xref: /freebsd/sys/vm/vm_page.c (revision 11f0b352e05306cf6f1f85e9087022c0a92624a3)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct mtx vm_page_buckets_mtx;
129 static struct vm_page **vm_page_buckets; /* Array of buckets */
130 static int vm_page_bucket_count;	/* How big is array? */
131 static int vm_page_hash_mask;		/* Mask for hash function */
132 
133 struct mtx vm_page_queue_mtx;
134 struct mtx vm_page_queue_free_mtx;
135 
136 vm_page_t vm_page_array = 0;
137 int vm_page_array_size = 0;
138 long first_page = 0;
139 int vm_page_zero_count = 0;
140 
141 /*
142  *	vm_set_page_size:
143  *
144  *	Sets the page size, perhaps based upon the memory
145  *	size.  Must be called before any use of page-size
146  *	dependent functions.
147  */
148 void
149 vm_set_page_size(void)
150 {
151 	if (cnt.v_page_size == 0)
152 		cnt.v_page_size = PAGE_SIZE;
153 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154 		panic("vm_set_page_size: page size not a power of two");
155 }
156 
157 /*
158  *	vm_page_startup:
159  *
160  *	Initializes the resident memory module.
161  *
162  *	Allocates memory for the page cells, and
163  *	for the object/offset-to-page hash table headers.
164  *	Each page cell is initialized and placed on the free list.
165  */
166 vm_offset_t
167 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168 {
169 	vm_offset_t mapped;
170 	struct vm_page **bucket;
171 	vm_size_t npages, page_range;
172 	vm_offset_t new_end;
173 	int i;
174 	vm_offset_t pa;
175 	int nblocks;
176 	vm_offset_t last_pa;
177 
178 	/* the biggest memory array is the second group of pages */
179 	vm_offset_t end;
180 	vm_offset_t biggestone, biggestsize;
181 
182 	vm_offset_t total;
183 	vm_size_t bootpages;
184 
185 	total = 0;
186 	biggestsize = 0;
187 	biggestone = 0;
188 	nblocks = 0;
189 	vaddr = round_page(vaddr);
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		phys_avail[i] = round_page(phys_avail[i]);
193 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194 	}
195 
196 	for (i = 0; phys_avail[i + 1]; i += 2) {
197 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198 
199 		if (size > biggestsize) {
200 			biggestone = i;
201 			biggestsize = size;
202 		}
203 		++nblocks;
204 		total += size;
205 	}
206 
207 	end = phys_avail[biggestone+1];
208 
209 	/*
210 	 * Initialize the locks.
211 	 */
212 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214 	   MTX_SPIN);
215 
216 	/*
217 	 * Initialize the queue headers for the free queue, the active queue
218 	 * and the inactive queue.
219 	 */
220 	vm_pageq_init();
221 
222 	/*
223 	 * Allocate memory for use when boot strapping the kernel memory allocator
224 	 */
225 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226 	new_end = end - bootpages;
227 	new_end = trunc_page(new_end);
228 	mapped = pmap_map(&vaddr, new_end, end,
229 	    VM_PROT_READ | VM_PROT_WRITE);
230 	bzero((caddr_t) mapped, end - new_end);
231 	uma_startup((caddr_t)mapped);
232 
233 	end = new_end;
234 
235 	/*
236 	 * Allocate (and initialize) the hash table buckets.
237 	 *
238 	 * The number of buckets MUST BE a power of 2, and the actual value is
239 	 * the next power of 2 greater than the number of physical pages in
240 	 * the system.
241 	 *
242 	 * We make the hash table approximately 2x the number of pages to
243 	 * reduce the chain length.  This is about the same size using the
244 	 * singly-linked list as the 1x hash table we were using before
245 	 * using TAILQ but the chain length will be smaller.
246 	 *
247 	 * Note: This computation can be tweaked if desired.
248 	 */
249 	if (vm_page_bucket_count == 0) {
250 		vm_page_bucket_count = 1;
251 		while (vm_page_bucket_count < atop(total))
252 			vm_page_bucket_count <<= 1;
253 	}
254 	vm_page_bucket_count <<= 1;
255 	vm_page_hash_mask = vm_page_bucket_count - 1;
256 
257 	/*
258 	 * Validate these addresses.
259 	 */
260 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261 	new_end = trunc_page(new_end);
262 	mapped = pmap_map(&vaddr, new_end, end,
263 	    VM_PROT_READ | VM_PROT_WRITE);
264 	bzero((caddr_t) mapped, end - new_end);
265 
266 	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267 	vm_page_buckets = (struct vm_page **)mapped;
268 	bucket = vm_page_buckets;
269 	for (i = 0; i < vm_page_bucket_count; i++) {
270 		*bucket = NULL;
271 		bucket++;
272 	}
273 
274 	/*
275 	 * Compute the number of pages of memory that will be available for
276 	 * use (taking into account the overhead of a page structure per
277 	 * page).
278 	 */
279 	first_page = phys_avail[0] / PAGE_SIZE;
280 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281 	npages = (total - (page_range * sizeof(struct vm_page)) -
282 	    (end - new_end)) / PAGE_SIZE;
283 	end = new_end;
284 
285 	/*
286 	 * Initialize the mem entry structures now, and put them in the free
287 	 * queue.
288 	 */
289 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290 	mapped = pmap_map(&vaddr, new_end, end,
291 	    VM_PROT_READ | VM_PROT_WRITE);
292 	vm_page_array = (vm_page_t) mapped;
293 
294 	/*
295 	 * Clear all of the page structures
296 	 */
297 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298 	vm_page_array_size = page_range;
299 
300 	/*
301 	 * Construct the free queue(s) in descending order (by physical
302 	 * address) so that the first 16MB of physical memory is allocated
303 	 * last rather than first.  On large-memory machines, this avoids
304 	 * the exhaustion of low physical memory before isa_dmainit has run.
305 	 */
306 	cnt.v_page_count = 0;
307 	cnt.v_free_count = 0;
308 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309 		pa = phys_avail[i];
310 		if (i == biggestone)
311 			last_pa = new_end;
312 		else
313 			last_pa = phys_avail[i + 1];
314 		while (pa < last_pa && npages-- > 0) {
315 			vm_pageq_add_new_page(pa);
316 			pa += PAGE_SIZE;
317 		}
318 	}
319 	return (vaddr);
320 }
321 
322 /*
323  *	vm_page_hash:
324  *
325  *	Distributes the object/offset key pair among hash buckets.
326  *
327  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328  *	This routine may not block.
329  *
330  *	We try to randomize the hash based on the object to spread the pages
331  *	out in the hash table without it costing us too much.
332  */
333 static __inline int
334 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335 {
336 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337 
338 	return (i & vm_page_hash_mask);
339 }
340 
341 void
342 vm_page_flag_set(vm_page_t m, unsigned short bits)
343 {
344 	GIANT_REQUIRED;
345 	m->flags |= bits;
346 }
347 
348 void
349 vm_page_flag_clear(vm_page_t m, unsigned short bits)
350 {
351 	GIANT_REQUIRED;
352 	m->flags &= ~bits;
353 }
354 
355 void
356 vm_page_busy(vm_page_t m)
357 {
358 	KASSERT((m->flags & PG_BUSY) == 0,
359 	    ("vm_page_busy: page already busy!!!"));
360 	vm_page_flag_set(m, PG_BUSY);
361 }
362 
363 /*
364  *      vm_page_flash:
365  *
366  *      wakeup anyone waiting for the page.
367  */
368 void
369 vm_page_flash(vm_page_t m)
370 {
371 	if (m->flags & PG_WANTED) {
372 		vm_page_flag_clear(m, PG_WANTED);
373 		wakeup(m);
374 	}
375 }
376 
377 /*
378  *      vm_page_wakeup:
379  *
380  *      clear the PG_BUSY flag and wakeup anyone waiting for the
381  *      page.
382  *
383  */
384 void
385 vm_page_wakeup(vm_page_t m)
386 {
387 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388 	vm_page_flag_clear(m, PG_BUSY);
389 	vm_page_flash(m);
390 }
391 
392 /*
393  *
394  *
395  */
396 void
397 vm_page_io_start(vm_page_t m)
398 {
399 	GIANT_REQUIRED;
400 	m->busy++;
401 }
402 
403 void
404 vm_page_io_finish(vm_page_t m)
405 {
406 	GIANT_REQUIRED;
407 	m->busy--;
408 	if (m->busy == 0)
409 		vm_page_flash(m);
410 }
411 
412 /*
413  * Keep page from being freed by the page daemon
414  * much of the same effect as wiring, except much lower
415  * overhead and should be used only for *very* temporary
416  * holding ("wiring").
417  */
418 void
419 vm_page_hold(vm_page_t mem)
420 {
421         GIANT_REQUIRED;
422         mem->hold_count++;
423 }
424 
425 void
426 vm_page_unhold(vm_page_t mem)
427 {
428 	GIANT_REQUIRED;
429 	--mem->hold_count;
430 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
431 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
432 		vm_page_free_toq(mem);
433 }
434 
435 /*
436  *	vm_page_protect:
437  *
438  *	Reduce the protection of a page.  This routine never raises the
439  *	protection and therefore can be safely called if the page is already
440  *	at VM_PROT_NONE (it will be a NOP effectively ).
441  */
442 void
443 vm_page_protect(vm_page_t mem, int prot)
444 {
445 	if (prot == VM_PROT_NONE) {
446 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
447 			pmap_page_protect(mem, VM_PROT_NONE);
448 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
449 		}
450 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
451 		pmap_page_protect(mem, VM_PROT_READ);
452 		vm_page_flag_clear(mem, PG_WRITEABLE);
453 	}
454 }
455 /*
456  *	vm_page_zero_fill:
457  *
458  *	Zero-fill the specified page.
459  *	Written as a standard pagein routine, to
460  *	be used by the zero-fill object.
461  */
462 boolean_t
463 vm_page_zero_fill(vm_page_t m)
464 {
465 	pmap_zero_page(m);
466 	return (TRUE);
467 }
468 
469 /*
470  *	vm_page_zero_fill_area:
471  *
472  *	Like vm_page_zero_fill but only fill the specified area.
473  */
474 boolean_t
475 vm_page_zero_fill_area(vm_page_t m, int off, int size)
476 {
477 	pmap_zero_page_area(m, off, size);
478 	return (TRUE);
479 }
480 
481 /*
482  *	vm_page_copy:
483  *
484  *	Copy one page to another
485  */
486 void
487 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
488 {
489 	pmap_copy_page(src_m, dest_m);
490 	dest_m->valid = VM_PAGE_BITS_ALL;
491 }
492 
493 /*
494  *	vm_page_free:
495  *
496  *	Free a page
497  *
498  *	The clearing of PG_ZERO is a temporary safety until the code can be
499  *	reviewed to determine that PG_ZERO is being properly cleared on
500  *	write faults or maps.  PG_ZERO was previously cleared in
501  *	vm_page_alloc().
502  */
503 void
504 vm_page_free(vm_page_t m)
505 {
506 	vm_page_flag_clear(m, PG_ZERO);
507 	vm_page_free_toq(m);
508 	vm_page_zero_idle_wakeup();
509 }
510 
511 /*
512  *	vm_page_free_zero:
513  *
514  *	Free a page to the zerod-pages queue
515  */
516 void
517 vm_page_free_zero(vm_page_t m)
518 {
519 	vm_page_flag_set(m, PG_ZERO);
520 	vm_page_free_toq(m);
521 }
522 
523 /*
524  *	vm_page_sleep_busy:
525  *
526  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
527  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
528  *	it almost had to sleep and made temporary spl*() mods), FALSE
529  *	otherwise.
530  *
531  *	This routine assumes that interrupts can only remove the busy
532  *	status from a page, not set the busy status or change it from
533  *	PG_BUSY to m->busy or vise versa (which would create a timing
534  *	window).
535  */
536 int
537 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
538 {
539 	GIANT_REQUIRED;
540 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
541 		int s = splvm();
542 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
543 			/*
544 			 * Page is busy. Wait and retry.
545 			 */
546 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
547 			tsleep(m, PVM, msg, 0);
548 		}
549 		splx(s);
550 		return (TRUE);
551 		/* not reached */
552 	}
553 	return (FALSE);
554 }
555 /*
556  *	vm_page_dirty:
557  *
558  *	make page all dirty
559  */
560 void
561 vm_page_dirty(vm_page_t m)
562 {
563 	KASSERT(m->queue - m->pc != PQ_CACHE,
564 	    ("vm_page_dirty: page in cache!"));
565 	m->dirty = VM_PAGE_BITS_ALL;
566 }
567 
568 /*
569  *	vm_page_undirty:
570  *
571  *	Set page to not be dirty.  Note: does not clear pmap modify bits
572  */
573 void
574 vm_page_undirty(vm_page_t m)
575 {
576 	m->dirty = 0;
577 }
578 
579 /*
580  *	vm_page_insert:		[ internal use only ]
581  *
582  *	Inserts the given mem entry into the object and object list.
583  *
584  *	The pagetables are not updated but will presumably fault the page
585  *	in if necessary, or if a kernel page the caller will at some point
586  *	enter the page into the kernel's pmap.  We are not allowed to block
587  *	here so we *can't* do this anyway.
588  *
589  *	The object and page must be locked, and must be splhigh.
590  *	This routine may not block.
591  */
592 void
593 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
594 {
595 	struct vm_page **bucket;
596 
597 	GIANT_REQUIRED;
598 
599 	if (m->object != NULL)
600 		panic("vm_page_insert: already inserted");
601 
602 	/*
603 	 * Record the object/offset pair in this page
604 	 */
605 	m->object = object;
606 	m->pindex = pindex;
607 
608 	/*
609 	 * Insert it into the object_object/offset hash table
610 	 */
611 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
612 	mtx_lock_spin(&vm_page_buckets_mtx);
613 	m->hnext = *bucket;
614 	*bucket = m;
615 	mtx_unlock_spin(&vm_page_buckets_mtx);
616 
617 	/*
618 	 * Now link into the object's list of backed pages.
619 	 */
620 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
621 	object->generation++;
622 
623 	/*
624 	 * show that the object has one more resident page.
625 	 */
626 	object->resident_page_count++;
627 
628 	/*
629 	 * Since we are inserting a new and possibly dirty page,
630 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
631 	 */
632 	if (m->flags & PG_WRITEABLE)
633 		vm_object_set_writeable_dirty(object);
634 }
635 
636 /*
637  *	vm_page_remove:
638  *				NOTE: used by device pager as well -wfj
639  *
640  *	Removes the given mem entry from the object/offset-page
641  *	table and the object page list, but do not invalidate/terminate
642  *	the backing store.
643  *
644  *	The object and page must be locked, and at splhigh.
645  *	The underlying pmap entry (if any) is NOT removed here.
646  *	This routine may not block.
647  */
648 void
649 vm_page_remove(vm_page_t m)
650 {
651 	vm_object_t object;
652 	vm_page_t *bucket;
653 
654 	GIANT_REQUIRED;
655 
656 	if (m->object == NULL)
657 		return;
658 
659 	if ((m->flags & PG_BUSY) == 0) {
660 		panic("vm_page_remove: page not busy");
661 	}
662 
663 	/*
664 	 * Basically destroy the page.
665 	 */
666 	vm_page_wakeup(m);
667 
668 	object = m->object;
669 
670 	/*
671 	 * Remove from the object_object/offset hash table.  The object
672 	 * must be on the hash queue, we will panic if it isn't
673 	 */
674 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
675 	mtx_lock_spin(&vm_page_buckets_mtx);
676 	while (*bucket != m) {
677 		if (*bucket == NULL)
678 			panic("vm_page_remove(): page not found in hash");
679 		bucket = &(*bucket)->hnext;
680 	}
681 	*bucket = m->hnext;
682 	m->hnext = NULL;
683 	mtx_unlock_spin(&vm_page_buckets_mtx);
684 
685 	/*
686 	 * Now remove from the object's list of backed pages.
687 	 */
688 	TAILQ_REMOVE(&object->memq, m, listq);
689 
690 	/*
691 	 * And show that the object has one fewer resident page.
692 	 */
693 	object->resident_page_count--;
694 	object->generation++;
695 
696 	m->object = NULL;
697 }
698 
699 /*
700  *	vm_page_lookup:
701  *
702  *	Returns the page associated with the object/offset
703  *	pair specified; if none is found, NULL is returned.
704  *
705  *	The object must be locked.  No side effects.
706  *	This routine may not block.
707  *	This is a critical path routine
708  */
709 vm_page_t
710 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
711 {
712 	vm_page_t m;
713 	struct vm_page **bucket;
714 
715 	/*
716 	 * Search the hash table for this object/offset pair
717 	 */
718 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
719 	mtx_lock_spin(&vm_page_buckets_mtx);
720 	for (m = *bucket; m != NULL; m = m->hnext)
721 		if (m->object == object && m->pindex == pindex)
722 			break;
723 	mtx_unlock_spin(&vm_page_buckets_mtx);
724 	return (m);
725 }
726 
727 /*
728  *	vm_page_rename:
729  *
730  *	Move the given memory entry from its
731  *	current object to the specified target object/offset.
732  *
733  *	The object must be locked.
734  *	This routine may not block.
735  *
736  *	Note: this routine will raise itself to splvm(), the caller need not.
737  *
738  *	Note: swap associated with the page must be invalidated by the move.  We
739  *	      have to do this for several reasons:  (1) we aren't freeing the
740  *	      page, (2) we are dirtying the page, (3) the VM system is probably
741  *	      moving the page from object A to B, and will then later move
742  *	      the backing store from A to B and we can't have a conflict.
743  *
744  *	Note: we *always* dirty the page.  It is necessary both for the
745  *	      fact that we moved it, and because we may be invalidating
746  *	      swap.  If the page is on the cache, we have to deactivate it
747  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
748  *	      on the cache.
749  */
750 void
751 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
752 {
753 	int s;
754 
755 	s = splvm();
756 	vm_page_lock_queues();
757 	vm_page_remove(m);
758 	vm_page_insert(m, new_object, new_pindex);
759 	if (m->queue - m->pc == PQ_CACHE)
760 		vm_page_deactivate(m);
761 	vm_page_dirty(m);
762 	vm_page_unlock_queues();
763 	splx(s);
764 }
765 
766 /*
767  *	vm_page_select_cache:
768  *
769  *	Find a page on the cache queue with color optimization.  As pages
770  *	might be found, but not applicable, they are deactivated.  This
771  *	keeps us from using potentially busy cached pages.
772  *
773  *	This routine must be called at splvm().
774  *	This routine may not block.
775  */
776 static vm_page_t
777 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
778 {
779 	vm_page_t m;
780 
781 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
782 	while (TRUE) {
783 		m = vm_pageq_find(
784 		    PQ_CACHE,
785 		    (pindex + object->pg_color) & PQ_L2_MASK,
786 		    FALSE
787 		);
788 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
789 			       m->hold_count || m->wire_count)) {
790 			vm_page_deactivate(m);
791 			continue;
792 		}
793 		return m;
794 	}
795 }
796 
797 /*
798  *	vm_page_select_free:
799  *
800  *	Find a free or zero page, with specified preference.
801  *
802  *	This routine must be called at splvm().
803  *	This routine may not block.
804  */
805 static __inline vm_page_t
806 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
807 {
808 	vm_page_t m;
809 
810 	m = vm_pageq_find(
811 		PQ_FREE,
812 		(pindex + object->pg_color) & PQ_L2_MASK,
813 		prefer_zero
814 	);
815 	return (m);
816 }
817 
818 /*
819  *	vm_page_alloc:
820  *
821  *	Allocate and return a memory cell associated
822  *	with this VM object/offset pair.
823  *
824  *	page_req classes:
825  *	VM_ALLOC_NORMAL		normal process request
826  *	VM_ALLOC_SYSTEM		system *really* needs a page
827  *	VM_ALLOC_INTERRUPT	interrupt time request
828  *	VM_ALLOC_ZERO		zero page
829  *
830  *	This routine may not block.
831  *
832  *	Additional special handling is required when called from an
833  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
834  *	the page cache in this case.
835  */
836 vm_page_t
837 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
838 {
839 	vm_page_t m = NULL;
840 	boolean_t prefer_zero;
841 	int s;
842 
843 	GIANT_REQUIRED;
844 
845 	KASSERT(!vm_page_lookup(object, pindex),
846 		("vm_page_alloc: page already allocated"));
847 
848 	prefer_zero = (page_req & VM_ALLOC_ZERO) != 0 ? TRUE : FALSE;
849 	page_req &= ~VM_ALLOC_ZERO;
850 
851 	/*
852 	 * The pager is allowed to eat deeper into the free page list.
853 	 */
854 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
855 		page_req = VM_ALLOC_SYSTEM;
856 	};
857 
858 	s = splvm();
859 loop:
860 	mtx_lock_spin(&vm_page_queue_free_mtx);
861 	if (cnt.v_free_count > cnt.v_free_reserved) {
862 		/*
863 		 * Allocate from the free queue if there are plenty of pages
864 		 * in it.
865 		 */
866 		m = vm_page_select_free(object, pindex, prefer_zero);
867 	} else if (
868 	    (page_req == VM_ALLOC_SYSTEM &&
869 	     cnt.v_cache_count == 0 &&
870 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
871 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
872 	) {
873 		/*
874 		 * Interrupt or system, dig deeper into the free list.
875 		 */
876 		m = vm_page_select_free(object, pindex, FALSE);
877 	} else if (page_req != VM_ALLOC_INTERRUPT) {
878 		mtx_unlock_spin(&vm_page_queue_free_mtx);
879 		/*
880 		 * Allocatable from cache (non-interrupt only).  On success,
881 		 * we must free the page and try again, thus ensuring that
882 		 * cnt.v_*_free_min counters are replenished.
883 		 */
884 		vm_page_lock_queues();
885 		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
886 			vm_page_unlock_queues();
887 			splx(s);
888 #if defined(DIAGNOSTIC)
889 			if (cnt.v_cache_count > 0)
890 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
891 #endif
892 			vm_pageout_deficit++;
893 			pagedaemon_wakeup();
894 			return (NULL);
895 		}
896 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
897 		vm_page_busy(m);
898 		vm_page_protect(m, VM_PROT_NONE);
899 		vm_page_free(m);
900 		vm_page_unlock_queues();
901 		goto loop;
902 	} else {
903 		/*
904 		 * Not allocatable from cache from interrupt, give up.
905 		 */
906 		mtx_unlock_spin(&vm_page_queue_free_mtx);
907 		splx(s);
908 		vm_pageout_deficit++;
909 		pagedaemon_wakeup();
910 		return (NULL);
911 	}
912 
913 	/*
914 	 *  At this point we had better have found a good page.
915 	 */
916 
917 	KASSERT(
918 	    m != NULL,
919 	    ("vm_page_alloc(): missing page on free queue\n")
920 	);
921 
922 	/*
923 	 * Remove from free queue
924 	 */
925 
926 	vm_pageq_remove_nowakeup(m);
927 
928 	/*
929 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
930 	 */
931 	if (m->flags & PG_ZERO) {
932 		vm_page_zero_count--;
933 		m->flags = PG_ZERO | PG_BUSY;
934 	} else {
935 		m->flags = PG_BUSY;
936 	}
937 	m->wire_count = 0;
938 	m->hold_count = 0;
939 	m->act_count = 0;
940 	m->busy = 0;
941 	m->valid = 0;
942 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
943 	mtx_unlock_spin(&vm_page_queue_free_mtx);
944 
945 	/*
946 	 * vm_page_insert() is safe prior to the splx().  Note also that
947 	 * inserting a page here does not insert it into the pmap (which
948 	 * could cause us to block allocating memory).  We cannot block
949 	 * anywhere.
950 	 */
951 	vm_page_insert(m, object, pindex);
952 
953 	/*
954 	 * Don't wakeup too often - wakeup the pageout daemon when
955 	 * we would be nearly out of memory.
956 	 */
957 	if (vm_paging_needed())
958 		pagedaemon_wakeup();
959 
960 	splx(s);
961 	return (m);
962 }
963 
964 /*
965  *	vm_wait:	(also see VM_WAIT macro)
966  *
967  *	Block until free pages are available for allocation
968  *	- Called in various places before memory allocations.
969  */
970 void
971 vm_wait(void)
972 {
973 	int s;
974 
975 	s = splvm();
976 	if (curproc == pageproc) {
977 		vm_pageout_pages_needed = 1;
978 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
979 	} else {
980 		if (!vm_pages_needed) {
981 			vm_pages_needed = 1;
982 			wakeup(&vm_pages_needed);
983 		}
984 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
985 	}
986 	splx(s);
987 }
988 
989 /*
990  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
991  *
992  *	Block until free pages are available for allocation
993  *	- Called only in vm_fault so that processes page faulting
994  *	  can be easily tracked.
995  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
996  *	  processes will be able to grab memory first.  Do not change
997  *	  this balance without careful testing first.
998  */
999 void
1000 vm_waitpfault(void)
1001 {
1002 	int s;
1003 
1004 	s = splvm();
1005 	if (!vm_pages_needed) {
1006 		vm_pages_needed = 1;
1007 		wakeup(&vm_pages_needed);
1008 	}
1009 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1010 	splx(s);
1011 }
1012 
1013 /*
1014  *	vm_page_activate:
1015  *
1016  *	Put the specified page on the active list (if appropriate).
1017  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1018  *	mess with it.
1019  *
1020  *	The page queues must be locked.
1021  *	This routine may not block.
1022  */
1023 void
1024 vm_page_activate(vm_page_t m)
1025 {
1026 	int s;
1027 
1028 	GIANT_REQUIRED;
1029 	s = splvm();
1030 	if (m->queue != PQ_ACTIVE) {
1031 		if ((m->queue - m->pc) == PQ_CACHE)
1032 			cnt.v_reactivated++;
1033 		vm_pageq_remove(m);
1034 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1035 			if (m->act_count < ACT_INIT)
1036 				m->act_count = ACT_INIT;
1037 			vm_pageq_enqueue(PQ_ACTIVE, m);
1038 		}
1039 	} else {
1040 		if (m->act_count < ACT_INIT)
1041 			m->act_count = ACT_INIT;
1042 	}
1043 	splx(s);
1044 }
1045 
1046 /*
1047  *	vm_page_free_wakeup:
1048  *
1049  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1050  *	routine is called when a page has been added to the cache or free
1051  *	queues.
1052  *
1053  *	This routine may not block.
1054  *	This routine must be called at splvm()
1055  */
1056 static __inline void
1057 vm_page_free_wakeup(void)
1058 {
1059 	/*
1060 	 * if pageout daemon needs pages, then tell it that there are
1061 	 * some free.
1062 	 */
1063 	if (vm_pageout_pages_needed &&
1064 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1065 		wakeup(&vm_pageout_pages_needed);
1066 		vm_pageout_pages_needed = 0;
1067 	}
1068 	/*
1069 	 * wakeup processes that are waiting on memory if we hit a
1070 	 * high water mark. And wakeup scheduler process if we have
1071 	 * lots of memory. this process will swapin processes.
1072 	 */
1073 	if (vm_pages_needed && !vm_page_count_min()) {
1074 		vm_pages_needed = 0;
1075 		wakeup(&cnt.v_free_count);
1076 	}
1077 }
1078 
1079 /*
1080  *	vm_page_free_toq:
1081  *
1082  *	Returns the given page to the PQ_FREE list,
1083  *	disassociating it with any VM object.
1084  *
1085  *	Object and page must be locked prior to entry.
1086  *	This routine may not block.
1087  */
1088 
1089 void
1090 vm_page_free_toq(vm_page_t m)
1091 {
1092 	int s;
1093 	struct vpgqueues *pq;
1094 	vm_object_t object = m->object;
1095 
1096 	GIANT_REQUIRED;
1097 	s = splvm();
1098 	cnt.v_tfree++;
1099 
1100 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1101 		printf(
1102 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1103 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1104 		    m->hold_count);
1105 		if ((m->queue - m->pc) == PQ_FREE)
1106 			panic("vm_page_free: freeing free page");
1107 		else
1108 			panic("vm_page_free: freeing busy page");
1109 	}
1110 
1111 	/*
1112 	 * unqueue, then remove page.  Note that we cannot destroy
1113 	 * the page here because we do not want to call the pager's
1114 	 * callback routine until after we've put the page on the
1115 	 * appropriate free queue.
1116 	 */
1117 	vm_pageq_remove_nowakeup(m);
1118 	vm_page_remove(m);
1119 
1120 	/*
1121 	 * If fictitious remove object association and
1122 	 * return, otherwise delay object association removal.
1123 	 */
1124 	if ((m->flags & PG_FICTITIOUS) != 0) {
1125 		splx(s);
1126 		return;
1127 	}
1128 
1129 	m->valid = 0;
1130 	vm_page_undirty(m);
1131 
1132 	if (m->wire_count != 0) {
1133 		if (m->wire_count > 1) {
1134 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1135 				m->wire_count, (long)m->pindex);
1136 		}
1137 		panic("vm_page_free: freeing wired page\n");
1138 	}
1139 
1140 	/*
1141 	 * If we've exhausted the object's resident pages we want to free
1142 	 * it up.
1143 	 */
1144 	if (object &&
1145 	    (object->type == OBJT_VNODE) &&
1146 	    ((object->flags & OBJ_DEAD) == 0)
1147 	) {
1148 		struct vnode *vp = (struct vnode *)object->handle;
1149 
1150 		if (vp && VSHOULDFREE(vp))
1151 			vfree(vp);
1152 	}
1153 
1154 	/*
1155 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1156 	 */
1157 	if (m->flags & PG_UNMANAGED) {
1158 		m->flags &= ~PG_UNMANAGED;
1159 	} else {
1160 #ifdef __alpha__
1161 		pmap_page_is_free(m);
1162 #endif
1163 	}
1164 
1165 	if (m->hold_count != 0) {
1166 		m->flags &= ~PG_ZERO;
1167 		m->queue = PQ_HOLD;
1168 	} else
1169 		m->queue = PQ_FREE + m->pc;
1170 	pq = &vm_page_queues[m->queue];
1171 	mtx_lock_spin(&vm_page_queue_free_mtx);
1172 	pq->lcnt++;
1173 	++(*pq->cnt);
1174 
1175 	/*
1176 	 * Put zero'd pages on the end ( where we look for zero'd pages
1177 	 * first ) and non-zerod pages at the head.
1178 	 */
1179 	if (m->flags & PG_ZERO) {
1180 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1181 		++vm_page_zero_count;
1182 	} else {
1183 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1184 	}
1185 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1186 	vm_page_free_wakeup();
1187 	splx(s);
1188 }
1189 
1190 /*
1191  *	vm_page_unmanage:
1192  *
1193  * 	Prevent PV management from being done on the page.  The page is
1194  *	removed from the paging queues as if it were wired, and as a
1195  *	consequence of no longer being managed the pageout daemon will not
1196  *	touch it (since there is no way to locate the pte mappings for the
1197  *	page).  madvise() calls that mess with the pmap will also no longer
1198  *	operate on the page.
1199  *
1200  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1201  *	will clear the flag.
1202  *
1203  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1204  *	physical memory as backing store rather then swap-backed memory and
1205  *	will eventually be extended to support 4MB unmanaged physical
1206  *	mappings.
1207  */
1208 void
1209 vm_page_unmanage(vm_page_t m)
1210 {
1211 	int s;
1212 
1213 	s = splvm();
1214 	if ((m->flags & PG_UNMANAGED) == 0) {
1215 		if (m->wire_count == 0)
1216 			vm_pageq_remove(m);
1217 	}
1218 	vm_page_flag_set(m, PG_UNMANAGED);
1219 	splx(s);
1220 }
1221 
1222 /*
1223  *	vm_page_wire:
1224  *
1225  *	Mark this page as wired down by yet
1226  *	another map, removing it from paging queues
1227  *	as necessary.
1228  *
1229  *	The page queues must be locked.
1230  *	This routine may not block.
1231  */
1232 void
1233 vm_page_wire(vm_page_t m)
1234 {
1235 	int s;
1236 
1237 	/*
1238 	 * Only bump the wire statistics if the page is not already wired,
1239 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1240 	 * it is already off the queues).
1241 	 */
1242 	s = splvm();
1243 	if (m->wire_count == 0) {
1244 		if ((m->flags & PG_UNMANAGED) == 0)
1245 			vm_pageq_remove(m);
1246 		cnt.v_wire_count++;
1247 	}
1248 	m->wire_count++;
1249 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1250 	splx(s);
1251 	vm_page_flag_set(m, PG_MAPPED);
1252 }
1253 
1254 /*
1255  *	vm_page_unwire:
1256  *
1257  *	Release one wiring of this page, potentially
1258  *	enabling it to be paged again.
1259  *
1260  *	Many pages placed on the inactive queue should actually go
1261  *	into the cache, but it is difficult to figure out which.  What
1262  *	we do instead, if the inactive target is well met, is to put
1263  *	clean pages at the head of the inactive queue instead of the tail.
1264  *	This will cause them to be moved to the cache more quickly and
1265  *	if not actively re-referenced, freed more quickly.  If we just
1266  *	stick these pages at the end of the inactive queue, heavy filesystem
1267  *	meta-data accesses can cause an unnecessary paging load on memory bound
1268  *	processes.  This optimization causes one-time-use metadata to be
1269  *	reused more quickly.
1270  *
1271  *	BUT, if we are in a low-memory situation we have no choice but to
1272  *	put clean pages on the cache queue.
1273  *
1274  *	A number of routines use vm_page_unwire() to guarantee that the page
1275  *	will go into either the inactive or active queues, and will NEVER
1276  *	be placed in the cache - for example, just after dirtying a page.
1277  *	dirty pages in the cache are not allowed.
1278  *
1279  *	The page queues must be locked.
1280  *	This routine may not block.
1281  */
1282 void
1283 vm_page_unwire(vm_page_t m, int activate)
1284 {
1285 	int s;
1286 
1287 	s = splvm();
1288 
1289 	if (m->wire_count > 0) {
1290 		m->wire_count--;
1291 		if (m->wire_count == 0) {
1292 			cnt.v_wire_count--;
1293 			if (m->flags & PG_UNMANAGED) {
1294 				;
1295 			} else if (activate)
1296 				vm_pageq_enqueue(PQ_ACTIVE, m);
1297 			else {
1298 				vm_page_flag_clear(m, PG_WINATCFLS);
1299 				vm_pageq_enqueue(PQ_INACTIVE, m);
1300 			}
1301 		}
1302 	} else {
1303 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1304 	}
1305 	splx(s);
1306 }
1307 
1308 
1309 /*
1310  * Move the specified page to the inactive queue.  If the page has
1311  * any associated swap, the swap is deallocated.
1312  *
1313  * Normally athead is 0 resulting in LRU operation.  athead is set
1314  * to 1 if we want this page to be 'as if it were placed in the cache',
1315  * except without unmapping it from the process address space.
1316  *
1317  * This routine may not block.
1318  */
1319 static __inline void
1320 _vm_page_deactivate(vm_page_t m, int athead)
1321 {
1322 	int s;
1323 
1324 	GIANT_REQUIRED;
1325 	/*
1326 	 * Ignore if already inactive.
1327 	 */
1328 	if (m->queue == PQ_INACTIVE)
1329 		return;
1330 
1331 	s = splvm();
1332 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1333 		if ((m->queue - m->pc) == PQ_CACHE)
1334 			cnt.v_reactivated++;
1335 		vm_page_flag_clear(m, PG_WINATCFLS);
1336 		vm_pageq_remove(m);
1337 		if (athead)
1338 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1339 		else
1340 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1341 		m->queue = PQ_INACTIVE;
1342 		vm_page_queues[PQ_INACTIVE].lcnt++;
1343 		cnt.v_inactive_count++;
1344 	}
1345 	splx(s);
1346 }
1347 
1348 void
1349 vm_page_deactivate(vm_page_t m)
1350 {
1351     _vm_page_deactivate(m, 0);
1352 }
1353 
1354 /*
1355  * vm_page_try_to_cache:
1356  *
1357  * Returns 0 on failure, 1 on success
1358  */
1359 int
1360 vm_page_try_to_cache(vm_page_t m)
1361 {
1362 	GIANT_REQUIRED;
1363 
1364 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1365 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1366 		return (0);
1367 	}
1368 	vm_page_test_dirty(m);
1369 	if (m->dirty)
1370 		return (0);
1371 	vm_page_cache(m);
1372 	return (1);
1373 }
1374 
1375 /*
1376  * vm_page_try_to_free()
1377  *
1378  *	Attempt to free the page.  If we cannot free it, we do nothing.
1379  *	1 is returned on success, 0 on failure.
1380  */
1381 int
1382 vm_page_try_to_free(vm_page_t m)
1383 {
1384 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1385 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1386 		return (0);
1387 	}
1388 	vm_page_test_dirty(m);
1389 	if (m->dirty)
1390 		return (0);
1391 	vm_page_busy(m);
1392 	vm_page_protect(m, VM_PROT_NONE);
1393 	vm_page_free(m);
1394 	return (1);
1395 }
1396 
1397 /*
1398  * vm_page_cache
1399  *
1400  * Put the specified page onto the page cache queue (if appropriate).
1401  *
1402  * This routine may not block.
1403  */
1404 void
1405 vm_page_cache(vm_page_t m)
1406 {
1407 	int s;
1408 
1409 	GIANT_REQUIRED;
1410 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1411 		printf("vm_page_cache: attempting to cache busy page\n");
1412 		return;
1413 	}
1414 	if ((m->queue - m->pc) == PQ_CACHE)
1415 		return;
1416 
1417 	/*
1418 	 * Remove all pmaps and indicate that the page is not
1419 	 * writeable or mapped.
1420 	 */
1421 	vm_page_protect(m, VM_PROT_NONE);
1422 	if (m->dirty != 0) {
1423 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1424 			(long)m->pindex);
1425 	}
1426 	s = splvm();
1427 	vm_pageq_remove_nowakeup(m);
1428 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1429 	vm_page_free_wakeup();
1430 	splx(s);
1431 }
1432 
1433 /*
1434  * vm_page_dontneed
1435  *
1436  *	Cache, deactivate, or do nothing as appropriate.  This routine
1437  *	is typically used by madvise() MADV_DONTNEED.
1438  *
1439  *	Generally speaking we want to move the page into the cache so
1440  *	it gets reused quickly.  However, this can result in a silly syndrome
1441  *	due to the page recycling too quickly.  Small objects will not be
1442  *	fully cached.  On the otherhand, if we move the page to the inactive
1443  *	queue we wind up with a problem whereby very large objects
1444  *	unnecessarily blow away our inactive and cache queues.
1445  *
1446  *	The solution is to move the pages based on a fixed weighting.  We
1447  *	either leave them alone, deactivate them, or move them to the cache,
1448  *	where moving them to the cache has the highest weighting.
1449  *	By forcing some pages into other queues we eventually force the
1450  *	system to balance the queues, potentially recovering other unrelated
1451  *	space from active.  The idea is to not force this to happen too
1452  *	often.
1453  */
1454 void
1455 vm_page_dontneed(vm_page_t m)
1456 {
1457 	static int dnweight;
1458 	int dnw;
1459 	int head;
1460 
1461 	GIANT_REQUIRED;
1462 	dnw = ++dnweight;
1463 
1464 	/*
1465 	 * occassionally leave the page alone
1466 	 */
1467 	if ((dnw & 0x01F0) == 0 ||
1468 	    m->queue == PQ_INACTIVE ||
1469 	    m->queue - m->pc == PQ_CACHE
1470 	) {
1471 		if (m->act_count >= ACT_INIT)
1472 			--m->act_count;
1473 		return;
1474 	}
1475 
1476 	if (m->dirty == 0)
1477 		vm_page_test_dirty(m);
1478 
1479 	if (m->dirty || (dnw & 0x0070) == 0) {
1480 		/*
1481 		 * Deactivate the page 3 times out of 32.
1482 		 */
1483 		head = 0;
1484 	} else {
1485 		/*
1486 		 * Cache the page 28 times out of every 32.  Note that
1487 		 * the page is deactivated instead of cached, but placed
1488 		 * at the head of the queue instead of the tail.
1489 		 */
1490 		head = 1;
1491 	}
1492 	_vm_page_deactivate(m, head);
1493 }
1494 
1495 /*
1496  * Grab a page, waiting until we are waken up due to the page
1497  * changing state.  We keep on waiting, if the page continues
1498  * to be in the object.  If the page doesn't exist, allocate it.
1499  *
1500  * This routine may block.
1501  */
1502 vm_page_t
1503 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1504 {
1505 	vm_page_t m;
1506 	int s, generation;
1507 
1508 	GIANT_REQUIRED;
1509 retrylookup:
1510 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1511 		if (m->busy || (m->flags & PG_BUSY)) {
1512 			generation = object->generation;
1513 
1514 			s = splvm();
1515 			while ((object->generation == generation) &&
1516 					(m->busy || (m->flags & PG_BUSY))) {
1517 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1518 				tsleep(m, PVM, "pgrbwt", 0);
1519 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1520 					splx(s);
1521 					return NULL;
1522 				}
1523 			}
1524 			splx(s);
1525 			goto retrylookup;
1526 		} else {
1527 			vm_page_busy(m);
1528 			return m;
1529 		}
1530 	}
1531 
1532 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1533 	if (m == NULL) {
1534 		VM_WAIT;
1535 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1536 			return NULL;
1537 		goto retrylookup;
1538 	}
1539 
1540 	return m;
1541 }
1542 
1543 /*
1544  * Mapping function for valid bits or for dirty bits in
1545  * a page.  May not block.
1546  *
1547  * Inputs are required to range within a page.
1548  */
1549 __inline int
1550 vm_page_bits(int base, int size)
1551 {
1552 	int first_bit;
1553 	int last_bit;
1554 
1555 	KASSERT(
1556 	    base + size <= PAGE_SIZE,
1557 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1558 	);
1559 
1560 	if (size == 0)		/* handle degenerate case */
1561 		return (0);
1562 
1563 	first_bit = base >> DEV_BSHIFT;
1564 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1565 
1566 	return ((2 << last_bit) - (1 << first_bit));
1567 }
1568 
1569 /*
1570  *	vm_page_set_validclean:
1571  *
1572  *	Sets portions of a page valid and clean.  The arguments are expected
1573  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1574  *	of any partial chunks touched by the range.  The invalid portion of
1575  *	such chunks will be zero'd.
1576  *
1577  *	This routine may not block.
1578  *
1579  *	(base + size) must be less then or equal to PAGE_SIZE.
1580  */
1581 void
1582 vm_page_set_validclean(vm_page_t m, int base, int size)
1583 {
1584 	int pagebits;
1585 	int frag;
1586 	int endoff;
1587 
1588 	GIANT_REQUIRED;
1589 	if (size == 0)	/* handle degenerate case */
1590 		return;
1591 
1592 	/*
1593 	 * If the base is not DEV_BSIZE aligned and the valid
1594 	 * bit is clear, we have to zero out a portion of the
1595 	 * first block.
1596 	 */
1597 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1598 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1599 		pmap_zero_page_area(m, frag, base - frag);
1600 
1601 	/*
1602 	 * If the ending offset is not DEV_BSIZE aligned and the
1603 	 * valid bit is clear, we have to zero out a portion of
1604 	 * the last block.
1605 	 */
1606 	endoff = base + size;
1607 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1608 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1609 		pmap_zero_page_area(m, endoff,
1610 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1611 
1612 	/*
1613 	 * Set valid, clear dirty bits.  If validating the entire
1614 	 * page we can safely clear the pmap modify bit.  We also
1615 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1616 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1617 	 * be set again.
1618 	 *
1619 	 * We set valid bits inclusive of any overlap, but we can only
1620 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1621 	 * the range.
1622 	 */
1623 	pagebits = vm_page_bits(base, size);
1624 	m->valid |= pagebits;
1625 #if 0	/* NOT YET */
1626 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1627 		frag = DEV_BSIZE - frag;
1628 		base += frag;
1629 		size -= frag;
1630 		if (size < 0)
1631 			size = 0;
1632 	}
1633 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1634 #endif
1635 	m->dirty &= ~pagebits;
1636 	if (base == 0 && size == PAGE_SIZE) {
1637 		pmap_clear_modify(m);
1638 		vm_page_flag_clear(m, PG_NOSYNC);
1639 	}
1640 }
1641 
1642 #if 0
1643 
1644 void
1645 vm_page_set_dirty(vm_page_t m, int base, int size)
1646 {
1647 	m->dirty |= vm_page_bits(base, size);
1648 }
1649 
1650 #endif
1651 
1652 void
1653 vm_page_clear_dirty(vm_page_t m, int base, int size)
1654 {
1655 	GIANT_REQUIRED;
1656 	m->dirty &= ~vm_page_bits(base, size);
1657 }
1658 
1659 /*
1660  *	vm_page_set_invalid:
1661  *
1662  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1663  *	valid and dirty bits for the effected areas are cleared.
1664  *
1665  *	May not block.
1666  */
1667 void
1668 vm_page_set_invalid(vm_page_t m, int base, int size)
1669 {
1670 	int bits;
1671 
1672 	GIANT_REQUIRED;
1673 	bits = vm_page_bits(base, size);
1674 	m->valid &= ~bits;
1675 	m->dirty &= ~bits;
1676 	m->object->generation++;
1677 }
1678 
1679 /*
1680  * vm_page_zero_invalid()
1681  *
1682  *	The kernel assumes that the invalid portions of a page contain
1683  *	garbage, but such pages can be mapped into memory by user code.
1684  *	When this occurs, we must zero out the non-valid portions of the
1685  *	page so user code sees what it expects.
1686  *
1687  *	Pages are most often semi-valid when the end of a file is mapped
1688  *	into memory and the file's size is not page aligned.
1689  */
1690 void
1691 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1692 {
1693 	int b;
1694 	int i;
1695 
1696 	/*
1697 	 * Scan the valid bits looking for invalid sections that
1698 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1699 	 * valid bit may be set ) have already been zerod by
1700 	 * vm_page_set_validclean().
1701 	 */
1702 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1703 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1704 		    (m->valid & (1 << i))
1705 		) {
1706 			if (i > b) {
1707 				pmap_zero_page_area(m,
1708 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1709 			}
1710 			b = i + 1;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * setvalid is TRUE when we can safely set the zero'd areas
1716 	 * as being valid.  We can do this if there are no cache consistancy
1717 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1718 	 */
1719 	if (setvalid)
1720 		m->valid = VM_PAGE_BITS_ALL;
1721 }
1722 
1723 /*
1724  *	vm_page_is_valid:
1725  *
1726  *	Is (partial) page valid?  Note that the case where size == 0
1727  *	will return FALSE in the degenerate case where the page is
1728  *	entirely invalid, and TRUE otherwise.
1729  *
1730  *	May not block.
1731  */
1732 int
1733 vm_page_is_valid(vm_page_t m, int base, int size)
1734 {
1735 	int bits = vm_page_bits(base, size);
1736 
1737 	if (m->valid && ((m->valid & bits) == bits))
1738 		return 1;
1739 	else
1740 		return 0;
1741 }
1742 
1743 /*
1744  * update dirty bits from pmap/mmu.  May not block.
1745  */
1746 void
1747 vm_page_test_dirty(vm_page_t m)
1748 {
1749 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1750 		vm_page_dirty(m);
1751 	}
1752 }
1753 
1754 int so_zerocp_fullpage = 0;
1755 
1756 void
1757 vm_page_cowfault(vm_page_t m)
1758 {
1759 	vm_page_t mnew;
1760 	vm_object_t object;
1761 	vm_pindex_t pindex;
1762 
1763 	object = m->object;
1764 	pindex = m->pindex;
1765 	vm_page_busy(m);
1766 
1767  retry_alloc:
1768 	vm_page_remove(m);
1769 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1770 	if (mnew == NULL) {
1771 		vm_page_insert(m, object, pindex);
1772 		VM_WAIT;
1773 		goto retry_alloc;
1774 	}
1775 
1776 	if (m->cow == 0) {
1777 		/*
1778 		 * check to see if we raced with an xmit complete when
1779 		 * waiting to allocate a page.  If so, put things back
1780 		 * the way they were
1781 		 */
1782 		vm_page_busy(mnew);
1783 		vm_page_free(mnew);
1784 		vm_page_insert(m, object, pindex);
1785 	} else { /* clear COW & copy page */
1786 		if (so_zerocp_fullpage) {
1787 			mnew->valid = VM_PAGE_BITS_ALL;
1788 		} else {
1789 			vm_page_copy(m, mnew);
1790 		}
1791 		vm_page_dirty(mnew);
1792 		vm_page_flag_clear(mnew, PG_BUSY);
1793 	}
1794 }
1795 
1796 void
1797 vm_page_cowclear(vm_page_t m)
1798 {
1799 
1800 	/* XXX KDM find out if giant is required here. */
1801 	GIANT_REQUIRED;
1802 	if (m->cow) {
1803 		atomic_subtract_int(&m->cow, 1);
1804 		/*
1805 		 * let vm_fault add back write permission  lazily
1806 		 */
1807 	}
1808 	/*
1809 	 *  sf_buf_free() will free the page, so we needn't do it here
1810 	 */
1811 }
1812 
1813 void
1814 vm_page_cowsetup(vm_page_t m)
1815 {
1816 	/* XXX KDM find out if giant is required here */
1817 	GIANT_REQUIRED;
1818 	atomic_add_int(&m->cow, 1);
1819 	vm_page_protect(m, VM_PROT_READ);
1820 }
1821 
1822 #include "opt_ddb.h"
1823 #ifdef DDB
1824 #include <sys/kernel.h>
1825 
1826 #include <ddb/ddb.h>
1827 
1828 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1829 {
1830 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1831 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1832 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1833 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1834 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1835 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1836 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1837 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1838 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1839 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1840 }
1841 
1842 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1843 {
1844 	int i;
1845 	db_printf("PQ_FREE:");
1846 	for (i = 0; i < PQ_L2_SIZE; i++) {
1847 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1848 	}
1849 	db_printf("\n");
1850 
1851 	db_printf("PQ_CACHE:");
1852 	for (i = 0; i < PQ_L2_SIZE; i++) {
1853 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1854 	}
1855 	db_printf("\n");
1856 
1857 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1858 		vm_page_queues[PQ_ACTIVE].lcnt,
1859 		vm_page_queues[PQ_INACTIVE].lcnt);
1860 }
1861 #endif /* DDB */
1862