1 /* $NetBSD: mkfs.c,v 1.22 2011/10/09 22:30:13 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 2002 Networks Associates Technology, Inc. 7 * All rights reserved. 8 * 9 * This software was developed for the FreeBSD Project by Marshall 10 * Kirk McKusick and Network Associates Laboratories, the Security 11 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 12 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 13 * research program 14 * 15 * Copyright (c) 1980, 1989, 1993 16 * The Regents of the University of California. All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #include <sys/param.h> 44 #include <sys/time.h> 45 #include <sys/resource.h> 46 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <unistd.h> 51 #include <errno.h> 52 #include <util.h> 53 54 #include "makefs.h" 55 #include "ffs.h" 56 57 #include <ufs/ufs/dinode.h> 58 #include <ufs/ffs/fs.h> 59 60 #include "ffs/ufs_bswap.h" 61 #include "ffs/ufs_inode.h" 62 #include "ffs/ffs_extern.h" 63 #include "ffs/newfs_extern.h" 64 65 #ifndef BBSIZE 66 #define BBSIZE 8192 /* size of boot area, with label */ 67 #endif 68 69 static void initcg(uint32_t, time_t, const fsinfo_t *); 70 static int ilog2(int); 71 72 static int count_digits(int); 73 74 /* 75 * make file system for cylinder-group style file systems 76 */ 77 #define UMASK 0755 78 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 79 80 /* 81 * The definition of "struct cg" used to contain an extra field at the end 82 * to represent the variable-length data that followed the fixed structure. 83 * This had the effect of artificially limiting the number of blocks that 84 * newfs would put in a CG, since newfs thought that the fixed-size header 85 * was bigger than it really was. When we started validating that the CG 86 * header data actually fit into one fs block, the placeholder field caused 87 * a problem because it caused struct cg to be a different size depending on 88 * platform. The placeholder field was later removed, but this caused a 89 * backward compatibility problem with older binaries that still thought 90 * struct cg was larger, and a new file system could fail validation if 91 * viewed by the older binaries. To avoid this compatibility problem, we 92 * now artificially reduce the amount of space that the variable-length data 93 * can use such that new file systems will pass validation by older binaries. 94 */ 95 #define CGSIZEFUDGE 8 96 97 static union { 98 struct fs fs; 99 char pad[SBLOCKSIZE]; 100 } fsun; 101 #define sblock fsun.fs 102 103 static union { 104 struct cg cg; 105 char pad[FFS_MAXBSIZE]; 106 } cgun; 107 #define acg cgun.cg 108 109 static char *iobuf; 110 static int iobufsize; 111 112 static char writebuf[FFS_MAXBSIZE]; 113 114 static int Oflag; /* format as an 4.3BSD file system */ 115 static int64_t fssize; /* file system size */ 116 static int sectorsize; /* bytes/sector */ 117 static int fsize; /* fragment size */ 118 static int bsize; /* block size */ 119 static int maxbsize; /* maximum clustering */ 120 static int maxblkspercg; 121 static int minfree; /* free space threshold */ 122 static int opt; /* optimization preference (space or time) */ 123 static int density; /* number of bytes per inode */ 124 static int maxcontig; /* max contiguous blocks to allocate */ 125 static int maxbpg; /* maximum blocks per file in a cyl group */ 126 static int bbsize; /* boot block size */ 127 static int sbsize; /* superblock size */ 128 static int avgfilesize; /* expected average file size */ 129 static int avgfpdir; /* expected number of files per directory */ 130 131 struct fs * 132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp) 133 { 134 int fragsperinode, optimalfpg, origdensity, mindensity; 135 int minfpg, lastminfpg; 136 int32_t csfrags; 137 uint32_t i, cylno; 138 long long sizepb; 139 ino_t maxinum; 140 int minfragsperinode; /* minimum ratio of frags to inodes */ 141 void *space; 142 int size; 143 int nprintcols, printcolwidth; 144 ffs_opt_t *ffs_opts = fsopts->fs_specific; 145 146 Oflag = ffs_opts->version; 147 fssize = fsopts->size / fsopts->sectorsize; 148 sectorsize = fsopts->sectorsize; 149 fsize = ffs_opts->fsize; 150 bsize = ffs_opts->bsize; 151 maxbsize = ffs_opts->maxbsize; 152 maxblkspercg = ffs_opts->maxblkspercg; 153 minfree = ffs_opts->minfree; 154 opt = ffs_opts->optimization; 155 density = ffs_opts->density; 156 maxcontig = ffs_opts->maxcontig; 157 maxbpg = ffs_opts->maxbpg; 158 avgfilesize = ffs_opts->avgfilesize; 159 avgfpdir = ffs_opts->avgfpdir; 160 bbsize = BBSIZE; 161 sbsize = SBLOCKSIZE; 162 163 strlcpy((char *)sblock.fs_volname, ffs_opts->label, 164 sizeof(sblock.fs_volname)); 165 166 if (Oflag == 0) { 167 sblock.fs_old_inodefmt = FS_42INODEFMT; 168 sblock.fs_maxsymlinklen = 0; 169 sblock.fs_old_flags = 0; 170 } else { 171 sblock.fs_old_inodefmt = FS_44INODEFMT; 172 sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN : 173 UFS2_MAXSYMLINKLEN); 174 sblock.fs_old_flags = FS_FLAGS_UPDATED; 175 sblock.fs_flags = 0; 176 } 177 /* 178 * Validate the given file system size. 179 * Verify that its last block can actually be accessed. 180 * Convert to file system fragment sized units. 181 */ 182 if (fssize <= 0) { 183 printf("preposterous size %lld\n", (long long)fssize); 184 exit(13); 185 } 186 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 187 188 /* 189 * collect and verify the filesystem density info 190 */ 191 sblock.fs_avgfilesize = avgfilesize; 192 sblock.fs_avgfpdir = avgfpdir; 193 if (sblock.fs_avgfilesize <= 0) 194 printf("illegal expected average file size %d\n", 195 sblock.fs_avgfilesize), exit(14); 196 if (sblock.fs_avgfpdir <= 0) 197 printf("illegal expected number of files per directory %d\n", 198 sblock.fs_avgfpdir), exit(15); 199 /* 200 * collect and verify the block and fragment sizes 201 */ 202 sblock.fs_bsize = bsize; 203 sblock.fs_fsize = fsize; 204 if (!POWEROF2(sblock.fs_bsize)) { 205 printf("block size must be a power of 2, not %d\n", 206 sblock.fs_bsize); 207 exit(16); 208 } 209 if (!POWEROF2(sblock.fs_fsize)) { 210 printf("fragment size must be a power of 2, not %d\n", 211 sblock.fs_fsize); 212 exit(17); 213 } 214 if (sblock.fs_fsize < sectorsize) { 215 printf("fragment size %d is too small, minimum is %d\n", 216 sblock.fs_fsize, sectorsize); 217 exit(18); 218 } 219 if (sblock.fs_bsize < MINBSIZE) { 220 printf("block size %d is too small, minimum is %d\n", 221 sblock.fs_bsize, MINBSIZE); 222 exit(19); 223 } 224 if (sblock.fs_bsize > FFS_MAXBSIZE) { 225 printf("block size %d is too large, maximum is %d\n", 226 sblock.fs_bsize, FFS_MAXBSIZE); 227 exit(19); 228 } 229 if (sblock.fs_bsize < sblock.fs_fsize) { 230 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 231 sblock.fs_bsize, sblock.fs_fsize); 232 exit(20); 233 } 234 235 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 236 sblock.fs_maxbsize = sblock.fs_bsize; 237 printf("Extent size set to %d\n", sblock.fs_maxbsize); 238 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 239 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 240 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 241 } else { 242 sblock.fs_maxbsize = maxbsize; 243 } 244 sblock.fs_maxcontig = maxcontig; 245 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 246 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 247 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 248 } 249 250 if (sblock.fs_maxcontig > 1) 251 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 252 253 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 254 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 255 sblock.fs_qbmask = ~sblock.fs_bmask; 256 sblock.fs_qfmask = ~sblock.fs_fmask; 257 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 258 sblock.fs_bshift++; 259 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 260 sblock.fs_fshift++; 261 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 262 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 263 sblock.fs_fragshift++; 264 if (sblock.fs_frag > MAXFRAG) { 265 printf("fragment size %d is too small, " 266 "minimum with block size %d is %d\n", 267 sblock.fs_fsize, sblock.fs_bsize, 268 sblock.fs_bsize / MAXFRAG); 269 exit(21); 270 } 271 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 272 sblock.fs_size = sblock.fs_providersize = fssize = 273 dbtofsb(&sblock, fssize); 274 275 if (Oflag <= 1) { 276 sblock.fs_magic = FS_UFS1_MAGIC; 277 sblock.fs_sblockloc = SBLOCK_UFS1; 278 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 279 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 280 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 281 sizeof (ufs1_daddr_t)); 282 sblock.fs_old_inodefmt = FS_44INODEFMT; 283 sblock.fs_old_cgoffset = 0; 284 sblock.fs_old_cgmask = 0xffffffff; 285 sblock.fs_old_size = sblock.fs_size; 286 sblock.fs_old_rotdelay = 0; 287 sblock.fs_old_rps = 60; 288 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 289 sblock.fs_old_cpg = 1; 290 sblock.fs_old_interleave = 1; 291 sblock.fs_old_trackskew = 0; 292 sblock.fs_old_cpc = 0; 293 sblock.fs_old_postblformat = 1; 294 sblock.fs_old_nrpos = 1; 295 } else { 296 sblock.fs_magic = FS_UFS2_MAGIC; 297 sblock.fs_sblockloc = SBLOCK_UFS2; 298 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 299 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 300 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 301 sizeof (ufs2_daddr_t)); 302 if (ffs_opts->softupdates == 1) 303 sblock.fs_flags |= FS_DOSOFTDEP; 304 } 305 306 sblock.fs_sblkno = 307 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 308 sblock.fs_frag); 309 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 310 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 311 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 312 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 313 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 314 sizepb *= NINDIR(&sblock); 315 sblock.fs_maxfilesize += sizepb; 316 } 317 318 /* 319 * Calculate the number of blocks to put into each cylinder group. 320 * 321 * This algorithm selects the number of blocks per cylinder 322 * group. The first goal is to have at least enough data blocks 323 * in each cylinder group to meet the density requirement. Once 324 * this goal is achieved we try to expand to have at least 325 * 1 cylinder group. Once this goal is achieved, we pack as 326 * many blocks into each cylinder group map as will fit. 327 * 328 * We start by calculating the smallest number of blocks that we 329 * can put into each cylinder group. If this is too big, we reduce 330 * the density until it fits. 331 */ 332 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 333 minfragsperinode = 1 + fssize / maxinum; 334 mindensity = minfragsperinode * fsize; 335 if (density == 0) 336 density = MAX(2, minfragsperinode) * fsize; 337 if (density < mindensity) { 338 origdensity = density; 339 density = mindensity; 340 fprintf(stderr, "density increased from %d to %d\n", 341 origdensity, density); 342 } 343 origdensity = density; 344 if (!ffs_opts->min_inodes) 345 density = MIN(density, MAX(2, minfragsperinode) * fsize); 346 for (;;) { 347 fragsperinode = MAX(numfrags(&sblock, density), 1); 348 minfpg = fragsperinode * INOPB(&sblock); 349 if (minfpg > sblock.fs_size) 350 minfpg = sblock.fs_size; 351 sblock.fs_ipg = INOPB(&sblock); 352 sblock.fs_fpg = roundup(sblock.fs_iblkno + 353 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 354 if (sblock.fs_fpg < minfpg) 355 sblock.fs_fpg = minfpg; 356 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 357 INOPB(&sblock)); 358 sblock.fs_fpg = roundup(sblock.fs_iblkno + 359 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 360 if (sblock.fs_fpg < minfpg) 361 sblock.fs_fpg = minfpg; 362 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 363 INOPB(&sblock)); 364 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 365 CGSIZEFUDGE) 366 break; 367 density -= sblock.fs_fsize; 368 } 369 if (density != origdensity) 370 printf("density reduced from %d to %d\n", origdensity, density); 371 372 if (maxblkspercg <= 0 || maxblkspercg >= fssize) 373 maxblkspercg = fssize - 1; 374 /* 375 * Start packing more blocks into the cylinder group until 376 * it cannot grow any larger, the number of cylinder groups 377 * drops below 1, or we reach the size requested. 378 */ 379 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 380 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 381 INOPB(&sblock)); 382 if (sblock.fs_size / sblock.fs_fpg < 1) 383 break; 384 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 385 CGSIZEFUDGE) 386 continue; 387 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 388 CGSIZEFUDGE) 389 break; 390 sblock.fs_fpg -= sblock.fs_frag; 391 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 392 INOPB(&sblock)); 393 break; 394 } 395 /* 396 * Check to be sure that the last cylinder group has enough blocks 397 * to be viable. If it is too small, reduce the number of blocks 398 * per cylinder group which will have the effect of moving more 399 * blocks into the last cylinder group. 400 */ 401 optimalfpg = sblock.fs_fpg; 402 for (;;) { 403 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 404 lastminfpg = roundup(sblock.fs_iblkno + 405 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 406 if (sblock.fs_size < lastminfpg) { 407 printf("Filesystem size %lld < minimum size of %d\n", 408 (long long)sblock.fs_size, lastminfpg); 409 exit(28); 410 } 411 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 412 sblock.fs_size % sblock.fs_fpg == 0) 413 break; 414 sblock.fs_fpg -= sblock.fs_frag; 415 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 416 INOPB(&sblock)); 417 } 418 if (optimalfpg != sblock.fs_fpg) 419 printf("Reduced frags per cylinder group from %d to %d %s\n", 420 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 421 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 422 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 423 if (Oflag <= 1) { 424 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 425 sblock.fs_old_nsect = sblock.fs_old_spc; 426 sblock.fs_old_npsect = sblock.fs_old_spc; 427 sblock.fs_old_ncyl = sblock.fs_ncg; 428 } 429 430 /* 431 * fill in remaining fields of the super block 432 */ 433 sblock.fs_csaddr = cgdmin(&sblock, 0); 434 sblock.fs_cssize = 435 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 436 437 /* 438 * Setup memory for temporary in-core cylgroup summaries. 439 * Cribbed from ffs_mountfs(). 440 */ 441 size = sblock.fs_cssize; 442 if (sblock.fs_contigsumsize > 0) 443 size += sblock.fs_ncg * sizeof(int32_t); 444 space = ecalloc(1, size); 445 sblock.fs_si = ecalloc(1, sizeof(struct fs_summary_info)); 446 sblock.fs_csp = space; 447 space = (char *)space + sblock.fs_cssize; 448 if (sblock.fs_contigsumsize > 0) { 449 int32_t *lp; 450 451 sblock.fs_maxcluster = lp = space; 452 for (i = 0; i < sblock.fs_ncg; i++) 453 *lp++ = sblock.fs_contigsumsize; 454 } 455 456 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 457 if (sblock.fs_sbsize > SBLOCKSIZE) 458 sblock.fs_sbsize = SBLOCKSIZE; 459 sblock.fs_minfree = minfree; 460 sblock.fs_maxcontig = maxcontig; 461 sblock.fs_maxbpg = maxbpg; 462 sblock.fs_optim = opt; 463 sblock.fs_cgrotor = 0; 464 sblock.fs_pendingblocks = 0; 465 sblock.fs_pendinginodes = 0; 466 sblock.fs_cstotal.cs_ndir = 0; 467 sblock.fs_cstotal.cs_nbfree = 0; 468 sblock.fs_cstotal.cs_nifree = 0; 469 sblock.fs_cstotal.cs_nffree = 0; 470 sblock.fs_fmod = 0; 471 sblock.fs_ronly = 0; 472 sblock.fs_state = 0; 473 sblock.fs_clean = FS_ISCLEAN; 474 sblock.fs_ronly = 0; 475 sblock.fs_id[0] = tstamp; 476 sblock.fs_id[1] = random(); 477 sblock.fs_fsmnt[0] = '\0'; 478 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 479 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 480 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 481 sblock.fs_cstotal.cs_nbfree = 482 fragstoblks(&sblock, sblock.fs_dsize) - 483 howmany(csfrags, sblock.fs_frag); 484 sblock.fs_cstotal.cs_nffree = 485 fragnum(&sblock, sblock.fs_size) + 486 (fragnum(&sblock, csfrags) > 0 ? 487 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 488 sblock.fs_cstotal.cs_nifree = 489 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 490 sblock.fs_cstotal.cs_ndir = 0; 491 sblock.fs_dsize -= csfrags; 492 sblock.fs_time = tstamp; 493 if (Oflag <= 1) { 494 sblock.fs_old_time = tstamp; 495 sblock.fs_old_dsize = sblock.fs_dsize; 496 sblock.fs_old_csaddr = sblock.fs_csaddr; 497 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 498 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 499 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 500 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 501 } 502 /* 503 * Dump out summary information about file system. 504 */ 505 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 506 printf("%s: %.1fMB (%lld sectors) block size %d, " 507 "fragment size %d\n", 508 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 509 (long long)fsbtodb(&sblock, sblock.fs_size), 510 sblock.fs_bsize, sblock.fs_fsize); 511 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 512 "%d inodes.\n", 513 sblock.fs_ncg, 514 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 515 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 516 #undef B2MBFACTOR 517 /* 518 * Now determine how wide each column will be, and calculate how 519 * many columns will fit in a 76 char line. 76 is the width of the 520 * subwindows in sysinst. 521 */ 522 printcolwidth = count_digits( 523 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 524 nprintcols = 76 / (printcolwidth + 2); 525 526 /* 527 * allocate space for superblock, cylinder group map, and 528 * two sets of inode blocks. 529 */ 530 if (sblock.fs_bsize < SBLOCKSIZE) 531 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 532 else 533 iobufsize = 4 * sblock.fs_bsize; 534 iobuf = ecalloc(1, iobufsize); 535 /* 536 * Make a copy of the superblock into the buffer that we will be 537 * writing out in each cylinder group. 538 */ 539 memcpy(writebuf, &sblock, sbsize); 540 if (fsopts->needswap) 541 ffs_sb_swap(&sblock, (struct fs*)writebuf); 542 memcpy(iobuf, writebuf, SBLOCKSIZE); 543 544 printf("super-block backups (for fsck -b #) at:"); 545 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 546 initcg(cylno, tstamp, fsopts); 547 if (cylno % nprintcols == 0) 548 printf("\n"); 549 printf(" %*lld%s", printcolwidth, 550 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 551 cylno == sblock.fs_ncg - 1 ? "" : ","); 552 fflush(stdout); 553 } 554 printf("\n"); 555 556 /* 557 * Now construct the initial file system, 558 * then write out the super-block. 559 */ 560 sblock.fs_time = tstamp; 561 if (Oflag <= 1) { 562 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 563 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 564 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 565 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 566 } 567 if (fsopts->needswap) 568 sblock.fs_flags |= FS_SWAPPED; 569 ffs_write_superblock(&sblock, fsopts); 570 return (&sblock); 571 } 572 573 /* 574 * Write out the superblock and its duplicates, 575 * and the cylinder group summaries 576 */ 577 void 578 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 579 { 580 int size, blks, i, saveflag; 581 uint32_t cylno; 582 void *space; 583 char *wrbuf; 584 585 saveflag = fs->fs_flags & FS_INTERNAL; 586 fs->fs_flags &= ~FS_INTERNAL; 587 588 memcpy(writebuf, &sblock, sbsize); 589 if (fsopts->needswap) 590 ffs_sb_swap(fs, (struct fs*)writebuf); 591 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts); 592 593 /* Write out the duplicate super blocks */ 594 for (cylno = 0; cylno < fs->fs_ncg; cylno++) 595 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 596 sbsize, writebuf, fsopts); 597 598 /* Write out the cylinder group summaries */ 599 size = fs->fs_cssize; 600 blks = howmany(size, fs->fs_fsize); 601 space = (void *)fs->fs_csp; 602 wrbuf = emalloc(size); 603 for (i = 0; i < blks; i+= fs->fs_frag) { 604 size = fs->fs_bsize; 605 if (i + fs->fs_frag > blks) 606 size = (blks - i) * fs->fs_fsize; 607 if (fsopts->needswap) 608 ffs_csum_swap((struct csum *)space, 609 (struct csum *)wrbuf, size); 610 else 611 memcpy(wrbuf, space, (u_int)size); 612 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 613 space = (char *)space + size; 614 } 615 free(wrbuf); 616 fs->fs_flags |= saveflag; 617 } 618 619 /* 620 * Initialize a cylinder group. 621 */ 622 static void 623 initcg(uint32_t cylno, time_t utime, const fsinfo_t *fsopts) 624 { 625 daddr_t cbase, dmax; 626 int32_t blkno; 627 uint32_t i, j, d, dlower, dupper; 628 struct ufs1_dinode *dp1; 629 struct ufs2_dinode *dp2; 630 int start; 631 632 /* 633 * Determine block bounds for cylinder group. 634 * Allow space for super block summary information in first 635 * cylinder group. 636 */ 637 cbase = cgbase(&sblock, cylno); 638 dmax = cbase + sblock.fs_fpg; 639 if (dmax > sblock.fs_size) 640 dmax = sblock.fs_size; 641 dlower = cgsblock(&sblock, cylno) - cbase; 642 dupper = cgdmin(&sblock, cylno) - cbase; 643 if (cylno == 0) 644 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 645 memset(&acg, 0, sblock.fs_cgsize); 646 acg.cg_time = utime; 647 acg.cg_magic = CG_MAGIC; 648 acg.cg_cgx = cylno; 649 acg.cg_niblk = sblock.fs_ipg; 650 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 651 acg.cg_ndblk = dmax - cbase; 652 if (sblock.fs_contigsumsize > 0) 653 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 654 start = sizeof(acg); 655 if (Oflag == 2) { 656 acg.cg_iusedoff = start; 657 } else { 658 if (cylno == sblock.fs_ncg - 1) 659 acg.cg_old_ncyl = howmany(acg.cg_ndblk, 660 sblock.fs_fpg / sblock.fs_old_cpg); 661 else 662 acg.cg_old_ncyl = sblock.fs_old_cpg; 663 acg.cg_old_time = acg.cg_time; 664 acg.cg_time = 0; 665 acg.cg_old_niblk = acg.cg_niblk; 666 acg.cg_niblk = 0; 667 acg.cg_initediblk = 0; 668 acg.cg_old_btotoff = start; 669 acg.cg_old_boff = acg.cg_old_btotoff + 670 sblock.fs_old_cpg * sizeof(int32_t); 671 acg.cg_iusedoff = acg.cg_old_boff + 672 sblock.fs_old_cpg * sizeof(u_int16_t); 673 } 674 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 675 if (sblock.fs_contigsumsize <= 0) { 676 acg.cg_nextfreeoff = acg.cg_freeoff + 677 howmany(sblock.fs_fpg, CHAR_BIT); 678 } else { 679 acg.cg_clustersumoff = acg.cg_freeoff + 680 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 681 acg.cg_clustersumoff = 682 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 683 acg.cg_clusteroff = acg.cg_clustersumoff + 684 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 685 acg.cg_nextfreeoff = acg.cg_clusteroff + 686 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 687 } 688 if (acg.cg_nextfreeoff > (uint32_t)sblock.fs_cgsize) { 689 printf("Panic: cylinder group too big\n"); 690 exit(37); 691 } 692 acg.cg_cs.cs_nifree += sblock.fs_ipg; 693 if (cylno == 0) 694 for (i = 0; i < UFS_ROOTINO; i++) { 695 setbit(cg_inosused_swap(&acg, 0), i); 696 acg.cg_cs.cs_nifree--; 697 } 698 if (cylno > 0) { 699 /* 700 * In cylno 0, beginning space is reserved 701 * for boot and super blocks. 702 */ 703 for (d = 0, blkno = 0; d < dlower;) { 704 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 705 if (sblock.fs_contigsumsize > 0) 706 setbit(cg_clustersfree_swap(&acg, 0), blkno); 707 acg.cg_cs.cs_nbfree++; 708 d += sblock.fs_frag; 709 blkno++; 710 } 711 } 712 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 713 acg.cg_frsum[sblock.fs_frag - i]++; 714 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 715 setbit(cg_blksfree_swap(&acg, 0), dupper); 716 acg.cg_cs.cs_nffree++; 717 } 718 } 719 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 720 d + sblock.fs_frag <= acg.cg_ndblk; ) { 721 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 722 if (sblock.fs_contigsumsize > 0) 723 setbit(cg_clustersfree_swap(&acg, 0), blkno); 724 acg.cg_cs.cs_nbfree++; 725 d += sblock.fs_frag; 726 blkno++; 727 } 728 if (d < acg.cg_ndblk) { 729 acg.cg_frsum[acg.cg_ndblk - d]++; 730 for (; d < acg.cg_ndblk; d++) { 731 setbit(cg_blksfree_swap(&acg, 0), d); 732 acg.cg_cs.cs_nffree++; 733 } 734 } 735 if (sblock.fs_contigsumsize > 0) { 736 int32_t *sump = cg_clustersum_swap(&acg, 0); 737 u_char *mapp = cg_clustersfree_swap(&acg, 0); 738 int map = *mapp++; 739 int bit = 1; 740 int run = 0; 741 742 for (i = 0; i < acg.cg_nclusterblks; i++) { 743 if ((map & bit) != 0) { 744 run++; 745 } else if (run != 0) { 746 if (run > sblock.fs_contigsumsize) 747 run = sblock.fs_contigsumsize; 748 sump[run]++; 749 run = 0; 750 } 751 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 752 bit <<= 1; 753 } else { 754 map = *mapp++; 755 bit = 1; 756 } 757 } 758 if (run != 0) { 759 if (run > sblock.fs_contigsumsize) 760 run = sblock.fs_contigsumsize; 761 sump[run]++; 762 } 763 } 764 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 765 /* 766 * Write out the duplicate super block, the cylinder group map 767 * and two blocks worth of inodes in a single write. 768 */ 769 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 770 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 771 if (fsopts->needswap) 772 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); 773 start += sblock.fs_bsize; 774 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 775 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 776 for (i = 0; i < acg.cg_initediblk; i++) { 777 if (sblock.fs_magic == FS_UFS1_MAGIC) { 778 /* No need to swap, it'll stay random */ 779 dp1->di_gen = random(); 780 dp1++; 781 } else { 782 dp2->di_gen = random(); 783 dp2++; 784 } 785 } 786 ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, 787 fsopts); 788 /* 789 * For the old file system, we have to initialize all the inodes. 790 */ 791 if (Oflag <= 1) { 792 for (i = 2 * sblock.fs_frag; 793 i < sblock.fs_ipg / INOPF(&sblock); 794 i += sblock.fs_frag) { 795 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 796 for (j = 0; j < INOPB(&sblock); j++) { 797 dp1->di_gen = random(); 798 dp1++; 799 } 800 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 801 sblock.fs_bsize, &iobuf[start], fsopts); 802 } 803 } 804 } 805 806 /* 807 * read a block from the file system 808 */ 809 void 810 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 811 { 812 int n; 813 off_t offset; 814 815 offset = (off_t)bno * fsopts->sectorsize + fsopts->offset; 816 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 817 err(1, "%s: seek error for sector %lld", __func__, 818 (long long)bno); 819 n = read(fsopts->fd, bf, size); 820 if (n == -1) { 821 abort(); 822 err(1, "%s: read error bno %lld size %d", __func__, 823 (long long)bno, size); 824 } 825 else if (n != size) 826 errx(1, "%s: read error for sector %lld", __func__, 827 (long long)bno); 828 } 829 830 /* 831 * write a block to the file system 832 */ 833 void 834 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 835 { 836 int n; 837 off_t offset; 838 839 offset = (off_t)bno * fsopts->sectorsize + fsopts->offset; 840 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 841 err(1, "%s: seek error for sector %lld", __func__, 842 (long long)bno); 843 n = write(fsopts->fd, bf, size); 844 if (n == -1) 845 err(1, "%s: write error for sector %lld", __func__, 846 (long long)bno); 847 else if (n != size) 848 errx(1, "%s: write error for sector %lld", __func__, 849 (long long)bno); 850 } 851 852 853 /* Determine how many digits are needed to print a given integer */ 854 static int 855 count_digits(int num) 856 { 857 int ndig; 858 859 for(ndig = 1; num > 9; num /=10, ndig++); 860 861 return (ndig); 862 } 863 864 static int 865 ilog2(int val) 866 { 867 u_int n; 868 869 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 870 if (1 << n == val) 871 return (n); 872 errx(1, "%s: %d is not a power of 2", __func__, val); 873 } 874