xref: /freebsd/sys/vm/vm_object.c (revision f4f33ea0c752ff0f9bfad34991d5bbb54e71133d)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107 
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111 
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113 		    int pagerflags, int flags, boolean_t *clearobjflags,
114 		    boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116 		    boolean_t *clearobjflags);
117 static void	vm_object_qcollapse(vm_object_t object);
118 static void	vm_object_vndeallocate(vm_object_t object);
119 
120 /*
121  *	Virtual memory objects maintain the actual data
122  *	associated with allocated virtual memory.  A given
123  *	page of memory exists within exactly one object.
124  *
125  *	An object is only deallocated when all "references"
126  *	are given up.  Only one "reference" to a given
127  *	region of an object should be writeable.
128  *
129  *	Associated with each object is a list of all resident
130  *	memory pages belonging to that object; this list is
131  *	maintained by the "vm_page" module, and locked by the object's
132  *	lock.
133  *
134  *	Each object also records a "pager" routine which is
135  *	used to retrieve (and store) pages to the proper backing
136  *	storage.  In addition, objects may be backed by other
137  *	objects from which they were virtual-copied.
138  *
139  *	The only items within the object structure which are
140  *	modified after time of creation are:
141  *		reference count		locked by object's lock
142  *		pager routine		locked by object's lock
143  *
144  */
145 
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;	/* lock for object list and count */
148 
149 struct vm_object kernel_object_store;
150 
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153 
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158 
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163 
164 static void
165 counter_startup(void)
166 {
167 
168 	object_collapses = counter_u64_alloc(M_WAITOK);
169 	object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172 
173 static uma_zone_t obj_zone;
174 
175 static int vm_object_zinit(void *mem, int size, int flags);
176 
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179 
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183 	vm_object_t object;
184 
185 	object = (vm_object_t)mem;
186 	KASSERT(object->ref_count == 0,
187 	    ("object %p ref_count = %d", object, object->ref_count));
188 	KASSERT(TAILQ_EMPTY(&object->memq),
189 	    ("object %p has resident pages in its memq", object));
190 	KASSERT(vm_radix_is_empty(&object->rtree),
191 	    ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193 	KASSERT(LIST_EMPTY(&object->rvq),
194 	    ("object %p has reservations",
195 	    object));
196 #endif
197 	KASSERT(object->paging_in_progress == 0,
198 	    ("object %p paging_in_progress = %d",
199 	    object, object->paging_in_progress));
200 	KASSERT(object->resident_page_count == 0,
201 	    ("object %p resident_page_count = %d",
202 	    object, object->resident_page_count));
203 	KASSERT(object->shadow_count == 0,
204 	    ("object %p shadow_count = %d",
205 	    object, object->shadow_count));
206 	KASSERT(object->type == OBJT_DEAD,
207 	    ("object %p has non-dead type %d",
208 	    object, object->type));
209 }
210 #endif
211 
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215 	vm_object_t object;
216 
217 	object = (vm_object_t)mem;
218 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219 
220 	/* These are true for any object that has been freed */
221 	object->type = OBJT_DEAD;
222 	object->ref_count = 0;
223 	vm_radix_init(&object->rtree);
224 	object->paging_in_progress = 0;
225 	object->resident_page_count = 0;
226 	object->shadow_count = 0;
227 	object->flags = OBJ_DEAD;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 	return (0);
233 }
234 
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238 
239 	TAILQ_INIT(&object->memq);
240 	LIST_INIT(&object->shadow_head);
241 
242 	object->type = type;
243 	if (type == OBJT_SWAP)
244 		pctrie_init(&object->un_pager.swp.swp_blks);
245 
246 	/*
247 	 * Ensure that swap_pager_swapoff() iteration over object_list
248 	 * sees up to date type and pctrie head if it observed
249 	 * non-dead object.
250 	 */
251 	atomic_thread_fence_rel();
252 
253 	switch (type) {
254 	case OBJT_DEAD:
255 		panic("_vm_object_allocate: can't create OBJT_DEAD");
256 	case OBJT_DEFAULT:
257 	case OBJT_SWAP:
258 		object->flags = OBJ_ONEMAPPING;
259 		break;
260 	case OBJT_DEVICE:
261 	case OBJT_SG:
262 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263 		break;
264 	case OBJT_MGTDEVICE:
265 		object->flags = OBJ_FICTITIOUS;
266 		break;
267 	case OBJT_PHYS:
268 		object->flags = OBJ_UNMANAGED;
269 		break;
270 	case OBJT_VNODE:
271 		object->flags = 0;
272 		break;
273 	default:
274 		panic("_vm_object_allocate: type %d is undefined", type);
275 	}
276 	object->size = size;
277 	object->generation = 1;
278 	object->ref_count = 1;
279 	object->memattr = VM_MEMATTR_DEFAULT;
280 	object->cred = NULL;
281 	object->charge = 0;
282 	object->handle = NULL;
283 	object->backing_object = NULL;
284 	object->backing_object_offset = (vm_ooffset_t) 0;
285 #if VM_NRESERVLEVEL > 0
286 	LIST_INIT(&object->rvq);
287 #endif
288 	umtx_shm_object_init(object);
289 }
290 
291 /*
292  *	vm_object_init:
293  *
294  *	Initialize the VM objects module.
295  */
296 void
297 vm_object_init(void)
298 {
299 	TAILQ_INIT(&vm_object_list);
300 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
301 
302 	rw_init(&kernel_object->lock, "kernel vm object");
303 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
304 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
305 #if VM_NRESERVLEVEL > 0
306 	kernel_object->flags |= OBJ_COLORED;
307 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
308 #endif
309 
310 	/*
311 	 * The lock portion of struct vm_object must be type stable due
312 	 * to vm_pageout_fallback_object_lock locking a vm object
313 	 * without holding any references to it.
314 	 */
315 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
316 #ifdef INVARIANTS
317 	    vm_object_zdtor,
318 #else
319 	    NULL,
320 #endif
321 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
322 
323 	vm_radix_zinit();
324 }
325 
326 void
327 vm_object_clear_flag(vm_object_t object, u_short bits)
328 {
329 
330 	VM_OBJECT_ASSERT_WLOCKED(object);
331 	object->flags &= ~bits;
332 }
333 
334 /*
335  *	Sets the default memory attribute for the specified object.  Pages
336  *	that are allocated to this object are by default assigned this memory
337  *	attribute.
338  *
339  *	Presently, this function must be called before any pages are allocated
340  *	to the object.  In the future, this requirement may be relaxed for
341  *	"default" and "swap" objects.
342  */
343 int
344 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
345 {
346 
347 	VM_OBJECT_ASSERT_WLOCKED(object);
348 	switch (object->type) {
349 	case OBJT_DEFAULT:
350 	case OBJT_DEVICE:
351 	case OBJT_MGTDEVICE:
352 	case OBJT_PHYS:
353 	case OBJT_SG:
354 	case OBJT_SWAP:
355 	case OBJT_VNODE:
356 		if (!TAILQ_EMPTY(&object->memq))
357 			return (KERN_FAILURE);
358 		break;
359 	case OBJT_DEAD:
360 		return (KERN_INVALID_ARGUMENT);
361 	default:
362 		panic("vm_object_set_memattr: object %p is of undefined type",
363 		    object);
364 	}
365 	object->memattr = memattr;
366 	return (KERN_SUCCESS);
367 }
368 
369 void
370 vm_object_pip_add(vm_object_t object, short i)
371 {
372 
373 	VM_OBJECT_ASSERT_WLOCKED(object);
374 	object->paging_in_progress += i;
375 }
376 
377 void
378 vm_object_pip_subtract(vm_object_t object, short i)
379 {
380 
381 	VM_OBJECT_ASSERT_WLOCKED(object);
382 	object->paging_in_progress -= i;
383 }
384 
385 void
386 vm_object_pip_wakeup(vm_object_t object)
387 {
388 
389 	VM_OBJECT_ASSERT_WLOCKED(object);
390 	object->paging_in_progress--;
391 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392 		vm_object_clear_flag(object, OBJ_PIPWNT);
393 		wakeup(object);
394 	}
395 }
396 
397 void
398 vm_object_pip_wakeupn(vm_object_t object, short i)
399 {
400 
401 	VM_OBJECT_ASSERT_WLOCKED(object);
402 	if (i)
403 		object->paging_in_progress -= i;
404 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
405 		vm_object_clear_flag(object, OBJ_PIPWNT);
406 		wakeup(object);
407 	}
408 }
409 
410 void
411 vm_object_pip_wait(vm_object_t object, char *waitid)
412 {
413 
414 	VM_OBJECT_ASSERT_WLOCKED(object);
415 	while (object->paging_in_progress) {
416 		object->flags |= OBJ_PIPWNT;
417 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
418 	}
419 }
420 
421 /*
422  *	vm_object_allocate:
423  *
424  *	Returns a new object with the given size.
425  */
426 vm_object_t
427 vm_object_allocate(objtype_t type, vm_pindex_t size)
428 {
429 	vm_object_t object;
430 
431 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
432 	_vm_object_allocate(type, size, object);
433 	return (object);
434 }
435 
436 
437 /*
438  *	vm_object_reference:
439  *
440  *	Gets another reference to the given object.  Note: OBJ_DEAD
441  *	objects can be referenced during final cleaning.
442  */
443 void
444 vm_object_reference(vm_object_t object)
445 {
446 	if (object == NULL)
447 		return;
448 	VM_OBJECT_WLOCK(object);
449 	vm_object_reference_locked(object);
450 	VM_OBJECT_WUNLOCK(object);
451 }
452 
453 /*
454  *	vm_object_reference_locked:
455  *
456  *	Gets another reference to the given object.
457  *
458  *	The object must be locked.
459  */
460 void
461 vm_object_reference_locked(vm_object_t object)
462 {
463 	struct vnode *vp;
464 
465 	VM_OBJECT_ASSERT_WLOCKED(object);
466 	object->ref_count++;
467 	if (object->type == OBJT_VNODE) {
468 		vp = object->handle;
469 		vref(vp);
470 	}
471 }
472 
473 /*
474  * Handle deallocating an object of type OBJT_VNODE.
475  */
476 static void
477 vm_object_vndeallocate(vm_object_t object)
478 {
479 	struct vnode *vp = (struct vnode *) object->handle;
480 
481 	VM_OBJECT_ASSERT_WLOCKED(object);
482 	KASSERT(object->type == OBJT_VNODE,
483 	    ("vm_object_vndeallocate: not a vnode object"));
484 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
485 #ifdef INVARIANTS
486 	if (object->ref_count == 0) {
487 		vn_printf(vp, "vm_object_vndeallocate ");
488 		panic("vm_object_vndeallocate: bad object reference count");
489 	}
490 #endif
491 
492 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
493 		umtx_shm_object_terminated(object);
494 
495 	/*
496 	 * The test for text of vp vnode does not need a bypass to
497 	 * reach right VV_TEXT there, since it is obtained from
498 	 * object->handle.
499 	 */
500 	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
501 		object->ref_count--;
502 		VM_OBJECT_WUNLOCK(object);
503 		/* vrele may need the vnode lock. */
504 		vrele(vp);
505 	} else {
506 		vhold(vp);
507 		VM_OBJECT_WUNLOCK(object);
508 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
509 		vdrop(vp);
510 		VM_OBJECT_WLOCK(object);
511 		object->ref_count--;
512 		if (object->type == OBJT_DEAD) {
513 			VM_OBJECT_WUNLOCK(object);
514 			VOP_UNLOCK(vp, 0);
515 		} else {
516 			if (object->ref_count == 0)
517 				VOP_UNSET_TEXT(vp);
518 			VM_OBJECT_WUNLOCK(object);
519 			vput(vp);
520 		}
521 	}
522 }
523 
524 /*
525  *	vm_object_deallocate:
526  *
527  *	Release a reference to the specified object,
528  *	gained either through a vm_object_allocate
529  *	or a vm_object_reference call.  When all references
530  *	are gone, storage associated with this object
531  *	may be relinquished.
532  *
533  *	No object may be locked.
534  */
535 void
536 vm_object_deallocate(vm_object_t object)
537 {
538 	vm_object_t temp;
539 	struct vnode *vp;
540 
541 	while (object != NULL) {
542 		VM_OBJECT_WLOCK(object);
543 		if (object->type == OBJT_VNODE) {
544 			vm_object_vndeallocate(object);
545 			return;
546 		}
547 
548 		KASSERT(object->ref_count != 0,
549 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
550 
551 		/*
552 		 * If the reference count goes to 0 we start calling
553 		 * vm_object_terminate() on the object chain.
554 		 * A ref count of 1 may be a special case depending on the
555 		 * shadow count being 0 or 1.
556 		 */
557 		object->ref_count--;
558 		if (object->ref_count > 1) {
559 			VM_OBJECT_WUNLOCK(object);
560 			return;
561 		} else if (object->ref_count == 1) {
562 			if (object->type == OBJT_SWAP &&
563 			    (object->flags & OBJ_TMPFS) != 0) {
564 				vp = object->un_pager.swp.swp_tmpfs;
565 				vhold(vp);
566 				VM_OBJECT_WUNLOCK(object);
567 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
568 				VM_OBJECT_WLOCK(object);
569 				if (object->type == OBJT_DEAD ||
570 				    object->ref_count != 1) {
571 					VM_OBJECT_WUNLOCK(object);
572 					VOP_UNLOCK(vp, 0);
573 					vdrop(vp);
574 					return;
575 				}
576 				if ((object->flags & OBJ_TMPFS) != 0)
577 					VOP_UNSET_TEXT(vp);
578 				VOP_UNLOCK(vp, 0);
579 				vdrop(vp);
580 			}
581 			if (object->shadow_count == 0 &&
582 			    object->handle == NULL &&
583 			    (object->type == OBJT_DEFAULT ||
584 			    (object->type == OBJT_SWAP &&
585 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
586 				vm_object_set_flag(object, OBJ_ONEMAPPING);
587 			} else if ((object->shadow_count == 1) &&
588 			    (object->handle == NULL) &&
589 			    (object->type == OBJT_DEFAULT ||
590 			     object->type == OBJT_SWAP)) {
591 				vm_object_t robject;
592 
593 				robject = LIST_FIRST(&object->shadow_head);
594 				KASSERT(robject != NULL,
595 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
596 					 object->ref_count,
597 					 object->shadow_count));
598 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
599 				    ("shadowed tmpfs v_object %p", object));
600 				if (!VM_OBJECT_TRYWLOCK(robject)) {
601 					/*
602 					 * Avoid a potential deadlock.
603 					 */
604 					object->ref_count++;
605 					VM_OBJECT_WUNLOCK(object);
606 					/*
607 					 * More likely than not the thread
608 					 * holding robject's lock has lower
609 					 * priority than the current thread.
610 					 * Let the lower priority thread run.
611 					 */
612 					pause("vmo_de", 1);
613 					continue;
614 				}
615 				/*
616 				 * Collapse object into its shadow unless its
617 				 * shadow is dead.  In that case, object will
618 				 * be deallocated by the thread that is
619 				 * deallocating its shadow.
620 				 */
621 				if ((robject->flags & OBJ_DEAD) == 0 &&
622 				    (robject->handle == NULL) &&
623 				    (robject->type == OBJT_DEFAULT ||
624 				     robject->type == OBJT_SWAP)) {
625 
626 					robject->ref_count++;
627 retry:
628 					if (robject->paging_in_progress) {
629 						VM_OBJECT_WUNLOCK(object);
630 						vm_object_pip_wait(robject,
631 						    "objde1");
632 						temp = robject->backing_object;
633 						if (object == temp) {
634 							VM_OBJECT_WLOCK(object);
635 							goto retry;
636 						}
637 					} else if (object->paging_in_progress) {
638 						VM_OBJECT_WUNLOCK(robject);
639 						object->flags |= OBJ_PIPWNT;
640 						VM_OBJECT_SLEEP(object, object,
641 						    PDROP | PVM, "objde2", 0);
642 						VM_OBJECT_WLOCK(robject);
643 						temp = robject->backing_object;
644 						if (object == temp) {
645 							VM_OBJECT_WLOCK(object);
646 							goto retry;
647 						}
648 					} else
649 						VM_OBJECT_WUNLOCK(object);
650 
651 					if (robject->ref_count == 1) {
652 						robject->ref_count--;
653 						object = robject;
654 						goto doterm;
655 					}
656 					object = robject;
657 					vm_object_collapse(object);
658 					VM_OBJECT_WUNLOCK(object);
659 					continue;
660 				}
661 				VM_OBJECT_WUNLOCK(robject);
662 			}
663 			VM_OBJECT_WUNLOCK(object);
664 			return;
665 		}
666 doterm:
667 		umtx_shm_object_terminated(object);
668 		temp = object->backing_object;
669 		if (temp != NULL) {
670 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
671 			    ("shadowed tmpfs v_object 2 %p", object));
672 			VM_OBJECT_WLOCK(temp);
673 			LIST_REMOVE(object, shadow_list);
674 			temp->shadow_count--;
675 			VM_OBJECT_WUNLOCK(temp);
676 			object->backing_object = NULL;
677 		}
678 		/*
679 		 * Don't double-terminate, we could be in a termination
680 		 * recursion due to the terminate having to sync data
681 		 * to disk.
682 		 */
683 		if ((object->flags & OBJ_DEAD) == 0)
684 			vm_object_terminate(object);
685 		else
686 			VM_OBJECT_WUNLOCK(object);
687 		object = temp;
688 	}
689 }
690 
691 /*
692  *	vm_object_destroy removes the object from the global object list
693  *      and frees the space for the object.
694  */
695 void
696 vm_object_destroy(vm_object_t object)
697 {
698 
699 	/*
700 	 * Release the allocation charge.
701 	 */
702 	if (object->cred != NULL) {
703 		swap_release_by_cred(object->charge, object->cred);
704 		object->charge = 0;
705 		crfree(object->cred);
706 		object->cred = NULL;
707 	}
708 
709 	/*
710 	 * Free the space for the object.
711 	 */
712 	uma_zfree(obj_zone, object);
713 }
714 
715 /*
716  *	vm_object_terminate_pages removes any remaining pageable pages
717  *	from the object and resets the object to an empty state.
718  */
719 static void
720 vm_object_terminate_pages(vm_object_t object)
721 {
722 	vm_page_t p, p_next;
723 	struct mtx *mtx;
724 
725 	VM_OBJECT_ASSERT_WLOCKED(object);
726 
727 	mtx = NULL;
728 
729 	/*
730 	 * Free any remaining pageable pages.  This also removes them from the
731 	 * paging queues.  However, don't free wired pages, just remove them
732 	 * from the object.  Rather than incrementally removing each page from
733 	 * the object, the page and object are reset to any empty state.
734 	 */
735 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
736 		vm_page_assert_unbusied(p);
737 		if ((object->flags & OBJ_UNMANAGED) == 0)
738 			/*
739 			 * vm_page_free_prep() only needs the page
740 			 * lock for managed pages.
741 			 */
742 			vm_page_change_lock(p, &mtx);
743 		p->object = NULL;
744 		if (p->wire_count != 0)
745 			continue;
746 		VM_CNT_INC(v_pfree);
747 		vm_page_free(p);
748 	}
749 	if (mtx != NULL)
750 		mtx_unlock(mtx);
751 
752 	/*
753 	 * If the object contained any pages, then reset it to an empty state.
754 	 * None of the object's fields, including "resident_page_count", were
755 	 * modified by the preceding loop.
756 	 */
757 	if (object->resident_page_count != 0) {
758 		vm_radix_reclaim_allnodes(&object->rtree);
759 		TAILQ_INIT(&object->memq);
760 		object->resident_page_count = 0;
761 		if (object->type == OBJT_VNODE)
762 			vdrop(object->handle);
763 	}
764 }
765 
766 /*
767  *	vm_object_terminate actually destroys the specified object, freeing
768  *	up all previously used resources.
769  *
770  *	The object must be locked.
771  *	This routine may block.
772  */
773 void
774 vm_object_terminate(vm_object_t object)
775 {
776 
777 	VM_OBJECT_ASSERT_WLOCKED(object);
778 
779 	/*
780 	 * Make sure no one uses us.
781 	 */
782 	vm_object_set_flag(object, OBJ_DEAD);
783 
784 	/*
785 	 * wait for the pageout daemon to be done with the object
786 	 */
787 	vm_object_pip_wait(object, "objtrm");
788 
789 	KASSERT(!object->paging_in_progress,
790 		("vm_object_terminate: pageout in progress"));
791 
792 	/*
793 	 * Clean and free the pages, as appropriate. All references to the
794 	 * object are gone, so we don't need to lock it.
795 	 */
796 	if (object->type == OBJT_VNODE) {
797 		struct vnode *vp = (struct vnode *)object->handle;
798 
799 		/*
800 		 * Clean pages and flush buffers.
801 		 */
802 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
803 		VM_OBJECT_WUNLOCK(object);
804 
805 		vinvalbuf(vp, V_SAVE, 0, 0);
806 
807 		BO_LOCK(&vp->v_bufobj);
808 		vp->v_bufobj.bo_flag |= BO_DEAD;
809 		BO_UNLOCK(&vp->v_bufobj);
810 
811 		VM_OBJECT_WLOCK(object);
812 	}
813 
814 	KASSERT(object->ref_count == 0,
815 		("vm_object_terminate: object with references, ref_count=%d",
816 		object->ref_count));
817 
818 	if ((object->flags & OBJ_PG_DTOR) == 0)
819 		vm_object_terminate_pages(object);
820 
821 #if VM_NRESERVLEVEL > 0
822 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
823 		vm_reserv_break_all(object);
824 #endif
825 
826 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
827 	    object->type == OBJT_SWAP,
828 	    ("%s: non-swap obj %p has cred", __func__, object));
829 
830 	/*
831 	 * Let the pager know object is dead.
832 	 */
833 	vm_pager_deallocate(object);
834 	VM_OBJECT_WUNLOCK(object);
835 
836 	vm_object_destroy(object);
837 }
838 
839 /*
840  * Make the page read-only so that we can clear the object flags.  However, if
841  * this is a nosync mmap then the object is likely to stay dirty so do not
842  * mess with the page and do not clear the object flags.  Returns TRUE if the
843  * page should be flushed, and FALSE otherwise.
844  */
845 static boolean_t
846 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
847 {
848 
849 	/*
850 	 * If we have been asked to skip nosync pages and this is a
851 	 * nosync page, skip it.  Note that the object flags were not
852 	 * cleared in this case so we do not have to set them.
853 	 */
854 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
855 		*clearobjflags = FALSE;
856 		return (FALSE);
857 	} else {
858 		pmap_remove_write(p);
859 		return (p->dirty != 0);
860 	}
861 }
862 
863 /*
864  *	vm_object_page_clean
865  *
866  *	Clean all dirty pages in the specified range of object.  Leaves page
867  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
868  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
869  *	leaving the object dirty.
870  *
871  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
872  *	synchronous clustering mode implementation.
873  *
874  *	Odd semantics: if start == end, we clean everything.
875  *
876  *	The object must be locked.
877  *
878  *	Returns FALSE if some page from the range was not written, as
879  *	reported by the pager, and TRUE otherwise.
880  */
881 boolean_t
882 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
883     int flags)
884 {
885 	vm_page_t np, p;
886 	vm_pindex_t pi, tend, tstart;
887 	int curgeneration, n, pagerflags;
888 	boolean_t clearobjflags, eio, res;
889 
890 	VM_OBJECT_ASSERT_WLOCKED(object);
891 
892 	/*
893 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
894 	 * objects.  The check below prevents the function from
895 	 * operating on non-vnode objects.
896 	 */
897 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
898 	    object->resident_page_count == 0)
899 		return (TRUE);
900 
901 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
902 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
903 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
904 
905 	tstart = OFF_TO_IDX(start);
906 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
907 	clearobjflags = tstart == 0 && tend >= object->size;
908 	res = TRUE;
909 
910 rescan:
911 	curgeneration = object->generation;
912 
913 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
914 		pi = p->pindex;
915 		if (pi >= tend)
916 			break;
917 		np = TAILQ_NEXT(p, listq);
918 		if (p->valid == 0)
919 			continue;
920 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
921 			if (object->generation != curgeneration) {
922 				if ((flags & OBJPC_SYNC) != 0)
923 					goto rescan;
924 				else
925 					clearobjflags = FALSE;
926 			}
927 			np = vm_page_find_least(object, pi);
928 			continue;
929 		}
930 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
931 			continue;
932 
933 		n = vm_object_page_collect_flush(object, p, pagerflags,
934 		    flags, &clearobjflags, &eio);
935 		if (eio) {
936 			res = FALSE;
937 			clearobjflags = FALSE;
938 		}
939 		if (object->generation != curgeneration) {
940 			if ((flags & OBJPC_SYNC) != 0)
941 				goto rescan;
942 			else
943 				clearobjflags = FALSE;
944 		}
945 
946 		/*
947 		 * If the VOP_PUTPAGES() did a truncated write, so
948 		 * that even the first page of the run is not fully
949 		 * written, vm_pageout_flush() returns 0 as the run
950 		 * length.  Since the condition that caused truncated
951 		 * write may be permanent, e.g. exhausted free space,
952 		 * accepting n == 0 would cause an infinite loop.
953 		 *
954 		 * Forwarding the iterator leaves the unwritten page
955 		 * behind, but there is not much we can do there if
956 		 * filesystem refuses to write it.
957 		 */
958 		if (n == 0) {
959 			n = 1;
960 			clearobjflags = FALSE;
961 		}
962 		np = vm_page_find_least(object, pi + n);
963 	}
964 #if 0
965 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
966 #endif
967 
968 	if (clearobjflags)
969 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
970 	return (res);
971 }
972 
973 static int
974 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
975     int flags, boolean_t *clearobjflags, boolean_t *eio)
976 {
977 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
978 	int count, i, mreq, runlen;
979 
980 	vm_page_lock_assert(p, MA_NOTOWNED);
981 	VM_OBJECT_ASSERT_WLOCKED(object);
982 
983 	count = 1;
984 	mreq = 0;
985 
986 	for (tp = p; count < vm_pageout_page_count; count++) {
987 		tp = vm_page_next(tp);
988 		if (tp == NULL || vm_page_busied(tp))
989 			break;
990 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
991 			break;
992 	}
993 
994 	for (p_first = p; count < vm_pageout_page_count; count++) {
995 		tp = vm_page_prev(p_first);
996 		if (tp == NULL || vm_page_busied(tp))
997 			break;
998 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
999 			break;
1000 		p_first = tp;
1001 		mreq++;
1002 	}
1003 
1004 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1005 		ma[i] = tp;
1006 
1007 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1008 	return (runlen);
1009 }
1010 
1011 /*
1012  * Note that there is absolutely no sense in writing out
1013  * anonymous objects, so we track down the vnode object
1014  * to write out.
1015  * We invalidate (remove) all pages from the address space
1016  * for semantic correctness.
1017  *
1018  * If the backing object is a device object with unmanaged pages, then any
1019  * mappings to the specified range of pages must be removed before this
1020  * function is called.
1021  *
1022  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1023  * may start out with a NULL object.
1024  */
1025 boolean_t
1026 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1027     boolean_t syncio, boolean_t invalidate)
1028 {
1029 	vm_object_t backing_object;
1030 	struct vnode *vp;
1031 	struct mount *mp;
1032 	int error, flags, fsync_after;
1033 	boolean_t res;
1034 
1035 	if (object == NULL)
1036 		return (TRUE);
1037 	res = TRUE;
1038 	error = 0;
1039 	VM_OBJECT_WLOCK(object);
1040 	while ((backing_object = object->backing_object) != NULL) {
1041 		VM_OBJECT_WLOCK(backing_object);
1042 		offset += object->backing_object_offset;
1043 		VM_OBJECT_WUNLOCK(object);
1044 		object = backing_object;
1045 		if (object->size < OFF_TO_IDX(offset + size))
1046 			size = IDX_TO_OFF(object->size) - offset;
1047 	}
1048 	/*
1049 	 * Flush pages if writing is allowed, invalidate them
1050 	 * if invalidation requested.  Pages undergoing I/O
1051 	 * will be ignored by vm_object_page_remove().
1052 	 *
1053 	 * We cannot lock the vnode and then wait for paging
1054 	 * to complete without deadlocking against vm_fault.
1055 	 * Instead we simply call vm_object_page_remove() and
1056 	 * allow it to block internally on a page-by-page
1057 	 * basis when it encounters pages undergoing async
1058 	 * I/O.
1059 	 */
1060 	if (object->type == OBJT_VNODE &&
1061 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1062 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1063 		VM_OBJECT_WUNLOCK(object);
1064 		(void) vn_start_write(vp, &mp, V_WAIT);
1065 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1066 		if (syncio && !invalidate && offset == 0 &&
1067 		    atop(size) == object->size) {
1068 			/*
1069 			 * If syncing the whole mapping of the file,
1070 			 * it is faster to schedule all the writes in
1071 			 * async mode, also allowing the clustering,
1072 			 * and then wait for i/o to complete.
1073 			 */
1074 			flags = 0;
1075 			fsync_after = TRUE;
1076 		} else {
1077 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1078 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1079 			fsync_after = FALSE;
1080 		}
1081 		VM_OBJECT_WLOCK(object);
1082 		res = vm_object_page_clean(object, offset, offset + size,
1083 		    flags);
1084 		VM_OBJECT_WUNLOCK(object);
1085 		if (fsync_after)
1086 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1087 		VOP_UNLOCK(vp, 0);
1088 		vn_finished_write(mp);
1089 		if (error != 0)
1090 			res = FALSE;
1091 		VM_OBJECT_WLOCK(object);
1092 	}
1093 	if ((object->type == OBJT_VNODE ||
1094 	     object->type == OBJT_DEVICE) && invalidate) {
1095 		if (object->type == OBJT_DEVICE)
1096 			/*
1097 			 * The option OBJPR_NOTMAPPED must be passed here
1098 			 * because vm_object_page_remove() cannot remove
1099 			 * unmanaged mappings.
1100 			 */
1101 			flags = OBJPR_NOTMAPPED;
1102 		else if (old_msync)
1103 			flags = 0;
1104 		else
1105 			flags = OBJPR_CLEANONLY;
1106 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1107 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1108 	}
1109 	VM_OBJECT_WUNLOCK(object);
1110 	return (res);
1111 }
1112 
1113 /*
1114  * Determine whether the given advice can be applied to the object.  Advice is
1115  * not applied to unmanaged pages since they never belong to page queues, and
1116  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1117  * have been mapped at most once.
1118  */
1119 static bool
1120 vm_object_advice_applies(vm_object_t object, int advice)
1121 {
1122 
1123 	if ((object->flags & OBJ_UNMANAGED) != 0)
1124 		return (false);
1125 	if (advice != MADV_FREE)
1126 		return (true);
1127 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1128 	    (object->flags & OBJ_ONEMAPPING) != 0);
1129 }
1130 
1131 static void
1132 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1133     vm_size_t size)
1134 {
1135 
1136 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1137 		swap_pager_freespace(object, pindex, size);
1138 }
1139 
1140 /*
1141  *	vm_object_madvise:
1142  *
1143  *	Implements the madvise function at the object/page level.
1144  *
1145  *	MADV_WILLNEED	(any object)
1146  *
1147  *	    Activate the specified pages if they are resident.
1148  *
1149  *	MADV_DONTNEED	(any object)
1150  *
1151  *	    Deactivate the specified pages if they are resident.
1152  *
1153  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1154  *			 OBJ_ONEMAPPING only)
1155  *
1156  *	    Deactivate and clean the specified pages if they are
1157  *	    resident.  This permits the process to reuse the pages
1158  *	    without faulting or the kernel to reclaim the pages
1159  *	    without I/O.
1160  */
1161 void
1162 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1163     int advice)
1164 {
1165 	vm_pindex_t tpindex;
1166 	vm_object_t backing_object, tobject;
1167 	vm_page_t m, tm;
1168 
1169 	if (object == NULL)
1170 		return;
1171 
1172 relookup:
1173 	VM_OBJECT_WLOCK(object);
1174 	if (!vm_object_advice_applies(object, advice)) {
1175 		VM_OBJECT_WUNLOCK(object);
1176 		return;
1177 	}
1178 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1179 		tobject = object;
1180 
1181 		/*
1182 		 * If the next page isn't resident in the top-level object, we
1183 		 * need to search the shadow chain.  When applying MADV_FREE, we
1184 		 * take care to release any swap space used to store
1185 		 * non-resident pages.
1186 		 */
1187 		if (m == NULL || pindex < m->pindex) {
1188 			/*
1189 			 * Optimize a common case: if the top-level object has
1190 			 * no backing object, we can skip over the non-resident
1191 			 * range in constant time.
1192 			 */
1193 			if (object->backing_object == NULL) {
1194 				tpindex = (m != NULL && m->pindex < end) ?
1195 				    m->pindex : end;
1196 				vm_object_madvise_freespace(object, advice,
1197 				    pindex, tpindex - pindex);
1198 				if ((pindex = tpindex) == end)
1199 					break;
1200 				goto next_page;
1201 			}
1202 
1203 			tpindex = pindex;
1204 			do {
1205 				vm_object_madvise_freespace(tobject, advice,
1206 				    tpindex, 1);
1207 				/*
1208 				 * Prepare to search the next object in the
1209 				 * chain.
1210 				 */
1211 				backing_object = tobject->backing_object;
1212 				if (backing_object == NULL)
1213 					goto next_pindex;
1214 				VM_OBJECT_WLOCK(backing_object);
1215 				tpindex +=
1216 				    OFF_TO_IDX(tobject->backing_object_offset);
1217 				if (tobject != object)
1218 					VM_OBJECT_WUNLOCK(tobject);
1219 				tobject = backing_object;
1220 				if (!vm_object_advice_applies(tobject, advice))
1221 					goto next_pindex;
1222 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1223 			    NULL);
1224 		} else {
1225 next_page:
1226 			tm = m;
1227 			m = TAILQ_NEXT(m, listq);
1228 		}
1229 
1230 		/*
1231 		 * If the page is not in a normal state, skip it.
1232 		 */
1233 		if (tm->valid != VM_PAGE_BITS_ALL)
1234 			goto next_pindex;
1235 		vm_page_lock(tm);
1236 		if (vm_page_held(tm)) {
1237 			vm_page_unlock(tm);
1238 			goto next_pindex;
1239 		}
1240 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1241 		    ("vm_object_madvise: page %p is fictitious", tm));
1242 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1243 		    ("vm_object_madvise: page %p is not managed", tm));
1244 		if (vm_page_busied(tm)) {
1245 			if (object != tobject)
1246 				VM_OBJECT_WUNLOCK(tobject);
1247 			VM_OBJECT_WUNLOCK(object);
1248 			if (advice == MADV_WILLNEED) {
1249 				/*
1250 				 * Reference the page before unlocking and
1251 				 * sleeping so that the page daemon is less
1252 				 * likely to reclaim it.
1253 				 */
1254 				vm_page_aflag_set(tm, PGA_REFERENCED);
1255 			}
1256 			vm_page_busy_sleep(tm, "madvpo", false);
1257   			goto relookup;
1258 		}
1259 		vm_page_advise(tm, advice);
1260 		vm_page_unlock(tm);
1261 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1262 next_pindex:
1263 		if (tobject != object)
1264 			VM_OBJECT_WUNLOCK(tobject);
1265 	}
1266 	VM_OBJECT_WUNLOCK(object);
1267 }
1268 
1269 /*
1270  *	vm_object_shadow:
1271  *
1272  *	Create a new object which is backed by the
1273  *	specified existing object range.  The source
1274  *	object reference is deallocated.
1275  *
1276  *	The new object and offset into that object
1277  *	are returned in the source parameters.
1278  */
1279 void
1280 vm_object_shadow(
1281 	vm_object_t *object,	/* IN/OUT */
1282 	vm_ooffset_t *offset,	/* IN/OUT */
1283 	vm_size_t length)
1284 {
1285 	vm_object_t source;
1286 	vm_object_t result;
1287 
1288 	source = *object;
1289 
1290 	/*
1291 	 * Don't create the new object if the old object isn't shared.
1292 	 */
1293 	if (source != NULL) {
1294 		VM_OBJECT_WLOCK(source);
1295 		if (source->ref_count == 1 &&
1296 		    source->handle == NULL &&
1297 		    (source->type == OBJT_DEFAULT ||
1298 		     source->type == OBJT_SWAP)) {
1299 			VM_OBJECT_WUNLOCK(source);
1300 			return;
1301 		}
1302 		VM_OBJECT_WUNLOCK(source);
1303 	}
1304 
1305 	/*
1306 	 * Allocate a new object with the given length.
1307 	 */
1308 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1309 
1310 	/*
1311 	 * The new object shadows the source object, adding a reference to it.
1312 	 * Our caller changes his reference to point to the new object,
1313 	 * removing a reference to the source object.  Net result: no change
1314 	 * of reference count.
1315 	 *
1316 	 * Try to optimize the result object's page color when shadowing
1317 	 * in order to maintain page coloring consistency in the combined
1318 	 * shadowed object.
1319 	 */
1320 	result->backing_object = source;
1321 	/*
1322 	 * Store the offset into the source object, and fix up the offset into
1323 	 * the new object.
1324 	 */
1325 	result->backing_object_offset = *offset;
1326 	if (source != NULL) {
1327 		VM_OBJECT_WLOCK(source);
1328 		result->domain = source->domain;
1329 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1330 		source->shadow_count++;
1331 #if VM_NRESERVLEVEL > 0
1332 		result->flags |= source->flags & OBJ_COLORED;
1333 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1334 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1335 #endif
1336 		VM_OBJECT_WUNLOCK(source);
1337 	}
1338 
1339 
1340 	/*
1341 	 * Return the new things
1342 	 */
1343 	*offset = 0;
1344 	*object = result;
1345 }
1346 
1347 /*
1348  *	vm_object_split:
1349  *
1350  * Split the pages in a map entry into a new object.  This affords
1351  * easier removal of unused pages, and keeps object inheritance from
1352  * being a negative impact on memory usage.
1353  */
1354 void
1355 vm_object_split(vm_map_entry_t entry)
1356 {
1357 	vm_page_t m, m_next;
1358 	vm_object_t orig_object, new_object, source;
1359 	vm_pindex_t idx, offidxstart;
1360 	vm_size_t size;
1361 
1362 	orig_object = entry->object.vm_object;
1363 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1364 		return;
1365 	if (orig_object->ref_count <= 1)
1366 		return;
1367 	VM_OBJECT_WUNLOCK(orig_object);
1368 
1369 	offidxstart = OFF_TO_IDX(entry->offset);
1370 	size = atop(entry->end - entry->start);
1371 
1372 	/*
1373 	 * If swap_pager_copy() is later called, it will convert new_object
1374 	 * into a swap object.
1375 	 */
1376 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1377 
1378 	/*
1379 	 * At this point, the new object is still private, so the order in
1380 	 * which the original and new objects are locked does not matter.
1381 	 */
1382 	VM_OBJECT_WLOCK(new_object);
1383 	VM_OBJECT_WLOCK(orig_object);
1384 	new_object->domain = orig_object->domain;
1385 	source = orig_object->backing_object;
1386 	if (source != NULL) {
1387 		VM_OBJECT_WLOCK(source);
1388 		if ((source->flags & OBJ_DEAD) != 0) {
1389 			VM_OBJECT_WUNLOCK(source);
1390 			VM_OBJECT_WUNLOCK(orig_object);
1391 			VM_OBJECT_WUNLOCK(new_object);
1392 			vm_object_deallocate(new_object);
1393 			VM_OBJECT_WLOCK(orig_object);
1394 			return;
1395 		}
1396 		LIST_INSERT_HEAD(&source->shadow_head,
1397 				  new_object, shadow_list);
1398 		source->shadow_count++;
1399 		vm_object_reference_locked(source);	/* for new_object */
1400 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1401 		VM_OBJECT_WUNLOCK(source);
1402 		new_object->backing_object_offset =
1403 			orig_object->backing_object_offset + entry->offset;
1404 		new_object->backing_object = source;
1405 	}
1406 	if (orig_object->cred != NULL) {
1407 		new_object->cred = orig_object->cred;
1408 		crhold(orig_object->cred);
1409 		new_object->charge = ptoa(size);
1410 		KASSERT(orig_object->charge >= ptoa(size),
1411 		    ("orig_object->charge < 0"));
1412 		orig_object->charge -= ptoa(size);
1413 	}
1414 retry:
1415 	m = vm_page_find_least(orig_object, offidxstart);
1416 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1417 	    m = m_next) {
1418 		m_next = TAILQ_NEXT(m, listq);
1419 
1420 		/*
1421 		 * We must wait for pending I/O to complete before we can
1422 		 * rename the page.
1423 		 *
1424 		 * We do not have to VM_PROT_NONE the page as mappings should
1425 		 * not be changed by this operation.
1426 		 */
1427 		if (vm_page_busied(m)) {
1428 			VM_OBJECT_WUNLOCK(new_object);
1429 			vm_page_lock(m);
1430 			VM_OBJECT_WUNLOCK(orig_object);
1431 			vm_page_busy_sleep(m, "spltwt", false);
1432 			VM_OBJECT_WLOCK(orig_object);
1433 			VM_OBJECT_WLOCK(new_object);
1434 			goto retry;
1435 		}
1436 
1437 		/* vm_page_rename() will dirty the page. */
1438 		if (vm_page_rename(m, new_object, idx)) {
1439 			VM_OBJECT_WUNLOCK(new_object);
1440 			VM_OBJECT_WUNLOCK(orig_object);
1441 			vm_radix_wait();
1442 			VM_OBJECT_WLOCK(orig_object);
1443 			VM_OBJECT_WLOCK(new_object);
1444 			goto retry;
1445 		}
1446 #if VM_NRESERVLEVEL > 0
1447 		/*
1448 		 * If some of the reservation's allocated pages remain with
1449 		 * the original object, then transferring the reservation to
1450 		 * the new object is neither particularly beneficial nor
1451 		 * particularly harmful as compared to leaving the reservation
1452 		 * with the original object.  If, however, all of the
1453 		 * reservation's allocated pages are transferred to the new
1454 		 * object, then transferring the reservation is typically
1455 		 * beneficial.  Determining which of these two cases applies
1456 		 * would be more costly than unconditionally renaming the
1457 		 * reservation.
1458 		 */
1459 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1460 #endif
1461 		if (orig_object->type == OBJT_SWAP)
1462 			vm_page_xbusy(m);
1463 	}
1464 	if (orig_object->type == OBJT_SWAP) {
1465 		/*
1466 		 * swap_pager_copy() can sleep, in which case the orig_object's
1467 		 * and new_object's locks are released and reacquired.
1468 		 */
1469 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1470 		TAILQ_FOREACH(m, &new_object->memq, listq)
1471 			vm_page_xunbusy(m);
1472 	}
1473 	VM_OBJECT_WUNLOCK(orig_object);
1474 	VM_OBJECT_WUNLOCK(new_object);
1475 	entry->object.vm_object = new_object;
1476 	entry->offset = 0LL;
1477 	vm_object_deallocate(orig_object);
1478 	VM_OBJECT_WLOCK(new_object);
1479 }
1480 
1481 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1482 #define	OBSC_COLLAPSE_WAIT	0x0004
1483 
1484 static vm_page_t
1485 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1486     int op)
1487 {
1488 	vm_object_t backing_object;
1489 
1490 	VM_OBJECT_ASSERT_WLOCKED(object);
1491 	backing_object = object->backing_object;
1492 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1493 
1494 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1495 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1496 	    ("invalid ownership %p %p %p", p, object, backing_object));
1497 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1498 		return (next);
1499 	if (p != NULL)
1500 		vm_page_lock(p);
1501 	VM_OBJECT_WUNLOCK(object);
1502 	VM_OBJECT_WUNLOCK(backing_object);
1503 	/* The page is only NULL when rename fails. */
1504 	if (p == NULL)
1505 		vm_radix_wait();
1506 	else
1507 		vm_page_busy_sleep(p, "vmocol", false);
1508 	VM_OBJECT_WLOCK(object);
1509 	VM_OBJECT_WLOCK(backing_object);
1510 	return (TAILQ_FIRST(&backing_object->memq));
1511 }
1512 
1513 static bool
1514 vm_object_scan_all_shadowed(vm_object_t object)
1515 {
1516 	vm_object_t backing_object;
1517 	vm_page_t p, pp;
1518 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1519 
1520 	VM_OBJECT_ASSERT_WLOCKED(object);
1521 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1522 
1523 	backing_object = object->backing_object;
1524 
1525 	if (backing_object->type != OBJT_DEFAULT &&
1526 	    backing_object->type != OBJT_SWAP)
1527 		return (false);
1528 
1529 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1530 	p = vm_page_find_least(backing_object, pi);
1531 	ps = swap_pager_find_least(backing_object, pi);
1532 
1533 	/*
1534 	 * Only check pages inside the parent object's range and
1535 	 * inside the parent object's mapping of the backing object.
1536 	 */
1537 	for (;; pi++) {
1538 		if (p != NULL && p->pindex < pi)
1539 			p = TAILQ_NEXT(p, listq);
1540 		if (ps < pi)
1541 			ps = swap_pager_find_least(backing_object, pi);
1542 		if (p == NULL && ps >= backing_object->size)
1543 			break;
1544 		else if (p == NULL)
1545 			pi = ps;
1546 		else
1547 			pi = MIN(p->pindex, ps);
1548 
1549 		new_pindex = pi - backing_offset_index;
1550 		if (new_pindex >= object->size)
1551 			break;
1552 
1553 		/*
1554 		 * See if the parent has the page or if the parent's object
1555 		 * pager has the page.  If the parent has the page but the page
1556 		 * is not valid, the parent's object pager must have the page.
1557 		 *
1558 		 * If this fails, the parent does not completely shadow the
1559 		 * object and we might as well give up now.
1560 		 */
1561 		pp = vm_page_lookup(object, new_pindex);
1562 		if ((pp == NULL || pp->valid == 0) &&
1563 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1564 			return (false);
1565 	}
1566 	return (true);
1567 }
1568 
1569 static bool
1570 vm_object_collapse_scan(vm_object_t object, int op)
1571 {
1572 	vm_object_t backing_object;
1573 	vm_page_t next, p, pp;
1574 	vm_pindex_t backing_offset_index, new_pindex;
1575 
1576 	VM_OBJECT_ASSERT_WLOCKED(object);
1577 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1578 
1579 	backing_object = object->backing_object;
1580 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1581 
1582 	/*
1583 	 * Initial conditions
1584 	 */
1585 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1586 		vm_object_set_flag(backing_object, OBJ_DEAD);
1587 
1588 	/*
1589 	 * Our scan
1590 	 */
1591 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1592 		next = TAILQ_NEXT(p, listq);
1593 		new_pindex = p->pindex - backing_offset_index;
1594 
1595 		/*
1596 		 * Check for busy page
1597 		 */
1598 		if (vm_page_busied(p)) {
1599 			next = vm_object_collapse_scan_wait(object, p, next, op);
1600 			continue;
1601 		}
1602 
1603 		KASSERT(p->object == backing_object,
1604 		    ("vm_object_collapse_scan: object mismatch"));
1605 
1606 		if (p->pindex < backing_offset_index ||
1607 		    new_pindex >= object->size) {
1608 			if (backing_object->type == OBJT_SWAP)
1609 				swap_pager_freespace(backing_object, p->pindex,
1610 				    1);
1611 
1612 			/*
1613 			 * Page is out of the parent object's range, we can
1614 			 * simply destroy it.
1615 			 */
1616 			vm_page_lock(p);
1617 			KASSERT(!pmap_page_is_mapped(p),
1618 			    ("freeing mapped page %p", p));
1619 			if (p->wire_count == 0)
1620 				vm_page_free(p);
1621 			else
1622 				vm_page_remove(p);
1623 			vm_page_unlock(p);
1624 			continue;
1625 		}
1626 
1627 		pp = vm_page_lookup(object, new_pindex);
1628 		if (pp != NULL && vm_page_busied(pp)) {
1629 			/*
1630 			 * The page in the parent is busy and possibly not
1631 			 * (yet) valid.  Until its state is finalized by the
1632 			 * busy bit owner, we can't tell whether it shadows the
1633 			 * original page.  Therefore, we must either skip it
1634 			 * and the original (backing_object) page or wait for
1635 			 * its state to be finalized.
1636 			 *
1637 			 * This is due to a race with vm_fault() where we must
1638 			 * unbusy the original (backing_obj) page before we can
1639 			 * (re)lock the parent.  Hence we can get here.
1640 			 */
1641 			next = vm_object_collapse_scan_wait(object, pp, next,
1642 			    op);
1643 			continue;
1644 		}
1645 
1646 		KASSERT(pp == NULL || pp->valid != 0,
1647 		    ("unbusy invalid page %p", pp));
1648 
1649 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1650 			NULL)) {
1651 			/*
1652 			 * The page already exists in the parent OR swap exists
1653 			 * for this location in the parent.  Leave the parent's
1654 			 * page alone.  Destroy the original page from the
1655 			 * backing object.
1656 			 */
1657 			if (backing_object->type == OBJT_SWAP)
1658 				swap_pager_freespace(backing_object, p->pindex,
1659 				    1);
1660 			vm_page_lock(p);
1661 			KASSERT(!pmap_page_is_mapped(p),
1662 			    ("freeing mapped page %p", p));
1663 			if (p->wire_count == 0)
1664 				vm_page_free(p);
1665 			else
1666 				vm_page_remove(p);
1667 			vm_page_unlock(p);
1668 			continue;
1669 		}
1670 
1671 		/*
1672 		 * Page does not exist in parent, rename the page from the
1673 		 * backing object to the main object.
1674 		 *
1675 		 * If the page was mapped to a process, it can remain mapped
1676 		 * through the rename.  vm_page_rename() will dirty the page.
1677 		 */
1678 		if (vm_page_rename(p, object, new_pindex)) {
1679 			next = vm_object_collapse_scan_wait(object, NULL, next,
1680 			    op);
1681 			continue;
1682 		}
1683 
1684 		/* Use the old pindex to free the right page. */
1685 		if (backing_object->type == OBJT_SWAP)
1686 			swap_pager_freespace(backing_object,
1687 			    new_pindex + backing_offset_index, 1);
1688 
1689 #if VM_NRESERVLEVEL > 0
1690 		/*
1691 		 * Rename the reservation.
1692 		 */
1693 		vm_reserv_rename(p, object, backing_object,
1694 		    backing_offset_index);
1695 #endif
1696 	}
1697 	return (true);
1698 }
1699 
1700 
1701 /*
1702  * this version of collapse allows the operation to occur earlier and
1703  * when paging_in_progress is true for an object...  This is not a complete
1704  * operation, but should plug 99.9% of the rest of the leaks.
1705  */
1706 static void
1707 vm_object_qcollapse(vm_object_t object)
1708 {
1709 	vm_object_t backing_object = object->backing_object;
1710 
1711 	VM_OBJECT_ASSERT_WLOCKED(object);
1712 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1713 
1714 	if (backing_object->ref_count != 1)
1715 		return;
1716 
1717 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1718 }
1719 
1720 /*
1721  *	vm_object_collapse:
1722  *
1723  *	Collapse an object with the object backing it.
1724  *	Pages in the backing object are moved into the
1725  *	parent, and the backing object is deallocated.
1726  */
1727 void
1728 vm_object_collapse(vm_object_t object)
1729 {
1730 	vm_object_t backing_object, new_backing_object;
1731 
1732 	VM_OBJECT_ASSERT_WLOCKED(object);
1733 
1734 	while (TRUE) {
1735 		/*
1736 		 * Verify that the conditions are right for collapse:
1737 		 *
1738 		 * The object exists and the backing object exists.
1739 		 */
1740 		if ((backing_object = object->backing_object) == NULL)
1741 			break;
1742 
1743 		/*
1744 		 * we check the backing object first, because it is most likely
1745 		 * not collapsable.
1746 		 */
1747 		VM_OBJECT_WLOCK(backing_object);
1748 		if (backing_object->handle != NULL ||
1749 		    (backing_object->type != OBJT_DEFAULT &&
1750 		     backing_object->type != OBJT_SWAP) ||
1751 		    (backing_object->flags & OBJ_DEAD) ||
1752 		    object->handle != NULL ||
1753 		    (object->type != OBJT_DEFAULT &&
1754 		     object->type != OBJT_SWAP) ||
1755 		    (object->flags & OBJ_DEAD)) {
1756 			VM_OBJECT_WUNLOCK(backing_object);
1757 			break;
1758 		}
1759 
1760 		if (object->paging_in_progress != 0 ||
1761 		    backing_object->paging_in_progress != 0) {
1762 			vm_object_qcollapse(object);
1763 			VM_OBJECT_WUNLOCK(backing_object);
1764 			break;
1765 		}
1766 
1767 		/*
1768 		 * We know that we can either collapse the backing object (if
1769 		 * the parent is the only reference to it) or (perhaps) have
1770 		 * the parent bypass the object if the parent happens to shadow
1771 		 * all the resident pages in the entire backing object.
1772 		 *
1773 		 * This is ignoring pager-backed pages such as swap pages.
1774 		 * vm_object_collapse_scan fails the shadowing test in this
1775 		 * case.
1776 		 */
1777 		if (backing_object->ref_count == 1) {
1778 			vm_object_pip_add(object, 1);
1779 			vm_object_pip_add(backing_object, 1);
1780 
1781 			/*
1782 			 * If there is exactly one reference to the backing
1783 			 * object, we can collapse it into the parent.
1784 			 */
1785 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1786 
1787 #if VM_NRESERVLEVEL > 0
1788 			/*
1789 			 * Break any reservations from backing_object.
1790 			 */
1791 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1792 				vm_reserv_break_all(backing_object);
1793 #endif
1794 
1795 			/*
1796 			 * Move the pager from backing_object to object.
1797 			 */
1798 			if (backing_object->type == OBJT_SWAP) {
1799 				/*
1800 				 * swap_pager_copy() can sleep, in which case
1801 				 * the backing_object's and object's locks are
1802 				 * released and reacquired.
1803 				 * Since swap_pager_copy() is being asked to
1804 				 * destroy the source, it will change the
1805 				 * backing_object's type to OBJT_DEFAULT.
1806 				 */
1807 				swap_pager_copy(
1808 				    backing_object,
1809 				    object,
1810 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1811 			}
1812 			/*
1813 			 * Object now shadows whatever backing_object did.
1814 			 * Note that the reference to
1815 			 * backing_object->backing_object moves from within
1816 			 * backing_object to within object.
1817 			 */
1818 			LIST_REMOVE(object, shadow_list);
1819 			backing_object->shadow_count--;
1820 			if (backing_object->backing_object) {
1821 				VM_OBJECT_WLOCK(backing_object->backing_object);
1822 				LIST_REMOVE(backing_object, shadow_list);
1823 				LIST_INSERT_HEAD(
1824 				    &backing_object->backing_object->shadow_head,
1825 				    object, shadow_list);
1826 				/*
1827 				 * The shadow_count has not changed.
1828 				 */
1829 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1830 			}
1831 			object->backing_object = backing_object->backing_object;
1832 			object->backing_object_offset +=
1833 			    backing_object->backing_object_offset;
1834 
1835 			/*
1836 			 * Discard backing_object.
1837 			 *
1838 			 * Since the backing object has no pages, no pager left,
1839 			 * and no object references within it, all that is
1840 			 * necessary is to dispose of it.
1841 			 */
1842 			KASSERT(backing_object->ref_count == 1, (
1843 "backing_object %p was somehow re-referenced during collapse!",
1844 			    backing_object));
1845 			vm_object_pip_wakeup(backing_object);
1846 			backing_object->type = OBJT_DEAD;
1847 			backing_object->ref_count = 0;
1848 			VM_OBJECT_WUNLOCK(backing_object);
1849 			vm_object_destroy(backing_object);
1850 
1851 			vm_object_pip_wakeup(object);
1852 			counter_u64_add(object_collapses, 1);
1853 		} else {
1854 			/*
1855 			 * If we do not entirely shadow the backing object,
1856 			 * there is nothing we can do so we give up.
1857 			 */
1858 			if (object->resident_page_count != object->size &&
1859 			    !vm_object_scan_all_shadowed(object)) {
1860 				VM_OBJECT_WUNLOCK(backing_object);
1861 				break;
1862 			}
1863 
1864 			/*
1865 			 * Make the parent shadow the next object in the
1866 			 * chain.  Deallocating backing_object will not remove
1867 			 * it, since its reference count is at least 2.
1868 			 */
1869 			LIST_REMOVE(object, shadow_list);
1870 			backing_object->shadow_count--;
1871 
1872 			new_backing_object = backing_object->backing_object;
1873 			if ((object->backing_object = new_backing_object) != NULL) {
1874 				VM_OBJECT_WLOCK(new_backing_object);
1875 				LIST_INSERT_HEAD(
1876 				    &new_backing_object->shadow_head,
1877 				    object,
1878 				    shadow_list
1879 				);
1880 				new_backing_object->shadow_count++;
1881 				vm_object_reference_locked(new_backing_object);
1882 				VM_OBJECT_WUNLOCK(new_backing_object);
1883 				object->backing_object_offset +=
1884 					backing_object->backing_object_offset;
1885 			}
1886 
1887 			/*
1888 			 * Drop the reference count on backing_object. Since
1889 			 * its ref_count was at least 2, it will not vanish.
1890 			 */
1891 			backing_object->ref_count--;
1892 			VM_OBJECT_WUNLOCK(backing_object);
1893 			counter_u64_add(object_bypasses, 1);
1894 		}
1895 
1896 		/*
1897 		 * Try again with this object's new backing object.
1898 		 */
1899 	}
1900 }
1901 
1902 /*
1903  *	vm_object_page_remove:
1904  *
1905  *	For the given object, either frees or invalidates each of the
1906  *	specified pages.  In general, a page is freed.  However, if a page is
1907  *	wired for any reason other than the existence of a managed, wired
1908  *	mapping, then it may be invalidated but not removed from the object.
1909  *	Pages are specified by the given range ["start", "end") and the option
1910  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1911  *	extends from "start" to the end of the object.  If the option
1912  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1913  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1914  *	specified, then the pages within the specified range must have no
1915  *	mappings.  Otherwise, if this option is not specified, any mappings to
1916  *	the specified pages are removed before the pages are freed or
1917  *	invalidated.
1918  *
1919  *	In general, this operation should only be performed on objects that
1920  *	contain managed pages.  There are, however, two exceptions.  First, it
1921  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1922  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1923  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1924  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1925  *
1926  *	The object must be locked.
1927  */
1928 void
1929 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1930     int options)
1931 {
1932 	vm_page_t p, next;
1933 	struct mtx *mtx;
1934 
1935 	VM_OBJECT_ASSERT_WLOCKED(object);
1936 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1937 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1938 	    ("vm_object_page_remove: illegal options for object %p", object));
1939 	if (object->resident_page_count == 0)
1940 		return;
1941 	vm_object_pip_add(object, 1);
1942 again:
1943 	p = vm_page_find_least(object, start);
1944 	mtx = NULL;
1945 
1946 	/*
1947 	 * Here, the variable "p" is either (1) the page with the least pindex
1948 	 * greater than or equal to the parameter "start" or (2) NULL.
1949 	 */
1950 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1951 		next = TAILQ_NEXT(p, listq);
1952 
1953 		/*
1954 		 * If the page is wired for any reason besides the existence
1955 		 * of managed, wired mappings, then it cannot be freed.  For
1956 		 * example, fictitious pages, which represent device memory,
1957 		 * are inherently wired and cannot be freed.  They can,
1958 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1959 		 * not specified.
1960 		 */
1961 		vm_page_change_lock(p, &mtx);
1962 		if (vm_page_xbusied(p)) {
1963 			VM_OBJECT_WUNLOCK(object);
1964 			vm_page_busy_sleep(p, "vmopax", true);
1965 			VM_OBJECT_WLOCK(object);
1966 			goto again;
1967 		}
1968 		if (p->wire_count != 0) {
1969 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1970 			    object->ref_count != 0)
1971 				pmap_remove_all(p);
1972 			if ((options & OBJPR_CLEANONLY) == 0) {
1973 				p->valid = 0;
1974 				vm_page_undirty(p);
1975 			}
1976 			continue;
1977 		}
1978 		if (vm_page_busied(p)) {
1979 			VM_OBJECT_WUNLOCK(object);
1980 			vm_page_busy_sleep(p, "vmopar", false);
1981 			VM_OBJECT_WLOCK(object);
1982 			goto again;
1983 		}
1984 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1985 		    ("vm_object_page_remove: page %p is fictitious", p));
1986 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1987 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1988 			    object->ref_count != 0)
1989 				pmap_remove_write(p);
1990 			if (p->dirty != 0)
1991 				continue;
1992 		}
1993 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1994 			pmap_remove_all(p);
1995 		vm_page_free(p);
1996 	}
1997 	if (mtx != NULL)
1998 		mtx_unlock(mtx);
1999 	vm_object_pip_wakeup(object);
2000 }
2001 
2002 /*
2003  *	vm_object_page_noreuse:
2004  *
2005  *	For the given object, attempt to move the specified pages to
2006  *	the head of the inactive queue.  This bypasses regular LRU
2007  *	operation and allows the pages to be reused quickly under memory
2008  *	pressure.  If a page is wired for any reason, then it will not
2009  *	be queued.  Pages are specified by the range ["start", "end").
2010  *	As a special case, if "end" is zero, then the range extends from
2011  *	"start" to the end of the object.
2012  *
2013  *	This operation should only be performed on objects that
2014  *	contain non-fictitious, managed pages.
2015  *
2016  *	The object must be locked.
2017  */
2018 void
2019 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2020 {
2021 	struct mtx *mtx;
2022 	vm_page_t p, next;
2023 
2024 	VM_OBJECT_ASSERT_LOCKED(object);
2025 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2026 	    ("vm_object_page_noreuse: illegal object %p", object));
2027 	if (object->resident_page_count == 0)
2028 		return;
2029 	p = vm_page_find_least(object, start);
2030 
2031 	/*
2032 	 * Here, the variable "p" is either (1) the page with the least pindex
2033 	 * greater than or equal to the parameter "start" or (2) NULL.
2034 	 */
2035 	mtx = NULL;
2036 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2037 		next = TAILQ_NEXT(p, listq);
2038 		vm_page_change_lock(p, &mtx);
2039 		vm_page_deactivate_noreuse(p);
2040 	}
2041 	if (mtx != NULL)
2042 		mtx_unlock(mtx);
2043 }
2044 
2045 /*
2046  *	Populate the specified range of the object with valid pages.  Returns
2047  *	TRUE if the range is successfully populated and FALSE otherwise.
2048  *
2049  *	Note: This function should be optimized to pass a larger array of
2050  *	pages to vm_pager_get_pages() before it is applied to a non-
2051  *	OBJT_DEVICE object.
2052  *
2053  *	The object must be locked.
2054  */
2055 boolean_t
2056 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2057 {
2058 	vm_page_t m;
2059 	vm_pindex_t pindex;
2060 	int rv;
2061 
2062 	VM_OBJECT_ASSERT_WLOCKED(object);
2063 	for (pindex = start; pindex < end; pindex++) {
2064 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2065 		if (m->valid != VM_PAGE_BITS_ALL) {
2066 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2067 			if (rv != VM_PAGER_OK) {
2068 				vm_page_lock(m);
2069 				vm_page_free(m);
2070 				vm_page_unlock(m);
2071 				break;
2072 			}
2073 		}
2074 		/*
2075 		 * Keep "m" busy because a subsequent iteration may unlock
2076 		 * the object.
2077 		 */
2078 	}
2079 	if (pindex > start) {
2080 		m = vm_page_lookup(object, start);
2081 		while (m != NULL && m->pindex < pindex) {
2082 			vm_page_xunbusy(m);
2083 			m = TAILQ_NEXT(m, listq);
2084 		}
2085 	}
2086 	return (pindex == end);
2087 }
2088 
2089 /*
2090  *	Routine:	vm_object_coalesce
2091  *	Function:	Coalesces two objects backing up adjoining
2092  *			regions of memory into a single object.
2093  *
2094  *	returns TRUE if objects were combined.
2095  *
2096  *	NOTE:	Only works at the moment if the second object is NULL -
2097  *		if it's not, which object do we lock first?
2098  *
2099  *	Parameters:
2100  *		prev_object	First object to coalesce
2101  *		prev_offset	Offset into prev_object
2102  *		prev_size	Size of reference to prev_object
2103  *		next_size	Size of reference to the second object
2104  *		reserved	Indicator that extension region has
2105  *				swap accounted for
2106  *
2107  *	Conditions:
2108  *	The object must *not* be locked.
2109  */
2110 boolean_t
2111 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2112     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2113 {
2114 	vm_pindex_t next_pindex;
2115 
2116 	if (prev_object == NULL)
2117 		return (TRUE);
2118 	VM_OBJECT_WLOCK(prev_object);
2119 	if ((prev_object->type != OBJT_DEFAULT &&
2120 	    prev_object->type != OBJT_SWAP) ||
2121 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2122 		VM_OBJECT_WUNLOCK(prev_object);
2123 		return (FALSE);
2124 	}
2125 
2126 	/*
2127 	 * Try to collapse the object first
2128 	 */
2129 	vm_object_collapse(prev_object);
2130 
2131 	/*
2132 	 * Can't coalesce if: . more than one reference . paged out . shadows
2133 	 * another object . has a copy elsewhere (any of which mean that the
2134 	 * pages not mapped to prev_entry may be in use anyway)
2135 	 */
2136 	if (prev_object->backing_object != NULL) {
2137 		VM_OBJECT_WUNLOCK(prev_object);
2138 		return (FALSE);
2139 	}
2140 
2141 	prev_size >>= PAGE_SHIFT;
2142 	next_size >>= PAGE_SHIFT;
2143 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2144 
2145 	if (prev_object->ref_count > 1 &&
2146 	    prev_object->size != next_pindex &&
2147 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2148 		VM_OBJECT_WUNLOCK(prev_object);
2149 		return (FALSE);
2150 	}
2151 
2152 	/*
2153 	 * Account for the charge.
2154 	 */
2155 	if (prev_object->cred != NULL) {
2156 
2157 		/*
2158 		 * If prev_object was charged, then this mapping,
2159 		 * although not charged now, may become writable
2160 		 * later. Non-NULL cred in the object would prevent
2161 		 * swap reservation during enabling of the write
2162 		 * access, so reserve swap now. Failed reservation
2163 		 * cause allocation of the separate object for the map
2164 		 * entry, and swap reservation for this entry is
2165 		 * managed in appropriate time.
2166 		 */
2167 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2168 		    prev_object->cred)) {
2169 			VM_OBJECT_WUNLOCK(prev_object);
2170 			return (FALSE);
2171 		}
2172 		prev_object->charge += ptoa(next_size);
2173 	}
2174 
2175 	/*
2176 	 * Remove any pages that may still be in the object from a previous
2177 	 * deallocation.
2178 	 */
2179 	if (next_pindex < prev_object->size) {
2180 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2181 		    next_size, 0);
2182 		if (prev_object->type == OBJT_SWAP)
2183 			swap_pager_freespace(prev_object,
2184 					     next_pindex, next_size);
2185 #if 0
2186 		if (prev_object->cred != NULL) {
2187 			KASSERT(prev_object->charge >=
2188 			    ptoa(prev_object->size - next_pindex),
2189 			    ("object %p overcharged 1 %jx %jx", prev_object,
2190 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2191 			prev_object->charge -= ptoa(prev_object->size -
2192 			    next_pindex);
2193 		}
2194 #endif
2195 	}
2196 
2197 	/*
2198 	 * Extend the object if necessary.
2199 	 */
2200 	if (next_pindex + next_size > prev_object->size)
2201 		prev_object->size = next_pindex + next_size;
2202 
2203 	VM_OBJECT_WUNLOCK(prev_object);
2204 	return (TRUE);
2205 }
2206 
2207 void
2208 vm_object_set_writeable_dirty(vm_object_t object)
2209 {
2210 
2211 	VM_OBJECT_ASSERT_WLOCKED(object);
2212 	if (object->type != OBJT_VNODE) {
2213 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2214 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2215 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2216 		}
2217 		return;
2218 	}
2219 	object->generation++;
2220 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2221 		return;
2222 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2223 }
2224 
2225 /*
2226  *	vm_object_unwire:
2227  *
2228  *	For each page offset within the specified range of the given object,
2229  *	find the highest-level page in the shadow chain and unwire it.  A page
2230  *	must exist at every page offset, and the highest-level page must be
2231  *	wired.
2232  */
2233 void
2234 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2235     uint8_t queue)
2236 {
2237 	vm_object_t tobject, t1object;
2238 	vm_page_t m, tm;
2239 	vm_pindex_t end_pindex, pindex, tpindex;
2240 	int depth, locked_depth;
2241 
2242 	KASSERT((offset & PAGE_MASK) == 0,
2243 	    ("vm_object_unwire: offset is not page aligned"));
2244 	KASSERT((length & PAGE_MASK) == 0,
2245 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2246 	/* The wired count of a fictitious page never changes. */
2247 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2248 		return;
2249 	pindex = OFF_TO_IDX(offset);
2250 	end_pindex = pindex + atop(length);
2251 again:
2252 	locked_depth = 1;
2253 	VM_OBJECT_RLOCK(object);
2254 	m = vm_page_find_least(object, pindex);
2255 	while (pindex < end_pindex) {
2256 		if (m == NULL || pindex < m->pindex) {
2257 			/*
2258 			 * The first object in the shadow chain doesn't
2259 			 * contain a page at the current index.  Therefore,
2260 			 * the page must exist in a backing object.
2261 			 */
2262 			tobject = object;
2263 			tpindex = pindex;
2264 			depth = 0;
2265 			do {
2266 				tpindex +=
2267 				    OFF_TO_IDX(tobject->backing_object_offset);
2268 				tobject = tobject->backing_object;
2269 				KASSERT(tobject != NULL,
2270 				    ("vm_object_unwire: missing page"));
2271 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2272 					goto next_page;
2273 				depth++;
2274 				if (depth == locked_depth) {
2275 					locked_depth++;
2276 					VM_OBJECT_RLOCK(tobject);
2277 				}
2278 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2279 			    NULL);
2280 		} else {
2281 			tm = m;
2282 			m = TAILQ_NEXT(m, listq);
2283 		}
2284 		vm_page_lock(tm);
2285 		if (vm_page_xbusied(tm)) {
2286 			for (tobject = object; locked_depth >= 1;
2287 			    locked_depth--) {
2288 				t1object = tobject->backing_object;
2289 				VM_OBJECT_RUNLOCK(tobject);
2290 				tobject = t1object;
2291 			}
2292 			vm_page_busy_sleep(tm, "unwbo", true);
2293 			goto again;
2294 		}
2295 		vm_page_unwire(tm, queue);
2296 		vm_page_unlock(tm);
2297 next_page:
2298 		pindex++;
2299 	}
2300 	/* Release the accumulated object locks. */
2301 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2302 		t1object = tobject->backing_object;
2303 		VM_OBJECT_RUNLOCK(tobject);
2304 		tobject = t1object;
2305 	}
2306 }
2307 
2308 struct vnode *
2309 vm_object_vnode(vm_object_t object)
2310 {
2311 
2312 	VM_OBJECT_ASSERT_LOCKED(object);
2313 	if (object->type == OBJT_VNODE)
2314 		return (object->handle);
2315 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2316 		return (object->un_pager.swp.swp_tmpfs);
2317 	return (NULL);
2318 }
2319 
2320 static int
2321 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2322 {
2323 	struct kinfo_vmobject *kvo;
2324 	char *fullpath, *freepath;
2325 	struct vnode *vp;
2326 	struct vattr va;
2327 	vm_object_t obj;
2328 	vm_page_t m;
2329 	int count, error;
2330 
2331 	if (req->oldptr == NULL) {
2332 		/*
2333 		 * If an old buffer has not been provided, generate an
2334 		 * estimate of the space needed for a subsequent call.
2335 		 */
2336 		mtx_lock(&vm_object_list_mtx);
2337 		count = 0;
2338 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2339 			if (obj->type == OBJT_DEAD)
2340 				continue;
2341 			count++;
2342 		}
2343 		mtx_unlock(&vm_object_list_mtx);
2344 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2345 		    count * 11 / 10));
2346 	}
2347 
2348 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2349 	error = 0;
2350 
2351 	/*
2352 	 * VM objects are type stable and are never removed from the
2353 	 * list once added.  This allows us to safely read obj->object_list
2354 	 * after reacquiring the VM object lock.
2355 	 */
2356 	mtx_lock(&vm_object_list_mtx);
2357 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2358 		if (obj->type == OBJT_DEAD)
2359 			continue;
2360 		VM_OBJECT_RLOCK(obj);
2361 		if (obj->type == OBJT_DEAD) {
2362 			VM_OBJECT_RUNLOCK(obj);
2363 			continue;
2364 		}
2365 		mtx_unlock(&vm_object_list_mtx);
2366 		kvo->kvo_size = ptoa(obj->size);
2367 		kvo->kvo_resident = obj->resident_page_count;
2368 		kvo->kvo_ref_count = obj->ref_count;
2369 		kvo->kvo_shadow_count = obj->shadow_count;
2370 		kvo->kvo_memattr = obj->memattr;
2371 		kvo->kvo_active = 0;
2372 		kvo->kvo_inactive = 0;
2373 		TAILQ_FOREACH(m, &obj->memq, listq) {
2374 			/*
2375 			 * A page may belong to the object but be
2376 			 * dequeued and set to PQ_NONE while the
2377 			 * object lock is not held.  This makes the
2378 			 * reads of m->queue below racy, and we do not
2379 			 * count pages set to PQ_NONE.  However, this
2380 			 * sysctl is only meant to give an
2381 			 * approximation of the system anyway.
2382 			 */
2383 			if (m->queue == PQ_ACTIVE)
2384 				kvo->kvo_active++;
2385 			else if (m->queue == PQ_INACTIVE)
2386 				kvo->kvo_inactive++;
2387 		}
2388 
2389 		kvo->kvo_vn_fileid = 0;
2390 		kvo->kvo_vn_fsid = 0;
2391 		kvo->kvo_vn_fsid_freebsd11 = 0;
2392 		freepath = NULL;
2393 		fullpath = "";
2394 		vp = NULL;
2395 		switch (obj->type) {
2396 		case OBJT_DEFAULT:
2397 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2398 			break;
2399 		case OBJT_VNODE:
2400 			kvo->kvo_type = KVME_TYPE_VNODE;
2401 			vp = obj->handle;
2402 			vref(vp);
2403 			break;
2404 		case OBJT_SWAP:
2405 			kvo->kvo_type = KVME_TYPE_SWAP;
2406 			break;
2407 		case OBJT_DEVICE:
2408 			kvo->kvo_type = KVME_TYPE_DEVICE;
2409 			break;
2410 		case OBJT_PHYS:
2411 			kvo->kvo_type = KVME_TYPE_PHYS;
2412 			break;
2413 		case OBJT_DEAD:
2414 			kvo->kvo_type = KVME_TYPE_DEAD;
2415 			break;
2416 		case OBJT_SG:
2417 			kvo->kvo_type = KVME_TYPE_SG;
2418 			break;
2419 		case OBJT_MGTDEVICE:
2420 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2421 			break;
2422 		default:
2423 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2424 			break;
2425 		}
2426 		VM_OBJECT_RUNLOCK(obj);
2427 		if (vp != NULL) {
2428 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2429 			vn_lock(vp, LK_SHARED | LK_RETRY);
2430 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2431 				kvo->kvo_vn_fileid = va.va_fileid;
2432 				kvo->kvo_vn_fsid = va.va_fsid;
2433 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2434 								/* truncate */
2435 			}
2436 			vput(vp);
2437 		}
2438 
2439 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2440 		if (freepath != NULL)
2441 			free(freepath, M_TEMP);
2442 
2443 		/* Pack record size down */
2444 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2445 		    + strlen(kvo->kvo_path) + 1;
2446 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2447 		    sizeof(uint64_t));
2448 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2449 		mtx_lock(&vm_object_list_mtx);
2450 		if (error)
2451 			break;
2452 	}
2453 	mtx_unlock(&vm_object_list_mtx);
2454 	free(kvo, M_TEMP);
2455 	return (error);
2456 }
2457 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2458     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2459     "List of VM objects");
2460 
2461 #include "opt_ddb.h"
2462 #ifdef DDB
2463 #include <sys/kernel.h>
2464 
2465 #include <sys/cons.h>
2466 
2467 #include <ddb/ddb.h>
2468 
2469 static int
2470 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2471 {
2472 	vm_map_t tmpm;
2473 	vm_map_entry_t tmpe;
2474 	vm_object_t obj;
2475 	int entcount;
2476 
2477 	if (map == 0)
2478 		return 0;
2479 
2480 	if (entry == 0) {
2481 		tmpe = map->header.next;
2482 		entcount = map->nentries;
2483 		while (entcount-- && (tmpe != &map->header)) {
2484 			if (_vm_object_in_map(map, object, tmpe)) {
2485 				return 1;
2486 			}
2487 			tmpe = tmpe->next;
2488 		}
2489 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2490 		tmpm = entry->object.sub_map;
2491 		tmpe = tmpm->header.next;
2492 		entcount = tmpm->nentries;
2493 		while (entcount-- && tmpe != &tmpm->header) {
2494 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2495 				return 1;
2496 			}
2497 			tmpe = tmpe->next;
2498 		}
2499 	} else if ((obj = entry->object.vm_object) != NULL) {
2500 		for (; obj; obj = obj->backing_object)
2501 			if (obj == object) {
2502 				return 1;
2503 			}
2504 	}
2505 	return 0;
2506 }
2507 
2508 static int
2509 vm_object_in_map(vm_object_t object)
2510 {
2511 	struct proc *p;
2512 
2513 	/* sx_slock(&allproc_lock); */
2514 	FOREACH_PROC_IN_SYSTEM(p) {
2515 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2516 			continue;
2517 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2518 			/* sx_sunlock(&allproc_lock); */
2519 			return 1;
2520 		}
2521 	}
2522 	/* sx_sunlock(&allproc_lock); */
2523 	if (_vm_object_in_map(kernel_map, object, 0))
2524 		return 1;
2525 	return 0;
2526 }
2527 
2528 DB_SHOW_COMMAND(vmochk, vm_object_check)
2529 {
2530 	vm_object_t object;
2531 
2532 	/*
2533 	 * make sure that internal objs are in a map somewhere
2534 	 * and none have zero ref counts.
2535 	 */
2536 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2537 		if (object->handle == NULL &&
2538 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2539 			if (object->ref_count == 0) {
2540 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2541 					(long)object->size);
2542 			}
2543 			if (!vm_object_in_map(object)) {
2544 				db_printf(
2545 			"vmochk: internal obj is not in a map: "
2546 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2547 				    object->ref_count, (u_long)object->size,
2548 				    (u_long)object->size,
2549 				    (void *)object->backing_object);
2550 			}
2551 		}
2552 	}
2553 }
2554 
2555 /*
2556  *	vm_object_print:	[ debug ]
2557  */
2558 DB_SHOW_COMMAND(object, vm_object_print_static)
2559 {
2560 	/* XXX convert args. */
2561 	vm_object_t object = (vm_object_t)addr;
2562 	boolean_t full = have_addr;
2563 
2564 	vm_page_t p;
2565 
2566 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2567 #define	count	was_count
2568 
2569 	int count;
2570 
2571 	if (object == NULL)
2572 		return;
2573 
2574 	db_iprintf(
2575 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2576 	    object, (int)object->type, (uintmax_t)object->size,
2577 	    object->resident_page_count, object->ref_count, object->flags,
2578 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2579 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2580 	    object->shadow_count,
2581 	    object->backing_object ? object->backing_object->ref_count : 0,
2582 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2583 
2584 	if (!full)
2585 		return;
2586 
2587 	db_indent += 2;
2588 	count = 0;
2589 	TAILQ_FOREACH(p, &object->memq, listq) {
2590 		if (count == 0)
2591 			db_iprintf("memory:=");
2592 		else if (count == 6) {
2593 			db_printf("\n");
2594 			db_iprintf(" ...");
2595 			count = 0;
2596 		} else
2597 			db_printf(",");
2598 		count++;
2599 
2600 		db_printf("(off=0x%jx,page=0x%jx)",
2601 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2602 	}
2603 	if (count != 0)
2604 		db_printf("\n");
2605 	db_indent -= 2;
2606 }
2607 
2608 /* XXX. */
2609 #undef count
2610 
2611 /* XXX need this non-static entry for calling from vm_map_print. */
2612 void
2613 vm_object_print(
2614         /* db_expr_t */ long addr,
2615 	boolean_t have_addr,
2616 	/* db_expr_t */ long count,
2617 	char *modif)
2618 {
2619 	vm_object_print_static(addr, have_addr, count, modif);
2620 }
2621 
2622 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2623 {
2624 	vm_object_t object;
2625 	vm_pindex_t fidx;
2626 	vm_paddr_t pa;
2627 	vm_page_t m, prev_m;
2628 	int rcount, nl, c;
2629 
2630 	nl = 0;
2631 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2632 		db_printf("new object: %p\n", (void *)object);
2633 		if (nl > 18) {
2634 			c = cngetc();
2635 			if (c != ' ')
2636 				return;
2637 			nl = 0;
2638 		}
2639 		nl++;
2640 		rcount = 0;
2641 		fidx = 0;
2642 		pa = -1;
2643 		TAILQ_FOREACH(m, &object->memq, listq) {
2644 			if (m->pindex > 128)
2645 				break;
2646 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2647 			    prev_m->pindex + 1 != m->pindex) {
2648 				if (rcount) {
2649 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2650 						(long)fidx, rcount, (long)pa);
2651 					if (nl > 18) {
2652 						c = cngetc();
2653 						if (c != ' ')
2654 							return;
2655 						nl = 0;
2656 					}
2657 					nl++;
2658 					rcount = 0;
2659 				}
2660 			}
2661 			if (rcount &&
2662 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2663 				++rcount;
2664 				continue;
2665 			}
2666 			if (rcount) {
2667 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2668 					(long)fidx, rcount, (long)pa);
2669 				if (nl > 18) {
2670 					c = cngetc();
2671 					if (c != ' ')
2672 						return;
2673 					nl = 0;
2674 				}
2675 				nl++;
2676 			}
2677 			fidx = m->pindex;
2678 			pa = VM_PAGE_TO_PHYS(m);
2679 			rcount = 1;
2680 		}
2681 		if (rcount) {
2682 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2683 				(long)fidx, rcount, (long)pa);
2684 			if (nl > 18) {
2685 				c = cngetc();
2686 				if (c != ' ')
2687 					return;
2688 				nl = 0;
2689 			}
2690 			nl++;
2691 		}
2692 	}
2693 }
2694 #endif /* DDB */
2695