xref: /freebsd/sys/vm/vm_pageout.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107 
108 #include <machine/mutex.h>
109 
110 /*
111  * System initialization
112  */
113 
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t);
117 static void vm_pageout_scan(int pass);
118 
119 struct proc *pageproc;
120 
121 static struct kproc_desc page_kp = {
122 	"pagedaemon",
123 	vm_pageout,
124 	&pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127     &page_kp);
128 
129 #if !defined(NO_SWAPPING)
130 /* the kernel process "vm_daemon"*/
131 static void vm_daemon(void);
132 static struct	proc *vmproc;
133 
134 static struct kproc_desc vm_kp = {
135 	"vmdaemon",
136 	vm_daemon,
137 	&vmproc
138 };
139 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140 #endif
141 
142 
143 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144 int vm_pageout_deficit;		/* Estimated number of pages deficit */
145 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146 
147 #if !defined(NO_SWAPPING)
148 static int vm_pageout_req_swapout;	/* XXX */
149 static int vm_daemon_needed;
150 static struct mtx vm_daemon_mtx;
151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
152 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153 #endif
154 static int vm_max_launder = 32;
155 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156 static int vm_pageout_full_stats_interval = 0;
157 static int vm_pageout_algorithm=0;
158 static int defer_swap_pageouts=0;
159 static int disable_swap_pageouts=0;
160 
161 #if defined(NO_SWAPPING)
162 static int vm_swap_enabled=0;
163 static int vm_swap_idle_enabled=0;
164 #else
165 static int vm_swap_enabled=1;
166 static int vm_swap_idle_enabled=0;
167 #endif
168 
169 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171 
172 SYSCTL_INT(_vm, OID_AUTO, max_launder,
173 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174 
175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177 
178 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180 
181 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183 
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
189 #else
190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194 #endif
195 
196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198 
199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201 
202 static int pageout_lock_miss;
203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205 
206 #define VM_PAGEOUT_PAGE_COUNT 16
207 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208 
209 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
210 SYSCTL_INT(_vm, OID_AUTO, max_wired,
211 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212 
213 #if !defined(NO_SWAPPING)
214 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216 static void vm_req_vmdaemon(int req);
217 #endif
218 static void vm_pageout_page_stats(void);
219 
220 /*
221  * vm_pageout_fallback_object_lock:
222  *
223  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224  * known to have failed and page queue must be either PQ_ACTIVE or
225  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226  * while locking the vm object.  Use marker page to detect page queue
227  * changes and maintain notion of next page on page queue.  Return
228  * TRUE if no changes were detected, FALSE otherwise.  vm object is
229  * locked on return.
230  *
231  * This function depends on both the lock portion of struct vm_object
232  * and normal struct vm_page being type stable.
233  */
234 boolean_t
235 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236 {
237 	struct vm_page marker;
238 	boolean_t unchanged;
239 	u_short queue;
240 	vm_object_t object;
241 
242 	/*
243 	 * Initialize our marker
244 	 */
245 	bzero(&marker, sizeof(marker));
246 	marker.flags = PG_FICTITIOUS | PG_MARKER;
247 	marker.oflags = VPO_BUSY;
248 	marker.queue = m->queue;
249 	marker.wire_count = 1;
250 
251 	queue = m->queue;
252 	object = m->object;
253 
254 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255 			   m, &marker, pageq);
256 	vm_page_unlock_queues();
257 	VM_OBJECT_LOCK(object);
258 	vm_page_lock_queues();
259 
260 	/* Page queue might have changed. */
261 	*next = TAILQ_NEXT(&marker, pageq);
262 	unchanged = (m->queue == queue &&
263 		     m->object == object &&
264 		     &marker == TAILQ_NEXT(m, pageq));
265 	TAILQ_REMOVE(&vm_page_queues[queue].pl,
266 		     &marker, pageq);
267 	return (unchanged);
268 }
269 
270 /*
271  * vm_pageout_clean:
272  *
273  * Clean the page and remove it from the laundry.
274  *
275  * We set the busy bit to cause potential page faults on this page to
276  * block.  Note the careful timing, however, the busy bit isn't set till
277  * late and we cannot do anything that will mess with the page.
278  */
279 static int
280 vm_pageout_clean(m)
281 	vm_page_t m;
282 {
283 	vm_object_t object;
284 	vm_page_t mc[2*vm_pageout_page_count];
285 	int pageout_count;
286 	int ib, is, page_base;
287 	vm_pindex_t pindex = m->pindex;
288 
289 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291 
292 	/*
293 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294 	 * with the new swapper, but we could have serious problems paging
295 	 * out other object types if there is insufficient memory.
296 	 *
297 	 * Unfortunately, checking free memory here is far too late, so the
298 	 * check has been moved up a procedural level.
299 	 */
300 
301 	/*
302 	 * Can't clean the page if it's busy or held.
303 	 */
304 	if ((m->hold_count != 0) ||
305 	    ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306 		return 0;
307 	}
308 
309 	mc[vm_pageout_page_count] = m;
310 	pageout_count = 1;
311 	page_base = vm_pageout_page_count;
312 	ib = 1;
313 	is = 1;
314 
315 	/*
316 	 * Scan object for clusterable pages.
317 	 *
318 	 * We can cluster ONLY if: ->> the page is NOT
319 	 * clean, wired, busy, held, or mapped into a
320 	 * buffer, and one of the following:
321 	 * 1) The page is inactive, or a seldom used
322 	 *    active page.
323 	 * -or-
324 	 * 2) we force the issue.
325 	 *
326 	 * During heavy mmap/modification loads the pageout
327 	 * daemon can really fragment the underlying file
328 	 * due to flushing pages out of order and not trying
329 	 * align the clusters (which leave sporatic out-of-order
330 	 * holes).  To solve this problem we do the reverse scan
331 	 * first and attempt to align our cluster, then do a
332 	 * forward scan if room remains.
333 	 */
334 	object = m->object;
335 more:
336 	while (ib && pageout_count < vm_pageout_page_count) {
337 		vm_page_t p;
338 
339 		if (ib > pindex) {
340 			ib = 0;
341 			break;
342 		}
343 
344 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345 			ib = 0;
346 			break;
347 		}
348 		if ((p->oflags & VPO_BUSY) || p->busy) {
349 			ib = 0;
350 			break;
351 		}
352 		vm_page_test_dirty(p);
353 		if ((p->dirty & p->valid) == 0 ||
354 		    p->queue != PQ_INACTIVE ||
355 		    p->wire_count != 0 ||	/* may be held by buf cache */
356 		    p->hold_count != 0) {	/* may be undergoing I/O */
357 			ib = 0;
358 			break;
359 		}
360 		mc[--page_base] = p;
361 		++pageout_count;
362 		++ib;
363 		/*
364 		 * alignment boundry, stop here and switch directions.  Do
365 		 * not clear ib.
366 		 */
367 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368 			break;
369 	}
370 
371 	while (pageout_count < vm_pageout_page_count &&
372 	    pindex + is < object->size) {
373 		vm_page_t p;
374 
375 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376 			break;
377 		if ((p->oflags & VPO_BUSY) || p->busy) {
378 			break;
379 		}
380 		vm_page_test_dirty(p);
381 		if ((p->dirty & p->valid) == 0 ||
382 		    p->queue != PQ_INACTIVE ||
383 		    p->wire_count != 0 ||	/* may be held by buf cache */
384 		    p->hold_count != 0) {	/* may be undergoing I/O */
385 			break;
386 		}
387 		mc[page_base + pageout_count] = p;
388 		++pageout_count;
389 		++is;
390 	}
391 
392 	/*
393 	 * If we exhausted our forward scan, continue with the reverse scan
394 	 * when possible, even past a page boundry.  This catches boundry
395 	 * conditions.
396 	 */
397 	if (ib && pageout_count < vm_pageout_page_count)
398 		goto more;
399 
400 	/*
401 	 * we allow reads during pageouts...
402 	 */
403 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404 }
405 
406 /*
407  * vm_pageout_flush() - launder the given pages
408  *
409  *	The given pages are laundered.  Note that we setup for the start of
410  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
411  *	reference count all in here rather then in the parent.  If we want
412  *	the parent to do more sophisticated things we may have to change
413  *	the ordering.
414  */
415 int
416 vm_pageout_flush(vm_page_t *mc, int count, int flags)
417 {
418 	vm_object_t object = mc[0]->object;
419 	int pageout_status[count];
420 	int numpagedout = 0;
421 	int i;
422 
423 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425 	/*
426 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
427 	 * mark the pages read-only.
428 	 *
429 	 * We do not have to fixup the clean/dirty bits here... we can
430 	 * allow the pager to do it after the I/O completes.
431 	 *
432 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
433 	 * edge case with file fragments.
434 	 */
435 	for (i = 0; i < count; i++) {
436 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
438 			mc[i], i, count));
439 		vm_page_io_start(mc[i]);
440 		pmap_remove_write(mc[i]);
441 	}
442 	vm_page_unlock_queues();
443 	vm_object_pip_add(object, count);
444 
445 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
446 
447 	vm_page_lock_queues();
448 	for (i = 0; i < count; i++) {
449 		vm_page_t mt = mc[i];
450 
451 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452 		    (mt->flags & PG_WRITEABLE) == 0,
453 		    ("vm_pageout_flush: page %p is not write protected", mt));
454 		switch (pageout_status[i]) {
455 		case VM_PAGER_OK:
456 		case VM_PAGER_PEND:
457 			numpagedout++;
458 			break;
459 		case VM_PAGER_BAD:
460 			/*
461 			 * Page outside of range of object. Right now we
462 			 * essentially lose the changes by pretending it
463 			 * worked.
464 			 */
465 			pmap_clear_modify(mt);
466 			vm_page_undirty(mt);
467 			break;
468 		case VM_PAGER_ERROR:
469 		case VM_PAGER_FAIL:
470 			/*
471 			 * If page couldn't be paged out, then reactivate the
472 			 * page so it doesn't clog the inactive list.  (We
473 			 * will try paging out it again later).
474 			 */
475 			vm_page_activate(mt);
476 			break;
477 		case VM_PAGER_AGAIN:
478 			break;
479 		}
480 
481 		/*
482 		 * If the operation is still going, leave the page busy to
483 		 * block all other accesses. Also, leave the paging in
484 		 * progress indicator set so that we don't attempt an object
485 		 * collapse.
486 		 */
487 		if (pageout_status[i] != VM_PAGER_PEND) {
488 			vm_object_pip_wakeup(object);
489 			vm_page_io_finish(mt);
490 			if (vm_page_count_severe())
491 				vm_page_try_to_cache(mt);
492 		}
493 	}
494 	return numpagedout;
495 }
496 
497 #if !defined(NO_SWAPPING)
498 /*
499  *	vm_pageout_object_deactivate_pages
500  *
501  *	deactivate enough pages to satisfy the inactive target
502  *	requirements or if vm_page_proc_limit is set, then
503  *	deactivate all of the pages in the object and its
504  *	backing_objects.
505  *
506  *	The object and map must be locked.
507  */
508 static void
509 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
510 	pmap_t pmap;
511 	vm_object_t first_object;
512 	long desired;
513 {
514 	vm_object_t backing_object, object;
515 	vm_page_t p, next;
516 	int actcount, rcount, remove_mode;
517 
518 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
519 	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
520 		return;
521 	for (object = first_object;; object = backing_object) {
522 		if (pmap_resident_count(pmap) <= desired)
523 			goto unlock_return;
524 		if (object->paging_in_progress)
525 			goto unlock_return;
526 
527 		remove_mode = 0;
528 		if (object->shadow_count > 1)
529 			remove_mode = 1;
530 		/*
531 		 * scan the objects entire memory queue
532 		 */
533 		rcount = object->resident_page_count;
534 		p = TAILQ_FIRST(&object->memq);
535 		vm_page_lock_queues();
536 		while (p && (rcount-- > 0)) {
537 			if (pmap_resident_count(pmap) <= desired) {
538 				vm_page_unlock_queues();
539 				goto unlock_return;
540 			}
541 			next = TAILQ_NEXT(p, listq);
542 			cnt.v_pdpages++;
543 			if (p->wire_count != 0 ||
544 			    p->hold_count != 0 ||
545 			    p->busy != 0 ||
546 			    (p->oflags & VPO_BUSY) ||
547 			    (p->flags & PG_UNMANAGED) ||
548 			    !pmap_page_exists_quick(pmap, p)) {
549 				p = next;
550 				continue;
551 			}
552 			actcount = pmap_ts_referenced(p);
553 			if (actcount) {
554 				vm_page_flag_set(p, PG_REFERENCED);
555 			} else if (p->flags & PG_REFERENCED) {
556 				actcount = 1;
557 			}
558 			if ((p->queue != PQ_ACTIVE) &&
559 				(p->flags & PG_REFERENCED)) {
560 				vm_page_activate(p);
561 				p->act_count += actcount;
562 				vm_page_flag_clear(p, PG_REFERENCED);
563 			} else if (p->queue == PQ_ACTIVE) {
564 				if ((p->flags & PG_REFERENCED) == 0) {
565 					p->act_count -= min(p->act_count, ACT_DECLINE);
566 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
567 						pmap_remove_all(p);
568 						vm_page_deactivate(p);
569 					} else {
570 						vm_page_requeue(p);
571 					}
572 				} else {
573 					vm_page_activate(p);
574 					vm_page_flag_clear(p, PG_REFERENCED);
575 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576 						p->act_count += ACT_ADVANCE;
577 					vm_page_requeue(p);
578 				}
579 			} else if (p->queue == PQ_INACTIVE) {
580 				pmap_remove_all(p);
581 			}
582 			p = next;
583 		}
584 		vm_page_unlock_queues();
585 		if ((backing_object = object->backing_object) == NULL)
586 			goto unlock_return;
587 		VM_OBJECT_LOCK(backing_object);
588 		if (object != first_object)
589 			VM_OBJECT_UNLOCK(object);
590 	}
591 unlock_return:
592 	if (object != first_object)
593 		VM_OBJECT_UNLOCK(object);
594 }
595 
596 /*
597  * deactivate some number of pages in a map, try to do it fairly, but
598  * that is really hard to do.
599  */
600 static void
601 vm_pageout_map_deactivate_pages(map, desired)
602 	vm_map_t map;
603 	long desired;
604 {
605 	vm_map_entry_t tmpe;
606 	vm_object_t obj, bigobj;
607 	int nothingwired;
608 
609 	if (!vm_map_trylock(map))
610 		return;
611 
612 	bigobj = NULL;
613 	nothingwired = TRUE;
614 
615 	/*
616 	 * first, search out the biggest object, and try to free pages from
617 	 * that.
618 	 */
619 	tmpe = map->header.next;
620 	while (tmpe != &map->header) {
621 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
622 			obj = tmpe->object.vm_object;
623 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
624 				if (obj->shadow_count <= 1 &&
625 				    (bigobj == NULL ||
626 				     bigobj->resident_page_count < obj->resident_page_count)) {
627 					if (bigobj != NULL)
628 						VM_OBJECT_UNLOCK(bigobj);
629 					bigobj = obj;
630 				} else
631 					VM_OBJECT_UNLOCK(obj);
632 			}
633 		}
634 		if (tmpe->wired_count > 0)
635 			nothingwired = FALSE;
636 		tmpe = tmpe->next;
637 	}
638 
639 	if (bigobj != NULL) {
640 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
641 		VM_OBJECT_UNLOCK(bigobj);
642 	}
643 	/*
644 	 * Next, hunt around for other pages to deactivate.  We actually
645 	 * do this search sort of wrong -- .text first is not the best idea.
646 	 */
647 	tmpe = map->header.next;
648 	while (tmpe != &map->header) {
649 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
650 			break;
651 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
652 			obj = tmpe->object.vm_object;
653 			if (obj != NULL) {
654 				VM_OBJECT_LOCK(obj);
655 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
656 				VM_OBJECT_UNLOCK(obj);
657 			}
658 		}
659 		tmpe = tmpe->next;
660 	}
661 
662 	/*
663 	 * Remove all mappings if a process is swapped out, this will free page
664 	 * table pages.
665 	 */
666 	if (desired == 0 && nothingwired) {
667 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
668 		    vm_map_max(map));
669 	}
670 	vm_map_unlock(map);
671 }
672 #endif		/* !defined(NO_SWAPPING) */
673 
674 /*
675  *	vm_pageout_scan does the dirty work for the pageout daemon.
676  */
677 static void
678 vm_pageout_scan(int pass)
679 {
680 	vm_page_t m, next;
681 	struct vm_page marker;
682 	int page_shortage, maxscan, pcount;
683 	int addl_page_shortage, addl_page_shortage_init;
684 	struct proc *p, *bigproc;
685 	struct thread *td;
686 	vm_offset_t size, bigsize;
687 	vm_object_t object;
688 	int actcount;
689 	int vnodes_skipped = 0;
690 	int maxlaunder;
691 
692 	/*
693 	 * Decrease registered cache sizes.
694 	 */
695 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
696 	/*
697 	 * We do this explicitly after the caches have been drained above.
698 	 */
699 	uma_reclaim();
700 
701 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
702 
703 	/*
704 	 * Calculate the number of pages we want to either free or move
705 	 * to the cache.
706 	 */
707 	page_shortage = vm_paging_target() + addl_page_shortage_init;
708 
709 	/*
710 	 * Initialize our marker
711 	 */
712 	bzero(&marker, sizeof(marker));
713 	marker.flags = PG_FICTITIOUS | PG_MARKER;
714 	marker.oflags = VPO_BUSY;
715 	marker.queue = PQ_INACTIVE;
716 	marker.wire_count = 1;
717 
718 	/*
719 	 * Start scanning the inactive queue for pages we can move to the
720 	 * cache or free.  The scan will stop when the target is reached or
721 	 * we have scanned the entire inactive queue.  Note that m->act_count
722 	 * is not used to form decisions for the inactive queue, only for the
723 	 * active queue.
724 	 *
725 	 * maxlaunder limits the number of dirty pages we flush per scan.
726 	 * For most systems a smaller value (16 or 32) is more robust under
727 	 * extreme memory and disk pressure because any unnecessary writes
728 	 * to disk can result in extreme performance degredation.  However,
729 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
730 	 * used) will die horribly with limited laundering.  If the pageout
731 	 * daemon cannot clean enough pages in the first pass, we let it go
732 	 * all out in succeeding passes.
733 	 */
734 	if ((maxlaunder = vm_max_launder) <= 1)
735 		maxlaunder = 1;
736 	if (pass)
737 		maxlaunder = 10000;
738 	vm_page_lock_queues();
739 rescan0:
740 	addl_page_shortage = addl_page_shortage_init;
741 	maxscan = cnt.v_inactive_count;
742 
743 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
744 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
745 	     m = next) {
746 
747 		cnt.v_pdpages++;
748 
749 		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
750 			goto rescan0;
751 		}
752 
753 		next = TAILQ_NEXT(m, pageq);
754 		object = m->object;
755 
756 		/*
757 		 * skip marker pages
758 		 */
759 		if (m->flags & PG_MARKER)
760 			continue;
761 
762 		/*
763 		 * A held page may be undergoing I/O, so skip it.
764 		 */
765 		if (m->hold_count) {
766 			vm_page_requeue(m);
767 			addl_page_shortage++;
768 			continue;
769 		}
770 		/*
771 		 * Don't mess with busy pages, keep in the front of the
772 		 * queue, most likely are being paged out.
773 		 */
774 		if (!VM_OBJECT_TRYLOCK(object) &&
775 		    (!vm_pageout_fallback_object_lock(m, &next) ||
776 		     m->hold_count != 0)) {
777 			VM_OBJECT_UNLOCK(object);
778 			addl_page_shortage++;
779 			continue;
780 		}
781 		if (m->busy || (m->oflags & VPO_BUSY)) {
782 			VM_OBJECT_UNLOCK(object);
783 			addl_page_shortage++;
784 			continue;
785 		}
786 
787 		/*
788 		 * If the object is not being used, we ignore previous
789 		 * references.
790 		 */
791 		if (object->ref_count == 0) {
792 			vm_page_flag_clear(m, PG_REFERENCED);
793 			pmap_clear_reference(m);
794 
795 		/*
796 		 * Otherwise, if the page has been referenced while in the
797 		 * inactive queue, we bump the "activation count" upwards,
798 		 * making it less likely that the page will be added back to
799 		 * the inactive queue prematurely again.  Here we check the
800 		 * page tables (or emulated bits, if any), given the upper
801 		 * level VM system not knowing anything about existing
802 		 * references.
803 		 */
804 		} else if (((m->flags & PG_REFERENCED) == 0) &&
805 			(actcount = pmap_ts_referenced(m))) {
806 			vm_page_activate(m);
807 			VM_OBJECT_UNLOCK(object);
808 			m->act_count += (actcount + ACT_ADVANCE);
809 			continue;
810 		}
811 
812 		/*
813 		 * If the upper level VM system knows about any page
814 		 * references, we activate the page.  We also set the
815 		 * "activation count" higher than normal so that we will less
816 		 * likely place pages back onto the inactive queue again.
817 		 */
818 		if ((m->flags & PG_REFERENCED) != 0) {
819 			vm_page_flag_clear(m, PG_REFERENCED);
820 			actcount = pmap_ts_referenced(m);
821 			vm_page_activate(m);
822 			VM_OBJECT_UNLOCK(object);
823 			m->act_count += (actcount + ACT_ADVANCE + 1);
824 			continue;
825 		}
826 
827 		/*
828 		 * If the upper level VM system doesn't know anything about
829 		 * the page being dirty, we have to check for it again.  As
830 		 * far as the VM code knows, any partially dirty pages are
831 		 * fully dirty.
832 		 */
833 		if (m->dirty == 0 && !pmap_is_modified(m)) {
834 			/*
835 			 * Avoid a race condition: Unless write access is
836 			 * removed from the page, another processor could
837 			 * modify it before all access is removed by the call
838 			 * to vm_page_cache() below.  If vm_page_cache() finds
839 			 * that the page has been modified when it removes all
840 			 * access, it panics because it cannot cache dirty
841 			 * pages.  In principle, we could eliminate just write
842 			 * access here rather than all access.  In the expected
843 			 * case, when there are no last instant modifications
844 			 * to the page, removing all access will be cheaper
845 			 * overall.
846 			 */
847 			if ((m->flags & PG_WRITEABLE) != 0)
848 				pmap_remove_all(m);
849 		} else {
850 			vm_page_dirty(m);
851 		}
852 
853 		if (m->valid == 0) {
854 			/*
855 			 * Invalid pages can be easily freed
856 			 */
857 			vm_page_free(m);
858 			cnt.v_dfree++;
859 			--page_shortage;
860 		} else if (m->dirty == 0) {
861 			/*
862 			 * Clean pages can be placed onto the cache queue.
863 			 * This effectively frees them.
864 			 */
865 			vm_page_cache(m);
866 			--page_shortage;
867 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
868 			/*
869 			 * Dirty pages need to be paged out, but flushing
870 			 * a page is extremely expensive verses freeing
871 			 * a clean page.  Rather then artificially limiting
872 			 * the number of pages we can flush, we instead give
873 			 * dirty pages extra priority on the inactive queue
874 			 * by forcing them to be cycled through the queue
875 			 * twice before being flushed, after which the
876 			 * (now clean) page will cycle through once more
877 			 * before being freed.  This significantly extends
878 			 * the thrash point for a heavily loaded machine.
879 			 */
880 			vm_page_flag_set(m, PG_WINATCFLS);
881 			vm_page_requeue(m);
882 		} else if (maxlaunder > 0) {
883 			/*
884 			 * We always want to try to flush some dirty pages if
885 			 * we encounter them, to keep the system stable.
886 			 * Normally this number is small, but under extreme
887 			 * pressure where there are insufficient clean pages
888 			 * on the inactive queue, we may have to go all out.
889 			 */
890 			int swap_pageouts_ok, vfslocked = 0;
891 			struct vnode *vp = NULL;
892 			struct mount *mp = NULL;
893 
894 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
895 				swap_pageouts_ok = 1;
896 			} else {
897 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
898 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
899 				vm_page_count_min());
900 
901 			}
902 
903 			/*
904 			 * We don't bother paging objects that are "dead".
905 			 * Those objects are in a "rundown" state.
906 			 */
907 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
908 				VM_OBJECT_UNLOCK(object);
909 				vm_page_requeue(m);
910 				continue;
911 			}
912 
913 			/*
914 			 * Following operations may unlock
915 			 * vm_page_queue_mtx, invalidating the 'next'
916 			 * pointer.  To prevent an inordinate number
917 			 * of restarts we use our marker to remember
918 			 * our place.
919 			 *
920 			 */
921 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
922 					   m, &marker, pageq);
923 			/*
924 			 * The object is already known NOT to be dead.   It
925 			 * is possible for the vget() to block the whole
926 			 * pageout daemon, but the new low-memory handling
927 			 * code should prevent it.
928 			 *
929 			 * The previous code skipped locked vnodes and, worse,
930 			 * reordered pages in the queue.  This results in
931 			 * completely non-deterministic operation and, on a
932 			 * busy system, can lead to extremely non-optimal
933 			 * pageouts.  For example, it can cause clean pages
934 			 * to be freed and dirty pages to be moved to the end
935 			 * of the queue.  Since dirty pages are also moved to
936 			 * the end of the queue once-cleaned, this gives
937 			 * way too large a weighting to defering the freeing
938 			 * of dirty pages.
939 			 *
940 			 * We can't wait forever for the vnode lock, we might
941 			 * deadlock due to a vn_read() getting stuck in
942 			 * vm_wait while holding this vnode.  We skip the
943 			 * vnode if we can't get it in a reasonable amount
944 			 * of time.
945 			 */
946 			if (object->type == OBJT_VNODE) {
947 				vp = object->handle;
948 				if (vp->v_type == VREG &&
949 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
950 					KASSERT(mp == NULL,
951 					    ("vm_pageout_scan: mp != NULL"));
952 					++pageout_lock_miss;
953 					if (object->flags & OBJ_MIGHTBEDIRTY)
954 						vnodes_skipped++;
955 					goto unlock_and_continue;
956 				}
957 				vm_page_unlock_queues();
958 				vm_object_reference_locked(object);
959 				VM_OBJECT_UNLOCK(object);
960 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
961 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
962 				    curthread)) {
963 					VM_OBJECT_LOCK(object);
964 					vm_page_lock_queues();
965 					++pageout_lock_miss;
966 					if (object->flags & OBJ_MIGHTBEDIRTY)
967 						vnodes_skipped++;
968 					vp = NULL;
969 					goto unlock_and_continue;
970 				}
971 				VM_OBJECT_LOCK(object);
972 				vm_page_lock_queues();
973 				/*
974 				 * The page might have been moved to another
975 				 * queue during potential blocking in vget()
976 				 * above.  The page might have been freed and
977 				 * reused for another vnode.
978 				 */
979 				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
980 				    m->object != object ||
981 				    TAILQ_NEXT(m, pageq) != &marker) {
982 					if (object->flags & OBJ_MIGHTBEDIRTY)
983 						vnodes_skipped++;
984 					goto unlock_and_continue;
985 				}
986 
987 				/*
988 				 * The page may have been busied during the
989 				 * blocking in vget().  We don't move the
990 				 * page back onto the end of the queue so that
991 				 * statistics are more correct if we don't.
992 				 */
993 				if (m->busy || (m->oflags & VPO_BUSY)) {
994 					goto unlock_and_continue;
995 				}
996 
997 				/*
998 				 * If the page has become held it might
999 				 * be undergoing I/O, so skip it
1000 				 */
1001 				if (m->hold_count) {
1002 					vm_page_requeue(m);
1003 					if (object->flags & OBJ_MIGHTBEDIRTY)
1004 						vnodes_skipped++;
1005 					goto unlock_and_continue;
1006 				}
1007 			}
1008 
1009 			/*
1010 			 * If a page is dirty, then it is either being washed
1011 			 * (but not yet cleaned) or it is still in the
1012 			 * laundry.  If it is still in the laundry, then we
1013 			 * start the cleaning operation.
1014 			 *
1015 			 * decrement page_shortage on success to account for
1016 			 * the (future) cleaned page.  Otherwise we could wind
1017 			 * up laundering or cleaning too many pages.
1018 			 */
1019 			if (vm_pageout_clean(m) != 0) {
1020 				--page_shortage;
1021 				--maxlaunder;
1022 			}
1023 unlock_and_continue:
1024 			VM_OBJECT_UNLOCK(object);
1025 			if (mp != NULL) {
1026 				vm_page_unlock_queues();
1027 				if (vp != NULL)
1028 					vput(vp);
1029 				VFS_UNLOCK_GIANT(vfslocked);
1030 				vm_object_deallocate(object);
1031 				vn_finished_write(mp);
1032 				vm_page_lock_queues();
1033 			}
1034 			next = TAILQ_NEXT(&marker, pageq);
1035 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1036 				     &marker, pageq);
1037 			continue;
1038 		}
1039 		VM_OBJECT_UNLOCK(object);
1040 	}
1041 
1042 	/*
1043 	 * Compute the number of pages we want to try to move from the
1044 	 * active queue to the inactive queue.
1045 	 */
1046 	page_shortage = vm_paging_target() +
1047 		cnt.v_inactive_target - cnt.v_inactive_count;
1048 	page_shortage += addl_page_shortage;
1049 
1050 	/*
1051 	 * Scan the active queue for things we can deactivate. We nominally
1052 	 * track the per-page activity counter and use it to locate
1053 	 * deactivation candidates.
1054 	 */
1055 	pcount = cnt.v_active_count;
1056 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1057 
1058 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1059 
1060 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1061 		    ("vm_pageout_scan: page %p isn't active", m));
1062 
1063 		next = TAILQ_NEXT(m, pageq);
1064 		object = m->object;
1065 		if ((m->flags & PG_MARKER) != 0) {
1066 			m = next;
1067 			continue;
1068 		}
1069 		if (!VM_OBJECT_TRYLOCK(object) &&
1070 		    !vm_pageout_fallback_object_lock(m, &next)) {
1071 			VM_OBJECT_UNLOCK(object);
1072 			m = next;
1073 			continue;
1074 		}
1075 
1076 		/*
1077 		 * Don't deactivate pages that are busy.
1078 		 */
1079 		if ((m->busy != 0) ||
1080 		    (m->oflags & VPO_BUSY) ||
1081 		    (m->hold_count != 0)) {
1082 			VM_OBJECT_UNLOCK(object);
1083 			vm_page_requeue(m);
1084 			m = next;
1085 			continue;
1086 		}
1087 
1088 		/*
1089 		 * The count for pagedaemon pages is done after checking the
1090 		 * page for eligibility...
1091 		 */
1092 		cnt.v_pdpages++;
1093 
1094 		/*
1095 		 * Check to see "how much" the page has been used.
1096 		 */
1097 		actcount = 0;
1098 		if (object->ref_count != 0) {
1099 			if (m->flags & PG_REFERENCED) {
1100 				actcount += 1;
1101 			}
1102 			actcount += pmap_ts_referenced(m);
1103 			if (actcount) {
1104 				m->act_count += ACT_ADVANCE + actcount;
1105 				if (m->act_count > ACT_MAX)
1106 					m->act_count = ACT_MAX;
1107 			}
1108 		}
1109 
1110 		/*
1111 		 * Since we have "tested" this bit, we need to clear it now.
1112 		 */
1113 		vm_page_flag_clear(m, PG_REFERENCED);
1114 
1115 		/*
1116 		 * Only if an object is currently being used, do we use the
1117 		 * page activation count stats.
1118 		 */
1119 		if (actcount && (object->ref_count != 0)) {
1120 			vm_page_requeue(m);
1121 		} else {
1122 			m->act_count -= min(m->act_count, ACT_DECLINE);
1123 			if (vm_pageout_algorithm ||
1124 			    object->ref_count == 0 ||
1125 			    m->act_count == 0) {
1126 				page_shortage--;
1127 				if (object->ref_count == 0) {
1128 					pmap_remove_all(m);
1129 					if (m->dirty == 0)
1130 						vm_page_cache(m);
1131 					else
1132 						vm_page_deactivate(m);
1133 				} else {
1134 					vm_page_deactivate(m);
1135 				}
1136 			} else {
1137 				vm_page_requeue(m);
1138 			}
1139 		}
1140 		VM_OBJECT_UNLOCK(object);
1141 		m = next;
1142 	}
1143 	vm_page_unlock_queues();
1144 #if !defined(NO_SWAPPING)
1145 	/*
1146 	 * Idle process swapout -- run once per second.
1147 	 */
1148 	if (vm_swap_idle_enabled) {
1149 		static long lsec;
1150 		if (time_second != lsec) {
1151 			vm_req_vmdaemon(VM_SWAP_IDLE);
1152 			lsec = time_second;
1153 		}
1154 	}
1155 #endif
1156 
1157 	/*
1158 	 * If we didn't get enough free pages, and we have skipped a vnode
1159 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1160 	 * if we did not get enough free pages.
1161 	 */
1162 	if (vm_paging_target() > 0) {
1163 		if (vnodes_skipped && vm_page_count_min())
1164 			(void) speedup_syncer();
1165 #if !defined(NO_SWAPPING)
1166 		if (vm_swap_enabled && vm_page_count_target())
1167 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1168 #endif
1169 	}
1170 
1171 	/*
1172 	 * If we are critically low on one of RAM or swap and low on
1173 	 * the other, kill the largest process.  However, we avoid
1174 	 * doing this on the first pass in order to give ourselves a
1175 	 * chance to flush out dirty vnode-backed pages and to allow
1176 	 * active pages to be moved to the inactive queue and reclaimed.
1177 	 *
1178 	 * We keep the process bigproc locked once we find it to keep anyone
1179 	 * from messing with it; however, there is a possibility of
1180 	 * deadlock if process B is bigproc and one of it's child processes
1181 	 * attempts to propagate a signal to B while we are waiting for A's
1182 	 * lock while walking this list.  To avoid this, we don't block on
1183 	 * the process lock but just skip a process if it is already locked.
1184 	 */
1185 	if (pass != 0 &&
1186 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1187 	     (swap_pager_full && vm_paging_target() > 0))) {
1188 		bigproc = NULL;
1189 		bigsize = 0;
1190 		sx_slock(&allproc_lock);
1191 		FOREACH_PROC_IN_SYSTEM(p) {
1192 			int breakout;
1193 
1194 			if (PROC_TRYLOCK(p) == 0)
1195 				continue;
1196 			/*
1197 			 * If this is a system or protected process, skip it.
1198 			 */
1199 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1200 			    (p->p_flag & P_PROTECTED) ||
1201 			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1202 				PROC_UNLOCK(p);
1203 				continue;
1204 			}
1205 			/*
1206 			 * If the process is in a non-running type state,
1207 			 * don't touch it.  Check all the threads individually.
1208 			 */
1209 			breakout = 0;
1210 			FOREACH_THREAD_IN_PROC(p, td) {
1211 				thread_lock(td);
1212 				if (!TD_ON_RUNQ(td) &&
1213 				    !TD_IS_RUNNING(td) &&
1214 				    !TD_IS_SLEEPING(td)) {
1215 					thread_unlock(td);
1216 					breakout = 1;
1217 					break;
1218 				}
1219 				thread_unlock(td);
1220 			}
1221 			if (breakout) {
1222 				PROC_UNLOCK(p);
1223 				continue;
1224 			}
1225 			/*
1226 			 * get the process size
1227 			 */
1228 			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1229 				PROC_UNLOCK(p);
1230 				continue;
1231 			}
1232 			size = vmspace_swap_count(p->p_vmspace);
1233 			vm_map_unlock_read(&p->p_vmspace->vm_map);
1234 			size += vmspace_resident_count(p->p_vmspace);
1235 			/*
1236 			 * if the this process is bigger than the biggest one
1237 			 * remember it.
1238 			 */
1239 			if (size > bigsize) {
1240 				if (bigproc != NULL)
1241 					PROC_UNLOCK(bigproc);
1242 				bigproc = p;
1243 				bigsize = size;
1244 			} else
1245 				PROC_UNLOCK(p);
1246 		}
1247 		sx_sunlock(&allproc_lock);
1248 		if (bigproc != NULL) {
1249 			killproc(bigproc, "out of swap space");
1250 			sched_nice(bigproc, PRIO_MIN);
1251 			PROC_UNLOCK(bigproc);
1252 			wakeup(&cnt.v_free_count);
1253 		}
1254 	}
1255 }
1256 
1257 /*
1258  * This routine tries to maintain the pseudo LRU active queue,
1259  * so that during long periods of time where there is no paging,
1260  * that some statistic accumulation still occurs.  This code
1261  * helps the situation where paging just starts to occur.
1262  */
1263 static void
1264 vm_pageout_page_stats()
1265 {
1266 	vm_object_t object;
1267 	vm_page_t m,next;
1268 	int pcount,tpcount;		/* Number of pages to check */
1269 	static int fullintervalcount = 0;
1270 	int page_shortage;
1271 
1272 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1273 	page_shortage =
1274 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1275 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1276 
1277 	if (page_shortage <= 0)
1278 		return;
1279 
1280 	pcount = cnt.v_active_count;
1281 	fullintervalcount += vm_pageout_stats_interval;
1282 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1283 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1284 		if (pcount > tpcount)
1285 			pcount = tpcount;
1286 	} else {
1287 		fullintervalcount = 0;
1288 	}
1289 
1290 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1291 	while ((m != NULL) && (pcount-- > 0)) {
1292 		int actcount;
1293 
1294 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1295 		    ("vm_pageout_page_stats: page %p isn't active", m));
1296 
1297 		next = TAILQ_NEXT(m, pageq);
1298 		object = m->object;
1299 
1300 		if ((m->flags & PG_MARKER) != 0) {
1301 			m = next;
1302 			continue;
1303 		}
1304 		if (!VM_OBJECT_TRYLOCK(object) &&
1305 		    !vm_pageout_fallback_object_lock(m, &next)) {
1306 			VM_OBJECT_UNLOCK(object);
1307 			m = next;
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * Don't deactivate pages that are busy.
1313 		 */
1314 		if ((m->busy != 0) ||
1315 		    (m->oflags & VPO_BUSY) ||
1316 		    (m->hold_count != 0)) {
1317 			VM_OBJECT_UNLOCK(object);
1318 			vm_page_requeue(m);
1319 			m = next;
1320 			continue;
1321 		}
1322 
1323 		actcount = 0;
1324 		if (m->flags & PG_REFERENCED) {
1325 			vm_page_flag_clear(m, PG_REFERENCED);
1326 			actcount += 1;
1327 		}
1328 
1329 		actcount += pmap_ts_referenced(m);
1330 		if (actcount) {
1331 			m->act_count += ACT_ADVANCE + actcount;
1332 			if (m->act_count > ACT_MAX)
1333 				m->act_count = ACT_MAX;
1334 			vm_page_requeue(m);
1335 		} else {
1336 			if (m->act_count == 0) {
1337 				/*
1338 				 * We turn off page access, so that we have
1339 				 * more accurate RSS stats.  We don't do this
1340 				 * in the normal page deactivation when the
1341 				 * system is loaded VM wise, because the
1342 				 * cost of the large number of page protect
1343 				 * operations would be higher than the value
1344 				 * of doing the operation.
1345 				 */
1346 				pmap_remove_all(m);
1347 				vm_page_deactivate(m);
1348 			} else {
1349 				m->act_count -= min(m->act_count, ACT_DECLINE);
1350 				vm_page_requeue(m);
1351 			}
1352 		}
1353 		VM_OBJECT_UNLOCK(object);
1354 		m = next;
1355 	}
1356 }
1357 
1358 /*
1359  *	vm_pageout is the high level pageout daemon.
1360  */
1361 static void
1362 vm_pageout()
1363 {
1364 	int error, pass;
1365 
1366 	/*
1367 	 * Initialize some paging parameters.
1368 	 */
1369 	cnt.v_interrupt_free_min = 2;
1370 	if (cnt.v_page_count < 2000)
1371 		vm_pageout_page_count = 8;
1372 
1373 	/*
1374 	 * v_free_reserved needs to include enough for the largest
1375 	 * swap pager structures plus enough for any pv_entry structs
1376 	 * when paging.
1377 	 */
1378 	if (cnt.v_page_count > 1024)
1379 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1380 	else
1381 		cnt.v_free_min = 4;
1382 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1383 	    cnt.v_interrupt_free_min;
1384 	cnt.v_free_reserved = vm_pageout_page_count +
1385 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1386 	cnt.v_free_severe = cnt.v_free_min / 2;
1387 	cnt.v_free_min += cnt.v_free_reserved;
1388 	cnt.v_free_severe += cnt.v_free_reserved;
1389 
1390 	/*
1391 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1392 	 * that these are more a measure of the VM cache queue hysteresis
1393 	 * then the VM free queue.  Specifically, v_free_target is the
1394 	 * high water mark (free+cache pages).
1395 	 *
1396 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1397 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1398 	 * be big enough to handle memory needs while the pageout daemon
1399 	 * is signalled and run to free more pages.
1400 	 */
1401 	if (cnt.v_free_count > 6144)
1402 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1403 	else
1404 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1405 
1406 	if (cnt.v_free_count > 2048) {
1407 		cnt.v_cache_min = cnt.v_free_target;
1408 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1409 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1410 	} else {
1411 		cnt.v_cache_min = 0;
1412 		cnt.v_cache_max = 0;
1413 		cnt.v_inactive_target = cnt.v_free_count / 4;
1414 	}
1415 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1416 		cnt.v_inactive_target = cnt.v_free_count / 3;
1417 
1418 	/* XXX does not really belong here */
1419 	if (vm_page_max_wired == 0)
1420 		vm_page_max_wired = cnt.v_free_count / 3;
1421 
1422 	if (vm_pageout_stats_max == 0)
1423 		vm_pageout_stats_max = cnt.v_free_target;
1424 
1425 	/*
1426 	 * Set interval in seconds for stats scan.
1427 	 */
1428 	if (vm_pageout_stats_interval == 0)
1429 		vm_pageout_stats_interval = 5;
1430 	if (vm_pageout_full_stats_interval == 0)
1431 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1432 
1433 	swap_pager_swap_init();
1434 	pass = 0;
1435 	/*
1436 	 * The pageout daemon is never done, so loop forever.
1437 	 */
1438 	while (TRUE) {
1439 		/*
1440 		 * If we have enough free memory, wakeup waiters.  Do
1441 		 * not clear vm_pages_needed until we reach our target,
1442 		 * otherwise we may be woken up over and over again and
1443 		 * waste a lot of cpu.
1444 		 */
1445 		mtx_lock(&vm_page_queue_free_mtx);
1446 		if (vm_pages_needed && !vm_page_count_min()) {
1447 			if (!vm_paging_needed())
1448 				vm_pages_needed = 0;
1449 			wakeup(&cnt.v_free_count);
1450 		}
1451 		if (vm_pages_needed) {
1452 			/*
1453 			 * Still not done, take a second pass without waiting
1454 			 * (unlimited dirty cleaning), otherwise sleep a bit
1455 			 * and try again.
1456 			 */
1457 			++pass;
1458 			if (pass > 1)
1459 				msleep(&vm_pages_needed,
1460 				    &vm_page_queue_free_mtx, PVM, "psleep",
1461 				    hz / 2);
1462 		} else {
1463 			/*
1464 			 * Good enough, sleep & handle stats.  Prime the pass
1465 			 * for the next run.
1466 			 */
1467 			if (pass > 1)
1468 				pass = 1;
1469 			else
1470 				pass = 0;
1471 			error = msleep(&vm_pages_needed,
1472 			    &vm_page_queue_free_mtx, PVM, "psleep",
1473 			    vm_pageout_stats_interval * hz);
1474 			if (error && !vm_pages_needed) {
1475 				mtx_unlock(&vm_page_queue_free_mtx);
1476 				pass = 0;
1477 				vm_page_lock_queues();
1478 				vm_pageout_page_stats();
1479 				vm_page_unlock_queues();
1480 				continue;
1481 			}
1482 		}
1483 		if (vm_pages_needed)
1484 			cnt.v_pdwakeups++;
1485 		mtx_unlock(&vm_page_queue_free_mtx);
1486 		vm_pageout_scan(pass);
1487 	}
1488 }
1489 
1490 /*
1491  * Unless the free page queue lock is held by the caller, this function
1492  * should be regarded as advisory.  Specifically, the caller should
1493  * not msleep() on &cnt.v_free_count following this function unless
1494  * the free page queue lock is held until the msleep() is performed.
1495  */
1496 void
1497 pagedaemon_wakeup()
1498 {
1499 
1500 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1501 		vm_pages_needed = 1;
1502 		wakeup(&vm_pages_needed);
1503 	}
1504 }
1505 
1506 #if !defined(NO_SWAPPING)
1507 static void
1508 vm_req_vmdaemon(int req)
1509 {
1510 	static int lastrun = 0;
1511 
1512 	mtx_lock(&vm_daemon_mtx);
1513 	vm_pageout_req_swapout |= req;
1514 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515 		wakeup(&vm_daemon_needed);
1516 		lastrun = ticks;
1517 	}
1518 	mtx_unlock(&vm_daemon_mtx);
1519 }
1520 
1521 static void
1522 vm_daemon()
1523 {
1524 	struct rlimit rsslim;
1525 	struct proc *p;
1526 	struct thread *td;
1527 	int breakout, swapout_flags;
1528 
1529 	while (TRUE) {
1530 		mtx_lock(&vm_daemon_mtx);
1531 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1532 		swapout_flags = vm_pageout_req_swapout;
1533 		vm_pageout_req_swapout = 0;
1534 		mtx_unlock(&vm_daemon_mtx);
1535 		if (swapout_flags)
1536 			swapout_procs(swapout_flags);
1537 
1538 		/*
1539 		 * scan the processes for exceeding their rlimits or if
1540 		 * process is swapped out -- deactivate pages
1541 		 */
1542 		sx_slock(&allproc_lock);
1543 		FOREACH_PROC_IN_SYSTEM(p) {
1544 			vm_pindex_t limit, size;
1545 
1546 			/*
1547 			 * if this is a system process or if we have already
1548 			 * looked at this process, skip it.
1549 			 */
1550 			PROC_LOCK(p);
1551 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1552 				PROC_UNLOCK(p);
1553 				continue;
1554 			}
1555 			/*
1556 			 * if the process is in a non-running type state,
1557 			 * don't touch it.
1558 			 */
1559 			breakout = 0;
1560 			FOREACH_THREAD_IN_PROC(p, td) {
1561 				thread_lock(td);
1562 				if (!TD_ON_RUNQ(td) &&
1563 				    !TD_IS_RUNNING(td) &&
1564 				    !TD_IS_SLEEPING(td)) {
1565 					thread_unlock(td);
1566 					breakout = 1;
1567 					break;
1568 				}
1569 				thread_unlock(td);
1570 			}
1571 			if (breakout) {
1572 				PROC_UNLOCK(p);
1573 				continue;
1574 			}
1575 			/*
1576 			 * get a limit
1577 			 */
1578 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1579 			limit = OFF_TO_IDX(
1580 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1581 
1582 			/*
1583 			 * let processes that are swapped out really be
1584 			 * swapped out set the limit to nothing (will force a
1585 			 * swap-out.)
1586 			 */
1587 			if ((p->p_flag & P_INMEM) == 0)
1588 				limit = 0;	/* XXX */
1589 			PROC_UNLOCK(p);
1590 
1591 			size = vmspace_resident_count(p->p_vmspace);
1592 			if (limit >= 0 && size >= limit) {
1593 				vm_pageout_map_deactivate_pages(
1594 				    &p->p_vmspace->vm_map, limit);
1595 			}
1596 		}
1597 		sx_sunlock(&allproc_lock);
1598 	}
1599 }
1600 #endif			/* !defined(NO_SWAPPING) */
1601