xref: /freebsd/usr.bin/dtc/fdt.hh (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 David Chisnall
5  * All rights reserved.
6  *
7  * This software was developed by SRI International and the University of
8  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
9  * ("CTSRD"), as part of the DARPA CRASH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 #ifndef _FDT_HH_
36 #define _FDT_HH_
37 #include <unordered_map>
38 #include <unordered_set>
39 #include <memory>
40 #include <string>
41 #include <functional>
42 
43 #include "util.hh"
44 #include "input_buffer.hh"
45 
46 namespace dtc
47 {
48 
49 namespace dtb
50 {
51 struct output_writer;
52 class string_table;
53 }
54 
55 namespace fdt
56 {
57 class property;
58 class node;
59 /**
60  * Type for (owned) pointers to properties.
61  */
62 typedef std::shared_ptr<property> property_ptr;
63 /**
64  * Owning pointer to a node.
65  */
66 typedef std::unique_ptr<node> node_ptr;
67 /**
68  * Map from macros to property pointers.
69  */
70 typedef std::unordered_map<std::string, property_ptr> define_map;
71 /**
72  * Set of strings used for label names.
73  */
74 typedef std::unordered_set<std::string> string_set;
75 /**
76  * Properties may contain a number of different value, each with a different
77  * label.  This class encapsulates a single value.
78  */
79 struct property_value
80 {
81 	/**
82 	 * The label for this data.  This is usually empty.
83 	 */
84 	std::string label;
85 	/**
86 	 * If this value is a string, or something resolved from a string (a
87 	 * reference) then this contains the source string.
88 	 */
89 	std::string string_data;
90 	/**
91 	 * The data that should be written to the final output.
92 	 */
93 	byte_buffer byte_data;
94 	/**
95 	 * Enumeration describing the possible types of a value.  Note that
96 	 * property-coded arrays will appear simply as binary (or possibly
97 	 * string, if they happen to be nul-terminated and printable), and must
98 	 * be checked separately.
99 	 */
100 	enum value_type
101 	{
102 		/**
103 		 * This is a list of strings.  When read from source, string
104 		 * lists become one property value for each string, however
105 		 * when read from binary we have a single property value
106 		 * incorporating the entire text, with nul bytes separating the
107 		 * strings.
108 		 */
109 		STRING_LIST,
110 		/**
111 		 * This property contains a single string.
112 		 */
113 		STRING,
114 		/**
115 		 * This is a binary value.  Check the size of byte_data to
116 		 * determine how many bytes this contains.
117 		 */
118 		BINARY,
119 		/** This contains a short-form address that should be replaced
120 		 * by a fully-qualified version.  This will only appear when
121 		 * the input is a device tree source.  When parsed from a
122 		 * device tree blob, the cross reference will have already been
123 		 * resolved and the property value will be a string containing
124 		 * the full path of the target node.  */
125 		CROSS_REFERENCE,
126 		/**
127 		 * This is a phandle reference.  When parsed from source, the
128 		 * string_data will contain the node label for the target and,
129 		 * after cross references have been resolved, the binary data
130 		 * will contain a 32-bit integer that should match the phandle
131 		 * property of the target node.
132 		 */
133 		PHANDLE,
134 		/**
135 		 * An empty property value.  This will never appear on a real
136 		 * property value, it is used by checkers to indicate that no
137 		 * property values should exist for a property.
138 		 */
139 		EMPTY,
140 		/**
141 		 * The type of this property has not yet been determined.
142 		 */
143 		UNKNOWN
144 	};
145 	/**
146 	 * The type of this property.
147 	 */
148 	value_type type;
149 	/**
150 	 * Returns true if this value is a cross reference, false otherwise.
151 	 */
152 	inline bool is_cross_reference()
153 	{
154 		return is_type(CROSS_REFERENCE);
155 	}
156 	/**
157 	 * Returns true if this value is a phandle reference, false otherwise.
158 	 */
159 	inline bool is_phandle()
160 	{
161 		return is_type(PHANDLE);
162 	}
163 	/**
164 	 * Returns true if this value is a string, false otherwise.
165 	 */
166 	inline bool is_string()
167 	{
168 		return is_type(STRING);
169 	}
170 	/**
171 	 * Returns true if this value is a string list (a nul-separated
172 	 * sequence of strings), false otherwise.
173 	 */
174 	inline bool is_string_list()
175 	{
176 		return is_type(STRING_LIST);
177 	}
178 	/**
179 	 * Returns true if this value is binary, false otherwise.
180 	 */
181 	inline bool is_binary()
182 	{
183 		return is_type(BINARY);
184 	}
185 	/**
186 	 * Returns this property value as a 32-bit integer.  Returns 0 if this
187 	 * property value is not 32 bits long.  The bytes in the property value
188 	 * are assumed to be in big-endian format, but the return value is in
189 	 * the host native endian.
190 	 */
191 	uint32_t get_as_uint32();
192 	/**
193 	 * Default constructor, specifying the label of the value.
194 	 */
195 	property_value(std::string l=std::string()) : label(l), type(UNKNOWN) {}
196 	/**
197 	 * Writes the data for this value into an output buffer.
198 	 */
199 	void push_to_buffer(byte_buffer &buffer);
200 
201 	/**
202 	 * Writes the property value to the standard output.  This uses the
203 	 * following heuristics for deciding how to print the output:
204 	 *
205 	 * - If the value is nul-terminated and only contains printable
206 	 *   characters, it is written as a string.
207 	 * - If it is a multiple of 4 bytes long, then it is printed as cells.
208 	 * - Otherwise, it is printed as a byte buffer.
209 	 */
210 	void write_dts(FILE *file);
211 	/**
212 	 * Tries to merge adjacent property values, returns true if it succeeds and
213 	 * false otherwise.
214 	 */
215 	bool try_to_merge(property_value &other);
216 	/**
217 	 * Returns the size (in bytes) of this property value.
218 	 */
219 	size_t size();
220 	private:
221 	/**
222 	 * Returns whether the value is of the specified type.  If the type of
223 	 * the value has not yet been determined, then this calculates it.
224 	 */
225 	inline bool is_type(value_type v)
226 	{
227 		if (type == UNKNOWN)
228 		{
229 			resolve_type();
230 		}
231 		return type == v;
232 	}
233 	/**
234 	 * Determines the type of the value based on its contents.
235 	 */
236 	void resolve_type();
237 	/**
238 	 * Writes the property value to the specified file as a quoted string.
239 	 * This is used when generating DTS.
240 	 */
241 	void write_as_string(FILE *file);
242 	/**
243 	 * Writes the property value to the specified file as a sequence of
244 	 * 32-bit big-endian cells.  This is used when generating DTS.
245 	 */
246 	void write_as_cells(FILE *file);
247 	/**
248 	 * Writes the property value to the specified file as a sequence of
249 	 * bytes.  This is used when generating DTS.
250 	 */
251 	void write_as_bytes(FILE *file);
252 };
253 
254 /**
255  * A value encapsulating a single property.  This contains a key, optionally a
256  * label, and optionally one or more values.
257  */
258 class property
259 {
260 	/**
261 	 * The name of this property.
262 	 */
263 	std::string key;
264 	/**
265 	 * Zero or more labels.
266 	 */
267 	string_set labels;
268 	/**
269 	 * The values in this property.
270 	 */
271 	std::vector<property_value> values;
272 	/**
273 	 * Value indicating that this is a valid property.  If a parse error
274 	 * occurs, then this value is false.
275 	 */
276 	bool valid;
277 	/**
278 	 * Parses a string property value, i.e. a value enclosed in double quotes.
279 	 */
280 	void parse_string(text_input_buffer &input);
281 	/**
282 	 * Parses one or more 32-bit values enclosed in angle brackets.
283 	 */
284 	void parse_cells(text_input_buffer &input, int cell_size);
285 	/**
286 	 * Parses an array of bytes, contained within square brackets.
287 	 */
288 	void parse_bytes(text_input_buffer &input);
289 	/**
290 	 * Parses a reference.  This is a node label preceded by an ampersand
291 	 * symbol, which should expand to the full path to that node.
292 	 *
293 	 * Note: The specification says that the target of such a reference is
294 	 * a node name, however dtc assumes that it is a label, and so we
295 	 * follow their interpretation for compatibility.
296 	 */
297 	void parse_reference(text_input_buffer &input);
298 	/**
299 	 * Parse a predefined macro definition for a property.
300 	 */
301 	void parse_define(text_input_buffer &input, define_map *defines);
302 	/**
303 	 * Constructs a new property from two input buffers, pointing to the
304 	 * struct and strings tables in the device tree blob, respectively.
305 	 * The structs input buffer is assumed to have just consumed the
306 	 * FDT_PROP token.
307 	 */
308 	property(input_buffer &structs, input_buffer &strings);
309 	/**
310 	 * Parses a new property from the input buffer.
311 	 */
312 	property(text_input_buffer &input,
313 	         std::string &&k,
314 	         string_set &&l,
315 	         bool terminated,
316 	         define_map *defines);
317 	public:
318 	/**
319 	 * Creates an empty property.
320 	 */
321 	property(std::string &&k, string_set &&l=string_set())
322 		: key(k), labels(l), valid(true) {}
323 	/**
324 	 * Copy constructor.
325 	 */
326 	property(property &p) : key(p.key), labels(p.labels), values(p.values),
327 		valid(p.valid) {}
328 	/**
329 	 * Factory method for constructing a new property.  Attempts to parse a
330 	 * property from the input, and returns it on success.  On any parse
331 	 * error, this will return 0.
332 	 */
333 	static property_ptr parse_dtb(input_buffer &structs,
334 	                              input_buffer &strings);
335 	/**
336 	 * Factory method for constructing a new property.  Attempts to parse a
337 	 * property from the input, and returns it on success.  On any parse
338 	 * error, this will return 0.
339 	 */
340 	static property_ptr parse(text_input_buffer &input,
341 	                          std::string &&key,
342 	                          string_set &&labels=string_set(),
343 	                          bool semicolonTerminated=true,
344 	                          define_map *defines=0);
345 	/**
346 	 * Iterator type used for accessing the values of a property.
347 	 */
348 	typedef std::vector<property_value>::iterator value_iterator;
349 	/**
350 	 * Returns an iterator referring to the first value in this property.
351 	 */
352 	inline value_iterator begin()
353 	{
354 		return values.begin();
355 	}
356 	/**
357 	 * Returns an iterator referring to the last value in this property.
358 	 */
359 	inline value_iterator end()
360 	{
361 		return values.end();
362 	}
363 	/**
364 	 * Adds a new value to an existing property.
365 	 */
366 	inline void add_value(property_value v)
367 	{
368 		values.push_back(v);
369 	}
370 	/**
371 	 * Returns the key for this property.
372 	 */
373 	inline const std::string &get_key()
374 	{
375 		return key;
376 	}
377 	/**
378 	 * Writes the property to the specified writer.  The property name is a
379 	 * reference into the strings table.
380 	 */
381 	void write(dtb::output_writer &writer, dtb::string_table &strings);
382 	/**
383 	 * Writes in DTS format to the specified file, at the given indent
384 	 * level.  This will begin the line with the number of tabs specified
385 	 * as the indent level and then write the property in the most
386 	 * applicable way that it can determine.
387 	 */
388 	void write_dts(FILE *file, int indent);
389 	/**
390 	 * Returns the byte offset of the specified property value.
391 	 */
392 	size_t offset_of_value(property_value &val);
393 };
394 
395 /**
396  * Class encapsulating a device tree node.  Nodes may contain properties and
397  * other nodes.
398  */
399 class node
400 {
401 	public:
402 	/**
403 	 * The labels for this node, if any.  Node labels are used as the
404 	 * targets for cross references.
405 	 */
406 	std::unordered_set<std::string> labels;
407 	/**
408 	 * The name of the node.
409 	 */
410 	std::string name;
411 	/**
412 	 * The unit address of the node, which is optionally written after the
413 	 * name followed by an at symbol.
414 	 */
415 	std::string unit_address;
416 	/**
417 	 * The type for the property vector.
418 	 */
419 	typedef std::vector<property_ptr> property_vector;
420 	/**
421 	 * Iterator type for child nodes.
422 	 */
423 	typedef std::vector<node_ptr>::iterator child_iterator;
424 	private:
425 	/**
426 	 * Adaptor to use children in range-based for loops.
427 	 */
428 	struct child_range
429 	{
430 		child_range(node &nd) : n(nd) {}
431 		child_iterator begin() { return n.child_begin(); }
432 		child_iterator end() { return n.child_end(); }
433 		private:
434 		node &n;
435 	};
436 	/**
437 	 * Adaptor to use properties in range-based for loops.
438 	 */
439 	struct property_range
440 	{
441 		property_range(node &nd) : n(nd) {}
442 		property_vector::iterator begin() { return n.property_begin(); }
443 		property_vector::iterator end() { return n.property_end(); }
444 		private:
445 		node &n;
446 	};
447 	/**
448 	 * The properties contained within this node.
449 	 */
450 	property_vector props;
451 	/**
452 	 * The children of this node.
453 	 */
454 	std::vector<node_ptr> children;
455 	/**
456 	 * Children that should be deleted from this node when merging.
457 	 */
458 	std::unordered_set<std::string> deleted_children;
459 	/**
460 	 * Properties that should be deleted from this node when merging.
461 	 */
462 	std::unordered_set<std::string> deleted_props;
463 	/**
464 	 * A flag indicating whether this node is valid.  This is set to false
465 	 * if an error occurs during parsing.
466 	 */
467 	bool valid;
468 	/**
469 	 * Parses a name inside a node, writing the string passed as the last
470 	 * argument as an error if it fails.
471 	 */
472 	std::string parse_name(text_input_buffer &input,
473 	                       bool &is_property,
474 	                       const char *error);
475 	/**
476 	 * Constructs a new node from two input buffers, pointing to the struct
477 	 * and strings tables in the device tree blob, respectively.
478 	 */
479 	node(input_buffer &structs, input_buffer &strings);
480 	/**
481 	 * Parses a new node from the specified input buffer.  This is called
482 	 * when the input cursor is on the open brace for the start of the
483 	 * node.  The name, and optionally label and unit address, should have
484 	 * already been parsed.
485 	 */
486 	node(text_input_buffer &input,
487 	     std::string &&n,
488 	     std::unordered_set<std::string> &&l,
489 	     std::string &&a,
490 	     define_map*);
491 	/**
492 	 * Creates a special node with the specified name and properties.
493 	 */
494 	node(const std::string &n, const std::vector<property_ptr> &p);
495 	/**
496 	 * Comparison function for properties, used when sorting the properties
497 	 * vector.  Orders the properties based on their names.
498 	 */
499 	static inline bool cmp_properties(property_ptr &p1, property_ptr &p2);
500 		/*
501 	{
502 		return p1->get_key() < p2->get_key();
503 	}
504 	*/
505 	/**
506 	 * Comparison function for nodes, used when sorting the children
507 	 * vector.  Orders the nodes based on their names or, if the names are
508 	 * the same, by the unit addresses.
509 	 */
510 	static inline bool cmp_children(node_ptr &c1, node_ptr &c2);
511 	public:
512 	/**
513 	 * Sorts the node's properties and children into alphabetical order and
514 	 * recursively sorts the children.
515 	 */
516 	void sort();
517 	/**
518 	 * Returns an iterator for the first child of this node.
519 	 */
520 	inline child_iterator child_begin()
521 	{
522 		return children.begin();
523 	}
524 	/**
525 	 * Returns an iterator after the last child of this node.
526 	 */
527 	inline child_iterator child_end()
528 	{
529 		return children.end();
530 	}
531 	/**
532 	 * Returns a range suitable for use in a range-based for loop describing
533 	 * the children of this node.
534 	 */
535 	inline child_range child_nodes()
536 	{
537 		return child_range(*this);
538 	}
539 	/**
540 	 * Accessor for the deleted children.
541 	 */
542 	inline const std::unordered_set<std::string> &deleted_child_nodes()
543 	{
544 		return deleted_children;
545 	}
546 	/**
547 	 * Accessor for the deleted properties
548 	 */
549 	inline const std::unordered_set<std::string> &deleted_properties()
550 	{
551 		return deleted_props;
552 	}
553 	/**
554 	 * Returns a range suitable for use in a range-based for loop describing
555 	 * the properties of this node.
556 	 */
557 	inline property_range properties()
558 	{
559 		return property_range(*this);
560 	}
561 	/**
562 	 * Returns an iterator after the last property of this node.
563 	 */
564 	inline property_vector::iterator property_begin()
565 	{
566 		return props.begin();
567 	}
568 	/**
569 	 * Returns an iterator for the first property of this node.
570 	 */
571 	inline property_vector::iterator property_end()
572 	{
573 		return props.end();
574 	}
575 	/**
576 	 * Factory method for constructing a new node.  Attempts to parse a
577 	 * node in DTS format from the input, and returns it on success.  On
578 	 * any parse error, this will return 0.  This should be called with the
579 	 * cursor on the open brace of the property, after the name and so on
580 	 * have been parsed.
581 	 */
582 	static node_ptr parse(text_input_buffer &input,
583 	                      std::string &&name,
584 	                      std::unordered_set<std::string> &&label=std::unordered_set<std::string>(),
585 	                      std::string &&address=std::string(),
586 	                      define_map *defines=0);
587 	/**
588 	 * Factory method for constructing a new node.  Attempts to parse a
589 	 * node in DTB format from the input, and returns it on success.  On
590 	 * any parse error, this will return 0.  This should be called with the
591 	 * cursor on the open brace of the property, after the name and so on
592 	 * have been parsed.
593 	 */
594 	static node_ptr parse_dtb(input_buffer &structs, input_buffer &strings);
595 	/**
596 	 * Construct a new special node from a name and set of properties.
597 	 */
598 	static node_ptr create_special_node(const std::string &name,
599 			const std::vector<property_ptr> &props);
600 	/**
601 	 * Returns a property corresponding to the specified key, or 0 if this
602 	 * node does not contain a property of that name.
603 	 */
604 	property_ptr get_property(const std::string &key);
605 	/**
606 	 * Adds a new property to this node.
607 	 */
608 	inline void add_property(property_ptr &p)
609 	{
610 		props.push_back(p);
611 	}
612 	/**
613 	 * Adds a new child to this node.
614 	 */
615 	inline void add_child(node_ptr &&n)
616 	{
617 		children.push_back(std::move(n));
618 	}
619 	/**
620 	 * Merges a node into this one.  Any properties present in both are
621 	 * overridden, any properties present in only one are preserved.
622 	 */
623 	void merge_node(node_ptr &other);
624 	/**
625 	 * Write this node to the specified output.  Although nodes do not
626 	 * refer to a string table directly, their properties do.  The string
627 	 * table passed as the second argument is used for the names of
628 	 * properties within this node and its children.
629 	 */
630 	void write(dtb::output_writer &writer, dtb::string_table &strings);
631 	/**
632 	 * Writes the current node as DTS to the specified file.  The second
633 	 * parameter is the indent level.  This function will start every line
634 	 * with this number of tabs.
635 	 */
636 	void write_dts(FILE *file, int indent);
637 	/**
638 	 * Recursively visit this node and then its children.
639 	 */
640 	void visit(std::function<void(node&)>);
641 };
642 
643 /**
644  * Class encapsulating the entire parsed FDT.  This is the top-level class,
645  * which parses the entire DTS representation and write out the finished
646  * version.
647  */
648 class device_tree
649 {
650 	public:
651 	/**
652 	 * Type used for node paths.  A node path is sequence of names and unit
653 	 * addresses.
654 	 */
655 	class node_path : public std::vector<std::pair<std::string,std::string>>
656 	{
657 		public:
658 		/**
659 		 * Converts this to a string representation.
660 		 */
661 		std::string to_string() const;
662 	};
663 	/**
664 	 * Name that we should use for phandle nodes.
665 	 */
666 	enum phandle_format
667 	{
668 		/** linux,phandle */
669 		LINUX,
670 		/** phandle */
671 		EPAPR,
672 		/** Create both nodes. */
673 		BOTH
674 	};
675 	private:
676 	/**
677 	 * The format that we should use for writing phandles.
678 	 */
679 	phandle_format phandle_node_name = EPAPR;
680 	/**
681 	 * Flag indicating that this tree is valid.  This will be set to false
682 	 * on parse errors.
683 	 */
684 	bool valid = true;
685 	/**
686 	 * Type used for memory reservations.  A reservation is two 64-bit
687 	 * values indicating a base address and length in memory that the
688 	 * kernel should not use.  The high 32 bits are ignored on 32-bit
689 	 * platforms.
690 	 */
691 	typedef std::pair<uint64_t, uint64_t> reservation;
692 	/**
693 	 * The memory reserves table.
694 	 */
695 	std::vector<reservation> reservations;
696 	/**
697 	 * Root node.  All other nodes are children of this node.
698 	 */
699 	node_ptr root;
700 	/**
701 	 * Mapping from names to nodes.  Only unambiguous names are recorded,
702 	 * duplicate names are stored as (node*)-1.
703 	 */
704 	std::unordered_map<std::string, node*> node_names;
705 	/**
706 	 * A map from labels to node paths.  When resolving cross references,
707 	 * we look up referenced nodes in this and replace the cross reference
708 	 * with the full path to its target.
709 	 */
710 	std::unordered_map<std::string, node_path> node_paths;
711 	/**
712 	 * A collection of property values that are references to other nodes.
713 	 * These should be expanded to the full path of their targets.
714 	 */
715 	std::vector<property_value*> cross_references;
716 	/**
717 	 * The location of something requiring a fixup entry.
718 	 */
719 	struct fixup
720 	{
721 		/**
722 		 * The path to the node.
723 		 */
724 		node_path path;
725 		/**
726 		 * The property containing the reference.
727 		 */
728 		property_ptr prop;
729 		/**
730 		 * The property value that contains the reference.
731 		 */
732 		property_value &val;
733 	};
734 	/**
735 	 * A collection of property values that refer to phandles.  These will
736 	 * be replaced by the value of the phandle property in their
737 	 * destination.
738 	 */
739 	std::vector<fixup> fixups;
740 	/**
741 	 * The locations of all of the values that are supposed to become phandle
742 	 * references, but refer to things outside of this file.
743 	 */
744 	std::vector<std::reference_wrapper<fixup>> unresolved_fixups;
745 	/**
746 	 * The names of nodes that target phandles.
747 	 */
748 	std::unordered_set<std::string> phandle_targets;
749 	/**
750 	 * A collection of input buffers that we are using.  These input
751 	 * buffers are the ones that own their memory, and so we must preserve
752 	 * them for the lifetime of the device tree.
753 	 */
754 	std::vector<std::unique_ptr<input_buffer>> buffers;
755 	/**
756 	 * A map of used phandle values to nodes.  All phandles must be unique,
757 	 * so we keep a set of ones that the user explicitly provides in the
758 	 * input to ensure that we don't reuse them.
759 	 *
760 	 * This is a map, rather than a set, because we also want to be able to
761 	 * find phandles that were provided by the user explicitly when we are
762 	 * doing checking.
763 	 */
764 	std::unordered_map<uint32_t, node*> used_phandles;
765 	/**
766 	 * Paths to search for include files.  This contains a set of
767 	 * nul-terminated strings, which are not owned by this class and so
768 	 * must be freed separately.
769 	 */
770 	std::vector<std::string> include_paths;
771 	/**
772 	 * Dictionary of predefined macros provided on the command line.
773 	 */
774 	define_map               defines;
775 	/**
776 	 * The default boot CPU, specified in the device tree header.
777 	 */
778 	uint32_t boot_cpu = 0;
779 	/**
780 	 * The number of empty reserve map entries to generate in the blob.
781 	 */
782 	uint32_t spare_reserve_map_entries = 0;
783 	/**
784 	 * The minimum size in bytes of the blob.
785 	 */
786 	uint32_t minimum_blob_size = 0;
787 	/**
788 	 * The number of bytes of padding to add to the end of the blob.
789 	 */
790 	uint32_t blob_padding = 0;
791 	/**
792 	 * Is this tree a plugin?
793 	 */
794 	bool is_plugin = false;
795 	/**
796 	 * Visit all of the nodes recursively, and if they have labels then add
797 	 * them to the node_paths and node_names vectors so that they can be
798 	 * used in resolving cross references.  Also collects phandle
799 	 * properties that have been explicitly added.
800 	 */
801 	void collect_names_recursive(node_ptr &n, node_path &path);
802 	/**
803 	 * Assign a phandle property to a single node.  The next parameter
804 	 * holds the phandle to be assigned, and will be incremented upon
805 	 * assignment.
806 	 */
807 	property_ptr assign_phandle(node *n, uint32_t &next);
808 	/**
809 	 * Assign phandle properties to all nodes that have been referenced and
810 	 * require one.  This method will recursively visit the tree starting at
811 	 * the node that it is passed.
812 	 */
813 	void assign_phandles(node_ptr &n, uint32_t &next);
814 	/**
815 	 * Calls the recursive version of this method on every root node.
816 	 */
817 	void collect_names();
818 	/**
819 	 * Resolves all cross references.  Any properties that refer to another
820 	 * node must have their values replaced by either the node path or
821 	 * phandle value.  The phandle parameter holds the next phandle to be
822 	 * assigned, should the need arise.  It will be incremented upon each
823 	 * assignment of a phandle.
824 	 */
825 	void resolve_cross_references(uint32_t &phandle);
826 	/**
827 	 * Parses a dts file in the given buffer and adds the roots to the parsed
828 	 * set.  The `read_header` argument indicates whether the header has
829 	 * already been read.  Some dts files place the header in an include,
830 	 * rather than in the top-level file.
831 	 */
832 	void parse_file(text_input_buffer &input,
833 	                std::vector<node_ptr> &roots,
834 	                bool &read_header);
835 	/**
836 	 * Template function that writes a dtb blob using the specified writer.
837 	 * The writer defines the output format (assembly, blob).
838 	 */
839 	template<class writer>
840 	void write(int fd);
841 	public:
842 	/**
843 	 * Should we write the __symbols__ node (to allow overlays to be linked
844 	 * against this blob)?
845 	 */
846 	bool write_symbols = false;
847 	/**
848 	 * Returns the node referenced by the property.  If this is a tree that
849 	 * is in source form, then we have a string that we can use to index
850 	 * the cross_references array and so we can just look that up.
851 	 */
852 	node *referenced_node(property_value &v);
853 	/**
854 	 * Writes this FDT as a DTB to the specified output.
855 	 */
856 	void write_binary(int fd);
857 	/**
858 	 * Writes this FDT as an assembly representation of the DTB to the
859 	 * specified output.  The result can then be assembled and linked into
860 	 * a program.
861 	 */
862 	void write_asm(int fd);
863 	/**
864 	 * Writes the tree in DTS (source) format.
865 	 */
866 	void write_dts(int fd);
867 	/**
868 	 * Default constructor.  Creates a valid, but empty FDT.
869 	 */
870 	device_tree() {}
871 	/**
872 	 * Constructs a device tree from the specified file name, referring to
873 	 * a file that contains a device tree blob.
874 	 */
875 	void parse_dtb(const std::string &fn, FILE *depfile);
876 	/**
877 	 * Construct a fragment wrapper around node.  This will assume that node's
878 	 * name may be used as the target of the fragment, and the contents are to
879 	 * be wrapped in an __overlay__ node.  The fragment wrapper will be assigned
880 	 * fragnumas its fragment number, and fragment number will be incremented.
881 	 */
882 	node_ptr create_fragment_wrapper(node_ptr &node, int &fragnum);
883 	/**
884 	 * Generate a root node from the node passed in.  This is sensitive to
885 	 * whether we're in a plugin context or not, so that if we're in a plugin we
886 	 * can circumvent any errors that might normally arise from a non-/ root.
887 	 * fragnum will be assigned to any fragment wrapper generated as a result
888 	 * of the call, and fragnum will be incremented.
889 	 */
890 	node_ptr generate_root(node_ptr &node, int &fragnum);
891 	/**
892 	 * Reassign any fragment numbers from this new node, based on the given
893 	 * delta.
894 	 */
895 	void reassign_fragment_numbers(node_ptr &node, int &delta);
896 	/*
897 	 * Constructs a device tree from the specified file name, referring to
898 	 * a file that contains device tree source.
899 	 */
900 	void parse_dts(const std::string &fn, FILE *depfile);
901 	/**
902 	 * Returns whether this tree is valid.
903 	 */
904 	inline bool is_valid()
905 	{
906 		return valid;
907 	}
908 	/**
909 	 * Sets the format for writing phandle properties.
910 	 */
911 	inline void set_phandle_format(phandle_format f)
912 	{
913 		phandle_node_name = f;
914 	}
915 	/**
916 	 * Returns a pointer to the root node of this tree.  No ownership
917 	 * transfer.
918 	 */
919 	inline const node_ptr &get_root() const
920 	{
921 		return root;
922 	}
923 	/**
924 	 * Sets the physical boot CPU.
925 	 */
926 	void set_boot_cpu(uint32_t cpu)
927 	{
928 		boot_cpu = cpu;
929 	}
930 	/**
931 	 * Sorts the tree.  Useful for debugging device trees.
932 	 */
933 	void sort()
934 	{
935 		if (root)
936 		{
937 			root->sort();
938 		}
939 	}
940 	/**
941 	 * Adds a path to search for include files.  The argument must be a
942 	 * nul-terminated string representing the path.  The device tree keeps
943 	 * a pointer to this string, but does not own it: the caller is
944 	 * responsible for freeing it if required.
945 	 */
946 	void add_include_path(const char *path)
947 	{
948 		std::string p(path);
949 		include_paths.push_back(std::move(p));
950 	}
951 	/**
952 	 * Sets the number of empty reserve map entries to add.
953 	 */
954 	void set_empty_reserve_map_entries(uint32_t e)
955 	{
956 		spare_reserve_map_entries = e;
957 	}
958 	/**
959 	 * Sets the minimum size, in bytes, of the blob.
960 	 */
961 	void set_blob_minimum_size(uint32_t s)
962 	{
963 		minimum_blob_size = s;
964 	}
965 	/**
966 	 * Sets the amount of padding to add to the blob.
967 	 */
968 	void set_blob_padding(uint32_t p)
969 	{
970 		blob_padding = p;
971 	}
972 	/**
973 	 * Parses a predefined macro value.
974 	 */
975 	bool parse_define(const char *def);
976 };
977 
978 } // namespace fdt
979 
980 } // namespace dtc
981 
982 #endif // !_FDT_HH_
983