xref: /illumos-gate/usr/src/cmd/fm/modules/common/zfs-retire/zfs_retire.c (revision 2aeafac3612e19716bf8164f89c3c9196342979c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2019 Joyent, Inc.
26  */
27 
28 /*
29  * The ZFS retire agent is responsible for managing hot spares across all pools.
30  * When we see a device fault or a device removal, we try to open the associated
31  * pool and look for any hot spares.  We iterate over any available hot spares
32  * and attempt a 'zpool replace' for each one.
33  *
34  * For vdevs diagnosed as faulty, the agent is also responsible for proactively
35  * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
36  */
37 
38 #include <fm/fmd_api.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/fm/protocol.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <libzfs.h>
43 #include <fm/libtopo.h>
44 #include <string.h>
45 
46 typedef struct zfs_retire_repaired {
47 	struct zfs_retire_repaired	*zrr_next;
48 	uint64_t			zrr_pool;
49 	uint64_t			zrr_vdev;
50 } zfs_retire_repaired_t;
51 
52 typedef struct zfs_retire_data {
53 	libzfs_handle_t			*zrd_hdl;
54 	zfs_retire_repaired_t		*zrd_repaired;
55 } zfs_retire_data_t;
56 
57 static void
58 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
59 {
60 	zfs_retire_repaired_t *zrp;
61 
62 	while ((zrp = zdp->zrd_repaired) != NULL) {
63 		zdp->zrd_repaired = zrp->zrr_next;
64 		fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
65 	}
66 }
67 
68 /*
69  * Find a pool with a matching GUID.
70  */
71 typedef struct find_cbdata {
72 	uint64_t	cb_guid;
73 	const char	*cb_fru;
74 	zpool_handle_t	*cb_zhp;
75 	nvlist_t	*cb_vdev;
76 } find_cbdata_t;
77 
78 static int
79 find_pool(zpool_handle_t *zhp, void *data)
80 {
81 	find_cbdata_t *cbp = data;
82 
83 	if (cbp->cb_guid ==
84 	    zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
85 		cbp->cb_zhp = zhp;
86 		return (1);
87 	}
88 
89 	zpool_close(zhp);
90 	return (0);
91 }
92 
93 /*
94  * Find a vdev within a tree with a matching GUID.
95  */
96 static nvlist_t *
97 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, const char *search_fru,
98     uint64_t search_guid)
99 {
100 	uint64_t guid;
101 	nvlist_t **child;
102 	uint_t c, children;
103 	nvlist_t *ret;
104 	char *fru;
105 
106 	if (search_fru != NULL) {
107 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &fru) == 0 &&
108 		    libzfs_fru_compare(zhdl, fru, search_fru))
109 			return (nv);
110 	} else {
111 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
112 		    guid == search_guid)
113 			return (nv);
114 	}
115 
116 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
117 	    &child, &children) != 0)
118 		return (NULL);
119 
120 	for (c = 0; c < children; c++) {
121 		if ((ret = find_vdev(zhdl, child[c], search_fru,
122 		    search_guid)) != NULL)
123 			return (ret);
124 	}
125 
126 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
127 	    &child, &children) == 0) {
128 		for (c = 0; c < children; c++) {
129 			if ((ret = find_vdev(zhdl, child[c], search_fru,
130 			    search_guid)) != NULL)
131 				return (ret);
132 		}
133 	}
134 
135 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
136 	    &child, &children) == 0) {
137 		for (c = 0; c < children; c++) {
138 			if ((ret = find_vdev(zhdl, child[c], search_fru,
139 			    search_guid)) != NULL)
140 				return (ret);
141 		}
142 	}
143 
144 	return (NULL);
145 }
146 
147 /*
148  * Given a (pool, vdev) GUID pair, find the matching pool and vdev.
149  */
150 static zpool_handle_t *
151 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
152     nvlist_t **vdevp)
153 {
154 	find_cbdata_t cb;
155 	zpool_handle_t *zhp;
156 	nvlist_t *config, *nvroot;
157 
158 	/*
159 	 * Find the corresponding pool and make sure the vdev still exists.
160 	 */
161 	cb.cb_guid = pool_guid;
162 	if (zpool_iter(zhdl, find_pool, &cb) != 1)
163 		return (NULL);
164 
165 	zhp = cb.cb_zhp;
166 	config = zpool_get_config(zhp, NULL);
167 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
168 	    &nvroot) != 0) {
169 		zpool_close(zhp);
170 		return (NULL);
171 	}
172 
173 	if (vdev_guid != 0) {
174 		if ((*vdevp = find_vdev(zhdl, nvroot, NULL,
175 		    vdev_guid)) == NULL) {
176 			zpool_close(zhp);
177 			return (NULL);
178 		}
179 	}
180 
181 	return (zhp);
182 }
183 
184 static int
185 search_pool(zpool_handle_t *zhp, void *data)
186 {
187 	find_cbdata_t *cbp = data;
188 	nvlist_t *config;
189 	nvlist_t *nvroot;
190 
191 	config = zpool_get_config(zhp, NULL);
192 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
193 	    &nvroot) != 0) {
194 		zpool_close(zhp);
195 		return (0);
196 	}
197 
198 	if ((cbp->cb_vdev = find_vdev(zpool_get_handle(zhp), nvroot,
199 	    cbp->cb_fru, 0)) != NULL) {
200 		cbp->cb_zhp = zhp;
201 		return (1);
202 	}
203 
204 	zpool_close(zhp);
205 	return (0);
206 }
207 
208 /*
209  * Given a FRU FMRI, find the matching pool and vdev.
210  */
211 static zpool_handle_t *
212 find_by_fru(libzfs_handle_t *zhdl, const char *fru, nvlist_t **vdevp)
213 {
214 	find_cbdata_t cb;
215 
216 	cb.cb_fru = fru;
217 	cb.cb_zhp = NULL;
218 	if (zpool_iter(zhdl, search_pool, &cb) != 1)
219 		return (NULL);
220 
221 	*vdevp = cb.cb_vdev;
222 	return (cb.cb_zhp);
223 }
224 
225 /*
226  * Given a vdev, attempt to replace it with every known spare until one
227  * succeeds.
228  */
229 static void
230 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
231 {
232 	nvlist_t *config, *nvroot, *replacement;
233 	nvlist_t **spares;
234 	uint_t s, nspares;
235 	char *dev_name;
236 	zprop_source_t source;
237 	int ashift;
238 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
239 	libzfs_handle_t *zhdl = zdp->zrd_hdl;
240 
241 	config = zpool_get_config(zhp, NULL);
242 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
243 	    &nvroot) != 0)
244 		return;
245 
246 	/*
247 	 * Find out if there are any hot spares available in the pool.
248 	 */
249 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
250 	    &spares, &nspares) != 0)
251 		return;
252 
253 	/*
254 	 * lookup "ashift" pool property, we may need it for the replacement
255 	 */
256 	ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
257 
258 	replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
259 
260 	(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
261 	    VDEV_TYPE_ROOT);
262 
263 	dev_name = zpool_vdev_name(zhdl, zhp, vdev, B_FALSE);
264 
265 	/*
266 	 * Try to replace each spare, ending when we successfully
267 	 * replace it.
268 	 */
269 	for (s = 0; s < nspares; s++) {
270 		char *spare_name;
271 
272 		if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
273 		    &spare_name) != 0)
274 			continue;
275 
276 		/* if set, add the "ashift" pool property to the spare nvlist */
277 		if (source != ZPROP_SRC_DEFAULT)
278 			(void) nvlist_add_uint64(spares[s],
279 			    ZPOOL_CONFIG_ASHIFT, ashift);
280 
281 		(void) nvlist_add_nvlist_array(replacement,
282 		    ZPOOL_CONFIG_CHILDREN, &spares[s], 1);
283 
284 		if (zpool_vdev_attach(zhp, dev_name, spare_name,
285 		    replacement, B_TRUE) == 0)
286 			break;
287 	}
288 
289 	free(dev_name);
290 	nvlist_free(replacement);
291 }
292 
293 /*
294  * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
295  * ASRU is now usable.  ZFS has found the device to be present and
296  * functioning.
297  */
298 /*ARGSUSED*/
299 void
300 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
301 {
302 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
303 	zfs_retire_repaired_t *zrp;
304 	uint64_t pool_guid, vdev_guid;
305 	nvlist_t *asru;
306 
307 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
308 	    &pool_guid) != 0 || nvlist_lookup_uint64(nvl,
309 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
310 		return;
311 
312 	/*
313 	 * Before checking the state of the ASRU, go through and see if we've
314 	 * already made an attempt to repair this ASRU.  This list is cleared
315 	 * whenever we receive any kind of list event, and is designed to
316 	 * prevent us from generating a feedback loop when we attempt repairs
317 	 * against a faulted pool.  The problem is that checking the unusable
318 	 * state of the ASRU can involve opening the pool, which can post
319 	 * statechange events but otherwise leave the pool in the faulted
320 	 * state.  This list allows us to detect when a statechange event is
321 	 * due to our own request.
322 	 */
323 	for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
324 		if (zrp->zrr_pool == pool_guid &&
325 		    zrp->zrr_vdev == vdev_guid)
326 			return;
327 	}
328 
329 	asru = fmd_nvl_alloc(hdl, FMD_SLEEP);
330 
331 	(void) nvlist_add_uint8(asru, FM_VERSION, ZFS_SCHEME_VERSION0);
332 	(void) nvlist_add_string(asru, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
333 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_POOL, pool_guid);
334 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_VDEV, vdev_guid);
335 
336 	/*
337 	 * We explicitly check for the unusable state here to make sure we
338 	 * aren't responding to a transient state change.  As part of opening a
339 	 * vdev, it's possible to see the 'statechange' event, only to be
340 	 * followed by a vdev failure later.  If we don't check the current
341 	 * state of the vdev (or pool) before marking it repaired, then we risk
342 	 * generating spurious repair events followed immediately by the same
343 	 * diagnosis.
344 	 *
345 	 * This assumes that the ZFS scheme code associated unusable (i.e.
346 	 * isolated) with its own definition of faulty state.  In the case of a
347 	 * DEGRADED leaf vdev (due to checksum errors), this is not the case.
348 	 * This works, however, because the transient state change is not
349 	 * posted in this case.  This could be made more explicit by not
350 	 * relying on the scheme's unusable callback and instead directly
351 	 * checking the vdev state, where we could correctly account for
352 	 * DEGRADED state.
353 	 */
354 	if (!fmd_nvl_fmri_unusable(hdl, asru) && fmd_nvl_fmri_has_fault(hdl,
355 	    asru, FMD_HAS_FAULT_ASRU, NULL)) {
356 		topo_hdl_t *thp;
357 		char *fmri = NULL;
358 		int err;
359 
360 		thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
361 		if (topo_fmri_nvl2str(thp, asru, &fmri, &err) == 0)
362 			(void) fmd_repair_asru(hdl, fmri);
363 		fmd_hdl_topo_rele(hdl, thp);
364 
365 		topo_hdl_strfree(thp, fmri);
366 	}
367 	nvlist_free(asru);
368 	zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
369 	zrp->zrr_next = zdp->zrd_repaired;
370 	zrp->zrr_pool = pool_guid;
371 	zrp->zrr_vdev = vdev_guid;
372 	zdp->zrd_repaired = zrp;
373 }
374 
375 /*ARGSUSED*/
376 static void
377 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
378     const char *class)
379 {
380 	uint64_t pool_guid, vdev_guid;
381 	zpool_handle_t *zhp;
382 	nvlist_t *resource, *fault, *fru;
383 	nvlist_t **faults;
384 	uint_t f, nfaults;
385 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
386 	libzfs_handle_t *zhdl = zdp->zrd_hdl;
387 	boolean_t fault_device, degrade_device;
388 	boolean_t is_repair;
389 	char *scheme, *fmri;
390 	nvlist_t *vdev;
391 	char *uuid;
392 	int repair_done = 0;
393 	boolean_t retire;
394 	boolean_t is_disk;
395 	vdev_aux_t aux;
396 	topo_hdl_t *thp;
397 	int err;
398 
399 	/*
400 	 * If this is a resource notifying us of device removal, then simply
401 	 * check for an available spare and continue.
402 	 */
403 	if (strcmp(class, "resource.fs.zfs.removed") == 0) {
404 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
405 		    &pool_guid) != 0 ||
406 		    nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
407 		    &vdev_guid) != 0)
408 			return;
409 
410 		if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
411 		    &vdev)) == NULL)
412 			return;
413 
414 		if (fmd_prop_get_int32(hdl, "spare_on_remove"))
415 			replace_with_spare(hdl, zhp, vdev);
416 		zpool_close(zhp);
417 		return;
418 	}
419 
420 	if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
421 		return;
422 
423 	if (strcmp(class, "resource.fs.zfs.statechange") == 0 ||
424 	    strcmp(class,
425 	    "resource.sysevent.EC_zfs.ESC_ZFS_vdev_remove") == 0) {
426 		zfs_vdev_repair(hdl, nvl);
427 		return;
428 	}
429 
430 	zfs_retire_clear_data(hdl, zdp);
431 
432 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
433 		is_repair = B_TRUE;
434 	else
435 		is_repair = B_FALSE;
436 
437 	/*
438 	 * We subscribe to zfs faults as well as all repair events.
439 	 */
440 	if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
441 	    &faults, &nfaults) != 0)
442 		return;
443 
444 	for (f = 0; f < nfaults; f++) {
445 		fault = faults[f];
446 
447 		fault_device = B_FALSE;
448 		degrade_device = B_FALSE;
449 		is_disk = B_FALSE;
450 
451 		if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
452 		    &retire) == 0 && retire == 0)
453 			continue;
454 
455 		if (fmd_nvl_class_match(hdl, fault,
456 		    "fault.io.disk.ssm-wearout") &&
457 		    fmd_prop_get_int32(hdl, "ssm_wearout_skip_retire") ==
458 		    FMD_B_TRUE) {
459 			fmd_hdl_debug(hdl, "zfs-retire: ignoring SSM fault");
460 			continue;
461 		}
462 
463 		/*
464 		 * While we subscribe to fault.fs.zfs.*, we only take action
465 		 * for faults targeting a specific vdev (open failure or SERD
466 		 * failure).  We also subscribe to fault.io.* events, so that
467 		 * faulty disks will be faulted in the ZFS configuration.
468 		 */
469 		if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
470 			fault_device = B_TRUE;
471 		} else if (fmd_nvl_class_match(hdl, fault,
472 		    "fault.fs.zfs.vdev.checksum")) {
473 			degrade_device = B_TRUE;
474 		} else if (fmd_nvl_class_match(hdl, fault,
475 		    "fault.fs.zfs.device")) {
476 			fault_device = B_FALSE;
477 		} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
478 			is_disk = B_TRUE;
479 			fault_device = B_TRUE;
480 		} else {
481 			continue;
482 		}
483 
484 		if (is_disk) {
485 			/*
486 			 * This is a disk fault.  Lookup the FRU, convert it to
487 			 * an FMRI string, and attempt to find a matching vdev.
488 			 */
489 			if (nvlist_lookup_nvlist(fault, FM_FAULT_FRU,
490 			    &fru) != 0 ||
491 			    nvlist_lookup_string(fru, FM_FMRI_SCHEME,
492 			    &scheme) != 0)
493 				continue;
494 
495 			if (strcmp(scheme, FM_FMRI_SCHEME_HC) != 0)
496 				continue;
497 
498 			thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
499 			if (topo_fmri_nvl2str(thp, fru, &fmri, &err) != 0) {
500 				fmd_hdl_topo_rele(hdl, thp);
501 				continue;
502 			}
503 
504 			zhp = find_by_fru(zhdl, fmri, &vdev);
505 			topo_hdl_strfree(thp, fmri);
506 			fmd_hdl_topo_rele(hdl, thp);
507 
508 			if (zhp == NULL)
509 				continue;
510 
511 			(void) nvlist_lookup_uint64(vdev,
512 			    ZPOOL_CONFIG_GUID, &vdev_guid);
513 			aux = VDEV_AUX_EXTERNAL;
514 		} else {
515 			/*
516 			 * This is a ZFS fault.  Lookup the resource, and
517 			 * attempt to find the matching vdev.
518 			 */
519 			if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
520 			    &resource) != 0 ||
521 			    nvlist_lookup_string(resource, FM_FMRI_SCHEME,
522 			    &scheme) != 0)
523 				continue;
524 
525 			if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
526 				continue;
527 
528 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
529 			    &pool_guid) != 0)
530 				continue;
531 
532 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
533 			    &vdev_guid) != 0) {
534 				if (is_repair)
535 					vdev_guid = 0;
536 				else
537 					continue;
538 			}
539 
540 			if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
541 			    &vdev)) == NULL)
542 				continue;
543 
544 			aux = VDEV_AUX_ERR_EXCEEDED;
545 		}
546 
547 		if (vdev_guid == 0) {
548 			/*
549 			 * For pool-level repair events, clear the entire pool.
550 			 */
551 			(void) zpool_clear(zhp, NULL, NULL);
552 			zpool_close(zhp);
553 			continue;
554 		}
555 
556 		/*
557 		 * If this is a repair event, then mark the vdev as repaired and
558 		 * continue.
559 		 */
560 		if (is_repair) {
561 			repair_done = 1;
562 			(void) zpool_vdev_clear(zhp, vdev_guid);
563 			zpool_close(zhp);
564 			continue;
565 		}
566 
567 		/*
568 		 * Actively fault the device if needed.
569 		 */
570 		if (fault_device)
571 			(void) zpool_vdev_fault(zhp, vdev_guid, aux);
572 		if (degrade_device)
573 			(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
574 
575 		/*
576 		 * Attempt to substitute a hot spare.
577 		 */
578 		replace_with_spare(hdl, zhp, vdev);
579 		zpool_close(zhp);
580 	}
581 
582 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
583 	    nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
584 		fmd_case_uuresolved(hdl, uuid);
585 }
586 
587 static const fmd_hdl_ops_t fmd_ops = {
588 	zfs_retire_recv,	/* fmdo_recv */
589 	NULL,			/* fmdo_timeout */
590 	NULL,			/* fmdo_close */
591 	NULL,			/* fmdo_stats */
592 	NULL,			/* fmdo_gc */
593 };
594 
595 static const fmd_prop_t fmd_props[] = {
596 	{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
597 	{ "ssm_wearout_skip_retire", FMD_TYPE_BOOL, "true"},
598 	{ NULL, 0, NULL }
599 };
600 
601 static const fmd_hdl_info_t fmd_info = {
602 	"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
603 };
604 
605 void
606 _fmd_init(fmd_hdl_t *hdl)
607 {
608 	zfs_retire_data_t *zdp;
609 	libzfs_handle_t *zhdl;
610 
611 	if ((zhdl = libzfs_init()) == NULL)
612 		return;
613 
614 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
615 		libzfs_fini(zhdl);
616 		return;
617 	}
618 
619 	zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
620 	zdp->zrd_hdl = zhdl;
621 
622 	fmd_hdl_setspecific(hdl, zdp);
623 }
624 
625 void
626 _fmd_fini(fmd_hdl_t *hdl)
627 {
628 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
629 
630 	if (zdp != NULL) {
631 		zfs_retire_clear_data(hdl, zdp);
632 		libzfs_fini(zdp->zrd_hdl);
633 		fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
634 	}
635 }
636