1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2017 Toomas Soome <tsoome@me.com> 29 */ 30 31 /* 32 * Generic font related data and functions shared by early boot console 33 * in dboot, kernel startup and full kernel. 34 */ 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/tem_impl.h> 38 #include <sys/rgb.h> 39 #include <sys/font.h> 40 #include <sys/sysmacros.h> 41 42 /* 43 * To simplify my life, I am "temporarily" collecting the commonly used 44 * color bits here. The bits shared between loader, dboot, early boot, tem. 45 * This data would need some sort of API, but I am in no condition to figure 46 * something out right now. 47 */ 48 49 /* ANSI color to sun color translation. */ 50 /* BEGIN CSTYLED */ 51 /* Bk Rd Gr Br Bl Mg Cy Wh */ 52 const uint8_t dim_xlate[XLATE_NCOLORS] = { 1, 5, 3, 7, 2, 6, 4, 8 }; 53 const uint8_t brt_xlate[XLATE_NCOLORS] = { 9, 13, 11, 15, 10, 14, 12, 0 }; 54 55 const uint8_t solaris_color_to_pc_color[16] = { 56 pc_brt_white, /* 0 - brt_white */ 57 pc_black, /* 1 - black */ 58 pc_blue, /* 2 - blue */ 59 pc_green, /* 3 - green */ 60 pc_cyan, /* 4 - cyan */ 61 pc_red, /* 5 - red */ 62 pc_magenta, /* 6 - magenta */ 63 pc_brown, /* 7 - brown */ 64 pc_white, /* 8 - white */ 65 pc_grey, /* 9 - grey */ 66 pc_brt_blue, /* 10 - brt_blue */ 67 pc_brt_green, /* 11 - brt_green */ 68 pc_brt_cyan, /* 12 - brt_cyan */ 69 pc_brt_red, /* 13 - brt_red */ 70 pc_brt_magenta, /* 14 - brt_magenta */ 71 pc_yellow /* 15 - yellow */ 72 }; 73 74 const uint8_t pc_color_to_solaris_color[16] = { 75 sun_black, /* 0 - black */ 76 sun_blue, /* 1 - blue */ 77 sun_green, /* 2 - green */ 78 sun_cyan, /* 3 - cyan */ 79 sun_red, /* 4 - red */ 80 sun_magenta, /* 5 - magenta */ 81 sun_brown, /* 6 - brown */ 82 sun_white, /* 7 - white */ 83 sun_grey, /* 8 - grey */ 84 sun_brt_blue, /* 9 - brt_blue */ 85 sun_brt_green, /* 10 - brt_green */ 86 sun_brt_cyan, /* 11 - brt_cyan */ 87 sun_brt_red, /* 12 - brt_red */ 88 sun_brt_magenta, /* 13 - brt_magenta */ 89 sun_yellow, /* 14 - yellow */ 90 sun_brt_white /* 15 - brt_white */ 91 }; 92 93 /* 4-bit to 24-bit color translation. */ 94 const text_cmap_t cmap4_to_24 = { 95 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 96 Wh+ Bk Bl Gr Cy Rd Mg Br Wh Bk+ Bl+ Gr+ Cy+ Rd+ Mg+ Yw */ 97 .red = { 98 0xff,0x00,0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x40,0x00,0x00,0x00,0xff,0xff,0xff 99 }, 100 .green = { 101 0xff,0x00,0x00,0x80,0x80,0x00,0x00,0x80,0x80,0x40,0x00,0xff,0xff,0x00,0x00,0xff 102 }, 103 .blue = { 104 0xff,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x40,0xff,0x00,0xff,0x00,0xff,0x00 105 } 106 }; 107 /* END CSTYLED */ 108 109 static uint32_t 110 rgb_to_color(const rgb_t *rgb, uint32_t r, uint32_t g, uint32_t b) 111 { 112 uint32_t color; 113 int pos, size; 114 115 pos = rgb->red.pos; 116 size = rgb->red.size; 117 color = ((r * ((1 << size) - 1)) / 0xff) << pos; 118 119 pos = rgb->green.pos; 120 size = rgb->green.size; 121 color |= (((g * ((1 << size) - 1)) / 0xff) << pos); 122 123 pos = rgb->blue.pos; 124 size = rgb->blue.size; 125 color |= (((b * ((1 << size) - 1)) / 0xff) << pos); 126 127 return (color); 128 } 129 130 uint32_t 131 rgb_color_map(const rgb_t *rgb, uint8_t index) 132 { 133 uint32_t color, code, gray, level; 134 135 if (index < 16) { 136 color = rgb_to_color(rgb, cmap4_to_24.red[index], 137 cmap4_to_24.green[index], cmap4_to_24.blue[index]); 138 return (color); 139 } 140 141 /* 6x6x6 color cube */ 142 if (index > 15 && index < 232) { 143 uint32_t red, green, blue; 144 145 for (red = 0; red < 6; red++) { 146 for (green = 0; green < 6; green++) { 147 for (blue = 0; blue < 6; blue++) { 148 code = 16 + (red * 36) + 149 (green * 6) + blue; 150 if (code != index) 151 continue; 152 red = red ? (red * 40 + 55) : 0; 153 green = green ? (green * 40 + 55) : 0; 154 blue = blue ? (blue * 40 + 55) : 0; 155 color = rgb_to_color(rgb, red, green, 156 blue); 157 return (color); 158 } 159 } 160 } 161 } 162 163 /* colors 232-255 are a grayscale ramp */ 164 for (gray = 0; gray < 24; gray++) { 165 level = (gray * 10) + 8; 166 code = 232 + gray; 167 if (code == index) 168 break; 169 } 170 return (rgb_to_color(rgb, level, level, level)); 171 } 172 /* 173 * Fonts are statically linked with this module. At some point an 174 * RFE might be desireable to allow dynamic font loading. The 175 * original intention to facilitate dynamic fonts can be seen 176 * by examining the data structures and set_font(). As much of 177 * the original code is retained but modified to be suited for 178 * traversing a list of static fonts. 179 */ 180 181 /* 182 * Must be sorted by font size in descending order 183 */ 184 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 185 186 /* 187 * Reset font flags to FONT_AUTO. 188 */ 189 void 190 reset_font_flags(void) 191 { 192 struct fontlist *fl; 193 194 STAILQ_FOREACH(fl, &fonts, font_next) { 195 fl->font_flags = FONT_AUTO; 196 } 197 } 198 199 bitmap_data_t * 200 set_font(short *rows, short *cols, short h, short w) 201 { 202 bitmap_data_t *font = NULL; 203 struct fontlist *fl; 204 unsigned height = h; 205 unsigned width = w; 206 207 /* 208 * First check for manually loaded font. 209 */ 210 STAILQ_FOREACH(fl, &fonts, font_next) { 211 if (fl->font_flags == FONT_MANUAL || 212 fl->font_flags == FONT_BOOT) { 213 font = fl->font_data; 214 if (font->font == NULL && fl->font_load != NULL && 215 fl->font_name != NULL) { 216 font = fl->font_load(fl->font_name); 217 } 218 if (font == NULL || font->font == NULL) 219 font = NULL; 220 break; 221 } 222 } 223 224 if (font != NULL) { 225 *rows = (height - BORDER_PIXELS) / font->height; 226 *cols = (width - BORDER_PIXELS) / font->width; 227 return (font); 228 } 229 230 /* 231 * Find best font for these dimensions, or use default 232 * 233 * A 1 pixel border is the absolute minimum we could have 234 * as a border around the text window (BORDER_PIXELS = 2), 235 * however a slightly larger border not only looks better 236 * but for the fonts currently statically built into the 237 * emulator causes much better font selection for the 238 * normal range of screen resolutions. 239 */ 240 STAILQ_FOREACH(fl, &fonts, font_next) { 241 font = fl->font_data; 242 if ((((*rows * font->height) + BORDER_PIXELS) <= height) && 243 (((*cols * font->width) + BORDER_PIXELS) <= width)) { 244 if (font->font == NULL || 245 fl->font_flags == FONT_RELOAD) { 246 if (fl->font_load != NULL && 247 fl->font_name != NULL) { 248 font = fl->font_load(fl->font_name); 249 } 250 if (font == NULL) 251 continue; 252 } 253 *rows = (height - BORDER_PIXELS) / font->height; 254 *cols = (width - BORDER_PIXELS) / font->width; 255 break; 256 } 257 font = NULL; 258 } 259 260 if (font == NULL) { 261 /* 262 * We have fonts sorted smallest last, try it before 263 * falling back to builtin. 264 */ 265 fl = STAILQ_LAST(&fonts, fontlist, font_next); 266 if (fl != NULL && fl->font_load != NULL && 267 fl->font_name != NULL) { 268 font = fl->font_load(fl->font_name); 269 } 270 if (font == NULL) 271 font = &DEFAULT_FONT_DATA; 272 273 *rows = (height - BORDER_PIXELS) / font->height; 274 *cols = (width - BORDER_PIXELS) / font->width; 275 } 276 277 return (font); 278 } 279 280 /* Binary search for the glyph. Return 0 if not found. */ 281 static uint16_t 282 font_bisearch(const struct font_map *map, uint32_t len, uint32_t src) 283 { 284 unsigned min, mid, max; 285 286 min = 0; 287 max = len - 1; 288 289 /* Empty font map. */ 290 if (len == 0) 291 return (0); 292 /* Character below minimal entry. */ 293 if (src < map[0].font_src) 294 return (0); 295 /* Optimization: ASCII characters occur very often. */ 296 if (src <= map[0].font_src + map[0].font_len) 297 return (src - map[0].font_src + map[0].font_dst); 298 /* Character above maximum entry. */ 299 if (src > map[max].font_src + map[max].font_len) 300 return (0); 301 302 /* Binary search. */ 303 while (max >= min) { 304 mid = (min + max) / 2; 305 if (src < map[mid].font_src) 306 max = mid - 1; 307 else if (src > map[mid].font_src + map[mid].font_len) 308 min = mid + 1; 309 else 310 return (src - map[mid].font_src + map[mid].font_dst); 311 } 312 313 return (0); 314 } 315 316 /* 317 * Return glyph bitmap. If glyph is not found, we will return bitmap 318 * for the first (offset 0) glyph. 319 */ 320 const uint8_t * 321 font_lookup(const struct font *vf, uint32_t c) 322 { 323 uint32_t src; 324 uint16_t dst; 325 size_t stride; 326 327 src = TEM_CHAR(c); 328 329 /* Substitute bold with normal if not found. */ 330 if (TEM_CHAR_ATTR(c) & TEM_ATTR_BOLD) { 331 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 332 vf->vf_map_count[VFNT_MAP_BOLD], src); 333 if (dst != 0) 334 goto found; 335 } 336 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 337 vf->vf_map_count[VFNT_MAP_NORMAL], src); 338 339 found: 340 stride = howmany(vf->vf_width, 8) * vf->vf_height; 341 return (&vf->vf_bytes[dst * stride]); 342 } 343 344 /* 345 * bit_to_pix4 is for 4-bit frame buffers. It will write one output byte 346 * for each 2 bits of input bitmap. It inverts the input bits before 347 * doing the output translation, for reverse video. 348 * 349 * Assuming foreground is 0001 and background is 0000... 350 * An input data byte of 0x53 will output the bit pattern 351 * 00000001 00000001 00000000 00010001. 352 */ 353 354 void 355 font_bit_to_pix4( 356 struct font *f, 357 uint8_t *dest, 358 uint32_t c, 359 uint8_t fg_color, 360 uint8_t bg_color) 361 { 362 uint32_t row; 363 int byte; 364 int i; 365 const uint8_t *cp, *ul; 366 uint8_t data; 367 uint8_t nibblett; 368 int bytes_wide; 369 370 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 371 ul = font_lookup(f, 0x0332); /* combining low line */ 372 else 373 ul = NULL; 374 375 cp = font_lookup(f, c); 376 bytes_wide = (f->vf_width + 7) / 8; 377 378 for (row = 0; row < f->vf_height; row++) { 379 for (byte = 0; byte < bytes_wide; byte++) { 380 if (ul == NULL) 381 data = *cp++; 382 else 383 data = *cp++ | *ul++; 384 for (i = 0; i < 4; i++) { 385 nibblett = (data >> ((3-i) * 2)) & 0x3; 386 switch (nibblett) { 387 case 0x0: 388 *dest++ = bg_color << 4 | bg_color; 389 break; 390 case 0x1: 391 *dest++ = bg_color << 4 | fg_color; 392 break; 393 case 0x2: 394 *dest++ = fg_color << 4 | bg_color; 395 break; 396 case 0x3: 397 *dest++ = fg_color << 4 | fg_color; 398 break; 399 } 400 } 401 } 402 } 403 } 404 405 /* 406 * bit_to_pix8 is for 8-bit frame buffers. It will write one output byte 407 * for each bit of input bitmap. It inverts the input bits before 408 * doing the output translation, for reverse video. 409 * 410 * Assuming foreground is 00000001 and background is 00000000... 411 * An input data byte of 0x53 will output the bit pattern 412 * 0000000 000000001 00000000 00000001 00000000 00000000 00000001 00000001. 413 */ 414 415 void 416 font_bit_to_pix8( 417 struct font *f, 418 uint8_t *dest, 419 uint32_t c, 420 uint8_t fg_color, 421 uint8_t bg_color) 422 { 423 uint32_t row; 424 int byte; 425 int i; 426 const uint8_t *cp, *ul; 427 uint8_t data; 428 int bytes_wide; 429 uint8_t mask; 430 int bitsleft, nbits; 431 432 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 433 ul = font_lookup(f, 0x0332); /* combining low line */ 434 else 435 ul = NULL; 436 437 cp = font_lookup(f, c); 438 bytes_wide = (f->vf_width + 7) / 8; 439 440 for (row = 0; row < f->vf_height; row++) { 441 bitsleft = f->vf_width; 442 for (byte = 0; byte < bytes_wide; byte++) { 443 if (ul == NULL) 444 data = *cp++; 445 else 446 data = *cp++ | *ul++; 447 mask = 0x80; 448 nbits = MIN(8, bitsleft); 449 bitsleft -= nbits; 450 for (i = 0; i < nbits; i++) { 451 *dest++ = (data & mask ? fg_color: bg_color); 452 mask = mask >> 1; 453 } 454 } 455 } 456 } 457 458 /* 459 * bit_to_pix16 is for 16-bit frame buffers. It will write two output bytes 460 * for each bit of input bitmap. It inverts the input bits before 461 * doing the output translation, for reverse video. 462 * 463 * Assuming foreground is 11111111 11111111 464 * and background is 00000000 00000000 465 * An input data byte of 0x53 will output the bit pattern 466 * 467 * 00000000 00000000 468 * 11111111 11111111 469 * 00000000 00000000 470 * 11111111 11111111 471 * 00000000 00000000 472 * 00000000 00000000 473 * 11111111 11111111 474 * 11111111 11111111 475 * 476 */ 477 478 void 479 font_bit_to_pix16( 480 struct font *f, 481 uint16_t *dest, 482 uint32_t c, 483 uint16_t fg_color16, 484 uint16_t bg_color16) 485 { 486 uint32_t row; 487 int byte; 488 int i; 489 const uint8_t *cp, *ul; 490 uint16_t data, d; 491 int bytes_wide; 492 int bitsleft, nbits; 493 494 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 495 ul = font_lookup(f, 0x0332); /* combining low line */ 496 else 497 ul = NULL; 498 499 cp = font_lookup(f, c); 500 bytes_wide = (f->vf_width + 7) / 8; 501 502 for (row = 0; row < f->vf_height; row++) { 503 bitsleft = f->vf_width; 504 for (byte = 0; byte < bytes_wide; byte++) { 505 if (ul == NULL) 506 data = *cp++; 507 else 508 data = *cp++ | *ul++; 509 nbits = MIN(8, bitsleft); 510 bitsleft -= nbits; 511 for (i = 0; i < nbits; i++) { 512 d = ((data << i) & 0x80 ? 513 fg_color16 : bg_color16); 514 *dest++ = d; 515 } 516 } 517 } 518 } 519 520 /* 521 * bit_to_pix24 is for 24-bit frame buffers. It will write three output bytes 522 * for each bit of input bitmap. It inverts the input bits before 523 * doing the output translation, for reverse video. 524 * 525 * Assuming foreground is 11111111 11111111 11111111 526 * and background is 00000000 00000000 00000000 527 * An input data byte of 0x53 will output the bit pattern 528 * 529 * 00000000 00000000 00000000 530 * 11111111 11111111 11111111 531 * 00000000 00000000 00000000 532 * 11111111 11111111 11111111 533 * 00000000 00000000 00000000 534 * 00000000 00000000 00000000 535 * 11111111 11111111 11111111 536 * 11111111 11111111 11111111 537 * 538 */ 539 540 void 541 font_bit_to_pix24( 542 struct font *f, 543 uint8_t *dest, 544 uint32_t c, 545 uint32_t fg_color32, 546 uint32_t bg_color32) 547 { 548 uint32_t row; 549 int byte; 550 int i; 551 const uint8_t *cp, *ul; 552 uint32_t data, d; 553 int bytes_wide; 554 int bitsleft, nbits; 555 556 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 557 ul = font_lookup(f, 0x0332); /* combining low line */ 558 else 559 ul = NULL; 560 561 cp = font_lookup(f, c); 562 bytes_wide = (f->vf_width + 7) / 8; 563 564 for (row = 0; row < f->vf_height; row++) { 565 bitsleft = f->vf_width; 566 for (byte = 0; byte < bytes_wide; byte++) { 567 if (ul == NULL) 568 data = *cp++; 569 else 570 data = *cp++ | *ul++; 571 572 nbits = MIN(8, bitsleft); 573 bitsleft -= nbits; 574 for (i = 0; i < nbits; i++) { 575 d = ((data << i) & 0x80 ? 576 fg_color32 : bg_color32); 577 *dest++ = d & 0xff; 578 *dest++ = (d >> 8) & 0xff; 579 *dest++ = (d >> 16) & 0xff; 580 } 581 } 582 } 583 } 584 585 /* 586 * bit_to_pix32 is for 32-bit frame buffers. It will write four output bytes 587 * for each bit of input bitmap. It inverts the input bits before 588 * doing the output translation, for reverse video. Note that each 589 * 24-bit RGB value is finally stored in a 32-bit unsigned int, with the 590 * high-order byte set to zero. 591 * 592 * Assuming foreground is 00000000 11111111 11111111 11111111 593 * and background is 00000000 00000000 00000000 00000000 594 * An input data byte of 0x53 will output the bit pattern 595 * 596 * 00000000 00000000 00000000 00000000 597 * 00000000 11111111 11111111 11111111 598 * 00000000 00000000 00000000 00000000 599 * 00000000 11111111 11111111 11111111 600 * 00000000 00000000 00000000 00000000 601 * 00000000 00000000 00000000 00000000 602 * 00000000 11111111 11111111 11111111 603 * 00000000 11111111 11111111 11111111 604 * 605 */ 606 607 void 608 font_bit_to_pix32( 609 struct font *f, 610 uint32_t *dest, 611 uint32_t c, 612 uint32_t fg_color32, 613 uint32_t bg_color32) 614 { 615 uint32_t row; 616 int byte; 617 int i; 618 const uint8_t *cp, *ul; 619 uint32_t data; 620 int bytes_wide; 621 int bitsleft, nbits; 622 623 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 624 ul = font_lookup(f, 0x0332); /* combining low line */ 625 else 626 ul = NULL; 627 628 cp = font_lookup(f, c); 629 bytes_wide = (f->vf_width + 7) / 8; 630 631 for (row = 0; row < f->vf_height; row++) { 632 bitsleft = f->vf_width; 633 for (byte = 0; byte < bytes_wide; byte++) { 634 if (ul == NULL) 635 data = *cp++; 636 else 637 data = *cp++ | *ul++; 638 nbits = MIN(8, bitsleft); 639 bitsleft -= nbits; 640 for (i = 0; i < nbits; i++) { 641 *dest++ = ((data << i) & 0x80 ? 642 fg_color32 : bg_color32); 643 } 644 } 645 } 646 } 647