entry entry; 880 881 bcopy(vm_entry, &entry, sizeof (entry)); 882 entry.cpuid = vcpu; 883 entry.exit_data = vm_exit; 884 885 return (ioctl(ctx->fd, VM_RUN, &entry)); 886 } 887 #endif 888 889 int 890 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 891 { 892 struct vm_suspend vmsuspend; 893 894 bzero(&vmsuspend, sizeof(vmsuspend)); 895 vmsuspend.how = how; 896 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 897 } 898 899 #ifdef __FreeBSD__ 900 int 901 vm_reinit(struct vmctx *ctx) 902 { 903 904 return (ioctl(ctx->fd, VM_REINIT, 0)); 905 } 906 #else 907 int 908 vm_reinit(struct vmctx *ctx, uint64_t flags) 909 { 910 struct vm_reinit reinit = { 911 .flags = flags 912 }; 913 914 return (ioctl(ctx->fd, VM_REINIT, &reinit)); 915 } 916 #endif 917 918 int 919 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 920 uint32_t errcode, int restart_instruction) 921 { 922 struct vm_exception exc; 923 924 exc.cpuid = vcpu; 925 exc.vector = vector; 926 exc.error_code = errcode; 927 exc.error_code_valid = errcode_valid; 928 exc.restart_instruction = restart_instruction; 929 930 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 931 } 932 933 #ifndef __FreeBSD__ 934 void 935 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 936 int errcode) 937 { 938 int error; 939 struct vm_exception exc; 940 941 exc.cpuid = vcpu; 942 exc.vector = vector; 943 exc.error_code = errcode; 944 exc.error_code_valid = errcode_valid; 945 exc.restart_instruction = 1; 946 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc); 947 948 assert(error == 0); 949 } 950 #endif /* __FreeBSD__ */ 951 952 int 953 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 954 { 955 /* 956 * The apic id associated with the 'vcpu' has the same numerical value 957 * as the 'vcpu' itself. 958 */ 959 return (apicid); 960 } 961 962 int 963 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 964 { 965 struct vm_lapic_irq vmirq; 966 967 bzero(&vmirq, sizeof(vmirq)); 968 vmirq.cpuid = vcpu; 969 vmirq.vector = vector; 970 971 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 972 } 973 974 int 975 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 976 { 977 struct vm_lapic_irq vmirq; 978 979 bzero(&vmirq, sizeof(vmirq)); 980 vmirq.cpuid = vcpu; 981 vmirq.vector = vector; 982 983 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 984 } 985 986 int 987 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 988 { 989 struct vm_lapic_msi vmmsi; 990 991 bzero(&vmmsi, sizeof(vmmsi)); 992 vmmsi.addr = addr; 993 vmmsi.msg = msg; 994 995 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 996 } 997 998 int 999 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 1000 { 1001 struct vm_ioapic_irq ioapic_irq; 1002 1003 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 1004 ioapic_irq.irq = irq; 1005 1006 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 1007 } 1008 1009 int 1010 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 1011 { 1012 struct vm_ioapic_irq ioapic_irq; 1013 1014 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 1015 ioapic_irq.irq = irq; 1016 1017 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 1018 } 1019 1020 int 1021 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 1022 { 1023 struct vm_ioapic_irq ioapic_irq; 1024 1025 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 1026 ioapic_irq.irq = irq; 1027 1028 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 1029 } 1030 1031 int 1032 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 1033 { 1034 1035 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 1036 } 1037 1038 int 1039 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 1040 bool write, int size, uint64_t *value) 1041 { 1042 struct vm_readwrite_kernemu_device irp = { 1043 .vcpuid = vcpu, 1044 .access_width = fls(size) - 1, 1045 .gpa = gpa, 1046 .value = write ? *value : ~0ul, 1047 }; 1048 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 1049 int rc; 1050 1051 rc = ioctl(ctx->fd, cmd, &irp); 1052 if (rc == 0 && !write) 1053 *value = irp.value; 1054 return (rc); 1055 } 1056 1057 int 1058 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 1059 { 1060 struct vm_isa_irq isa_irq; 1061 1062 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 1063 isa_irq.atpic_irq = atpic_irq; 1064 isa_irq.ioapic_irq = ioapic_irq; 1065 1066 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 1067 } 1068 1069 int 1070 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 1071 { 1072 struct vm_isa_irq isa_irq; 1073 1074 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 1075 isa_irq.atpic_irq = atpic_irq; 1076 isa_irq.ioapic_irq = ioapic_irq; 1077 1078 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 1079 } 1080 1081 int 1082 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 1083 { 1084 struct vm_isa_irq isa_irq; 1085 1086 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 1087 isa_irq.atpic_irq = atpic_irq; 1088 isa_irq.ioapic_irq = ioapic_irq; 1089 1090 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 1091 } 1092 1093 int 1094 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 1095 enum vm_intr_trigger trigger) 1096 { 1097 struct vm_isa_irq_trigger isa_irq_trigger; 1098 1099 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 1100 isa_irq_trigger.atpic_irq = atpic_irq; 1101 isa_irq_trigger.trigger = trigger; 1102 1103 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 1104 } 1105 1106 int 1107 vm_inject_nmi(struct vmctx *ctx, int vcpu) 1108 { 1109 struct vm_nmi vmnmi; 1110 1111 bzero(&vmnmi, sizeof(vmnmi)); 1112 vmnmi.cpuid = vcpu; 1113 1114 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 1115 } 1116 1117 static const char *capstrmap[] = { 1118 [VM_CAP_HALT_EXIT] = "hlt_exit", 1119 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 1120 [VM_CAP_PAUSE_EXIT] = "pause_exit", 1121 #ifdef __FreeBSD__ 1122 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 1123 #endif 1124 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 1125 [VM_CAP_BPT_EXIT] = "bpt_exit", 1126 }; 1127 1128 int 1129 vm_capability_name2type(const char *capname) 1130 { 1131 int i; 1132 1133 for (i = 0; i < (int)nitems(capstrmap); i++) { 1134 if (strcmp(capstrmap[i], capname) == 0) 1135 return (i); 1136 } 1137 1138 return (-1); 1139 } 1140 1141 const char * 1142 vm_capability_type2name(int type) 1143 { 1144 if (type >= 0 && type < (int)nitems(capstrmap)) 1145 return (capstrmap[type]); 1146 1147 return (NULL); 1148 } 1149 1150 int 1151 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 1152 int *retval) 1153 { 1154 int error; 1155 struct vm_capability vmcap; 1156 1157 bzero(&vmcap, sizeof(vmcap)); 1158 vmcap.cpuid = vcpu; 1159 vmcap.captype = cap; 1160 1161 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 1162 *retval = vmcap.capval; 1163 return (error); 1164 } 1165 1166 int 1167 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 1168 { 1169 struct vm_capability vmcap; 1170 1171 bzero(&vmcap, sizeof(vmcap)); 1172 vmcap.cpuid = vcpu; 1173 vmcap.captype = cap; 1174 vmcap.capval = val; 1175 1176 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 1177 } 1178 1179 #ifdef __FreeBSD__ 1180 int 1181 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1182 { 1183 struct vm_pptdev pptdev; 1184 1185 bzero(&pptdev, sizeof(pptdev)); 1186 pptdev.bus = bus; 1187 pptdev.slot = slot; 1188 pptdev.func = func; 1189 1190 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1191 } 1192 1193 int 1194 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1195 { 1196 struct vm_pptdev pptdev; 1197 1198 bzero(&pptdev, sizeof(pptdev)); 1199 pptdev.bus = bus; 1200 pptdev.slot = slot; 1201 pptdev.func = func; 1202 1203 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1204 } 1205 1206 int 1207 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1208 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 1209 { 1210 struct vm_pptdev_mmio pptmmio; 1211 1212 bzero(&pptmmio, sizeof(pptmmio)); 1213 pptmmio.bus = bus; 1214 pptmmio.slot = slot; 1215 pptmmio.func = func; 1216 pptmmio.gpa = gpa; 1217 pptmmio.len = len; 1218 pptmmio.hpa = hpa; 1219 1220 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1221 } 1222 1223 int 1224 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1225 vm_paddr_t gpa, size_t len) 1226 { 1227 struct vm_pptdev_mmio pptmmio; 1228 1229 bzero(&pptmmio, sizeof(pptmmio)); 1230 pptmmio.bus = bus; 1231 pptmmio.slot = slot; 1232 pptmmio.func = func; 1233 pptmmio.gpa = gpa; 1234 pptmmio.len = len; 1235 1236 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1237 } 1238 1239 int 1240 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1241 uint64_t addr, uint64_t msg, int numvec) 1242 { 1243 struct vm_pptdev_msi pptmsi; 1244 1245 bzero(&pptmsi, sizeof(pptmsi)); 1246 pptmsi.vcpu = vcpu; 1247 pptmsi.bus = bus; 1248 pptmsi.slot = slot; 1249 pptmsi.func = func; 1250 pptmsi.msg = msg; 1251 pptmsi.addr = addr; 1252 pptmsi.numvec = numvec; 1253 1254 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1255 } 1256 1257 int 1258 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1259 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1260 { 1261 struct vm_pptdev_msix pptmsix; 1262 1263 bzero(&pptmsix, sizeof(pptmsix)); 1264 pptmsix.vcpu = vcpu; 1265 pptmsix.bus = bus; 1266 pptmsix.slot = slot; 1267 pptmsix.func = func; 1268 pptmsix.idx = idx; 1269 pptmsix.msg = msg; 1270 pptmsix.addr = addr; 1271 pptmsix.vector_control = vector_control; 1272 1273 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1274 } 1275 1276 int 1277 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1278 { 1279 struct vm_pptdev ppt; 1280 1281 bzero(&ppt, sizeof(ppt)); 1282 ppt.bus = bus; 1283 ppt.slot = slot; 1284 ppt.func = func; 1285 1286 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1287 } 1288 1289 #else /* __FreeBSD__ */ 1290 1291 int 1292 vm_assign_pptdev(struct vmctx *ctx, int pptfd) 1293 { 1294 struct vm_pptdev pptdev; 1295 1296 pptdev.pptfd = pptfd; 1297 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1298 } 1299 1300 int 1301 vm_unassign_pptdev(struct vmctx *ctx, int pptfd) 1302 { 1303 struct vm_pptdev pptdev; 1304 1305 pptdev.pptfd = pptfd; 1306 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1307 } 1308 1309 int 1310 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len, 1311 vm_paddr_t hpa) 1312 { 1313 struct vm_pptdev_mmio pptmmio; 1314 1315 pptmmio.pptfd = pptfd; 1316 pptmmio.gpa = gpa; 1317 pptmmio.len = len; 1318 pptmmio.hpa = hpa; 1319 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1320 } 1321 1322 int 1323 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len) 1324 { 1325 struct vm_pptdev_mmio pptmmio; 1326 1327 bzero(&pptmmio, sizeof(pptmmio)); 1328 pptmmio.pptfd = pptfd; 1329 pptmmio.gpa = gpa; 1330 pptmmio.len = len; 1331 1332 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1333 } 1334 1335 int 1336 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr, 1337 uint64_t msg, int numvec) 1338 { 1339 struct vm_pptdev_msi pptmsi; 1340 1341 pptmsi.vcpu = vcpu; 1342 pptmsi.pptfd = pptfd; 1343 pptmsi.msg = msg; 1344 pptmsi.addr = addr; 1345 pptmsi.numvec = numvec; 1346 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1347 } 1348 1349 int 1350 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx, 1351 uint64_t addr, uint64_t msg, uint32_t vector_control) 1352 { 1353 struct vm_pptdev_msix pptmsix; 1354 1355 pptmsix.vcpu = vcpu; 1356 pptmsix.pptfd = pptfd; 1357 pptmsix.idx = idx; 1358 pptmsix.msg = msg; 1359 pptmsix.addr = addr; 1360 pptmsix.vector_control = vector_control; 1361 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1362 } 1363 1364 int 1365 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit, 1366 int *msix_limit) 1367 { 1368 struct vm_pptdev_limits pptlimits; 1369 int error; 1370 1371 bzero(&pptlimits, sizeof (pptlimits)); 1372 pptlimits.pptfd = pptfd; 1373 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1374 1375 *msi_limit = pptlimits.msi_limit; 1376 *msix_limit = pptlimits.msix_limit; 1377 return (error); 1378 } 1379 1380 int 1381 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd) 1382 { 1383 struct vm_pptdev pptdev; 1384 1385 pptdev.pptfd = pptfd; 1386 return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev)); 1387 } 1388 #endif /* __FreeBSD__ */ 1389 1390 uint64_t * 1391 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1392 int *ret_entries) 1393 { 1394 static _Thread_local uint64_t *stats_buf; 1395 static _Thread_local uint32_t stats_count; 1396 uint64_t *new_stats; 1397 struct vm_stats vmstats; 1398 uint32_t count, index; 1399 bool have_stats; 1400 1401 have_stats = false; 1402 vmstats.cpuid = vcpu; 1403 count = 0; 1404 for (index = 0;; index += nitems(vmstats.statbuf)) { 1405 vmstats.index = index; 1406 if (ioctl(ctx->fd, VM_STATS_IOC, &vmstats) != 0) 1407 break; 1408 if (stats_count < index + vmstats.num_entries) { 1409 new_stats = reallocarray(stats_buf, 1410 index + vmstats.num_entries, sizeof(uint64_t)); 1411 if (new_stats == NULL) { 1412 errno = ENOMEM; 1413 return (NULL); 1414 } 1415 stats_count = index + vmstats.num_entries; 1416 stats_buf = new_stats; 1417 } 1418 memcpy(stats_buf + index, vmstats.statbuf, 1419 vmstats.num_entries * sizeof(uint64_t)); 1420 count += vmstats.num_entries; 1421 have_stats = true; 1422 1423 if (vmstats.num_entries != nitems(vmstats.statbuf)) 1424 break; 1425 } 1426 if (have_stats) { 1427 if (ret_entries) 1428 *ret_entries = count; 1429 if (ret_tv) 1430 *ret_tv = vmstats.tv; 1431 return (stats_buf); 1432 } else { 1433 return (NULL); 1434 } 1435 } 1436 1437 const char * 1438 vm_get_stat_desc(struct vmctx *ctx, int index) 1439 { 1440 static struct vm_stat_desc statdesc; 1441 1442 statdesc.index = index; 1443 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1444 return (statdesc.desc); 1445 else 1446 return (NULL); 1447 } 1448 1449 int 1450 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1451 { 1452 int error; 1453 struct vm_x2apic x2apic; 1454 1455 bzero(&x2apic, sizeof(x2apic)); 1456 x2apic.cpuid = vcpu; 1457 1458 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1459 *state = x2apic.state; 1460 return (error); 1461 } 1462 1463 int 1464 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1465 { 1466 int error; 1467 struct vm_x2apic x2apic; 1468 1469 bzero(&x2apic, sizeof(x2apic)); 1470 x2apic.cpuid = vcpu; 1471 x2apic.state = state; 1472 1473 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1474 1475 return (error); 1476 } 1477 1478 #ifndef __FreeBSD__ 1479 int 1480 vcpu_reset(struct vmctx *vmctx, int vcpu) 1481 { 1482 struct vm_vcpu_reset vvr; 1483 1484 vvr.vcpuid = vcpu; 1485 vvr.kind = VRK_RESET; 1486 1487 return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr)); 1488 } 1489 #else /* __FreeBSD__ */ 1490 /* 1491 * From Intel Vol 3a: 1492 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1493 */ 1494 int 1495 vcpu_reset(struct vmctx *vmctx, int vcpu) 1496 { 1497 int error; 1498 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1499 uint32_t desc_access, desc_limit; 1500 uint16_t sel; 1501 1502 zero = 0; 1503 1504 rflags = 0x2; 1505 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1506 if (error) 1507 goto done; 1508 1509 rip = 0xfff0; 1510 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1511 goto done; 1512 1513 /* 1514 * According to Intels Software Developer Manual CR0 should be 1515 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some 1516 * guests like Windows. 1517 */ 1518 cr0 = CR0_NE; 1519 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1520 goto done; 1521 1522 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR2, zero)) != 0) 1523 goto done; 1524 1525 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1526 goto done; 1527 1528 cr4 = 0; 1529 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1530 goto done; 1531 1532 /* 1533 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1534 */ 1535 desc_base = 0xffff0000; 1536 desc_limit = 0xffff; 1537 desc_access = 0x0093; 1538 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1539 desc_base, desc_limit, desc_access); 1540 if (error) 1541 goto done; 1542 1543 sel = 0xf000; 1544 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1545 goto done; 1546 1547 /* 1548 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1549 */ 1550 desc_base = 0; 1551 desc_limit = 0xffff; 1552 desc_access = 0x0093; 1553 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1554 desc_base, desc_limit, desc_access); 1555 if (error) 1556 goto done; 1557 1558 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1559 desc_base, desc_limit, desc_access); 1560 if (error) 1561 goto done; 1562 1563 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1564 desc_base, desc_limit, desc_access); 1565 if (error) 1566 goto done; 1567 1568 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1569 desc_base, desc_limit, desc_access); 1570 if (error) 1571 goto done; 1572 1573 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1574 desc_base, desc_limit, desc_access); 1575 if (error) 1576 goto done; 1577 1578 sel = 0; 1579 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1580 goto done; 1581 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1582 goto done; 1583 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1584 goto done; 1585 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1586 goto done; 1587 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1588 goto done; 1589 1590 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_EFER, zero)) != 0) 1591 goto done; 1592 1593 /* General purpose registers */ 1594 rdx = 0xf00; 1595 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1596 goto done; 1597 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1598 goto done; 1599 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1600 goto done; 1601 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1602 goto done; 1603 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1604 goto done; 1605 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1606 goto done; 1607 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1608 goto done; 1609 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1610 goto done; 1611 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R8, zero)) != 0) 1612 goto done; 1613 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R9, zero)) != 0) 1614 goto done; 1615 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R10, zero)) != 0) 1616 goto done; 1617 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R11, zero)) != 0) 1618 goto done; 1619 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R12, zero)) != 0) 1620 goto done; 1621 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R13, zero)) != 0) 1622 goto done; 1623 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R14, zero)) != 0) 1624 goto done; 1625 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R15, zero)) != 0) 1626 goto done; 1627 1628 /* GDTR, IDTR */ 1629 desc_base = 0; 1630 desc_limit = 0xffff; 1631 desc_access = 0; 1632 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1633 desc_base, desc_limit, desc_access); 1634 if (error != 0) 1635 goto done; 1636 1637 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1638 desc_base, desc_limit, desc_access); 1639 if (error != 0) 1640 goto done; 1641 1642 /* TR */ 1643 desc_base = 0; 1644 desc_limit = 0xffff; 1645 desc_access = 0x0000008b; 1646 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1647 if (error) 1648 goto done; 1649 1650 sel = 0; 1651 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1652 goto done; 1653 1654 /* LDTR */ 1655 desc_base = 0; 1656 desc_limit = 0xffff; 1657 desc_access = 0x00000082; 1658 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1659 desc_limit, desc_access); 1660 if (error) 1661 goto done; 1662 1663 sel = 0; 1664 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1665 goto done; 1666 1667 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DR6, 1668 0xffff0ff0)) != 0) 1669 goto done; 1670 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DR7, 0x400)) != 1671 0) 1672 goto done; 1673 1674 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_INTR_SHADOW, 1675 zero)) != 0) 1676 goto done; 1677 1678 error = 0; 1679 done: 1680 return (error); 1681 } 1682 #endif /* __FreeBSD__ */ 1683 1684 int 1685 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1686 { 1687 int error, i; 1688 struct vm_gpa_pte gpapte; 1689 1690 bzero(&gpapte, sizeof(gpapte)); 1691 gpapte.gpa = gpa; 1692 1693 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1694 1695 if (error == 0) { 1696 *num = gpapte.ptenum; 1697 for (i = 0; i < gpapte.ptenum; i++) 1698 pte[i] = gpapte.pte[i]; 1699 } 1700 1701 return (error); 1702 } 1703 1704 int 1705 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1706 { 1707 int error; 1708 struct vm_hpet_cap cap; 1709 1710 bzero(&cap, sizeof(struct vm_hpet_cap)); 1711 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1712 if (capabilities != NULL) 1713 *capabilities = cap.capabilities; 1714 return (error); 1715 } 1716 1717 int 1718 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1719 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1720 { 1721 struct vm_gla2gpa gg; 1722 int error; 1723 1724 bzero(&gg, sizeof(struct vm_gla2gpa)); 1725 gg.vcpuid = vcpu; 1726 gg.prot = prot; 1727 gg.gla = gla; 1728 gg.paging = *paging; 1729 1730 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1731 if (error == 0) { 1732 *fault = gg.fault; 1733 *gpa = gg.gpa; 1734 } 1735 return (error); 1736 } 1737 1738 int 1739 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1740 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1741 { 1742 struct vm_gla2gpa gg; 1743 int error; 1744 1745 bzero(&gg, sizeof(struct vm_gla2gpa)); 1746 gg.vcpuid = vcpu; 1747 gg.prot = prot; 1748 gg.gla = gla; 1749 gg.paging = *paging; 1750 1751 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1752 if (error == 0) { 1753 *fault = gg.fault; 1754 *gpa = gg.gpa; 1755 } 1756 return (error); 1757 } 1758 1759 #ifndef min 1760 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1761 #endif 1762 1763 int 1764 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1765 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1766 int *fault) 1767 { 1768 void *va; 1769 uint64_t gpa, off; 1770 int error, i, n; 1771 1772 for (i = 0; i < iovcnt; i++) { 1773 iov[i].iov_base = 0; 1774 iov[i].iov_len = 0; 1775 } 1776 1777 while (len) { 1778 assert(iovcnt > 0); 1779 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1780 if (error || *fault) 1781 return (error); 1782 1783 off = gpa & PAGE_MASK; 1784 n = MIN(len, PAGE_SIZE - off); 1785 1786 va = vm_map_gpa(ctx, gpa, n); 1787 if (va == NULL) 1788 return (EFAULT); 1789 1790 iov->iov_base = va; 1791 iov->iov_len = n; 1792 iov++; 1793 iovcnt--; 1794 1795 gla += n; 1796 len -= n; 1797 } 1798 return (0); 1799 } 1800 1801 void 1802 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused, 1803 struct iovec *iov __unused, int iovcnt __unused) 1804 { 1805 } 1806 1807 void 1808 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov, 1809 void *vp, size_t len) 1810 { 1811 const char *src; 1812 char *dst; 1813 size_t n; 1814 1815 dst = vp; 1816 while (len) { 1817 assert(iov->iov_len); 1818 n = min(len, iov->iov_len); 1819 src = iov->iov_base; 1820 bcopy(src, dst, n); 1821 1822 iov++; 1823 dst += n; 1824 len -= n; 1825 } 1826 } 1827 1828 void 1829 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp, 1830 struct iovec *iov, size_t len) 1831 { 1832 const char *src; 1833 char *dst; 1834 size_t n; 1835 1836 src = vp; 1837 while (len) { 1838 assert(iov->iov_len); 1839 n = min(len, iov->iov_len); 1840 dst = iov->iov_base; 1841 bcopy(src, dst, n); 1842 1843 iov++; 1844 src += n; 1845 len -= n; 1846 } 1847 } 1848 1849 static int 1850 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1851 { 1852 struct vm_cpuset vm_cpuset; 1853 int error; 1854 1855 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1856 vm_cpuset.which = which; 1857 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1858 vm_cpuset.cpus = cpus; 1859 1860 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1861 return (error); 1862 } 1863 1864 int 1865 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1866 { 1867 1868 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1869 } 1870 1871 int 1872 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1873 { 1874 1875 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1876 } 1877 1878 int 1879 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1880 { 1881 1882 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1883 } 1884 1885 int 1886 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1887 { 1888 struct vm_activate_cpu ac; 1889 int error; 1890 1891 bzero(&ac, sizeof(struct vm_activate_cpu)); 1892 ac.vcpuid = vcpu; 1893 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1894 return (error); 1895 } 1896 1897 int 1898 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1899 { 1900 struct vm_activate_cpu ac; 1901 int error; 1902 1903 bzero(&ac, sizeof(struct vm_activate_cpu)); 1904 ac.vcpuid = vcpu; 1905 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1906 return (error); 1907 } 1908 1909 int 1910 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1911 { 1912 struct vm_activate_cpu ac; 1913 int error; 1914 1915 bzero(&ac, sizeof(struct vm_activate_cpu)); 1916 ac.vcpuid = vcpu; 1917 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1918 return (error); 1919 } 1920 1921 int 1922 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1923 { 1924 struct vm_intinfo vmii; 1925 int error; 1926 1927 bzero(&vmii, sizeof(struct vm_intinfo)); 1928 vmii.vcpuid = vcpu; 1929 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1930 if (error == 0) { 1931 *info1 = vmii.info1; 1932 *info2 = vmii.info2; 1933 } 1934 return (error); 1935 } 1936 1937 int 1938 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1939 { 1940 struct vm_intinfo vmii; 1941 int error; 1942 1943 bzero(&vmii, sizeof(struct vm_intinfo)); 1944 vmii.vcpuid = vcpu; 1945 vmii.info1 = info1; 1946 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1947 return (error); 1948 } 1949 1950 int 1951 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1952 { 1953 struct vm_rtc_data rtcdata; 1954 int error; 1955 1956 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1957 rtcdata.offset = offset; 1958 rtcdata.value = value; 1959 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1960 return (error); 1961 } 1962 1963 int 1964 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1965 { 1966 struct vm_rtc_data rtcdata; 1967 int error; 1968 1969 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1970 rtcdata.offset = offset; 1971 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1972 if (error == 0) 1973 *retval = rtcdata.value; 1974 return (error); 1975 } 1976 1977 int 1978 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1979 { 1980 struct vm_rtc_time rtctime; 1981 int error; 1982 1983 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1984 rtctime.secs = secs; 1985 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1986 return (error); 1987 } 1988 1989 int 1990 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1991 { 1992 struct vm_rtc_time rtctime; 1993 int error; 1994 1995 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1996 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1997 if (error == 0) 1998 *secs = rtctime.secs; 1999 return (error); 2000 } 2001 2002 int 2003 vm_restart_instruction(void *arg, int vcpu) 2004 { 2005 struct vmctx *ctx = arg; 2006 2007 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 2008 } 2009 2010 int 2011 vm_set_topology(struct vmctx *ctx, 2012 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 2013 { 2014 struct vm_cpu_topology topology; 2015 2016 bzero(&topology, sizeof (struct vm_cpu_topology)); 2017 topology.sockets = sockets; 2018 topology.cores = cores; 2019 topology.threads = threads; 2020 topology.maxcpus = maxcpus; 2021 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 2022 } 2023 2024 int 2025 vm_get_topology(struct vmctx *ctx, 2026 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 2027 { 2028 struct vm_cpu_topology topology; 2029 int error; 2030 2031 bzero(&topology, sizeof (struct vm_cpu_topology)); 2032 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 2033 if (error == 0) { 2034 *sockets = topology.sockets; 2035 *cores = topology.cores; 2036 *threads = topology.threads; 2037 *maxcpus = topology.maxcpus; 2038 } 2039 return (error); 2040 } 2041 2042 int 2043 vm_get_device_fd(struct vmctx *ctx) 2044 { 2045 2046 return (ctx->fd); 2047 } 2048 2049 #ifndef __FreeBSD__ 2050 int 2051 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport) 2052 { 2053 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport)); 2054 } 2055 2056 int 2057 vm_wrlock_cycle(struct vmctx *ctx) 2058 { 2059 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) { 2060 return (errno); 2061 } 2062 return (0); 2063 } 2064 2065 int 2066 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state, 2067 uint8_t *sipi_vector) 2068 { 2069 struct vm_run_state data; 2070 2071 data.vcpuid = vcpu; 2072 if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) { 2073 return (errno); 2074 } 2075 2076 *state = data.state; 2077 *sipi_vector = data.sipi_vector; 2078 return (0); 2079 } 2080 2081 int 2082 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state, 2083 uint8_t sipi_vector) 2084 { 2085 struct vm_run_state data; 2086 2087 data.vcpuid = vcpu; 2088 data.state = state; 2089 data.sipi_vector = sipi_vector; 2090 if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) { 2091 return (errno); 2092 } 2093 2094 return (0); 2095 } 2096 2097 #endif /* __FreeBSD__ */ 2098 2099 #ifdef __FreeBSD__ 2100 const cap_ioctl_t * 2101 vm_get_ioctls(size_t *len) 2102 { 2103 cap_ioctl_t *cmds; 2104 /* keep in sync with machine/vmm_dev.h */ 2105 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 2106 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 2107 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 2108 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 2109 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 2110 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 2111 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 2112 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 2113 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 2114 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 2115 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 2116 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 2117 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 2118 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 2119 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 2120 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 2121 VM_GLA2GPA_NOFAULT, 2122 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 2123 VM_SET_INTINFO, VM_GET_INTINFO, 2124 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 2125 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 2126 2127 if (len == NULL) { 2128 cmds = malloc(sizeof(vm_ioctl_cmds)); 2129 if (cmds == NULL) 2130 return (NULL); 2131 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 2132 return (cmds); 2133 } 2134 2135 *len = nitems(vm_ioctl_cmds); 2136 return (NULL); 2137 } 2138 #endif /* __FreeBSD__ */ 2139