1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/linker_set.h> 36 #include <sys/mman.h> 37 38 #include <ctype.h> 39 #include <err.h> 40 #include <errno.h> 41 #include <pthread.h> 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <strings.h> 46 #include <assert.h> 47 #include <stdbool.h> 48 #include <sysexits.h> 49 50 #include <machine/vmm.h> 51 #include <machine/vmm_snapshot.h> 52 #include <vmmapi.h> 53 54 #include "acpi.h" 55 #include "bhyverun.h" 56 #include "config.h" 57 #include "debug.h" 58 #include "inout.h" 59 #include "ioapic.h" 60 #include "mem.h" 61 #include "pci_emul.h" 62 #include "pci_irq.h" 63 #include "pci_lpc.h" 64 65 #define CONF1_ADDR_PORT 0x0cf8 66 #define CONF1_DATA_PORT 0x0cfc 67 68 #define CONF1_ENABLE 0x80000000ul 69 70 #define MAXBUSES (PCI_BUSMAX + 1) 71 #define MAXSLOTS (PCI_SLOTMAX + 1) 72 #define MAXFUNCS (PCI_FUNCMAX + 1) 73 74 #define GB (1024 * 1024 * 1024UL) 75 76 struct funcinfo { 77 nvlist_t *fi_config; 78 struct pci_devemu *fi_pde; 79 struct pci_devinst *fi_devi; 80 }; 81 82 struct intxinfo { 83 int ii_count; 84 int ii_pirq_pin; 85 int ii_ioapic_irq; 86 }; 87 88 struct slotinfo { 89 struct intxinfo si_intpins[4]; 90 struct funcinfo si_funcs[MAXFUNCS]; 91 }; 92 93 struct businfo { 94 uint16_t iobase, iolimit; /* I/O window */ 95 uint32_t membase32, memlimit32; /* mmio window below 4GB */ 96 uint64_t membase64, memlimit64; /* mmio window above 4GB */ 97 struct slotinfo slotinfo[MAXSLOTS]; 98 }; 99 100 static struct businfo *pci_businfo[MAXBUSES]; 101 102 SET_DECLARE(pci_devemu_set, struct pci_devemu); 103 104 static uint64_t pci_emul_iobase; 105 static uint8_t *pci_emul_rombase; 106 static uint64_t pci_emul_romoffset; 107 static uint8_t *pci_emul_romlim; 108 static uint64_t pci_emul_membase32; 109 static uint64_t pci_emul_membase64; 110 static uint64_t pci_emul_memlim64; 111 112 struct pci_bar_allocation { 113 TAILQ_ENTRY(pci_bar_allocation) chain; 114 struct pci_devinst *pdi; 115 int idx; 116 enum pcibar_type type; 117 uint64_t size; 118 }; 119 TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars = TAILQ_HEAD_INITIALIZER( 120 pci_bars); 121 122 #define PCI_EMUL_IOBASE 0x2000 123 #define PCI_EMUL_IOLIMIT 0x10000 124 125 #define PCI_EMUL_ROMSIZE 0x10000000 126 127 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */ 128 #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */ 129 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE); 130 131 /* 132 * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't 133 * change this address without changing it in OVMF. 134 */ 135 #define PCI_EMUL_MEMBASE32 0xC0000000 136 #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE 137 #define PCI_EMUL_MEMSIZE64 (32*GB) 138 139 static struct pci_devemu *pci_emul_finddev(const char *name); 140 static void pci_lintr_route(struct pci_devinst *pi); 141 static void pci_lintr_update(struct pci_devinst *pi); 142 static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, 143 int func, int coff, int bytes, uint32_t *val); 144 145 static __inline void 146 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes) 147 { 148 149 if (bytes == 1) 150 pci_set_cfgdata8(pi, coff, val); 151 else if (bytes == 2) 152 pci_set_cfgdata16(pi, coff, val); 153 else 154 pci_set_cfgdata32(pi, coff, val); 155 } 156 157 static __inline uint32_t 158 CFGREAD(struct pci_devinst *pi, int coff, int bytes) 159 { 160 161 if (bytes == 1) 162 return (pci_get_cfgdata8(pi, coff)); 163 else if (bytes == 2) 164 return (pci_get_cfgdata16(pi, coff)); 165 else 166 return (pci_get_cfgdata32(pi, coff)); 167 } 168 169 static int 170 is_pcir_bar(int coff) 171 { 172 return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)); 173 } 174 175 static int 176 is_pcir_bios(int coff) 177 { 178 return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4); 179 } 180 181 /* 182 * I/O access 183 */ 184 185 /* 186 * Slot options are in the form: 187 * 188 * <bus>:<slot>:<func>,<emul>[,<config>] 189 * <slot>[:<func>],<emul>[,<config>] 190 * 191 * slot is 0..31 192 * func is 0..7 193 * emul is a string describing the type of PCI device e.g. virtio-net 194 * config is an optional string, depending on the device, that can be 195 * used for configuration. 196 * Examples are: 197 * 1,virtio-net,tap0 198 * 3:0,dummy 199 */ 200 static void 201 pci_parse_slot_usage(char *aopt) 202 { 203 204 EPRINTLN("Invalid PCI slot info field \"%s\"", aopt); 205 } 206 207 /* 208 * Helper function to parse a list of comma-separated options where 209 * each option is formatted as "name[=value]". If no value is 210 * provided, the option is treated as a boolean and is given a value 211 * of true. 212 */ 213 int 214 pci_parse_legacy_config(nvlist_t *nvl, const char *opt) 215 { 216 char *config, *name, *tofree, *value; 217 218 if (opt == NULL) 219 return (0); 220 221 config = tofree = strdup(opt); 222 while ((name = strsep(&config, ",")) != NULL) { 223 value = strchr(name, '='); 224 if (value != NULL) { 225 *value = '\0'; 226 value++; 227 set_config_value_node(nvl, name, value); 228 } else 229 set_config_bool_node(nvl, name, true); 230 } 231 free(tofree); 232 return (0); 233 } 234 235 /* 236 * PCI device configuration is stored in MIBs that encode the device's 237 * location: 238 * 239 * pci.<bus>.<slot>.<func> 240 * 241 * Where "bus", "slot", and "func" are all decimal values without 242 * leading zeroes. Each valid device must have a "device" node which 243 * identifies the driver model of the device. 244 * 245 * Device backends can provide a parser for the "config" string. If 246 * a custom parser is not provided, pci_parse_legacy_config() is used 247 * to parse the string. 248 */ 249 int 250 pci_parse_slot(char *opt) 251 { 252 char node_name[sizeof("pci.XXX.XX.X")]; 253 struct pci_devemu *pde; 254 char *emul, *config, *str, *cp; 255 int error, bnum, snum, fnum; 256 nvlist_t *nvl; 257 258 error = -1; 259 str = strdup(opt); 260 261 emul = config = NULL; 262 if ((cp = strchr(str, ',')) != NULL) { 263 *cp = '\0'; 264 emul = cp + 1; 265 if ((cp = strchr(emul, ',')) != NULL) { 266 *cp = '\0'; 267 config = cp + 1; 268 } 269 } else { 270 pci_parse_slot_usage(opt); 271 goto done; 272 } 273 274 /* <bus>:<slot>:<func> */ 275 if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) { 276 bnum = 0; 277 /* <slot>:<func> */ 278 if (sscanf(str, "%d:%d", &snum, &fnum) != 2) { 279 fnum = 0; 280 /* <slot> */ 281 if (sscanf(str, "%d", &snum) != 1) { 282 snum = -1; 283 } 284 } 285 } 286 287 if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS || 288 fnum < 0 || fnum >= MAXFUNCS) { 289 pci_parse_slot_usage(opt); 290 goto done; 291 } 292 293 pde = pci_emul_finddev(emul); 294 if (pde == NULL) { 295 EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum, 296 fnum, emul); 297 goto done; 298 } 299 300 snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum, 301 fnum); 302 nvl = find_config_node(node_name); 303 if (nvl != NULL) { 304 EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum, 305 fnum); 306 goto done; 307 } 308 nvl = create_config_node(node_name); 309 if (pde->pe_alias != NULL) 310 set_config_value_node(nvl, "device", pde->pe_alias); 311 else 312 set_config_value_node(nvl, "device", pde->pe_emu); 313 314 if (pde->pe_legacy_config != NULL) 315 error = pde->pe_legacy_config(nvl, config); 316 else 317 error = pci_parse_legacy_config(nvl, config); 318 done: 319 free(str); 320 return (error); 321 } 322 323 void 324 pci_print_supported_devices(void) 325 { 326 struct pci_devemu **pdpp, *pdp; 327 328 SET_FOREACH(pdpp, pci_devemu_set) { 329 pdp = *pdpp; 330 printf("%s\n", pdp->pe_emu); 331 } 332 } 333 334 static int 335 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset) 336 { 337 338 if (offset < pi->pi_msix.pba_offset) 339 return (0); 340 341 if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) { 342 return (0); 343 } 344 345 return (1); 346 } 347 348 int 349 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size, 350 uint64_t value) 351 { 352 int msix_entry_offset; 353 int tab_index; 354 char *dest; 355 356 /* support only 4 or 8 byte writes */ 357 if (size != 4 && size != 8) 358 return (-1); 359 360 /* 361 * Return if table index is beyond what device supports 362 */ 363 tab_index = offset / MSIX_TABLE_ENTRY_SIZE; 364 if (tab_index >= pi->pi_msix.table_count) 365 return (-1); 366 367 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; 368 369 /* support only aligned writes */ 370 if ((msix_entry_offset % size) != 0) 371 return (-1); 372 373 dest = (char *)(pi->pi_msix.table + tab_index); 374 dest += msix_entry_offset; 375 376 if (size == 4) 377 *((uint32_t *)dest) = value; 378 else 379 *((uint64_t *)dest) = value; 380 381 return (0); 382 } 383 384 uint64_t 385 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size) 386 { 387 char *dest; 388 int msix_entry_offset; 389 int tab_index; 390 uint64_t retval = ~0; 391 392 /* 393 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X 394 * table but we also allow 1 byte access to accommodate reads from 395 * ddb. 396 */ 397 if (size != 1 && size != 4 && size != 8) 398 return (retval); 399 400 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; 401 402 /* support only aligned reads */ 403 if ((msix_entry_offset % size) != 0) { 404 return (retval); 405 } 406 407 tab_index = offset / MSIX_TABLE_ENTRY_SIZE; 408 409 if (tab_index < pi->pi_msix.table_count) { 410 /* valid MSI-X Table access */ 411 dest = (char *)(pi->pi_msix.table + tab_index); 412 dest += msix_entry_offset; 413 414 if (size == 1) 415 retval = *((uint8_t *)dest); 416 else if (size == 4) 417 retval = *((uint32_t *)dest); 418 else 419 retval = *((uint64_t *)dest); 420 } else if (pci_valid_pba_offset(pi, offset)) { 421 /* return 0 for PBA access */ 422 retval = 0; 423 } 424 425 return (retval); 426 } 427 428 int 429 pci_msix_table_bar(struct pci_devinst *pi) 430 { 431 432 if (pi->pi_msix.table != NULL) 433 return (pi->pi_msix.table_bar); 434 else 435 return (-1); 436 } 437 438 int 439 pci_msix_pba_bar(struct pci_devinst *pi) 440 { 441 442 if (pi->pi_msix.table != NULL) 443 return (pi->pi_msix.pba_bar); 444 else 445 return (-1); 446 } 447 448 static int 449 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 450 uint32_t *eax, void *arg) 451 { 452 struct pci_devinst *pdi = arg; 453 struct pci_devemu *pe = pdi->pi_d; 454 uint64_t offset; 455 int i; 456 457 for (i = 0; i <= PCI_BARMAX; i++) { 458 if (pdi->pi_bar[i].type == PCIBAR_IO && 459 port >= pdi->pi_bar[i].addr && 460 port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) { 461 offset = port - pdi->pi_bar[i].addr; 462 if (in) 463 *eax = (*pe->pe_barread)(ctx, vcpu, pdi, i, 464 offset, bytes); 465 else 466 (*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset, 467 bytes, *eax); 468 return (0); 469 } 470 } 471 return (-1); 472 } 473 474 static int 475 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 476 int size, uint64_t *val, void *arg1, long arg2) 477 { 478 struct pci_devinst *pdi = arg1; 479 struct pci_devemu *pe = pdi->pi_d; 480 uint64_t offset; 481 int bidx = (int) arg2; 482 483 assert(bidx <= PCI_BARMAX); 484 assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 || 485 pdi->pi_bar[bidx].type == PCIBAR_MEM64); 486 assert(addr >= pdi->pi_bar[bidx].addr && 487 addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); 488 489 offset = addr - pdi->pi_bar[bidx].addr; 490 491 if (dir == MEM_F_WRITE) { 492 if (size == 8) { 493 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, 494 4, *val & 0xffffffff); 495 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4, 496 4, *val >> 32); 497 } else { 498 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, 499 size, *val); 500 } 501 } else { 502 if (size == 8) { 503 *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 504 offset, 4); 505 *val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 506 offset + 4, 4) << 32; 507 } else { 508 *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 509 offset, size); 510 } 511 } 512 513 return (0); 514 } 515 516 517 static int 518 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size, 519 uint64_t *addr) 520 { 521 uint64_t base; 522 523 assert((size & (size - 1)) == 0); /* must be a power of 2 */ 524 525 base = roundup2(*baseptr, size); 526 527 if (base + size <= limit) { 528 *addr = base; 529 *baseptr = base + size; 530 return (0); 531 } else 532 return (-1); 533 } 534 535 /* 536 * Register (or unregister) the MMIO or I/O region associated with the BAR 537 * register 'idx' of an emulated pci device. 538 */ 539 static void 540 modify_bar_registration(struct pci_devinst *pi, int idx, int registration) 541 { 542 struct pci_devemu *pe; 543 int error; 544 struct inout_port iop; 545 struct mem_range mr; 546 547 pe = pi->pi_d; 548 switch (pi->pi_bar[idx].type) { 549 case PCIBAR_IO: 550 bzero(&iop, sizeof(struct inout_port)); 551 iop.name = pi->pi_name; 552 iop.port = pi->pi_bar[idx].addr; 553 iop.size = pi->pi_bar[idx].size; 554 if (registration) { 555 iop.flags = IOPORT_F_INOUT; 556 iop.handler = pci_emul_io_handler; 557 iop.arg = pi; 558 error = register_inout(&iop); 559 } else 560 error = unregister_inout(&iop); 561 if (pe->pe_baraddr != NULL) 562 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration, 563 pi->pi_bar[idx].addr); 564 break; 565 case PCIBAR_MEM32: 566 case PCIBAR_MEM64: 567 bzero(&mr, sizeof(struct mem_range)); 568 mr.name = pi->pi_name; 569 mr.base = pi->pi_bar[idx].addr; 570 mr.size = pi->pi_bar[idx].size; 571 if (registration) { 572 mr.flags = MEM_F_RW; 573 mr.handler = pci_emul_mem_handler; 574 mr.arg1 = pi; 575 mr.arg2 = idx; 576 error = register_mem(&mr); 577 } else 578 error = unregister_mem(&mr); 579 if (pe->pe_baraddr != NULL) 580 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration, 581 pi->pi_bar[idx].addr); 582 break; 583 case PCIBAR_ROM: 584 error = 0; 585 if (pe->pe_baraddr != NULL) 586 (*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration, 587 pi->pi_bar[idx].addr); 588 break; 589 default: 590 error = EINVAL; 591 break; 592 } 593 assert(error == 0); 594 } 595 596 static void 597 unregister_bar(struct pci_devinst *pi, int idx) 598 { 599 600 modify_bar_registration(pi, idx, 0); 601 } 602 603 static void 604 register_bar(struct pci_devinst *pi, int idx) 605 { 606 607 modify_bar_registration(pi, idx, 1); 608 } 609 610 /* Is the ROM enabled for the emulated pci device? */ 611 static int 612 romen(struct pci_devinst *pi) 613 { 614 return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) == 615 PCIM_BIOS_ENABLE; 616 } 617 618 /* Are we decoding i/o port accesses for the emulated pci device? */ 619 static int 620 porten(struct pci_devinst *pi) 621 { 622 uint16_t cmd; 623 624 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 625 626 return (cmd & PCIM_CMD_PORTEN); 627 } 628 629 /* Are we decoding memory accesses for the emulated pci device? */ 630 static int 631 memen(struct pci_devinst *pi) 632 { 633 uint16_t cmd; 634 635 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 636 637 return (cmd & PCIM_CMD_MEMEN); 638 } 639 640 /* 641 * Update the MMIO or I/O address that is decoded by the BAR register. 642 * 643 * If the pci device has enabled the address space decoding then intercept 644 * the address range decoded by the BAR register. 645 */ 646 static void 647 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type) 648 { 649 int decode; 650 651 if (pi->pi_bar[idx].type == PCIBAR_IO) 652 decode = porten(pi); 653 else 654 decode = memen(pi); 655 656 if (decode) 657 unregister_bar(pi, idx); 658 659 switch (type) { 660 case PCIBAR_IO: 661 case PCIBAR_MEM32: 662 pi->pi_bar[idx].addr = addr; 663 break; 664 case PCIBAR_MEM64: 665 pi->pi_bar[idx].addr &= ~0xffffffffUL; 666 pi->pi_bar[idx].addr |= addr; 667 break; 668 case PCIBAR_MEMHI64: 669 pi->pi_bar[idx].addr &= 0xffffffff; 670 pi->pi_bar[idx].addr |= addr; 671 break; 672 default: 673 assert(0); 674 } 675 676 if (decode) 677 register_bar(pi, idx); 678 } 679 680 int 681 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type, 682 uint64_t size) 683 { 684 assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX)); 685 assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX)); 686 687 if ((size & (size - 1)) != 0) 688 size = 1UL << flsl(size); /* round up to a power of 2 */ 689 690 /* Enforce minimum BAR sizes required by the PCI standard */ 691 if (type == PCIBAR_IO) { 692 if (size < 4) 693 size = 4; 694 } else if (type == PCIBAR_ROM) { 695 if (size < ~PCIM_BIOS_ADDR_MASK + 1) 696 size = ~PCIM_BIOS_ADDR_MASK + 1; 697 } else { 698 if (size < 16) 699 size = 16; 700 } 701 702 /* 703 * To reduce fragmentation of the MMIO space, we allocate the BARs by 704 * size. Therefore, don't allocate the BAR yet. We create a list of all 705 * BAR allocation which is sorted by BAR size. When all PCI devices are 706 * initialized, we will assign an address to the BARs. 707 */ 708 709 /* create a new list entry */ 710 struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar)); 711 memset(new_bar, 0, sizeof(*new_bar)); 712 new_bar->pdi = pdi; 713 new_bar->idx = idx; 714 new_bar->type = type; 715 new_bar->size = size; 716 717 /* 718 * Search for a BAR which size is lower than the size of our newly 719 * allocated BAR. 720 */ 721 struct pci_bar_allocation *bar = NULL; 722 TAILQ_FOREACH(bar, &pci_bars, chain) { 723 if (bar->size < size) { 724 break; 725 } 726 } 727 728 if (bar == NULL) { 729 /* 730 * Either the list is empty or new BAR is the smallest BAR of 731 * the list. Append it to the end of our list. 732 */ 733 TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain); 734 } else { 735 /* 736 * The found BAR is smaller than our new BAR. For that reason, 737 * insert our new BAR before the found BAR. 738 */ 739 TAILQ_INSERT_BEFORE(bar, new_bar, chain); 740 } 741 742 /* 743 * pci_passthru devices synchronize their physical and virtual command 744 * register on init. For that reason, the virtual cmd reg should be 745 * updated as early as possible. 746 */ 747 uint16_t enbit = 0; 748 switch (type) { 749 case PCIBAR_IO: 750 enbit = PCIM_CMD_PORTEN; 751 break; 752 case PCIBAR_MEM64: 753 case PCIBAR_MEM32: 754 enbit = PCIM_CMD_MEMEN; 755 break; 756 default: 757 enbit = 0; 758 break; 759 } 760 761 const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND); 762 pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit); 763 764 return (0); 765 } 766 767 static int 768 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx, 769 const enum pcibar_type type, const uint64_t size) 770 { 771 int error; 772 uint64_t *baseptr, limit, addr, mask, lobits, bar; 773 774 switch (type) { 775 case PCIBAR_NONE: 776 baseptr = NULL; 777 addr = mask = lobits = 0; 778 break; 779 case PCIBAR_IO: 780 baseptr = &pci_emul_iobase; 781 limit = PCI_EMUL_IOLIMIT; 782 mask = PCIM_BAR_IO_BASE; 783 lobits = PCIM_BAR_IO_SPACE; 784 break; 785 case PCIBAR_MEM64: 786 /* 787 * XXX 788 * Some drivers do not work well if the 64-bit BAR is allocated 789 * above 4GB. Allow for this by allocating small requests under 790 * 4GB unless then allocation size is larger than some arbitrary 791 * number (128MB currently). 792 */ 793 if (size > 128 * 1024 * 1024) { 794 baseptr = &pci_emul_membase64; 795 limit = pci_emul_memlim64; 796 mask = PCIM_BAR_MEM_BASE; 797 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | 798 PCIM_BAR_MEM_PREFETCH; 799 } else { 800 baseptr = &pci_emul_membase32; 801 limit = PCI_EMUL_MEMLIMIT32; 802 mask = PCIM_BAR_MEM_BASE; 803 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64; 804 } 805 break; 806 case PCIBAR_MEM32: 807 baseptr = &pci_emul_membase32; 808 limit = PCI_EMUL_MEMLIMIT32; 809 mask = PCIM_BAR_MEM_BASE; 810 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; 811 break; 812 case PCIBAR_ROM: 813 /* do not claim memory for ROM. OVMF will do it for us. */ 814 baseptr = NULL; 815 limit = 0; 816 mask = PCIM_BIOS_ADDR_MASK; 817 lobits = 0; 818 break; 819 default: 820 printf("pci_emul_alloc_base: invalid bar type %d\n", type); 821 assert(0); 822 } 823 824 if (baseptr != NULL) { 825 error = pci_emul_alloc_resource(baseptr, limit, size, &addr); 826 if (error != 0) 827 return (error); 828 } else { 829 addr = 0; 830 } 831 832 pdi->pi_bar[idx].type = type; 833 pdi->pi_bar[idx].addr = addr; 834 pdi->pi_bar[idx].size = size; 835 /* 836 * passthru devices are using same lobits as physical device they set 837 * this property 838 */ 839 if (pdi->pi_bar[idx].lobits != 0) { 840 lobits = pdi->pi_bar[idx].lobits; 841 } else { 842 pdi->pi_bar[idx].lobits = lobits; 843 } 844 845 /* Initialize the BAR register in config space */ 846 bar = (addr & mask) | lobits; 847 pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar); 848 849 if (type == PCIBAR_MEM64) { 850 assert(idx + 1 <= PCI_BARMAX); 851 pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64; 852 pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32); 853 } 854 855 if (type != PCIBAR_ROM) { 856 register_bar(pdi, idx); 857 } 858 859 return (0); 860 } 861 862 int 863 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size, 864 void **const addr) 865 { 866 /* allocate ROM space once on first call */ 867 if (pci_emul_rombase == 0) { 868 pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM, 869 "pcirom", PCI_EMUL_ROMSIZE); 870 if (pci_emul_rombase == MAP_FAILED) { 871 warnx("%s: failed to create rom segment", __func__); 872 return (-1); 873 } 874 pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE; 875 pci_emul_romoffset = 0; 876 } 877 878 /* ROM size should be a power of 2 and greater than 2 KB */ 879 const uint64_t rom_size = MAX(1UL << flsl(size), 880 ~PCIM_BIOS_ADDR_MASK + 1); 881 882 /* check if ROM fits into ROM space */ 883 if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) { 884 warnx("%s: no space left in rom segment:", __func__); 885 warnx("%16lu bytes left", 886 PCI_EMUL_ROMSIZE - pci_emul_romoffset); 887 warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus, 888 pdi->pi_slot, pdi->pi_func); 889 return (-1); 890 } 891 892 /* allocate ROM BAR */ 893 const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM, 894 rom_size); 895 if (error) 896 return error; 897 898 /* return address */ 899 *addr = pci_emul_rombase + pci_emul_romoffset; 900 901 /* save offset into ROM Space */ 902 pdi->pi_romoffset = pci_emul_romoffset; 903 904 /* increase offset for next ROM */ 905 pci_emul_romoffset += rom_size; 906 907 return (0); 908 } 909 910 #define CAP_START_OFFSET 0x40 911 static int 912 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen) 913 { 914 int i, capoff, reallen; 915 uint16_t sts; 916 917 assert(caplen > 0); 918 919 reallen = roundup2(caplen, 4); /* dword aligned */ 920 921 sts = pci_get_cfgdata16(pi, PCIR_STATUS); 922 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) 923 capoff = CAP_START_OFFSET; 924 else 925 capoff = pi->pi_capend + 1; 926 927 /* Check if we have enough space */ 928 if (capoff + reallen > PCI_REGMAX + 1) 929 return (-1); 930 931 /* Set the previous capability pointer */ 932 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) { 933 pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff); 934 pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT); 935 } else 936 pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff); 937 938 /* Copy the capability */ 939 for (i = 0; i < caplen; i++) 940 pci_set_cfgdata8(pi, capoff + i, capdata[i]); 941 942 /* Set the next capability pointer */ 943 pci_set_cfgdata8(pi, capoff + 1, 0); 944 945 pi->pi_prevcap = capoff; 946 pi->pi_capend = capoff + reallen - 1; 947 return (0); 948 } 949 950 static struct pci_devemu * 951 pci_emul_finddev(const char *name) 952 { 953 struct pci_devemu **pdpp, *pdp; 954 955 SET_FOREACH(pdpp, pci_devemu_set) { 956 pdp = *pdpp; 957 if (!strcmp(pdp->pe_emu, name)) { 958 return (pdp); 959 } 960 } 961 962 return (NULL); 963 } 964 965 static int 966 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot, 967 int func, struct funcinfo *fi) 968 { 969 struct pci_devinst *pdi; 970 int err; 971 972 pdi = calloc(1, sizeof(struct pci_devinst)); 973 974 pdi->pi_vmctx = ctx; 975 pdi->pi_bus = bus; 976 pdi->pi_slot = slot; 977 pdi->pi_func = func; 978 pthread_mutex_init(&pdi->pi_lintr.lock, NULL); 979 pdi->pi_lintr.pin = 0; 980 pdi->pi_lintr.state = IDLE; 981 pdi->pi_lintr.pirq_pin = 0; 982 pdi->pi_lintr.ioapic_irq = 0; 983 pdi->pi_d = pde; 984 snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot); 985 986 /* Disable legacy interrupts */ 987 pci_set_cfgdata8(pdi, PCIR_INTLINE, 255); 988 pci_set_cfgdata8(pdi, PCIR_INTPIN, 0); 989 990 pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN); 991 992 err = (*pde->pe_init)(ctx, pdi, fi->fi_config); 993 if (err == 0) 994 fi->fi_devi = pdi; 995 else 996 free(pdi); 997 998 return (err); 999 } 1000 1001 void 1002 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) 1003 { 1004 int mmc; 1005 1006 /* Number of msi messages must be a power of 2 between 1 and 32 */ 1007 assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); 1008 mmc = ffs(msgnum) - 1; 1009 1010 bzero(msicap, sizeof(struct msicap)); 1011 msicap->capid = PCIY_MSI; 1012 msicap->nextptr = nextptr; 1013 msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); 1014 } 1015 1016 int 1017 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum) 1018 { 1019 struct msicap msicap; 1020 1021 pci_populate_msicap(&msicap, msgnum, 0); 1022 1023 return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap))); 1024 } 1025 1026 static void 1027 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum, 1028 uint32_t msix_tab_size) 1029 { 1030 1031 assert(msix_tab_size % 4096 == 0); 1032 1033 bzero(msixcap, sizeof(struct msixcap)); 1034 msixcap->capid = PCIY_MSIX; 1035 1036 /* 1037 * Message Control Register, all fields set to 1038 * zero except for the Table Size. 1039 * Note: Table size N is encoded as N-1 1040 */ 1041 msixcap->msgctrl = msgnum - 1; 1042 1043 /* 1044 * MSI-X BAR setup: 1045 * - MSI-X table start at offset 0 1046 * - PBA table starts at a 4K aligned offset after the MSI-X table 1047 */ 1048 msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK; 1049 msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK); 1050 } 1051 1052 static void 1053 pci_msix_table_init(struct pci_devinst *pi, int table_entries) 1054 { 1055 int i, table_size; 1056 1057 assert(table_entries > 0); 1058 assert(table_entries <= MAX_MSIX_TABLE_ENTRIES); 1059 1060 table_size = table_entries * MSIX_TABLE_ENTRY_SIZE; 1061 pi->pi_msix.table = calloc(1, table_size); 1062 1063 /* set mask bit of vector control register */ 1064 for (i = 0; i < table_entries; i++) 1065 pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK; 1066 } 1067 1068 int 1069 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum) 1070 { 1071 uint32_t tab_size; 1072 struct msixcap msixcap; 1073 1074 assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES); 1075 assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0); 1076 1077 tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE; 1078 1079 /* Align table size to nearest 4K */ 1080 tab_size = roundup2(tab_size, 4096); 1081 1082 pi->pi_msix.table_bar = barnum; 1083 pi->pi_msix.pba_bar = barnum; 1084 pi->pi_msix.table_offset = 0; 1085 pi->pi_msix.table_count = msgnum; 1086 pi->pi_msix.pba_offset = tab_size; 1087 pi->pi_msix.pba_size = PBA_SIZE(msgnum); 1088 1089 pci_msix_table_init(pi, msgnum); 1090 1091 pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size); 1092 1093 /* allocate memory for MSI-X Table and PBA */ 1094 pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32, 1095 tab_size + pi->pi_msix.pba_size); 1096 1097 return (pci_emul_add_capability(pi, (u_char *)&msixcap, 1098 sizeof(msixcap))); 1099 } 1100 1101 static void 1102 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 1103 int bytes, uint32_t val) 1104 { 1105 uint16_t msgctrl, rwmask; 1106 int off; 1107 1108 off = offset - capoff; 1109 /* Message Control Register */ 1110 if (off == 2 && bytes == 2) { 1111 rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK; 1112 msgctrl = pci_get_cfgdata16(pi, offset); 1113 msgctrl &= ~rwmask; 1114 msgctrl |= val & rwmask; 1115 val = msgctrl; 1116 1117 pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE; 1118 pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK; 1119 pci_lintr_update(pi); 1120 } 1121 1122 CFGWRITE(pi, offset, val, bytes); 1123 } 1124 1125 static void 1126 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 1127 int bytes, uint32_t val) 1128 { 1129 uint16_t msgctrl, rwmask, msgdata, mme; 1130 uint32_t addrlo; 1131 1132 /* 1133 * If guest is writing to the message control register make sure 1134 * we do not overwrite read-only fields. 1135 */ 1136 if ((offset - capoff) == 2 && bytes == 2) { 1137 rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE; 1138 msgctrl = pci_get_cfgdata16(pi, offset); 1139 msgctrl &= ~rwmask; 1140 msgctrl |= val & rwmask; 1141 val = msgctrl; 1142 } 1143 CFGWRITE(pi, offset, val, bytes); 1144 1145 msgctrl = pci_get_cfgdata16(pi, capoff + 2); 1146 addrlo = pci_get_cfgdata32(pi, capoff + 4); 1147 if (msgctrl & PCIM_MSICTRL_64BIT) 1148 msgdata = pci_get_cfgdata16(pi, capoff + 12); 1149 else 1150 msgdata = pci_get_cfgdata16(pi, capoff + 8); 1151 1152 mme = msgctrl & PCIM_MSICTRL_MME_MASK; 1153 pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0; 1154 if (pi->pi_msi.enabled) { 1155 pi->pi_msi.addr = addrlo; 1156 pi->pi_msi.msg_data = msgdata; 1157 pi->pi_msi.maxmsgnum = 1 << (mme >> 4); 1158 } else { 1159 pi->pi_msi.maxmsgnum = 0; 1160 } 1161 pci_lintr_update(pi); 1162 } 1163 1164 void 1165 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 1166 int bytes, uint32_t val) 1167 { 1168 1169 /* XXX don't write to the readonly parts */ 1170 CFGWRITE(pi, offset, val, bytes); 1171 } 1172 1173 #define PCIECAP_VERSION 0x2 1174 int 1175 pci_emul_add_pciecap(struct pci_devinst *pi, int type) 1176 { 1177 int err; 1178 struct pciecap pciecap; 1179 1180 bzero(&pciecap, sizeof(pciecap)); 1181 1182 /* 1183 * Use the integrated endpoint type for endpoints on a root complex bus. 1184 * 1185 * NB: bhyve currently only supports a single PCI bus that is the root 1186 * complex bus, so all endpoints are integrated. 1187 */ 1188 if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0)) 1189 type = PCIEM_TYPE_ROOT_INT_EP; 1190 1191 pciecap.capid = PCIY_EXPRESS; 1192 pciecap.pcie_capabilities = PCIECAP_VERSION | type; 1193 if (type != PCIEM_TYPE_ROOT_INT_EP) { 1194 pciecap.link_capabilities = 0x411; /* gen1, x1 */ 1195 pciecap.link_status = 0x11; /* gen1, x1 */ 1196 } 1197 1198 err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap)); 1199 return (err); 1200 } 1201 1202 /* 1203 * This function assumes that 'coff' is in the capabilities region of the 1204 * config space. A capoff parameter of zero will force a search for the 1205 * offset and type. 1206 */ 1207 void 1208 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val, 1209 uint8_t capoff, int capid) 1210 { 1211 uint8_t nextoff; 1212 1213 /* Do not allow un-aligned writes */ 1214 if ((offset & (bytes - 1)) != 0) 1215 return; 1216 1217 if (capoff == 0) { 1218 /* Find the capability that we want to update */ 1219 capoff = CAP_START_OFFSET; 1220 while (1) { 1221 nextoff = pci_get_cfgdata8(pi, capoff + 1); 1222 if (nextoff == 0) 1223 break; 1224 if (offset >= capoff && offset < nextoff) 1225 break; 1226 1227 capoff = nextoff; 1228 } 1229 assert(offset >= capoff); 1230 capid = pci_get_cfgdata8(pi, capoff); 1231 } 1232 1233 /* 1234 * Capability ID and Next Capability Pointer are readonly. 1235 * However, some o/s's do 4-byte writes that include these. 1236 * For this case, trim the write back to 2 bytes and adjust 1237 * the data. 1238 */ 1239 if (offset == capoff || offset == capoff + 1) { 1240 if (offset == capoff && bytes == 4) { 1241 bytes = 2; 1242 offset += 2; 1243 val >>= 16; 1244 } else 1245 return; 1246 } 1247 1248 switch (capid) { 1249 case PCIY_MSI: 1250 msicap_cfgwrite(pi, capoff, offset, bytes, val); 1251 break; 1252 case PCIY_MSIX: 1253 msixcap_cfgwrite(pi, capoff, offset, bytes, val); 1254 break; 1255 case PCIY_EXPRESS: 1256 pciecap_cfgwrite(pi, capoff, offset, bytes, val); 1257 break; 1258 default: 1259 break; 1260 } 1261 } 1262 1263 static int 1264 pci_emul_iscap(struct pci_devinst *pi, int offset) 1265 { 1266 uint16_t sts; 1267 1268 sts = pci_get_cfgdata16(pi, PCIR_STATUS); 1269 if ((sts & PCIM_STATUS_CAPPRESENT) != 0) { 1270 if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend) 1271 return (1); 1272 } 1273 return (0); 1274 } 1275 1276 static int 1277 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 1278 int size, uint64_t *val, void *arg1, long arg2) 1279 { 1280 /* 1281 * Ignore writes; return 0xff's for reads. The mem read code 1282 * will take care of truncating to the correct size. 1283 */ 1284 if (dir == MEM_F_READ) { 1285 *val = 0xffffffffffffffff; 1286 } 1287 1288 return (0); 1289 } 1290 1291 static int 1292 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 1293 int bytes, uint64_t *val, void *arg1, long arg2) 1294 { 1295 int bus, slot, func, coff, in; 1296 1297 coff = addr & 0xfff; 1298 func = (addr >> 12) & 0x7; 1299 slot = (addr >> 15) & 0x1f; 1300 bus = (addr >> 20) & 0xff; 1301 in = (dir == MEM_F_READ); 1302 if (in) 1303 *val = ~0UL; 1304 pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val); 1305 return (0); 1306 } 1307 1308 uint64_t 1309 pci_ecfg_base(void) 1310 { 1311 1312 return (PCI_EMUL_ECFG_BASE); 1313 } 1314 1315 #define BUSIO_ROUNDUP 32 1316 #define BUSMEM32_ROUNDUP (1024 * 1024) 1317 #define BUSMEM64_ROUNDUP (512 * 1024 * 1024) 1318 1319 int 1320 init_pci(struct vmctx *ctx) 1321 { 1322 char node_name[sizeof("pci.XXX.XX.X")]; 1323 struct mem_range mr; 1324 struct pci_devemu *pde; 1325 struct businfo *bi; 1326 struct slotinfo *si; 1327 struct funcinfo *fi; 1328 nvlist_t *nvl; 1329 const char *emul; 1330 size_t lowmem; 1331 int bus, slot, func; 1332 int error; 1333 1334 if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32) 1335 errx(EX_OSERR, "Invalid lowmem limit"); 1336 1337 pci_emul_iobase = PCI_EMUL_IOBASE; 1338 pci_emul_membase32 = PCI_EMUL_MEMBASE32; 1339 1340 pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx); 1341 pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64); 1342 pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64; 1343 1344 for (bus = 0; bus < MAXBUSES; bus++) { 1345 snprintf(node_name, sizeof(node_name), "pci.%d", bus); 1346 nvl = find_config_node(node_name); 1347 if (nvl == NULL) 1348 continue; 1349 pci_businfo[bus] = calloc(1, sizeof(struct businfo)); 1350 bi = pci_businfo[bus]; 1351 1352 /* 1353 * Keep track of the i/o and memory resources allocated to 1354 * this bus. 1355 */ 1356 bi->iobase = pci_emul_iobase; 1357 bi->membase32 = pci_emul_membase32; 1358 bi->membase64 = pci_emul_membase64; 1359 1360 /* first run: init devices */ 1361 for (slot = 0; slot < MAXSLOTS; slot++) { 1362 si = &bi->slotinfo[slot]; 1363 for (func = 0; func < MAXFUNCS; func++) { 1364 fi = &si->si_funcs[func]; 1365 snprintf(node_name, sizeof(node_name), 1366 "pci.%d.%d.%d", bus, slot, func); 1367 nvl = find_config_node(node_name); 1368 if (nvl == NULL) 1369 continue; 1370 1371 fi->fi_config = nvl; 1372 emul = get_config_value_node(nvl, "device"); 1373 if (emul == NULL) { 1374 EPRINTLN("pci slot %d:%d:%d: missing " 1375 "\"device\" value", bus, slot, func); 1376 return (EINVAL); 1377 } 1378 pde = pci_emul_finddev(emul); 1379 if (pde == NULL) { 1380 EPRINTLN("pci slot %d:%d:%d: unknown " 1381 "device \"%s\"", bus, slot, func, 1382 emul); 1383 return (EINVAL); 1384 } 1385 if (pde->pe_alias != NULL) { 1386 EPRINTLN("pci slot %d:%d:%d: legacy " 1387 "device \"%s\", use \"%s\" instead", 1388 bus, slot, func, emul, 1389 pde->pe_alias); 1390 return (EINVAL); 1391 } 1392 fi->fi_pde = pde; 1393 error = pci_emul_init(ctx, pde, bus, slot, 1394 func, fi); 1395 if (error) 1396 return (error); 1397 } 1398 } 1399 1400 /* second run: assign BARs and free list */ 1401 struct pci_bar_allocation *bar; 1402 struct pci_bar_allocation *bar_tmp; 1403 TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) { 1404 pci_emul_assign_bar(bar->pdi, bar->idx, bar->type, 1405 bar->size); 1406 free(bar); 1407 } 1408 TAILQ_INIT(&pci_bars); 1409 1410 /* 1411 * Add some slop to the I/O and memory resources decoded by 1412 * this bus to give a guest some flexibility if it wants to 1413 * reprogram the BARs. 1414 */ 1415 pci_emul_iobase += BUSIO_ROUNDUP; 1416 pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP); 1417 bi->iolimit = pci_emul_iobase; 1418 1419 pci_emul_membase32 += BUSMEM32_ROUNDUP; 1420 pci_emul_membase32 = roundup2(pci_emul_membase32, 1421 BUSMEM32_ROUNDUP); 1422 bi->memlimit32 = pci_emul_membase32; 1423 1424 pci_emul_membase64 += BUSMEM64_ROUNDUP; 1425 pci_emul_membase64 = roundup2(pci_emul_membase64, 1426 BUSMEM64_ROUNDUP); 1427 bi->memlimit64 = pci_emul_membase64; 1428 } 1429 1430 /* 1431 * PCI backends are initialized before routing INTx interrupts 1432 * so that LPC devices are able to reserve ISA IRQs before 1433 * routing PIRQ pins. 1434 */ 1435 for (bus = 0; bus < MAXBUSES; bus++) { 1436 if ((bi = pci_businfo[bus]) == NULL) 1437 continue; 1438 1439 for (slot = 0; slot < MAXSLOTS; slot++) { 1440 si = &bi->slotinfo[slot]; 1441 for (func = 0; func < MAXFUNCS; func++) { 1442 fi = &si->si_funcs[func]; 1443 if (fi->fi_devi == NULL) 1444 continue; 1445 pci_lintr_route(fi->fi_devi); 1446 } 1447 } 1448 } 1449 lpc_pirq_routed(); 1450 1451 /* 1452 * The guest physical memory map looks like the following: 1453 * [0, lowmem) guest system memory 1454 * [lowmem, 0xC0000000) memory hole (may be absent) 1455 * [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation) 1456 * [0xE0000000, 0xF0000000) PCI extended config window 1457 * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware 1458 * [4GB, 4GB + highmem) 1459 */ 1460 1461 /* 1462 * Accesses to memory addresses that are not allocated to system 1463 * memory or PCI devices return 0xff's. 1464 */ 1465 lowmem = vm_get_lowmem_size(ctx); 1466 bzero(&mr, sizeof(struct mem_range)); 1467 mr.name = "PCI hole"; 1468 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; 1469 mr.base = lowmem; 1470 mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem; 1471 mr.handler = pci_emul_fallback_handler; 1472 error = register_mem_fallback(&mr); 1473 assert(error == 0); 1474 1475 /* PCI extended config space */ 1476 bzero(&mr, sizeof(struct mem_range)); 1477 mr.name = "PCI ECFG"; 1478 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; 1479 mr.base = PCI_EMUL_ECFG_BASE; 1480 mr.size = PCI_EMUL_ECFG_SIZE; 1481 mr.handler = pci_emul_ecfg_handler; 1482 error = register_mem(&mr); 1483 assert(error == 0); 1484 1485 return (0); 1486 } 1487 1488 static void 1489 pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, 1490 void *arg) 1491 { 1492 1493 dsdt_line(" Package ()"); 1494 dsdt_line(" {"); 1495 dsdt_line(" 0x%X,", slot << 16 | 0xffff); 1496 dsdt_line(" 0x%02X,", pin - 1); 1497 dsdt_line(" Zero,"); 1498 dsdt_line(" 0x%X", ioapic_irq); 1499 dsdt_line(" },"); 1500 } 1501 1502 static void 1503 pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, 1504 void *arg) 1505 { 1506 char *name; 1507 1508 name = lpc_pirq_name(pirq_pin); 1509 if (name == NULL) 1510 return; 1511 dsdt_line(" Package ()"); 1512 dsdt_line(" {"); 1513 dsdt_line(" 0x%X,", slot << 16 | 0xffff); 1514 dsdt_line(" 0x%02X,", pin - 1); 1515 dsdt_line(" %s,", name); 1516 dsdt_line(" 0x00"); 1517 dsdt_line(" },"); 1518 free(name); 1519 } 1520 1521 /* 1522 * A bhyve virtual machine has a flat PCI hierarchy with a root port 1523 * corresponding to each PCI bus. 1524 */ 1525 static void 1526 pci_bus_write_dsdt(int bus) 1527 { 1528 struct businfo *bi; 1529 struct slotinfo *si; 1530 struct pci_devinst *pi; 1531 int count, func, slot; 1532 1533 /* 1534 * If there are no devices on this 'bus' then just return. 1535 */ 1536 if ((bi = pci_businfo[bus]) == NULL) { 1537 /* 1538 * Bus 0 is special because it decodes the I/O ports used 1539 * for PCI config space access even if there are no devices 1540 * on it. 1541 */ 1542 if (bus != 0) 1543 return; 1544 } 1545 1546 dsdt_line(" Device (PC%02X)", bus); 1547 dsdt_line(" {"); 1548 dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))"); 1549 1550 dsdt_line(" Method (_BBN, 0, NotSerialized)"); 1551 dsdt_line(" {"); 1552 dsdt_line(" Return (0x%08X)", bus); 1553 dsdt_line(" }"); 1554 dsdt_line(" Name (_CRS, ResourceTemplate ()"); 1555 dsdt_line(" {"); 1556 dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, " 1557 "MaxFixed, PosDecode,"); 1558 dsdt_line(" 0x0000, // Granularity"); 1559 dsdt_line(" 0x%04X, // Range Minimum", bus); 1560 dsdt_line(" 0x%04X, // Range Maximum", bus); 1561 dsdt_line(" 0x0000, // Translation Offset"); 1562 dsdt_line(" 0x0001, // Length"); 1563 dsdt_line(" ,, )"); 1564 1565 if (bus == 0) { 1566 dsdt_indent(3); 1567 dsdt_fixed_ioport(0xCF8, 8); 1568 dsdt_unindent(3); 1569 1570 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1571 "PosDecode, EntireRange,"); 1572 dsdt_line(" 0x0000, // Granularity"); 1573 dsdt_line(" 0x0000, // Range Minimum"); 1574 dsdt_line(" 0x0CF7, // Range Maximum"); 1575 dsdt_line(" 0x0000, // Translation Offset"); 1576 dsdt_line(" 0x0CF8, // Length"); 1577 dsdt_line(" ,, , TypeStatic)"); 1578 1579 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1580 "PosDecode, EntireRange,"); 1581 dsdt_line(" 0x0000, // Granularity"); 1582 dsdt_line(" 0x0D00, // Range Minimum"); 1583 dsdt_line(" 0x%04X, // Range Maximum", 1584 PCI_EMUL_IOBASE - 1); 1585 dsdt_line(" 0x0000, // Translation Offset"); 1586 dsdt_line(" 0x%04X, // Length", 1587 PCI_EMUL_IOBASE - 0x0D00); 1588 dsdt_line(" ,, , TypeStatic)"); 1589 1590 if (bi == NULL) { 1591 dsdt_line(" })"); 1592 goto done; 1593 } 1594 } 1595 assert(bi != NULL); 1596 1597 /* i/o window */ 1598 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1599 "PosDecode, EntireRange,"); 1600 dsdt_line(" 0x0000, // Granularity"); 1601 dsdt_line(" 0x%04X, // Range Minimum", bi->iobase); 1602 dsdt_line(" 0x%04X, // Range Maximum", 1603 bi->iolimit - 1); 1604 dsdt_line(" 0x0000, // Translation Offset"); 1605 dsdt_line(" 0x%04X, // Length", 1606 bi->iolimit - bi->iobase); 1607 dsdt_line(" ,, , TypeStatic)"); 1608 1609 /* mmio window (32-bit) */ 1610 dsdt_line(" DWordMemory (ResourceProducer, PosDecode, " 1611 "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); 1612 dsdt_line(" 0x00000000, // Granularity"); 1613 dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32); 1614 dsdt_line(" 0x%08X, // Range Maximum\n", 1615 bi->memlimit32 - 1); 1616 dsdt_line(" 0x00000000, // Translation Offset"); 1617 dsdt_line(" 0x%08X, // Length\n", 1618 bi->memlimit32 - bi->membase32); 1619 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); 1620 1621 /* mmio window (64-bit) */ 1622 dsdt_line(" QWordMemory (ResourceProducer, PosDecode, " 1623 "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); 1624 dsdt_line(" 0x0000000000000000, // Granularity"); 1625 dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64); 1626 dsdt_line(" 0x%016lX, // Range Maximum\n", 1627 bi->memlimit64 - 1); 1628 dsdt_line(" 0x0000000000000000, // Translation Offset"); 1629 dsdt_line(" 0x%016lX, // Length\n", 1630 bi->memlimit64 - bi->membase64); 1631 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); 1632 dsdt_line(" })"); 1633 1634 count = pci_count_lintr(bus); 1635 if (count != 0) { 1636 dsdt_indent(2); 1637 dsdt_line("Name (PPRT, Package ()"); 1638 dsdt_line("{"); 1639 pci_walk_lintr(bus, pci_pirq_prt_entry, NULL); 1640 dsdt_line("})"); 1641 dsdt_line("Name (APRT, Package ()"); 1642 dsdt_line("{"); 1643 pci_walk_lintr(bus, pci_apic_prt_entry, NULL); 1644 dsdt_line("})"); 1645 dsdt_line("Method (_PRT, 0, NotSerialized)"); 1646 dsdt_line("{"); 1647 dsdt_line(" If (PICM)"); 1648 dsdt_line(" {"); 1649 dsdt_line(" Return (APRT)"); 1650 dsdt_line(" }"); 1651 dsdt_line(" Else"); 1652 dsdt_line(" {"); 1653 dsdt_line(" Return (PPRT)"); 1654 dsdt_line(" }"); 1655 dsdt_line("}"); 1656 dsdt_unindent(2); 1657 } 1658 1659 dsdt_indent(2); 1660 for (slot = 0; slot < MAXSLOTS; slot++) { 1661 si = &bi->slotinfo[slot]; 1662 for (func = 0; func < MAXFUNCS; func++) { 1663 pi = si->si_funcs[func].fi_devi; 1664 if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL) 1665 pi->pi_d->pe_write_dsdt(pi); 1666 } 1667 } 1668 dsdt_unindent(2); 1669 done: 1670 dsdt_line(" }"); 1671 } 1672 1673 void 1674 pci_write_dsdt(void) 1675 { 1676 int bus; 1677 1678 dsdt_indent(1); 1679 dsdt_line("Name (PICM, 0x00)"); 1680 dsdt_line("Method (_PIC, 1, NotSerialized)"); 1681 dsdt_line("{"); 1682 dsdt_line(" Store (Arg0, PICM)"); 1683 dsdt_line("}"); 1684 dsdt_line(""); 1685 dsdt_line("Scope (_SB)"); 1686 dsdt_line("{"); 1687 for (bus = 0; bus < MAXBUSES; bus++) 1688 pci_bus_write_dsdt(bus); 1689 dsdt_line("}"); 1690 dsdt_unindent(1); 1691 } 1692 1693 int 1694 pci_bus_configured(int bus) 1695 { 1696 assert(bus >= 0 && bus < MAXBUSES); 1697 return (pci_businfo[bus] != NULL); 1698 } 1699 1700 int 1701 pci_msi_enabled(struct pci_devinst *pi) 1702 { 1703 return (pi->pi_msi.enabled); 1704 } 1705 1706 int 1707 pci_msi_maxmsgnum(struct pci_devinst *pi) 1708 { 1709 if (pi->pi_msi.enabled) 1710 return (pi->pi_msi.maxmsgnum); 1711 else 1712 return (0); 1713 } 1714 1715 int 1716 pci_msix_enabled(struct pci_devinst *pi) 1717 { 1718 1719 return (pi->pi_msix.enabled && !pi->pi_msi.enabled); 1720 } 1721 1722 void 1723 pci_generate_msix(struct pci_devinst *pi, int index) 1724 { 1725 struct msix_table_entry *mte; 1726 1727 if (!pci_msix_enabled(pi)) 1728 return; 1729 1730 if (pi->pi_msix.function_mask) 1731 return; 1732 1733 if (index >= pi->pi_msix.table_count) 1734 return; 1735 1736 mte = &pi->pi_msix.table[index]; 1737 if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) { 1738 /* XXX Set PBA bit if interrupt is disabled */ 1739 vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data); 1740 } 1741 } 1742 1743 void 1744 pci_generate_msi(struct pci_devinst *pi, int index) 1745 { 1746 1747 if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) { 1748 vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr, 1749 pi->pi_msi.msg_data + index); 1750 } 1751 } 1752 1753 static bool 1754 pci_lintr_permitted(struct pci_devinst *pi) 1755 { 1756 uint16_t cmd; 1757 1758 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 1759 return (!(pi->pi_msi.enabled || pi->pi_msix.enabled || 1760 (cmd & PCIM_CMD_INTxDIS))); 1761 } 1762 1763 void 1764 pci_lintr_request(struct pci_devinst *pi) 1765 { 1766 struct businfo *bi; 1767 struct slotinfo *si; 1768 int bestpin, bestcount, pin; 1769 1770 bi = pci_businfo[pi->pi_bus]; 1771 assert(bi != NULL); 1772 1773 /* 1774 * Just allocate a pin from our slot. The pin will be 1775 * assigned IRQs later when interrupts are routed. 1776 */ 1777 si = &bi->slotinfo[pi->pi_slot]; 1778 bestpin = 0; 1779 bestcount = si->si_intpins[0].ii_count; 1780 for (pin = 1; pin < 4; pin++) { 1781 if (si->si_intpins[pin].ii_count < bestcount) { 1782 bestpin = pin; 1783 bestcount = si->si_intpins[pin].ii_count; 1784 } 1785 } 1786 1787 si->si_intpins[bestpin].ii_count++; 1788 pi->pi_lintr.pin = bestpin + 1; 1789 pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1); 1790 } 1791 1792 static void 1793 pci_lintr_route(struct pci_devinst *pi) 1794 { 1795 struct businfo *bi; 1796 struct intxinfo *ii; 1797 1798 if (pi->pi_lintr.pin == 0) 1799 return; 1800 1801 bi = pci_businfo[pi->pi_bus]; 1802 assert(bi != NULL); 1803 ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1]; 1804 1805 /* 1806 * Attempt to allocate an I/O APIC pin for this intpin if one 1807 * is not yet assigned. 1808 */ 1809 if (ii->ii_ioapic_irq == 0) 1810 ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi); 1811 assert(ii->ii_ioapic_irq > 0); 1812 1813 /* 1814 * Attempt to allocate a PIRQ pin for this intpin if one is 1815 * not yet assigned. 1816 */ 1817 if (ii->ii_pirq_pin == 0) 1818 ii->ii_pirq_pin = pirq_alloc_pin(pi); 1819 assert(ii->ii_pirq_pin > 0); 1820 1821 pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq; 1822 pi->pi_lintr.pirq_pin = ii->ii_pirq_pin; 1823 pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin)); 1824 } 1825 1826 void 1827 pci_lintr_assert(struct pci_devinst *pi) 1828 { 1829 1830 assert(pi->pi_lintr.pin > 0); 1831 1832 pthread_mutex_lock(&pi->pi_lintr.lock); 1833 if (pi->pi_lintr.state == IDLE) { 1834 if (pci_lintr_permitted(pi)) { 1835 pi->pi_lintr.state = ASSERTED; 1836 pci_irq_assert(pi); 1837 } else 1838 pi->pi_lintr.state = PENDING; 1839 } 1840 pthread_mutex_unlock(&pi->pi_lintr.lock); 1841 } 1842 1843 void 1844 pci_lintr_deassert(struct pci_devinst *pi) 1845 { 1846 1847 assert(pi->pi_lintr.pin > 0); 1848 1849 pthread_mutex_lock(&pi->pi_lintr.lock); 1850 if (pi->pi_lintr.state == ASSERTED) { 1851 pi->pi_lintr.state = IDLE; 1852 pci_irq_deassert(pi); 1853 } else if (pi->pi_lintr.state == PENDING) 1854 pi->pi_lintr.state = IDLE; 1855 pthread_mutex_unlock(&pi->pi_lintr.lock); 1856 } 1857 1858 static void 1859 pci_lintr_update(struct pci_devinst *pi) 1860 { 1861 1862 pthread_mutex_lock(&pi->pi_lintr.lock); 1863 if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) { 1864 pci_irq_deassert(pi); 1865 pi->pi_lintr.state = PENDING; 1866 } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) { 1867 pi->pi_lintr.state = ASSERTED; 1868 pci_irq_assert(pi); 1869 } 1870 pthread_mutex_unlock(&pi->pi_lintr.lock); 1871 } 1872 1873 int 1874 pci_count_lintr(int bus) 1875 { 1876 int count, slot, pin; 1877 struct slotinfo *slotinfo; 1878 1879 count = 0; 1880 if (pci_businfo[bus] != NULL) { 1881 for (slot = 0; slot < MAXSLOTS; slot++) { 1882 slotinfo = &pci_businfo[bus]->slotinfo[slot]; 1883 for (pin = 0; pin < 4; pin++) { 1884 if (slotinfo->si_intpins[pin].ii_count != 0) 1885 count++; 1886 } 1887 } 1888 } 1889 return (count); 1890 } 1891 1892 void 1893 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg) 1894 { 1895 struct businfo *bi; 1896 struct slotinfo *si; 1897 struct intxinfo *ii; 1898 int slot, pin; 1899 1900 if ((bi = pci_businfo[bus]) == NULL) 1901 return; 1902 1903 for (slot = 0; slot < MAXSLOTS; slot++) { 1904 si = &bi->slotinfo[slot]; 1905 for (pin = 0; pin < 4; pin++) { 1906 ii = &si->si_intpins[pin]; 1907 if (ii->ii_count != 0) 1908 cb(bus, slot, pin + 1, ii->ii_pirq_pin, 1909 ii->ii_ioapic_irq, arg); 1910 } 1911 } 1912 } 1913 1914 /* 1915 * Return 1 if the emulated device in 'slot' is a multi-function device. 1916 * Return 0 otherwise. 1917 */ 1918 static int 1919 pci_emul_is_mfdev(int bus, int slot) 1920 { 1921 struct businfo *bi; 1922 struct slotinfo *si; 1923 int f, numfuncs; 1924 1925 numfuncs = 0; 1926 if ((bi = pci_businfo[bus]) != NULL) { 1927 si = &bi->slotinfo[slot]; 1928 for (f = 0; f < MAXFUNCS; f++) { 1929 if (si->si_funcs[f].fi_devi != NULL) { 1930 numfuncs++; 1931 } 1932 } 1933 } 1934 return (numfuncs > 1); 1935 } 1936 1937 /* 1938 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on 1939 * whether or not is a multi-function being emulated in the pci 'slot'. 1940 */ 1941 static void 1942 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv) 1943 { 1944 int mfdev; 1945 1946 if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) { 1947 mfdev = pci_emul_is_mfdev(bus, slot); 1948 switch (bytes) { 1949 case 1: 1950 case 2: 1951 *rv &= ~PCIM_MFDEV; 1952 if (mfdev) { 1953 *rv |= PCIM_MFDEV; 1954 } 1955 break; 1956 case 4: 1957 *rv &= ~(PCIM_MFDEV << 16); 1958 if (mfdev) { 1959 *rv |= (PCIM_MFDEV << 16); 1960 } 1961 break; 1962 } 1963 } 1964 } 1965 1966 /* 1967 * Update device state in response to changes to the PCI command 1968 * register. 1969 */ 1970 void 1971 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old) 1972 { 1973 int i; 1974 uint16_t changed, new; 1975 1976 new = pci_get_cfgdata16(pi, PCIR_COMMAND); 1977 changed = old ^ new; 1978 1979 /* 1980 * If the MMIO or I/O address space decoding has changed then 1981 * register/unregister all BARs that decode that address space. 1982 */ 1983 for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) { 1984 switch (pi->pi_bar[i].type) { 1985 case PCIBAR_NONE: 1986 case PCIBAR_MEMHI64: 1987 break; 1988 case PCIBAR_IO: 1989 /* I/O address space decoding changed? */ 1990 if (changed & PCIM_CMD_PORTEN) { 1991 if (new & PCIM_CMD_PORTEN) 1992 register_bar(pi, i); 1993 else 1994 unregister_bar(pi, i); 1995 } 1996 break; 1997 case PCIBAR_ROM: 1998 /* skip (un-)register of ROM if it disabled */ 1999 if (!romen(pi)) 2000 break; 2001 /* fallthrough */ 2002 case PCIBAR_MEM32: 2003 case PCIBAR_MEM64: 2004 /* MMIO address space decoding changed? */ 2005 if (changed & PCIM_CMD_MEMEN) { 2006 if (new & PCIM_CMD_MEMEN) 2007 register_bar(pi, i); 2008 else 2009 unregister_bar(pi, i); 2010 } 2011 break; 2012 default: 2013 assert(0); 2014 } 2015 } 2016 2017 /* 2018 * If INTx has been unmasked and is pending, assert the 2019 * interrupt. 2020 */ 2021 pci_lintr_update(pi); 2022 } 2023 2024 static void 2025 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes) 2026 { 2027 int rshift; 2028 uint32_t cmd, old, readonly; 2029 2030 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */ 2031 2032 /* 2033 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3. 2034 * 2035 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are 2036 * 'write 1 to clear'. However these bits are not set to '1' by 2037 * any device emulation so it is simpler to treat them as readonly. 2038 */ 2039 rshift = (coff & 0x3) * 8; 2040 readonly = 0xFFFFF880 >> rshift; 2041 2042 old = CFGREAD(pi, coff, bytes); 2043 new &= ~readonly; 2044 new |= (old & readonly); 2045 CFGWRITE(pi, coff, new, bytes); /* update config */ 2046 2047 pci_emul_cmd_changed(pi, cmd); 2048 } 2049 2050 static void 2051 pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func, 2052 int coff, int bytes, uint32_t *eax) 2053 { 2054 struct businfo *bi; 2055 struct slotinfo *si; 2056 struct pci_devinst *pi; 2057 struct pci_devemu *pe; 2058 int idx, needcfg; 2059 uint64_t addr, bar, mask; 2060 2061 if ((bi = pci_businfo[bus]) != NULL) { 2062 si = &bi->slotinfo[slot]; 2063 pi = si->si_funcs[func].fi_devi; 2064 } else 2065 pi = NULL; 2066 2067 /* 2068 * Just return if there is no device at this slot:func or if the 2069 * the guest is doing an un-aligned access. 2070 */ 2071 if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) || 2072 (coff & (bytes - 1)) != 0) { 2073 if (in) 2074 *eax = 0xffffffff; 2075 return; 2076 } 2077 2078 /* 2079 * Ignore all writes beyond the standard config space and return all 2080 * ones on reads. 2081 */ 2082 if (coff >= PCI_REGMAX + 1) { 2083 if (in) { 2084 *eax = 0xffffffff; 2085 /* 2086 * Extended capabilities begin at offset 256 in config 2087 * space. Absence of extended capabilities is signaled 2088 * with all 0s in the extended capability header at 2089 * offset 256. 2090 */ 2091 if (coff <= PCI_REGMAX + 4) 2092 *eax = 0x00000000; 2093 } 2094 return; 2095 } 2096 2097 pe = pi->pi_d; 2098 2099 /* 2100 * Config read 2101 */ 2102 if (in) { 2103 /* Let the device emulation override the default handler */ 2104 if (pe->pe_cfgread != NULL) { 2105 needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes, 2106 eax); 2107 } else { 2108 needcfg = 1; 2109 } 2110 2111 if (needcfg) 2112 *eax = CFGREAD(pi, coff, bytes); 2113 2114 pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax); 2115 } else { 2116 /* Let the device emulation override the default handler */ 2117 if (pe->pe_cfgwrite != NULL && 2118 (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0) 2119 return; 2120 2121 /* 2122 * Special handling for write to BAR and ROM registers 2123 */ 2124 if (is_pcir_bar(coff) || is_pcir_bios(coff)) { 2125 /* 2126 * Ignore writes to BAR registers that are not 2127 * 4-byte aligned. 2128 */ 2129 if (bytes != 4 || (coff & 0x3) != 0) 2130 return; 2131 2132 if (is_pcir_bar(coff)) { 2133 idx = (coff - PCIR_BAR(0)) / 4; 2134 } else if (is_pcir_bios(coff)) { 2135 idx = PCI_ROM_IDX; 2136 } else { 2137 errx(4, "%s: invalid BAR offset %d", __func__, 2138 coff); 2139 } 2140 2141 mask = ~(pi->pi_bar[idx].size - 1); 2142 switch (pi->pi_bar[idx].type) { 2143 case PCIBAR_NONE: 2144 pi->pi_bar[idx].addr = bar = 0; 2145 break; 2146 case PCIBAR_IO: 2147 addr = *eax & mask; 2148 addr &= 0xffff; 2149 bar = addr | pi->pi_bar[idx].lobits; 2150 /* 2151 * Register the new BAR value for interception 2152 */ 2153 if (addr != pi->pi_bar[idx].addr) { 2154 update_bar_address(pi, addr, idx, 2155 PCIBAR_IO); 2156 } 2157 break; 2158 case PCIBAR_MEM32: 2159 addr = bar = *eax & mask; 2160 bar |= pi->pi_bar[idx].lobits; 2161 if (addr != pi->pi_bar[idx].addr) { 2162 update_bar_address(pi, addr, idx, 2163 PCIBAR_MEM32); 2164 } 2165 break; 2166 case PCIBAR_MEM64: 2167 addr = bar = *eax & mask; 2168 bar |= pi->pi_bar[idx].lobits; 2169 if (addr != (uint32_t)pi->pi_bar[idx].addr) { 2170 update_bar_address(pi, addr, idx, 2171 PCIBAR_MEM64); 2172 } 2173 break; 2174 case PCIBAR_MEMHI64: 2175 mask = ~(pi->pi_bar[idx - 1].size - 1); 2176 addr = ((uint64_t)*eax << 32) & mask; 2177 bar = addr >> 32; 2178 if (bar != pi->pi_bar[idx - 1].addr >> 32) { 2179 update_bar_address(pi, addr, idx - 1, 2180 PCIBAR_MEMHI64); 2181 } 2182 break; 2183 case PCIBAR_ROM: 2184 addr = bar = *eax & mask; 2185 if (memen(pi) && romen(pi)) { 2186 unregister_bar(pi, idx); 2187 } 2188 pi->pi_bar[idx].addr = addr; 2189 pi->pi_bar[idx].lobits = *eax & 2190 PCIM_BIOS_ENABLE; 2191 /* romen could have changed it value */ 2192 if (memen(pi) && romen(pi)) { 2193 register_bar(pi, idx); 2194 } 2195 bar |= pi->pi_bar[idx].lobits; 2196 break; 2197 default: 2198 assert(0); 2199 } 2200 pci_set_cfgdata32(pi, coff, bar); 2201 2202 } else if (pci_emul_iscap(pi, coff)) { 2203 pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0); 2204 } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) { 2205 pci_emul_cmdsts_write(pi, coff, *eax, bytes); 2206 } else { 2207 CFGWRITE(pi, coff, *eax, bytes); 2208 } 2209 } 2210 } 2211 2212 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff; 2213 2214 static int 2215 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 2216 uint32_t *eax, void *arg) 2217 { 2218 uint32_t x; 2219 2220 if (bytes != 4) { 2221 if (in) 2222 *eax = (bytes == 2) ? 0xffff : 0xff; 2223 return (0); 2224 } 2225 2226 if (in) { 2227 x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff; 2228 if (cfgenable) 2229 x |= CONF1_ENABLE; 2230 *eax = x; 2231 } else { 2232 x = *eax; 2233 cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE; 2234 cfgoff = (x & PCI_REGMAX) & ~0x03; 2235 cfgfunc = (x >> 8) & PCI_FUNCMAX; 2236 cfgslot = (x >> 11) & PCI_SLOTMAX; 2237 cfgbus = (x >> 16) & PCI_BUSMAX; 2238 } 2239 2240 return (0); 2241 } 2242 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr); 2243 2244 static int 2245 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 2246 uint32_t *eax, void *arg) 2247 { 2248 int coff; 2249 2250 assert(bytes == 1 || bytes == 2 || bytes == 4); 2251 2252 coff = cfgoff + (port - CONF1_DATA_PORT); 2253 if (cfgenable) { 2254 pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes, 2255 eax); 2256 } else { 2257 /* Ignore accesses to cfgdata if not enabled by cfgaddr */ 2258 if (in) 2259 *eax = 0xffffffff; 2260 } 2261 return (0); 2262 } 2263 2264 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata); 2265 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata); 2266 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata); 2267 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata); 2268 2269 #ifdef BHYVE_SNAPSHOT 2270 /* 2271 * Saves/restores PCI device emulated state. Returns 0 on success. 2272 */ 2273 static int 2274 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta) 2275 { 2276 struct pci_devinst *pi; 2277 int i; 2278 int ret; 2279 2280 pi = meta->dev_data; 2281 2282 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done); 2283 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done); 2284 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done); 2285 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done); 2286 2287 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done); 2288 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done); 2289 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done); 2290 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done); 2291 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done); 2292 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done); 2293 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done); 2294 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done); 2295 2296 SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata), 2297 meta, ret, done); 2298 2299 for (i = 0; i < nitems(pi->pi_bar); i++) { 2300 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done); 2301 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done); 2302 SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done); 2303 } 2304 2305 /* Restore MSI-X table. */ 2306 for (i = 0; i < pi->pi_msix.table_count; i++) { 2307 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr, 2308 meta, ret, done); 2309 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data, 2310 meta, ret, done); 2311 SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control, 2312 meta, ret, done); 2313 } 2314 2315 done: 2316 return (ret); 2317 } 2318 2319 static int 2320 pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde, 2321 struct pci_devinst **pdi) 2322 { 2323 struct businfo *bi; 2324 struct slotinfo *si; 2325 struct funcinfo *fi; 2326 int bus, slot, func; 2327 2328 assert(dev_name != NULL); 2329 assert(pde != NULL); 2330 assert(pdi != NULL); 2331 2332 for (bus = 0; bus < MAXBUSES; bus++) { 2333 if ((bi = pci_businfo[bus]) == NULL) 2334 continue; 2335 2336 for (slot = 0; slot < MAXSLOTS; slot++) { 2337 si = &bi->slotinfo[slot]; 2338 for (func = 0; func < MAXFUNCS; func++) { 2339 fi = &si->si_funcs[func]; 2340 if (fi->fi_pde == NULL) 2341 continue; 2342 if (strcmp(dev_name, fi->fi_pde->pe_emu) != 0) 2343 continue; 2344 2345 *pde = fi->fi_pde; 2346 *pdi = fi->fi_devi; 2347 return (0); 2348 } 2349 } 2350 } 2351 2352 return (EINVAL); 2353 } 2354 2355 int 2356 pci_snapshot(struct vm_snapshot_meta *meta) 2357 { 2358 struct pci_devemu *pde; 2359 struct pci_devinst *pdi; 2360 int ret; 2361 2362 assert(meta->dev_name != NULL); 2363 2364 ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi); 2365 if (ret != 0) { 2366 fprintf(stderr, "%s: no such name: %s\r\n", 2367 __func__, meta->dev_name); 2368 memset(meta->buffer.buf_start, 0, meta->buffer.buf_size); 2369 return (0); 2370 } 2371 2372 meta->dev_data = pdi; 2373 2374 if (pde->pe_snapshot == NULL) { 2375 fprintf(stderr, "%s: not implemented yet for: %s\r\n", 2376 __func__, meta->dev_name); 2377 return (-1); 2378 } 2379 2380 ret = pci_snapshot_pci_dev(meta); 2381 if (ret != 0) { 2382 fprintf(stderr, "%s: failed to snapshot pci dev\r\n", 2383 __func__); 2384 return (-1); 2385 } 2386 2387 ret = (*pde->pe_snapshot)(meta); 2388 2389 return (ret); 2390 } 2391 2392 int 2393 pci_pause(struct vmctx *ctx, const char *dev_name) 2394 { 2395 struct pci_devemu *pde; 2396 struct pci_devinst *pdi; 2397 int ret; 2398 2399 assert(dev_name != NULL); 2400 2401 ret = pci_find_slotted_dev(dev_name, &pde, &pdi); 2402 if (ret != 0) { 2403 /* 2404 * It is possible to call this function without 2405 * checking that the device is inserted first. 2406 */ 2407 fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name); 2408 return (0); 2409 } 2410 2411 if (pde->pe_pause == NULL) { 2412 /* The pause/resume functionality is optional. */ 2413 fprintf(stderr, "%s: not implemented for: %s\n", 2414 __func__, dev_name); 2415 return (0); 2416 } 2417 2418 return (*pde->pe_pause)(ctx, pdi); 2419 } 2420 2421 int 2422 pci_resume(struct vmctx *ctx, const char *dev_name) 2423 { 2424 struct pci_devemu *pde; 2425 struct pci_devinst *pdi; 2426 int ret; 2427 2428 assert(dev_name != NULL); 2429 2430 ret = pci_find_slotted_dev(dev_name, &pde, &pdi); 2431 if (ret != 0) { 2432 /* 2433 * It is possible to call this function without 2434 * checking that the device is inserted first. 2435 */ 2436 fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name); 2437 return (0); 2438 } 2439 2440 if (pde->pe_resume == NULL) { 2441 /* The pause/resume functionality is optional. */ 2442 fprintf(stderr, "%s: not implemented for: %s\n", 2443 __func__, dev_name); 2444 return (0); 2445 } 2446 2447 return (*pde->pe_resume)(ctx, pdi); 2448 } 2449 #endif 2450 2451 #define PCI_EMUL_TEST 2452 #ifdef PCI_EMUL_TEST 2453 /* 2454 * Define a dummy test device 2455 */ 2456 #define DIOSZ 8 2457 #define DMEMSZ 4096 2458 struct pci_emul_dsoftc { 2459 uint8_t ioregs[DIOSZ]; 2460 uint8_t memregs[2][DMEMSZ]; 2461 }; 2462 2463 #define PCI_EMUL_MSI_MSGS 4 2464 #define PCI_EMUL_MSIX_MSGS 16 2465 2466 static int 2467 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl) 2468 { 2469 int error; 2470 struct pci_emul_dsoftc *sc; 2471 2472 sc = calloc(1, sizeof(struct pci_emul_dsoftc)); 2473 2474 pi->pi_arg = sc; 2475 2476 pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001); 2477 pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD); 2478 pci_set_cfgdata8(pi, PCIR_CLASS, 0x02); 2479 2480 error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS); 2481 assert(error == 0); 2482 2483 error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ); 2484 assert(error == 0); 2485 2486 error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ); 2487 assert(error == 0); 2488 2489 error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ); 2490 assert(error == 0); 2491 2492 return (0); 2493 } 2494 2495 static void 2496 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 2497 uint64_t offset, int size, uint64_t value) 2498 { 2499 int i; 2500 struct pci_emul_dsoftc *sc = pi->pi_arg; 2501 2502 if (baridx == 0) { 2503 if (offset + size > DIOSZ) { 2504 printf("diow: iow too large, offset %ld size %d\n", 2505 offset, size); 2506 return; 2507 } 2508 2509 if (size == 1) { 2510 sc->ioregs[offset] = value & 0xff; 2511 } else if (size == 2) { 2512 *(uint16_t *)&sc->ioregs[offset] = value & 0xffff; 2513 } else if (size == 4) { 2514 *(uint32_t *)&sc->ioregs[offset] = value; 2515 } else { 2516 printf("diow: iow unknown size %d\n", size); 2517 } 2518 2519 /* 2520 * Special magic value to generate an interrupt 2521 */ 2522 if (offset == 4 && size == 4 && pci_msi_enabled(pi)) 2523 pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi)); 2524 2525 if (value == 0xabcdef) { 2526 for (i = 0; i < pci_msi_maxmsgnum(pi); i++) 2527 pci_generate_msi(pi, i); 2528 } 2529 } 2530 2531 if (baridx == 1 || baridx == 2) { 2532 if (offset + size > DMEMSZ) { 2533 printf("diow: memw too large, offset %ld size %d\n", 2534 offset, size); 2535 return; 2536 } 2537 2538 i = baridx - 1; /* 'memregs' index */ 2539 2540 if (size == 1) { 2541 sc->memregs[i][offset] = value; 2542 } else if (size == 2) { 2543 *(uint16_t *)&sc->memregs[i][offset] = value; 2544 } else if (size == 4) { 2545 *(uint32_t *)&sc->memregs[i][offset] = value; 2546 } else if (size == 8) { 2547 *(uint64_t *)&sc->memregs[i][offset] = value; 2548 } else { 2549 printf("diow: memw unknown size %d\n", size); 2550 } 2551 2552 /* 2553 * magic interrupt ?? 2554 */ 2555 } 2556 2557 if (baridx > 2 || baridx < 0) { 2558 printf("diow: unknown bar idx %d\n", baridx); 2559 } 2560 } 2561 2562 static uint64_t 2563 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 2564 uint64_t offset, int size) 2565 { 2566 struct pci_emul_dsoftc *sc = pi->pi_arg; 2567 uint32_t value; 2568 int i; 2569 2570 if (baridx == 0) { 2571 if (offset + size > DIOSZ) { 2572 printf("dior: ior too large, offset %ld size %d\n", 2573 offset, size); 2574 return (0); 2575 } 2576 2577 value = 0; 2578 if (size == 1) { 2579 value = sc->ioregs[offset]; 2580 } else if (size == 2) { 2581 value = *(uint16_t *) &sc->ioregs[offset]; 2582 } else if (size == 4) { 2583 value = *(uint32_t *) &sc->ioregs[offset]; 2584 } else { 2585 printf("dior: ior unknown size %d\n", size); 2586 } 2587 } 2588 2589 if (baridx == 1 || baridx == 2) { 2590 if (offset + size > DMEMSZ) { 2591 printf("dior: memr too large, offset %ld size %d\n", 2592 offset, size); 2593 return (0); 2594 } 2595 2596 i = baridx - 1; /* 'memregs' index */ 2597 2598 if (size == 1) { 2599 value = sc->memregs[i][offset]; 2600 } else if (size == 2) { 2601 value = *(uint16_t *) &sc->memregs[i][offset]; 2602 } else if (size == 4) { 2603 value = *(uint32_t *) &sc->memregs[i][offset]; 2604 } else if (size == 8) { 2605 value = *(uint64_t *) &sc->memregs[i][offset]; 2606 } else { 2607 printf("dior: ior unknown size %d\n", size); 2608 } 2609 } 2610 2611 2612 if (baridx > 2 || baridx < 0) { 2613 printf("dior: unknown bar idx %d\n", baridx); 2614 return (0); 2615 } 2616 2617 return (value); 2618 } 2619 2620 #ifdef BHYVE_SNAPSHOT 2621 int 2622 pci_emul_snapshot(struct vm_snapshot_meta *meta) 2623 { 2624 2625 return (0); 2626 } 2627 #endif 2628 2629 static const struct pci_devemu pci_dummy = { 2630 .pe_emu = "dummy", 2631 .pe_init = pci_emul_dinit, 2632 .pe_barwrite = pci_emul_diow, 2633 .pe_barread = pci_emul_dior, 2634 #ifdef BHYVE_SNAPSHOT 2635 .pe_snapshot = pci_emul_snapshot, 2636 #endif 2637 }; 2638 PCI_EMUL_SET(pci_dummy); 2639 2640 #endif /* PCI_EMUL_TEST */ 2641