xref: /freebsd/usr.bin/dtc/fdt.cc (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 David Chisnall
5  * All rights reserved.
6  *
7  * This software was developed by SRI International and the University of
8  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
9  * ("CTSRD"), as part of the DARPA CRASH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #define __STDC_LIMIT_MACROS 1
34 
35 #include "fdt.hh"
36 #include "dtb.hh"
37 
38 #include <algorithm>
39 #include <limits>
40 #include <sstream>
41 
42 #include <ctype.h>
43 #include <fcntl.h>
44 #include <inttypes.h>
45 #include <libgen.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <unistd.h>
50 #include <sys/types.h>
51 #include <sys/stat.h>
52 #include <errno.h>
53 
54 using std::string;
55 
56 namespace dtc
57 {
58 
59 namespace fdt
60 {
61 
62 uint32_t
63 property_value::get_as_uint32()
64 {
65 	if (byte_data.size() != 4)
66 	{
67 		return 0;
68 	}
69 	uint32_t v = 0;
70 	v &= byte_data[0] << 24;
71 	v &= byte_data[1] << 16;
72 	v &= byte_data[2] << 8;
73 	v &= byte_data[3] << 0;
74 	return v;
75 }
76 
77 void
78 property_value::push_to_buffer(byte_buffer &buffer)
79 {
80 	if (!byte_data.empty())
81 	{
82 		buffer.insert(buffer.end(), byte_data.begin(), byte_data.end());
83 	}
84 	else
85 	{
86 		push_string(buffer, string_data, true);
87 		// Trailing nul
88 		buffer.push_back(0);
89 	}
90 }
91 
92 void
93 property_value::write_dts(FILE *file)
94 {
95 	resolve_type();
96 	switch (type)
97 	{
98 		default:
99 			assert(0 && "Invalid type");
100 		case STRING:
101 		case STRING_LIST:
102 		case CROSS_REFERENCE:
103 			write_as_string(file);
104 			break;
105 		case PHANDLE:
106 			write_as_cells(file);
107 			break;
108 		case BINARY:
109 			if (byte_data.size() % 4 == 0)
110 			{
111 				write_as_cells(file);
112 				break;
113 			}
114 			write_as_bytes(file);
115 			break;
116 	}
117 }
118 
119 void
120 property_value::resolve_type()
121 {
122 	if (type != UNKNOWN)
123 	{
124 		return;
125 	}
126 	if (byte_data.empty())
127 	{
128 		type = STRING;
129 		return;
130 	}
131 	if (byte_data.back() == 0)
132 	{
133 		bool is_all_printable = true;
134 		int nuls = 0;
135 		int bytes = 0;
136 		bool lastWasNull = false;
137 		for (auto i : byte_data)
138 		{
139 			bytes++;
140 			is_all_printable &= (i == '\0') || isprint(i);
141 			if (i == '\0')
142 			{
143 				// If there are two nulls in a row, then we're probably binary.
144 				if (lastWasNull)
145 				{
146 					type = BINARY;
147 					return;
148 				}
149 				nuls++;
150 				lastWasNull = true;
151 			}
152 			else
153 			{
154 				lastWasNull = false;
155 			}
156 			if (!is_all_printable)
157 			{
158 				break;
159 			}
160 		}
161 		if ((is_all_printable && (bytes > nuls)) || bytes == 0)
162 		{
163 			type = STRING;
164 			if (nuls > 1)
165 			{
166 				type = STRING_LIST;
167 			}
168 			return;
169 		}
170 	}
171 	type = BINARY;
172 }
173 
174 size_t
175 property_value::size()
176 {
177 	if (!byte_data.empty())
178 	{
179 		return byte_data.size();
180 	}
181 	return string_data.size() + 1;
182 }
183 
184 void
185 property_value::write_as_string(FILE *file)
186 {
187 	putc('"', file);
188 	if (byte_data.empty())
189 	{
190 		fputs(string_data.c_str(), file);
191 	}
192 	else
193 	{
194 		bool hasNull = (byte_data.back() == '\0');
195 		// Remove trailing null bytes from the string before printing as dts.
196 		if (hasNull)
197 		{
198 			byte_data.pop_back();
199 		}
200 		for (auto i : byte_data)
201 		{
202 			// FIXME Escape tabs, newlines, and so on.
203 			if (i == '\0')
204 			{
205 				fputs("\", \"", file);
206 				continue;
207 			}
208 			putc(i, file);
209 		}
210 		if (hasNull)
211 		{
212 			byte_data.push_back('\0');
213 		}
214 	}
215 	putc('"', file);
216 }
217 
218 void
219 property_value::write_as_cells(FILE *file)
220 {
221 	putc('<', file);
222 	assert((byte_data.size() % 4) == 0);
223 	for (auto i=byte_data.begin(), e=byte_data.end(); i!=e ; ++i)
224 	{
225 		uint32_t v = 0;
226 		v = (v << 8) | *i;
227 		++i;
228 		v = (v << 8) | *i;
229 		++i;
230 		v = (v << 8) | *i;
231 		++i;
232 		v = (v << 8) | *i;
233 		fprintf(file, "0x%" PRIx32, v);
234 		if (i+1 != e)
235 		{
236 			putc(' ', file);
237 		}
238 	}
239 	putc('>', file);
240 }
241 
242 void
243 property_value::write_as_bytes(FILE *file)
244 {
245 	putc('[', file);
246 	for (auto i=byte_data.begin(), e=byte_data.end(); i!=e ; i++)
247 	{
248 		fprintf(file, "%02hhx", *i);
249 		if (i+1 != e)
250 		{
251 			putc(' ', file);
252 		}
253 	}
254 	putc(']', file);
255 }
256 
257 void
258 property::parse_string(text_input_buffer &input)
259 {
260 	property_value v;
261 	assert(*input == '"');
262 	++input;
263 	std::vector<char> bytes;
264 	bool isEscaped = false;
265 	while (char c = *input)
266 	{
267 		if (c == '"' && !isEscaped)
268 		{
269 			input.consume('"');
270 			break;
271 		}
272 		isEscaped = (c == '\\');
273 		bytes.push_back(c);
274 		++input;
275 	}
276 	v.string_data = string(bytes.begin(), bytes.end());
277 	values.push_back(v);
278 }
279 
280 void
281 property::parse_cells(text_input_buffer &input, int cell_size)
282 {
283 	assert(*input == '<');
284 	++input;
285 	property_value v;
286 	input.next_token();
287 	while (!input.consume('>'))
288 	{
289 		input.next_token();
290 		// If this is a phandle then we need to get the name of the
291 		// referenced node
292 		if (input.consume('&'))
293 		{
294 			if (cell_size != 32)
295 			{
296 				input.parse_error("reference only permitted in 32-bit arrays");
297 				valid = false;
298 				return;
299 			}
300 			input.next_token();
301 			string referenced;
302 			if (!input.consume('{'))
303 			{
304 				referenced = input.parse_node_name();
305 			}
306 			else
307 			{
308 				referenced = input.parse_to('}');
309 				input.consume('}');
310 			}
311 			if (referenced.empty())
312 			{
313 				input.parse_error("Expected node name");
314 				valid = false;
315 				return;
316 			}
317 			input.next_token();
318 			// If we already have some bytes, make the phandle a
319 			// separate component.
320 			if (!v.byte_data.empty())
321 			{
322 				values.push_back(v);
323 				v = property_value();
324 			}
325 			v.string_data = referenced;
326 			v.type = property_value::PHANDLE;
327 			values.push_back(v);
328 			v = property_value();
329 		}
330 		else
331 		{
332 			//FIXME: We should support labels in the middle
333 			//of these, but we don't.
334 			unsigned long long val;
335 			if (!input.consume_integer_expression(val))
336 			{
337 				// FIXME: Distinguish invalid syntax from a
338 				// number that cannot be represented in an
339 				// unsigned long long.
340 				input.parse_error("Expected numbers in array of cells");
341 				valid = false;
342 				return;
343 			}
344 			// FIXME: No sign information available, so cannot
345 			// distinguish small negative values from large
346 			// positive ones, and thus we have to conservatively
347 			// permit anything that looks like a sign-extended
348 			// negative integer.
349 			if (cell_size < 64 && val >= (1ull << cell_size) &&
350 			    (val | ((1ull << (cell_size - 1)) - 1)) !=
351 			    std::numeric_limits<unsigned long long>::max())
352 			{
353 				std::string msg = "Value does not fit in a " +
354 					std::to_string(cell_size) + "-bit cell";
355 				input.parse_error(msg.c_str());
356 				valid = false;
357 				return;
358 			}
359 			switch (cell_size)
360 			{
361 				case 8:
362 					v.byte_data.push_back(val);
363 					break;
364 				case 16:
365 					push_big_endian(v.byte_data, (uint16_t)val);
366 					break;
367 				case 32:
368 					push_big_endian(v.byte_data, (uint32_t)val);
369 					break;
370 				case 64:
371 					push_big_endian(v.byte_data, (uint64_t)val);
372 					break;
373 				default:
374 					assert(0 && "Invalid cell size!");
375 			}
376 			input.next_token();
377 		}
378 	}
379 	// Don't store an empty string value here.
380 	if (v.byte_data.size() > 0)
381 	{
382 		values.push_back(v);
383 	}
384 }
385 
386 void
387 property::parse_bytes(text_input_buffer &input)
388 {
389 	assert(*input == '[');
390 	++input;
391 	property_value v;
392 	input.next_token();
393 	while (!input.consume(']'))
394 	{
395 		{
396 			//FIXME: We should support
397 			//labels in the middle of
398 			//these, but we don't.
399 			uint8_t val;
400 			if (!input.consume_hex_byte(val))
401 			{
402 				input.parse_error("Expected hex bytes in array of bytes");
403 				valid = false;
404 				return;
405 			}
406 			v.byte_data.push_back(val);
407 			input.next_token();
408 		}
409 	}
410 	values.push_back(v);
411 }
412 
413 void
414 property::parse_reference(text_input_buffer &input)
415 {
416 	assert(*input == '&');
417 	++input;
418 	input.next_token();
419 	property_value v;
420 	v.string_data = input.parse_node_name();
421 	if (v.string_data.empty())
422 	{
423 		input.parse_error("Expected node name");
424 		valid = false;
425 		return;
426 	}
427 	v.type = property_value::CROSS_REFERENCE;
428 	values.push_back(v);
429 }
430 
431 property::property(input_buffer &structs, input_buffer &strings)
432 {
433 	uint32_t name_offset;
434 	uint32_t length;
435 	valid = structs.consume_binary(length) &&
436 		structs.consume_binary(name_offset);
437 	if (!valid)
438 	{
439 		fprintf(stderr, "Failed to read property\n");
440 		return;
441 	}
442 	// Find the name
443 	input_buffer name_buffer = strings.buffer_from_offset(name_offset);
444 	if (name_buffer.finished())
445 	{
446 		fprintf(stderr, "Property name offset %" PRIu32
447 			" is past the end of the strings table\n",
448 			name_offset);
449 		valid = false;
450 		return;
451 	}
452 	key = name_buffer.parse_to(0);
453 
454 	// If we're empty, do not push anything as value.
455 	if (!length)
456 		return;
457 
458 	// Read the value
459 	uint8_t byte;
460 	property_value v;
461 	for (uint32_t i=0 ; i<length ; i++)
462 	{
463 		if (!(valid = structs.consume_binary(byte)))
464 		{
465 			fprintf(stderr, "Failed to read property value\n");
466 			return;
467 		}
468 		v.byte_data.push_back(byte);
469 	}
470 	values.push_back(v);
471 }
472 
473 void property::parse_define(text_input_buffer &input, define_map *defines)
474 {
475 	input.consume('$');
476 	if (!defines)
477 	{
478 		input.parse_error("No predefined properties to match name\n");
479 		valid = false;
480 		return;
481 	}
482 	string name = input.parse_property_name();
483 	define_map::iterator found;
484 	if ((name == string()) ||
485 	    ((found = defines->find(name)) == defines->end()))
486 	{
487 		input.parse_error("Undefined property name\n");
488 		valid = false;
489 		return;
490 	}
491 	values.push_back((*found).second->values[0]);
492 }
493 
494 property::property(text_input_buffer &input,
495                    string &&k,
496                    string_set &&l,
497                    bool semicolonTerminated,
498                    define_map *defines) : key(k), labels(l), valid(true)
499 {
500 	do {
501 		input.next_token();
502 		switch (*input)
503 		{
504 			case '$':
505 			{
506 				parse_define(input, defines);
507 				if (valid)
508 				{
509 					break;
510 				}
511 			}
512 			[[fallthrough]];
513 			default:
514 				input.parse_error("Invalid property value.");
515 				valid = false;
516 				return;
517 			case '/':
518 			{
519 				if (input.consume("/incbin/(\""))
520 				{
521 					auto loc = input.location();
522 					std::string filename = input.parse_to('"');
523 					if (!(valid = input.consume('"')))
524 					{
525 						loc.report_error("Syntax error, expected '\"' to terminate /incbin/(");
526 						return;
527 					}
528 					property_value v;
529 					if (!(valid = input.read_binary_file(filename, v.byte_data)))
530 					{
531 						input.parse_error("Cannot open binary include file");
532 						return;
533 					}
534 					if (!(valid &= input.consume(')')))
535 					{
536 						input.parse_error("Syntax error, expected ')' to terminate /incbin/(");
537 						return;
538 					}
539 					values.push_back(v);
540 					break;
541 				}
542 				unsigned long long bits = 0;
543 				valid = input.consume("/bits/");
544 				input.next_token();
545 				valid &= input.consume_integer(bits);
546 				if ((bits != 8) &&
547 				    (bits != 16) &&
548 				    (bits != 32) &&
549 				    (bits != 64)) {
550 					input.parse_error("Invalid size for elements");
551 					valid = false;
552 				}
553 				if (!valid) return;
554 				input.next_token();
555 				if (*input != '<')
556 				{
557 					input.parse_error("/bits/ directive is only valid on arrays");
558 					valid = false;
559 					return;
560 				}
561 				parse_cells(input, bits);
562 				break;
563 			}
564 			case '"':
565 				parse_string(input);
566 				break;
567 			case '<':
568 				parse_cells(input, 32);
569 				break;
570 			case '[':
571 				parse_bytes(input);
572 				break;
573 			case '&':
574 				parse_reference(input);
575 				break;
576 			case ';':
577 			{
578 				break;
579 			}
580 		}
581 		input.next_token();
582 	} while (input.consume(','));
583 	if (semicolonTerminated && !input.consume(';'))
584 	{
585 		input.parse_error("Expected ; at end of property");
586 		valid = false;
587 	}
588 }
589 
590 property_ptr
591 property::parse_dtb(input_buffer &structs, input_buffer &strings)
592 {
593 	property_ptr p(new property(structs, strings));
594 	if (!p->valid)
595 	{
596 		p = nullptr;
597 	}
598 	return p;
599 }
600 
601 property_ptr
602 property::parse(text_input_buffer &input, string &&key, string_set &&label,
603                 bool semicolonTerminated, define_map *defines)
604 {
605 	property_ptr p(new property(input,
606 	                            std::move(key),
607 	                            std::move(label),
608 	                            semicolonTerminated,
609 	                            defines));
610 	if (!p->valid)
611 	{
612 		p = nullptr;
613 	}
614 	return p;
615 }
616 
617 void
618 property::write(dtb::output_writer &writer, dtb::string_table &strings)
619 {
620 	writer.write_token(dtb::FDT_PROP);
621 	byte_buffer value_buffer;
622 	for (value_iterator i=begin(), e=end() ; i!=e ; ++i)
623 	{
624 		i->push_to_buffer(value_buffer);
625 	}
626 	writer.write_data((uint32_t)value_buffer.size());
627 	writer.write_comment(key);
628 	writer.write_data(strings.add_string(key));
629 	writer.write_data(value_buffer);
630 }
631 
632 bool
633 property_value::try_to_merge(property_value &other)
634 {
635 	resolve_type();
636 	switch (type)
637 	{
638 		case UNKNOWN:
639 			__builtin_unreachable();
640 			assert(0);
641 			return false;
642 		case EMPTY:
643 			*this = other;
644 			[[fallthrough]];
645 		case STRING:
646 		case STRING_LIST:
647 		case CROSS_REFERENCE:
648 			return false;
649 		case PHANDLE:
650 		case BINARY:
651 			if (other.type == PHANDLE || other.type == BINARY)
652 			{
653 				type = BINARY;
654 				byte_data.insert(byte_data.end(), other.byte_data.begin(),
655 				                 other.byte_data.end());
656 				return true;
657 			}
658 	}
659 	return false;
660 }
661 
662 void
663 property::write_dts(FILE *file, int indent)
664 {
665 	for (int i=0 ; i<indent ; i++)
666 	{
667 		putc('\t', file);
668 	}
669 #ifdef PRINT_LABELS
670 	for (auto &l : labels)
671 	{
672 		fputs(l.c_str(), file);
673 		fputs(": ", file);
674 	}
675 #endif
676 	if (key != string())
677 	{
678 		fputs(key.c_str(), file);
679 	}
680 	if (!values.empty())
681 	{
682 		std::vector<property_value> *vals = &values;
683 		std::vector<property_value> v;
684 		// If we've got multiple values then try to merge them all together.
685 		if (values.size() > 1)
686 		{
687 			vals = &v;
688 			v.push_back(values.front());
689 			for (auto i=(++begin()), e=end() ; i!=e ; ++i)
690 			{
691 				if (!v.back().try_to_merge(*i))
692 				{
693 					v.push_back(*i);
694 				}
695 			}
696 		}
697 		fputs(" = ", file);
698 		for (auto i=vals->begin(), e=vals->end() ; i!=e ; ++i)
699 		{
700 			i->write_dts(file);
701 			if (i+1 != e)
702 			{
703 				putc(',', file);
704 				putc(' ', file);
705 			}
706 		}
707 	}
708 	fputs(";\n", file);
709 }
710 
711 size_t
712 property::offset_of_value(property_value &val)
713 {
714 	size_t off = 0;
715 	for (auto &v : values)
716 	{
717 		if (&v == &val)
718 		{
719 			return off;
720 		}
721 		off += v.size();
722 	}
723 	return -1;
724 }
725 
726 string
727 node::parse_name(text_input_buffer &input, bool &is_property, const char *error)
728 {
729 	if (!valid)
730 	{
731 		return string();
732 	}
733 	input.next_token();
734 	if (is_property)
735 	{
736 		return input.parse_property_name();
737 	}
738 	string n = input.parse_node_or_property_name(is_property);
739 	if (n.empty())
740 	{
741 		if (n.empty())
742 		{
743 			input.parse_error(error);
744 			valid = false;
745 		}
746 	}
747 	return n;
748 }
749 
750 node::visit_behavior
751 node::visit(std::function<visit_behavior(node&, node*)> fn, node *parent)
752 {
753 	visit_behavior behavior;
754 	behavior = fn(*this, parent);
755 	if (behavior == VISIT_BREAK)
756 	{
757 		return VISIT_BREAK;
758 	}
759 	else if (behavior != VISIT_CONTINUE)
760 	{
761 		for (auto &&c : children)
762 		{
763 			behavior = c->visit(fn, this);
764 			// Any status other than VISIT_RECURSE stops our execution and
765 			// bubbles up to our caller.  The caller may then either continue
766 			// visiting nodes that are siblings to this one or completely halt
767 			// visiting.
768 			if (behavior != VISIT_RECURSE)
769 			{
770 				return behavior;
771 			}
772 		}
773 	}
774 	// Continue recursion by default
775 	return VISIT_RECURSE;
776 }
777 
778 node::node(input_buffer &structs, input_buffer &strings) : valid(true)
779 {
780 	std::vector<char> bytes;
781 	while (structs[0] != '\0' && structs[0] != '@')
782 	{
783 		bytes.push_back(structs[0]);
784 		++structs;
785 	}
786 	name = string(bytes.begin(), bytes.end());
787 	bytes.clear();
788 	if (structs[0] == '@')
789 	{
790 		++structs;
791 		while (structs[0] != '\0')
792 		{
793 			bytes.push_back(structs[0]);
794 			++structs;
795 		}
796 		unit_address = string(bytes.begin(), bytes.end());
797 	}
798 	++structs;
799 	uint32_t token;
800 	while (structs.consume_binary(token))
801 	{
802 		switch (token)
803 		{
804 			default:
805 				fprintf(stderr, "Unexpected token 0x%" PRIx32
806 					" while parsing node.\n", token);
807 				valid = false;
808 				return;
809 			// Child node, parse it.
810 			case dtb::FDT_BEGIN_NODE:
811 			{
812 				node_ptr child = node::parse_dtb(structs, strings);
813 				if (child == 0)
814 				{
815 					valid = false;
816 					return;
817 				}
818 				children.push_back(std::move(child));
819 				break;
820 			}
821 			// End of this node, no errors.
822 			case dtb::FDT_END_NODE:
823 				return;
824 			// Property, parse it.
825 			case dtb::FDT_PROP:
826 			{
827 				property_ptr prop = property::parse_dtb(structs, strings);
828 				if (prop == 0)
829 				{
830 					valid = false;
831 					return;
832 				}
833 				props.push_back(prop);
834 				break;
835 			}
836 				break;
837 			// End of structs table.  Should appear after
838 			// the end of the last node.
839 			case dtb::FDT_END:
840 				fprintf(stderr, "Unexpected FDT_END token while parsing node.\n");
841 				valid = false;
842 				return;
843 			// NOPs are padding.  Ignore them.
844 			case dtb::FDT_NOP:
845 				break;
846 		}
847 	}
848 	fprintf(stderr, "Failed to read token from structs table while parsing node.\n");
849 	valid = false;
850 	return;
851 }
852 
853 
854 node::node(const string &n,
855            const std::vector<property_ptr> &p)
856 	: name(n)
857 {
858 	props.insert(props.begin(), p.begin(), p.end());
859 }
860 
861 node_ptr node::create_special_node(const string &name,
862                                    const std::vector<property_ptr> &props)
863 {
864 	node_ptr n(new node(name, props));
865 	return n;
866 }
867 
868 node::node(text_input_buffer &input,
869            device_tree &tree,
870            string &&n,
871            std::unordered_set<string> &&l,
872            string &&a,
873            define_map *defines)
874 	: labels(l), name(n), unit_address(a), valid(true)
875 {
876 	if (!input.consume('{'))
877 	{
878 		input.parse_error("Expected { to start new device tree node.\n");
879 	}
880 	input.next_token();
881 	while (valid && !input.consume('}'))
882 	{
883 		// flag set if we find any characters that are only in
884 		// the property name character set, not the node
885 		bool is_property = false;
886 		// flag set if our node is marked as /omit-if-no-ref/ to be
887 		// garbage collected later if nothing references it
888 		bool marked_omit_if_no_ref = false;
889 		string child_name, child_address;
890 		std::unordered_set<string> child_labels;
891 		auto parse_delete = [&](const char *expected, bool at)
892 		{
893 			if (child_name == string())
894 			{
895 				input.parse_error(expected);
896 				valid = false;
897 				return;
898 			}
899 			input.next_token();
900 			if (at && input.consume('@'))
901 			{
902 				child_name += '@';
903 				child_name += parse_name(input, is_property, "Expected unit address");
904 			}
905 			if (!input.consume(';'))
906 			{
907 				input.parse_error("Expected semicolon");
908 				valid = false;
909 				return;
910 			}
911 			input.next_token();
912 		};
913 		if (input.consume("/delete-node/"))
914 		{
915 			input.next_token();
916 			child_name = input.parse_node_name();
917 			parse_delete("Expected node name", true);
918 			if (valid)
919 			{
920 				deleted_children.insert(child_name);
921 			}
922 			continue;
923 		}
924 		if (input.consume("/delete-property/"))
925 		{
926 			input.next_token();
927 			child_name = input.parse_property_name();
928 			parse_delete("Expected property name", false);
929 			if (valid)
930 			{
931 				deleted_props.insert(child_name);
932 			}
933 			continue;
934 		}
935 		if (input.consume("/omit-if-no-ref/"))
936 		{
937 			input.next_token();
938 			marked_omit_if_no_ref = true;
939 			tree.set_needs_garbage_collection();
940 		}
941 		child_name = parse_name(input, is_property,
942 				"Expected property or node name");
943 		while (input.consume(':'))
944 		{
945 			// Node labels can contain any characters?  The
946 			// spec doesn't say, so we guess so...
947 			is_property = false;
948 			child_labels.insert(std::move(child_name));
949 			child_name = parse_name(input, is_property, "Expected property or node name");
950 		}
951 		if (input.consume('@'))
952 		{
953 			child_address = parse_name(input, is_property, "Expected unit address");
954 		}
955 		if (!valid)
956 		{
957 			return;
958 		}
959 		input.next_token();
960 		// If we're parsing a property, then we must actually do that.
961 		if (input.consume('='))
962 		{
963 			property_ptr p = property::parse(input, std::move(child_name),
964 					std::move(child_labels), true, defines);
965 			if (p == 0)
966 			{
967 				valid = false;
968 			}
969 			else
970 			{
971 				props.push_back(p);
972 			}
973 		}
974 		else if (!is_property && *input == ('{'))
975 		{
976 			node_ptr child = node::parse(input, tree, std::move(child_name),
977 					std::move(child_labels), std::move(child_address), defines);
978 			if (child)
979 			{
980 				child->omit_if_no_ref = marked_omit_if_no_ref;
981 				children.push_back(std::move(child));
982 			}
983 			else
984 			{
985 				valid = false;
986 			}
987 		}
988 		else if (input.consume(';'))
989 		{
990 			props.push_back(property_ptr(new property(std::move(child_name), std::move(child_labels))));
991 		}
992 		else
993 		{
994 			input.parse_error("Error parsing property.  Expected property value");
995 			valid = false;
996 		}
997 		input.next_token();
998 	}
999 	input.next_token();
1000 	input.consume(';');
1001 }
1002 
1003 bool
1004 node::cmp_properties(property_ptr &p1, property_ptr &p2)
1005 {
1006 	return p1->get_key() < p2->get_key();
1007 }
1008 
1009 bool
1010 node::cmp_children(node_ptr &c1, node_ptr &c2)
1011 {
1012 	if (c1->name == c2->name)
1013 	{
1014 		return c1->unit_address < c2->unit_address;
1015 	}
1016 	return c1->name < c2->name;
1017 }
1018 
1019 void
1020 node::sort()
1021 {
1022 	std::sort(property_begin(), property_end(), cmp_properties);
1023 	std::sort(child_begin(), child_end(), cmp_children);
1024 	for (auto &c : child_nodes())
1025 	{
1026 		c->sort();
1027 	}
1028 }
1029 
1030 node_ptr
1031 node::parse(text_input_buffer &input,
1032             device_tree &tree,
1033             string &&name,
1034             string_set &&label,
1035             string &&address,
1036             define_map *defines)
1037 {
1038 	node_ptr n(new node(input,
1039 	                    tree,
1040 	                    std::move(name),
1041 	                    std::move(label),
1042 	                    std::move(address),
1043 	                    defines));
1044 	if (!n->valid)
1045 	{
1046 		n = 0;
1047 	}
1048 	return n;
1049 }
1050 
1051 node_ptr
1052 node::parse_dtb(input_buffer &structs, input_buffer &strings)
1053 {
1054 	node_ptr n(new node(structs, strings));
1055 	if (!n->valid)
1056 	{
1057 		n = 0;
1058 	}
1059 	return n;
1060 }
1061 
1062 property_ptr
1063 node::get_property(const string &key)
1064 {
1065 	for (auto &i : props)
1066 	{
1067 		if (i->get_key() == key)
1068 		{
1069 			return i;
1070 		}
1071 	}
1072 	return 0;
1073 }
1074 
1075 void
1076 node::merge_node(node_ptr &other)
1077 {
1078 	for (auto &l : other->labels)
1079 	{
1080 		labels.insert(l);
1081 	}
1082 	children.erase(std::remove_if(children.begin(), children.end(),
1083 			[&](const node_ptr &p) {
1084 				string full_name = p->name;
1085 				if (p->unit_address != string())
1086 				{
1087 					full_name += '@';
1088 					full_name += p->unit_address;
1089 				}
1090 				if (other->deleted_children.count(full_name) > 0)
1091 				{
1092 					other->deleted_children.erase(full_name);
1093 					return true;
1094 				}
1095 				return false;
1096 			}), children.end());
1097 	props.erase(std::remove_if(props.begin(), props.end(),
1098 			[&](const property_ptr &p) {
1099 				if (other->deleted_props.count(p->get_key()) > 0)
1100 				{
1101 					other->deleted_props.erase(p->get_key());
1102 					return true;
1103 				}
1104 				return false;
1105 			}), props.end());
1106 	// Note: this is an O(n*m) operation.  It might be sensible to
1107 	// optimise this if we find that there are nodes with very
1108 	// large numbers of properties, but for typical usage the
1109 	// entire vector will fit (easily) into cache, so iterating
1110 	// over it repeatedly isn't that expensive.
1111 	for (auto &p : other->properties())
1112 	{
1113 		bool found = false;
1114 		for (auto &mp : properties())
1115 		{
1116 			if (mp->get_key() == p->get_key())
1117 			{
1118 				mp = p;
1119 				found = true;
1120 				break;
1121 			}
1122 		}
1123 		if (!found)
1124 		{
1125 			add_property(p);
1126 		}
1127 	}
1128 	for (auto &c : other->children)
1129 	{
1130 		bool found = false;
1131 		for (auto &i : children)
1132 		{
1133 			if (i->name == c->name && i->unit_address == c->unit_address)
1134 			{
1135 				i->merge_node(c);
1136 				found = true;
1137 				break;
1138 			}
1139 		}
1140 		if (!found)
1141 		{
1142 			children.push_back(std::move(c));
1143 		}
1144 	}
1145 }
1146 
1147 void
1148 node::write(dtb::output_writer &writer, dtb::string_table &strings)
1149 {
1150 	writer.write_token(dtb::FDT_BEGIN_NODE);
1151 	byte_buffer name_buffer;
1152 	push_string(name_buffer, name);
1153 	if (unit_address != string())
1154 	{
1155 		name_buffer.push_back('@');
1156 		push_string(name_buffer, unit_address);
1157 	}
1158 	writer.write_comment(name);
1159 	writer.write_data(name_buffer);
1160 	writer.write_data((uint8_t)0);
1161 	for (auto p : properties())
1162 	{
1163 		p->write(writer, strings);
1164 	}
1165 	for (auto &c : child_nodes())
1166 	{
1167 		c->write(writer, strings);
1168 	}
1169 	writer.write_token(dtb::FDT_END_NODE);
1170 }
1171 
1172 void
1173 node::write_dts(FILE *file, int indent)
1174 {
1175 	for (int i=0 ; i<indent ; i++)
1176 	{
1177 		putc('\t', file);
1178 	}
1179 #ifdef PRINT_LABELS
1180 	for (auto &label : labels)
1181 	{
1182 		fprintf(file, "%s: ", label.c_str());
1183 	}
1184 #endif
1185 	if (name != string())
1186 	{
1187 		fputs(name.c_str(), file);
1188 	}
1189 	if (unit_address != string())
1190 	{
1191 		putc('@', file);
1192 		fputs(unit_address.c_str(), file);
1193 	}
1194 	fputs(" {\n\n", file);
1195 	for (auto p : properties())
1196 	{
1197 		p->write_dts(file, indent+1);
1198 	}
1199 	for (auto &c : child_nodes())
1200 	{
1201 		c->write_dts(file, indent+1);
1202 	}
1203 	for (int i=0 ; i<indent ; i++)
1204 	{
1205 		putc('\t', file);
1206 	}
1207 	fputs("};\n", file);
1208 }
1209 
1210 void
1211 device_tree::collect_names_recursive(node_ptr &n, node_path &path)
1212 {
1213 	path.push_back(std::make_pair(n->name, n->unit_address));
1214 	for (const string &name : n->labels)
1215 	{
1216 		if (name != string())
1217 		{
1218 			auto iter = node_names.find(name);
1219 			if (iter == node_names.end())
1220 			{
1221 				node_names.insert(std::make_pair(name, n.get()));
1222 				node_paths.insert(std::make_pair(name, path));
1223 				ordered_node_paths.push_back({name, path});
1224 			}
1225 			else
1226 			{
1227 				node_names.erase(iter);
1228 				auto i = node_paths.find(name);
1229 				if (i != node_paths.end())
1230 				{
1231 					node_paths.erase(name);
1232 				}
1233 				fprintf(stderr, "Label not unique: %s.  References to this label will not be resolved.\n", name.c_str());
1234 			}
1235 		}
1236 	}
1237 	for (auto &c : n->child_nodes())
1238 	{
1239 		collect_names_recursive(c, path);
1240 	}
1241 	// Now we collect the phandles and properties that reference
1242 	// other nodes.
1243 	for (auto &p : n->properties())
1244 	{
1245 		for (auto &v : *p)
1246 		{
1247 			if (v.is_phandle())
1248 			{
1249 				fixups.push_back({path, p, v});
1250 			}
1251 			if (v.is_cross_reference())
1252 			{
1253 				cross_references.push_back(&v);
1254 			}
1255 		}
1256 		if ((p->get_key() == "phandle") ||
1257 		    (p->get_key() == "linux,phandle"))
1258 		{
1259 			if (p->begin()->byte_data.size() != 4)
1260 			{
1261 				fprintf(stderr, "Invalid phandle value for node %s.  Should be a 4-byte value.\n", n->name.c_str());
1262 				valid = false;
1263 			}
1264 			else
1265 			{
1266 				uint32_t phandle = p->begin()->get_as_uint32();
1267 				used_phandles.insert(std::make_pair(phandle, n.get()));
1268 			}
1269 		}
1270 	}
1271 	path.pop_back();
1272 }
1273 
1274 void
1275 device_tree::collect_names()
1276 {
1277 	node_path p;
1278 	node_names.clear();
1279 	node_paths.clear();
1280 	ordered_node_paths.clear();
1281 	cross_references.clear();
1282 	fixups.clear();
1283 	collect_names_recursive(root, p);
1284 }
1285 
1286 property_ptr
1287 device_tree::assign_phandle(node *n, uint32_t &phandle)
1288 {
1289 	// If there is an existing phandle, use it
1290 	property_ptr p = n->get_property("phandle");
1291 	if (p == 0)
1292 	{
1293 		p = n->get_property("linux,phandle");
1294 	}
1295 	if (p == 0)
1296 	{
1297 		// Otherwise insert a new phandle node
1298 		property_value v;
1299 		while (used_phandles.find(phandle) != used_phandles.end())
1300 		{
1301 			// Note that we only don't need to
1302 			// store this phandle in the set,
1303 			// because we are monotonically
1304 			// increasing the value of phandle and
1305 			// so will only ever revisit this value
1306 			// if we have used 2^32 phandles, at
1307 			// which point our blob won't fit in
1308 			// any 32-bit system and we've done
1309 			// something badly wrong elsewhere
1310 			// already.
1311 			phandle++;
1312 		}
1313 		push_big_endian(v.byte_data, phandle++);
1314 		if (phandle_node_name == BOTH || phandle_node_name == LINUX)
1315 		{
1316 			p.reset(new property("linux,phandle"));
1317 			p->add_value(v);
1318 			n->add_property(p);
1319 		}
1320 		if (phandle_node_name == BOTH || phandle_node_name == EPAPR)
1321 		{
1322 			p.reset(new property("phandle"));
1323 			p->add_value(v);
1324 			n->add_property(p);
1325 		}
1326 	}
1327 
1328 	return (p);
1329 }
1330 
1331 void
1332 device_tree::assign_phandles(node_ptr &n, uint32_t &next)
1333 {
1334 	if (!n->labels.empty())
1335 	{
1336 		assign_phandle(n.get(), next);
1337 	}
1338 
1339 	for (auto &c : n->child_nodes())
1340 	{
1341 		assign_phandles(c, next);
1342 	}
1343 }
1344 
1345 void
1346 device_tree::resolve_cross_references(uint32_t &phandle)
1347 {
1348 	for (auto *pv : cross_references)
1349 	{
1350 		node_path path = node_paths[pv->string_data];
1351 		auto p = path.begin();
1352 		auto pe = path.end();
1353 		if (p != pe)
1354 		{
1355 			// Skip the first name in the path.  It's always "", and implicitly /
1356 			for (++p ; p!=pe ; ++p)
1357 			{
1358 				pv->byte_data.push_back('/');
1359 				push_string(pv->byte_data, p->first);
1360 				if (!(p->second.empty()))
1361 				{
1362 					pv->byte_data.push_back('@');
1363 					push_string(pv->byte_data, p->second);
1364 				}
1365 			}
1366 			pv->byte_data.push_back(0);
1367 		}
1368 	}
1369 	std::unordered_map<property_value*, fixup&> phandle_set;
1370 	for (auto &i : fixups)
1371 	{
1372 		phandle_set.insert({&i.val, i});
1373 	}
1374 	std::vector<std::reference_wrapper<fixup>> sorted_phandles;
1375 	root->visit([&](node &n, node *) {
1376 		for (auto &p : n.properties())
1377 		{
1378 			for (auto &v : *p)
1379 			{
1380 				auto i = phandle_set.find(&v);
1381 				if (i != phandle_set.end())
1382 				{
1383 					sorted_phandles.push_back(i->second);
1384 				}
1385 			}
1386 		}
1387 		// Allow recursion
1388 		return node::VISIT_RECURSE;
1389 	}, nullptr);
1390 	assert(sorted_phandles.size() == fixups.size());
1391 	for (auto &i : sorted_phandles)
1392 	{
1393 		string target_name = i.get().val.string_data;
1394 		node *target = nullptr;
1395 		string possible;
1396 		// If the node name is a path, then look it up by following the path,
1397 		// otherwise jump directly to the named node.
1398 		if (target_name[0] == '/')
1399 		{
1400 			string path;
1401 			target = root.get();
1402 			std::istringstream ss(target_name);
1403 			string path_element;
1404 			// Read the leading /
1405 			std::getline(ss, path_element, '/');
1406 			// Iterate over path elements
1407 			while (!ss.eof())
1408 			{
1409 				path += '/';
1410 				std::getline(ss, path_element, '/');
1411 				std::istringstream nss(path_element);
1412 				string node_name, node_address;
1413 				std::getline(nss, node_name, '@');
1414 				std::getline(nss, node_address, '@');
1415 				node *next = nullptr;
1416 				for (auto &c : target->child_nodes())
1417 				{
1418 					if (c->name == node_name)
1419 					{
1420 						if (c->unit_address == node_address)
1421 						{
1422 							next = c.get();
1423 							break;
1424 						}
1425 						else
1426 						{
1427 							possible = path + c->name;
1428 							if (c->unit_address != string())
1429 							{
1430 								possible += '@';
1431 								possible += c->unit_address;
1432 							}
1433 						}
1434 					}
1435 				}
1436 				path += node_name;
1437 				if (node_address != string())
1438 				{
1439 					path += '@';
1440 					path += node_address;
1441 				}
1442 				target = next;
1443 				if (target == nullptr)
1444 				{
1445 					break;
1446 				}
1447 			}
1448 		}
1449 		else
1450 		{
1451 			target = node_names[target_name];
1452 		}
1453 		if (target == nullptr)
1454 		{
1455 			if (is_plugin)
1456 			{
1457 				unresolved_fixups.push_back(i);
1458 				continue;
1459 			}
1460 			else
1461 			{
1462 				fprintf(stderr, "Failed to find node with label: %s\n", target_name.c_str());
1463 				if (possible != string())
1464 				{
1465 					fprintf(stderr, "Possible intended match: %s\n", possible.c_str());
1466 				}
1467 				valid = 0;
1468 				return;
1469 			}
1470 		}
1471 		// If there is an existing phandle, use it
1472 		property_ptr p = assign_phandle(target, phandle);
1473 		p->begin()->push_to_buffer(i.get().val.byte_data);
1474 		assert(i.get().val.byte_data.size() == 4);
1475 	}
1476 }
1477 
1478 bool
1479 device_tree::garbage_collect_marked_nodes()
1480 {
1481 	std::unordered_set<node*> previously_referenced_nodes;
1482 	std::unordered_set<node*> newly_referenced_nodes;
1483 
1484 	auto mark_referenced_nodes_used = [&](node &n)
1485 	{
1486 		for (auto &p : n.properties())
1487 		{
1488 			for (auto &v : *p)
1489 			{
1490 				if (v.is_phandle())
1491 				{
1492 					node *nx = node_names[v.string_data];
1493 					if (nx == nullptr)
1494 					{
1495 						// Try it again, but as a path
1496 						for (auto &s : node_paths)
1497 						{
1498 							if (v.string_data == s.second.to_string())
1499 							{
1500 								nx = node_names[s.first];
1501 								break;
1502 							}
1503 						}
1504 					}
1505 					if (nx == nullptr)
1506 					{
1507 						// Couldn't resolve this one?
1508 						continue;
1509 					}
1510 					// Only mark those currently unmarked
1511 					if (!nx->used)
1512 					{
1513 							nx->used = 1;
1514 							newly_referenced_nodes.insert(nx);
1515 					}
1516 				}
1517 			}
1518 		}
1519 	};
1520 
1521 	// Seed our referenced nodes with those that have been seen by a node that
1522 	// either will not be omitted if it's unreferenced or has a symbol.
1523 	// Nodes with symbols are explicitly not garbage collected because they may
1524 	// be expected for referencing by an overlay, and we do not want surprises
1525 	// there.
1526 	root->visit([&](node &n, node *) {
1527 		if (!n.omit_if_no_ref || (write_symbols && !n.labels.empty()))
1528 		{
1529 			mark_referenced_nodes_used(n);
1530 		}
1531 		// Recurse as normal
1532 		return node::VISIT_RECURSE;
1533 	}, nullptr);
1534 
1535 	while (!newly_referenced_nodes.empty())
1536 	{
1537 			previously_referenced_nodes = std::move(newly_referenced_nodes);
1538 			for (auto *n : previously_referenced_nodes)
1539 			{
1540 				mark_referenced_nodes_used(*n);
1541 			}
1542 	}
1543 
1544 	previously_referenced_nodes.clear();
1545 	bool children_deleted = false;
1546 
1547 	// Delete
1548 	root->visit([&](node &n, node *) {
1549 		bool gc_children = false;
1550 
1551 		for (auto &cn : n.child_nodes())
1552 		{
1553 				if (cn->omit_if_no_ref && !cn->used)
1554 				{
1555 					gc_children = true;
1556 					break;
1557 				}
1558 		}
1559 
1560 		if (gc_children)
1561 		{
1562 			children_deleted = true;
1563 			n.delete_children_if([](node_ptr &nx) {
1564 				return (nx->omit_if_no_ref && !nx->used);
1565 			});
1566 
1567 			return node::VISIT_CONTINUE;
1568 		}
1569 
1570 		return node::VISIT_RECURSE;
1571 	}, nullptr);
1572 
1573 	return children_deleted;
1574 }
1575 
1576 void
1577 device_tree::parse_file(text_input_buffer &input,
1578                         std::vector<node_ptr> &roots,
1579                         bool &read_header)
1580 {
1581 	input.next_token();
1582 	// Read the header
1583 	while (input.consume("/dts-v1/;"))
1584 	{
1585 		read_header = true;
1586 		input.next_token();
1587 	}
1588 	if (input.consume("/plugin/;"))
1589 	{
1590 		is_plugin = true;
1591 	}
1592 	input.next_token();
1593 	if (!read_header)
1594 	{
1595 		input.parse_error("Expected /dts-v1/; version string");
1596 	}
1597 	// Read any memory reservations
1598 	while (input.consume("/memreserve/"))
1599 	{
1600 		unsigned long long start, len;
1601 		input.next_token();
1602 		// Read the start and length.
1603 		if (!(input.consume_integer_expression(start) &&
1604 		    (input.next_token(),
1605 		    input.consume_integer_expression(len))))
1606 		{
1607 			input.parse_error("Expected size on /memreserve/ node.");
1608 		}
1609 		else
1610 		{
1611 			reservations.push_back(reservation(start, len));
1612 		}
1613 		input.next_token();
1614 		input.consume(';');
1615 		input.next_token();
1616 	}
1617 	while (valid && !input.finished())
1618 	{
1619 		node_ptr n;
1620 		if (input.consume('/'))
1621 		{
1622 			input.next_token();
1623 			n = node::parse(input, *this, string(), string_set(), string(), &defines);
1624 		}
1625 		else if (input.consume('&'))
1626 		{
1627 			input.next_token();
1628 			string name;
1629 			bool name_is_path_reference = false;
1630 			// This is to deal with names intended as path references, e.g. &{/path}.
1631 			// While it may make sense in a non-plugin context, we don't support such
1632 			// usage at this time.
1633 			if (input.consume('{') && is_plugin)
1634 			{
1635 				name = input.parse_to('}');
1636 				input.consume('}');
1637 				name_is_path_reference = true;
1638 			}
1639 			else
1640 			{
1641 				name = input.parse_node_name();
1642 			}
1643 			input.next_token();
1644 			n = node::parse(input, *this, std::move(name), string_set(), string(), &defines);
1645 			if (n)
1646 			{
1647 				n->name_is_path_reference = name_is_path_reference;
1648 			}
1649 		}
1650 		else
1651 		{
1652 			input.parse_error("Failed to find root node /.");
1653 		}
1654 		if (n)
1655 		{
1656 			roots.push_back(std::move(n));
1657 		}
1658 		else
1659 		{
1660 			valid = false;
1661 		}
1662 		input.next_token();
1663 	}
1664 }
1665 
1666 template<class writer> void
1667 device_tree::write(int fd)
1668 {
1669 	dtb::string_table st;
1670 	dtb::header head;
1671 	writer head_writer;
1672 	writer reservation_writer;
1673 	writer struct_writer;
1674 	writer strings_writer;
1675 
1676 	// Build the reservation table
1677 	reservation_writer.write_comment(string("Memory reservations"));
1678 	reservation_writer.write_label(string("dt_reserve_map"));
1679 	for (auto &i : reservations)
1680 	{
1681 		reservation_writer.write_comment(string("Reservation start"));
1682 		reservation_writer.write_data(i.first);
1683 		reservation_writer.write_comment(string("Reservation length"));
1684 		reservation_writer.write_data(i.second);
1685 	}
1686 	// Write n spare reserve map entries, plus the trailing 0.
1687 	for (uint32_t i=0 ; i<=spare_reserve_map_entries ; i++)
1688 	{
1689 		reservation_writer.write_data((uint64_t)0);
1690 		reservation_writer.write_data((uint64_t)0);
1691 	}
1692 
1693 
1694 	struct_writer.write_comment(string("Device tree"));
1695 	struct_writer.write_label(string("dt_struct_start"));
1696 	root->write(struct_writer, st);
1697 	struct_writer.write_token(dtb::FDT_END);
1698 	struct_writer.write_label(string("dt_struct_end"));
1699 
1700 	st.write(strings_writer);
1701 	// Find the strings size before we stick padding on the end.
1702 	// Note: We should possibly use a new writer for the padding.
1703 	head.size_dt_strings = strings_writer.size();
1704 
1705 	// Stick the padding in the strings writer, but after the
1706 	// marker indicating that it's the end.
1707 	// Note: We probably should add a padding call to the writer so
1708 	// that the asm back end can write padding directives instead
1709 	// of a load of 0 bytes.
1710 	for (uint32_t i=0 ; i<blob_padding ; i++)
1711 	{
1712 		strings_writer.write_data((uint8_t)0);
1713 	}
1714 	head.totalsize = sizeof(head) + strings_writer.size() +
1715 		struct_writer.size() + reservation_writer.size();
1716 	while (head.totalsize < minimum_blob_size)
1717 	{
1718 		head.totalsize++;
1719 		strings_writer.write_data((uint8_t)0);
1720 	}
1721 	head.off_dt_struct = sizeof(head) + reservation_writer.size();;
1722 	head.off_dt_strings = head.off_dt_struct + struct_writer.size();
1723 	head.off_mem_rsvmap = sizeof(head);
1724 	head.boot_cpuid_phys = boot_cpu;
1725 	head.size_dt_struct = struct_writer.size();
1726 	head.write(head_writer);
1727 
1728 	head_writer.write_to_file(fd);
1729 	reservation_writer.write_to_file(fd);
1730 	struct_writer.write_to_file(fd);
1731 	strings_writer.write_label(string("dt_blob_end"));
1732 	strings_writer.write_to_file(fd);
1733 }
1734 
1735 node*
1736 device_tree::referenced_node(property_value &v)
1737 {
1738 	if (v.is_phandle())
1739 	{
1740 		return node_names[v.string_data];
1741 	}
1742 	if (v.is_binary())
1743 	{
1744 		return used_phandles[v.get_as_uint32()];
1745 	}
1746 	return 0;
1747 }
1748 
1749 void
1750 device_tree::write_binary(int fd)
1751 {
1752 	write<dtb::binary_writer>(fd);
1753 }
1754 
1755 void
1756 device_tree::write_asm(int fd)
1757 {
1758 	write<dtb::asm_writer>(fd);
1759 }
1760 
1761 void
1762 device_tree::write_dts(int fd)
1763 {
1764 	FILE *file = fdopen(fd, "w");
1765 	fputs("/dts-v1/;\n\n", file);
1766 
1767 	if (!reservations.empty())
1768 	{
1769 		const char msg[] = "/memreserve/";
1770 		// Exclude the null byte when we're writing it out to the file.
1771 		fwrite(msg, sizeof(msg) - 1, 1, file);
1772 		for (auto &i : reservations)
1773 		{
1774 			fprintf(file, " 0x%" PRIx64 " 0x%" PRIx64, i.first, i.second);
1775 		}
1776 		fputs(";\n\n", file);
1777 	}
1778 	putc('/', file);
1779 	putc(' ', file);
1780 	root->write_dts(file, 0);
1781 	fclose(file);
1782 }
1783 
1784 void
1785 device_tree::parse_dtb(const string &fn, FILE *)
1786 {
1787 	auto in = input_buffer::buffer_for_file(fn);
1788 	if (in == 0)
1789 	{
1790 		valid = false;
1791 		return;
1792 	}
1793 	input_buffer &input = *in;
1794 	dtb::header h;
1795 	valid = h.read_dtb(input);
1796 	boot_cpu = h.boot_cpuid_phys;
1797 	if (h.last_comp_version > 17)
1798 	{
1799 		fprintf(stderr, "Don't know how to read this version of the device tree blob");
1800 		valid = false;
1801 	}
1802 	if (!valid)
1803 	{
1804 		return;
1805 	}
1806 	input_buffer reservation_map =
1807 		input.buffer_from_offset(h.off_mem_rsvmap, 0);
1808 	uint64_t start, length;
1809 	do
1810 	{
1811 		if (!(reservation_map.consume_binary(start) &&
1812 		      reservation_map.consume_binary(length)))
1813 		{
1814 			fprintf(stderr, "Failed to read memory reservation table\n");
1815 			valid = false;
1816 			return;
1817 		}
1818 		if (start != 0 || length != 0)
1819 		{
1820 			reservations.push_back(reservation(start, length));
1821 		}
1822 	} while (!((start == 0) && (length == 0)));
1823 	input_buffer struct_table =
1824 		input.buffer_from_offset(h.off_dt_struct, h.size_dt_struct);
1825 	input_buffer strings_table =
1826 		input.buffer_from_offset(h.off_dt_strings, h.size_dt_strings);
1827 	uint32_t token;
1828 	if (!(struct_table.consume_binary(token) &&
1829 		(token == dtb::FDT_BEGIN_NODE)))
1830 	{
1831 		fprintf(stderr, "Expected FDT_BEGIN_NODE token.\n");
1832 		valid = false;
1833 		return;
1834 	}
1835 	root = node::parse_dtb(struct_table, strings_table);
1836 	if (!(struct_table.consume_binary(token) && (token == dtb::FDT_END)))
1837 	{
1838 		fprintf(stderr, "Expected FDT_END token after parsing root node.\n");
1839 		valid = false;
1840 		return;
1841 	}
1842 	valid = (root != 0);
1843 }
1844 
1845 string
1846 device_tree::node_path::to_string() const
1847 {
1848 	string path;
1849 	auto p = begin();
1850 	auto pe = end();
1851 	if ((p == pe) || (p+1 == pe))
1852 	{
1853 		return string("/");
1854 	}
1855 	// Skip the first name in the path.  It's always "", and implicitly /
1856 	for (++p ; p!=pe ; ++p)
1857 	{
1858 		path += '/';
1859 		path += p->first;
1860 		if (!(p->second.empty()))
1861 		{
1862 			path += '@';
1863 			path += p->second;
1864 		}
1865 	}
1866 	return path;
1867 }
1868 
1869 node_ptr
1870 device_tree::create_fragment_wrapper(node_ptr &node, int &fragnum)
1871 {
1872 	// In a plugin, we can massage these non-/ root nodes into into a fragment
1873 	std::string fragment_address = "fragment@" + std::to_string(fragnum);
1874 	++fragnum;
1875 
1876 	std::vector<property_ptr> symbols;
1877 
1878 	// Intentionally left empty
1879 	node_ptr newroot = node::create_special_node("", symbols);
1880 	node_ptr wrapper = node::create_special_node("__overlay__", symbols);
1881 
1882 	// Generate the fragment with $propname = <&name>
1883 	property_value v;
1884 	std::string propname;
1885 	v.string_data = node->name;
1886 	if (!node->name_is_path_reference)
1887 	{
1888 		propname = "target";
1889 		v.type = property_value::PHANDLE;
1890 	}
1891 	else
1892 	{
1893 		propname = "target-path";
1894 		v.type = property_value::STRING;
1895 	}
1896 	auto prop = std::make_shared<property>(std::string(propname));
1897 	prop->add_value(v);
1898 	symbols.push_back(prop);
1899 
1900 	node_ptr fragment = node::create_special_node(fragment_address, symbols);
1901 
1902 	wrapper->merge_node(node);
1903 	fragment->add_child(std::move(wrapper));
1904 	newroot->add_child(std::move(fragment));
1905 	return newroot;
1906 }
1907 
1908 node_ptr
1909 device_tree::generate_root(node_ptr &node, int &fragnum)
1910 {
1911 
1912 	string name = node->name;
1913 	if (name == string())
1914 	{
1915 		return std::move(node);
1916 	}
1917 	else if (!is_plugin)
1918 	{
1919 		return nullptr;
1920 	}
1921 
1922 	return create_fragment_wrapper(node, fragnum);
1923 }
1924 
1925 void
1926 device_tree::reassign_fragment_numbers(node_ptr &node, int &delta)
1927 {
1928 
1929 	for (auto &c : node->child_nodes())
1930 	{
1931 		if (c->name == std::string("fragment"))
1932 		{
1933 			int current_address = std::stoi(c->unit_address, nullptr, 16);
1934 			std::ostringstream new_address;
1935 			current_address += delta;
1936 			// It's possible that we hopped more than one somewhere, so just reset
1937 			// delta to the next in sequence.
1938 			delta = current_address + 1;
1939 			new_address << std::hex << current_address;
1940 			c->unit_address = new_address.str();
1941 		}
1942 	}
1943 }
1944 
1945 void
1946 device_tree::parse_dts(const string &fn, FILE *depfile)
1947 {
1948 	auto in = input_buffer::buffer_for_file(fn);
1949 	if (!in)
1950 	{
1951 		valid = false;
1952 		return;
1953 	}
1954 	std::vector<node_ptr> roots;
1955 	std::unordered_set<string> defnames;
1956 	for (auto &i : defines)
1957 	{
1958 		defnames.insert(i.first);
1959 	}
1960 	text_input_buffer input(std::move(in),
1961 	                        std::move(defnames),
1962 	                        std::vector<string>(include_paths),
1963 	                        dirname(fn),
1964 	                        depfile);
1965 	bool read_header = false;
1966 	int fragnum = 0;
1967 	parse_file(input, roots, read_header);
1968 	switch (roots.size())
1969 	{
1970 		case 0:
1971 			valid = false;
1972 			input.parse_error("Failed to find root node /.");
1973 			return;
1974 		case 1:
1975 			root = generate_root(roots[0], fragnum);
1976 			if (!root)
1977 			{
1978 				valid = false;
1979 				input.parse_error("Failed to find root node /.");
1980 				return;
1981 			}
1982 			break;
1983 		default:
1984 		{
1985 			root = generate_root(roots[0], fragnum);
1986 			if (!root)
1987 			{
1988 				valid = false;
1989 				input.parse_error("Failed to find root node /.");
1990 				return;
1991 			}
1992 			for (auto i=++(roots.begin()), e=roots.end() ; i!=e ; ++i)
1993 			{
1994 				auto &node = *i;
1995 				string name = node->name;
1996 				if (name == string())
1997 				{
1998 					if (is_plugin)
1999 					{
2000 						// Re-assign any fragment numbers based on a delta of
2001 						// fragnum before we merge it
2002 						reassign_fragment_numbers(node, fragnum);
2003 					}
2004 					root->merge_node(node);
2005 				}
2006 				else
2007 				{
2008 					auto existing = node_names.find(name);
2009 					if (existing == node_names.end())
2010 					{
2011 						collect_names();
2012 						existing = node_names.find(name);
2013 					}
2014 					if (existing == node_names.end())
2015 					{
2016 						if (is_plugin)
2017 						{
2018 							auto fragment = create_fragment_wrapper(node, fragnum);
2019 							root->merge_node(fragment);
2020 						}
2021 						else
2022 						{
2023 							fprintf(stderr, "Unable to merge node: %s\n", name.c_str());
2024 						}
2025 					}
2026 					else
2027 					{
2028 						existing->second->merge_node(node);
2029 					}
2030 				}
2031 			}
2032 		}
2033 	}
2034 	collect_names();
2035 	// Return value indicates whether we've dirtied the tree or not and need to
2036 	// recollect names
2037 	if (garbage_collect && garbage_collect_marked_nodes())
2038 	{
2039 		collect_names();
2040 	}
2041 	uint32_t phandle = 1;
2042 	// If we're writing symbols, go ahead and assign phandles to the entire
2043 	// tree. We'll do this before we resolve cross references, just to keep
2044 	// order semi-predictable and stable.
2045 	if (write_symbols)
2046 	{
2047 		assign_phandles(root, phandle);
2048 	}
2049 	resolve_cross_references(phandle);
2050 	if (write_symbols)
2051 	{
2052 		std::vector<property_ptr> symbols;
2053 		// Create a symbol table.  Each label  in this device tree may be
2054 		// referenced by other plugins, so we create a __symbols__ node inside
2055 		// the root that contains mappings (properties) from label names to
2056 		// paths.
2057 		for (auto i=ordered_node_paths.rbegin(), e=ordered_node_paths.rend() ; i!=e ; ++i)
2058 		{
2059 			auto &s = *i;
2060 			if (node_paths.find(s.first) == node_paths.end())
2061 			{
2062 				// Erased node, skip it.
2063 				continue;
2064 			}
2065 			property_value v;
2066 			v.string_data = s.second.to_string();
2067 			v.type = property_value::STRING;
2068 			string name = s.first;
2069 			auto prop = std::make_shared<property>(std::move(name));
2070 			prop->add_value(v);
2071 			symbols.push_back(prop);
2072 		}
2073 		root->add_child(node::create_special_node("__symbols__", symbols));
2074 	}
2075 	// If this is a plugin, then we also need to create two extra nodes.
2076 	// Internal phandles will need to be renumbered to avoid conflicts with
2077 	// already-loaded nodes and external references will need to be
2078 	// resolved.
2079 	if (is_plugin)
2080 	{
2081 		std::vector<property_ptr> symbols;
2082 		// Create the fixups entry.  This is of the form:
2083 		// {target} = {path}:{property name}:{offset}
2084 		auto create_fixup_entry = [&](fixup &i, string target)
2085 			{
2086 				string value = i.path.to_string();
2087 				value += ':';
2088 				value += i.prop->get_key();
2089 				value += ':';
2090 				value += std::to_string(i.prop->offset_of_value(i.val));
2091 				property_value v;
2092 				v.string_data = value;
2093 				v.type = property_value::STRING;
2094 				auto prop = std::make_shared<property>(std::move(target));
2095 				prop->add_value(v);
2096 				return prop;
2097 			};
2098 		// If we have any unresolved phandle references in this plugin,
2099 		// then we must update them to 0xdeadbeef and leave a property in
2100 		// the /__fixups__ node whose key is the label and whose value is
2101 		// as described above.
2102 		if (!unresolved_fixups.empty())
2103 		{
2104 			for (auto &i : unresolved_fixups)
2105 			{
2106 				auto &val = i.get().val;
2107 				symbols.push_back(create_fixup_entry(i, val.string_data));
2108 				val.byte_data.push_back(0xde);
2109 				val.byte_data.push_back(0xad);
2110 				val.byte_data.push_back(0xbe);
2111 				val.byte_data.push_back(0xef);
2112 				val.type = property_value::BINARY;
2113 			}
2114 			root->add_child(node::create_special_node("__fixups__", symbols));
2115 		}
2116 		symbols.clear();
2117 		// If we have any resolved phandle references in this plugin, then
2118 		// we must create a child in the __local_fixups__ node whose path
2119 		// matches the node path from the root and whose value contains the
2120 		// location of the reference within a property.
2121 
2122 		// Create a local_fixups node that is initially empty.
2123 		node_ptr local_fixups = node::create_special_node("__local_fixups__", symbols);
2124 		for (auto &i : fixups)
2125 		{
2126 			if (!i.val.is_phandle())
2127 			{
2128 				continue;
2129 			}
2130 			node *n = local_fixups.get();
2131 			for (auto &p : i.path)
2132 			{
2133 				// Skip the implicit root
2134 				if (p.first.empty())
2135 				{
2136 					continue;
2137 				}
2138 				bool found = false;
2139 				for (auto &c : n->child_nodes())
2140 				{
2141 					if (c->name == p.first)
2142 					{
2143 						if (c->unit_address == p.second)
2144 						{
2145 							n = c.get();
2146 							found = true;
2147 							break;
2148 						}
2149 					}
2150 				}
2151 				if (!found)
2152 				{
2153 					string path = p.first;
2154 					if (!(p.second.empty()))
2155 					{
2156 						path += '@';
2157 						path += p.second;
2158 					}
2159 					n->add_child(node::create_special_node(path, symbols));
2160 					n = (--n->child_end())->get();
2161 				}
2162 			}
2163 			assert(n);
2164 			property_value pv;
2165 			push_big_endian(pv.byte_data, static_cast<uint32_t>(i.prop->offset_of_value(i.val)));
2166 			pv.type = property_value::BINARY;
2167 			auto key = i.prop->get_key();
2168 			property_ptr prop = n->get_property(key);
2169 			// If we don't have an existing property then create one and
2170 			// use this property value
2171 			if (!prop)
2172 			{
2173 				prop = std::make_shared<property>(std::move(key));
2174 				n->add_property(prop);
2175 				prop->add_value(pv);
2176 			}
2177 			else
2178 			{
2179 				// If we do have an existing property value, try to append
2180 				// this value.
2181 				property_value &old_val = *(--prop->end());
2182 				if (!old_val.try_to_merge(pv))
2183 				{
2184 					prop->add_value(pv);
2185 				}
2186 			}
2187 		}
2188 		// We've iterated over all fixups, but only emit the
2189 		// __local_fixups__ if we found some that were resolved internally.
2190 		if (local_fixups->child_begin() != local_fixups->child_end())
2191 		{
2192 			root->add_child(std::move(local_fixups));
2193 		}
2194 	}
2195 }
2196 
2197 bool device_tree::parse_define(const char *def)
2198 {
2199 	const char *val = strchr(def, '=');
2200 	if (!val)
2201 	{
2202 		if (strlen(def) != 0)
2203 		{
2204 			string name(def);
2205 			defines[name];
2206 			return true;
2207 		}
2208 		return false;
2209 	}
2210 	string name(def, val-def);
2211 	string name_copy = name;
2212 	val++;
2213 	std::unique_ptr<input_buffer> raw(new input_buffer(val, strlen(val)));
2214 	text_input_buffer in(std::move(raw),
2215 	                     std::unordered_set<string>(),
2216 	                     std::vector<string>(),
2217 	                     string(),
2218 	                     nullptr);
2219 	property_ptr p = property::parse(in, std::move(name_copy), string_set(), false);
2220 	if (p)
2221 		defines[name] = p;
2222 	return (bool)p;
2223 }
2224 
2225 } // namespace fdt
2226 
2227 } // namespace dtc
2228 
2229