1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 128 int starting_page_shortage); 129 130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 131 NULL); 132 133 struct proc *pageproc; 134 135 static struct kproc_desc page_kp = { 136 "pagedaemon", 137 vm_pageout, 138 &pageproc 139 }; 140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 141 &page_kp); 142 143 SDT_PROVIDER_DEFINE(vm); 144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 145 146 /* Pagedaemon activity rates, in subdivisions of one second. */ 147 #define VM_LAUNDER_RATE 10 148 #define VM_INACT_SCAN_RATE 10 149 150 static int vm_pageout_oom_seq = 12; 151 152 static int vm_pageout_update_period; 153 static int disable_swap_pageouts; 154 static int lowmem_period = 10; 155 static int swapdev_enabled; 156 157 static int vm_panic_on_oom = 0; 158 159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 160 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 161 "panic on out of memory instead of killing the largest process"); 162 163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 164 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 165 "Maximum active LRU update period"); 166 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 171 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 172 173 static int pageout_lock_miss; 174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 175 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 178 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 179 "back-to-back calls to oom detector to start OOM"); 180 181 static int act_scan_laundry_weight = 3; 182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 183 &act_scan_laundry_weight, 0, 184 "weight given to clean vs. dirty pages in active queue scans"); 185 186 static u_int vm_background_launder_rate = 4096; 187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 188 &vm_background_launder_rate, 0, 189 "background laundering rate, in kilobytes per second"); 190 191 static u_int vm_background_launder_max = 20 * 1024; 192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 193 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 194 195 int vm_pageout_page_count = 32; 196 197 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 198 SYSCTL_INT(_vm, OID_AUTO, max_wired, 199 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 200 201 static u_int isqrt(u_int num); 202 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 203 bool in_shortfall); 204 static void vm_pageout_laundry_worker(void *arg); 205 206 struct scan_state { 207 struct vm_batchqueue bq; 208 struct vm_pagequeue *pq; 209 vm_page_t marker; 210 int maxscan; 211 int scanned; 212 }; 213 214 static void 215 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 216 vm_page_t marker, vm_page_t after, int maxscan) 217 { 218 219 vm_pagequeue_assert_locked(pq); 220 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 221 ("marker %p already enqueued", marker)); 222 223 if (after == NULL) 224 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 225 else 226 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 227 vm_page_aflag_set(marker, PGA_ENQUEUED); 228 229 vm_batchqueue_init(&ss->bq); 230 ss->pq = pq; 231 ss->marker = marker; 232 ss->maxscan = maxscan; 233 ss->scanned = 0; 234 vm_pagequeue_unlock(pq); 235 } 236 237 static void 238 vm_pageout_end_scan(struct scan_state *ss) 239 { 240 struct vm_pagequeue *pq; 241 242 pq = ss->pq; 243 vm_pagequeue_assert_locked(pq); 244 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 245 ("marker %p not enqueued", ss->marker)); 246 247 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 248 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 249 pq->pq_pdpages += ss->scanned; 250 } 251 252 /* 253 * Add a small number of queued pages to a batch queue for later processing 254 * without the corresponding queue lock held. The caller must have enqueued a 255 * marker page at the desired start point for the scan. Pages will be 256 * physically dequeued if the caller so requests. Otherwise, the returned 257 * batch may contain marker pages, and it is up to the caller to handle them. 258 * 259 * When processing the batch queue, vm_page_queue() must be used to 260 * determine whether the page has been logically dequeued by another thread. 261 * Once this check is performed, the page lock guarantees that the page will 262 * not be disassociated from the queue. 263 */ 264 static __always_inline void 265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 266 { 267 struct vm_pagequeue *pq; 268 vm_page_t m, marker; 269 270 marker = ss->marker; 271 pq = ss->pq; 272 273 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 274 ("marker %p not enqueued", ss->marker)); 275 276 vm_pagequeue_lock(pq); 277 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 278 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 279 m = TAILQ_NEXT(m, plinks.q), ss->scanned++) { 280 if ((m->flags & PG_MARKER) == 0) { 281 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 282 ("page %p not enqueued", m)); 283 KASSERT((m->flags & PG_FICTITIOUS) == 0, 284 ("Fictitious page %p cannot be in page queue", m)); 285 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 286 ("Unmanaged page %p cannot be in page queue", m)); 287 } else if (dequeue) 288 continue; 289 290 (void)vm_batchqueue_insert(&ss->bq, m); 291 if (dequeue) { 292 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 293 vm_page_aflag_clear(m, PGA_ENQUEUED); 294 } 295 } 296 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 297 if (__predict_true(m != NULL)) 298 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 299 else 300 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 301 if (dequeue) 302 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 303 vm_pagequeue_unlock(pq); 304 } 305 306 /* Return the next page to be scanned, or NULL if the scan is complete. */ 307 static __always_inline vm_page_t 308 vm_pageout_next(struct scan_state *ss, const bool dequeue) 309 { 310 311 if (ss->bq.bq_cnt == 0) 312 vm_pageout_collect_batch(ss, dequeue); 313 return (vm_batchqueue_pop(&ss->bq)); 314 } 315 316 /* 317 * Scan for pages at adjacent offsets within the given page's object that are 318 * eligible for laundering, form a cluster of these pages and the given page, 319 * and launder that cluster. 320 */ 321 static int 322 vm_pageout_cluster(vm_page_t m) 323 { 324 vm_object_t object; 325 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 326 vm_pindex_t pindex; 327 int ib, is, page_base, pageout_count; 328 329 vm_page_assert_locked(m); 330 object = m->object; 331 VM_OBJECT_ASSERT_WLOCKED(object); 332 pindex = m->pindex; 333 334 vm_page_assert_unbusied(m); 335 KASSERT(!vm_page_held(m), ("page %p is held", m)); 336 337 pmap_remove_write(m); 338 vm_page_unlock(m); 339 340 mc[vm_pageout_page_count] = pb = ps = m; 341 pageout_count = 1; 342 page_base = vm_pageout_page_count; 343 ib = 1; 344 is = 1; 345 346 /* 347 * We can cluster only if the page is not clean, busy, or held, and 348 * the page is in the laundry queue. 349 * 350 * During heavy mmap/modification loads the pageout 351 * daemon can really fragment the underlying file 352 * due to flushing pages out of order and not trying to 353 * align the clusters (which leaves sporadic out-of-order 354 * holes). To solve this problem we do the reverse scan 355 * first and attempt to align our cluster, then do a 356 * forward scan if room remains. 357 */ 358 more: 359 while (ib != 0 && pageout_count < vm_pageout_page_count) { 360 if (ib > pindex) { 361 ib = 0; 362 break; 363 } 364 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 365 ib = 0; 366 break; 367 } 368 vm_page_test_dirty(p); 369 if (p->dirty == 0) { 370 ib = 0; 371 break; 372 } 373 vm_page_lock(p); 374 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 375 vm_page_unlock(p); 376 ib = 0; 377 break; 378 } 379 pmap_remove_write(p); 380 vm_page_unlock(p); 381 mc[--page_base] = pb = p; 382 ++pageout_count; 383 ++ib; 384 385 /* 386 * We are at an alignment boundary. Stop here, and switch 387 * directions. Do not clear ib. 388 */ 389 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 390 break; 391 } 392 while (pageout_count < vm_pageout_page_count && 393 pindex + is < object->size) { 394 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 395 break; 396 vm_page_test_dirty(p); 397 if (p->dirty == 0) 398 break; 399 vm_page_lock(p); 400 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 401 vm_page_unlock(p); 402 break; 403 } 404 pmap_remove_write(p); 405 vm_page_unlock(p); 406 mc[page_base + pageout_count] = ps = p; 407 ++pageout_count; 408 ++is; 409 } 410 411 /* 412 * If we exhausted our forward scan, continue with the reverse scan 413 * when possible, even past an alignment boundary. This catches 414 * boundary conditions. 415 */ 416 if (ib != 0 && pageout_count < vm_pageout_page_count) 417 goto more; 418 419 return (vm_pageout_flush(&mc[page_base], pageout_count, 420 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 421 } 422 423 /* 424 * vm_pageout_flush() - launder the given pages 425 * 426 * The given pages are laundered. Note that we setup for the start of 427 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 428 * reference count all in here rather then in the parent. If we want 429 * the parent to do more sophisticated things we may have to change 430 * the ordering. 431 * 432 * Returned runlen is the count of pages between mreq and first 433 * page after mreq with status VM_PAGER_AGAIN. 434 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 435 * for any page in runlen set. 436 */ 437 int 438 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 439 boolean_t *eio) 440 { 441 vm_object_t object = mc[0]->object; 442 int pageout_status[count]; 443 int numpagedout = 0; 444 int i, runlen; 445 446 VM_OBJECT_ASSERT_WLOCKED(object); 447 448 /* 449 * Initiate I/O. Mark the pages busy and verify that they're valid 450 * and read-only. 451 * 452 * We do not have to fixup the clean/dirty bits here... we can 453 * allow the pager to do it after the I/O completes. 454 * 455 * NOTE! mc[i]->dirty may be partial or fragmented due to an 456 * edge case with file fragments. 457 */ 458 for (i = 0; i < count; i++) { 459 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 460 ("vm_pageout_flush: partially invalid page %p index %d/%d", 461 mc[i], i, count)); 462 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 463 ("vm_pageout_flush: writeable page %p", mc[i])); 464 vm_page_sbusy(mc[i]); 465 } 466 vm_object_pip_add(object, count); 467 468 vm_pager_put_pages(object, mc, count, flags, pageout_status); 469 470 runlen = count - mreq; 471 if (eio != NULL) 472 *eio = FALSE; 473 for (i = 0; i < count; i++) { 474 vm_page_t mt = mc[i]; 475 476 KASSERT(pageout_status[i] == VM_PAGER_PEND || 477 !pmap_page_is_write_mapped(mt), 478 ("vm_pageout_flush: page %p is not write protected", mt)); 479 switch (pageout_status[i]) { 480 case VM_PAGER_OK: 481 vm_page_lock(mt); 482 if (vm_page_in_laundry(mt)) 483 vm_page_deactivate_noreuse(mt); 484 vm_page_unlock(mt); 485 /* FALLTHROUGH */ 486 case VM_PAGER_PEND: 487 numpagedout++; 488 break; 489 case VM_PAGER_BAD: 490 /* 491 * The page is outside the object's range. We pretend 492 * that the page out worked and clean the page, so the 493 * changes will be lost if the page is reclaimed by 494 * the page daemon. 495 */ 496 vm_page_undirty(mt); 497 vm_page_lock(mt); 498 if (vm_page_in_laundry(mt)) 499 vm_page_deactivate_noreuse(mt); 500 vm_page_unlock(mt); 501 break; 502 case VM_PAGER_ERROR: 503 case VM_PAGER_FAIL: 504 /* 505 * If the page couldn't be paged out to swap because the 506 * pager wasn't able to find space, place the page in 507 * the PQ_UNSWAPPABLE holding queue. This is an 508 * optimization that prevents the page daemon from 509 * wasting CPU cycles on pages that cannot be reclaimed 510 * becase no swap device is configured. 511 * 512 * Otherwise, reactivate the page so that it doesn't 513 * clog the laundry and inactive queues. (We will try 514 * paging it out again later.) 515 */ 516 vm_page_lock(mt); 517 if (object->type == OBJT_SWAP && 518 pageout_status[i] == VM_PAGER_FAIL) { 519 vm_page_unswappable(mt); 520 numpagedout++; 521 } else 522 vm_page_activate(mt); 523 vm_page_unlock(mt); 524 if (eio != NULL && i >= mreq && i - mreq < runlen) 525 *eio = TRUE; 526 break; 527 case VM_PAGER_AGAIN: 528 if (i >= mreq && i - mreq < runlen) 529 runlen = i - mreq; 530 break; 531 } 532 533 /* 534 * If the operation is still going, leave the page busy to 535 * block all other accesses. Also, leave the paging in 536 * progress indicator set so that we don't attempt an object 537 * collapse. 538 */ 539 if (pageout_status[i] != VM_PAGER_PEND) { 540 vm_object_pip_wakeup(object); 541 vm_page_sunbusy(mt); 542 } 543 } 544 if (prunlen != NULL) 545 *prunlen = runlen; 546 return (numpagedout); 547 } 548 549 static void 550 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 551 { 552 553 atomic_store_rel_int(&swapdev_enabled, 1); 554 } 555 556 static void 557 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 558 { 559 560 if (swap_pager_nswapdev() == 1) 561 atomic_store_rel_int(&swapdev_enabled, 0); 562 } 563 564 /* 565 * Attempt to acquire all of the necessary locks to launder a page and 566 * then call through the clustering layer to PUTPAGES. Wait a short 567 * time for a vnode lock. 568 * 569 * Requires the page and object lock on entry, releases both before return. 570 * Returns 0 on success and an errno otherwise. 571 */ 572 static int 573 vm_pageout_clean(vm_page_t m, int *numpagedout) 574 { 575 struct vnode *vp; 576 struct mount *mp; 577 vm_object_t object; 578 vm_pindex_t pindex; 579 int error, lockmode; 580 581 vm_page_assert_locked(m); 582 object = m->object; 583 VM_OBJECT_ASSERT_WLOCKED(object); 584 error = 0; 585 vp = NULL; 586 mp = NULL; 587 588 /* 589 * The object is already known NOT to be dead. It 590 * is possible for the vget() to block the whole 591 * pageout daemon, but the new low-memory handling 592 * code should prevent it. 593 * 594 * We can't wait forever for the vnode lock, we might 595 * deadlock due to a vn_read() getting stuck in 596 * vm_wait while holding this vnode. We skip the 597 * vnode if we can't get it in a reasonable amount 598 * of time. 599 */ 600 if (object->type == OBJT_VNODE) { 601 vm_page_unlock(m); 602 vp = object->handle; 603 if (vp->v_type == VREG && 604 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 605 mp = NULL; 606 error = EDEADLK; 607 goto unlock_all; 608 } 609 KASSERT(mp != NULL, 610 ("vp %p with NULL v_mount", vp)); 611 vm_object_reference_locked(object); 612 pindex = m->pindex; 613 VM_OBJECT_WUNLOCK(object); 614 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 615 LK_SHARED : LK_EXCLUSIVE; 616 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 617 vp = NULL; 618 error = EDEADLK; 619 goto unlock_mp; 620 } 621 VM_OBJECT_WLOCK(object); 622 623 /* 624 * Ensure that the object and vnode were not disassociated 625 * while locks were dropped. 626 */ 627 if (vp->v_object != object) { 628 error = ENOENT; 629 goto unlock_all; 630 } 631 vm_page_lock(m); 632 633 /* 634 * While the object and page were unlocked, the page 635 * may have been: 636 * (1) moved to a different queue, 637 * (2) reallocated to a different object, 638 * (3) reallocated to a different offset, or 639 * (4) cleaned. 640 */ 641 if (!vm_page_in_laundry(m) || m->object != object || 642 m->pindex != pindex || m->dirty == 0) { 643 vm_page_unlock(m); 644 error = ENXIO; 645 goto unlock_all; 646 } 647 648 /* 649 * The page may have been busied or referenced while the object 650 * and page locks were released. 651 */ 652 if (vm_page_busied(m) || vm_page_held(m)) { 653 vm_page_unlock(m); 654 error = EBUSY; 655 goto unlock_all; 656 } 657 } 658 659 /* 660 * If a page is dirty, then it is either being washed 661 * (but not yet cleaned) or it is still in the 662 * laundry. If it is still in the laundry, then we 663 * start the cleaning operation. 664 */ 665 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 666 error = EIO; 667 668 unlock_all: 669 VM_OBJECT_WUNLOCK(object); 670 671 unlock_mp: 672 vm_page_lock_assert(m, MA_NOTOWNED); 673 if (mp != NULL) { 674 if (vp != NULL) 675 vput(vp); 676 vm_object_deallocate(object); 677 vn_finished_write(mp); 678 } 679 680 return (error); 681 } 682 683 /* 684 * Attempt to launder the specified number of pages. 685 * 686 * Returns the number of pages successfully laundered. 687 */ 688 static int 689 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 690 { 691 struct scan_state ss; 692 struct vm_pagequeue *pq; 693 struct mtx *mtx; 694 vm_object_t object; 695 vm_page_t m, marker; 696 int act_delta, error, numpagedout, queue, starting_target; 697 int vnodes_skipped; 698 bool pageout_ok; 699 700 mtx = NULL; 701 object = NULL; 702 starting_target = launder; 703 vnodes_skipped = 0; 704 705 /* 706 * Scan the laundry queues for pages eligible to be laundered. We stop 707 * once the target number of dirty pages have been laundered, or once 708 * we've reached the end of the queue. A single iteration of this loop 709 * may cause more than one page to be laundered because of clustering. 710 * 711 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 712 * swap devices are configured. 713 */ 714 if (atomic_load_acq_int(&swapdev_enabled)) 715 queue = PQ_UNSWAPPABLE; 716 else 717 queue = PQ_LAUNDRY; 718 719 scan: 720 marker = &vmd->vmd_markers[queue]; 721 pq = &vmd->vmd_pagequeues[queue]; 722 vm_pagequeue_lock(pq); 723 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 724 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 725 if (__predict_false((m->flags & PG_MARKER) != 0)) 726 continue; 727 728 vm_page_change_lock(m, &mtx); 729 730 recheck: 731 /* 732 * The page may have been disassociated from the queue 733 * while locks were dropped. 734 */ 735 if (vm_page_queue(m) != queue) 736 continue; 737 738 /* 739 * A requeue was requested, so this page gets a second 740 * chance. 741 */ 742 if ((m->aflags & PGA_REQUEUE) != 0) { 743 vm_page_requeue(m); 744 continue; 745 } 746 747 /* 748 * Held pages are essentially stuck in the queue. 749 * 750 * Wired pages may not be freed. Complete their removal 751 * from the queue now to avoid needless revisits during 752 * future scans. 753 */ 754 if (m->hold_count != 0) 755 continue; 756 if (m->wire_count != 0) { 757 vm_page_dequeue_deferred(m); 758 continue; 759 } 760 761 if (object != m->object) { 762 if (object != NULL) 763 VM_OBJECT_WUNLOCK(object); 764 object = m->object; 765 if (!VM_OBJECT_TRYWLOCK(object)) { 766 mtx_unlock(mtx); 767 /* Depends on type-stability. */ 768 VM_OBJECT_WLOCK(object); 769 mtx_lock(mtx); 770 goto recheck; 771 } 772 } 773 774 if (vm_page_busied(m)) 775 continue; 776 777 /* 778 * Invalid pages can be easily freed. They cannot be 779 * mapped; vm_page_free() asserts this. 780 */ 781 if (m->valid == 0) 782 goto free_page; 783 784 /* 785 * If the page has been referenced and the object is not dead, 786 * reactivate or requeue the page depending on whether the 787 * object is mapped. 788 * 789 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 790 * that a reference from a concurrently destroyed mapping is 791 * observed here and now. 792 */ 793 if (object->ref_count != 0) 794 act_delta = pmap_ts_referenced(m); 795 else { 796 KASSERT(!pmap_page_is_mapped(m), 797 ("page %p is mapped", m)); 798 act_delta = 0; 799 } 800 if ((m->aflags & PGA_REFERENCED) != 0) { 801 vm_page_aflag_clear(m, PGA_REFERENCED); 802 act_delta++; 803 } 804 if (act_delta != 0) { 805 if (object->ref_count != 0) { 806 VM_CNT_INC(v_reactivated); 807 vm_page_activate(m); 808 809 /* 810 * Increase the activation count if the page 811 * was referenced while in the laundry queue. 812 * This makes it less likely that the page will 813 * be returned prematurely to the inactive 814 * queue. 815 */ 816 m->act_count += act_delta + ACT_ADVANCE; 817 818 /* 819 * If this was a background laundering, count 820 * activated pages towards our target. The 821 * purpose of background laundering is to ensure 822 * that pages are eventually cycled through the 823 * laundry queue, and an activation is a valid 824 * way out. 825 */ 826 if (!in_shortfall) 827 launder--; 828 continue; 829 } else if ((object->flags & OBJ_DEAD) == 0) { 830 vm_page_requeue(m); 831 continue; 832 } 833 } 834 835 /* 836 * If the page appears to be clean at the machine-independent 837 * layer, then remove all of its mappings from the pmap in 838 * anticipation of freeing it. If, however, any of the page's 839 * mappings allow write access, then the page may still be 840 * modified until the last of those mappings are removed. 841 */ 842 if (object->ref_count != 0) { 843 vm_page_test_dirty(m); 844 if (m->dirty == 0) 845 pmap_remove_all(m); 846 } 847 848 /* 849 * Clean pages are freed, and dirty pages are paged out unless 850 * they belong to a dead object. Requeueing dirty pages from 851 * dead objects is pointless, as they are being paged out and 852 * freed by the thread that destroyed the object. 853 */ 854 if (m->dirty == 0) { 855 free_page: 856 vm_page_free(m); 857 VM_CNT_INC(v_dfree); 858 } else if ((object->flags & OBJ_DEAD) == 0) { 859 if (object->type != OBJT_SWAP && 860 object->type != OBJT_DEFAULT) 861 pageout_ok = true; 862 else if (disable_swap_pageouts) 863 pageout_ok = false; 864 else 865 pageout_ok = true; 866 if (!pageout_ok) { 867 vm_page_requeue(m); 868 continue; 869 } 870 871 /* 872 * Form a cluster with adjacent, dirty pages from the 873 * same object, and page out that entire cluster. 874 * 875 * The adjacent, dirty pages must also be in the 876 * laundry. However, their mappings are not checked 877 * for new references. Consequently, a recently 878 * referenced page may be paged out. However, that 879 * page will not be prematurely reclaimed. After page 880 * out, the page will be placed in the inactive queue, 881 * where any new references will be detected and the 882 * page reactivated. 883 */ 884 error = vm_pageout_clean(m, &numpagedout); 885 if (error == 0) { 886 launder -= numpagedout; 887 ss.scanned += numpagedout; 888 } else if (error == EDEADLK) { 889 pageout_lock_miss++; 890 vnodes_skipped++; 891 } 892 mtx = NULL; 893 object = NULL; 894 } 895 } 896 if (mtx != NULL) { 897 mtx_unlock(mtx); 898 mtx = NULL; 899 } 900 if (object != NULL) { 901 VM_OBJECT_WUNLOCK(object); 902 object = NULL; 903 } 904 vm_pagequeue_lock(pq); 905 vm_pageout_end_scan(&ss); 906 vm_pagequeue_unlock(pq); 907 908 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 909 queue = PQ_LAUNDRY; 910 goto scan; 911 } 912 913 /* 914 * Wakeup the sync daemon if we skipped a vnode in a writeable object 915 * and we didn't launder enough pages. 916 */ 917 if (vnodes_skipped > 0 && launder > 0) 918 (void)speedup_syncer(); 919 920 return (starting_target - launder); 921 } 922 923 /* 924 * Compute the integer square root. 925 */ 926 static u_int 927 isqrt(u_int num) 928 { 929 u_int bit, root, tmp; 930 931 bit = 1u << ((NBBY * sizeof(u_int)) - 2); 932 while (bit > num) 933 bit >>= 2; 934 root = 0; 935 while (bit != 0) { 936 tmp = root + bit; 937 root >>= 1; 938 if (num >= tmp) { 939 num -= tmp; 940 root += bit; 941 } 942 bit >>= 2; 943 } 944 return (root); 945 } 946 947 /* 948 * Perform the work of the laundry thread: periodically wake up and determine 949 * whether any pages need to be laundered. If so, determine the number of pages 950 * that need to be laundered, and launder them. 951 */ 952 static void 953 vm_pageout_laundry_worker(void *arg) 954 { 955 struct vm_domain *vmd; 956 struct vm_pagequeue *pq; 957 uint64_t nclean, ndirty, nfreed; 958 int domain, last_target, launder, shortfall, shortfall_cycle, target; 959 bool in_shortfall; 960 961 domain = (uintptr_t)arg; 962 vmd = VM_DOMAIN(domain); 963 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 964 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 965 966 shortfall = 0; 967 in_shortfall = false; 968 shortfall_cycle = 0; 969 last_target = target = 0; 970 nfreed = 0; 971 972 /* 973 * Calls to these handlers are serialized by the swap syscall lock. 974 */ 975 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 976 EVENTHANDLER_PRI_ANY); 977 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 978 EVENTHANDLER_PRI_ANY); 979 980 /* 981 * The pageout laundry worker is never done, so loop forever. 982 */ 983 for (;;) { 984 KASSERT(target >= 0, ("negative target %d", target)); 985 KASSERT(shortfall_cycle >= 0, 986 ("negative cycle %d", shortfall_cycle)); 987 launder = 0; 988 989 /* 990 * First determine whether we need to launder pages to meet a 991 * shortage of free pages. 992 */ 993 if (shortfall > 0) { 994 in_shortfall = true; 995 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 996 target = shortfall; 997 } else if (!in_shortfall) 998 goto trybackground; 999 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1000 /* 1001 * We recently entered shortfall and began laundering 1002 * pages. If we have completed that laundering run 1003 * (and we are no longer in shortfall) or we have met 1004 * our laundry target through other activity, then we 1005 * can stop laundering pages. 1006 */ 1007 in_shortfall = false; 1008 target = 0; 1009 goto trybackground; 1010 } 1011 launder = target / shortfall_cycle--; 1012 goto dolaundry; 1013 1014 /* 1015 * There's no immediate need to launder any pages; see if we 1016 * meet the conditions to perform background laundering: 1017 * 1018 * 1. The ratio of dirty to clean inactive pages exceeds the 1019 * background laundering threshold, or 1020 * 2. we haven't yet reached the target of the current 1021 * background laundering run. 1022 * 1023 * The background laundering threshold is not a constant. 1024 * Instead, it is a slowly growing function of the number of 1025 * clean pages freed by the page daemon since the last 1026 * background laundering. Thus, as the ratio of dirty to 1027 * clean inactive pages grows, the amount of memory pressure 1028 * required to trigger laundering decreases. We ensure 1029 * that the threshold is non-zero after an inactive queue 1030 * scan, even if that scan failed to free a single clean page. 1031 */ 1032 trybackground: 1033 nclean = vmd->vmd_free_count + 1034 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1035 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1036 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1037 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1038 target = vmd->vmd_background_launder_target; 1039 } 1040 1041 /* 1042 * We have a non-zero background laundering target. If we've 1043 * laundered up to our maximum without observing a page daemon 1044 * request, just stop. This is a safety belt that ensures we 1045 * don't launder an excessive amount if memory pressure is low 1046 * and the ratio of dirty to clean pages is large. Otherwise, 1047 * proceed at the background laundering rate. 1048 */ 1049 if (target > 0) { 1050 if (nfreed > 0) { 1051 nfreed = 0; 1052 last_target = target; 1053 } else if (last_target - target >= 1054 vm_background_launder_max * PAGE_SIZE / 1024) { 1055 target = 0; 1056 } 1057 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1058 launder /= VM_LAUNDER_RATE; 1059 if (launder > target) 1060 launder = target; 1061 } 1062 1063 dolaundry: 1064 if (launder > 0) { 1065 /* 1066 * Because of I/O clustering, the number of laundered 1067 * pages could exceed "target" by the maximum size of 1068 * a cluster minus one. 1069 */ 1070 target -= min(vm_pageout_launder(vmd, launder, 1071 in_shortfall), target); 1072 pause("laundp", hz / VM_LAUNDER_RATE); 1073 } 1074 1075 /* 1076 * If we're not currently laundering pages and the page daemon 1077 * hasn't posted a new request, sleep until the page daemon 1078 * kicks us. 1079 */ 1080 vm_pagequeue_lock(pq); 1081 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1082 (void)mtx_sleep(&vmd->vmd_laundry_request, 1083 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1084 1085 /* 1086 * If the pagedaemon has indicated that it's in shortfall, start 1087 * a shortfall laundering unless we're already in the middle of 1088 * one. This may preempt a background laundering. 1089 */ 1090 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1091 (!in_shortfall || shortfall_cycle == 0)) { 1092 shortfall = vm_laundry_target(vmd) + 1093 vmd->vmd_pageout_deficit; 1094 target = 0; 1095 } else 1096 shortfall = 0; 1097 1098 if (target == 0) 1099 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1100 nfreed += vmd->vmd_clean_pages_freed; 1101 vmd->vmd_clean_pages_freed = 0; 1102 vm_pagequeue_unlock(pq); 1103 } 1104 } 1105 1106 /* 1107 * Compute the number of pages we want to try to move from the 1108 * active queue to either the inactive or laundry queue. 1109 * 1110 * When scanning active pages during a shortage, we make clean pages 1111 * count more heavily towards the page shortage than dirty pages. 1112 * This is because dirty pages must be laundered before they can be 1113 * reused and thus have less utility when attempting to quickly 1114 * alleviate a free page shortage. However, this weighting also 1115 * causes the scan to deactivate dirty pages more aggressively, 1116 * improving the effectiveness of clustering. 1117 */ 1118 static int 1119 vm_pageout_active_target(struct vm_domain *vmd) 1120 { 1121 int shortage; 1122 1123 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1124 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1125 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1126 shortage *= act_scan_laundry_weight; 1127 return (shortage); 1128 } 1129 1130 /* 1131 * Scan the active queue. If there is no shortage of inactive pages, scan a 1132 * small portion of the queue in order to maintain quasi-LRU. 1133 */ 1134 static void 1135 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1136 { 1137 struct scan_state ss; 1138 struct mtx *mtx; 1139 vm_page_t m, marker; 1140 struct vm_pagequeue *pq; 1141 long min_scan; 1142 int act_delta, max_scan, scan_tick; 1143 1144 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1145 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1146 vm_pagequeue_lock(pq); 1147 1148 /* 1149 * If we're just idle polling attempt to visit every 1150 * active page within 'update_period' seconds. 1151 */ 1152 scan_tick = ticks; 1153 if (vm_pageout_update_period != 0) { 1154 min_scan = pq->pq_cnt; 1155 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1156 min_scan /= hz * vm_pageout_update_period; 1157 } else 1158 min_scan = 0; 1159 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1160 vmd->vmd_last_active_scan = scan_tick; 1161 1162 /* 1163 * Scan the active queue for pages that can be deactivated. Update 1164 * the per-page activity counter and use it to identify deactivation 1165 * candidates. Held pages may be deactivated. 1166 * 1167 * To avoid requeuing each page that remains in the active queue, we 1168 * implement the CLOCK algorithm. To keep the implementation of the 1169 * enqueue operation consistent for all page queues, we use two hands, 1170 * represented by marker pages. Scans begin at the first hand, which 1171 * precedes the second hand in the queue. When the two hands meet, 1172 * they are moved back to the head and tail of the queue, respectively, 1173 * and scanning resumes. 1174 */ 1175 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1176 mtx = NULL; 1177 act_scan: 1178 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1179 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1180 if (__predict_false(m == &vmd->vmd_clock[1])) { 1181 vm_pagequeue_lock(pq); 1182 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1183 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1184 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1185 plinks.q); 1186 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1187 plinks.q); 1188 max_scan -= ss.scanned; 1189 vm_pageout_end_scan(&ss); 1190 goto act_scan; 1191 } 1192 if (__predict_false((m->flags & PG_MARKER) != 0)) 1193 continue; 1194 1195 vm_page_change_lock(m, &mtx); 1196 1197 /* 1198 * The page may have been disassociated from the queue 1199 * while locks were dropped. 1200 */ 1201 if (vm_page_queue(m) != PQ_ACTIVE) 1202 continue; 1203 1204 /* 1205 * Wired pages are dequeued lazily. 1206 */ 1207 if (m->wire_count != 0) { 1208 vm_page_dequeue_deferred(m); 1209 continue; 1210 } 1211 1212 /* 1213 * Check to see "how much" the page has been used. 1214 * 1215 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1216 * that a reference from a concurrently destroyed mapping is 1217 * observed here and now. 1218 * 1219 * Perform an unsynchronized object ref count check. While 1220 * the page lock ensures that the page is not reallocated to 1221 * another object, in particular, one with unmanaged mappings 1222 * that cannot support pmap_ts_referenced(), two races are, 1223 * nonetheless, possible: 1224 * 1) The count was transitioning to zero, but we saw a non- 1225 * zero value. pmap_ts_referenced() will return zero 1226 * because the page is not mapped. 1227 * 2) The count was transitioning to one, but we saw zero. 1228 * This race delays the detection of a new reference. At 1229 * worst, we will deactivate and reactivate the page. 1230 */ 1231 if (m->object->ref_count != 0) 1232 act_delta = pmap_ts_referenced(m); 1233 else 1234 act_delta = 0; 1235 if ((m->aflags & PGA_REFERENCED) != 0) { 1236 vm_page_aflag_clear(m, PGA_REFERENCED); 1237 act_delta++; 1238 } 1239 1240 /* 1241 * Advance or decay the act_count based on recent usage. 1242 */ 1243 if (act_delta != 0) { 1244 m->act_count += ACT_ADVANCE + act_delta; 1245 if (m->act_count > ACT_MAX) 1246 m->act_count = ACT_MAX; 1247 } else 1248 m->act_count -= min(m->act_count, ACT_DECLINE); 1249 1250 if (m->act_count == 0) { 1251 /* 1252 * When not short for inactive pages, let dirty pages go 1253 * through the inactive queue before moving to the 1254 * laundry queues. This gives them some extra time to 1255 * be reactivated, potentially avoiding an expensive 1256 * pageout. However, during a page shortage, the 1257 * inactive queue is necessarily small, and so dirty 1258 * pages would only spend a trivial amount of time in 1259 * the inactive queue. Therefore, we might as well 1260 * place them directly in the laundry queue to reduce 1261 * queuing overhead. 1262 */ 1263 if (page_shortage <= 0) 1264 vm_page_deactivate(m); 1265 else { 1266 /* 1267 * Calling vm_page_test_dirty() here would 1268 * require acquisition of the object's write 1269 * lock. However, during a page shortage, 1270 * directing dirty pages into the laundry 1271 * queue is only an optimization and not a 1272 * requirement. Therefore, we simply rely on 1273 * the opportunistic updates to the page's 1274 * dirty field by the pmap. 1275 */ 1276 if (m->dirty == 0) { 1277 vm_page_deactivate(m); 1278 page_shortage -= 1279 act_scan_laundry_weight; 1280 } else { 1281 vm_page_launder(m); 1282 page_shortage--; 1283 } 1284 } 1285 } 1286 } 1287 if (mtx != NULL) { 1288 mtx_unlock(mtx); 1289 mtx = NULL; 1290 } 1291 vm_pagequeue_lock(pq); 1292 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1293 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1294 vm_pageout_end_scan(&ss); 1295 vm_pagequeue_unlock(pq); 1296 } 1297 1298 static int 1299 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1300 { 1301 struct vm_domain *vmd; 1302 1303 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1304 return (0); 1305 vm_page_aflag_set(m, PGA_ENQUEUED); 1306 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1307 vmd = vm_pagequeue_domain(m); 1308 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1309 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1310 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1311 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1312 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1313 } else 1314 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1315 return (1); 1316 } 1317 1318 /* 1319 * Re-add stuck pages to the inactive queue. We will examine them again 1320 * during the next scan. If the queue state of a page has changed since 1321 * it was physically removed from the page queue in 1322 * vm_pageout_collect_batch(), don't do anything with that page. 1323 */ 1324 static void 1325 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1326 vm_page_t m) 1327 { 1328 struct vm_pagequeue *pq; 1329 int delta; 1330 1331 delta = 0; 1332 pq = ss->pq; 1333 1334 if (m != NULL) { 1335 if (vm_batchqueue_insert(bq, m)) 1336 return; 1337 vm_pagequeue_lock(pq); 1338 delta += vm_pageout_reinsert_inactive_page(ss, m); 1339 } else 1340 vm_pagequeue_lock(pq); 1341 while ((m = vm_batchqueue_pop(bq)) != NULL) 1342 delta += vm_pageout_reinsert_inactive_page(ss, m); 1343 vm_pagequeue_cnt_add(pq, delta); 1344 vm_pagequeue_unlock(pq); 1345 vm_batchqueue_init(bq); 1346 } 1347 1348 /* 1349 * Attempt to reclaim the requested number of pages from the inactive queue. 1350 * Returns true if the shortage was addressed. 1351 */ 1352 static int 1353 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage, 1354 int *addl_shortage) 1355 { 1356 struct scan_state ss; 1357 struct vm_batchqueue rq; 1358 struct mtx *mtx; 1359 vm_page_t m, marker; 1360 struct vm_pagequeue *pq; 1361 vm_object_t object; 1362 int act_delta, addl_page_shortage, deficit, page_shortage; 1363 int starting_page_shortage; 1364 1365 /* 1366 * The addl_page_shortage is an estimate of the number of temporarily 1367 * stuck pages in the inactive queue. In other words, the 1368 * number of pages from the inactive count that should be 1369 * discounted in setting the target for the active queue scan. 1370 */ 1371 addl_page_shortage = 0; 1372 1373 /* 1374 * vmd_pageout_deficit counts the number of pages requested in 1375 * allocations that failed because of a free page shortage. We assume 1376 * that the allocations will be reattempted and thus include the deficit 1377 * in our scan target. 1378 */ 1379 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1380 starting_page_shortage = page_shortage = shortage + deficit; 1381 1382 mtx = NULL; 1383 object = NULL; 1384 vm_batchqueue_init(&rq); 1385 1386 /* 1387 * Start scanning the inactive queue for pages that we can free. The 1388 * scan will stop when we reach the target or we have scanned the 1389 * entire queue. (Note that m->act_count is not used to make 1390 * decisions for the inactive queue, only for the active queue.) 1391 */ 1392 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1393 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1394 vm_pagequeue_lock(pq); 1395 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1396 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1397 KASSERT((m->flags & PG_MARKER) == 0, 1398 ("marker page %p was dequeued", m)); 1399 1400 vm_page_change_lock(m, &mtx); 1401 1402 recheck: 1403 /* 1404 * The page may have been disassociated from the queue 1405 * while locks were dropped. 1406 */ 1407 if (vm_page_queue(m) != PQ_INACTIVE) { 1408 addl_page_shortage++; 1409 continue; 1410 } 1411 1412 /* 1413 * The page was re-enqueued after the page queue lock was 1414 * dropped, or a requeue was requested. This page gets a second 1415 * chance. 1416 */ 1417 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1418 PGA_REQUEUE_HEAD)) != 0) 1419 goto reinsert; 1420 1421 /* 1422 * Held pages are essentially stuck in the queue. So, 1423 * they ought to be discounted from the inactive count. 1424 * See the description of addl_page_shortage above. 1425 * 1426 * Wired pages may not be freed. Complete their removal 1427 * from the queue now to avoid needless revisits during 1428 * future scans. 1429 */ 1430 if (m->hold_count != 0) { 1431 addl_page_shortage++; 1432 goto reinsert; 1433 } 1434 if (m->wire_count != 0) { 1435 vm_page_dequeue_deferred(m); 1436 continue; 1437 } 1438 1439 if (object != m->object) { 1440 if (object != NULL) 1441 VM_OBJECT_WUNLOCK(object); 1442 object = m->object; 1443 if (!VM_OBJECT_TRYWLOCK(object)) { 1444 mtx_unlock(mtx); 1445 /* Depends on type-stability. */ 1446 VM_OBJECT_WLOCK(object); 1447 mtx_lock(mtx); 1448 goto recheck; 1449 } 1450 } 1451 1452 if (vm_page_busied(m)) { 1453 /* 1454 * Don't mess with busy pages. Leave them at 1455 * the front of the queue. Most likely, they 1456 * are being paged out and will leave the 1457 * queue shortly after the scan finishes. So, 1458 * they ought to be discounted from the 1459 * inactive count. 1460 */ 1461 addl_page_shortage++; 1462 goto reinsert; 1463 } 1464 1465 /* 1466 * Invalid pages can be easily freed. They cannot be 1467 * mapped, vm_page_free() asserts this. 1468 */ 1469 if (m->valid == 0) 1470 goto free_page; 1471 1472 /* 1473 * If the page has been referenced and the object is not dead, 1474 * reactivate or requeue the page depending on whether the 1475 * object is mapped. 1476 * 1477 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1478 * that a reference from a concurrently destroyed mapping is 1479 * observed here and now. 1480 */ 1481 if (object->ref_count != 0) 1482 act_delta = pmap_ts_referenced(m); 1483 else { 1484 KASSERT(!pmap_page_is_mapped(m), 1485 ("page %p is mapped", m)); 1486 act_delta = 0; 1487 } 1488 if ((m->aflags & PGA_REFERENCED) != 0) { 1489 vm_page_aflag_clear(m, PGA_REFERENCED); 1490 act_delta++; 1491 } 1492 if (act_delta != 0) { 1493 if (object->ref_count != 0) { 1494 VM_CNT_INC(v_reactivated); 1495 vm_page_activate(m); 1496 1497 /* 1498 * Increase the activation count if the page 1499 * was referenced while in the inactive queue. 1500 * This makes it less likely that the page will 1501 * be returned prematurely to the inactive 1502 * queue. 1503 */ 1504 m->act_count += act_delta + ACT_ADVANCE; 1505 continue; 1506 } else if ((object->flags & OBJ_DEAD) == 0) { 1507 vm_page_aflag_set(m, PGA_REQUEUE); 1508 goto reinsert; 1509 } 1510 } 1511 1512 /* 1513 * If the page appears to be clean at the machine-independent 1514 * layer, then remove all of its mappings from the pmap in 1515 * anticipation of freeing it. If, however, any of the page's 1516 * mappings allow write access, then the page may still be 1517 * modified until the last of those mappings are removed. 1518 */ 1519 if (object->ref_count != 0) { 1520 vm_page_test_dirty(m); 1521 if (m->dirty == 0) 1522 pmap_remove_all(m); 1523 } 1524 1525 /* 1526 * Clean pages can be freed, but dirty pages must be sent back 1527 * to the laundry, unless they belong to a dead object. 1528 * Requeueing dirty pages from dead objects is pointless, as 1529 * they are being paged out and freed by the thread that 1530 * destroyed the object. 1531 */ 1532 if (m->dirty == 0) { 1533 free_page: 1534 /* 1535 * Because we dequeued the page and have already 1536 * checked for concurrent dequeue and enqueue 1537 * requests, we can safely disassociate the page 1538 * from the inactive queue. 1539 */ 1540 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1541 ("page %p has queue state", m)); 1542 m->queue = PQ_NONE; 1543 vm_page_free(m); 1544 page_shortage--; 1545 } else if ((object->flags & OBJ_DEAD) == 0) 1546 vm_page_launder(m); 1547 continue; 1548 reinsert: 1549 vm_pageout_reinsert_inactive(&ss, &rq, m); 1550 } 1551 if (mtx != NULL) 1552 mtx_unlock(mtx); 1553 if (object != NULL) 1554 VM_OBJECT_WUNLOCK(object); 1555 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1556 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1557 vm_pagequeue_lock(pq); 1558 vm_pageout_end_scan(&ss); 1559 vm_pagequeue_unlock(pq); 1560 1561 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1562 1563 /* 1564 * Wake up the laundry thread so that it can perform any needed 1565 * laundering. If we didn't meet our target, we're in shortfall and 1566 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1567 * swap devices are configured, the laundry thread has no work to do, so 1568 * don't bother waking it up. 1569 * 1570 * The laundry thread uses the number of inactive queue scans elapsed 1571 * since the last laundering to determine whether to launder again, so 1572 * keep count. 1573 */ 1574 if (starting_page_shortage > 0) { 1575 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1576 vm_pagequeue_lock(pq); 1577 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1578 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1579 if (page_shortage > 0) { 1580 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1581 VM_CNT_INC(v_pdshortfalls); 1582 } else if (vmd->vmd_laundry_request != 1583 VM_LAUNDRY_SHORTFALL) 1584 vmd->vmd_laundry_request = 1585 VM_LAUNDRY_BACKGROUND; 1586 wakeup(&vmd->vmd_laundry_request); 1587 } 1588 vmd->vmd_clean_pages_freed += 1589 starting_page_shortage - page_shortage; 1590 vm_pagequeue_unlock(pq); 1591 } 1592 1593 /* 1594 * Wakeup the swapout daemon if we didn't free the targeted number of 1595 * pages. 1596 */ 1597 if (page_shortage > 0) 1598 vm_swapout_run(); 1599 1600 /* 1601 * If the inactive queue scan fails repeatedly to meet its 1602 * target, kill the largest process. 1603 */ 1604 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1605 1606 /* 1607 * Reclaim pages by swapping out idle processes, if configured to do so. 1608 */ 1609 vm_swapout_run_idle(); 1610 1611 /* 1612 * See the description of addl_page_shortage above. 1613 */ 1614 *addl_shortage = addl_page_shortage + deficit; 1615 1616 return (page_shortage <= 0); 1617 } 1618 1619 static int vm_pageout_oom_vote; 1620 1621 /* 1622 * The pagedaemon threads randlomly select one to perform the 1623 * OOM. Trying to kill processes before all pagedaemons 1624 * failed to reach free target is premature. 1625 */ 1626 static void 1627 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1628 int starting_page_shortage) 1629 { 1630 int old_vote; 1631 1632 if (starting_page_shortage <= 0 || starting_page_shortage != 1633 page_shortage) 1634 vmd->vmd_oom_seq = 0; 1635 else 1636 vmd->vmd_oom_seq++; 1637 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1638 if (vmd->vmd_oom) { 1639 vmd->vmd_oom = FALSE; 1640 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1641 } 1642 return; 1643 } 1644 1645 /* 1646 * Do not follow the call sequence until OOM condition is 1647 * cleared. 1648 */ 1649 vmd->vmd_oom_seq = 0; 1650 1651 if (vmd->vmd_oom) 1652 return; 1653 1654 vmd->vmd_oom = TRUE; 1655 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1656 if (old_vote != vm_ndomains - 1) 1657 return; 1658 1659 /* 1660 * The current pagedaemon thread is the last in the quorum to 1661 * start OOM. Initiate the selection and signaling of the 1662 * victim. 1663 */ 1664 vm_pageout_oom(VM_OOM_MEM); 1665 1666 /* 1667 * After one round of OOM terror, recall our vote. On the 1668 * next pass, current pagedaemon would vote again if the low 1669 * memory condition is still there, due to vmd_oom being 1670 * false. 1671 */ 1672 vmd->vmd_oom = FALSE; 1673 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1674 } 1675 1676 /* 1677 * The OOM killer is the page daemon's action of last resort when 1678 * memory allocation requests have been stalled for a prolonged period 1679 * of time because it cannot reclaim memory. This function computes 1680 * the approximate number of physical pages that could be reclaimed if 1681 * the specified address space is destroyed. 1682 * 1683 * Private, anonymous memory owned by the address space is the 1684 * principal resource that we expect to recover after an OOM kill. 1685 * Since the physical pages mapped by the address space's COW entries 1686 * are typically shared pages, they are unlikely to be released and so 1687 * they are not counted. 1688 * 1689 * To get to the point where the page daemon runs the OOM killer, its 1690 * efforts to write-back vnode-backed pages may have stalled. This 1691 * could be caused by a memory allocation deadlock in the write path 1692 * that might be resolved by an OOM kill. Therefore, physical pages 1693 * belonging to vnode-backed objects are counted, because they might 1694 * be freed without being written out first if the address space holds 1695 * the last reference to an unlinked vnode. 1696 * 1697 * Similarly, physical pages belonging to OBJT_PHYS objects are 1698 * counted because the address space might hold the last reference to 1699 * the object. 1700 */ 1701 static long 1702 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1703 { 1704 vm_map_t map; 1705 vm_map_entry_t entry; 1706 vm_object_t obj; 1707 long res; 1708 1709 map = &vmspace->vm_map; 1710 KASSERT(!map->system_map, ("system map")); 1711 sx_assert(&map->lock, SA_LOCKED); 1712 res = 0; 1713 for (entry = map->header.next; entry != &map->header; 1714 entry = entry->next) { 1715 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1716 continue; 1717 obj = entry->object.vm_object; 1718 if (obj == NULL) 1719 continue; 1720 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1721 obj->ref_count != 1) 1722 continue; 1723 switch (obj->type) { 1724 case OBJT_DEFAULT: 1725 case OBJT_SWAP: 1726 case OBJT_PHYS: 1727 case OBJT_VNODE: 1728 res += obj->resident_page_count; 1729 break; 1730 } 1731 } 1732 return (res); 1733 } 1734 1735 void 1736 vm_pageout_oom(int shortage) 1737 { 1738 struct proc *p, *bigproc; 1739 vm_offset_t size, bigsize; 1740 struct thread *td; 1741 struct vmspace *vm; 1742 bool breakout; 1743 1744 /* 1745 * We keep the process bigproc locked once we find it to keep anyone 1746 * from messing with it; however, there is a possibility of 1747 * deadlock if process B is bigproc and one of its child processes 1748 * attempts to propagate a signal to B while we are waiting for A's 1749 * lock while walking this list. To avoid this, we don't block on 1750 * the process lock but just skip a process if it is already locked. 1751 */ 1752 bigproc = NULL; 1753 bigsize = 0; 1754 sx_slock(&allproc_lock); 1755 FOREACH_PROC_IN_SYSTEM(p) { 1756 PROC_LOCK(p); 1757 1758 /* 1759 * If this is a system, protected or killed process, skip it. 1760 */ 1761 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1762 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1763 p->p_pid == 1 || P_KILLED(p) || 1764 (p->p_pid < 48 && swap_pager_avail != 0)) { 1765 PROC_UNLOCK(p); 1766 continue; 1767 } 1768 /* 1769 * If the process is in a non-running type state, 1770 * don't touch it. Check all the threads individually. 1771 */ 1772 breakout = false; 1773 FOREACH_THREAD_IN_PROC(p, td) { 1774 thread_lock(td); 1775 if (!TD_ON_RUNQ(td) && 1776 !TD_IS_RUNNING(td) && 1777 !TD_IS_SLEEPING(td) && 1778 !TD_IS_SUSPENDED(td) && 1779 !TD_IS_SWAPPED(td)) { 1780 thread_unlock(td); 1781 breakout = true; 1782 break; 1783 } 1784 thread_unlock(td); 1785 } 1786 if (breakout) { 1787 PROC_UNLOCK(p); 1788 continue; 1789 } 1790 /* 1791 * get the process size 1792 */ 1793 vm = vmspace_acquire_ref(p); 1794 if (vm == NULL) { 1795 PROC_UNLOCK(p); 1796 continue; 1797 } 1798 _PHOLD_LITE(p); 1799 PROC_UNLOCK(p); 1800 sx_sunlock(&allproc_lock); 1801 if (!vm_map_trylock_read(&vm->vm_map)) { 1802 vmspace_free(vm); 1803 sx_slock(&allproc_lock); 1804 PRELE(p); 1805 continue; 1806 } 1807 size = vmspace_swap_count(vm); 1808 if (shortage == VM_OOM_MEM) 1809 size += vm_pageout_oom_pagecount(vm); 1810 vm_map_unlock_read(&vm->vm_map); 1811 vmspace_free(vm); 1812 sx_slock(&allproc_lock); 1813 1814 /* 1815 * If this process is bigger than the biggest one, 1816 * remember it. 1817 */ 1818 if (size > bigsize) { 1819 if (bigproc != NULL) 1820 PRELE(bigproc); 1821 bigproc = p; 1822 bigsize = size; 1823 } else { 1824 PRELE(p); 1825 } 1826 } 1827 sx_sunlock(&allproc_lock); 1828 if (bigproc != NULL) { 1829 if (vm_panic_on_oom != 0) 1830 panic("out of swap space"); 1831 PROC_LOCK(bigproc); 1832 killproc(bigproc, "out of swap space"); 1833 sched_nice(bigproc, PRIO_MIN); 1834 _PRELE(bigproc); 1835 PROC_UNLOCK(bigproc); 1836 } 1837 } 1838 1839 static bool 1840 vm_pageout_lowmem(void) 1841 { 1842 static int lowmem_ticks = 0; 1843 int last; 1844 1845 last = atomic_load_int(&lowmem_ticks); 1846 while ((u_int)(ticks - last) / hz >= lowmem_period) { 1847 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 1848 continue; 1849 1850 /* 1851 * Decrease registered cache sizes. 1852 */ 1853 SDT_PROBE0(vm, , , vm__lowmem_scan); 1854 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1855 1856 /* 1857 * We do this explicitly after the caches have been 1858 * drained above. 1859 */ 1860 uma_reclaim(); 1861 return (true); 1862 } 1863 return (false); 1864 } 1865 1866 static void 1867 vm_pageout_worker(void *arg) 1868 { 1869 struct vm_domain *vmd; 1870 u_int ofree; 1871 int addl_shortage, domain, shortage; 1872 bool target_met; 1873 1874 domain = (uintptr_t)arg; 1875 vmd = VM_DOMAIN(domain); 1876 shortage = 0; 1877 target_met = true; 1878 1879 /* 1880 * XXXKIB It could be useful to bind pageout daemon threads to 1881 * the cores belonging to the domain, from which vm_page_array 1882 * is allocated. 1883 */ 1884 1885 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1886 vmd->vmd_last_active_scan = ticks; 1887 1888 /* 1889 * The pageout daemon worker is never done, so loop forever. 1890 */ 1891 while (TRUE) { 1892 vm_domain_pageout_lock(vmd); 1893 1894 /* 1895 * We need to clear wanted before we check the limits. This 1896 * prevents races with wakers who will check wanted after they 1897 * reach the limit. 1898 */ 1899 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1900 1901 /* 1902 * Might the page daemon need to run again? 1903 */ 1904 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1905 /* 1906 * Yes. If the scan failed to produce enough free 1907 * pages, sleep uninterruptibly for some time in the 1908 * hope that the laundry thread will clean some pages. 1909 */ 1910 vm_domain_pageout_unlock(vmd); 1911 if (!target_met) 1912 pause("pwait", hz / VM_INACT_SCAN_RATE); 1913 } else { 1914 /* 1915 * No, sleep until the next wakeup or until pages 1916 * need to have their reference stats updated. 1917 */ 1918 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1919 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1920 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1921 VM_CNT_INC(v_pdwakeups); 1922 } 1923 1924 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1925 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1926 1927 /* 1928 * Use the controller to calculate how many pages to free in 1929 * this interval, and scan the inactive queue. If the lowmem 1930 * handlers appear to have freed up some pages, subtract the 1931 * difference from the inactive queue scan target. 1932 */ 1933 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1934 if (shortage > 0) { 1935 ofree = vmd->vmd_free_count; 1936 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 1937 shortage -= min(vmd->vmd_free_count - ofree, 1938 (u_int)shortage); 1939 target_met = vm_pageout_scan_inactive(vmd, shortage, 1940 &addl_shortage); 1941 } else 1942 addl_shortage = 0; 1943 1944 /* 1945 * Scan the active queue. A positive value for shortage 1946 * indicates that we must aggressively deactivate pages to avoid 1947 * a shortfall. 1948 */ 1949 shortage = vm_pageout_active_target(vmd) + addl_shortage; 1950 vm_pageout_scan_active(vmd, shortage); 1951 } 1952 } 1953 1954 /* 1955 * vm_pageout_init initialises basic pageout daemon settings. 1956 */ 1957 static void 1958 vm_pageout_init_domain(int domain) 1959 { 1960 struct vm_domain *vmd; 1961 struct sysctl_oid *oid; 1962 1963 vmd = VM_DOMAIN(domain); 1964 vmd->vmd_interrupt_free_min = 2; 1965 1966 /* 1967 * v_free_reserved needs to include enough for the largest 1968 * swap pager structures plus enough for any pv_entry structs 1969 * when paging. 1970 */ 1971 if (vmd->vmd_page_count > 1024) 1972 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1973 else 1974 vmd->vmd_free_min = 4; 1975 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1976 vmd->vmd_interrupt_free_min; 1977 vmd->vmd_free_reserved = vm_pageout_page_count + 1978 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1979 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1980 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1981 vmd->vmd_free_min += vmd->vmd_free_reserved; 1982 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1983 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1984 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1985 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1986 1987 /* 1988 * Set the default wakeup threshold to be 10% below the paging 1989 * target. This keeps the steady state out of shortfall. 1990 */ 1991 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1992 1993 /* 1994 * Target amount of memory to move out of the laundry queue during a 1995 * background laundering. This is proportional to the amount of system 1996 * memory. 1997 */ 1998 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1999 vmd->vmd_free_min) / 10; 2000 2001 /* Initialize the pageout daemon pid controller. */ 2002 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2003 vmd->vmd_free_target, PIDCTRL_BOUND, 2004 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2005 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2006 "pidctrl", CTLFLAG_RD, NULL, ""); 2007 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2008 } 2009 2010 static void 2011 vm_pageout_init(void) 2012 { 2013 u_int freecount; 2014 int i; 2015 2016 /* 2017 * Initialize some paging parameters. 2018 */ 2019 if (vm_cnt.v_page_count < 2000) 2020 vm_pageout_page_count = 8; 2021 2022 freecount = 0; 2023 for (i = 0; i < vm_ndomains; i++) { 2024 struct vm_domain *vmd; 2025 2026 vm_pageout_init_domain(i); 2027 vmd = VM_DOMAIN(i); 2028 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2029 vm_cnt.v_free_target += vmd->vmd_free_target; 2030 vm_cnt.v_free_min += vmd->vmd_free_min; 2031 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2032 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2033 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2034 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2035 freecount += vmd->vmd_free_count; 2036 } 2037 2038 /* 2039 * Set interval in seconds for active scan. We want to visit each 2040 * page at least once every ten minutes. This is to prevent worst 2041 * case paging behaviors with stale active LRU. 2042 */ 2043 if (vm_pageout_update_period == 0) 2044 vm_pageout_update_period = 600; 2045 2046 if (vm_page_max_wired == 0) 2047 vm_page_max_wired = freecount / 3; 2048 } 2049 2050 /* 2051 * vm_pageout is the high level pageout daemon. 2052 */ 2053 static void 2054 vm_pageout(void) 2055 { 2056 struct proc *p; 2057 struct thread *td; 2058 int error, first, i; 2059 2060 p = curproc; 2061 td = curthread; 2062 2063 swap_pager_swap_init(); 2064 for (first = -1, i = 0; i < vm_ndomains; i++) { 2065 if (VM_DOMAIN_EMPTY(i)) { 2066 if (bootverbose) 2067 printf("domain %d empty; skipping pageout\n", 2068 i); 2069 continue; 2070 } 2071 if (first == -1) 2072 first = i; 2073 else { 2074 error = kthread_add(vm_pageout_worker, 2075 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2076 if (error != 0) 2077 panic("starting pageout for domain %d: %d\n", 2078 i, error); 2079 } 2080 error = kthread_add(vm_pageout_laundry_worker, 2081 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2082 if (error != 0) 2083 panic("starting laundry for domain %d: %d", i, error); 2084 } 2085 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2086 if (error != 0) 2087 panic("starting uma_reclaim helper, error %d\n", error); 2088 2089 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2090 vm_pageout_worker((void *)(uintptr_t)first); 2091 } 2092 2093 /* 2094 * Perform an advisory wakeup of the page daemon. 2095 */ 2096 void 2097 pagedaemon_wakeup(int domain) 2098 { 2099 struct vm_domain *vmd; 2100 2101 vmd = VM_DOMAIN(domain); 2102 vm_domain_pageout_assert_unlocked(vmd); 2103 if (curproc == pageproc) 2104 return; 2105 2106 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2107 vm_domain_pageout_lock(vmd); 2108 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2109 wakeup(&vmd->vmd_pageout_wanted); 2110 vm_domain_pageout_unlock(vmd); 2111 } 2112 } 2113