xref: /freebsd/sys/vm/vm_object.c (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107 
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111 
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113 		    int pagerflags, int flags, boolean_t *clearobjflags,
114 		    boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116 		    boolean_t *clearobjflags);
117 static void	vm_object_qcollapse(vm_object_t object);
118 static void	vm_object_vndeallocate(vm_object_t object);
119 
120 /*
121  *	Virtual memory objects maintain the actual data
122  *	associated with allocated virtual memory.  A given
123  *	page of memory exists within exactly one object.
124  *
125  *	An object is only deallocated when all "references"
126  *	are given up.  Only one "reference" to a given
127  *	region of an object should be writeable.
128  *
129  *	Associated with each object is a list of all resident
130  *	memory pages belonging to that object; this list is
131  *	maintained by the "vm_page" module, and locked by the object's
132  *	lock.
133  *
134  *	Each object also records a "pager" routine which is
135  *	used to retrieve (and store) pages to the proper backing
136  *	storage.  In addition, objects may be backed by other
137  *	objects from which they were virtual-copied.
138  *
139  *	The only items within the object structure which are
140  *	modified after time of creation are:
141  *		reference count		locked by object's lock
142  *		pager routine		locked by object's lock
143  *
144  */
145 
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;	/* lock for object list and count */
148 
149 struct vm_object kernel_object_store;
150 
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153 
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158 
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163 
164 static void
165 counter_startup(void)
166 {
167 
168 	object_collapses = counter_u64_alloc(M_WAITOK);
169 	object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172 
173 static uma_zone_t obj_zone;
174 
175 static int vm_object_zinit(void *mem, int size, int flags);
176 
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179 
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183 	vm_object_t object;
184 
185 	object = (vm_object_t)mem;
186 	KASSERT(object->ref_count == 0,
187 	    ("object %p ref_count = %d", object, object->ref_count));
188 	KASSERT(TAILQ_EMPTY(&object->memq),
189 	    ("object %p has resident pages in its memq", object));
190 	KASSERT(vm_radix_is_empty(&object->rtree),
191 	    ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193 	KASSERT(LIST_EMPTY(&object->rvq),
194 	    ("object %p has reservations",
195 	    object));
196 #endif
197 	KASSERT(object->paging_in_progress == 0,
198 	    ("object %p paging_in_progress = %d",
199 	    object, object->paging_in_progress));
200 	KASSERT(object->resident_page_count == 0,
201 	    ("object %p resident_page_count = %d",
202 	    object, object->resident_page_count));
203 	KASSERT(object->shadow_count == 0,
204 	    ("object %p shadow_count = %d",
205 	    object, object->shadow_count));
206 	KASSERT(object->type == OBJT_DEAD,
207 	    ("object %p has non-dead type %d",
208 	    object, object->type));
209 }
210 #endif
211 
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215 	vm_object_t object;
216 
217 	object = (vm_object_t)mem;
218 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219 
220 	/* These are true for any object that has been freed */
221 	object->type = OBJT_DEAD;
222 	object->ref_count = 0;
223 	vm_radix_init(&object->rtree);
224 	object->paging_in_progress = 0;
225 	object->resident_page_count = 0;
226 	object->shadow_count = 0;
227 	object->flags = OBJ_DEAD;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 	return (0);
233 }
234 
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238 
239 	TAILQ_INIT(&object->memq);
240 	LIST_INIT(&object->shadow_head);
241 
242 	object->type = type;
243 	if (type == OBJT_SWAP)
244 		pctrie_init(&object->un_pager.swp.swp_blks);
245 
246 	/*
247 	 * Ensure that swap_pager_swapoff() iteration over object_list
248 	 * sees up to date type and pctrie head if it observed
249 	 * non-dead object.
250 	 */
251 	atomic_thread_fence_rel();
252 
253 	switch (type) {
254 	case OBJT_DEAD:
255 		panic("_vm_object_allocate: can't create OBJT_DEAD");
256 	case OBJT_DEFAULT:
257 	case OBJT_SWAP:
258 		object->flags = OBJ_ONEMAPPING;
259 		break;
260 	case OBJT_DEVICE:
261 	case OBJT_SG:
262 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263 		break;
264 	case OBJT_MGTDEVICE:
265 		object->flags = OBJ_FICTITIOUS;
266 		break;
267 	case OBJT_PHYS:
268 		object->flags = OBJ_UNMANAGED;
269 		break;
270 	case OBJT_VNODE:
271 		object->flags = 0;
272 		break;
273 	default:
274 		panic("_vm_object_allocate: type %d is undefined", type);
275 	}
276 	object->size = size;
277 	object->domain.dr_policy = NULL;
278 	object->generation = 1;
279 	object->ref_count = 1;
280 	object->memattr = VM_MEMATTR_DEFAULT;
281 	object->cred = NULL;
282 	object->charge = 0;
283 	object->handle = NULL;
284 	object->backing_object = NULL;
285 	object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287 	LIST_INIT(&object->rvq);
288 #endif
289 	umtx_shm_object_init(object);
290 }
291 
292 /*
293  *	vm_object_init:
294  *
295  *	Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300 	TAILQ_INIT(&vm_object_list);
301 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302 
303 	rw_init(&kernel_object->lock, "kernel vm object");
304 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307 	kernel_object->flags |= OBJ_COLORED;
308 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310 
311 	/*
312 	 * The lock portion of struct vm_object must be type stable due
313 	 * to vm_pageout_fallback_object_lock locking a vm object
314 	 * without holding any references to it.
315 	 */
316 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318 	    vm_object_zdtor,
319 #else
320 	    NULL,
321 #endif
322 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323 
324 	vm_radix_zinit();
325 }
326 
327 void
328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330 
331 	VM_OBJECT_ASSERT_WLOCKED(object);
332 	object->flags &= ~bits;
333 }
334 
335 /*
336  *	Sets the default memory attribute for the specified object.  Pages
337  *	that are allocated to this object are by default assigned this memory
338  *	attribute.
339  *
340  *	Presently, this function must be called before any pages are allocated
341  *	to the object.  In the future, this requirement may be relaxed for
342  *	"default" and "swap" objects.
343  */
344 int
345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347 
348 	VM_OBJECT_ASSERT_WLOCKED(object);
349 	switch (object->type) {
350 	case OBJT_DEFAULT:
351 	case OBJT_DEVICE:
352 	case OBJT_MGTDEVICE:
353 	case OBJT_PHYS:
354 	case OBJT_SG:
355 	case OBJT_SWAP:
356 	case OBJT_VNODE:
357 		if (!TAILQ_EMPTY(&object->memq))
358 			return (KERN_FAILURE);
359 		break;
360 	case OBJT_DEAD:
361 		return (KERN_INVALID_ARGUMENT);
362 	default:
363 		panic("vm_object_set_memattr: object %p is of undefined type",
364 		    object);
365 	}
366 	object->memattr = memattr;
367 	return (KERN_SUCCESS);
368 }
369 
370 void
371 vm_object_pip_add(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress += i;
376 }
377 
378 void
379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress -= i;
384 }
385 
386 void
387 vm_object_pip_wakeup(vm_object_t object)
388 {
389 
390 	VM_OBJECT_ASSERT_WLOCKED(object);
391 	object->paging_in_progress--;
392 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393 		vm_object_clear_flag(object, OBJ_PIPWNT);
394 		wakeup(object);
395 	}
396 }
397 
398 void
399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401 
402 	VM_OBJECT_ASSERT_WLOCKED(object);
403 	if (i)
404 		object->paging_in_progress -= i;
405 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406 		vm_object_clear_flag(object, OBJ_PIPWNT);
407 		wakeup(object);
408 	}
409 }
410 
411 void
412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414 
415 	VM_OBJECT_ASSERT_WLOCKED(object);
416 	while (object->paging_in_progress) {
417 		object->flags |= OBJ_PIPWNT;
418 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419 	}
420 }
421 
422 /*
423  *	vm_object_allocate:
424  *
425  *	Returns a new object with the given size.
426  */
427 vm_object_t
428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430 	vm_object_t object;
431 
432 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433 	_vm_object_allocate(type, size, object);
434 	return (object);
435 }
436 
437 
438 /*
439  *	vm_object_reference:
440  *
441  *	Gets another reference to the given object.  Note: OBJ_DEAD
442  *	objects can be referenced during final cleaning.
443  */
444 void
445 vm_object_reference(vm_object_t object)
446 {
447 	if (object == NULL)
448 		return;
449 	VM_OBJECT_WLOCK(object);
450 	vm_object_reference_locked(object);
451 	VM_OBJECT_WUNLOCK(object);
452 }
453 
454 /*
455  *	vm_object_reference_locked:
456  *
457  *	Gets another reference to the given object.
458  *
459  *	The object must be locked.
460  */
461 void
462 vm_object_reference_locked(vm_object_t object)
463 {
464 	struct vnode *vp;
465 
466 	VM_OBJECT_ASSERT_WLOCKED(object);
467 	object->ref_count++;
468 	if (object->type == OBJT_VNODE) {
469 		vp = object->handle;
470 		vref(vp);
471 	}
472 }
473 
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
478 vm_object_vndeallocate(vm_object_t object)
479 {
480 	struct vnode *vp = (struct vnode *) object->handle;
481 
482 	VM_OBJECT_ASSERT_WLOCKED(object);
483 	KASSERT(object->type == OBJT_VNODE,
484 	    ("vm_object_vndeallocate: not a vnode object"));
485 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487 	if (object->ref_count == 0) {
488 		vn_printf(vp, "vm_object_vndeallocate ");
489 		panic("vm_object_vndeallocate: bad object reference count");
490 	}
491 #endif
492 
493 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494 		umtx_shm_object_terminated(object);
495 
496 	object->ref_count--;
497 
498 	/* vrele may need the vnode lock. */
499 	VM_OBJECT_WUNLOCK(object);
500 	vrele(vp);
501 }
502 
503 /*
504  *	vm_object_deallocate:
505  *
506  *	Release a reference to the specified object,
507  *	gained either through a vm_object_allocate
508  *	or a vm_object_reference call.  When all references
509  *	are gone, storage associated with this object
510  *	may be relinquished.
511  *
512  *	No object may be locked.
513  */
514 void
515 vm_object_deallocate(vm_object_t object)
516 {
517 	vm_object_t temp;
518 	struct vnode *vp;
519 
520 	while (object != NULL) {
521 		VM_OBJECT_WLOCK(object);
522 		if (object->type == OBJT_VNODE) {
523 			vm_object_vndeallocate(object);
524 			return;
525 		}
526 
527 		KASSERT(object->ref_count != 0,
528 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
529 
530 		/*
531 		 * If the reference count goes to 0 we start calling
532 		 * vm_object_terminate() on the object chain.
533 		 * A ref count of 1 may be a special case depending on the
534 		 * shadow count being 0 or 1.
535 		 */
536 		object->ref_count--;
537 		if (object->ref_count > 1) {
538 			VM_OBJECT_WUNLOCK(object);
539 			return;
540 		} else if (object->ref_count == 1) {
541 			if (object->type == OBJT_SWAP &&
542 			    (object->flags & OBJ_TMPFS) != 0) {
543 				vp = object->un_pager.swp.swp_tmpfs;
544 				vhold(vp);
545 				VM_OBJECT_WUNLOCK(object);
546 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
547 				VM_OBJECT_WLOCK(object);
548 				if (object->type == OBJT_DEAD ||
549 				    object->ref_count != 1) {
550 					VM_OBJECT_WUNLOCK(object);
551 					VOP_UNLOCK(vp, 0);
552 					vdrop(vp);
553 					return;
554 				}
555 				if ((object->flags & OBJ_TMPFS) != 0)
556 					VOP_UNSET_TEXT(vp);
557 				VOP_UNLOCK(vp, 0);
558 				vdrop(vp);
559 			}
560 			if (object->shadow_count == 0 &&
561 			    object->handle == NULL &&
562 			    (object->type == OBJT_DEFAULT ||
563 			    (object->type == OBJT_SWAP &&
564 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
565 				vm_object_set_flag(object, OBJ_ONEMAPPING);
566 			} else if ((object->shadow_count == 1) &&
567 			    (object->handle == NULL) &&
568 			    (object->type == OBJT_DEFAULT ||
569 			     object->type == OBJT_SWAP)) {
570 				vm_object_t robject;
571 
572 				robject = LIST_FIRST(&object->shadow_head);
573 				KASSERT(robject != NULL,
574 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
575 					 object->ref_count,
576 					 object->shadow_count));
577 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
578 				    ("shadowed tmpfs v_object %p", object));
579 				if (!VM_OBJECT_TRYWLOCK(robject)) {
580 					/*
581 					 * Avoid a potential deadlock.
582 					 */
583 					object->ref_count++;
584 					VM_OBJECT_WUNLOCK(object);
585 					/*
586 					 * More likely than not the thread
587 					 * holding robject's lock has lower
588 					 * priority than the current thread.
589 					 * Let the lower priority thread run.
590 					 */
591 					pause("vmo_de", 1);
592 					continue;
593 				}
594 				/*
595 				 * Collapse object into its shadow unless its
596 				 * shadow is dead.  In that case, object will
597 				 * be deallocated by the thread that is
598 				 * deallocating its shadow.
599 				 */
600 				if ((robject->flags & OBJ_DEAD) == 0 &&
601 				    (robject->handle == NULL) &&
602 				    (robject->type == OBJT_DEFAULT ||
603 				     robject->type == OBJT_SWAP)) {
604 
605 					robject->ref_count++;
606 retry:
607 					if (robject->paging_in_progress) {
608 						VM_OBJECT_WUNLOCK(object);
609 						vm_object_pip_wait(robject,
610 						    "objde1");
611 						temp = robject->backing_object;
612 						if (object == temp) {
613 							VM_OBJECT_WLOCK(object);
614 							goto retry;
615 						}
616 					} else if (object->paging_in_progress) {
617 						VM_OBJECT_WUNLOCK(robject);
618 						object->flags |= OBJ_PIPWNT;
619 						VM_OBJECT_SLEEP(object, object,
620 						    PDROP | PVM, "objde2", 0);
621 						VM_OBJECT_WLOCK(robject);
622 						temp = robject->backing_object;
623 						if (object == temp) {
624 							VM_OBJECT_WLOCK(object);
625 							goto retry;
626 						}
627 					} else
628 						VM_OBJECT_WUNLOCK(object);
629 
630 					if (robject->ref_count == 1) {
631 						robject->ref_count--;
632 						object = robject;
633 						goto doterm;
634 					}
635 					object = robject;
636 					vm_object_collapse(object);
637 					VM_OBJECT_WUNLOCK(object);
638 					continue;
639 				}
640 				VM_OBJECT_WUNLOCK(robject);
641 			}
642 			VM_OBJECT_WUNLOCK(object);
643 			return;
644 		}
645 doterm:
646 		umtx_shm_object_terminated(object);
647 		temp = object->backing_object;
648 		if (temp != NULL) {
649 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
650 			    ("shadowed tmpfs v_object 2 %p", object));
651 			VM_OBJECT_WLOCK(temp);
652 			LIST_REMOVE(object, shadow_list);
653 			temp->shadow_count--;
654 			VM_OBJECT_WUNLOCK(temp);
655 			object->backing_object = NULL;
656 		}
657 		/*
658 		 * Don't double-terminate, we could be in a termination
659 		 * recursion due to the terminate having to sync data
660 		 * to disk.
661 		 */
662 		if ((object->flags & OBJ_DEAD) == 0)
663 			vm_object_terminate(object);
664 		else
665 			VM_OBJECT_WUNLOCK(object);
666 		object = temp;
667 	}
668 }
669 
670 /*
671  *	vm_object_destroy removes the object from the global object list
672  *      and frees the space for the object.
673  */
674 void
675 vm_object_destroy(vm_object_t object)
676 {
677 
678 	/*
679 	 * Release the allocation charge.
680 	 */
681 	if (object->cred != NULL) {
682 		swap_release_by_cred(object->charge, object->cred);
683 		object->charge = 0;
684 		crfree(object->cred);
685 		object->cred = NULL;
686 	}
687 
688 	/*
689 	 * Free the space for the object.
690 	 */
691 	uma_zfree(obj_zone, object);
692 }
693 
694 /*
695  *	vm_object_terminate_pages removes any remaining pageable pages
696  *	from the object and resets the object to an empty state.
697  */
698 static void
699 vm_object_terminate_pages(vm_object_t object)
700 {
701 	vm_page_t p, p_next;
702 	struct mtx *mtx;
703 
704 	VM_OBJECT_ASSERT_WLOCKED(object);
705 
706 	mtx = NULL;
707 
708 	/*
709 	 * Free any remaining pageable pages.  This also removes them from the
710 	 * paging queues.  However, don't free wired pages, just remove them
711 	 * from the object.  Rather than incrementally removing each page from
712 	 * the object, the page and object are reset to any empty state.
713 	 */
714 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
715 		vm_page_assert_unbusied(p);
716 		if ((object->flags & OBJ_UNMANAGED) == 0)
717 			/*
718 			 * vm_page_free_prep() only needs the page
719 			 * lock for managed pages.
720 			 */
721 			vm_page_change_lock(p, &mtx);
722 		p->object = NULL;
723 		if (vm_page_wired(p))
724 			continue;
725 		VM_CNT_INC(v_pfree);
726 		vm_page_free(p);
727 	}
728 	if (mtx != NULL)
729 		mtx_unlock(mtx);
730 
731 	/*
732 	 * If the object contained any pages, then reset it to an empty state.
733 	 * None of the object's fields, including "resident_page_count", were
734 	 * modified by the preceding loop.
735 	 */
736 	if (object->resident_page_count != 0) {
737 		vm_radix_reclaim_allnodes(&object->rtree);
738 		TAILQ_INIT(&object->memq);
739 		object->resident_page_count = 0;
740 		if (object->type == OBJT_VNODE)
741 			vdrop(object->handle);
742 	}
743 }
744 
745 /*
746  *	vm_object_terminate actually destroys the specified object, freeing
747  *	up all previously used resources.
748  *
749  *	The object must be locked.
750  *	This routine may block.
751  */
752 void
753 vm_object_terminate(vm_object_t object)
754 {
755 
756 	VM_OBJECT_ASSERT_WLOCKED(object);
757 
758 	/*
759 	 * Make sure no one uses us.
760 	 */
761 	vm_object_set_flag(object, OBJ_DEAD);
762 
763 	/*
764 	 * wait for the pageout daemon to be done with the object
765 	 */
766 	vm_object_pip_wait(object, "objtrm");
767 
768 	KASSERT(!object->paging_in_progress,
769 		("vm_object_terminate: pageout in progress"));
770 
771 	/*
772 	 * Clean and free the pages, as appropriate. All references to the
773 	 * object are gone, so we don't need to lock it.
774 	 */
775 	if (object->type == OBJT_VNODE) {
776 		struct vnode *vp = (struct vnode *)object->handle;
777 
778 		/*
779 		 * Clean pages and flush buffers.
780 		 */
781 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
782 		VM_OBJECT_WUNLOCK(object);
783 
784 		vinvalbuf(vp, V_SAVE, 0, 0);
785 
786 		BO_LOCK(&vp->v_bufobj);
787 		vp->v_bufobj.bo_flag |= BO_DEAD;
788 		BO_UNLOCK(&vp->v_bufobj);
789 
790 		VM_OBJECT_WLOCK(object);
791 	}
792 
793 	KASSERT(object->ref_count == 0,
794 		("vm_object_terminate: object with references, ref_count=%d",
795 		object->ref_count));
796 
797 	if ((object->flags & OBJ_PG_DTOR) == 0)
798 		vm_object_terminate_pages(object);
799 
800 #if VM_NRESERVLEVEL > 0
801 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
802 		vm_reserv_break_all(object);
803 #endif
804 
805 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
806 	    object->type == OBJT_SWAP,
807 	    ("%s: non-swap obj %p has cred", __func__, object));
808 
809 	/*
810 	 * Let the pager know object is dead.
811 	 */
812 	vm_pager_deallocate(object);
813 	VM_OBJECT_WUNLOCK(object);
814 
815 	vm_object_destroy(object);
816 }
817 
818 /*
819  * Make the page read-only so that we can clear the object flags.  However, if
820  * this is a nosync mmap then the object is likely to stay dirty so do not
821  * mess with the page and do not clear the object flags.  Returns TRUE if the
822  * page should be flushed, and FALSE otherwise.
823  */
824 static boolean_t
825 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
826 {
827 
828 	/*
829 	 * If we have been asked to skip nosync pages and this is a
830 	 * nosync page, skip it.  Note that the object flags were not
831 	 * cleared in this case so we do not have to set them.
832 	 */
833 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
834 		*clearobjflags = FALSE;
835 		return (FALSE);
836 	} else {
837 		pmap_remove_write(p);
838 		return (p->dirty != 0);
839 	}
840 }
841 
842 /*
843  *	vm_object_page_clean
844  *
845  *	Clean all dirty pages in the specified range of object.  Leaves page
846  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
847  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
848  *	leaving the object dirty.
849  *
850  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
851  *	synchronous clustering mode implementation.
852  *
853  *	Odd semantics: if start == end, we clean everything.
854  *
855  *	The object must be locked.
856  *
857  *	Returns FALSE if some page from the range was not written, as
858  *	reported by the pager, and TRUE otherwise.
859  */
860 boolean_t
861 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
862     int flags)
863 {
864 	vm_page_t np, p;
865 	vm_pindex_t pi, tend, tstart;
866 	int curgeneration, n, pagerflags;
867 	boolean_t clearobjflags, eio, res;
868 
869 	VM_OBJECT_ASSERT_WLOCKED(object);
870 
871 	/*
872 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
873 	 * objects.  The check below prevents the function from
874 	 * operating on non-vnode objects.
875 	 */
876 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
877 	    object->resident_page_count == 0)
878 		return (TRUE);
879 
880 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
881 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
882 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
883 
884 	tstart = OFF_TO_IDX(start);
885 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
886 	clearobjflags = tstart == 0 && tend >= object->size;
887 	res = TRUE;
888 
889 rescan:
890 	curgeneration = object->generation;
891 
892 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
893 		pi = p->pindex;
894 		if (pi >= tend)
895 			break;
896 		np = TAILQ_NEXT(p, listq);
897 		if (p->valid == 0)
898 			continue;
899 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
900 			if (object->generation != curgeneration) {
901 				if ((flags & OBJPC_SYNC) != 0)
902 					goto rescan;
903 				else
904 					clearobjflags = FALSE;
905 			}
906 			np = vm_page_find_least(object, pi);
907 			continue;
908 		}
909 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
910 			continue;
911 
912 		n = vm_object_page_collect_flush(object, p, pagerflags,
913 		    flags, &clearobjflags, &eio);
914 		if (eio) {
915 			res = FALSE;
916 			clearobjflags = FALSE;
917 		}
918 		if (object->generation != curgeneration) {
919 			if ((flags & OBJPC_SYNC) != 0)
920 				goto rescan;
921 			else
922 				clearobjflags = FALSE;
923 		}
924 
925 		/*
926 		 * If the VOP_PUTPAGES() did a truncated write, so
927 		 * that even the first page of the run is not fully
928 		 * written, vm_pageout_flush() returns 0 as the run
929 		 * length.  Since the condition that caused truncated
930 		 * write may be permanent, e.g. exhausted free space,
931 		 * accepting n == 0 would cause an infinite loop.
932 		 *
933 		 * Forwarding the iterator leaves the unwritten page
934 		 * behind, but there is not much we can do there if
935 		 * filesystem refuses to write it.
936 		 */
937 		if (n == 0) {
938 			n = 1;
939 			clearobjflags = FALSE;
940 		}
941 		np = vm_page_find_least(object, pi + n);
942 	}
943 #if 0
944 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
945 #endif
946 
947 	if (clearobjflags)
948 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
949 	return (res);
950 }
951 
952 static int
953 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
954     int flags, boolean_t *clearobjflags, boolean_t *eio)
955 {
956 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
957 	int count, i, mreq, runlen;
958 
959 	vm_page_lock_assert(p, MA_NOTOWNED);
960 	VM_OBJECT_ASSERT_WLOCKED(object);
961 
962 	count = 1;
963 	mreq = 0;
964 
965 	for (tp = p; count < vm_pageout_page_count; count++) {
966 		tp = vm_page_next(tp);
967 		if (tp == NULL || vm_page_busied(tp))
968 			break;
969 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
970 			break;
971 	}
972 
973 	for (p_first = p; count < vm_pageout_page_count; count++) {
974 		tp = vm_page_prev(p_first);
975 		if (tp == NULL || vm_page_busied(tp))
976 			break;
977 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
978 			break;
979 		p_first = tp;
980 		mreq++;
981 	}
982 
983 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
984 		ma[i] = tp;
985 
986 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
987 	return (runlen);
988 }
989 
990 /*
991  * Note that there is absolutely no sense in writing out
992  * anonymous objects, so we track down the vnode object
993  * to write out.
994  * We invalidate (remove) all pages from the address space
995  * for semantic correctness.
996  *
997  * If the backing object is a device object with unmanaged pages, then any
998  * mappings to the specified range of pages must be removed before this
999  * function is called.
1000  *
1001  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1002  * may start out with a NULL object.
1003  */
1004 boolean_t
1005 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1006     boolean_t syncio, boolean_t invalidate)
1007 {
1008 	vm_object_t backing_object;
1009 	struct vnode *vp;
1010 	struct mount *mp;
1011 	int error, flags, fsync_after;
1012 	boolean_t res;
1013 
1014 	if (object == NULL)
1015 		return (TRUE);
1016 	res = TRUE;
1017 	error = 0;
1018 	VM_OBJECT_WLOCK(object);
1019 	while ((backing_object = object->backing_object) != NULL) {
1020 		VM_OBJECT_WLOCK(backing_object);
1021 		offset += object->backing_object_offset;
1022 		VM_OBJECT_WUNLOCK(object);
1023 		object = backing_object;
1024 		if (object->size < OFF_TO_IDX(offset + size))
1025 			size = IDX_TO_OFF(object->size) - offset;
1026 	}
1027 	/*
1028 	 * Flush pages if writing is allowed, invalidate them
1029 	 * if invalidation requested.  Pages undergoing I/O
1030 	 * will be ignored by vm_object_page_remove().
1031 	 *
1032 	 * We cannot lock the vnode and then wait for paging
1033 	 * to complete without deadlocking against vm_fault.
1034 	 * Instead we simply call vm_object_page_remove() and
1035 	 * allow it to block internally on a page-by-page
1036 	 * basis when it encounters pages undergoing async
1037 	 * I/O.
1038 	 */
1039 	if (object->type == OBJT_VNODE &&
1040 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1041 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1042 		VM_OBJECT_WUNLOCK(object);
1043 		(void) vn_start_write(vp, &mp, V_WAIT);
1044 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1045 		if (syncio && !invalidate && offset == 0 &&
1046 		    atop(size) == object->size) {
1047 			/*
1048 			 * If syncing the whole mapping of the file,
1049 			 * it is faster to schedule all the writes in
1050 			 * async mode, also allowing the clustering,
1051 			 * and then wait for i/o to complete.
1052 			 */
1053 			flags = 0;
1054 			fsync_after = TRUE;
1055 		} else {
1056 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1057 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1058 			fsync_after = FALSE;
1059 		}
1060 		VM_OBJECT_WLOCK(object);
1061 		res = vm_object_page_clean(object, offset, offset + size,
1062 		    flags);
1063 		VM_OBJECT_WUNLOCK(object);
1064 		if (fsync_after)
1065 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1066 		VOP_UNLOCK(vp, 0);
1067 		vn_finished_write(mp);
1068 		if (error != 0)
1069 			res = FALSE;
1070 		VM_OBJECT_WLOCK(object);
1071 	}
1072 	if ((object->type == OBJT_VNODE ||
1073 	     object->type == OBJT_DEVICE) && invalidate) {
1074 		if (object->type == OBJT_DEVICE)
1075 			/*
1076 			 * The option OBJPR_NOTMAPPED must be passed here
1077 			 * because vm_object_page_remove() cannot remove
1078 			 * unmanaged mappings.
1079 			 */
1080 			flags = OBJPR_NOTMAPPED;
1081 		else if (old_msync)
1082 			flags = 0;
1083 		else
1084 			flags = OBJPR_CLEANONLY;
1085 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1086 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1087 	}
1088 	VM_OBJECT_WUNLOCK(object);
1089 	return (res);
1090 }
1091 
1092 /*
1093  * Determine whether the given advice can be applied to the object.  Advice is
1094  * not applied to unmanaged pages since they never belong to page queues, and
1095  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1096  * have been mapped at most once.
1097  */
1098 static bool
1099 vm_object_advice_applies(vm_object_t object, int advice)
1100 {
1101 
1102 	if ((object->flags & OBJ_UNMANAGED) != 0)
1103 		return (false);
1104 	if (advice != MADV_FREE)
1105 		return (true);
1106 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1107 	    (object->flags & OBJ_ONEMAPPING) != 0);
1108 }
1109 
1110 static void
1111 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1112     vm_size_t size)
1113 {
1114 
1115 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1116 		swap_pager_freespace(object, pindex, size);
1117 }
1118 
1119 /*
1120  *	vm_object_madvise:
1121  *
1122  *	Implements the madvise function at the object/page level.
1123  *
1124  *	MADV_WILLNEED	(any object)
1125  *
1126  *	    Activate the specified pages if they are resident.
1127  *
1128  *	MADV_DONTNEED	(any object)
1129  *
1130  *	    Deactivate the specified pages if they are resident.
1131  *
1132  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1133  *			 OBJ_ONEMAPPING only)
1134  *
1135  *	    Deactivate and clean the specified pages if they are
1136  *	    resident.  This permits the process to reuse the pages
1137  *	    without faulting or the kernel to reclaim the pages
1138  *	    without I/O.
1139  */
1140 void
1141 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1142     int advice)
1143 {
1144 	vm_pindex_t tpindex;
1145 	vm_object_t backing_object, tobject;
1146 	vm_page_t m, tm;
1147 
1148 	if (object == NULL)
1149 		return;
1150 
1151 relookup:
1152 	VM_OBJECT_WLOCK(object);
1153 	if (!vm_object_advice_applies(object, advice)) {
1154 		VM_OBJECT_WUNLOCK(object);
1155 		return;
1156 	}
1157 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1158 		tobject = object;
1159 
1160 		/*
1161 		 * If the next page isn't resident in the top-level object, we
1162 		 * need to search the shadow chain.  When applying MADV_FREE, we
1163 		 * take care to release any swap space used to store
1164 		 * non-resident pages.
1165 		 */
1166 		if (m == NULL || pindex < m->pindex) {
1167 			/*
1168 			 * Optimize a common case: if the top-level object has
1169 			 * no backing object, we can skip over the non-resident
1170 			 * range in constant time.
1171 			 */
1172 			if (object->backing_object == NULL) {
1173 				tpindex = (m != NULL && m->pindex < end) ?
1174 				    m->pindex : end;
1175 				vm_object_madvise_freespace(object, advice,
1176 				    pindex, tpindex - pindex);
1177 				if ((pindex = tpindex) == end)
1178 					break;
1179 				goto next_page;
1180 			}
1181 
1182 			tpindex = pindex;
1183 			do {
1184 				vm_object_madvise_freespace(tobject, advice,
1185 				    tpindex, 1);
1186 				/*
1187 				 * Prepare to search the next object in the
1188 				 * chain.
1189 				 */
1190 				backing_object = tobject->backing_object;
1191 				if (backing_object == NULL)
1192 					goto next_pindex;
1193 				VM_OBJECT_WLOCK(backing_object);
1194 				tpindex +=
1195 				    OFF_TO_IDX(tobject->backing_object_offset);
1196 				if (tobject != object)
1197 					VM_OBJECT_WUNLOCK(tobject);
1198 				tobject = backing_object;
1199 				if (!vm_object_advice_applies(tobject, advice))
1200 					goto next_pindex;
1201 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1202 			    NULL);
1203 		} else {
1204 next_page:
1205 			tm = m;
1206 			m = TAILQ_NEXT(m, listq);
1207 		}
1208 
1209 		/*
1210 		 * If the page is not in a normal state, skip it.
1211 		 */
1212 		if (tm->valid != VM_PAGE_BITS_ALL)
1213 			goto next_pindex;
1214 		vm_page_lock(tm);
1215 		if (vm_page_held(tm)) {
1216 			vm_page_unlock(tm);
1217 			goto next_pindex;
1218 		}
1219 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1220 		    ("vm_object_madvise: page %p is fictitious", tm));
1221 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1222 		    ("vm_object_madvise: page %p is not managed", tm));
1223 		if (vm_page_busied(tm)) {
1224 			if (object != tobject)
1225 				VM_OBJECT_WUNLOCK(tobject);
1226 			VM_OBJECT_WUNLOCK(object);
1227 			if (advice == MADV_WILLNEED) {
1228 				/*
1229 				 * Reference the page before unlocking and
1230 				 * sleeping so that the page daemon is less
1231 				 * likely to reclaim it.
1232 				 */
1233 				vm_page_aflag_set(tm, PGA_REFERENCED);
1234 			}
1235 			vm_page_busy_sleep(tm, "madvpo", false);
1236   			goto relookup;
1237 		}
1238 		vm_page_advise(tm, advice);
1239 		vm_page_unlock(tm);
1240 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1241 next_pindex:
1242 		if (tobject != object)
1243 			VM_OBJECT_WUNLOCK(tobject);
1244 	}
1245 	VM_OBJECT_WUNLOCK(object);
1246 }
1247 
1248 /*
1249  *	vm_object_shadow:
1250  *
1251  *	Create a new object which is backed by the
1252  *	specified existing object range.  The source
1253  *	object reference is deallocated.
1254  *
1255  *	The new object and offset into that object
1256  *	are returned in the source parameters.
1257  */
1258 void
1259 vm_object_shadow(
1260 	vm_object_t *object,	/* IN/OUT */
1261 	vm_ooffset_t *offset,	/* IN/OUT */
1262 	vm_size_t length)
1263 {
1264 	vm_object_t source;
1265 	vm_object_t result;
1266 
1267 	source = *object;
1268 
1269 	/*
1270 	 * Don't create the new object if the old object isn't shared.
1271 	 */
1272 	if (source != NULL) {
1273 		VM_OBJECT_WLOCK(source);
1274 		if (source->ref_count == 1 &&
1275 		    source->handle == NULL &&
1276 		    (source->type == OBJT_DEFAULT ||
1277 		     source->type == OBJT_SWAP)) {
1278 			VM_OBJECT_WUNLOCK(source);
1279 			return;
1280 		}
1281 		VM_OBJECT_WUNLOCK(source);
1282 	}
1283 
1284 	/*
1285 	 * Allocate a new object with the given length.
1286 	 */
1287 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1288 
1289 	/*
1290 	 * The new object shadows the source object, adding a reference to it.
1291 	 * Our caller changes his reference to point to the new object,
1292 	 * removing a reference to the source object.  Net result: no change
1293 	 * of reference count.
1294 	 *
1295 	 * Try to optimize the result object's page color when shadowing
1296 	 * in order to maintain page coloring consistency in the combined
1297 	 * shadowed object.
1298 	 */
1299 	result->backing_object = source;
1300 	/*
1301 	 * Store the offset into the source object, and fix up the offset into
1302 	 * the new object.
1303 	 */
1304 	result->backing_object_offset = *offset;
1305 	if (source != NULL) {
1306 		VM_OBJECT_WLOCK(source);
1307 		result->domain = source->domain;
1308 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1309 		source->shadow_count++;
1310 #if VM_NRESERVLEVEL > 0
1311 		result->flags |= source->flags & OBJ_COLORED;
1312 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1313 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1314 #endif
1315 		VM_OBJECT_WUNLOCK(source);
1316 	}
1317 
1318 
1319 	/*
1320 	 * Return the new things
1321 	 */
1322 	*offset = 0;
1323 	*object = result;
1324 }
1325 
1326 /*
1327  *	vm_object_split:
1328  *
1329  * Split the pages in a map entry into a new object.  This affords
1330  * easier removal of unused pages, and keeps object inheritance from
1331  * being a negative impact on memory usage.
1332  */
1333 void
1334 vm_object_split(vm_map_entry_t entry)
1335 {
1336 	vm_page_t m, m_next;
1337 	vm_object_t orig_object, new_object, source;
1338 	vm_pindex_t idx, offidxstart;
1339 	vm_size_t size;
1340 
1341 	orig_object = entry->object.vm_object;
1342 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1343 		return;
1344 	if (orig_object->ref_count <= 1)
1345 		return;
1346 	VM_OBJECT_WUNLOCK(orig_object);
1347 
1348 	offidxstart = OFF_TO_IDX(entry->offset);
1349 	size = atop(entry->end - entry->start);
1350 
1351 	/*
1352 	 * If swap_pager_copy() is later called, it will convert new_object
1353 	 * into a swap object.
1354 	 */
1355 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1356 
1357 	/*
1358 	 * At this point, the new object is still private, so the order in
1359 	 * which the original and new objects are locked does not matter.
1360 	 */
1361 	VM_OBJECT_WLOCK(new_object);
1362 	VM_OBJECT_WLOCK(orig_object);
1363 	new_object->domain = orig_object->domain;
1364 	source = orig_object->backing_object;
1365 	if (source != NULL) {
1366 		VM_OBJECT_WLOCK(source);
1367 		if ((source->flags & OBJ_DEAD) != 0) {
1368 			VM_OBJECT_WUNLOCK(source);
1369 			VM_OBJECT_WUNLOCK(orig_object);
1370 			VM_OBJECT_WUNLOCK(new_object);
1371 			vm_object_deallocate(new_object);
1372 			VM_OBJECT_WLOCK(orig_object);
1373 			return;
1374 		}
1375 		LIST_INSERT_HEAD(&source->shadow_head,
1376 				  new_object, shadow_list);
1377 		source->shadow_count++;
1378 		vm_object_reference_locked(source);	/* for new_object */
1379 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1380 		VM_OBJECT_WUNLOCK(source);
1381 		new_object->backing_object_offset =
1382 			orig_object->backing_object_offset + entry->offset;
1383 		new_object->backing_object = source;
1384 	}
1385 	if (orig_object->cred != NULL) {
1386 		new_object->cred = orig_object->cred;
1387 		crhold(orig_object->cred);
1388 		new_object->charge = ptoa(size);
1389 		KASSERT(orig_object->charge >= ptoa(size),
1390 		    ("orig_object->charge < 0"));
1391 		orig_object->charge -= ptoa(size);
1392 	}
1393 retry:
1394 	m = vm_page_find_least(orig_object, offidxstart);
1395 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1396 	    m = m_next) {
1397 		m_next = TAILQ_NEXT(m, listq);
1398 
1399 		/*
1400 		 * We must wait for pending I/O to complete before we can
1401 		 * rename the page.
1402 		 *
1403 		 * We do not have to VM_PROT_NONE the page as mappings should
1404 		 * not be changed by this operation.
1405 		 */
1406 		if (vm_page_busied(m)) {
1407 			VM_OBJECT_WUNLOCK(new_object);
1408 			vm_page_lock(m);
1409 			VM_OBJECT_WUNLOCK(orig_object);
1410 			vm_page_busy_sleep(m, "spltwt", false);
1411 			VM_OBJECT_WLOCK(orig_object);
1412 			VM_OBJECT_WLOCK(new_object);
1413 			goto retry;
1414 		}
1415 
1416 		/* vm_page_rename() will dirty the page. */
1417 		if (vm_page_rename(m, new_object, idx)) {
1418 			VM_OBJECT_WUNLOCK(new_object);
1419 			VM_OBJECT_WUNLOCK(orig_object);
1420 			vm_radix_wait();
1421 			VM_OBJECT_WLOCK(orig_object);
1422 			VM_OBJECT_WLOCK(new_object);
1423 			goto retry;
1424 		}
1425 #if VM_NRESERVLEVEL > 0
1426 		/*
1427 		 * If some of the reservation's allocated pages remain with
1428 		 * the original object, then transferring the reservation to
1429 		 * the new object is neither particularly beneficial nor
1430 		 * particularly harmful as compared to leaving the reservation
1431 		 * with the original object.  If, however, all of the
1432 		 * reservation's allocated pages are transferred to the new
1433 		 * object, then transferring the reservation is typically
1434 		 * beneficial.  Determining which of these two cases applies
1435 		 * would be more costly than unconditionally renaming the
1436 		 * reservation.
1437 		 */
1438 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1439 #endif
1440 		if (orig_object->type == OBJT_SWAP)
1441 			vm_page_xbusy(m);
1442 	}
1443 	if (orig_object->type == OBJT_SWAP) {
1444 		/*
1445 		 * swap_pager_copy() can sleep, in which case the orig_object's
1446 		 * and new_object's locks are released and reacquired.
1447 		 */
1448 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1449 		TAILQ_FOREACH(m, &new_object->memq, listq)
1450 			vm_page_xunbusy(m);
1451 	}
1452 	VM_OBJECT_WUNLOCK(orig_object);
1453 	VM_OBJECT_WUNLOCK(new_object);
1454 	entry->object.vm_object = new_object;
1455 	entry->offset = 0LL;
1456 	vm_object_deallocate(orig_object);
1457 	VM_OBJECT_WLOCK(new_object);
1458 }
1459 
1460 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1461 #define	OBSC_COLLAPSE_WAIT	0x0004
1462 
1463 static vm_page_t
1464 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1465     int op)
1466 {
1467 	vm_object_t backing_object;
1468 
1469 	VM_OBJECT_ASSERT_WLOCKED(object);
1470 	backing_object = object->backing_object;
1471 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1472 
1473 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1474 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1475 	    ("invalid ownership %p %p %p", p, object, backing_object));
1476 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1477 		return (next);
1478 	if (p != NULL)
1479 		vm_page_lock(p);
1480 	VM_OBJECT_WUNLOCK(object);
1481 	VM_OBJECT_WUNLOCK(backing_object);
1482 	/* The page is only NULL when rename fails. */
1483 	if (p == NULL)
1484 		vm_radix_wait();
1485 	else
1486 		vm_page_busy_sleep(p, "vmocol", false);
1487 	VM_OBJECT_WLOCK(object);
1488 	VM_OBJECT_WLOCK(backing_object);
1489 	return (TAILQ_FIRST(&backing_object->memq));
1490 }
1491 
1492 static bool
1493 vm_object_scan_all_shadowed(vm_object_t object)
1494 {
1495 	vm_object_t backing_object;
1496 	vm_page_t p, pp;
1497 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1498 
1499 	VM_OBJECT_ASSERT_WLOCKED(object);
1500 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1501 
1502 	backing_object = object->backing_object;
1503 
1504 	if (backing_object->type != OBJT_DEFAULT &&
1505 	    backing_object->type != OBJT_SWAP)
1506 		return (false);
1507 
1508 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1509 	p = vm_page_find_least(backing_object, pi);
1510 	ps = swap_pager_find_least(backing_object, pi);
1511 
1512 	/*
1513 	 * Only check pages inside the parent object's range and
1514 	 * inside the parent object's mapping of the backing object.
1515 	 */
1516 	for (;; pi++) {
1517 		if (p != NULL && p->pindex < pi)
1518 			p = TAILQ_NEXT(p, listq);
1519 		if (ps < pi)
1520 			ps = swap_pager_find_least(backing_object, pi);
1521 		if (p == NULL && ps >= backing_object->size)
1522 			break;
1523 		else if (p == NULL)
1524 			pi = ps;
1525 		else
1526 			pi = MIN(p->pindex, ps);
1527 
1528 		new_pindex = pi - backing_offset_index;
1529 		if (new_pindex >= object->size)
1530 			break;
1531 
1532 		/*
1533 		 * See if the parent has the page or if the parent's object
1534 		 * pager has the page.  If the parent has the page but the page
1535 		 * is not valid, the parent's object pager must have the page.
1536 		 *
1537 		 * If this fails, the parent does not completely shadow the
1538 		 * object and we might as well give up now.
1539 		 */
1540 		pp = vm_page_lookup(object, new_pindex);
1541 		if ((pp == NULL || pp->valid == 0) &&
1542 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1543 			return (false);
1544 	}
1545 	return (true);
1546 }
1547 
1548 static bool
1549 vm_object_collapse_scan(vm_object_t object, int op)
1550 {
1551 	vm_object_t backing_object;
1552 	vm_page_t next, p, pp;
1553 	vm_pindex_t backing_offset_index, new_pindex;
1554 
1555 	VM_OBJECT_ASSERT_WLOCKED(object);
1556 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1557 
1558 	backing_object = object->backing_object;
1559 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1560 
1561 	/*
1562 	 * Initial conditions
1563 	 */
1564 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1565 		vm_object_set_flag(backing_object, OBJ_DEAD);
1566 
1567 	/*
1568 	 * Our scan
1569 	 */
1570 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1571 		next = TAILQ_NEXT(p, listq);
1572 		new_pindex = p->pindex - backing_offset_index;
1573 
1574 		/*
1575 		 * Check for busy page
1576 		 */
1577 		if (vm_page_busied(p)) {
1578 			next = vm_object_collapse_scan_wait(object, p, next, op);
1579 			continue;
1580 		}
1581 
1582 		KASSERT(p->object == backing_object,
1583 		    ("vm_object_collapse_scan: object mismatch"));
1584 
1585 		if (p->pindex < backing_offset_index ||
1586 		    new_pindex >= object->size) {
1587 			if (backing_object->type == OBJT_SWAP)
1588 				swap_pager_freespace(backing_object, p->pindex,
1589 				    1);
1590 
1591 			/*
1592 			 * Page is out of the parent object's range, we can
1593 			 * simply destroy it.
1594 			 */
1595 			vm_page_lock(p);
1596 			KASSERT(!pmap_page_is_mapped(p),
1597 			    ("freeing mapped page %p", p));
1598 			if (!vm_page_wired(p))
1599 				vm_page_free(p);
1600 			else
1601 				vm_page_remove(p);
1602 			vm_page_unlock(p);
1603 			continue;
1604 		}
1605 
1606 		pp = vm_page_lookup(object, new_pindex);
1607 		if (pp != NULL && vm_page_busied(pp)) {
1608 			/*
1609 			 * The page in the parent is busy and possibly not
1610 			 * (yet) valid.  Until its state is finalized by the
1611 			 * busy bit owner, we can't tell whether it shadows the
1612 			 * original page.  Therefore, we must either skip it
1613 			 * and the original (backing_object) page or wait for
1614 			 * its state to be finalized.
1615 			 *
1616 			 * This is due to a race with vm_fault() where we must
1617 			 * unbusy the original (backing_obj) page before we can
1618 			 * (re)lock the parent.  Hence we can get here.
1619 			 */
1620 			next = vm_object_collapse_scan_wait(object, pp, next,
1621 			    op);
1622 			continue;
1623 		}
1624 
1625 		KASSERT(pp == NULL || pp->valid != 0,
1626 		    ("unbusy invalid page %p", pp));
1627 
1628 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1629 			NULL)) {
1630 			/*
1631 			 * The page already exists in the parent OR swap exists
1632 			 * for this location in the parent.  Leave the parent's
1633 			 * page alone.  Destroy the original page from the
1634 			 * backing object.
1635 			 */
1636 			if (backing_object->type == OBJT_SWAP)
1637 				swap_pager_freespace(backing_object, p->pindex,
1638 				    1);
1639 			vm_page_lock(p);
1640 			KASSERT(!pmap_page_is_mapped(p),
1641 			    ("freeing mapped page %p", p));
1642 			if (!vm_page_wired(p))
1643 				vm_page_free(p);
1644 			else
1645 				vm_page_remove(p);
1646 			vm_page_unlock(p);
1647 			continue;
1648 		}
1649 
1650 		/*
1651 		 * Page does not exist in parent, rename the page from the
1652 		 * backing object to the main object.
1653 		 *
1654 		 * If the page was mapped to a process, it can remain mapped
1655 		 * through the rename.  vm_page_rename() will dirty the page.
1656 		 */
1657 		if (vm_page_rename(p, object, new_pindex)) {
1658 			next = vm_object_collapse_scan_wait(object, NULL, next,
1659 			    op);
1660 			continue;
1661 		}
1662 
1663 		/* Use the old pindex to free the right page. */
1664 		if (backing_object->type == OBJT_SWAP)
1665 			swap_pager_freespace(backing_object,
1666 			    new_pindex + backing_offset_index, 1);
1667 
1668 #if VM_NRESERVLEVEL > 0
1669 		/*
1670 		 * Rename the reservation.
1671 		 */
1672 		vm_reserv_rename(p, object, backing_object,
1673 		    backing_offset_index);
1674 #endif
1675 	}
1676 	return (true);
1677 }
1678 
1679 
1680 /*
1681  * this version of collapse allows the operation to occur earlier and
1682  * when paging_in_progress is true for an object...  This is not a complete
1683  * operation, but should plug 99.9% of the rest of the leaks.
1684  */
1685 static void
1686 vm_object_qcollapse(vm_object_t object)
1687 {
1688 	vm_object_t backing_object = object->backing_object;
1689 
1690 	VM_OBJECT_ASSERT_WLOCKED(object);
1691 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1692 
1693 	if (backing_object->ref_count != 1)
1694 		return;
1695 
1696 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1697 }
1698 
1699 /*
1700  *	vm_object_collapse:
1701  *
1702  *	Collapse an object with the object backing it.
1703  *	Pages in the backing object are moved into the
1704  *	parent, and the backing object is deallocated.
1705  */
1706 void
1707 vm_object_collapse(vm_object_t object)
1708 {
1709 	vm_object_t backing_object, new_backing_object;
1710 
1711 	VM_OBJECT_ASSERT_WLOCKED(object);
1712 
1713 	while (TRUE) {
1714 		/*
1715 		 * Verify that the conditions are right for collapse:
1716 		 *
1717 		 * The object exists and the backing object exists.
1718 		 */
1719 		if ((backing_object = object->backing_object) == NULL)
1720 			break;
1721 
1722 		/*
1723 		 * we check the backing object first, because it is most likely
1724 		 * not collapsable.
1725 		 */
1726 		VM_OBJECT_WLOCK(backing_object);
1727 		if (backing_object->handle != NULL ||
1728 		    (backing_object->type != OBJT_DEFAULT &&
1729 		    backing_object->type != OBJT_SWAP) ||
1730 		    (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1731 		    object->handle != NULL ||
1732 		    (object->type != OBJT_DEFAULT &&
1733 		     object->type != OBJT_SWAP) ||
1734 		    (object->flags & OBJ_DEAD)) {
1735 			VM_OBJECT_WUNLOCK(backing_object);
1736 			break;
1737 		}
1738 
1739 		if (object->paging_in_progress != 0 ||
1740 		    backing_object->paging_in_progress != 0) {
1741 			vm_object_qcollapse(object);
1742 			VM_OBJECT_WUNLOCK(backing_object);
1743 			break;
1744 		}
1745 
1746 		/*
1747 		 * We know that we can either collapse the backing object (if
1748 		 * the parent is the only reference to it) or (perhaps) have
1749 		 * the parent bypass the object if the parent happens to shadow
1750 		 * all the resident pages in the entire backing object.
1751 		 *
1752 		 * This is ignoring pager-backed pages such as swap pages.
1753 		 * vm_object_collapse_scan fails the shadowing test in this
1754 		 * case.
1755 		 */
1756 		if (backing_object->ref_count == 1) {
1757 			vm_object_pip_add(object, 1);
1758 			vm_object_pip_add(backing_object, 1);
1759 
1760 			/*
1761 			 * If there is exactly one reference to the backing
1762 			 * object, we can collapse it into the parent.
1763 			 */
1764 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1765 
1766 #if VM_NRESERVLEVEL > 0
1767 			/*
1768 			 * Break any reservations from backing_object.
1769 			 */
1770 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1771 				vm_reserv_break_all(backing_object);
1772 #endif
1773 
1774 			/*
1775 			 * Move the pager from backing_object to object.
1776 			 */
1777 			if (backing_object->type == OBJT_SWAP) {
1778 				/*
1779 				 * swap_pager_copy() can sleep, in which case
1780 				 * the backing_object's and object's locks are
1781 				 * released and reacquired.
1782 				 * Since swap_pager_copy() is being asked to
1783 				 * destroy the source, it will change the
1784 				 * backing_object's type to OBJT_DEFAULT.
1785 				 */
1786 				swap_pager_copy(
1787 				    backing_object,
1788 				    object,
1789 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1790 			}
1791 			/*
1792 			 * Object now shadows whatever backing_object did.
1793 			 * Note that the reference to
1794 			 * backing_object->backing_object moves from within
1795 			 * backing_object to within object.
1796 			 */
1797 			LIST_REMOVE(object, shadow_list);
1798 			backing_object->shadow_count--;
1799 			if (backing_object->backing_object) {
1800 				VM_OBJECT_WLOCK(backing_object->backing_object);
1801 				LIST_REMOVE(backing_object, shadow_list);
1802 				LIST_INSERT_HEAD(
1803 				    &backing_object->backing_object->shadow_head,
1804 				    object, shadow_list);
1805 				/*
1806 				 * The shadow_count has not changed.
1807 				 */
1808 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1809 			}
1810 			object->backing_object = backing_object->backing_object;
1811 			object->backing_object_offset +=
1812 			    backing_object->backing_object_offset;
1813 
1814 			/*
1815 			 * Discard backing_object.
1816 			 *
1817 			 * Since the backing object has no pages, no pager left,
1818 			 * and no object references within it, all that is
1819 			 * necessary is to dispose of it.
1820 			 */
1821 			KASSERT(backing_object->ref_count == 1, (
1822 "backing_object %p was somehow re-referenced during collapse!",
1823 			    backing_object));
1824 			vm_object_pip_wakeup(backing_object);
1825 			backing_object->type = OBJT_DEAD;
1826 			backing_object->ref_count = 0;
1827 			VM_OBJECT_WUNLOCK(backing_object);
1828 			vm_object_destroy(backing_object);
1829 
1830 			vm_object_pip_wakeup(object);
1831 			counter_u64_add(object_collapses, 1);
1832 		} else {
1833 			/*
1834 			 * If we do not entirely shadow the backing object,
1835 			 * there is nothing we can do so we give up.
1836 			 */
1837 			if (object->resident_page_count != object->size &&
1838 			    !vm_object_scan_all_shadowed(object)) {
1839 				VM_OBJECT_WUNLOCK(backing_object);
1840 				break;
1841 			}
1842 
1843 			/*
1844 			 * Make the parent shadow the next object in the
1845 			 * chain.  Deallocating backing_object will not remove
1846 			 * it, since its reference count is at least 2.
1847 			 */
1848 			LIST_REMOVE(object, shadow_list);
1849 			backing_object->shadow_count--;
1850 
1851 			new_backing_object = backing_object->backing_object;
1852 			if ((object->backing_object = new_backing_object) != NULL) {
1853 				VM_OBJECT_WLOCK(new_backing_object);
1854 				LIST_INSERT_HEAD(
1855 				    &new_backing_object->shadow_head,
1856 				    object,
1857 				    shadow_list
1858 				);
1859 				new_backing_object->shadow_count++;
1860 				vm_object_reference_locked(new_backing_object);
1861 				VM_OBJECT_WUNLOCK(new_backing_object);
1862 				object->backing_object_offset +=
1863 					backing_object->backing_object_offset;
1864 			}
1865 
1866 			/*
1867 			 * Drop the reference count on backing_object. Since
1868 			 * its ref_count was at least 2, it will not vanish.
1869 			 */
1870 			backing_object->ref_count--;
1871 			VM_OBJECT_WUNLOCK(backing_object);
1872 			counter_u64_add(object_bypasses, 1);
1873 		}
1874 
1875 		/*
1876 		 * Try again with this object's new backing object.
1877 		 */
1878 	}
1879 }
1880 
1881 /*
1882  *	vm_object_page_remove:
1883  *
1884  *	For the given object, either frees or invalidates each of the
1885  *	specified pages.  In general, a page is freed.  However, if a page is
1886  *	wired for any reason other than the existence of a managed, wired
1887  *	mapping, then it may be invalidated but not removed from the object.
1888  *	Pages are specified by the given range ["start", "end") and the option
1889  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1890  *	extends from "start" to the end of the object.  If the option
1891  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1892  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1893  *	specified, then the pages within the specified range must have no
1894  *	mappings.  Otherwise, if this option is not specified, any mappings to
1895  *	the specified pages are removed before the pages are freed or
1896  *	invalidated.
1897  *
1898  *	In general, this operation should only be performed on objects that
1899  *	contain managed pages.  There are, however, two exceptions.  First, it
1900  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1901  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1902  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1903  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1904  *
1905  *	The object must be locked.
1906  */
1907 void
1908 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1909     int options)
1910 {
1911 	vm_page_t p, next;
1912 	struct mtx *mtx;
1913 
1914 	VM_OBJECT_ASSERT_WLOCKED(object);
1915 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1916 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1917 	    ("vm_object_page_remove: illegal options for object %p", object));
1918 	if (object->resident_page_count == 0)
1919 		return;
1920 	vm_object_pip_add(object, 1);
1921 again:
1922 	p = vm_page_find_least(object, start);
1923 	mtx = NULL;
1924 
1925 	/*
1926 	 * Here, the variable "p" is either (1) the page with the least pindex
1927 	 * greater than or equal to the parameter "start" or (2) NULL.
1928 	 */
1929 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1930 		next = TAILQ_NEXT(p, listq);
1931 
1932 		/*
1933 		 * If the page is wired for any reason besides the existence
1934 		 * of managed, wired mappings, then it cannot be freed.  For
1935 		 * example, fictitious pages, which represent device memory,
1936 		 * are inherently wired and cannot be freed.  They can,
1937 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1938 		 * not specified.
1939 		 */
1940 		vm_page_change_lock(p, &mtx);
1941 		if (vm_page_xbusied(p)) {
1942 			VM_OBJECT_WUNLOCK(object);
1943 			vm_page_busy_sleep(p, "vmopax", true);
1944 			VM_OBJECT_WLOCK(object);
1945 			goto again;
1946 		}
1947 		if (vm_page_wired(p)) {
1948 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1949 			    object->ref_count != 0)
1950 				pmap_remove_all(p);
1951 			if ((options & OBJPR_CLEANONLY) == 0) {
1952 				p->valid = 0;
1953 				vm_page_undirty(p);
1954 			}
1955 			continue;
1956 		}
1957 		if (vm_page_busied(p)) {
1958 			VM_OBJECT_WUNLOCK(object);
1959 			vm_page_busy_sleep(p, "vmopar", false);
1960 			VM_OBJECT_WLOCK(object);
1961 			goto again;
1962 		}
1963 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1964 		    ("vm_object_page_remove: page %p is fictitious", p));
1965 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1966 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1967 			    object->ref_count != 0)
1968 				pmap_remove_write(p);
1969 			if (p->dirty != 0)
1970 				continue;
1971 		}
1972 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1973 			pmap_remove_all(p);
1974 		vm_page_free(p);
1975 	}
1976 	if (mtx != NULL)
1977 		mtx_unlock(mtx);
1978 	vm_object_pip_wakeup(object);
1979 }
1980 
1981 /*
1982  *	vm_object_page_noreuse:
1983  *
1984  *	For the given object, attempt to move the specified pages to
1985  *	the head of the inactive queue.  This bypasses regular LRU
1986  *	operation and allows the pages to be reused quickly under memory
1987  *	pressure.  If a page is wired for any reason, then it will not
1988  *	be queued.  Pages are specified by the range ["start", "end").
1989  *	As a special case, if "end" is zero, then the range extends from
1990  *	"start" to the end of the object.
1991  *
1992  *	This operation should only be performed on objects that
1993  *	contain non-fictitious, managed pages.
1994  *
1995  *	The object must be locked.
1996  */
1997 void
1998 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1999 {
2000 	struct mtx *mtx;
2001 	vm_page_t p, next;
2002 
2003 	VM_OBJECT_ASSERT_LOCKED(object);
2004 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2005 	    ("vm_object_page_noreuse: illegal object %p", object));
2006 	if (object->resident_page_count == 0)
2007 		return;
2008 	p = vm_page_find_least(object, start);
2009 
2010 	/*
2011 	 * Here, the variable "p" is either (1) the page with the least pindex
2012 	 * greater than or equal to the parameter "start" or (2) NULL.
2013 	 */
2014 	mtx = NULL;
2015 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2016 		next = TAILQ_NEXT(p, listq);
2017 		vm_page_change_lock(p, &mtx);
2018 		vm_page_deactivate_noreuse(p);
2019 	}
2020 	if (mtx != NULL)
2021 		mtx_unlock(mtx);
2022 }
2023 
2024 /*
2025  *	Populate the specified range of the object with valid pages.  Returns
2026  *	TRUE if the range is successfully populated and FALSE otherwise.
2027  *
2028  *	Note: This function should be optimized to pass a larger array of
2029  *	pages to vm_pager_get_pages() before it is applied to a non-
2030  *	OBJT_DEVICE object.
2031  *
2032  *	The object must be locked.
2033  */
2034 boolean_t
2035 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2036 {
2037 	vm_page_t m;
2038 	vm_pindex_t pindex;
2039 	int rv;
2040 
2041 	VM_OBJECT_ASSERT_WLOCKED(object);
2042 	for (pindex = start; pindex < end; pindex++) {
2043 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2044 		if (m->valid != VM_PAGE_BITS_ALL) {
2045 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2046 			if (rv != VM_PAGER_OK) {
2047 				vm_page_lock(m);
2048 				vm_page_free(m);
2049 				vm_page_unlock(m);
2050 				break;
2051 			}
2052 		}
2053 		/*
2054 		 * Keep "m" busy because a subsequent iteration may unlock
2055 		 * the object.
2056 		 */
2057 	}
2058 	if (pindex > start) {
2059 		m = vm_page_lookup(object, start);
2060 		while (m != NULL && m->pindex < pindex) {
2061 			vm_page_xunbusy(m);
2062 			m = TAILQ_NEXT(m, listq);
2063 		}
2064 	}
2065 	return (pindex == end);
2066 }
2067 
2068 /*
2069  *	Routine:	vm_object_coalesce
2070  *	Function:	Coalesces two objects backing up adjoining
2071  *			regions of memory into a single object.
2072  *
2073  *	returns TRUE if objects were combined.
2074  *
2075  *	NOTE:	Only works at the moment if the second object is NULL -
2076  *		if it's not, which object do we lock first?
2077  *
2078  *	Parameters:
2079  *		prev_object	First object to coalesce
2080  *		prev_offset	Offset into prev_object
2081  *		prev_size	Size of reference to prev_object
2082  *		next_size	Size of reference to the second object
2083  *		reserved	Indicator that extension region has
2084  *				swap accounted for
2085  *
2086  *	Conditions:
2087  *	The object must *not* be locked.
2088  */
2089 boolean_t
2090 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2091     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2092 {
2093 	vm_pindex_t next_pindex;
2094 
2095 	if (prev_object == NULL)
2096 		return (TRUE);
2097 	VM_OBJECT_WLOCK(prev_object);
2098 	if ((prev_object->type != OBJT_DEFAULT &&
2099 	    prev_object->type != OBJT_SWAP) ||
2100 	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2101 		VM_OBJECT_WUNLOCK(prev_object);
2102 		return (FALSE);
2103 	}
2104 
2105 	/*
2106 	 * Try to collapse the object first
2107 	 */
2108 	vm_object_collapse(prev_object);
2109 
2110 	/*
2111 	 * Can't coalesce if: . more than one reference . paged out . shadows
2112 	 * another object . has a copy elsewhere (any of which mean that the
2113 	 * pages not mapped to prev_entry may be in use anyway)
2114 	 */
2115 	if (prev_object->backing_object != NULL) {
2116 		VM_OBJECT_WUNLOCK(prev_object);
2117 		return (FALSE);
2118 	}
2119 
2120 	prev_size >>= PAGE_SHIFT;
2121 	next_size >>= PAGE_SHIFT;
2122 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2123 
2124 	if (prev_object->ref_count > 1 &&
2125 	    prev_object->size != next_pindex &&
2126 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2127 		VM_OBJECT_WUNLOCK(prev_object);
2128 		return (FALSE);
2129 	}
2130 
2131 	/*
2132 	 * Account for the charge.
2133 	 */
2134 	if (prev_object->cred != NULL) {
2135 
2136 		/*
2137 		 * If prev_object was charged, then this mapping,
2138 		 * although not charged now, may become writable
2139 		 * later. Non-NULL cred in the object would prevent
2140 		 * swap reservation during enabling of the write
2141 		 * access, so reserve swap now. Failed reservation
2142 		 * cause allocation of the separate object for the map
2143 		 * entry, and swap reservation for this entry is
2144 		 * managed in appropriate time.
2145 		 */
2146 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2147 		    prev_object->cred)) {
2148 			VM_OBJECT_WUNLOCK(prev_object);
2149 			return (FALSE);
2150 		}
2151 		prev_object->charge += ptoa(next_size);
2152 	}
2153 
2154 	/*
2155 	 * Remove any pages that may still be in the object from a previous
2156 	 * deallocation.
2157 	 */
2158 	if (next_pindex < prev_object->size) {
2159 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2160 		    next_size, 0);
2161 		if (prev_object->type == OBJT_SWAP)
2162 			swap_pager_freespace(prev_object,
2163 					     next_pindex, next_size);
2164 #if 0
2165 		if (prev_object->cred != NULL) {
2166 			KASSERT(prev_object->charge >=
2167 			    ptoa(prev_object->size - next_pindex),
2168 			    ("object %p overcharged 1 %jx %jx", prev_object,
2169 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2170 			prev_object->charge -= ptoa(prev_object->size -
2171 			    next_pindex);
2172 		}
2173 #endif
2174 	}
2175 
2176 	/*
2177 	 * Extend the object if necessary.
2178 	 */
2179 	if (next_pindex + next_size > prev_object->size)
2180 		prev_object->size = next_pindex + next_size;
2181 
2182 	VM_OBJECT_WUNLOCK(prev_object);
2183 	return (TRUE);
2184 }
2185 
2186 void
2187 vm_object_set_writeable_dirty(vm_object_t object)
2188 {
2189 
2190 	VM_OBJECT_ASSERT_WLOCKED(object);
2191 	if (object->type != OBJT_VNODE) {
2192 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2193 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2194 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2195 		}
2196 		return;
2197 	}
2198 	object->generation++;
2199 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2200 		return;
2201 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2202 }
2203 
2204 /*
2205  *	vm_object_unwire:
2206  *
2207  *	For each page offset within the specified range of the given object,
2208  *	find the highest-level page in the shadow chain and unwire it.  A page
2209  *	must exist at every page offset, and the highest-level page must be
2210  *	wired.
2211  */
2212 void
2213 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2214     uint8_t queue)
2215 {
2216 	vm_object_t tobject, t1object;
2217 	vm_page_t m, tm;
2218 	vm_pindex_t end_pindex, pindex, tpindex;
2219 	int depth, locked_depth;
2220 
2221 	KASSERT((offset & PAGE_MASK) == 0,
2222 	    ("vm_object_unwire: offset is not page aligned"));
2223 	KASSERT((length & PAGE_MASK) == 0,
2224 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2225 	/* The wired count of a fictitious page never changes. */
2226 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2227 		return;
2228 	pindex = OFF_TO_IDX(offset);
2229 	end_pindex = pindex + atop(length);
2230 again:
2231 	locked_depth = 1;
2232 	VM_OBJECT_RLOCK(object);
2233 	m = vm_page_find_least(object, pindex);
2234 	while (pindex < end_pindex) {
2235 		if (m == NULL || pindex < m->pindex) {
2236 			/*
2237 			 * The first object in the shadow chain doesn't
2238 			 * contain a page at the current index.  Therefore,
2239 			 * the page must exist in a backing object.
2240 			 */
2241 			tobject = object;
2242 			tpindex = pindex;
2243 			depth = 0;
2244 			do {
2245 				tpindex +=
2246 				    OFF_TO_IDX(tobject->backing_object_offset);
2247 				tobject = tobject->backing_object;
2248 				KASSERT(tobject != NULL,
2249 				    ("vm_object_unwire: missing page"));
2250 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2251 					goto next_page;
2252 				depth++;
2253 				if (depth == locked_depth) {
2254 					locked_depth++;
2255 					VM_OBJECT_RLOCK(tobject);
2256 				}
2257 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2258 			    NULL);
2259 		} else {
2260 			tm = m;
2261 			m = TAILQ_NEXT(m, listq);
2262 		}
2263 		vm_page_lock(tm);
2264 		if (vm_page_xbusied(tm)) {
2265 			for (tobject = object; locked_depth >= 1;
2266 			    locked_depth--) {
2267 				t1object = tobject->backing_object;
2268 				VM_OBJECT_RUNLOCK(tobject);
2269 				tobject = t1object;
2270 			}
2271 			vm_page_busy_sleep(tm, "unwbo", true);
2272 			goto again;
2273 		}
2274 		vm_page_unwire(tm, queue);
2275 		vm_page_unlock(tm);
2276 next_page:
2277 		pindex++;
2278 	}
2279 	/* Release the accumulated object locks. */
2280 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2281 		t1object = tobject->backing_object;
2282 		VM_OBJECT_RUNLOCK(tobject);
2283 		tobject = t1object;
2284 	}
2285 }
2286 
2287 /*
2288  * Return the vnode for the given object, or NULL if none exists.
2289  * For tmpfs objects, the function may return NULL if there is
2290  * no vnode allocated at the time of the call.
2291  */
2292 struct vnode *
2293 vm_object_vnode(vm_object_t object)
2294 {
2295 	struct vnode *vp;
2296 
2297 	VM_OBJECT_ASSERT_LOCKED(object);
2298 	if (object->type == OBJT_VNODE) {
2299 		vp = object->handle;
2300 		KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2301 	} else if (object->type == OBJT_SWAP &&
2302 	    (object->flags & OBJ_TMPFS) != 0) {
2303 		vp = object->un_pager.swp.swp_tmpfs;
2304 		KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2305 	} else {
2306 		vp = NULL;
2307 	}
2308 	return (vp);
2309 }
2310 
2311 /*
2312  * Return the kvme type of the given object.
2313  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2314  */
2315 int
2316 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2317 {
2318 
2319 	VM_OBJECT_ASSERT_LOCKED(object);
2320 	if (vpp != NULL)
2321 		*vpp = vm_object_vnode(object);
2322 	switch (object->type) {
2323 	case OBJT_DEFAULT:
2324 		return (KVME_TYPE_DEFAULT);
2325 	case OBJT_VNODE:
2326 		return (KVME_TYPE_VNODE);
2327 	case OBJT_SWAP:
2328 		if ((object->flags & OBJ_TMPFS_NODE) != 0)
2329 			return (KVME_TYPE_VNODE);
2330 		return (KVME_TYPE_SWAP);
2331 	case OBJT_DEVICE:
2332 		return (KVME_TYPE_DEVICE);
2333 	case OBJT_PHYS:
2334 		return (KVME_TYPE_PHYS);
2335 	case OBJT_DEAD:
2336 		return (KVME_TYPE_DEAD);
2337 	case OBJT_SG:
2338 		return (KVME_TYPE_SG);
2339 	case OBJT_MGTDEVICE:
2340 		return (KVME_TYPE_MGTDEVICE);
2341 	default:
2342 		return (KVME_TYPE_UNKNOWN);
2343 	}
2344 }
2345 
2346 static int
2347 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2348 {
2349 	struct kinfo_vmobject *kvo;
2350 	char *fullpath, *freepath;
2351 	struct vnode *vp;
2352 	struct vattr va;
2353 	vm_object_t obj;
2354 	vm_page_t m;
2355 	int count, error;
2356 
2357 	if (req->oldptr == NULL) {
2358 		/*
2359 		 * If an old buffer has not been provided, generate an
2360 		 * estimate of the space needed for a subsequent call.
2361 		 */
2362 		mtx_lock(&vm_object_list_mtx);
2363 		count = 0;
2364 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2365 			if (obj->type == OBJT_DEAD)
2366 				continue;
2367 			count++;
2368 		}
2369 		mtx_unlock(&vm_object_list_mtx);
2370 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2371 		    count * 11 / 10));
2372 	}
2373 
2374 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2375 	error = 0;
2376 
2377 	/*
2378 	 * VM objects are type stable and are never removed from the
2379 	 * list once added.  This allows us to safely read obj->object_list
2380 	 * after reacquiring the VM object lock.
2381 	 */
2382 	mtx_lock(&vm_object_list_mtx);
2383 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2384 		if (obj->type == OBJT_DEAD)
2385 			continue;
2386 		VM_OBJECT_RLOCK(obj);
2387 		if (obj->type == OBJT_DEAD) {
2388 			VM_OBJECT_RUNLOCK(obj);
2389 			continue;
2390 		}
2391 		mtx_unlock(&vm_object_list_mtx);
2392 		kvo->kvo_size = ptoa(obj->size);
2393 		kvo->kvo_resident = obj->resident_page_count;
2394 		kvo->kvo_ref_count = obj->ref_count;
2395 		kvo->kvo_shadow_count = obj->shadow_count;
2396 		kvo->kvo_memattr = obj->memattr;
2397 		kvo->kvo_active = 0;
2398 		kvo->kvo_inactive = 0;
2399 		TAILQ_FOREACH(m, &obj->memq, listq) {
2400 			/*
2401 			 * A page may belong to the object but be
2402 			 * dequeued and set to PQ_NONE while the
2403 			 * object lock is not held.  This makes the
2404 			 * reads of m->queue below racy, and we do not
2405 			 * count pages set to PQ_NONE.  However, this
2406 			 * sysctl is only meant to give an
2407 			 * approximation of the system anyway.
2408 			 */
2409 			if (m->queue == PQ_ACTIVE)
2410 				kvo->kvo_active++;
2411 			else if (m->queue == PQ_INACTIVE)
2412 				kvo->kvo_inactive++;
2413 		}
2414 
2415 		kvo->kvo_vn_fileid = 0;
2416 		kvo->kvo_vn_fsid = 0;
2417 		kvo->kvo_vn_fsid_freebsd11 = 0;
2418 		freepath = NULL;
2419 		fullpath = "";
2420 		kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2421 		if (vp != NULL)
2422 			vref(vp);
2423 		VM_OBJECT_RUNLOCK(obj);
2424 		if (vp != NULL) {
2425 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2426 			vn_lock(vp, LK_SHARED | LK_RETRY);
2427 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2428 				kvo->kvo_vn_fileid = va.va_fileid;
2429 				kvo->kvo_vn_fsid = va.va_fsid;
2430 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2431 								/* truncate */
2432 			}
2433 			vput(vp);
2434 		}
2435 
2436 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2437 		if (freepath != NULL)
2438 			free(freepath, M_TEMP);
2439 
2440 		/* Pack record size down */
2441 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2442 		    + strlen(kvo->kvo_path) + 1;
2443 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2444 		    sizeof(uint64_t));
2445 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2446 		mtx_lock(&vm_object_list_mtx);
2447 		if (error)
2448 			break;
2449 	}
2450 	mtx_unlock(&vm_object_list_mtx);
2451 	free(kvo, M_TEMP);
2452 	return (error);
2453 }
2454 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2455     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2456     "List of VM objects");
2457 
2458 #include "opt_ddb.h"
2459 #ifdef DDB
2460 #include <sys/kernel.h>
2461 
2462 #include <sys/cons.h>
2463 
2464 #include <ddb/ddb.h>
2465 
2466 static int
2467 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2468 {
2469 	vm_map_t tmpm;
2470 	vm_map_entry_t tmpe;
2471 	vm_object_t obj;
2472 	int entcount;
2473 
2474 	if (map == 0)
2475 		return 0;
2476 
2477 	if (entry == 0) {
2478 		tmpe = map->header.next;
2479 		entcount = map->nentries;
2480 		while (entcount-- && (tmpe != &map->header)) {
2481 			if (_vm_object_in_map(map, object, tmpe)) {
2482 				return 1;
2483 			}
2484 			tmpe = tmpe->next;
2485 		}
2486 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2487 		tmpm = entry->object.sub_map;
2488 		tmpe = tmpm->header.next;
2489 		entcount = tmpm->nentries;
2490 		while (entcount-- && tmpe != &tmpm->header) {
2491 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2492 				return 1;
2493 			}
2494 			tmpe = tmpe->next;
2495 		}
2496 	} else if ((obj = entry->object.vm_object) != NULL) {
2497 		for (; obj; obj = obj->backing_object)
2498 			if (obj == object) {
2499 				return 1;
2500 			}
2501 	}
2502 	return 0;
2503 }
2504 
2505 static int
2506 vm_object_in_map(vm_object_t object)
2507 {
2508 	struct proc *p;
2509 
2510 	/* sx_slock(&allproc_lock); */
2511 	FOREACH_PROC_IN_SYSTEM(p) {
2512 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2513 			continue;
2514 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2515 			/* sx_sunlock(&allproc_lock); */
2516 			return 1;
2517 		}
2518 	}
2519 	/* sx_sunlock(&allproc_lock); */
2520 	if (_vm_object_in_map(kernel_map, object, 0))
2521 		return 1;
2522 	return 0;
2523 }
2524 
2525 DB_SHOW_COMMAND(vmochk, vm_object_check)
2526 {
2527 	vm_object_t object;
2528 
2529 	/*
2530 	 * make sure that internal objs are in a map somewhere
2531 	 * and none have zero ref counts.
2532 	 */
2533 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2534 		if (object->handle == NULL &&
2535 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2536 			if (object->ref_count == 0) {
2537 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2538 					(long)object->size);
2539 			}
2540 			if (!vm_object_in_map(object)) {
2541 				db_printf(
2542 			"vmochk: internal obj is not in a map: "
2543 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2544 				    object->ref_count, (u_long)object->size,
2545 				    (u_long)object->size,
2546 				    (void *)object->backing_object);
2547 			}
2548 		}
2549 	}
2550 }
2551 
2552 /*
2553  *	vm_object_print:	[ debug ]
2554  */
2555 DB_SHOW_COMMAND(object, vm_object_print_static)
2556 {
2557 	/* XXX convert args. */
2558 	vm_object_t object = (vm_object_t)addr;
2559 	boolean_t full = have_addr;
2560 
2561 	vm_page_t p;
2562 
2563 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2564 #define	count	was_count
2565 
2566 	int count;
2567 
2568 	if (object == NULL)
2569 		return;
2570 
2571 	db_iprintf(
2572 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2573 	    object, (int)object->type, (uintmax_t)object->size,
2574 	    object->resident_page_count, object->ref_count, object->flags,
2575 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2576 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2577 	    object->shadow_count,
2578 	    object->backing_object ? object->backing_object->ref_count : 0,
2579 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2580 
2581 	if (!full)
2582 		return;
2583 
2584 	db_indent += 2;
2585 	count = 0;
2586 	TAILQ_FOREACH(p, &object->memq, listq) {
2587 		if (count == 0)
2588 			db_iprintf("memory:=");
2589 		else if (count == 6) {
2590 			db_printf("\n");
2591 			db_iprintf(" ...");
2592 			count = 0;
2593 		} else
2594 			db_printf(",");
2595 		count++;
2596 
2597 		db_printf("(off=0x%jx,page=0x%jx)",
2598 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2599 	}
2600 	if (count != 0)
2601 		db_printf("\n");
2602 	db_indent -= 2;
2603 }
2604 
2605 /* XXX. */
2606 #undef count
2607 
2608 /* XXX need this non-static entry for calling from vm_map_print. */
2609 void
2610 vm_object_print(
2611         /* db_expr_t */ long addr,
2612 	boolean_t have_addr,
2613 	/* db_expr_t */ long count,
2614 	char *modif)
2615 {
2616 	vm_object_print_static(addr, have_addr, count, modif);
2617 }
2618 
2619 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2620 {
2621 	vm_object_t object;
2622 	vm_pindex_t fidx;
2623 	vm_paddr_t pa;
2624 	vm_page_t m, prev_m;
2625 	int rcount, nl, c;
2626 
2627 	nl = 0;
2628 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2629 		db_printf("new object: %p\n", (void *)object);
2630 		if (nl > 18) {
2631 			c = cngetc();
2632 			if (c != ' ')
2633 				return;
2634 			nl = 0;
2635 		}
2636 		nl++;
2637 		rcount = 0;
2638 		fidx = 0;
2639 		pa = -1;
2640 		TAILQ_FOREACH(m, &object->memq, listq) {
2641 			if (m->pindex > 128)
2642 				break;
2643 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2644 			    prev_m->pindex + 1 != m->pindex) {
2645 				if (rcount) {
2646 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2647 						(long)fidx, rcount, (long)pa);
2648 					if (nl > 18) {
2649 						c = cngetc();
2650 						if (c != ' ')
2651 							return;
2652 						nl = 0;
2653 					}
2654 					nl++;
2655 					rcount = 0;
2656 				}
2657 			}
2658 			if (rcount &&
2659 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2660 				++rcount;
2661 				continue;
2662 			}
2663 			if (rcount) {
2664 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2665 					(long)fidx, rcount, (long)pa);
2666 				if (nl > 18) {
2667 					c = cngetc();
2668 					if (c != ' ')
2669 						return;
2670 					nl = 0;
2671 				}
2672 				nl++;
2673 			}
2674 			fidx = m->pindex;
2675 			pa = VM_PAGE_TO_PHYS(m);
2676 			rcount = 1;
2677 		}
2678 		if (rcount) {
2679 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2680 				(long)fidx, rcount, (long)pa);
2681 			if (nl > 18) {
2682 				c = cngetc();
2683 				if (c != ' ')
2684 					return;
2685 				nl = 0;
2686 			}
2687 			nl++;
2688 		}
2689 	}
2690 }
2691 #endif /* DDB */
2692