1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * 6 * This software was developed by Konstantin Belousov <kib@FreeBSD.org> 7 * under sponsorship from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/bus.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/memdesc.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/queue.h> 43 #include <sys/rman.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/sf_buf.h> 47 #include <sys/sysctl.h> 48 #include <sys/systm.h> 49 #include <sys/taskqueue.h> 50 #include <sys/time.h> 51 #include <sys/tree.h> 52 #include <sys/vmem.h> 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_kern.h> 56 #include <vm/vm_object.h> 57 #include <vm/vm_page.h> 58 #include <vm/vm_map.h> 59 #include <vm/vm_pageout.h> 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 #include <machine/bus.h> 63 #include <machine/cpu.h> 64 #include <machine/intr_machdep.h> 65 #include <x86/include/apicvar.h> 66 #include <x86/include/busdma_impl.h> 67 #include <dev/iommu/busdma_iommu.h> 68 #include <x86/iommu/intel_reg.h> 69 #include <x86/iommu/intel_dmar.h> 70 71 u_int 72 dmar_nd2mask(u_int nd) 73 { 74 static const u_int masks[] = { 75 0x000f, /* nd == 0 */ 76 0x002f, /* nd == 1 */ 77 0x00ff, /* nd == 2 */ 78 0x02ff, /* nd == 3 */ 79 0x0fff, /* nd == 4 */ 80 0x2fff, /* nd == 5 */ 81 0xffff, /* nd == 6 */ 82 0x0000, /* nd == 7 reserved */ 83 }; 84 85 KASSERT(nd <= 6, ("number of domains %d", nd)); 86 return (masks[nd]); 87 } 88 89 static const struct sagaw_bits_tag { 90 int agaw; 91 int cap; 92 int awlvl; 93 int pglvl; 94 } sagaw_bits[] = { 95 {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, 96 .pglvl = 2}, 97 {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, 98 .pglvl = 3}, 99 {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, 100 .pglvl = 4}, 101 {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, 102 .pglvl = 5} 103 /* 104 * 6-level paging (DMAR_CAP_SAGAW_6LVL) is not supported on any 105 * current VT-d hardware and its SAGAW field value is listed as 106 * reserved in the VT-d spec. If support is added in the future, 107 * this structure and the logic in dmar_maxaddr2mgaw() will need 108 * to change to avoid attempted comparison against 1ULL << 64. 109 */ 110 }; 111 112 bool 113 dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) 114 { 115 int i; 116 117 for (i = 0; i < nitems(sagaw_bits); i++) { 118 if (sagaw_bits[i].pglvl != pglvl) 119 continue; 120 if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 121 return (true); 122 } 123 return (false); 124 } 125 126 int 127 domain_set_agaw(struct dmar_domain *domain, int mgaw) 128 { 129 int sagaw, i; 130 131 domain->mgaw = mgaw; 132 sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); 133 for (i = 0; i < nitems(sagaw_bits); i++) { 134 if (sagaw_bits[i].agaw >= mgaw) { 135 domain->agaw = sagaw_bits[i].agaw; 136 domain->pglvl = sagaw_bits[i].pglvl; 137 domain->awlvl = sagaw_bits[i].awlvl; 138 return (0); 139 } 140 } 141 device_printf(domain->dmar->dev, 142 "context request mgaw %d: no agaw found, sagaw %x\n", 143 mgaw, sagaw); 144 return (EINVAL); 145 } 146 147 /* 148 * Find a best fit mgaw for the given maxaddr: 149 * - if allow_less is false, must find sagaw which maps all requested 150 * addresses (used by identity mappings); 151 * - if allow_less is true, and no supported sagaw can map all requested 152 * address space, accept the biggest sagaw, whatever is it. 153 */ 154 int 155 dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less) 156 { 157 int i; 158 159 for (i = 0; i < nitems(sagaw_bits); i++) { 160 if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && 161 (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) 162 break; 163 } 164 if (allow_less && i == nitems(sagaw_bits)) { 165 do { 166 i--; 167 } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) 168 == 0); 169 } 170 if (i < nitems(sagaw_bits)) 171 return (sagaw_bits[i].agaw); 172 KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", 173 (uintmax_t) maxaddr, allow_less)); 174 return (-1); 175 } 176 177 /* 178 * Calculate the total amount of page table pages needed to map the 179 * whole bus address space on the context with the selected agaw. 180 */ 181 vm_pindex_t 182 pglvl_max_pages(int pglvl) 183 { 184 vm_pindex_t res; 185 int i; 186 187 for (res = 0, i = pglvl; i > 0; i--) { 188 res *= DMAR_NPTEPG; 189 res++; 190 } 191 return (res); 192 } 193 194 /* 195 * Return true if the page table level lvl supports the superpage for 196 * the context ctx. 197 */ 198 int 199 domain_is_sp_lvl(struct dmar_domain *domain, int lvl) 200 { 201 int alvl, cap_sps; 202 static const int sagaw_sp[] = { 203 DMAR_CAP_SPS_2M, 204 DMAR_CAP_SPS_1G, 205 DMAR_CAP_SPS_512G, 206 DMAR_CAP_SPS_1T 207 }; 208 209 alvl = domain->pglvl - lvl - 1; 210 cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); 211 return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); 212 } 213 214 iommu_gaddr_t 215 pglvl_page_size(int total_pglvl, int lvl) 216 { 217 int rlvl; 218 static const iommu_gaddr_t pg_sz[] = { 219 (iommu_gaddr_t)DMAR_PAGE_SIZE, 220 (iommu_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT, 221 (iommu_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT), 222 (iommu_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT), 223 (iommu_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT), 224 (iommu_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT) 225 }; 226 227 KASSERT(lvl >= 0 && lvl < total_pglvl, 228 ("total %d lvl %d", total_pglvl, lvl)); 229 rlvl = total_pglvl - lvl - 1; 230 KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); 231 return (pg_sz[rlvl]); 232 } 233 234 iommu_gaddr_t 235 domain_page_size(struct dmar_domain *domain, int lvl) 236 { 237 238 return (pglvl_page_size(domain->pglvl, lvl)); 239 } 240 241 int 242 calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, 243 iommu_gaddr_t *isizep) 244 { 245 iommu_gaddr_t isize; 246 int am; 247 248 for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { 249 isize = 1ULL << (am + DMAR_PAGE_SHIFT); 250 if ((base & (isize - 1)) == 0 && size >= isize) 251 break; 252 if (am == 0) 253 break; 254 } 255 *isizep = isize; 256 return (am); 257 } 258 259 iommu_haddr_t dmar_high; 260 int haw; 261 int dmar_tbl_pagecnt; 262 263 vm_page_t 264 dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags) 265 { 266 vm_page_t m; 267 int zeroed, aflags; 268 269 zeroed = (flags & IOMMU_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0; 270 aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | 271 ((flags & IOMMU_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL : 272 VM_ALLOC_NOWAIT); 273 for (;;) { 274 if ((flags & IOMMU_PGF_OBJL) == 0) 275 VM_OBJECT_WLOCK(obj); 276 m = vm_page_lookup(obj, idx); 277 if ((flags & IOMMU_PGF_NOALLOC) != 0 || m != NULL) { 278 if ((flags & IOMMU_PGF_OBJL) == 0) 279 VM_OBJECT_WUNLOCK(obj); 280 break; 281 } 282 m = vm_page_alloc_contig(obj, idx, aflags, 1, 0, 283 dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); 284 if ((flags & IOMMU_PGF_OBJL) == 0) 285 VM_OBJECT_WUNLOCK(obj); 286 if (m != NULL) { 287 if (zeroed && (m->flags & PG_ZERO) == 0) 288 pmap_zero_page(m); 289 atomic_add_int(&dmar_tbl_pagecnt, 1); 290 break; 291 } 292 if ((flags & IOMMU_PGF_WAITOK) == 0) 293 break; 294 } 295 return (m); 296 } 297 298 void 299 dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags) 300 { 301 vm_page_t m; 302 303 if ((flags & IOMMU_PGF_OBJL) == 0) 304 VM_OBJECT_WLOCK(obj); 305 m = vm_page_grab(obj, idx, VM_ALLOC_NOCREAT); 306 if (m != NULL) { 307 vm_page_free(m); 308 atomic_subtract_int(&dmar_tbl_pagecnt, 1); 309 } 310 if ((flags & IOMMU_PGF_OBJL) == 0) 311 VM_OBJECT_WUNLOCK(obj); 312 } 313 314 void * 315 dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, 316 struct sf_buf **sf) 317 { 318 vm_page_t m; 319 bool allocated; 320 321 if ((flags & IOMMU_PGF_OBJL) == 0) 322 VM_OBJECT_WLOCK(obj); 323 m = vm_page_lookup(obj, idx); 324 if (m == NULL && (flags & IOMMU_PGF_ALLOC) != 0) { 325 m = dmar_pgalloc(obj, idx, flags | IOMMU_PGF_OBJL); 326 allocated = true; 327 } else 328 allocated = false; 329 if (m == NULL) { 330 if ((flags & IOMMU_PGF_OBJL) == 0) 331 VM_OBJECT_WUNLOCK(obj); 332 return (NULL); 333 } 334 /* Sleepable allocations cannot fail. */ 335 if ((flags & IOMMU_PGF_WAITOK) != 0) 336 VM_OBJECT_WUNLOCK(obj); 337 sched_pin(); 338 *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & IOMMU_PGF_WAITOK) 339 == 0 ? SFB_NOWAIT : 0)); 340 if (*sf == NULL) { 341 sched_unpin(); 342 if (allocated) { 343 VM_OBJECT_ASSERT_WLOCKED(obj); 344 dmar_pgfree(obj, m->pindex, flags | IOMMU_PGF_OBJL); 345 } 346 if ((flags & IOMMU_PGF_OBJL) == 0) 347 VM_OBJECT_WUNLOCK(obj); 348 return (NULL); 349 } 350 if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 351 (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) 352 VM_OBJECT_WLOCK(obj); 353 else if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 0) 354 VM_OBJECT_WUNLOCK(obj); 355 return ((void *)sf_buf_kva(*sf)); 356 } 357 358 void 359 dmar_unmap_pgtbl(struct sf_buf *sf) 360 { 361 362 sf_buf_free(sf); 363 sched_unpin(); 364 } 365 366 static void 367 dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) 368 { 369 370 if (DMAR_IS_COHERENT(unit)) 371 return; 372 /* 373 * If DMAR does not snoop paging structures accesses, flush 374 * CPU cache to memory. 375 */ 376 pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz); 377 } 378 379 void 380 dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst) 381 { 382 383 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 384 } 385 386 void 387 dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) 388 { 389 390 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 391 } 392 393 void 394 dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) 395 { 396 397 dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); 398 } 399 400 /* 401 * Load the root entry pointer into the hardware, busily waiting for 402 * the completion. 403 */ 404 int 405 dmar_load_root_entry_ptr(struct dmar_unit *unit) 406 { 407 vm_page_t root_entry; 408 int error; 409 410 /* 411 * Access to the GCMD register must be serialized while the 412 * command is submitted. 413 */ 414 DMAR_ASSERT_LOCKED(unit); 415 416 VM_OBJECT_RLOCK(unit->ctx_obj); 417 root_entry = vm_page_lookup(unit->ctx_obj, 0); 418 VM_OBJECT_RUNLOCK(unit->ctx_obj); 419 dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); 420 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); 421 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) 422 != 0)); 423 return (error); 424 } 425 426 /* 427 * Globally invalidate the context entries cache, busily waiting for 428 * the completion. 429 */ 430 int 431 dmar_inv_ctx_glob(struct dmar_unit *unit) 432 { 433 int error; 434 435 /* 436 * Access to the CCMD register must be serialized while the 437 * command is submitted. 438 */ 439 DMAR_ASSERT_LOCKED(unit); 440 KASSERT(!unit->qi_enabled, ("QI enabled")); 441 442 /* 443 * The DMAR_CCMD_ICC bit in the upper dword should be written 444 * after the low dword write is completed. Amd64 445 * dmar_write8() does not have this issue, i386 dmar_write8() 446 * writes the upper dword last. 447 */ 448 dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); 449 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) 450 == 0)); 451 return (error); 452 } 453 454 /* 455 * Globally invalidate the IOTLB, busily waiting for the completion. 456 */ 457 int 458 dmar_inv_iotlb_glob(struct dmar_unit *unit) 459 { 460 int error, reg; 461 462 DMAR_ASSERT_LOCKED(unit); 463 KASSERT(!unit->qi_enabled, ("QI enabled")); 464 465 reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); 466 /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ 467 dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | 468 DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); 469 DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & 470 DMAR_IOTLB_IVT32) == 0)); 471 return (error); 472 } 473 474 /* 475 * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" 476 * in the architecture specification. 477 */ 478 int 479 dmar_flush_write_bufs(struct dmar_unit *unit) 480 { 481 int error; 482 483 DMAR_ASSERT_LOCKED(unit); 484 485 /* 486 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. 487 */ 488 KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, 489 ("dmar%d: no RWBF", unit->iommu.unit)); 490 491 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); 492 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) 493 != 0)); 494 return (error); 495 } 496 497 /* 498 * Some BIOSes protect memory region they reside in by using DMAR to 499 * prevent devices from doing any DMA transactions to that part of RAM. 500 * AMI refers to this as "DMA Control Guarantee". 501 * We need to disable this when address translation is enabled. 502 */ 503 int 504 dmar_disable_protected_regions(struct dmar_unit *unit) 505 { 506 uint32_t reg; 507 int error; 508 509 DMAR_ASSERT_LOCKED(unit); 510 511 /* Check if we support the feature. */ 512 if ((unit->hw_cap & (DMAR_CAP_PLMR | DMAR_CAP_PHMR)) == 0) 513 return (0); 514 515 reg = dmar_read4(unit, DMAR_PMEN_REG); 516 if ((reg & DMAR_PMEN_EPM) == 0) 517 return (0); 518 519 reg &= ~DMAR_PMEN_EPM; 520 dmar_write4(unit, DMAR_PMEN_REG, reg); 521 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_PMEN_REG) & DMAR_PMEN_PRS) 522 != 0)); 523 524 return (error); 525 } 526 527 int 528 dmar_enable_translation(struct dmar_unit *unit) 529 { 530 int error; 531 532 DMAR_ASSERT_LOCKED(unit); 533 unit->hw_gcmd |= DMAR_GCMD_TE; 534 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 535 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) 536 != 0)); 537 return (error); 538 } 539 540 int 541 dmar_disable_translation(struct dmar_unit *unit) 542 { 543 int error; 544 545 DMAR_ASSERT_LOCKED(unit); 546 unit->hw_gcmd &= ~DMAR_GCMD_TE; 547 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 548 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) 549 == 0)); 550 return (error); 551 } 552 553 int 554 dmar_load_irt_ptr(struct dmar_unit *unit) 555 { 556 uint64_t irta, s; 557 int error; 558 559 DMAR_ASSERT_LOCKED(unit); 560 irta = unit->irt_phys; 561 if (DMAR_X2APIC(unit)) 562 irta |= DMAR_IRTA_EIME; 563 s = fls(unit->irte_cnt) - 2; 564 KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && 565 powerof2(unit->irte_cnt), 566 ("IRTA_REG_S overflow %x", unit->irte_cnt)); 567 irta |= s; 568 dmar_write8(unit, DMAR_IRTA_REG, irta); 569 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); 570 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) 571 != 0)); 572 return (error); 573 } 574 575 int 576 dmar_enable_ir(struct dmar_unit *unit) 577 { 578 int error; 579 580 DMAR_ASSERT_LOCKED(unit); 581 unit->hw_gcmd |= DMAR_GCMD_IRE; 582 unit->hw_gcmd &= ~DMAR_GCMD_CFI; 583 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 584 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) 585 != 0)); 586 return (error); 587 } 588 589 int 590 dmar_disable_ir(struct dmar_unit *unit) 591 { 592 int error; 593 594 DMAR_ASSERT_LOCKED(unit); 595 unit->hw_gcmd &= ~DMAR_GCMD_IRE; 596 dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); 597 DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) 598 == 0)); 599 return (error); 600 } 601 602 #define BARRIER_F \ 603 u_int f_done, f_inproc, f_wakeup; \ 604 \ 605 f_done = 1 << (barrier_id * 3); \ 606 f_inproc = 1 << (barrier_id * 3 + 1); \ 607 f_wakeup = 1 << (barrier_id * 3 + 2) 608 609 bool 610 dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) 611 { 612 BARRIER_F; 613 614 DMAR_LOCK(dmar); 615 if ((dmar->barrier_flags & f_done) != 0) { 616 DMAR_UNLOCK(dmar); 617 return (false); 618 } 619 620 if ((dmar->barrier_flags & f_inproc) != 0) { 621 while ((dmar->barrier_flags & f_inproc) != 0) { 622 dmar->barrier_flags |= f_wakeup; 623 msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0, 624 "dmarb", 0); 625 } 626 KASSERT((dmar->barrier_flags & f_done) != 0, 627 ("dmar%d barrier %d missing done", dmar->iommu.unit, 628 barrier_id)); 629 DMAR_UNLOCK(dmar); 630 return (false); 631 } 632 633 dmar->barrier_flags |= f_inproc; 634 DMAR_UNLOCK(dmar); 635 return (true); 636 } 637 638 void 639 dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) 640 { 641 BARRIER_F; 642 643 DMAR_ASSERT_LOCKED(dmar); 644 KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, 645 ("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id)); 646 dmar->barrier_flags |= f_done; 647 if ((dmar->barrier_flags & f_wakeup) != 0) 648 wakeup(&dmar->barrier_flags); 649 dmar->barrier_flags &= ~(f_inproc | f_wakeup); 650 DMAR_UNLOCK(dmar); 651 } 652 653 int dmar_batch_coalesce = 100; 654 struct timespec dmar_hw_timeout = { 655 .tv_sec = 0, 656 .tv_nsec = 1000000 657 }; 658 659 static const uint64_t d = 1000000000; 660 661 void 662 dmar_update_timeout(uint64_t newval) 663 { 664 665 /* XXXKIB not atomic */ 666 dmar_hw_timeout.tv_sec = newval / d; 667 dmar_hw_timeout.tv_nsec = newval % d; 668 } 669 670 uint64_t 671 dmar_get_timeout(void) 672 { 673 674 return ((uint64_t)dmar_hw_timeout.tv_sec * d + 675 dmar_hw_timeout.tv_nsec); 676 } 677 678 static int 679 dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) 680 { 681 uint64_t val; 682 int error; 683 684 val = dmar_get_timeout(); 685 error = sysctl_handle_long(oidp, &val, 0, req); 686 if (error != 0 || req->newptr == NULL) 687 return (error); 688 dmar_update_timeout(val); 689 return (error); 690 } 691 692 static SYSCTL_NODE(_hw_iommu, OID_AUTO, dmar, CTLFLAG_RD | CTLFLAG_MPSAFE, 693 NULL, ""); 694 SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD, 695 &dmar_tbl_pagecnt, 0, 696 "Count of pages used for DMAR pagetables"); 697 SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, 698 &dmar_batch_coalesce, 0, 699 "Number of qi batches between interrupt"); 700 SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout, 701 CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 702 dmar_timeout_sysctl, "QU", 703 "Timeout for command wait, in nanoseconds"); 704