1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "combined.h" 73 #include "contract.h" 74 #include "cpupart_mdb.h" 75 #include "devinfo.h" 76 #include "leaky.h" 77 #include "lgrp.h" 78 #include "pg.h" 79 #include "group.h" 80 #include "list.h" 81 #include "log.h" 82 #include "kgrep.h" 83 #include "kmem.h" 84 #include "bio.h" 85 #include "streams.h" 86 #include "cyclic.h" 87 #include "findstack.h" 88 #include "ndievents.h" 89 #include "mmd.h" 90 #include "net.h" 91 #include "netstack.h" 92 #include "nvpair.h" 93 #include "ctxop.h" 94 #include "tsd.h" 95 #include "thread.h" 96 #include "memory.h" 97 #include "sobj.h" 98 #include "sysevent.h" 99 #include "rctl.h" 100 #include "tsol.h" 101 #include "typegraph.h" 102 #include "ldi.h" 103 #include "vfs.h" 104 #include "zone.h" 105 #include "modhash.h" 106 #include "mdi.h" 107 #include "fm.h" 108 109 /* 110 * Surely this is defined somewhere... 111 */ 112 #define NINTR 16 113 114 #define KILOS 10 115 #define MEGS 20 116 #define GIGS 30 117 118 #ifndef STACK_BIAS 119 #define STACK_BIAS 0 120 #endif 121 122 static char 123 pstat2ch(uchar_t state) 124 { 125 switch (state) { 126 case SSLEEP: return ('S'); 127 case SRUN: return ('R'); 128 case SZOMB: return ('Z'); 129 case SIDL: return ('I'); 130 case SONPROC: return ('O'); 131 case SSTOP: return ('T'); 132 case SWAIT: return ('W'); 133 default: return ('?'); 134 } 135 } 136 137 #define PS_PRTTHREADS 0x1 138 #define PS_PRTLWPS 0x2 139 #define PS_PSARGS 0x4 140 #define PS_TASKS 0x8 141 #define PS_PROJECTS 0x10 142 #define PS_ZONES 0x20 143 144 static int 145 ps_threadprint(uintptr_t addr, const void *data, void *private) 146 { 147 const kthread_t *t = (const kthread_t *)data; 148 uint_t prt_flags = *((uint_t *)private); 149 150 static const mdb_bitmask_t t_state_bits[] = { 151 { "TS_FREE", UINT_MAX, TS_FREE }, 152 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 153 { "TS_RUN", TS_RUN, TS_RUN }, 154 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 155 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 156 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 157 { "TS_WAIT", TS_WAIT, TS_WAIT }, 158 { NULL, 0, 0 } 159 }; 160 161 if (prt_flags & PS_PRTTHREADS) 162 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 163 164 if (prt_flags & PS_PRTLWPS) 165 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 166 167 return (WALK_NEXT); 168 } 169 170 int 171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 172 { 173 uint_t prt_flags = 0; 174 proc_t pr; 175 struct pid pid, pgid, sid; 176 sess_t session; 177 cred_t cred; 178 task_t tk; 179 kproject_t pj; 180 zone_t zn; 181 182 if (!(flags & DCMD_ADDRSPEC)) { 183 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 184 mdb_warn("can't walk 'proc'"); 185 return (DCMD_ERR); 186 } 187 return (DCMD_OK); 188 } 189 190 if (mdb_getopts(argc, argv, 191 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 192 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 193 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 194 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 195 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 196 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 197 return (DCMD_USAGE); 198 199 if (DCMD_HDRSPEC(flags)) { 200 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 201 "S", "PID", "PPID", "PGID", "SID"); 202 if (prt_flags & PS_TASKS) 203 mdb_printf("%5s ", "TASK"); 204 if (prt_flags & PS_PROJECTS) 205 mdb_printf("%5s ", "PROJ"); 206 if (prt_flags & PS_ZONES) 207 mdb_printf("%5s ", "ZONE"); 208 mdb_printf("%6s %10s %?s %s%</u>\n", 209 "UID", "FLAGS", "ADDR", "NAME"); 210 } 211 212 mdb_vread(&pr, sizeof (pr), addr); 213 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 214 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 215 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 216 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 217 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 218 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 219 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 220 if (prt_flags & PS_PROJECTS) 221 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 222 if (prt_flags & PS_ZONES) 223 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 224 225 mdb_printf("%c %6d %6d %6d %6d ", 226 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 227 sid.pid_id); 228 if (prt_flags & PS_TASKS) 229 mdb_printf("%5d ", tk.tk_tkid); 230 if (prt_flags & PS_PROJECTS) 231 mdb_printf("%5d ", pj.kpj_id); 232 if (prt_flags & PS_ZONES) 233 mdb_printf("%5d ", zn.zone_id); 234 mdb_printf("%6d 0x%08x %0?p %s\n", 235 cred.cr_uid, pr.p_flag, addr, 236 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 237 238 if (prt_flags & ~PS_PSARGS) 239 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 240 241 return (DCMD_OK); 242 } 243 244 #define PG_NEWEST 0x0001 245 #define PG_OLDEST 0x0002 246 #define PG_PIPE_OUT 0x0004 247 #define PG_EXACT_MATCH 0x0008 248 249 typedef struct pgrep_data { 250 uint_t pg_flags; 251 uint_t pg_psflags; 252 uintptr_t pg_xaddr; 253 hrtime_t pg_xstart; 254 const char *pg_pat; 255 #ifndef _KMDB 256 regex_t pg_reg; 257 #endif 258 } pgrep_data_t; 259 260 /*ARGSUSED*/ 261 static int 262 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 263 { 264 const proc_t *prp = pdata; 265 pgrep_data_t *pgp = data; 266 #ifndef _KMDB 267 regmatch_t pmatch; 268 #endif 269 270 /* 271 * kmdb doesn't have access to the reg* functions, so we fall back 272 * to strstr/strcmp. 273 */ 274 #ifdef _KMDB 275 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 276 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 277 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 278 return (WALK_NEXT); 279 #else 280 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 281 return (WALK_NEXT); 282 283 if ((pgp->pg_flags & PG_EXACT_MATCH) && 284 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 285 return (WALK_NEXT); 286 #endif 287 288 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 289 hrtime_t start; 290 291 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 292 prp->p_user.u_start.tv_nsec; 293 294 if (pgp->pg_flags & PG_NEWEST) { 295 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } else { 300 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 301 pgp->pg_xaddr = addr; 302 pgp->pg_xstart = start; 303 } 304 } 305 306 } else if (pgp->pg_flags & PG_PIPE_OUT) { 307 mdb_printf("%p\n", addr); 308 309 } else { 310 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 311 mdb_warn("can't invoke 'ps'"); 312 return (WALK_DONE); 313 } 314 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 315 } 316 317 return (WALK_NEXT); 318 } 319 320 /*ARGSUSED*/ 321 int 322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 323 { 324 pgrep_data_t pg; 325 int i; 326 #ifndef _KMDB 327 int err; 328 #endif 329 330 if (flags & DCMD_ADDRSPEC) 331 return (DCMD_USAGE); 332 333 pg.pg_flags = 0; 334 pg.pg_xaddr = 0; 335 336 i = mdb_getopts(argc, argv, 337 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 338 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 339 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 340 NULL); 341 342 argc -= i; 343 argv += i; 344 345 if (argc != 1) 346 return (DCMD_USAGE); 347 348 /* 349 * -n and -o are mutually exclusive. 350 */ 351 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 352 return (DCMD_USAGE); 353 354 if (argv->a_type != MDB_TYPE_STRING) 355 return (DCMD_USAGE); 356 357 if (flags & DCMD_PIPE_OUT) 358 pg.pg_flags |= PG_PIPE_OUT; 359 360 pg.pg_pat = argv->a_un.a_str; 361 if (DCMD_HDRSPEC(flags)) 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 363 else 364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 365 366 #ifndef _KMDB 367 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 368 size_t nbytes; 369 char *buf; 370 371 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 372 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 373 (void) regerror(err, &pg.pg_reg, buf, nbytes); 374 mdb_warn("%s\n", buf); 375 376 return (DCMD_ERR); 377 } 378 #endif 379 380 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 381 mdb_warn("can't walk 'proc'"); 382 return (DCMD_ERR); 383 } 384 385 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 386 if (pg.pg_flags & PG_PIPE_OUT) { 387 mdb_printf("%p\n", pg.pg_xaddr); 388 } else { 389 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 390 0, NULL) != 0) { 391 mdb_warn("can't invoke 'ps'"); 392 return (DCMD_ERR); 393 } 394 } 395 } 396 397 return (DCMD_OK); 398 } 399 400 int 401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 402 { 403 task_t tk; 404 kproject_t pj; 405 406 if (!(flags & DCMD_ADDRSPEC)) { 407 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 408 mdb_warn("can't walk task_cache"); 409 return (DCMD_ERR); 410 } 411 return (DCMD_OK); 412 } 413 if (DCMD_HDRSPEC(flags)) { 414 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 415 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 416 } 417 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 418 mdb_warn("can't read task_t structure at %p", addr); 419 return (DCMD_ERR); 420 } 421 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 422 mdb_warn("can't read project_t structure at %p", addr); 423 return (DCMD_ERR); 424 } 425 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 426 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 427 tk.tk_flags); 428 return (DCMD_OK); 429 } 430 431 int 432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 433 { 434 kproject_t pj; 435 436 if (!(flags & DCMD_ADDRSPEC)) { 437 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 438 mdb_warn("can't walk projects"); 439 return (DCMD_ERR); 440 } 441 return (DCMD_OK); 442 } 443 if (DCMD_HDRSPEC(flags)) { 444 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 445 "ADDR", "PROJID", "ZONEID", "REFCNT"); 446 } 447 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 448 mdb_warn("can't read kproject_t structure at %p", addr); 449 return (DCMD_ERR); 450 } 451 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 452 pj.kpj_count); 453 return (DCMD_OK); 454 } 455 456 /*ARGSUSED*/ 457 int 458 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 459 { 460 callout_table_t *co_ktable[CALLOUT_TABLES]; 461 int co_kfanout; 462 callout_table_t co_table; 463 callout_t co_callout; 464 callout_t *co_ptr; 465 int co_id; 466 clock_t lbolt; 467 int i, j, k; 468 const char *lbolt_sym; 469 uintptr_t panicstr; 470 471 if ((flags & DCMD_ADDRSPEC) || argc != 0) 472 return (DCMD_USAGE); 473 474 if (mdb_readvar(&panicstr, "panicstr") == -1 || 475 panicstr == NULL) { 476 lbolt_sym = "lbolt"; 477 } else { 478 lbolt_sym = "panic_lbolt"; 479 } 480 481 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 482 mdb_warn("failed to read '%s'", lbolt_sym); 483 return (DCMD_ERR); 484 } 485 486 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 487 mdb_warn("failed to read callout_fanout"); 488 return (DCMD_ERR); 489 } 490 491 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 492 mdb_warn("failed to read callout_table"); 493 return (DCMD_ERR); 494 } 495 496 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 497 "FUNCTION", "ARGUMENT", "ID", "TIME"); 498 499 for (i = 0; i < CALLOUT_NTYPES; i++) { 500 for (j = 0; j < co_kfanout; j++) { 501 502 co_id = CALLOUT_TABLE(i, j); 503 504 if (mdb_vread(&co_table, sizeof (co_table), 505 (uintptr_t)co_ktable[co_id]) == -1) { 506 mdb_warn("failed to read table at %p", 507 (uintptr_t)co_ktable[co_id]); 508 continue; 509 } 510 511 for (k = 0; k < CALLOUT_BUCKETS; k++) { 512 co_ptr = co_table.ct_idhash[k]; 513 514 while (co_ptr != NULL) { 515 mdb_vread(&co_callout, 516 sizeof (co_callout), 517 (uintptr_t)co_ptr); 518 519 mdb_printf("%-24a %0?p %0?lx %?lx " 520 "(T%+ld)\n", co_callout.c_func, 521 co_callout.c_arg, co_callout.c_xid, 522 co_callout.c_runtime, 523 co_callout.c_runtime - lbolt); 524 525 co_ptr = co_callout.c_idnext; 526 } 527 } 528 } 529 } 530 531 return (DCMD_OK); 532 } 533 534 /*ARGSUSED*/ 535 int 536 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 537 { 538 long num_classes, i; 539 sclass_t *class_tbl; 540 GElf_Sym g_sclass; 541 char class_name[PC_CLNMSZ]; 542 size_t tbl_size; 543 544 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 545 mdb_warn("failed to find symbol sclass\n"); 546 return (DCMD_ERR); 547 } 548 549 tbl_size = (size_t)g_sclass.st_size; 550 num_classes = tbl_size / (sizeof (sclass_t)); 551 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 552 553 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 554 mdb_warn("failed to read sclass"); 555 return (DCMD_ERR); 556 } 557 558 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 559 "INIT FCN", "CLASS FCN"); 560 561 for (i = 0; i < num_classes; i++) { 562 if (mdb_vread(class_name, sizeof (class_name), 563 (uintptr_t)class_tbl[i].cl_name) == -1) 564 (void) strcpy(class_name, "???"); 565 566 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 567 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 568 } 569 570 return (DCMD_OK); 571 } 572 573 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 574 575 int 576 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 577 { 578 uintptr_t rootdir; 579 vnode_t vn; 580 char buf[MAXPATHLEN]; 581 582 uint_t opt_F = FALSE; 583 584 if (mdb_getopts(argc, argv, 585 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 586 return (DCMD_USAGE); 587 588 if (!(flags & DCMD_ADDRSPEC)) { 589 mdb_warn("expected explicit vnode_t address before ::\n"); 590 return (DCMD_USAGE); 591 } 592 593 if (mdb_readvar(&rootdir, "rootdir") == -1) { 594 mdb_warn("failed to read rootdir"); 595 return (DCMD_ERR); 596 } 597 598 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 599 return (DCMD_ERR); 600 601 if (*buf == '\0') { 602 mdb_printf("??\n"); 603 return (DCMD_OK); 604 } 605 606 mdb_printf("%s", buf); 607 if (opt_F && buf[strlen(buf)-1] != '/' && 608 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 609 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 610 mdb_printf("\n"); 611 612 return (DCMD_OK); 613 } 614 615 int 616 ld_walk_init(mdb_walk_state_t *wsp) 617 { 618 wsp->walk_data = (void *)wsp->walk_addr; 619 return (WALK_NEXT); 620 } 621 622 int 623 ld_walk_step(mdb_walk_state_t *wsp) 624 { 625 int status; 626 lock_descriptor_t ld; 627 628 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 629 mdb_warn("couldn't read lock_descriptor_t at %p\n", 630 wsp->walk_addr); 631 return (WALK_ERR); 632 } 633 634 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 635 if (status == WALK_ERR) 636 return (WALK_ERR); 637 638 wsp->walk_addr = (uintptr_t)ld.l_next; 639 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 640 return (WALK_DONE); 641 642 return (status); 643 } 644 645 int 646 lg_walk_init(mdb_walk_state_t *wsp) 647 { 648 GElf_Sym sym; 649 650 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 651 mdb_warn("failed to find symbol 'lock_graph'\n"); 652 return (WALK_ERR); 653 } 654 655 wsp->walk_addr = (uintptr_t)sym.st_value; 656 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 657 658 return (WALK_NEXT); 659 } 660 661 typedef struct lg_walk_data { 662 uintptr_t startaddr; 663 mdb_walk_cb_t callback; 664 void *data; 665 } lg_walk_data_t; 666 667 /* 668 * We can't use ::walk lock_descriptor directly, because the head of each graph 669 * is really a dummy lock. Rather than trying to dynamically determine if this 670 * is a dummy node or not, we just filter out the initial element of the 671 * list. 672 */ 673 static int 674 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 675 { 676 lg_walk_data_t *lw = priv; 677 678 if (addr != lw->startaddr) 679 return (lw->callback(addr, data, lw->data)); 680 681 return (WALK_NEXT); 682 } 683 684 int 685 lg_walk_step(mdb_walk_state_t *wsp) 686 { 687 graph_t *graph; 688 lg_walk_data_t lw; 689 690 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 691 return (WALK_DONE); 692 693 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 694 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 695 return (WALK_ERR); 696 } 697 698 wsp->walk_addr += sizeof (graph); 699 700 if (graph == NULL) 701 return (WALK_NEXT); 702 703 lw.callback = wsp->walk_callback; 704 lw.data = wsp->walk_cbdata; 705 706 lw.startaddr = (uintptr_t)&(graph->active_locks); 707 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 708 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 709 return (WALK_ERR); 710 } 711 712 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 713 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 714 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 715 return (WALK_ERR); 716 } 717 718 return (WALK_NEXT); 719 } 720 721 /* 722 * The space available for the path corresponding to the locked vnode depends 723 * on whether we are printing 32- or 64-bit addresses. 724 */ 725 #ifdef _LP64 726 #define LM_VNPATHLEN 20 727 #else 728 #define LM_VNPATHLEN 30 729 #endif 730 731 /*ARGSUSED*/ 732 static int 733 lminfo_cb(uintptr_t addr, const void *data, void *priv) 734 { 735 const lock_descriptor_t *ld = data; 736 char buf[LM_VNPATHLEN]; 737 proc_t p; 738 739 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 740 addr, ld->l_type == F_RDLCK ? "RD" : 741 ld->l_type == F_WRLCK ? "WR" : "??", 742 ld->l_state, ld->l_flock.l_pid, 743 ld->l_flock.l_pid == 0 ? "<kernel>" : 744 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 745 "<defunct>" : p.p_user.u_comm, 746 ld->l_vnode); 747 748 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 749 sizeof (buf)); 750 mdb_printf("%s\n", buf); 751 752 return (WALK_NEXT); 753 } 754 755 /*ARGSUSED*/ 756 int 757 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 758 { 759 if (DCMD_HDRSPEC(flags)) 760 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 761 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 762 763 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 764 } 765 766 /*ARGSUSED*/ 767 int 768 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 769 { 770 struct seg s; 771 772 if (argc != 0) 773 return (DCMD_USAGE); 774 775 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 776 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 777 "SEG", "BASE", "SIZE", "DATA", "OPS"); 778 } 779 780 if (mdb_vread(&s, sizeof (s), addr) == -1) { 781 mdb_warn("failed to read seg at %p", addr); 782 return (DCMD_ERR); 783 } 784 785 mdb_printf("%?p %?p %?lx %?p %a\n", 786 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 787 788 return (DCMD_OK); 789 } 790 791 /*ARGSUSED*/ 792 static int 793 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 794 { 795 uintptr_t pp = 796 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 797 798 if (pp != NULL) 799 (*nres)++; 800 801 return (WALK_NEXT); 802 } 803 804 static int 805 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 806 { 807 808 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 809 810 if (segvn == (uintptr_t)seg->s_ops) { 811 struct segvn_data svn; 812 int nres = 0; 813 814 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 815 816 if (svn.amp == NULL) { 817 mdb_printf(" %8s", ""); 818 goto drive_on; 819 } 820 821 /* 822 * We've got an amp for this segment; walk through 823 * the amp, and determine mappings. 824 */ 825 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 826 &nres, (uintptr_t)svn.amp) == -1) 827 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 828 829 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 830 drive_on: 831 832 if (svn.vp != NULL) { 833 char buf[29]; 834 835 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 836 mdb_printf(" %s", buf); 837 } else 838 mdb_printf(" [ anon ]"); 839 } 840 841 mdb_printf("\n"); 842 return (WALK_NEXT); 843 } 844 845 static int 846 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 847 { 848 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 849 850 if (segvn == (uintptr_t)seg->s_ops) { 851 struct segvn_data svn; 852 853 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 854 855 if (svn.vp != NULL) { 856 mdb_printf(" %0?p", svn.vp); 857 } else { 858 mdb_printf(" [ anon ]"); 859 } 860 } 861 862 mdb_printf("\n"); 863 return (WALK_NEXT); 864 } 865 866 /*ARGSUSED*/ 867 int 868 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 869 { 870 uintptr_t segvn; 871 proc_t proc; 872 uint_t quick = FALSE; 873 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 874 875 GElf_Sym sym; 876 877 if (!(flags & DCMD_ADDRSPEC)) 878 return (DCMD_USAGE); 879 880 if (mdb_getopts(argc, argv, 881 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 882 return (DCMD_USAGE); 883 884 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 885 mdb_warn("failed to read proc at %p", addr); 886 return (DCMD_ERR); 887 } 888 889 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 890 segvn = (uintptr_t)sym.st_value; 891 else 892 segvn = NULL; 893 894 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 895 896 if (quick) { 897 mdb_printf("VNODE\n"); 898 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 899 } else { 900 mdb_printf("%8s %s\n", "RES", "PATH"); 901 } 902 903 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 904 mdb_warn("failed to walk segments of as %p", proc.p_as); 905 return (DCMD_ERR); 906 } 907 908 return (DCMD_OK); 909 } 910 911 typedef struct anon_walk_data { 912 uintptr_t *aw_levone; 913 uintptr_t *aw_levtwo; 914 int aw_nlevone; 915 int aw_levone_ndx; 916 int aw_levtwo_ndx; 917 struct anon_map aw_amp; 918 struct anon_hdr aw_ahp; 919 } anon_walk_data_t; 920 921 int 922 anon_walk_init(mdb_walk_state_t *wsp) 923 { 924 anon_walk_data_t *aw; 925 926 if (wsp->walk_addr == NULL) { 927 mdb_warn("anon walk doesn't support global walks\n"); 928 return (WALK_ERR); 929 } 930 931 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 932 933 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 934 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 935 mdb_free(aw, sizeof (anon_walk_data_t)); 936 return (WALK_ERR); 937 } 938 939 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 940 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 941 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 942 mdb_free(aw, sizeof (anon_walk_data_t)); 943 return (WALK_ERR); 944 } 945 946 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 947 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 948 aw->aw_nlevone = aw->aw_ahp.size; 949 aw->aw_levtwo = NULL; 950 } else { 951 aw->aw_nlevone = 952 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 953 aw->aw_levtwo = 954 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 955 } 956 957 aw->aw_levone = 958 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 959 960 aw->aw_levone_ndx = 0; 961 aw->aw_levtwo_ndx = 0; 962 963 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 964 (uintptr_t)aw->aw_ahp.array_chunk); 965 966 if (aw->aw_levtwo != NULL) { 967 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 968 aw->aw_levone_ndx++; 969 if (aw->aw_levone_ndx == aw->aw_nlevone) { 970 mdb_warn("corrupt anon; couldn't" 971 "find ptr to lev two map"); 972 goto out; 973 } 974 } 975 976 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 977 aw->aw_levone[aw->aw_levone_ndx]); 978 } 979 980 out: 981 wsp->walk_data = aw; 982 return (0); 983 } 984 985 int 986 anon_walk_step(mdb_walk_state_t *wsp) 987 { 988 int status; 989 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 990 struct anon anon; 991 uintptr_t anonptr; 992 993 again: 994 /* 995 * Once we've walked through level one, we're done. 996 */ 997 if (aw->aw_levone_ndx == aw->aw_nlevone) 998 return (WALK_DONE); 999 1000 if (aw->aw_levtwo == NULL) { 1001 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 1002 aw->aw_levone_ndx++; 1003 } else { 1004 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 1005 aw->aw_levtwo_ndx++; 1006 1007 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1008 aw->aw_levtwo_ndx = 0; 1009 1010 do { 1011 aw->aw_levone_ndx++; 1012 1013 if (aw->aw_levone_ndx == aw->aw_nlevone) 1014 return (WALK_DONE); 1015 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1016 1017 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1018 sizeof (uintptr_t), 1019 aw->aw_levone[aw->aw_levone_ndx]); 1020 } 1021 } 1022 1023 if (anonptr != NULL) { 1024 mdb_vread(&anon, sizeof (anon), anonptr); 1025 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1026 } else 1027 goto again; 1028 1029 return (status); 1030 } 1031 1032 void 1033 anon_walk_fini(mdb_walk_state_t *wsp) 1034 { 1035 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1036 1037 if (aw->aw_levtwo != NULL) 1038 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1039 1040 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1041 mdb_free(aw, sizeof (anon_walk_data_t)); 1042 } 1043 1044 /*ARGSUSED*/ 1045 int 1046 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1047 { 1048 if ((uintptr_t)f->f_vnode == *target) { 1049 mdb_printf("file %p\n", addr); 1050 *target = NULL; 1051 } 1052 1053 return (WALK_NEXT); 1054 } 1055 1056 /*ARGSUSED*/ 1057 int 1058 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1059 { 1060 uintptr_t t = *target; 1061 1062 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1063 mdb_warn("couldn't file walk proc %p", addr); 1064 return (WALK_ERR); 1065 } 1066 1067 if (t == NULL) 1068 mdb_printf("%p\n", addr); 1069 1070 return (WALK_NEXT); 1071 } 1072 1073 /*ARGSUSED*/ 1074 int 1075 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1076 { 1077 uintptr_t target = addr; 1078 1079 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1080 return (DCMD_USAGE); 1081 1082 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1083 mdb_warn("can't proc walk"); 1084 return (DCMD_ERR); 1085 } 1086 1087 return (DCMD_OK); 1088 } 1089 1090 typedef struct datafmt { 1091 char *hdr1; 1092 char *hdr2; 1093 char *dashes; 1094 char *fmt; 1095 } datafmt_t; 1096 1097 static datafmt_t kmemfmt[] = { 1098 { "cache ", "name ", 1099 "-------------------------", "%-25s " }, 1100 { " buf", " size", "------", "%6u " }, 1101 { " buf", "in use", "------", "%6u " }, 1102 { " buf", " total", "------", "%6u " }, 1103 { " memory", " in use", "----------", "%9u%c " }, 1104 { " alloc", " succeed", "---------", "%9u " }, 1105 { "alloc", " fail", "-----", "%5u " }, 1106 { NULL, NULL, NULL, NULL } 1107 }; 1108 1109 static datafmt_t vmemfmt[] = { 1110 { "vmem ", "name ", 1111 "-------------------------", "%-*s " }, 1112 { " memory", " in use", "----------", "%9llu%c " }, 1113 { " memory", " total", "-----------", "%10llu%c " }, 1114 { " memory", " import", "----------", "%9llu%c " }, 1115 { " alloc", " succeed", "---------", "%9llu " }, 1116 { "alloc", " fail", "-----", "%5llu " }, 1117 { NULL, NULL, NULL, NULL } 1118 }; 1119 1120 /*ARGSUSED*/ 1121 static int 1122 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1123 { 1124 if (ccp->cc_rounds > 0) 1125 *avail += ccp->cc_rounds; 1126 if (ccp->cc_prounds > 0) 1127 *avail += ccp->cc_prounds; 1128 1129 return (WALK_NEXT); 1130 } 1131 1132 /*ARGSUSED*/ 1133 static int 1134 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1135 { 1136 *alloc += ccp->cc_alloc; 1137 1138 return (WALK_NEXT); 1139 } 1140 1141 /*ARGSUSED*/ 1142 static int 1143 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1144 { 1145 *avail += sp->slab_chunks - sp->slab_refcnt; 1146 1147 return (WALK_NEXT); 1148 } 1149 1150 typedef struct kmastat_vmem { 1151 uintptr_t kv_addr; 1152 struct kmastat_vmem *kv_next; 1153 int kv_meminuse; 1154 int kv_alloc; 1155 int kv_fail; 1156 } kmastat_vmem_t; 1157 1158 typedef struct kmastat_args { 1159 kmastat_vmem_t **ka_kvpp; 1160 uint_t ka_shift; 1161 } kmastat_args_t; 1162 1163 static int 1164 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1165 { 1166 kmastat_vmem_t **kvp = kap->ka_kvpp; 1167 kmastat_vmem_t *kv; 1168 datafmt_t *dfp = kmemfmt; 1169 int magsize; 1170 1171 int avail, alloc, total; 1172 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1173 cp->cache_slabsize; 1174 1175 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1176 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1177 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1178 1179 magsize = kmem_get_magsize(cp); 1180 1181 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1182 avail = cp->cache_full.ml_total * magsize; 1183 total = cp->cache_buftotal; 1184 1185 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1186 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1187 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1188 1189 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1190 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1191 goto out; 1192 } 1193 1194 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1195 kv->kv_next = *kvp; 1196 kv->kv_addr = (uintptr_t)cp->cache_arena; 1197 *kvp = kv; 1198 out: 1199 kv->kv_meminuse += meminuse; 1200 kv->kv_alloc += alloc; 1201 kv->kv_fail += cp->cache_alloc_fail; 1202 1203 mdb_printf((dfp++)->fmt, cp->cache_name); 1204 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1205 mdb_printf((dfp++)->fmt, total - avail); 1206 mdb_printf((dfp++)->fmt, total); 1207 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 1208 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1209 kap->ka_shift == KILOS ? 'K' : 'B'); 1210 mdb_printf((dfp++)->fmt, alloc); 1211 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1212 mdb_printf("\n"); 1213 1214 return (WALK_NEXT); 1215 } 1216 1217 static int 1218 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1219 { 1220 kmastat_vmem_t *kv = *kap->ka_kvpp; 1221 size_t len; 1222 1223 while (kv != NULL && kv->kv_addr != addr) 1224 kv = kv->kv_next; 1225 1226 if (kv == NULL || kv->kv_alloc == 0) 1227 return (WALK_NEXT); 1228 1229 len = MIN(17, strlen(v->vm_name)); 1230 1231 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 1232 17 - len, "", "", "", "", 1233 kv->kv_meminuse >> kap->ka_shift, 1234 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1235 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 1236 1237 return (WALK_NEXT); 1238 } 1239 1240 /*ARGSUSED*/ 1241 static int 1242 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1243 { 1244 datafmt_t *dfp = vmemfmt; 1245 const vmem_kstat_t *vkp = &v->vm_kstat; 1246 uintptr_t paddr; 1247 vmem_t parent; 1248 int ident = 0; 1249 1250 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1251 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1252 mdb_warn("couldn't trace %p's ancestry", addr); 1253 ident = 0; 1254 break; 1255 } 1256 paddr = (uintptr_t)parent.vm_source; 1257 } 1258 1259 mdb_printf("%*s", ident, ""); 1260 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1261 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 1262 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1263 *shiftp == KILOS ? 'K' : 'B'); 1264 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 1265 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1266 *shiftp == KILOS ? 'K' : 'B'); 1267 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 1268 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1269 *shiftp == KILOS ? 'K' : 'B'); 1270 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1271 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1272 1273 mdb_printf("\n"); 1274 1275 return (WALK_NEXT); 1276 } 1277 1278 /*ARGSUSED*/ 1279 int 1280 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1281 { 1282 kmastat_vmem_t *kv = NULL; 1283 datafmt_t *dfp; 1284 kmastat_args_t ka; 1285 1286 ka.ka_shift = 0; 1287 if (mdb_getopts(argc, argv, 1288 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 1289 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 1290 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 1291 return (DCMD_USAGE); 1292 1293 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1294 mdb_printf("%s ", dfp->hdr1); 1295 mdb_printf("\n"); 1296 1297 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1298 mdb_printf("%s ", dfp->hdr2); 1299 mdb_printf("\n"); 1300 1301 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1302 mdb_printf("%s ", dfp->dashes); 1303 mdb_printf("\n"); 1304 1305 ka.ka_kvpp = &kv; 1306 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1307 mdb_warn("can't walk 'kmem_cache'"); 1308 return (DCMD_ERR); 1309 } 1310 1311 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1312 mdb_printf("%s ", dfp->dashes); 1313 mdb_printf("\n"); 1314 1315 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1316 mdb_warn("can't walk 'vmem'"); 1317 return (DCMD_ERR); 1318 } 1319 1320 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1321 mdb_printf("%s ", dfp->dashes); 1322 mdb_printf("\n"); 1323 1324 mdb_printf("\n"); 1325 1326 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1327 mdb_printf("%s ", dfp->hdr1); 1328 mdb_printf("\n"); 1329 1330 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1331 mdb_printf("%s ", dfp->hdr2); 1332 mdb_printf("\n"); 1333 1334 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1335 mdb_printf("%s ", dfp->dashes); 1336 mdb_printf("\n"); 1337 1338 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1339 mdb_warn("can't walk 'vmem'"); 1340 return (DCMD_ERR); 1341 } 1342 1343 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1344 mdb_printf("%s ", dfp->dashes); 1345 mdb_printf("\n"); 1346 return (DCMD_OK); 1347 } 1348 1349 /* 1350 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1351 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1352 * unfortunately, a few of the segs are both large and sparse, so we could 1353 * spend quite a bit of time scanning VAs which have no backing pages. 1354 * 1355 * So for the few very sparse segs, we skip the segment itself, and scan 1356 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1357 * Currently, we do this for: 1358 * 1359 * SEG VMEM ARENA 1360 * kvseg heap_arena 1361 * kvseg32 heap32_arena 1362 * kvseg_core heap_core_arena 1363 * 1364 * In addition, we skip the segkpm segment in its entirety, since it is very 1365 * sparse, and contains no new kernel data. 1366 */ 1367 typedef struct kgrep_walk_data { 1368 kgrep_cb_func *kg_cb; 1369 void *kg_cbdata; 1370 uintptr_t kg_kvseg; 1371 uintptr_t kg_kvseg32; 1372 uintptr_t kg_kvseg_core; 1373 uintptr_t kg_segkpm; 1374 uintptr_t kg_heap_lp_base; 1375 uintptr_t kg_heap_lp_end; 1376 } kgrep_walk_data_t; 1377 1378 static int 1379 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1380 { 1381 uintptr_t base = (uintptr_t)seg->s_base; 1382 1383 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1384 addr == kg->kg_kvseg_core) 1385 return (WALK_NEXT); 1386 1387 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1388 return (WALK_NEXT); 1389 1390 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1391 } 1392 1393 /*ARGSUSED*/ 1394 static int 1395 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1396 { 1397 /* 1398 * skip large page heap address range - it is scanned by walking 1399 * allocated vmem_segs in the heap_lp_arena 1400 */ 1401 if (seg->vs_start == kg->kg_heap_lp_base && 1402 seg->vs_end == kg->kg_heap_lp_end) 1403 return (WALK_NEXT); 1404 1405 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1406 } 1407 1408 /*ARGSUSED*/ 1409 static int 1410 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1411 { 1412 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1413 } 1414 1415 static int 1416 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1417 { 1418 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1419 1420 if (strcmp(vmem->vm_name, "heap") != 0 && 1421 strcmp(vmem->vm_name, "heap32") != 0 && 1422 strcmp(vmem->vm_name, "heap_core") != 0 && 1423 strcmp(vmem->vm_name, "heap_lp") != 0) 1424 return (WALK_NEXT); 1425 1426 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1427 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1428 1429 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1430 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1431 return (WALK_ERR); 1432 } 1433 1434 return (WALK_NEXT); 1435 } 1436 1437 int 1438 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1439 { 1440 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1441 kgrep_walk_data_t kg; 1442 1443 if (mdb_get_state() == MDB_STATE_RUNNING) { 1444 mdb_warn("kgrep can only be run on a system " 1445 "dump or under kmdb; see dumpadm(1M)\n"); 1446 return (DCMD_ERR); 1447 } 1448 1449 if (mdb_lookup_by_name("kas", &kas) == -1) { 1450 mdb_warn("failed to locate 'kas' symbol\n"); 1451 return (DCMD_ERR); 1452 } 1453 1454 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1455 mdb_warn("failed to locate 'kvseg' symbol\n"); 1456 return (DCMD_ERR); 1457 } 1458 1459 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1460 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1461 return (DCMD_ERR); 1462 } 1463 1464 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1465 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1466 return (DCMD_ERR); 1467 } 1468 1469 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1470 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1471 return (DCMD_ERR); 1472 } 1473 1474 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1475 mdb_warn("failed to read 'heap_lp_base'\n"); 1476 return (DCMD_ERR); 1477 } 1478 1479 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1480 mdb_warn("failed to read 'heap_lp_end'\n"); 1481 return (DCMD_ERR); 1482 } 1483 1484 kg.kg_cb = cb; 1485 kg.kg_cbdata = cbdata; 1486 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1487 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1488 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1489 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1490 1491 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1492 &kg, kas.st_value) == -1) { 1493 mdb_warn("failed to walk kas segments"); 1494 return (DCMD_ERR); 1495 } 1496 1497 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1498 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1499 return (DCMD_ERR); 1500 } 1501 1502 return (DCMD_OK); 1503 } 1504 1505 size_t 1506 kgrep_subr_pagesize(void) 1507 { 1508 return (PAGESIZE); 1509 } 1510 1511 typedef struct file_walk_data { 1512 struct uf_entry *fw_flist; 1513 int fw_flistsz; 1514 int fw_ndx; 1515 int fw_nofiles; 1516 } file_walk_data_t; 1517 1518 int 1519 file_walk_init(mdb_walk_state_t *wsp) 1520 { 1521 file_walk_data_t *fw; 1522 proc_t p; 1523 1524 if (wsp->walk_addr == NULL) { 1525 mdb_warn("file walk doesn't support global walks\n"); 1526 return (WALK_ERR); 1527 } 1528 1529 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1530 1531 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1532 mdb_free(fw, sizeof (file_walk_data_t)); 1533 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1534 return (WALK_ERR); 1535 } 1536 1537 if (p.p_user.u_finfo.fi_nfiles == 0) { 1538 mdb_free(fw, sizeof (file_walk_data_t)); 1539 return (WALK_DONE); 1540 } 1541 1542 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1543 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1544 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1545 1546 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1547 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1548 mdb_warn("failed to read file array at %p", 1549 p.p_user.u_finfo.fi_list); 1550 mdb_free(fw->fw_flist, fw->fw_flistsz); 1551 mdb_free(fw, sizeof (file_walk_data_t)); 1552 return (WALK_ERR); 1553 } 1554 1555 fw->fw_ndx = 0; 1556 wsp->walk_data = fw; 1557 1558 return (WALK_NEXT); 1559 } 1560 1561 int 1562 file_walk_step(mdb_walk_state_t *wsp) 1563 { 1564 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1565 struct file file; 1566 uintptr_t fp; 1567 1568 again: 1569 if (fw->fw_ndx == fw->fw_nofiles) 1570 return (WALK_DONE); 1571 1572 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1573 goto again; 1574 1575 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1576 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1577 } 1578 1579 int 1580 allfile_walk_step(mdb_walk_state_t *wsp) 1581 { 1582 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1583 struct file file; 1584 uintptr_t fp; 1585 1586 if (fw->fw_ndx == fw->fw_nofiles) 1587 return (WALK_DONE); 1588 1589 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1590 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1591 else 1592 bzero(&file, sizeof (file)); 1593 1594 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1595 } 1596 1597 void 1598 file_walk_fini(mdb_walk_state_t *wsp) 1599 { 1600 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1601 1602 mdb_free(fw->fw_flist, fw->fw_flistsz); 1603 mdb_free(fw, sizeof (file_walk_data_t)); 1604 } 1605 1606 int 1607 port_walk_init(mdb_walk_state_t *wsp) 1608 { 1609 if (wsp->walk_addr == NULL) { 1610 mdb_warn("port walk doesn't support global walks\n"); 1611 return (WALK_ERR); 1612 } 1613 1614 if (mdb_layered_walk("file", wsp) == -1) { 1615 mdb_warn("couldn't walk 'file'"); 1616 return (WALK_ERR); 1617 } 1618 return (WALK_NEXT); 1619 } 1620 1621 int 1622 port_walk_step(mdb_walk_state_t *wsp) 1623 { 1624 struct vnode vn; 1625 uintptr_t vp; 1626 uintptr_t pp; 1627 struct port port; 1628 1629 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1630 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1631 mdb_warn("failed to read vnode_t at %p", vp); 1632 return (WALK_ERR); 1633 } 1634 if (vn.v_type != VPORT) 1635 return (WALK_NEXT); 1636 1637 pp = (uintptr_t)vn.v_data; 1638 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1639 mdb_warn("failed to read port_t at %p", pp); 1640 return (WALK_ERR); 1641 } 1642 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1643 } 1644 1645 typedef struct portev_walk_data { 1646 list_node_t *pev_node; 1647 list_node_t *pev_last; 1648 size_t pev_offset; 1649 } portev_walk_data_t; 1650 1651 int 1652 portev_walk_init(mdb_walk_state_t *wsp) 1653 { 1654 portev_walk_data_t *pevd; 1655 struct port port; 1656 struct vnode vn; 1657 struct list *list; 1658 uintptr_t vp; 1659 1660 if (wsp->walk_addr == NULL) { 1661 mdb_warn("portev walk doesn't support global walks\n"); 1662 return (WALK_ERR); 1663 } 1664 1665 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1666 1667 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1668 mdb_free(pevd, sizeof (portev_walk_data_t)); 1669 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1670 return (WALK_ERR); 1671 } 1672 1673 vp = (uintptr_t)port.port_vnode; 1674 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1675 mdb_free(pevd, sizeof (portev_walk_data_t)); 1676 mdb_warn("failed to read vnode_t at %p", vp); 1677 return (WALK_ERR); 1678 } 1679 1680 if (vn.v_type != VPORT) { 1681 mdb_free(pevd, sizeof (portev_walk_data_t)); 1682 mdb_warn("input address (%p) does not point to an event port", 1683 wsp->walk_addr); 1684 return (WALK_ERR); 1685 } 1686 1687 if (port.port_queue.portq_nent == 0) { 1688 mdb_free(pevd, sizeof (portev_walk_data_t)); 1689 return (WALK_DONE); 1690 } 1691 list = &port.port_queue.portq_list; 1692 pevd->pev_offset = list->list_offset; 1693 pevd->pev_last = list->list_head.list_prev; 1694 pevd->pev_node = list->list_head.list_next; 1695 wsp->walk_data = pevd; 1696 return (WALK_NEXT); 1697 } 1698 1699 int 1700 portev_walk_step(mdb_walk_state_t *wsp) 1701 { 1702 portev_walk_data_t *pevd; 1703 struct port_kevent ev; 1704 uintptr_t evp; 1705 1706 pevd = (portev_walk_data_t *)wsp->walk_data; 1707 1708 if (pevd->pev_last == NULL) 1709 return (WALK_DONE); 1710 if (pevd->pev_node == pevd->pev_last) 1711 pevd->pev_last = NULL; /* last round */ 1712 1713 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1714 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1715 mdb_warn("failed to read port_kevent at %p", evp); 1716 return (WALK_DONE); 1717 } 1718 pevd->pev_node = ev.portkev_node.list_next; 1719 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1720 } 1721 1722 void 1723 portev_walk_fini(mdb_walk_state_t *wsp) 1724 { 1725 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1726 1727 if (pevd != NULL) 1728 mdb_free(pevd, sizeof (portev_walk_data_t)); 1729 } 1730 1731 typedef struct proc_walk_data { 1732 uintptr_t *pw_stack; 1733 int pw_depth; 1734 int pw_max; 1735 } proc_walk_data_t; 1736 1737 int 1738 proc_walk_init(mdb_walk_state_t *wsp) 1739 { 1740 GElf_Sym sym; 1741 proc_walk_data_t *pw; 1742 1743 if (wsp->walk_addr == NULL) { 1744 if (mdb_lookup_by_name("p0", &sym) == -1) { 1745 mdb_warn("failed to read 'practive'"); 1746 return (WALK_ERR); 1747 } 1748 wsp->walk_addr = (uintptr_t)sym.st_value; 1749 } 1750 1751 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1752 1753 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1754 mdb_warn("failed to read 'nproc'"); 1755 mdb_free(pw, sizeof (pw)); 1756 return (WALK_ERR); 1757 } 1758 1759 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1760 wsp->walk_data = pw; 1761 1762 return (WALK_NEXT); 1763 } 1764 1765 int 1766 proc_walk_step(mdb_walk_state_t *wsp) 1767 { 1768 proc_walk_data_t *pw = wsp->walk_data; 1769 uintptr_t addr = wsp->walk_addr; 1770 uintptr_t cld, sib; 1771 1772 int status; 1773 proc_t pr; 1774 1775 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1776 mdb_warn("failed to read proc at %p", addr); 1777 return (WALK_DONE); 1778 } 1779 1780 cld = (uintptr_t)pr.p_child; 1781 sib = (uintptr_t)pr.p_sibling; 1782 1783 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1784 pw->pw_depth--; 1785 goto sib; 1786 } 1787 1788 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1789 1790 if (status != WALK_NEXT) 1791 return (status); 1792 1793 if ((wsp->walk_addr = cld) != NULL) { 1794 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1795 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1796 addr, cld); 1797 goto sib; 1798 } 1799 1800 pw->pw_stack[pw->pw_depth++] = addr; 1801 1802 if (pw->pw_depth == pw->pw_max) { 1803 mdb_warn("depth %d exceeds max depth; try again\n", 1804 pw->pw_depth); 1805 return (WALK_DONE); 1806 } 1807 return (WALK_NEXT); 1808 } 1809 1810 sib: 1811 /* 1812 * We know that p0 has no siblings, and if another starting proc 1813 * was given, we don't want to walk its siblings anyway. 1814 */ 1815 if (pw->pw_depth == 0) 1816 return (WALK_DONE); 1817 1818 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1819 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1820 addr, sib); 1821 sib = NULL; 1822 } 1823 1824 if ((wsp->walk_addr = sib) == NULL) { 1825 if (pw->pw_depth > 0) { 1826 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1827 return (WALK_NEXT); 1828 } 1829 return (WALK_DONE); 1830 } 1831 1832 return (WALK_NEXT); 1833 } 1834 1835 void 1836 proc_walk_fini(mdb_walk_state_t *wsp) 1837 { 1838 proc_walk_data_t *pw = wsp->walk_data; 1839 1840 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1841 mdb_free(pw, sizeof (proc_walk_data_t)); 1842 } 1843 1844 int 1845 task_walk_init(mdb_walk_state_t *wsp) 1846 { 1847 task_t task; 1848 1849 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1850 mdb_warn("failed to read task at %p", wsp->walk_addr); 1851 return (WALK_ERR); 1852 } 1853 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1854 wsp->walk_data = task.tk_memb_list; 1855 return (WALK_NEXT); 1856 } 1857 1858 int 1859 task_walk_step(mdb_walk_state_t *wsp) 1860 { 1861 proc_t proc; 1862 int status; 1863 1864 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1865 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1866 return (WALK_DONE); 1867 } 1868 1869 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1870 1871 if (proc.p_tasknext == wsp->walk_data) 1872 return (WALK_DONE); 1873 1874 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1875 return (status); 1876 } 1877 1878 int 1879 project_walk_init(mdb_walk_state_t *wsp) 1880 { 1881 if (wsp->walk_addr == NULL) { 1882 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1883 mdb_warn("failed to read 'proj0p'"); 1884 return (WALK_ERR); 1885 } 1886 } 1887 wsp->walk_data = (void *)wsp->walk_addr; 1888 return (WALK_NEXT); 1889 } 1890 1891 int 1892 project_walk_step(mdb_walk_state_t *wsp) 1893 { 1894 uintptr_t addr = wsp->walk_addr; 1895 kproject_t pj; 1896 int status; 1897 1898 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1899 mdb_warn("failed to read project at %p", addr); 1900 return (WALK_DONE); 1901 } 1902 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1903 if (status != WALK_NEXT) 1904 return (status); 1905 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1906 if ((void *)wsp->walk_addr == wsp->walk_data) 1907 return (WALK_DONE); 1908 return (WALK_NEXT); 1909 } 1910 1911 static int 1912 generic_walk_step(mdb_walk_state_t *wsp) 1913 { 1914 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1915 wsp->walk_cbdata)); 1916 } 1917 1918 int 1919 seg_walk_init(mdb_walk_state_t *wsp) 1920 { 1921 if (wsp->walk_addr == NULL) { 1922 mdb_warn("seg walk must begin at struct as *\n"); 1923 return (WALK_ERR); 1924 } 1925 1926 /* 1927 * this is really just a wrapper to AVL tree walk 1928 */ 1929 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1930 return (avl_walk_init(wsp)); 1931 } 1932 1933 static int 1934 cpu_walk_cmp(const void *l, const void *r) 1935 { 1936 uintptr_t lhs = *((uintptr_t *)l); 1937 uintptr_t rhs = *((uintptr_t *)r); 1938 cpu_t lcpu, rcpu; 1939 1940 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1941 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1942 1943 if (lcpu.cpu_id < rcpu.cpu_id) 1944 return (-1); 1945 1946 if (lcpu.cpu_id > rcpu.cpu_id) 1947 return (1); 1948 1949 return (0); 1950 } 1951 1952 typedef struct cpu_walk { 1953 uintptr_t *cw_array; 1954 int cw_ndx; 1955 } cpu_walk_t; 1956 1957 int 1958 cpu_walk_init(mdb_walk_state_t *wsp) 1959 { 1960 cpu_walk_t *cw; 1961 int max_ncpus, i = 0; 1962 uintptr_t current, first; 1963 cpu_t cpu, panic_cpu; 1964 uintptr_t panicstr, addr; 1965 GElf_Sym sym; 1966 1967 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1968 1969 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1970 mdb_warn("failed to read 'max_ncpus'"); 1971 return (WALK_ERR); 1972 } 1973 1974 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1975 mdb_warn("failed to read 'panicstr'"); 1976 return (WALK_ERR); 1977 } 1978 1979 if (panicstr != NULL) { 1980 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1981 mdb_warn("failed to find 'panic_cpu'"); 1982 return (WALK_ERR); 1983 } 1984 1985 addr = (uintptr_t)sym.st_value; 1986 1987 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1988 mdb_warn("failed to read 'panic_cpu'"); 1989 return (WALK_ERR); 1990 } 1991 } 1992 1993 /* 1994 * Unfortunately, there is no platform-independent way to walk 1995 * CPUs in ID order. We therefore loop through in cpu_next order, 1996 * building an array of CPU pointers which will subsequently be 1997 * sorted. 1998 */ 1999 cw->cw_array = 2000 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2001 2002 if (mdb_readvar(&first, "cpu_list") == -1) { 2003 mdb_warn("failed to read 'cpu_list'"); 2004 return (WALK_ERR); 2005 } 2006 2007 current = first; 2008 do { 2009 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2010 mdb_warn("failed to read cpu at %p", current); 2011 return (WALK_ERR); 2012 } 2013 2014 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2015 cw->cw_array[i++] = addr; 2016 } else { 2017 cw->cw_array[i++] = current; 2018 } 2019 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2020 2021 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2022 wsp->walk_data = cw; 2023 2024 return (WALK_NEXT); 2025 } 2026 2027 int 2028 cpu_walk_step(mdb_walk_state_t *wsp) 2029 { 2030 cpu_walk_t *cw = wsp->walk_data; 2031 cpu_t cpu; 2032 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2033 2034 if (addr == NULL) 2035 return (WALK_DONE); 2036 2037 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2038 mdb_warn("failed to read cpu at %p", addr); 2039 return (WALK_DONE); 2040 } 2041 2042 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2043 } 2044 2045 typedef struct cpuinfo_data { 2046 intptr_t cid_cpu; 2047 uintptr_t cid_lbolt; 2048 uintptr_t **cid_ithr; 2049 char cid_print_head; 2050 char cid_print_thr; 2051 char cid_print_ithr; 2052 char cid_print_flags; 2053 } cpuinfo_data_t; 2054 2055 int 2056 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2057 { 2058 cpu_t c; 2059 int id; 2060 uint8_t pil; 2061 2062 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2063 return (WALK_NEXT); 2064 2065 if (thr->t_bound_cpu == NULL) { 2066 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2067 return (WALK_NEXT); 2068 } 2069 2070 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2071 2072 if ((id = c.cpu_id) >= NCPU) { 2073 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2074 thr->t_bound_cpu, id, NCPU); 2075 return (WALK_NEXT); 2076 } 2077 2078 if ((pil = thr->t_pil) >= NINTR) { 2079 mdb_warn("thread %p has pil (%d) greater than %d\n", 2080 addr, pil, NINTR); 2081 return (WALK_NEXT); 2082 } 2083 2084 if (cid->cid_ithr[id][pil] != NULL) { 2085 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2086 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2087 return (WALK_NEXT); 2088 } 2089 2090 cid->cid_ithr[id][pil] = addr; 2091 2092 return (WALK_NEXT); 2093 } 2094 2095 #define CPUINFO_IDWIDTH 3 2096 #define CPUINFO_FLAGWIDTH 9 2097 2098 #ifdef _LP64 2099 #if defined(__amd64) 2100 #define CPUINFO_TWIDTH 16 2101 #define CPUINFO_CPUWIDTH 16 2102 #else 2103 #define CPUINFO_CPUWIDTH 11 2104 #define CPUINFO_TWIDTH 11 2105 #endif 2106 #else 2107 #define CPUINFO_CPUWIDTH 8 2108 #define CPUINFO_TWIDTH 8 2109 #endif 2110 2111 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2112 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2113 #define CPUINFO_ITHRDELT 4 2114 2115 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2116 flagline < nflaglines ? flagbuf[flagline++] : "") 2117 2118 int 2119 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2120 { 2121 kthread_t t; 2122 disp_t disp; 2123 proc_t p; 2124 uintptr_t pinned; 2125 char **flagbuf; 2126 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2127 2128 const char *flags[] = { 2129 "RUNNING", "READY", "QUIESCED", "EXISTS", 2130 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2131 "SPARE", "FAULTED", NULL 2132 }; 2133 2134 if (cid->cid_cpu != -1) { 2135 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2136 return (WALK_NEXT); 2137 2138 /* 2139 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2140 */ 2141 cid->cid_cpu = -1; 2142 rval = WALK_DONE; 2143 } 2144 2145 if (cid->cid_print_head) { 2146 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2147 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2148 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2149 "PROC"); 2150 cid->cid_print_head = FALSE; 2151 } 2152 2153 bspl = cpu->cpu_base_spl; 2154 2155 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2156 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2157 return (WALK_ERR); 2158 } 2159 2160 mdb_printf("%3d %0*p %3x %4d %4d ", 2161 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2162 disp.disp_nrunnable, bspl); 2163 2164 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2165 mdb_printf("%3d ", t.t_pri); 2166 } else { 2167 mdb_printf("%3s ", "-"); 2168 } 2169 2170 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2171 cpu->cpu_kprunrun ? "yes" : "no"); 2172 2173 if (cpu->cpu_last_swtch) { 2174 clock_t lbolt; 2175 2176 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2177 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2178 return (WALK_ERR); 2179 } 2180 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2181 } else { 2182 mdb_printf("%-6s ", "-"); 2183 } 2184 2185 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2186 2187 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2188 mdb_printf(" (idle)\n"); 2189 else if (cpu->cpu_thread == NULL) 2190 mdb_printf(" -\n"); 2191 else { 2192 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2193 mdb_printf(" %s\n", p.p_user.u_comm); 2194 } else { 2195 mdb_printf(" ?\n"); 2196 } 2197 } 2198 2199 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2200 2201 if (cid->cid_print_flags) { 2202 int first = 1, i, j, k; 2203 char *s; 2204 2205 cid->cid_print_head = TRUE; 2206 2207 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2208 if (!(cpu->cpu_flags & i)) 2209 continue; 2210 2211 if (first) { 2212 s = mdb_alloc(CPUINFO_THRDELT + 1, 2213 UM_GC | UM_SLEEP); 2214 2215 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2216 "%*s|%*s", CPUINFO_FLAGDELT, "", 2217 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2218 flagbuf[nflaglines++] = s; 2219 } 2220 2221 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2222 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2223 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2224 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2225 first ? "<--+" : ""); 2226 2227 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2228 s[k] = ' '; 2229 s[k] = '\0'; 2230 2231 flagbuf[nflaglines++] = s; 2232 first = 0; 2233 } 2234 } 2235 2236 if (cid->cid_print_ithr) { 2237 int i, found_one = FALSE; 2238 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2239 2240 for (i = NINTR - 1; i >= 0; i--) { 2241 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2242 2243 if (iaddr == NULL) 2244 continue; 2245 2246 if (!found_one) { 2247 found_one = TRUE; 2248 2249 CPUINFO_INDENT; 2250 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2251 CPUINFO_ITHRDELT, ""); 2252 2253 CPUINFO_INDENT; 2254 mdb_printf("%c%*s+--> %3s %s\n", 2255 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2256 "", "PIL", "THREAD"); 2257 } 2258 2259 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2260 mdb_warn("failed to read kthread_t at %p", 2261 iaddr); 2262 return (WALK_ERR); 2263 } 2264 2265 CPUINFO_INDENT; 2266 mdb_printf("%c%*s %3d %0*p\n", 2267 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2268 t.t_pil, CPUINFO_TWIDTH, iaddr); 2269 2270 pinned = (uintptr_t)t.t_intr; 2271 } 2272 2273 if (found_one && pinned != NULL) { 2274 cid->cid_print_head = TRUE; 2275 (void) strcpy(p.p_user.u_comm, "?"); 2276 2277 if (mdb_vread(&t, sizeof (t), 2278 (uintptr_t)pinned) == -1) { 2279 mdb_warn("failed to read kthread_t at %p", 2280 pinned); 2281 return (WALK_ERR); 2282 } 2283 if (mdb_vread(&p, sizeof (p), 2284 (uintptr_t)t.t_procp) == -1) { 2285 mdb_warn("failed to read proc_t at %p", 2286 t.t_procp); 2287 return (WALK_ERR); 2288 } 2289 2290 CPUINFO_INDENT; 2291 mdb_printf("%c%*s %3s %0*p %s\n", 2292 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2293 CPUINFO_TWIDTH, pinned, 2294 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2295 "(idle)" : p.p_user.u_comm); 2296 } 2297 } 2298 2299 if (disp.disp_nrunnable && cid->cid_print_thr) { 2300 dispq_t *dq; 2301 2302 int i, npri = disp.disp_npri; 2303 2304 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2305 2306 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2307 (uintptr_t)disp.disp_q) == -1) { 2308 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2309 return (WALK_ERR); 2310 } 2311 2312 CPUINFO_INDENT; 2313 mdb_printf("|\n"); 2314 2315 CPUINFO_INDENT; 2316 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2317 CPUINFO_TWIDTH, "THREAD", "PROC"); 2318 2319 for (i = npri - 1; i >= 0; i--) { 2320 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2321 2322 while (taddr != NULL) { 2323 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2324 mdb_warn("failed to read kthread_t " 2325 "at %p", taddr); 2326 return (WALK_ERR); 2327 } 2328 if (mdb_vread(&p, sizeof (p), 2329 (uintptr_t)t.t_procp) == -1) { 2330 mdb_warn("failed to read proc_t at %p", 2331 t.t_procp); 2332 return (WALK_ERR); 2333 } 2334 2335 CPUINFO_INDENT; 2336 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2337 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2338 2339 taddr = (uintptr_t)t.t_link; 2340 } 2341 } 2342 cid->cid_print_head = TRUE; 2343 } 2344 2345 while (flagline < nflaglines) 2346 mdb_printf("%s\n", flagbuf[flagline++]); 2347 2348 if (cid->cid_print_head) 2349 mdb_printf("\n"); 2350 2351 return (rval); 2352 } 2353 2354 int 2355 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2356 { 2357 uint_t verbose = FALSE; 2358 cpuinfo_data_t cid; 2359 GElf_Sym sym; 2360 clock_t lbolt; 2361 2362 cid.cid_print_ithr = FALSE; 2363 cid.cid_print_thr = FALSE; 2364 cid.cid_print_flags = FALSE; 2365 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2366 cid.cid_cpu = -1; 2367 2368 if (flags & DCMD_ADDRSPEC) 2369 cid.cid_cpu = addr; 2370 2371 if (mdb_getopts(argc, argv, 2372 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2373 return (DCMD_USAGE); 2374 2375 if (verbose) { 2376 cid.cid_print_ithr = TRUE; 2377 cid.cid_print_thr = TRUE; 2378 cid.cid_print_flags = TRUE; 2379 cid.cid_print_head = TRUE; 2380 } 2381 2382 if (cid.cid_print_ithr) { 2383 int i; 2384 2385 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2386 * NCPU, UM_SLEEP | UM_GC); 2387 2388 for (i = 0; i < NCPU; i++) 2389 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2390 NINTR, UM_SLEEP | UM_GC); 2391 2392 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2393 &cid) == -1) { 2394 mdb_warn("couldn't walk thread"); 2395 return (DCMD_ERR); 2396 } 2397 } 2398 2399 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2400 mdb_warn("failed to find panic_lbolt"); 2401 return (DCMD_ERR); 2402 } 2403 2404 cid.cid_lbolt = (uintptr_t)sym.st_value; 2405 2406 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2407 mdb_warn("failed to read panic_lbolt"); 2408 return (DCMD_ERR); 2409 } 2410 2411 if (lbolt == 0) { 2412 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2413 mdb_warn("failed to find lbolt"); 2414 return (DCMD_ERR); 2415 } 2416 cid.cid_lbolt = (uintptr_t)sym.st_value; 2417 } 2418 2419 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2420 mdb_warn("can't walk cpus"); 2421 return (DCMD_ERR); 2422 } 2423 2424 if (cid.cid_cpu != -1) { 2425 /* 2426 * We didn't find this CPU when we walked through the CPUs 2427 * (i.e. the address specified doesn't show up in the "cpu" 2428 * walk). However, the specified address may still correspond 2429 * to a valid cpu_t (for example, if the specified address is 2430 * the actual panicking cpu_t and not the cached panic_cpu). 2431 * Point is: even if we didn't find it, we still want to try 2432 * to print the specified address as a cpu_t. 2433 */ 2434 cpu_t cpu; 2435 2436 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2437 mdb_warn("%p is neither a valid CPU ID nor a " 2438 "valid cpu_t address\n", cid.cid_cpu); 2439 return (DCMD_ERR); 2440 } 2441 2442 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2443 } 2444 2445 return (DCMD_OK); 2446 } 2447 2448 /*ARGSUSED*/ 2449 int 2450 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2451 { 2452 int i; 2453 2454 if (!(flags & DCMD_ADDRSPEC)) 2455 return (DCMD_USAGE); 2456 2457 for (i = 0; i < sizeof (addr) * NBBY; i++) 2458 mdb_printf("%p\n", addr ^ (1UL << i)); 2459 2460 return (DCMD_OK); 2461 } 2462 2463 /* 2464 * Grumble, grumble. 2465 */ 2466 #define SMAP_HASHFUNC(vp, off) \ 2467 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2468 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2469 2470 int 2471 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2472 { 2473 long smd_hashmsk; 2474 int hash; 2475 uintptr_t offset = 0; 2476 struct smap smp; 2477 uintptr_t saddr, kaddr; 2478 uintptr_t smd_hash, smd_smap; 2479 struct seg seg; 2480 2481 if (!(flags & DCMD_ADDRSPEC)) 2482 return (DCMD_USAGE); 2483 2484 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2485 mdb_warn("failed to read smd_hashmsk"); 2486 return (DCMD_ERR); 2487 } 2488 2489 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2490 mdb_warn("failed to read smd_hash"); 2491 return (DCMD_ERR); 2492 } 2493 2494 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2495 mdb_warn("failed to read smd_hash"); 2496 return (DCMD_ERR); 2497 } 2498 2499 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2500 mdb_warn("failed to read segkmap"); 2501 return (DCMD_ERR); 2502 } 2503 2504 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2505 mdb_warn("failed to read segkmap at %p", kaddr); 2506 return (DCMD_ERR); 2507 } 2508 2509 if (argc != 0) { 2510 const mdb_arg_t *arg = &argv[0]; 2511 2512 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2513 offset = arg->a_un.a_val; 2514 else 2515 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2516 } 2517 2518 hash = SMAP_HASHFUNC(addr, offset); 2519 2520 if (mdb_vread(&saddr, sizeof (saddr), 2521 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2522 mdb_warn("couldn't read smap at %p", 2523 smd_hash + hash * sizeof (uintptr_t)); 2524 return (DCMD_ERR); 2525 } 2526 2527 do { 2528 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2529 mdb_warn("couldn't read smap at %p", saddr); 2530 return (DCMD_ERR); 2531 } 2532 2533 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2534 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2535 addr, offset, saddr, ((saddr - smd_smap) / 2536 sizeof (smp)) * MAXBSIZE + seg.s_base); 2537 return (DCMD_OK); 2538 } 2539 2540 saddr = (uintptr_t)smp.sm_hash; 2541 } while (saddr != NULL); 2542 2543 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2544 return (DCMD_OK); 2545 } 2546 2547 /*ARGSUSED*/ 2548 int 2549 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2550 { 2551 uintptr_t kaddr; 2552 struct seg seg; 2553 struct segmap_data sd; 2554 2555 if (!(flags & DCMD_ADDRSPEC)) 2556 return (DCMD_USAGE); 2557 2558 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2559 mdb_warn("failed to read segkmap"); 2560 return (DCMD_ERR); 2561 } 2562 2563 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2564 mdb_warn("failed to read segkmap at %p", kaddr); 2565 return (DCMD_ERR); 2566 } 2567 2568 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2569 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2570 return (DCMD_ERR); 2571 } 2572 2573 mdb_printf("%p is smap %p\n", addr, 2574 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2575 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2576 2577 return (DCMD_OK); 2578 } 2579 2580 int 2581 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2582 { 2583 if (p->p_as == *asp) 2584 mdb_printf("%p\n", addr); 2585 return (WALK_NEXT); 2586 } 2587 2588 /*ARGSUSED*/ 2589 int 2590 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2591 { 2592 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2593 return (DCMD_USAGE); 2594 2595 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2596 mdb_warn("failed to walk proc"); 2597 return (DCMD_ERR); 2598 } 2599 2600 return (DCMD_OK); 2601 } 2602 2603 /*ARGSUSED*/ 2604 int 2605 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2606 { 2607 proc_t parent; 2608 int ident = 0; 2609 uintptr_t paddr; 2610 2611 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2612 mdb_vread(&parent, sizeof (parent), paddr); 2613 paddr = (uintptr_t)parent.p_parent; 2614 } 2615 2616 mdb_inc_indent(ident); 2617 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2618 mdb_dec_indent(ident); 2619 2620 return (WALK_NEXT); 2621 } 2622 2623 void 2624 ptree_ancestors(uintptr_t addr, uintptr_t start) 2625 { 2626 proc_t p; 2627 2628 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2629 mdb_warn("couldn't read ancestor at %p", addr); 2630 return; 2631 } 2632 2633 if (p.p_parent != NULL) 2634 ptree_ancestors((uintptr_t)p.p_parent, start); 2635 2636 if (addr != start) 2637 (void) ptree_walk(addr, &p, NULL); 2638 } 2639 2640 /*ARGSUSED*/ 2641 int 2642 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2643 { 2644 if (!(flags & DCMD_ADDRSPEC)) 2645 addr = NULL; 2646 else 2647 ptree_ancestors(addr, addr); 2648 2649 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2650 mdb_warn("couldn't walk 'proc'"); 2651 return (DCMD_ERR); 2652 } 2653 2654 return (DCMD_OK); 2655 } 2656 2657 /*ARGSUSED*/ 2658 static int 2659 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2660 { 2661 int fdnum; 2662 const mdb_arg_t *argp = &argv[0]; 2663 proc_t p; 2664 uf_entry_t uf; 2665 2666 if ((flags & DCMD_ADDRSPEC) == 0) { 2667 mdb_warn("fd doesn't give global information\n"); 2668 return (DCMD_ERR); 2669 } 2670 if (argc != 1) 2671 return (DCMD_USAGE); 2672 2673 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2674 fdnum = argp->a_un.a_val; 2675 else 2676 fdnum = mdb_strtoull(argp->a_un.a_str); 2677 2678 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2679 mdb_warn("couldn't read proc_t at %p", addr); 2680 return (DCMD_ERR); 2681 } 2682 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2683 mdb_warn("process %p only has %d files open.\n", 2684 addr, p.p_user.u_finfo.fi_nfiles); 2685 return (DCMD_ERR); 2686 } 2687 if (mdb_vread(&uf, sizeof (uf_entry_t), 2688 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2689 mdb_warn("couldn't read uf_entry_t at %p", 2690 &p.p_user.u_finfo.fi_list[fdnum]); 2691 return (DCMD_ERR); 2692 } 2693 2694 mdb_printf("%p\n", uf.uf_file); 2695 return (DCMD_OK); 2696 } 2697 2698 /*ARGSUSED*/ 2699 static int 2700 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2701 { 2702 pid_t pid = (pid_t)addr; 2703 2704 if (argc != 0) 2705 return (DCMD_USAGE); 2706 2707 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2708 mdb_warn("PID 0t%d not found\n", pid); 2709 return (DCMD_ERR); 2710 } 2711 2712 mdb_printf("%p\n", addr); 2713 return (DCMD_OK); 2714 } 2715 2716 static char *sysfile_cmd[] = { 2717 "exclude:", 2718 "include:", 2719 "forceload:", 2720 "rootdev:", 2721 "rootfs:", 2722 "swapdev:", 2723 "swapfs:", 2724 "moddir:", 2725 "set", 2726 "unknown", 2727 }; 2728 2729 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2730 2731 /*ARGSUSED*/ 2732 static int 2733 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2734 { 2735 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2736 *target = NULL; 2737 return (WALK_DONE); 2738 } 2739 return (WALK_NEXT); 2740 } 2741 2742 /*ARGSUSED*/ 2743 static int 2744 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2745 { 2746 struct sysparam *sysp, sys; 2747 char var[256]; 2748 char modname[256]; 2749 char val[256]; 2750 char strval[256]; 2751 vmem_t *mod_sysfile_arena; 2752 void *straddr; 2753 2754 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2755 mdb_warn("failed to read sysparam_hd"); 2756 return (DCMD_ERR); 2757 } 2758 2759 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2760 mdb_warn("failed to read mod_sysfile_arena"); 2761 return (DCMD_ERR); 2762 } 2763 2764 while (sysp != NULL) { 2765 var[0] = '\0'; 2766 val[0] = '\0'; 2767 modname[0] = '\0'; 2768 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2769 mdb_warn("couldn't read sysparam %p", sysp); 2770 return (DCMD_ERR); 2771 } 2772 if (sys.sys_modnam != NULL && 2773 mdb_readstr(modname, 256, 2774 (uintptr_t)sys.sys_modnam) == -1) { 2775 mdb_warn("couldn't read modname in %p", sysp); 2776 return (DCMD_ERR); 2777 } 2778 if (sys.sys_ptr != NULL && 2779 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2780 mdb_warn("couldn't read ptr in %p", sysp); 2781 return (DCMD_ERR); 2782 } 2783 if (sys.sys_op != SETOP_NONE) { 2784 /* 2785 * Is this an int or a string? We determine this 2786 * by checking whether straddr is contained in 2787 * mod_sysfile_arena. If so, the walker will set 2788 * straddr to NULL. 2789 */ 2790 straddr = (void *)(uintptr_t)sys.sys_info; 2791 if (sys.sys_op == SETOP_ASSIGN && 2792 sys.sys_info != 0 && 2793 mdb_pwalk("vmem_seg", 2794 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2795 (uintptr_t)mod_sysfile_arena) == 0 && 2796 straddr == NULL && 2797 mdb_readstr(strval, 256, 2798 (uintptr_t)sys.sys_info) != -1) { 2799 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2800 strval); 2801 } else { 2802 (void) mdb_snprintf(val, sizeof (val), 2803 "0x%llx [0t%llu]", sys.sys_info, 2804 sys.sys_info); 2805 } 2806 } 2807 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2808 modname, modname[0] == '\0' ? "" : ":", 2809 var, sysfile_ops[sys.sys_op], val); 2810 2811 sysp = sys.sys_next; 2812 } 2813 2814 return (DCMD_OK); 2815 } 2816 2817 /* 2818 * Dump a taskq_ent_t given its address. 2819 */ 2820 /*ARGSUSED*/ 2821 int 2822 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2823 { 2824 taskq_ent_t taskq_ent; 2825 GElf_Sym sym; 2826 char buf[MDB_SYM_NAMLEN+1]; 2827 2828 2829 if (!(flags & DCMD_ADDRSPEC)) { 2830 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2831 return (DCMD_USAGE); 2832 } 2833 2834 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2835 mdb_warn("failed to read taskq_ent_t at %p", addr); 2836 return (DCMD_ERR); 2837 } 2838 2839 if (DCMD_HDRSPEC(flags)) { 2840 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2841 "ENTRY", "ARG", "FUNCTION"); 2842 } 2843 2844 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2845 buf, sizeof (buf), &sym) == -1) { 2846 (void) strcpy(buf, "????"); 2847 } 2848 2849 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2850 2851 return (DCMD_OK); 2852 } 2853 2854 /* 2855 * Given the address of the (taskq_t) task queue head, walk the queue listing 2856 * the address of every taskq_ent_t. 2857 */ 2858 int 2859 taskq_walk_init(mdb_walk_state_t *wsp) 2860 { 2861 taskq_t tq_head; 2862 2863 2864 if (wsp->walk_addr == NULL) { 2865 mdb_warn("start address required\n"); 2866 return (WALK_ERR); 2867 } 2868 2869 2870 /* 2871 * Save the address of the list head entry. This terminates the list. 2872 */ 2873 wsp->walk_data = (void *) 2874 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2875 2876 2877 /* 2878 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2879 */ 2880 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2881 -1) { 2882 mdb_warn("failed to read taskq list head at %p", 2883 wsp->walk_addr); 2884 } 2885 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2886 2887 2888 /* 2889 * Check for null list (next=head) 2890 */ 2891 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2892 return (WALK_DONE); 2893 } 2894 2895 return (WALK_NEXT); 2896 } 2897 2898 2899 int 2900 taskq_walk_step(mdb_walk_state_t *wsp) 2901 { 2902 taskq_ent_t tq_ent; 2903 int status; 2904 2905 2906 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2907 -1) { 2908 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2909 return (DCMD_ERR); 2910 } 2911 2912 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2913 wsp->walk_cbdata); 2914 2915 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2916 2917 2918 /* Check if we're at the last element (next=head) */ 2919 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2920 return (WALK_DONE); 2921 } 2922 2923 return (status); 2924 } 2925 2926 int 2927 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2928 { 2929 2930 if (*didp == thr->t_did) { 2931 mdb_printf("%p\n", addr); 2932 return (WALK_DONE); 2933 } else 2934 return (WALK_NEXT); 2935 } 2936 2937 /*ARGSUSED*/ 2938 int 2939 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2940 { 2941 const mdb_arg_t *argp = &argv[0]; 2942 kt_did_t did; 2943 2944 if (argc != 1) 2945 return (DCMD_USAGE); 2946 2947 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2948 2949 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2950 mdb_warn("failed to walk thread"); 2951 return (DCMD_ERR); 2952 2953 } 2954 return (DCMD_OK); 2955 2956 } 2957 2958 static int 2959 errorq_walk_init(mdb_walk_state_t *wsp) 2960 { 2961 if (wsp->walk_addr == NULL && 2962 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2963 mdb_warn("failed to read errorq_list"); 2964 return (WALK_ERR); 2965 } 2966 2967 return (WALK_NEXT); 2968 } 2969 2970 static int 2971 errorq_walk_step(mdb_walk_state_t *wsp) 2972 { 2973 uintptr_t addr = wsp->walk_addr; 2974 errorq_t eq; 2975 2976 if (addr == NULL) 2977 return (WALK_DONE); 2978 2979 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2980 mdb_warn("failed to read errorq at %p", addr); 2981 return (WALK_ERR); 2982 } 2983 2984 wsp->walk_addr = (uintptr_t)eq.eq_next; 2985 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2986 } 2987 2988 typedef struct eqd_walk_data { 2989 uintptr_t *eqd_stack; 2990 void *eqd_buf; 2991 ulong_t eqd_qpos; 2992 ulong_t eqd_qlen; 2993 size_t eqd_size; 2994 } eqd_walk_data_t; 2995 2996 /* 2997 * In order to walk the list of pending error queue elements, we push the 2998 * addresses of the corresponding data buffers in to the eqd_stack array. 2999 * The error lists are in reverse chronological order when iterating using 3000 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3001 * walker client gets addresses in order from oldest error to newest error. 3002 */ 3003 static void 3004 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3005 { 3006 errorq_elem_t eqe; 3007 3008 while (addr != NULL) { 3009 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3010 mdb_warn("failed to read errorq element at %p", addr); 3011 break; 3012 } 3013 3014 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3015 mdb_warn("errorq is overfull -- more than %lu " 3016 "elems found\n", eqdp->eqd_qlen); 3017 break; 3018 } 3019 3020 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3021 addr = (uintptr_t)eqe.eqe_prev; 3022 } 3023 } 3024 3025 static int 3026 eqd_walk_init(mdb_walk_state_t *wsp) 3027 { 3028 eqd_walk_data_t *eqdp; 3029 errorq_elem_t eqe, *addr; 3030 errorq_t eq; 3031 ulong_t i; 3032 3033 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3034 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3035 return (WALK_ERR); 3036 } 3037 3038 if (eq.eq_ptail != NULL && 3039 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3040 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3041 return (WALK_ERR); 3042 } 3043 3044 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3045 wsp->walk_data = eqdp; 3046 3047 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3048 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3049 eqdp->eqd_qlen = eq.eq_qlen; 3050 eqdp->eqd_qpos = 0; 3051 eqdp->eqd_size = eq.eq_size; 3052 3053 /* 3054 * The newest elements in the queue are on the pending list, so we 3055 * push those on to our stack first. 3056 */ 3057 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3058 3059 /* 3060 * If eq_ptail is set, it may point to a subset of the errors on the 3061 * pending list in the event a casptr() failed; if ptail's data is 3062 * already in our stack, NULL out eq_ptail and ignore it. 3063 */ 3064 if (eq.eq_ptail != NULL) { 3065 for (i = 0; i < eqdp->eqd_qpos; i++) { 3066 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3067 eq.eq_ptail = NULL; 3068 break; 3069 } 3070 } 3071 } 3072 3073 /* 3074 * If eq_phead is set, it has the processing list in order from oldest 3075 * to newest. Use this to recompute eq_ptail as best we can and then 3076 * we nicely fall into eqd_push_list() of eq_ptail below. 3077 */ 3078 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3079 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3080 eq.eq_ptail = addr; 3081 3082 /* 3083 * The oldest elements in the queue are on the processing list, subject 3084 * to machinations in the if-clauses above. Push any such elements. 3085 */ 3086 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3087 return (WALK_NEXT); 3088 } 3089 3090 static int 3091 eqd_walk_step(mdb_walk_state_t *wsp) 3092 { 3093 eqd_walk_data_t *eqdp = wsp->walk_data; 3094 uintptr_t addr; 3095 3096 if (eqdp->eqd_qpos == 0) 3097 return (WALK_DONE); 3098 3099 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3100 3101 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3102 mdb_warn("failed to read errorq data at %p", addr); 3103 return (WALK_ERR); 3104 } 3105 3106 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3107 } 3108 3109 static void 3110 eqd_walk_fini(mdb_walk_state_t *wsp) 3111 { 3112 eqd_walk_data_t *eqdp = wsp->walk_data; 3113 3114 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3115 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3116 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3117 } 3118 3119 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3120 3121 static int 3122 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3123 { 3124 int i; 3125 errorq_t eq; 3126 uint_t opt_v = FALSE; 3127 3128 if (!(flags & DCMD_ADDRSPEC)) { 3129 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3130 mdb_warn("can't walk 'errorq'"); 3131 return (DCMD_ERR); 3132 } 3133 return (DCMD_OK); 3134 } 3135 3136 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3137 argc -= i; 3138 argv += i; 3139 3140 if (argc != 0) 3141 return (DCMD_USAGE); 3142 3143 if (opt_v || DCMD_HDRSPEC(flags)) { 3144 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3145 "ADDR", "NAME", "S", "V", "N"); 3146 if (!opt_v) { 3147 mdb_printf("%7s %7s %7s%</u>\n", 3148 "ACCEPT", "DROP", "LOG"); 3149 } else { 3150 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3151 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3152 } 3153 } 3154 3155 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3156 mdb_warn("failed to read errorq at %p", addr); 3157 return (DCMD_ERR); 3158 } 3159 3160 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3161 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3162 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3163 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3164 3165 if (!opt_v) { 3166 mdb_printf("%7llu %7llu %7llu\n", 3167 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3168 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3169 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3170 } else { 3171 mdb_printf("%5s %6lu %6lu %3u %a\n", 3172 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3173 mdb_printf("%38s\n%41s" 3174 "%12s %llu\n" 3175 "%53s %llu\n" 3176 "%53s %llu\n" 3177 "%53s %llu\n" 3178 "%53s %llu\n" 3179 "%53s %llu\n" 3180 "%53s %llu\n" 3181 "%53s %llu\n\n", 3182 "|", "+-> ", 3183 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3184 "DROPPED", EQKSVAL(eq, eqk_dropped), 3185 "LOGGED", EQKSVAL(eq, eqk_logged), 3186 "RESERVED", EQKSVAL(eq, eqk_reserved), 3187 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3188 "COMMITTED", EQKSVAL(eq, eqk_committed), 3189 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3190 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3191 } 3192 3193 return (DCMD_OK); 3194 } 3195 3196 /*ARGSUSED*/ 3197 static int 3198 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3199 { 3200 cpu_t panic_cpu; 3201 kthread_t *panic_thread; 3202 void *buf; 3203 panic_data_t *pd; 3204 int i, n; 3205 3206 if (!mdb_prop_postmortem) { 3207 mdb_warn("panicinfo can only be run on a system " 3208 "dump; see dumpadm(1M)\n"); 3209 return (DCMD_ERR); 3210 } 3211 3212 if (flags & DCMD_ADDRSPEC || argc != 0) 3213 return (DCMD_USAGE); 3214 3215 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3216 mdb_warn("failed to read 'panic_cpu'"); 3217 else 3218 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3219 3220 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3221 mdb_warn("failed to read 'panic_thread'"); 3222 else 3223 mdb_printf("%16s %?p\n", "thread", panic_thread); 3224 3225 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3226 pd = (panic_data_t *)buf; 3227 3228 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3229 pd->pd_version != PANICBUFVERS) { 3230 mdb_warn("failed to read 'panicbuf'"); 3231 mdb_free(buf, PANICBUFSIZE); 3232 return (DCMD_ERR); 3233 } 3234 3235 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3236 3237 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3238 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3239 3240 for (i = 0; i < n; i++) 3241 mdb_printf("%16s %?llx\n", 3242 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3243 3244 mdb_free(buf, PANICBUFSIZE); 3245 return (DCMD_OK); 3246 } 3247 3248 static const mdb_dcmd_t dcmds[] = { 3249 3250 /* from genunix.c */ 3251 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3252 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3253 { "binding_hash_entry", ":", "print driver names hash table entry", 3254 binding_hash_entry }, 3255 { "callout", NULL, "print callout table", callout }, 3256 { "class", NULL, "print process scheduler classes", class }, 3257 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3258 { "did2thread", "? kt_did", "find kernel thread for this id", 3259 did2thread }, 3260 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3261 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3262 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3263 { "lminfo", NULL, "print lock manager information", lminfo }, 3264 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3265 { "panicinfo", NULL, "print panic information", panicinfo }, 3266 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3267 { "pmap", ":[-q]", "print process memory map", pmap }, 3268 { "project", NULL, "display kernel project(s)", project }, 3269 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3270 { "pgrep", "[-x] [-n | -o] pattern", 3271 "pattern match against all processes", pgrep }, 3272 { "ptree", NULL, "print process tree", ptree }, 3273 { "seg", ":", "print address space segment", seg }, 3274 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3275 sysevent}, 3276 { "sysevent_channel", "?", "print sysevent channel database", 3277 sysevent_channel}, 3278 { "sysevent_class_list", ":", "print sysevent class list", 3279 sysevent_class_list}, 3280 { "sysevent_subclass_list", ":", 3281 "print sysevent subclass list", sysevent_subclass_list}, 3282 { "system", NULL, "print contents of /etc/system file", sysfile }, 3283 { "task", NULL, "display kernel task(s)", task }, 3284 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3285 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3286 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3287 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3288 whereopen }, 3289 3290 /* from zone.c */ 3291 { "zone", "?", "display kernel zone(s)", zoneprt }, 3292 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3293 3294 /* from bio.c */ 3295 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3296 3297 /* from contract.c */ 3298 { "contract", "?", "display a contract", cmd_contract }, 3299 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3300 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3301 3302 /* from cpupart.c */ 3303 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3304 3305 /* from cyclic.c */ 3306 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3307 { "cycid", "?", "dump a cyclic id", cycid }, 3308 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3309 { "cyclic", ":", "developer information", cyclic }, 3310 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3311 3312 /* from devinfo.c */ 3313 { "devbindings", "?[-qs] [device-name | major-num]", 3314 "print devinfo nodes bound to device-name or major-num", 3315 devbindings, devinfo_help }, 3316 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3317 devinfo_help }, 3318 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3319 devinfo_audit }, 3320 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3321 devinfo_audit_log }, 3322 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3323 devinfo_audit_node }, 3324 { "devinfo2driver", ":", "find driver name for this devinfo node", 3325 devinfo2driver }, 3326 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3327 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3328 dev2major }, 3329 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3330 dev2minor }, 3331 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3332 devt }, 3333 { "major2name", "?<major-num>", "convert major number to dev name", 3334 major2name }, 3335 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3336 minornodes }, 3337 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3338 modctl2devinfo }, 3339 { "name2major", "<dev-name>", "convert dev name to major number", 3340 name2major }, 3341 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3342 { "softstate", ":<instance>", "retrieve soft-state pointer", 3343 softstate }, 3344 { "devinfo_fm", ":", "devinfo fault managment configuration", 3345 devinfo_fm }, 3346 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3347 devinfo_fmce}, 3348 3349 /* from fm.c */ 3350 { "ereport", "[-v]", "print ereports logged in dump", 3351 ereport }, 3352 3353 /* from findstack.c */ 3354 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3355 { "findstack_debug", NULL, "toggle findstack debugging", 3356 findstack_debug }, 3357 3358 /* from kgrep.c + genunix.c */ 3359 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3360 kgrep_help }, 3361 3362 /* from kmem.c */ 3363 { "allocdby", ":", "given a thread, print its allocated buffers", 3364 allocdby }, 3365 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3366 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3367 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3368 { "kmalog", "?[ fail | slab ]", 3369 "display kmem transaction log and stack traces", kmalog }, 3370 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3371 kmastat }, 3372 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3373 "of the kmem allocator", kmausers, kmausers_help }, 3374 { "kmem_cache", "?[-n name]", 3375 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3376 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3377 "[-B minbinsize]", "display slab usage per kmem cache", 3378 kmem_slabs, kmem_slabs_help }, 3379 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3380 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3381 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3382 kmem_verify }, 3383 { "vmem", "?", "print a vmem_t", vmem }, 3384 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3385 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3386 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3387 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3388 whatis_help }, 3389 { "whatthread", ":[-v]", "print threads whose stack contains the " 3390 "given address", whatthread }, 3391 3392 /* from ldi.c */ 3393 { "ldi_handle", "?[-i]", "display a layered driver handle", 3394 ldi_handle, ldi_handle_help }, 3395 { "ldi_ident", NULL, "display a layered driver identifier", 3396 ldi_ident, ldi_ident_help }, 3397 3398 /* from leaky.c + leaky_subr.c */ 3399 { "findleaks", FINDLEAKS_USAGE, 3400 "search for potential kernel memory leaks", findleaks, 3401 findleaks_help }, 3402 3403 /* from lgrp.c */ 3404 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3405 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3406 3407 /* from log.c */ 3408 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3409 3410 /* from memory.c */ 3411 { "page", "?", "display a summarized page_t", page }, 3412 { "memstat", NULL, "display memory usage summary", memstat }, 3413 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3414 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3415 3416 /* from mmd.c */ 3417 { "multidata", ":[-sv]", "display a summarized multidata_t", 3418 multidata }, 3419 { "pattbl", ":", "display a summarized multidata attribute table", 3420 pattbl }, 3421 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3422 pattr2multidata }, 3423 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3424 pdesc2slab }, 3425 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3426 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3427 slab2multidata }, 3428 3429 /* from modhash.c */ 3430 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3431 "display information about one or all mod_hash structures", 3432 modhash, modhash_help }, 3433 { "modent", ":[-k | -v | -t type]", 3434 "display information about a mod_hash_entry", modent, 3435 modent_help }, 3436 3437 /* from net.c */ 3438 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3439 mi }, 3440 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3441 "show network statistics", netstat }, 3442 { "sonode", "?[-f inet | inet6 | unix | #] " 3443 "[-t stream | dgram | raw | #] [-p #]", 3444 "filter and display sonode", sonode }, 3445 3446 /* from netstack.c */ 3447 { "netstack", "", "show stack instances", netstack }, 3448 3449 /* from nvpair.c */ 3450 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3451 nvpair_print }, 3452 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3453 print_nvlist }, 3454 3455 /* from pg.c */ 3456 { "pg", "?[-q]", "display a pg", pg}, 3457 /* from group.c */ 3458 { "group", "?[-q]", "display a group", group}, 3459 3460 /* from log.c */ 3461 /* from rctl.c */ 3462 { "rctl_dict", "?", "print systemwide default rctl definitions", 3463 rctl_dict }, 3464 { "rctl_list", ":[handle]", "print rctls for the given proc", 3465 rctl_list }, 3466 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3467 rctl }, 3468 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3469 "sequence", rctl_validate }, 3470 3471 /* from sobj.c */ 3472 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3473 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3474 mutex_help }, 3475 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3476 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3477 { "turnstile", "?", "display a turnstile", turnstile }, 3478 3479 /* from stream.c */ 3480 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3481 "print an mblk", mblk_prt, mblk_help }, 3482 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3483 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3484 mblk2dblk }, 3485 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3486 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3487 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3488 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3489 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3490 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3491 "filter and display STREAM queue", queue, queue_help }, 3492 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3493 "filter and display STREAM head", stdata, stdata_help }, 3494 { "str2mate", ":", "print mate of this stream", str2mate }, 3495 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3496 { "stream", ":", "display STREAM", stream }, 3497 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3498 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3499 "filter and display STREAM sync queue", syncq, syncq_help }, 3500 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3501 3502 /* from thread.c */ 3503 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3504 thread_help }, 3505 { "threadlist", "?[-t] [-v [count]]", 3506 "display threads and associated C stack traces", threadlist, 3507 threadlist_help }, 3508 3509 /* from tsd.c */ 3510 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3511 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3512 3513 /* 3514 * typegraph does not work under kmdb, as it requires too much memory 3515 * for its internal data structures. 3516 */ 3517 #ifndef _KMDB 3518 /* from typegraph.c */ 3519 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3520 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3521 findfalse }, 3522 { "typegraph", NULL, "build type graph", typegraph }, 3523 { "istype", ":type", "manually set object type", istype }, 3524 { "notype", ":", "manually clear object type", notype }, 3525 { "whattype", ":", "determine object type", whattype }, 3526 #endif 3527 3528 /* from vfs.c */ 3529 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3530 { "pfiles", ":[-fp]", "print process file information", pfiles, 3531 pfiles_help }, 3532 3533 /* from mdi.c */ 3534 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3535 "and detailed pi_prop list", mdipi }, 3536 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3537 mdiprops }, 3538 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3539 "list all paths", mdiphci }, 3540 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3541 "all phcis", mdivhci }, 3542 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3543 "client links", mdiclient_paths }, 3544 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3545 "phci links", mdiphci_paths }, 3546 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3547 mdiphcis }, 3548 3549 { NULL } 3550 }; 3551 3552 static const mdb_walker_t walkers[] = { 3553 3554 /* from genunix.c */ 3555 { "anon", "given an amp, list of anon structures", 3556 anon_walk_init, anon_walk_step, anon_walk_fini }, 3557 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3558 { "ereportq_dump", "walk list of ereports in dump error queue", 3559 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3560 { "ereportq_pend", "walk list of ereports in pending error queue", 3561 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3562 { "errorq", "walk list of system error queues", 3563 errorq_walk_init, errorq_walk_step, NULL }, 3564 { "errorq_data", "walk pending error queue data buffers", 3565 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3566 { "allfile", "given a proc pointer, list all file pointers", 3567 file_walk_init, allfile_walk_step, file_walk_fini }, 3568 { "file", "given a proc pointer, list of open file pointers", 3569 file_walk_init, file_walk_step, file_walk_fini }, 3570 { "lock_descriptor", "walk lock_descriptor_t structures", 3571 ld_walk_init, ld_walk_step, NULL }, 3572 { "lock_graph", "walk lock graph", 3573 lg_walk_init, lg_walk_step, NULL }, 3574 { "port", "given a proc pointer, list of created event ports", 3575 port_walk_init, port_walk_step, NULL }, 3576 { "portev", "given a port pointer, list of events in the queue", 3577 portev_walk_init, portev_walk_step, portev_walk_fini }, 3578 { "proc", "list of active proc_t structures", 3579 proc_walk_init, proc_walk_step, proc_walk_fini }, 3580 { "projects", "walk a list of kernel projects", 3581 project_walk_init, project_walk_step, NULL }, 3582 { "seg", "given an as, list of segments", 3583 seg_walk_init, avl_walk_step, avl_walk_fini }, 3584 { "sysevent_pend", "walk sysevent pending queue", 3585 sysevent_pend_walk_init, sysevent_walk_step, 3586 sysevent_walk_fini}, 3587 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3588 sysevent_walk_step, sysevent_walk_fini}, 3589 { "sysevent_channel", "walk sysevent channel subscriptions", 3590 sysevent_channel_walk_init, sysevent_channel_walk_step, 3591 sysevent_channel_walk_fini}, 3592 { "sysevent_class_list", "walk sysevent subscription's class list", 3593 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3594 sysevent_class_list_walk_fini}, 3595 { "sysevent_subclass_list", 3596 "walk sysevent subscription's subclass list", 3597 sysevent_subclass_list_walk_init, 3598 sysevent_subclass_list_walk_step, 3599 sysevent_subclass_list_walk_fini}, 3600 { "task", "given a task pointer, walk its processes", 3601 task_walk_init, task_walk_step, NULL }, 3602 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3603 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3604 3605 /* from avl.c */ 3606 { AVL_WALK_NAME, AVL_WALK_DESC, 3607 avl_walk_init, avl_walk_step, avl_walk_fini }, 3608 3609 /* from zone.c */ 3610 { "zone", "walk a list of kernel zones", 3611 zone_walk_init, zone_walk_step, NULL }, 3612 { "zsd", "walk list of zsd entries for a zone", 3613 zsd_walk_init, zsd_walk_step, NULL }, 3614 3615 /* from bio.c */ 3616 { "buf", "walk the bio buf hash", 3617 buf_walk_init, buf_walk_step, buf_walk_fini }, 3618 3619 /* from contract.c */ 3620 { "contract", "walk all contracts, or those of the specified type", 3621 ct_walk_init, generic_walk_step, NULL }, 3622 { "ct_event", "walk events on a contract event queue", 3623 ct_event_walk_init, generic_walk_step, NULL }, 3624 { "ct_listener", "walk contract event queue listeners", 3625 ct_listener_walk_init, generic_walk_step, NULL }, 3626 3627 /* from cpupart.c */ 3628 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3629 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3630 NULL }, 3631 { "cpupart_walk", "walk the set of cpu partitions", 3632 cpupart_walk_init, cpupart_walk_step, NULL }, 3633 3634 /* from ctxop.c */ 3635 { "ctxop", "walk list of context ops on a thread", 3636 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3637 3638 /* from cyclic.c */ 3639 { "cyccpu", "walk per-CPU cyc_cpu structures", 3640 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3641 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3642 cycomni_walk_init, cycomni_walk_step, NULL }, 3643 { "cyctrace", "walk cyclic trace buffer", 3644 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3645 3646 /* from devinfo.c */ 3647 { "binding_hash", "walk all entries in binding hash table", 3648 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3649 { "devinfo", "walk devinfo tree or subtree", 3650 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3651 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3652 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3653 devinfo_audit_log_walk_fini}, 3654 { "devinfo_audit_node", "walk per-devinfo audit history", 3655 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3656 devinfo_audit_node_walk_fini}, 3657 { "devinfo_children", "walk children of devinfo node", 3658 devinfo_children_walk_init, devinfo_children_walk_step, 3659 devinfo_children_walk_fini }, 3660 { "devinfo_parents", "walk ancestors of devinfo node", 3661 devinfo_parents_walk_init, devinfo_parents_walk_step, 3662 devinfo_parents_walk_fini }, 3663 { "devinfo_siblings", "walk siblings of devinfo node", 3664 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3665 { "devi_next", "walk devinfo list", 3666 NULL, devi_next_walk_step, NULL }, 3667 { "devnames", "walk devnames array", 3668 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3669 { "minornode", "given a devinfo node, walk minor nodes", 3670 minornode_walk_init, minornode_walk_step, NULL }, 3671 { "softstate", 3672 "given an i_ddi_soft_state*, list all in-use driver stateps", 3673 soft_state_walk_init, soft_state_walk_step, 3674 NULL, NULL }, 3675 { "softstate_all", 3676 "given an i_ddi_soft_state*, list all driver stateps", 3677 soft_state_walk_init, soft_state_all_walk_step, 3678 NULL, NULL }, 3679 { "devinfo_fmc", 3680 "walk a fault management handle cache active list", 3681 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3682 3683 /* from kmem.c */ 3684 { "allocdby", "given a thread, walk its allocated bufctls", 3685 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3686 { "bufctl", "walk a kmem cache's bufctls", 3687 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3688 { "bufctl_history", "walk the available history of a bufctl", 3689 bufctl_history_walk_init, bufctl_history_walk_step, 3690 bufctl_history_walk_fini }, 3691 { "freedby", "given a thread, walk its freed bufctls", 3692 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3693 { "freectl", "walk a kmem cache's free bufctls", 3694 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3695 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3696 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3697 { "freemem", "walk a kmem cache's free memory", 3698 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3699 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3700 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3701 { "kmem", "walk a kmem cache", 3702 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3703 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3704 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3705 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3706 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3707 { "kmem_log", "walk the kmem transaction log", 3708 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3709 { "kmem_slab", "given a kmem cache, walk its slabs", 3710 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 3711 { "kmem_slab_partial", 3712 "given a kmem cache, walk its partially allocated slabs (min 1)", 3713 kmem_slab_walk_partial_init, combined_walk_step, 3714 combined_walk_fini }, 3715 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3716 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3717 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3718 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3719 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3720 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3721 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3722 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3723 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3724 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3725 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3726 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3727 3728 /* from ldi.c */ 3729 { "ldi_handle", "walk the layered driver handle hash", 3730 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3731 { "ldi_ident", "walk the layered driver identifier hash", 3732 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3733 3734 /* from leaky.c + leaky_subr.c */ 3735 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3736 "stack trace", 3737 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3738 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3739 "leaks w/ same stack trace", 3740 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3741 3742 /* from lgrp.c */ 3743 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3744 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3745 { "lgrptbl", "walk lgroup table", 3746 lgrp_walk_init, lgrp_walk_step, NULL }, 3747 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3748 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3749 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3750 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3751 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3752 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3753 3754 /* from group.c */ 3755 { "group", "walk all elements of a group", 3756 group_walk_init, group_walk_step, NULL }, 3757 3758 /* from list.c */ 3759 { LIST_WALK_NAME, LIST_WALK_DESC, 3760 list_walk_init, list_walk_step, list_walk_fini }, 3761 3762 /* from memory.c */ 3763 { "page", "walk all pages, or those from the specified vnode", 3764 page_walk_init, page_walk_step, page_walk_fini }, 3765 { "memlist", "walk specified memlist", 3766 NULL, memlist_walk_step, NULL }, 3767 { "swapinfo", "walk swapinfo structures", 3768 swap_walk_init, swap_walk_step, NULL }, 3769 3770 /* from mmd.c */ 3771 { "pattr", "walk pattr_t structures", pattr_walk_init, 3772 mmdq_walk_step, mmdq_walk_fini }, 3773 { "pdesc", "walk pdesc_t structures", 3774 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3775 { "pdesc_slab", "walk pdesc_slab_t structures", 3776 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3777 3778 /* from modhash.c */ 3779 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3780 modhash_walk_step, NULL }, 3781 { "modent", "walk list of entries in a given mod_hash", 3782 modent_walk_init, modent_walk_step, modent_walk_fini }, 3783 { "modchain", "walk list of entries in a given mod_hash_entry", 3784 NULL, modchain_walk_step, NULL }, 3785 3786 /* from net.c */ 3787 { "ar", "walk ar_t structures using MI for all stacks", 3788 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 3789 { "icmp", "walk ICMP control structures using MI for all stacks", 3790 mi_payload_walk_init, mi_payload_walk_step, NULL, 3791 &mi_icmp_arg }, 3792 { "ill", "walk ill_t structures using MI for all stacks", 3793 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 3794 3795 { "mi", "given a MI_O, walk the MI", 3796 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3797 { "sonode", "given a sonode, walk its children", 3798 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3799 3800 { "ar_stacks", "walk all the ar_stack_t", 3801 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 3802 { "icmp_stacks", "walk all the icmp_stack_t", 3803 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 3804 { "tcp_stacks", "walk all the tcp_stack_t", 3805 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 3806 { "udp_stacks", "walk all the udp_stack_t", 3807 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 3808 3809 /* from nvpair.c */ 3810 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3811 nvpair_walk_init, nvpair_walk_step, NULL }, 3812 3813 /* from rctl.c */ 3814 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3815 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3816 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3817 rctl_set_walk_step, NULL }, 3818 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3819 rctl_val_walk_init, rctl_val_walk_step }, 3820 3821 /* from sobj.c */ 3822 { "blocked", "walk threads blocked on a given sobj", 3823 blocked_walk_init, blocked_walk_step, NULL }, 3824 { "wchan", "given a wchan, list of blocked threads", 3825 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3826 3827 /* from stream.c */ 3828 { "b_cont", "walk mblk_t list using b_cont", 3829 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3830 { "b_next", "walk mblk_t list using b_next", 3831 mblk_walk_init, b_next_step, mblk_walk_fini }, 3832 { "qlink", "walk queue_t list using q_link", 3833 queue_walk_init, queue_link_step, queue_walk_fini }, 3834 { "qnext", "walk queue_t list using q_next", 3835 queue_walk_init, queue_next_step, queue_walk_fini }, 3836 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3837 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3838 { "readq", "walk read queue side of stdata", 3839 str_walk_init, strr_walk_step, str_walk_fini }, 3840 { "writeq", "walk write queue side of stdata", 3841 str_walk_init, strw_walk_step, str_walk_fini }, 3842 3843 /* from thread.c */ 3844 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3845 deathrow_walk_init, deathrow_walk_step, NULL }, 3846 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3847 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3848 { "cpupart_dispq", 3849 "given a cpupart_t, walk threads in dispatcher queues", 3850 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3851 { "lwp_deathrow", "walk lwp_deathrow", 3852 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3853 { "thread", "global or per-process kthread_t structures", 3854 thread_walk_init, thread_walk_step, thread_walk_fini }, 3855 { "thread_deathrow", "walk threads on thread_deathrow", 3856 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3857 3858 /* from tsd.c */ 3859 { "tsd", "walk list of thread-specific data", 3860 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3861 3862 /* from tsol.c */ 3863 { "tnrh", "walk remote host cache structures", 3864 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3865 { "tnrhtp", "walk remote host template structures", 3866 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3867 3868 /* 3869 * typegraph does not work under kmdb, as it requires too much memory 3870 * for its internal data structures. 3871 */ 3872 #ifndef _KMDB 3873 /* from typegraph.c */ 3874 { "typeconflict", "walk buffers with conflicting type inferences", 3875 typegraph_walk_init, typeconflict_walk_step }, 3876 { "typeunknown", "walk buffers with unknown types", 3877 typegraph_walk_init, typeunknown_walk_step }, 3878 #endif 3879 3880 /* from vfs.c */ 3881 { "vfs", "walk file system list", 3882 vfs_walk_init, vfs_walk_step }, 3883 3884 /* from mdi.c */ 3885 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3886 mdi_pi_client_link_walk_init, 3887 mdi_pi_client_link_walk_step, 3888 mdi_pi_client_link_walk_fini }, 3889 3890 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3891 mdi_pi_phci_link_walk_init, 3892 mdi_pi_phci_link_walk_step, 3893 mdi_pi_phci_link_walk_fini }, 3894 3895 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3896 mdi_phci_ph_next_walk_init, 3897 mdi_phci_ph_next_walk_step, 3898 mdi_phci_ph_next_walk_fini }, 3899 3900 /* from netstack.c */ 3901 { "netstack", "walk a list of kernel netstacks", 3902 netstack_walk_init, netstack_walk_step, NULL }, 3903 3904 { NULL } 3905 }; 3906 3907 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3908 3909 const mdb_modinfo_t * 3910 _mdb_init(void) 3911 { 3912 if (findstack_init() != DCMD_OK) 3913 return (NULL); 3914 3915 kmem_init(); 3916 3917 return (&modinfo); 3918 } 3919 3920 void 3921 _mdb_fini(void) 3922 { 3923 /* 3924 * Force ::findleaks to let go any cached memory 3925 */ 3926 leaky_cleanup(1); 3927 } 3928