1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory object module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/blockcount.h> 75 #include <sys/cpuset.h> 76 #include <sys/limits.h> 77 #include <sys/lock.h> 78 #include <sys/mman.h> 79 #include <sys/mount.h> 80 #include <sys/kernel.h> 81 #include <sys/pctrie.h> 82 #include <sys/sysctl.h> 83 #include <sys/mutex.h> 84 #include <sys/proc.h> /* for curproc, pageproc */ 85 #include <sys/refcount.h> 86 #include <sys/socket.h> 87 #include <sys/resourcevar.h> 88 #include <sys/refcount.h> 89 #include <sys/rwlock.h> 90 #include <sys/user.h> 91 #include <sys/vnode.h> 92 #include <sys/vmmeter.h> 93 #include <sys/sx.h> 94 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_object.h> 100 #include <vm/vm_page.h> 101 #include <vm/vm_pageout.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/swap_pager.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/uma.h> 111 112 static int old_msync; 113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, 114 "Use old (insecure) msync behavior"); 115 116 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, 117 int pagerflags, int flags, boolean_t *allclean, 118 boolean_t *eio); 119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, 120 boolean_t *allclean); 121 static void vm_object_backing_remove(vm_object_t object); 122 123 /* 124 * Virtual memory objects maintain the actual data 125 * associated with allocated virtual memory. A given 126 * page of memory exists within exactly one object. 127 * 128 * An object is only deallocated when all "references" 129 * are given up. Only one "reference" to a given 130 * region of an object should be writeable. 131 * 132 * Associated with each object is a list of all resident 133 * memory pages belonging to that object; this list is 134 * maintained by the "vm_page" module, and locked by the object's 135 * lock. 136 * 137 * Each object also records a "pager" routine which is 138 * used to retrieve (and store) pages to the proper backing 139 * storage. In addition, objects may be backed by other 140 * objects from which they were virtual-copied. 141 * 142 * The only items within the object structure which are 143 * modified after time of creation are: 144 * reference count locked by object's lock 145 * pager routine locked by object's lock 146 * 147 */ 148 149 struct object_q vm_object_list; 150 struct mtx vm_object_list_mtx; /* lock for object list and count */ 151 152 struct vm_object kernel_object_store; 153 154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 155 "VM object stats"); 156 157 static COUNTER_U64_DEFINE_EARLY(object_collapses); 158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, 159 &object_collapses, 160 "VM object collapses"); 161 162 static COUNTER_U64_DEFINE_EARLY(object_bypasses); 163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, 164 &object_bypasses, 165 "VM object bypasses"); 166 167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); 168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, 169 &object_collapse_waits, 170 "Number of sleeps for collapse"); 171 172 static uma_zone_t obj_zone; 173 174 static int vm_object_zinit(void *mem, int size, int flags); 175 176 #ifdef INVARIANTS 177 static void vm_object_zdtor(void *mem, int size, void *arg); 178 179 static void 180 vm_object_zdtor(void *mem, int size, void *arg) 181 { 182 vm_object_t object; 183 184 object = (vm_object_t)mem; 185 KASSERT(object->ref_count == 0, 186 ("object %p ref_count = %d", object, object->ref_count)); 187 KASSERT(TAILQ_EMPTY(&object->memq), 188 ("object %p has resident pages in its memq", object)); 189 KASSERT(vm_radix_is_empty(&object->rtree), 190 ("object %p has resident pages in its trie", object)); 191 #if VM_NRESERVLEVEL > 0 192 KASSERT(LIST_EMPTY(&object->rvq), 193 ("object %p has reservations", 194 object)); 195 #endif 196 KASSERT(!vm_object_busied(object), 197 ("object %p busy = %d", object, blockcount_read(&object->busy))); 198 KASSERT(object->resident_page_count == 0, 199 ("object %p resident_page_count = %d", 200 object, object->resident_page_count)); 201 KASSERT(atomic_load_int(&object->shadow_count) == 0, 202 ("object %p shadow_count = %d", 203 object, atomic_load_int(&object->shadow_count))); 204 KASSERT(object->type == OBJT_DEAD, 205 ("object %p has non-dead type %d", 206 object, object->type)); 207 KASSERT(object->charge == 0 && object->cred == NULL, 208 ("object %p has non-zero charge %ju (%p)", 209 object, (uintmax_t)object->charge, object->cred)); 210 } 211 #endif 212 213 static int 214 vm_object_zinit(void *mem, int size, int flags) 215 { 216 vm_object_t object; 217 218 object = (vm_object_t)mem; 219 rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW); 220 221 /* These are true for any object that has been freed */ 222 object->type = OBJT_DEAD; 223 vm_radix_init(&object->rtree); 224 refcount_init(&object->ref_count, 0); 225 blockcount_init(&object->paging_in_progress); 226 blockcount_init(&object->busy); 227 object->resident_page_count = 0; 228 atomic_store_int(&object->shadow_count, 0); 229 object->flags = OBJ_DEAD; 230 231 mtx_lock(&vm_object_list_mtx); 232 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); 233 mtx_unlock(&vm_object_list_mtx); 234 return (0); 235 } 236 237 static void 238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, 239 vm_object_t object, void *handle) 240 { 241 242 TAILQ_INIT(&object->memq); 243 LIST_INIT(&object->shadow_head); 244 245 object->type = type; 246 object->flags = flags; 247 if ((flags & OBJ_SWAP) != 0) { 248 pctrie_init(&object->un_pager.swp.swp_blks); 249 object->un_pager.swp.writemappings = 0; 250 } 251 252 /* 253 * Ensure that swap_pager_swapoff() iteration over object_list 254 * sees up to date type and pctrie head if it observed 255 * non-dead object. 256 */ 257 atomic_thread_fence_rel(); 258 259 object->pg_color = 0; 260 object->size = size; 261 object->domain.dr_policy = NULL; 262 object->generation = 1; 263 object->cleangeneration = 1; 264 refcount_init(&object->ref_count, 1); 265 object->memattr = VM_MEMATTR_DEFAULT; 266 object->cred = NULL; 267 object->charge = 0; 268 object->handle = handle; 269 object->backing_object = NULL; 270 object->backing_object_offset = (vm_ooffset_t) 0; 271 #if VM_NRESERVLEVEL > 0 272 LIST_INIT(&object->rvq); 273 #endif 274 umtx_shm_object_init(object); 275 } 276 277 /* 278 * vm_object_init: 279 * 280 * Initialize the VM objects module. 281 */ 282 void 283 vm_object_init(void) 284 { 285 TAILQ_INIT(&vm_object_list); 286 mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); 287 288 rw_init(&kernel_object->lock, "kernel vm object"); 289 _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - 290 VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); 291 #if VM_NRESERVLEVEL > 0 292 kernel_object->flags |= OBJ_COLORED; 293 kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); 294 #endif 295 kernel_object->un_pager.phys.ops = &default_phys_pg_ops; 296 297 /* 298 * The lock portion of struct vm_object must be type stable due 299 * to vm_pageout_fallback_object_lock locking a vm object 300 * without holding any references to it. 301 * 302 * paging_in_progress is valid always. Lockless references to 303 * the objects may acquire pip and then check OBJ_DEAD. 304 */ 305 obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, 306 #ifdef INVARIANTS 307 vm_object_zdtor, 308 #else 309 NULL, 310 #endif 311 vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 312 313 vm_radix_zinit(); 314 } 315 316 void 317 vm_object_clear_flag(vm_object_t object, u_short bits) 318 { 319 320 VM_OBJECT_ASSERT_WLOCKED(object); 321 object->flags &= ~bits; 322 } 323 324 /* 325 * Sets the default memory attribute for the specified object. Pages 326 * that are allocated to this object are by default assigned this memory 327 * attribute. 328 * 329 * Presently, this function must be called before any pages are allocated 330 * to the object. In the future, this requirement may be relaxed for 331 * "default" and "swap" objects. 332 */ 333 int 334 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) 335 { 336 337 VM_OBJECT_ASSERT_WLOCKED(object); 338 339 if (object->type == OBJT_DEAD) 340 return (KERN_INVALID_ARGUMENT); 341 if (!TAILQ_EMPTY(&object->memq)) 342 return (KERN_FAILURE); 343 344 object->memattr = memattr; 345 return (KERN_SUCCESS); 346 } 347 348 void 349 vm_object_pip_add(vm_object_t object, short i) 350 { 351 352 if (i > 0) 353 blockcount_acquire(&object->paging_in_progress, i); 354 } 355 356 void 357 vm_object_pip_wakeup(vm_object_t object) 358 { 359 360 vm_object_pip_wakeupn(object, 1); 361 } 362 363 void 364 vm_object_pip_wakeupn(vm_object_t object, short i) 365 { 366 367 if (i > 0) 368 blockcount_release(&object->paging_in_progress, i); 369 } 370 371 /* 372 * Atomically drop the object lock and wait for pip to drain. This protects 373 * from sleep/wakeup races due to identity changes. The lock is not re-acquired 374 * on return. 375 */ 376 static void 377 vm_object_pip_sleep(vm_object_t object, const char *waitid) 378 { 379 380 (void)blockcount_sleep(&object->paging_in_progress, &object->lock, 381 waitid, PVM | PDROP); 382 } 383 384 void 385 vm_object_pip_wait(vm_object_t object, const char *waitid) 386 { 387 388 VM_OBJECT_ASSERT_WLOCKED(object); 389 390 blockcount_wait(&object->paging_in_progress, &object->lock, waitid, 391 PVM); 392 } 393 394 void 395 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) 396 { 397 398 VM_OBJECT_ASSERT_UNLOCKED(object); 399 400 blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); 401 } 402 403 /* 404 * vm_object_allocate: 405 * 406 * Returns a new object with the given size. 407 */ 408 vm_object_t 409 vm_object_allocate(objtype_t type, vm_pindex_t size) 410 { 411 vm_object_t object; 412 u_short flags; 413 414 switch (type) { 415 case OBJT_DEAD: 416 panic("vm_object_allocate: can't create OBJT_DEAD"); 417 case OBJT_SWAP: 418 flags = OBJ_COLORED | OBJ_SWAP; 419 break; 420 case OBJT_DEVICE: 421 case OBJT_SG: 422 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; 423 break; 424 case OBJT_MGTDEVICE: 425 flags = OBJ_FICTITIOUS; 426 break; 427 case OBJT_PHYS: 428 flags = OBJ_UNMANAGED; 429 break; 430 case OBJT_VNODE: 431 flags = 0; 432 break; 433 default: 434 panic("vm_object_allocate: type %d is undefined or dynamic", 435 type); 436 } 437 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 438 _vm_object_allocate(type, size, flags, object, NULL); 439 440 return (object); 441 } 442 443 vm_object_t 444 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) 445 { 446 vm_object_t object; 447 448 MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); 449 object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); 450 _vm_object_allocate(dyntype, size, flags, object, NULL); 451 452 return (object); 453 } 454 455 /* 456 * vm_object_allocate_anon: 457 * 458 * Returns a new default object of the given size and marked as 459 * anonymous memory for special split/collapse handling. Color 460 * to be initialized by the caller. 461 */ 462 vm_object_t 463 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, 464 struct ucred *cred, vm_size_t charge) 465 { 466 vm_object_t handle, object; 467 468 if (backing_object == NULL) 469 handle = NULL; 470 else if ((backing_object->flags & OBJ_ANON) != 0) 471 handle = backing_object->handle; 472 else 473 handle = backing_object; 474 object = uma_zalloc(obj_zone, M_WAITOK); 475 _vm_object_allocate(OBJT_SWAP, size, 476 OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); 477 object->cred = cred; 478 object->charge = cred != NULL ? charge : 0; 479 return (object); 480 } 481 482 static void 483 vm_object_reference_vnode(vm_object_t object) 484 { 485 u_int old; 486 487 /* 488 * vnode objects need the lock for the first reference 489 * to serialize with vnode_object_deallocate(). 490 */ 491 if (!refcount_acquire_if_gt(&object->ref_count, 0)) { 492 VM_OBJECT_RLOCK(object); 493 old = refcount_acquire(&object->ref_count); 494 if (object->type == OBJT_VNODE && old == 0) 495 vref(object->handle); 496 VM_OBJECT_RUNLOCK(object); 497 } 498 } 499 500 /* 501 * vm_object_reference: 502 * 503 * Acquires a reference to the given object. 504 */ 505 void 506 vm_object_reference(vm_object_t object) 507 { 508 509 if (object == NULL) 510 return; 511 512 if (object->type == OBJT_VNODE) 513 vm_object_reference_vnode(object); 514 else 515 refcount_acquire(&object->ref_count); 516 KASSERT((object->flags & OBJ_DEAD) == 0, 517 ("vm_object_reference: Referenced dead object.")); 518 } 519 520 /* 521 * vm_object_reference_locked: 522 * 523 * Gets another reference to the given object. 524 * 525 * The object must be locked. 526 */ 527 void 528 vm_object_reference_locked(vm_object_t object) 529 { 530 u_int old; 531 532 VM_OBJECT_ASSERT_LOCKED(object); 533 old = refcount_acquire(&object->ref_count); 534 if (object->type == OBJT_VNODE && old == 0) 535 vref(object->handle); 536 KASSERT((object->flags & OBJ_DEAD) == 0, 537 ("vm_object_reference: Referenced dead object.")); 538 } 539 540 /* 541 * Handle deallocating an object of type OBJT_VNODE. 542 */ 543 static void 544 vm_object_deallocate_vnode(vm_object_t object) 545 { 546 struct vnode *vp = (struct vnode *) object->handle; 547 bool last; 548 549 KASSERT(object->type == OBJT_VNODE, 550 ("vm_object_deallocate_vnode: not a vnode object")); 551 KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); 552 553 /* Object lock to protect handle lookup. */ 554 last = refcount_release(&object->ref_count); 555 VM_OBJECT_RUNLOCK(object); 556 557 if (!last) 558 return; 559 560 if (!umtx_shm_vnobj_persistent) 561 umtx_shm_object_terminated(object); 562 563 /* vrele may need the vnode lock. */ 564 vrele(vp); 565 } 566 567 /* 568 * We dropped a reference on an object and discovered that it had a 569 * single remaining shadow. This is a sibling of the reference we 570 * dropped. Attempt to collapse the sibling and backing object. 571 */ 572 static vm_object_t 573 vm_object_deallocate_anon(vm_object_t backing_object) 574 { 575 vm_object_t object; 576 577 /* Fetch the final shadow. */ 578 object = LIST_FIRST(&backing_object->shadow_head); 579 KASSERT(object != NULL && 580 atomic_load_int(&backing_object->shadow_count) == 1, 581 ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", 582 backing_object->ref_count, 583 atomic_load_int(&backing_object->shadow_count))); 584 KASSERT((object->flags & OBJ_ANON) != 0, 585 ("invalid shadow object %p", object)); 586 587 if (!VM_OBJECT_TRYWLOCK(object)) { 588 /* 589 * Prevent object from disappearing since we do not have a 590 * reference. 591 */ 592 vm_object_pip_add(object, 1); 593 VM_OBJECT_WUNLOCK(backing_object); 594 VM_OBJECT_WLOCK(object); 595 vm_object_pip_wakeup(object); 596 } else 597 VM_OBJECT_WUNLOCK(backing_object); 598 599 /* 600 * Check for a collapse/terminate race with the last reference holder. 601 */ 602 if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || 603 !refcount_acquire_if_not_zero(&object->ref_count)) { 604 VM_OBJECT_WUNLOCK(object); 605 return (NULL); 606 } 607 backing_object = object->backing_object; 608 if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) 609 vm_object_collapse(object); 610 VM_OBJECT_WUNLOCK(object); 611 612 return (object); 613 } 614 615 /* 616 * vm_object_deallocate: 617 * 618 * Release a reference to the specified object, 619 * gained either through a vm_object_allocate 620 * or a vm_object_reference call. When all references 621 * are gone, storage associated with this object 622 * may be relinquished. 623 * 624 * No object may be locked. 625 */ 626 void 627 vm_object_deallocate(vm_object_t object) 628 { 629 vm_object_t temp; 630 bool released; 631 632 while (object != NULL) { 633 /* 634 * If the reference count goes to 0 we start calling 635 * vm_object_terminate() on the object chain. A ref count 636 * of 1 may be a special case depending on the shadow count 637 * being 0 or 1. These cases require a write lock on the 638 * object. 639 */ 640 if ((object->flags & OBJ_ANON) == 0) 641 released = refcount_release_if_gt(&object->ref_count, 1); 642 else 643 released = refcount_release_if_gt(&object->ref_count, 2); 644 if (released) 645 return; 646 647 if (object->type == OBJT_VNODE) { 648 VM_OBJECT_RLOCK(object); 649 if (object->type == OBJT_VNODE) { 650 vm_object_deallocate_vnode(object); 651 return; 652 } 653 VM_OBJECT_RUNLOCK(object); 654 } 655 656 VM_OBJECT_WLOCK(object); 657 KASSERT(object->ref_count > 0, 658 ("vm_object_deallocate: object deallocated too many times: %d", 659 object->type)); 660 661 /* 662 * If this is not the final reference to an anonymous 663 * object we may need to collapse the shadow chain. 664 */ 665 if (!refcount_release(&object->ref_count)) { 666 if (object->ref_count > 1 || 667 atomic_load_int(&object->shadow_count) == 0) { 668 if ((object->flags & OBJ_ANON) != 0 && 669 object->ref_count == 1) 670 vm_object_set_flag(object, 671 OBJ_ONEMAPPING); 672 VM_OBJECT_WUNLOCK(object); 673 return; 674 } 675 676 /* Handle collapsing last ref on anonymous objects. */ 677 object = vm_object_deallocate_anon(object); 678 continue; 679 } 680 681 /* 682 * Handle the final reference to an object. We restart 683 * the loop with the backing object to avoid recursion. 684 */ 685 umtx_shm_object_terminated(object); 686 temp = object->backing_object; 687 if (temp != NULL) { 688 KASSERT(object->type == OBJT_SWAP, 689 ("shadowed tmpfs v_object 2 %p", object)); 690 vm_object_backing_remove(object); 691 } 692 693 KASSERT((object->flags & OBJ_DEAD) == 0, 694 ("vm_object_deallocate: Terminating dead object.")); 695 vm_object_set_flag(object, OBJ_DEAD); 696 vm_object_terminate(object); 697 object = temp; 698 } 699 } 700 701 void 702 vm_object_destroy(vm_object_t object) 703 { 704 uma_zfree(obj_zone, object); 705 } 706 707 static void 708 vm_object_sub_shadow(vm_object_t object) 709 { 710 KASSERT(object->shadow_count >= 1, 711 ("object %p sub_shadow count zero", object)); 712 atomic_subtract_int(&object->shadow_count, 1); 713 } 714 715 static void 716 vm_object_backing_remove_locked(vm_object_t object) 717 { 718 vm_object_t backing_object; 719 720 backing_object = object->backing_object; 721 VM_OBJECT_ASSERT_WLOCKED(object); 722 VM_OBJECT_ASSERT_WLOCKED(backing_object); 723 724 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 725 ("vm_object_backing_remove: Removing collapsing object.")); 726 727 vm_object_sub_shadow(backing_object); 728 if ((object->flags & OBJ_SHADOWLIST) != 0) { 729 LIST_REMOVE(object, shadow_list); 730 vm_object_clear_flag(object, OBJ_SHADOWLIST); 731 } 732 object->backing_object = NULL; 733 } 734 735 static void 736 vm_object_backing_remove(vm_object_t object) 737 { 738 vm_object_t backing_object; 739 740 VM_OBJECT_ASSERT_WLOCKED(object); 741 742 backing_object = object->backing_object; 743 if ((object->flags & OBJ_SHADOWLIST) != 0) { 744 VM_OBJECT_WLOCK(backing_object); 745 vm_object_backing_remove_locked(object); 746 VM_OBJECT_WUNLOCK(backing_object); 747 } else { 748 object->backing_object = NULL; 749 vm_object_sub_shadow(backing_object); 750 } 751 } 752 753 static void 754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) 755 { 756 757 VM_OBJECT_ASSERT_WLOCKED(object); 758 759 atomic_add_int(&backing_object->shadow_count, 1); 760 if ((backing_object->flags & OBJ_ANON) != 0) { 761 VM_OBJECT_ASSERT_WLOCKED(backing_object); 762 LIST_INSERT_HEAD(&backing_object->shadow_head, object, 763 shadow_list); 764 vm_object_set_flag(object, OBJ_SHADOWLIST); 765 } 766 object->backing_object = backing_object; 767 } 768 769 static void 770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) 771 { 772 773 VM_OBJECT_ASSERT_WLOCKED(object); 774 775 if ((backing_object->flags & OBJ_ANON) != 0) { 776 VM_OBJECT_WLOCK(backing_object); 777 vm_object_backing_insert_locked(object, backing_object); 778 VM_OBJECT_WUNLOCK(backing_object); 779 } else { 780 object->backing_object = backing_object; 781 atomic_add_int(&backing_object->shadow_count, 1); 782 } 783 } 784 785 /* 786 * Insert an object into a backing_object's shadow list with an additional 787 * reference to the backing_object added. 788 */ 789 static void 790 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) 791 { 792 793 VM_OBJECT_ASSERT_WLOCKED(object); 794 795 if ((backing_object->flags & OBJ_ANON) != 0) { 796 VM_OBJECT_WLOCK(backing_object); 797 KASSERT((backing_object->flags & OBJ_DEAD) == 0, 798 ("shadowing dead anonymous object")); 799 vm_object_reference_locked(backing_object); 800 vm_object_backing_insert_locked(object, backing_object); 801 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); 802 VM_OBJECT_WUNLOCK(backing_object); 803 } else { 804 vm_object_reference(backing_object); 805 atomic_add_int(&backing_object->shadow_count, 1); 806 object->backing_object = backing_object; 807 } 808 } 809 810 /* 811 * Transfer a backing reference from backing_object to object. 812 */ 813 static void 814 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) 815 { 816 vm_object_t new_backing_object; 817 818 /* 819 * Note that the reference to backing_object->backing_object 820 * moves from within backing_object to within object. 821 */ 822 vm_object_backing_remove_locked(object); 823 new_backing_object = backing_object->backing_object; 824 if (new_backing_object == NULL) 825 return; 826 if ((new_backing_object->flags & OBJ_ANON) != 0) { 827 VM_OBJECT_WLOCK(new_backing_object); 828 vm_object_backing_remove_locked(backing_object); 829 vm_object_backing_insert_locked(object, new_backing_object); 830 VM_OBJECT_WUNLOCK(new_backing_object); 831 } else { 832 /* 833 * shadow_count for new_backing_object is left 834 * unchanged, its reference provided by backing_object 835 * is replaced by object. 836 */ 837 object->backing_object = new_backing_object; 838 backing_object->backing_object = NULL; 839 } 840 } 841 842 /* 843 * Wait for a concurrent collapse to settle. 844 */ 845 static void 846 vm_object_collapse_wait(vm_object_t object) 847 { 848 849 VM_OBJECT_ASSERT_WLOCKED(object); 850 851 while ((object->flags & OBJ_COLLAPSING) != 0) { 852 vm_object_pip_wait(object, "vmcolwait"); 853 counter_u64_add(object_collapse_waits, 1); 854 } 855 } 856 857 /* 858 * Waits for a backing object to clear a pending collapse and returns 859 * it locked if it is an ANON object. 860 */ 861 static vm_object_t 862 vm_object_backing_collapse_wait(vm_object_t object) 863 { 864 vm_object_t backing_object; 865 866 VM_OBJECT_ASSERT_WLOCKED(object); 867 868 for (;;) { 869 backing_object = object->backing_object; 870 if (backing_object == NULL || 871 (backing_object->flags & OBJ_ANON) == 0) 872 return (NULL); 873 VM_OBJECT_WLOCK(backing_object); 874 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) 875 break; 876 VM_OBJECT_WUNLOCK(object); 877 vm_object_pip_sleep(backing_object, "vmbckwait"); 878 counter_u64_add(object_collapse_waits, 1); 879 VM_OBJECT_WLOCK(object); 880 } 881 return (backing_object); 882 } 883 884 /* 885 * vm_object_terminate_pages removes any remaining pageable pages 886 * from the object and resets the object to an empty state. 887 */ 888 static void 889 vm_object_terminate_pages(vm_object_t object) 890 { 891 vm_page_t p, p_next; 892 893 VM_OBJECT_ASSERT_WLOCKED(object); 894 895 /* 896 * Free any remaining pageable pages. This also removes them from the 897 * paging queues. However, don't free wired pages, just remove them 898 * from the object. Rather than incrementally removing each page from 899 * the object, the page and object are reset to any empty state. 900 */ 901 TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { 902 vm_page_assert_unbusied(p); 903 KASSERT(p->object == object && 904 (p->ref_count & VPRC_OBJREF) != 0, 905 ("vm_object_terminate_pages: page %p is inconsistent", p)); 906 907 p->object = NULL; 908 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { 909 VM_CNT_INC(v_pfree); 910 vm_page_free(p); 911 } 912 } 913 914 /* 915 * If the object contained any pages, then reset it to an empty state. 916 * None of the object's fields, including "resident_page_count", were 917 * modified by the preceding loop. 918 */ 919 if (object->resident_page_count != 0) { 920 vm_radix_reclaim_allnodes(&object->rtree); 921 TAILQ_INIT(&object->memq); 922 object->resident_page_count = 0; 923 if (object->type == OBJT_VNODE) 924 vdrop(object->handle); 925 } 926 } 927 928 /* 929 * vm_object_terminate actually destroys the specified object, freeing 930 * up all previously used resources. 931 * 932 * The object must be locked. 933 * This routine may block. 934 */ 935 void 936 vm_object_terminate(vm_object_t object) 937 { 938 939 VM_OBJECT_ASSERT_WLOCKED(object); 940 KASSERT((object->flags & OBJ_DEAD) != 0, 941 ("terminating non-dead obj %p", object)); 942 KASSERT((object->flags & OBJ_COLLAPSING) == 0, 943 ("terminating collapsing obj %p", object)); 944 KASSERT(object->backing_object == NULL, 945 ("terminating shadow obj %p", object)); 946 947 /* 948 * Wait for the pageout daemon and other current users to be 949 * done with the object. Note that new paging_in_progress 950 * users can come after this wait, but they must check 951 * OBJ_DEAD flag set (without unlocking the object), and avoid 952 * the object being terminated. 953 */ 954 vm_object_pip_wait(object, "objtrm"); 955 956 KASSERT(object->ref_count == 0, 957 ("vm_object_terminate: object with references, ref_count=%d", 958 object->ref_count)); 959 960 if ((object->flags & OBJ_PG_DTOR) == 0) 961 vm_object_terminate_pages(object); 962 963 #if VM_NRESERVLEVEL > 0 964 if (__predict_false(!LIST_EMPTY(&object->rvq))) 965 vm_reserv_break_all(object); 966 #endif 967 968 KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, 969 ("%s: non-swap obj %p has cred", __func__, object)); 970 971 /* 972 * Let the pager know object is dead. 973 */ 974 vm_pager_deallocate(object); 975 VM_OBJECT_WUNLOCK(object); 976 977 vm_object_destroy(object); 978 } 979 980 /* 981 * Make the page read-only so that we can clear the object flags. However, if 982 * this is a nosync mmap then the object is likely to stay dirty so do not 983 * mess with the page and do not clear the object flags. Returns TRUE if the 984 * page should be flushed, and FALSE otherwise. 985 */ 986 static boolean_t 987 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) 988 { 989 990 vm_page_assert_busied(p); 991 992 /* 993 * If we have been asked to skip nosync pages and this is a 994 * nosync page, skip it. Note that the object flags were not 995 * cleared in this case so we do not have to set them. 996 */ 997 if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { 998 *allclean = FALSE; 999 return (FALSE); 1000 } else { 1001 pmap_remove_write(p); 1002 return (p->dirty != 0); 1003 } 1004 } 1005 1006 /* 1007 * vm_object_page_clean 1008 * 1009 * Clean all dirty pages in the specified range of object. Leaves page 1010 * on whatever queue it is currently on. If NOSYNC is set then do not 1011 * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), 1012 * leaving the object dirty. 1013 * 1014 * For swap objects backing tmpfs regular files, do not flush anything, 1015 * but remove write protection on the mapped pages to update mtime through 1016 * mmaped writes. 1017 * 1018 * When stuffing pages asynchronously, allow clustering. XXX we need a 1019 * synchronous clustering mode implementation. 1020 * 1021 * Odd semantics: if start == end, we clean everything. 1022 * 1023 * The object must be locked. 1024 * 1025 * Returns FALSE if some page from the range was not written, as 1026 * reported by the pager, and TRUE otherwise. 1027 */ 1028 boolean_t 1029 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, 1030 int flags) 1031 { 1032 vm_page_t np, p; 1033 vm_pindex_t pi, tend, tstart; 1034 int curgeneration, n, pagerflags; 1035 boolean_t eio, res, allclean; 1036 1037 VM_OBJECT_ASSERT_WLOCKED(object); 1038 1039 if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) 1040 return (TRUE); 1041 1042 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? 1043 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; 1044 pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; 1045 1046 tstart = OFF_TO_IDX(start); 1047 tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); 1048 allclean = tstart == 0 && tend >= object->size; 1049 res = TRUE; 1050 1051 rescan: 1052 curgeneration = object->generation; 1053 1054 for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { 1055 pi = p->pindex; 1056 if (pi >= tend) 1057 break; 1058 np = TAILQ_NEXT(p, listq); 1059 if (vm_page_none_valid(p)) 1060 continue; 1061 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { 1062 if (object->generation != curgeneration && 1063 (flags & OBJPC_SYNC) != 0) 1064 goto rescan; 1065 np = vm_page_find_least(object, pi); 1066 continue; 1067 } 1068 if (!vm_object_page_remove_write(p, flags, &allclean)) { 1069 vm_page_xunbusy(p); 1070 continue; 1071 } 1072 if (object->type == OBJT_VNODE) { 1073 n = vm_object_page_collect_flush(object, p, pagerflags, 1074 flags, &allclean, &eio); 1075 if (eio) { 1076 res = FALSE; 1077 allclean = FALSE; 1078 } 1079 if (object->generation != curgeneration && 1080 (flags & OBJPC_SYNC) != 0) 1081 goto rescan; 1082 1083 /* 1084 * If the VOP_PUTPAGES() did a truncated write, so 1085 * that even the first page of the run is not fully 1086 * written, vm_pageout_flush() returns 0 as the run 1087 * length. Since the condition that caused truncated 1088 * write may be permanent, e.g. exhausted free space, 1089 * accepting n == 0 would cause an infinite loop. 1090 * 1091 * Forwarding the iterator leaves the unwritten page 1092 * behind, but there is not much we can do there if 1093 * filesystem refuses to write it. 1094 */ 1095 if (n == 0) { 1096 n = 1; 1097 allclean = FALSE; 1098 } 1099 } else { 1100 n = 1; 1101 vm_page_xunbusy(p); 1102 } 1103 np = vm_page_find_least(object, pi + n); 1104 } 1105 #if 0 1106 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); 1107 #endif 1108 1109 /* 1110 * Leave updating cleangeneration for tmpfs objects to tmpfs 1111 * scan. It needs to update mtime, which happens for other 1112 * filesystems during page writeouts. 1113 */ 1114 if (allclean && object->type == OBJT_VNODE) 1115 object->cleangeneration = curgeneration; 1116 return (res); 1117 } 1118 1119 static int 1120 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, 1121 int flags, boolean_t *allclean, boolean_t *eio) 1122 { 1123 vm_page_t ma[vm_pageout_page_count], p_first, tp; 1124 int count, i, mreq, runlen; 1125 1126 vm_page_lock_assert(p, MA_NOTOWNED); 1127 vm_page_assert_xbusied(p); 1128 VM_OBJECT_ASSERT_WLOCKED(object); 1129 1130 count = 1; 1131 mreq = 0; 1132 1133 for (tp = p; count < vm_pageout_page_count; count++) { 1134 tp = vm_page_next(tp); 1135 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1136 break; 1137 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1138 vm_page_xunbusy(tp); 1139 break; 1140 } 1141 } 1142 1143 for (p_first = p; count < vm_pageout_page_count; count++) { 1144 tp = vm_page_prev(p_first); 1145 if (tp == NULL || vm_page_tryxbusy(tp) == 0) 1146 break; 1147 if (!vm_object_page_remove_write(tp, flags, allclean)) { 1148 vm_page_xunbusy(tp); 1149 break; 1150 } 1151 p_first = tp; 1152 mreq++; 1153 } 1154 1155 for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++) 1156 ma[i] = tp; 1157 1158 vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio); 1159 return (runlen); 1160 } 1161 1162 /* 1163 * Note that there is absolutely no sense in writing out 1164 * anonymous objects, so we track down the vnode object 1165 * to write out. 1166 * We invalidate (remove) all pages from the address space 1167 * for semantic correctness. 1168 * 1169 * If the backing object is a device object with unmanaged pages, then any 1170 * mappings to the specified range of pages must be removed before this 1171 * function is called. 1172 * 1173 * Note: certain anonymous maps, such as MAP_NOSYNC maps, 1174 * may start out with a NULL object. 1175 */ 1176 boolean_t 1177 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, 1178 boolean_t syncio, boolean_t invalidate) 1179 { 1180 vm_object_t backing_object; 1181 struct vnode *vp; 1182 struct mount *mp; 1183 int error, flags, fsync_after; 1184 boolean_t res; 1185 1186 if (object == NULL) 1187 return (TRUE); 1188 res = TRUE; 1189 error = 0; 1190 VM_OBJECT_WLOCK(object); 1191 while ((backing_object = object->backing_object) != NULL) { 1192 VM_OBJECT_WLOCK(backing_object); 1193 offset += object->backing_object_offset; 1194 VM_OBJECT_WUNLOCK(object); 1195 object = backing_object; 1196 if (object->size < OFF_TO_IDX(offset + size)) 1197 size = IDX_TO_OFF(object->size) - offset; 1198 } 1199 /* 1200 * Flush pages if writing is allowed, invalidate them 1201 * if invalidation requested. Pages undergoing I/O 1202 * will be ignored by vm_object_page_remove(). 1203 * 1204 * We cannot lock the vnode and then wait for paging 1205 * to complete without deadlocking against vm_fault. 1206 * Instead we simply call vm_object_page_remove() and 1207 * allow it to block internally on a page-by-page 1208 * basis when it encounters pages undergoing async 1209 * I/O. 1210 */ 1211 if (object->type == OBJT_VNODE && 1212 vm_object_mightbedirty(object) != 0 && 1213 ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { 1214 VM_OBJECT_WUNLOCK(object); 1215 (void)vn_start_write(vp, &mp, V_WAIT); 1216 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1217 if (syncio && !invalidate && offset == 0 && 1218 atop(size) == object->size) { 1219 /* 1220 * If syncing the whole mapping of the file, 1221 * it is faster to schedule all the writes in 1222 * async mode, also allowing the clustering, 1223 * and then wait for i/o to complete. 1224 */ 1225 flags = 0; 1226 fsync_after = TRUE; 1227 } else { 1228 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1229 flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; 1230 fsync_after = FALSE; 1231 } 1232 VM_OBJECT_WLOCK(object); 1233 res = vm_object_page_clean(object, offset, offset + size, 1234 flags); 1235 VM_OBJECT_WUNLOCK(object); 1236 if (fsync_after) { 1237 for (;;) { 1238 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 1239 if (error != ERELOOKUP) 1240 break; 1241 1242 /* 1243 * Allow SU/bufdaemon to handle more 1244 * dependencies in the meantime. 1245 */ 1246 VOP_UNLOCK(vp); 1247 vn_finished_write(mp); 1248 1249 (void)vn_start_write(vp, &mp, V_WAIT); 1250 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1251 } 1252 } 1253 VOP_UNLOCK(vp); 1254 vn_finished_write(mp); 1255 if (error != 0) 1256 res = FALSE; 1257 VM_OBJECT_WLOCK(object); 1258 } 1259 if ((object->type == OBJT_VNODE || 1260 object->type == OBJT_DEVICE) && invalidate) { 1261 if (object->type == OBJT_DEVICE) 1262 /* 1263 * The option OBJPR_NOTMAPPED must be passed here 1264 * because vm_object_page_remove() cannot remove 1265 * unmanaged mappings. 1266 */ 1267 flags = OBJPR_NOTMAPPED; 1268 else if (old_msync) 1269 flags = 0; 1270 else 1271 flags = OBJPR_CLEANONLY; 1272 vm_object_page_remove(object, OFF_TO_IDX(offset), 1273 OFF_TO_IDX(offset + size + PAGE_MASK), flags); 1274 } 1275 VM_OBJECT_WUNLOCK(object); 1276 return (res); 1277 } 1278 1279 /* 1280 * Determine whether the given advice can be applied to the object. Advice is 1281 * not applied to unmanaged pages since they never belong to page queues, and 1282 * since MADV_FREE is destructive, it can apply only to anonymous pages that 1283 * have been mapped at most once. 1284 */ 1285 static bool 1286 vm_object_advice_applies(vm_object_t object, int advice) 1287 { 1288 1289 if ((object->flags & OBJ_UNMANAGED) != 0) 1290 return (false); 1291 if (advice != MADV_FREE) 1292 return (true); 1293 return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == 1294 (OBJ_ONEMAPPING | OBJ_ANON)); 1295 } 1296 1297 static void 1298 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, 1299 vm_size_t size) 1300 { 1301 1302 if (advice == MADV_FREE) 1303 vm_pager_freespace(object, pindex, size); 1304 } 1305 1306 /* 1307 * vm_object_madvise: 1308 * 1309 * Implements the madvise function at the object/page level. 1310 * 1311 * MADV_WILLNEED (any object) 1312 * 1313 * Activate the specified pages if they are resident. 1314 * 1315 * MADV_DONTNEED (any object) 1316 * 1317 * Deactivate the specified pages if they are resident. 1318 * 1319 * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) 1320 * 1321 * Deactivate and clean the specified pages if they are 1322 * resident. This permits the process to reuse the pages 1323 * without faulting or the kernel to reclaim the pages 1324 * without I/O. 1325 */ 1326 void 1327 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, 1328 int advice) 1329 { 1330 vm_pindex_t tpindex; 1331 vm_object_t backing_object, tobject; 1332 vm_page_t m, tm; 1333 1334 if (object == NULL) 1335 return; 1336 1337 relookup: 1338 VM_OBJECT_WLOCK(object); 1339 if (!vm_object_advice_applies(object, advice)) { 1340 VM_OBJECT_WUNLOCK(object); 1341 return; 1342 } 1343 for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { 1344 tobject = object; 1345 1346 /* 1347 * If the next page isn't resident in the top-level object, we 1348 * need to search the shadow chain. When applying MADV_FREE, we 1349 * take care to release any swap space used to store 1350 * non-resident pages. 1351 */ 1352 if (m == NULL || pindex < m->pindex) { 1353 /* 1354 * Optimize a common case: if the top-level object has 1355 * no backing object, we can skip over the non-resident 1356 * range in constant time. 1357 */ 1358 if (object->backing_object == NULL) { 1359 tpindex = (m != NULL && m->pindex < end) ? 1360 m->pindex : end; 1361 vm_object_madvise_freespace(object, advice, 1362 pindex, tpindex - pindex); 1363 if ((pindex = tpindex) == end) 1364 break; 1365 goto next_page; 1366 } 1367 1368 tpindex = pindex; 1369 do { 1370 vm_object_madvise_freespace(tobject, advice, 1371 tpindex, 1); 1372 /* 1373 * Prepare to search the next object in the 1374 * chain. 1375 */ 1376 backing_object = tobject->backing_object; 1377 if (backing_object == NULL) 1378 goto next_pindex; 1379 VM_OBJECT_WLOCK(backing_object); 1380 tpindex += 1381 OFF_TO_IDX(tobject->backing_object_offset); 1382 if (tobject != object) 1383 VM_OBJECT_WUNLOCK(tobject); 1384 tobject = backing_object; 1385 if (!vm_object_advice_applies(tobject, advice)) 1386 goto next_pindex; 1387 } while ((tm = vm_page_lookup(tobject, tpindex)) == 1388 NULL); 1389 } else { 1390 next_page: 1391 tm = m; 1392 m = TAILQ_NEXT(m, listq); 1393 } 1394 1395 /* 1396 * If the page is not in a normal state, skip it. The page 1397 * can not be invalidated while the object lock is held. 1398 */ 1399 if (!vm_page_all_valid(tm) || vm_page_wired(tm)) 1400 goto next_pindex; 1401 KASSERT((tm->flags & PG_FICTITIOUS) == 0, 1402 ("vm_object_madvise: page %p is fictitious", tm)); 1403 KASSERT((tm->oflags & VPO_UNMANAGED) == 0, 1404 ("vm_object_madvise: page %p is not managed", tm)); 1405 if (vm_page_tryxbusy(tm) == 0) { 1406 if (object != tobject) 1407 VM_OBJECT_WUNLOCK(object); 1408 if (advice == MADV_WILLNEED) { 1409 /* 1410 * Reference the page before unlocking and 1411 * sleeping so that the page daemon is less 1412 * likely to reclaim it. 1413 */ 1414 vm_page_aflag_set(tm, PGA_REFERENCED); 1415 } 1416 if (!vm_page_busy_sleep(tm, "madvpo", 0)) 1417 VM_OBJECT_WUNLOCK(tobject); 1418 goto relookup; 1419 } 1420 vm_page_advise(tm, advice); 1421 vm_page_xunbusy(tm); 1422 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); 1423 next_pindex: 1424 if (tobject != object) 1425 VM_OBJECT_WUNLOCK(tobject); 1426 } 1427 VM_OBJECT_WUNLOCK(object); 1428 } 1429 1430 /* 1431 * vm_object_shadow: 1432 * 1433 * Create a new object which is backed by the 1434 * specified existing object range. The source 1435 * object reference is deallocated. 1436 * 1437 * The new object and offset into that object 1438 * are returned in the source parameters. 1439 */ 1440 void 1441 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, 1442 struct ucred *cred, bool shared) 1443 { 1444 vm_object_t source; 1445 vm_object_t result; 1446 1447 source = *object; 1448 1449 /* 1450 * Don't create the new object if the old object isn't shared. 1451 * 1452 * If we hold the only reference we can guarantee that it won't 1453 * increase while we have the map locked. Otherwise the race is 1454 * harmless and we will end up with an extra shadow object that 1455 * will be collapsed later. 1456 */ 1457 if (source != NULL && source->ref_count == 1 && 1458 (source->flags & OBJ_ANON) != 0) 1459 return; 1460 1461 /* 1462 * Allocate a new object with the given length. 1463 */ 1464 result = vm_object_allocate_anon(atop(length), source, cred, length); 1465 1466 /* 1467 * Store the offset into the source object, and fix up the offset into 1468 * the new object. 1469 */ 1470 result->backing_object_offset = *offset; 1471 1472 if (shared || source != NULL) { 1473 VM_OBJECT_WLOCK(result); 1474 1475 /* 1476 * The new object shadows the source object, adding a 1477 * reference to it. Our caller changes his reference 1478 * to point to the new object, removing a reference to 1479 * the source object. Net result: no change of 1480 * reference count, unless the caller needs to add one 1481 * more reference due to forking a shared map entry. 1482 */ 1483 if (shared) { 1484 vm_object_reference_locked(result); 1485 vm_object_clear_flag(result, OBJ_ONEMAPPING); 1486 } 1487 1488 /* 1489 * Try to optimize the result object's page color when 1490 * shadowing in order to maintain page coloring 1491 * consistency in the combined shadowed object. 1492 */ 1493 if (source != NULL) { 1494 vm_object_backing_insert(result, source); 1495 result->domain = source->domain; 1496 #if VM_NRESERVLEVEL > 0 1497 vm_object_set_flag(result, 1498 (source->flags & OBJ_COLORED)); 1499 result->pg_color = (source->pg_color + 1500 OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1501 1)) - 1); 1502 #endif 1503 } 1504 VM_OBJECT_WUNLOCK(result); 1505 } 1506 1507 /* 1508 * Return the new things 1509 */ 1510 *offset = 0; 1511 *object = result; 1512 } 1513 1514 /* 1515 * vm_object_split: 1516 * 1517 * Split the pages in a map entry into a new object. This affords 1518 * easier removal of unused pages, and keeps object inheritance from 1519 * being a negative impact on memory usage. 1520 */ 1521 void 1522 vm_object_split(vm_map_entry_t entry) 1523 { 1524 vm_page_t m, m_next; 1525 vm_object_t orig_object, new_object, backing_object; 1526 vm_pindex_t idx, offidxstart; 1527 vm_size_t size; 1528 1529 orig_object = entry->object.vm_object; 1530 KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, 1531 ("vm_object_split: Splitting object with multiple mappings.")); 1532 if ((orig_object->flags & OBJ_ANON) == 0) 1533 return; 1534 if (orig_object->ref_count <= 1) 1535 return; 1536 VM_OBJECT_WUNLOCK(orig_object); 1537 1538 offidxstart = OFF_TO_IDX(entry->offset); 1539 size = atop(entry->end - entry->start); 1540 1541 new_object = vm_object_allocate_anon(size, orig_object, 1542 orig_object->cred, ptoa(size)); 1543 1544 /* 1545 * We must wait for the orig_object to complete any in-progress 1546 * collapse so that the swap blocks are stable below. The 1547 * additional reference on backing_object by new object will 1548 * prevent further collapse operations until split completes. 1549 */ 1550 VM_OBJECT_WLOCK(orig_object); 1551 vm_object_collapse_wait(orig_object); 1552 1553 /* 1554 * At this point, the new object is still private, so the order in 1555 * which the original and new objects are locked does not matter. 1556 */ 1557 VM_OBJECT_WLOCK(new_object); 1558 new_object->domain = orig_object->domain; 1559 backing_object = orig_object->backing_object; 1560 if (backing_object != NULL) { 1561 vm_object_backing_insert_ref(new_object, backing_object); 1562 new_object->backing_object_offset = 1563 orig_object->backing_object_offset + entry->offset; 1564 } 1565 if (orig_object->cred != NULL) { 1566 crhold(orig_object->cred); 1567 KASSERT(orig_object->charge >= ptoa(size), 1568 ("orig_object->charge < 0")); 1569 orig_object->charge -= ptoa(size); 1570 } 1571 1572 /* 1573 * Mark the split operation so that swap_pager_getpages() knows 1574 * that the object is in transition. 1575 */ 1576 vm_object_set_flag(orig_object, OBJ_SPLIT); 1577 #ifdef INVARIANTS 1578 idx = 0; 1579 #endif 1580 retry: 1581 m = vm_page_find_least(orig_object, offidxstart); 1582 KASSERT(m == NULL || idx <= m->pindex - offidxstart, 1583 ("%s: object %p was repopulated", __func__, orig_object)); 1584 for (; m != NULL && (idx = m->pindex - offidxstart) < size; 1585 m = m_next) { 1586 m_next = TAILQ_NEXT(m, listq); 1587 1588 /* 1589 * We must wait for pending I/O to complete before we can 1590 * rename the page. 1591 * 1592 * We do not have to VM_PROT_NONE the page as mappings should 1593 * not be changed by this operation. 1594 */ 1595 if (vm_page_tryxbusy(m) == 0) { 1596 VM_OBJECT_WUNLOCK(new_object); 1597 if (vm_page_busy_sleep(m, "spltwt", 0)) 1598 VM_OBJECT_WLOCK(orig_object); 1599 VM_OBJECT_WLOCK(new_object); 1600 goto retry; 1601 } 1602 1603 /* 1604 * The page was left invalid. Likely placed there by 1605 * an incomplete fault. Just remove and ignore. 1606 */ 1607 if (vm_page_none_valid(m)) { 1608 if (vm_page_remove(m)) 1609 vm_page_free(m); 1610 continue; 1611 } 1612 1613 /* vm_page_rename() will dirty the page. */ 1614 if (vm_page_rename(m, new_object, idx)) { 1615 vm_page_xunbusy(m); 1616 VM_OBJECT_WUNLOCK(new_object); 1617 VM_OBJECT_WUNLOCK(orig_object); 1618 vm_radix_wait(); 1619 VM_OBJECT_WLOCK(orig_object); 1620 VM_OBJECT_WLOCK(new_object); 1621 goto retry; 1622 } 1623 1624 #if VM_NRESERVLEVEL > 0 1625 /* 1626 * If some of the reservation's allocated pages remain with 1627 * the original object, then transferring the reservation to 1628 * the new object is neither particularly beneficial nor 1629 * particularly harmful as compared to leaving the reservation 1630 * with the original object. If, however, all of the 1631 * reservation's allocated pages are transferred to the new 1632 * object, then transferring the reservation is typically 1633 * beneficial. Determining which of these two cases applies 1634 * would be more costly than unconditionally renaming the 1635 * reservation. 1636 */ 1637 vm_reserv_rename(m, new_object, orig_object, offidxstart); 1638 #endif 1639 } 1640 1641 /* 1642 * swap_pager_copy() can sleep, in which case the orig_object's 1643 * and new_object's locks are released and reacquired. 1644 */ 1645 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1646 1647 TAILQ_FOREACH(m, &new_object->memq, listq) 1648 vm_page_xunbusy(m); 1649 1650 vm_object_clear_flag(orig_object, OBJ_SPLIT); 1651 VM_OBJECT_WUNLOCK(orig_object); 1652 VM_OBJECT_WUNLOCK(new_object); 1653 entry->object.vm_object = new_object; 1654 entry->offset = 0LL; 1655 vm_object_deallocate(orig_object); 1656 VM_OBJECT_WLOCK(new_object); 1657 } 1658 1659 static vm_page_t 1660 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) 1661 { 1662 vm_object_t backing_object; 1663 1664 VM_OBJECT_ASSERT_WLOCKED(object); 1665 backing_object = object->backing_object; 1666 VM_OBJECT_ASSERT_WLOCKED(backing_object); 1667 1668 KASSERT(p == NULL || p->object == object || p->object == backing_object, 1669 ("invalid ownership %p %p %p", p, object, backing_object)); 1670 /* The page is only NULL when rename fails. */ 1671 if (p == NULL) { 1672 VM_OBJECT_WUNLOCK(object); 1673 VM_OBJECT_WUNLOCK(backing_object); 1674 vm_radix_wait(); 1675 VM_OBJECT_WLOCK(object); 1676 } else if (p->object == object) { 1677 VM_OBJECT_WUNLOCK(backing_object); 1678 if (vm_page_busy_sleep(p, "vmocol", 0)) 1679 VM_OBJECT_WLOCK(object); 1680 } else { 1681 VM_OBJECT_WUNLOCK(object); 1682 if (!vm_page_busy_sleep(p, "vmocol", 0)) 1683 VM_OBJECT_WUNLOCK(backing_object); 1684 VM_OBJECT_WLOCK(object); 1685 } 1686 VM_OBJECT_WLOCK(backing_object); 1687 return (TAILQ_FIRST(&backing_object->memq)); 1688 } 1689 1690 static bool 1691 vm_object_scan_all_shadowed(vm_object_t object) 1692 { 1693 vm_object_t backing_object; 1694 vm_page_t p, pp; 1695 vm_pindex_t backing_offset_index, new_pindex, pi, ps; 1696 1697 VM_OBJECT_ASSERT_WLOCKED(object); 1698 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1699 1700 backing_object = object->backing_object; 1701 1702 if ((backing_object->flags & OBJ_ANON) == 0) 1703 return (false); 1704 1705 pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1706 p = vm_page_find_least(backing_object, pi); 1707 ps = swap_pager_find_least(backing_object, pi); 1708 1709 /* 1710 * Only check pages inside the parent object's range and 1711 * inside the parent object's mapping of the backing object. 1712 */ 1713 for (;; pi++) { 1714 if (p != NULL && p->pindex < pi) 1715 p = TAILQ_NEXT(p, listq); 1716 if (ps < pi) 1717 ps = swap_pager_find_least(backing_object, pi); 1718 if (p == NULL && ps >= backing_object->size) 1719 break; 1720 else if (p == NULL) 1721 pi = ps; 1722 else 1723 pi = MIN(p->pindex, ps); 1724 1725 new_pindex = pi - backing_offset_index; 1726 if (new_pindex >= object->size) 1727 break; 1728 1729 if (p != NULL) { 1730 /* 1731 * If the backing object page is busy a 1732 * grandparent or older page may still be 1733 * undergoing CoW. It is not safe to collapse 1734 * the backing object until it is quiesced. 1735 */ 1736 if (vm_page_tryxbusy(p) == 0) 1737 return (false); 1738 1739 /* 1740 * We raced with the fault handler that left 1741 * newly allocated invalid page on the object 1742 * queue and retried. 1743 */ 1744 if (!vm_page_all_valid(p)) 1745 goto unbusy_ret; 1746 } 1747 1748 /* 1749 * See if the parent has the page or if the parent's object 1750 * pager has the page. If the parent has the page but the page 1751 * is not valid, the parent's object pager must have the page. 1752 * 1753 * If this fails, the parent does not completely shadow the 1754 * object and we might as well give up now. 1755 */ 1756 pp = vm_page_lookup(object, new_pindex); 1757 1758 /* 1759 * The valid check here is stable due to object lock 1760 * being required to clear valid and initiate paging. 1761 * Busy of p disallows fault handler to validate pp. 1762 */ 1763 if ((pp == NULL || vm_page_none_valid(pp)) && 1764 !vm_pager_has_page(object, new_pindex, NULL, NULL)) 1765 goto unbusy_ret; 1766 if (p != NULL) 1767 vm_page_xunbusy(p); 1768 } 1769 return (true); 1770 1771 unbusy_ret: 1772 if (p != NULL) 1773 vm_page_xunbusy(p); 1774 return (false); 1775 } 1776 1777 static void 1778 vm_object_collapse_scan(vm_object_t object) 1779 { 1780 vm_object_t backing_object; 1781 vm_page_t next, p, pp; 1782 vm_pindex_t backing_offset_index, new_pindex; 1783 1784 VM_OBJECT_ASSERT_WLOCKED(object); 1785 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 1786 1787 backing_object = object->backing_object; 1788 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 1789 1790 /* 1791 * Our scan 1792 */ 1793 for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { 1794 next = TAILQ_NEXT(p, listq); 1795 new_pindex = p->pindex - backing_offset_index; 1796 1797 /* 1798 * Check for busy page 1799 */ 1800 if (vm_page_tryxbusy(p) == 0) { 1801 next = vm_object_collapse_scan_wait(object, p); 1802 continue; 1803 } 1804 1805 KASSERT(object->backing_object == backing_object, 1806 ("vm_object_collapse_scan: backing object mismatch %p != %p", 1807 object->backing_object, backing_object)); 1808 KASSERT(p->object == backing_object, 1809 ("vm_object_collapse_scan: object mismatch %p != %p", 1810 p->object, backing_object)); 1811 1812 if (p->pindex < backing_offset_index || 1813 new_pindex >= object->size) { 1814 vm_pager_freespace(backing_object, p->pindex, 1); 1815 1816 KASSERT(!pmap_page_is_mapped(p), 1817 ("freeing mapped page %p", p)); 1818 if (vm_page_remove(p)) 1819 vm_page_free(p); 1820 continue; 1821 } 1822 1823 if (!vm_page_all_valid(p)) { 1824 KASSERT(!pmap_page_is_mapped(p), 1825 ("freeing mapped page %p", p)); 1826 if (vm_page_remove(p)) 1827 vm_page_free(p); 1828 continue; 1829 } 1830 1831 pp = vm_page_lookup(object, new_pindex); 1832 if (pp != NULL && vm_page_tryxbusy(pp) == 0) { 1833 vm_page_xunbusy(p); 1834 /* 1835 * The page in the parent is busy and possibly not 1836 * (yet) valid. Until its state is finalized by the 1837 * busy bit owner, we can't tell whether it shadows the 1838 * original page. 1839 */ 1840 next = vm_object_collapse_scan_wait(object, pp); 1841 continue; 1842 } 1843 1844 if (pp != NULL && vm_page_none_valid(pp)) { 1845 /* 1846 * The page was invalid in the parent. Likely placed 1847 * there by an incomplete fault. Just remove and 1848 * ignore. p can replace it. 1849 */ 1850 if (vm_page_remove(pp)) 1851 vm_page_free(pp); 1852 pp = NULL; 1853 } 1854 1855 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, 1856 NULL)) { 1857 /* 1858 * The page already exists in the parent OR swap exists 1859 * for this location in the parent. Leave the parent's 1860 * page alone. Destroy the original page from the 1861 * backing object. 1862 */ 1863 vm_pager_freespace(backing_object, p->pindex, 1); 1864 KASSERT(!pmap_page_is_mapped(p), 1865 ("freeing mapped page %p", p)); 1866 if (vm_page_remove(p)) 1867 vm_page_free(p); 1868 if (pp != NULL) 1869 vm_page_xunbusy(pp); 1870 continue; 1871 } 1872 1873 /* 1874 * Page does not exist in parent, rename the page from the 1875 * backing object to the main object. 1876 * 1877 * If the page was mapped to a process, it can remain mapped 1878 * through the rename. vm_page_rename() will dirty the page. 1879 */ 1880 if (vm_page_rename(p, object, new_pindex)) { 1881 vm_page_xunbusy(p); 1882 next = vm_object_collapse_scan_wait(object, NULL); 1883 continue; 1884 } 1885 1886 /* Use the old pindex to free the right page. */ 1887 vm_pager_freespace(backing_object, new_pindex + 1888 backing_offset_index, 1); 1889 1890 #if VM_NRESERVLEVEL > 0 1891 /* 1892 * Rename the reservation. 1893 */ 1894 vm_reserv_rename(p, object, backing_object, 1895 backing_offset_index); 1896 #endif 1897 vm_page_xunbusy(p); 1898 } 1899 return; 1900 } 1901 1902 /* 1903 * vm_object_collapse: 1904 * 1905 * Collapse an object with the object backing it. 1906 * Pages in the backing object are moved into the 1907 * parent, and the backing object is deallocated. 1908 */ 1909 void 1910 vm_object_collapse(vm_object_t object) 1911 { 1912 vm_object_t backing_object, new_backing_object; 1913 1914 VM_OBJECT_ASSERT_WLOCKED(object); 1915 1916 while (TRUE) { 1917 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, 1918 ("collapsing invalid object")); 1919 1920 /* 1921 * Wait for the backing_object to finish any pending 1922 * collapse so that the caller sees the shortest possible 1923 * shadow chain. 1924 */ 1925 backing_object = vm_object_backing_collapse_wait(object); 1926 if (backing_object == NULL) 1927 return; 1928 1929 KASSERT(object->ref_count > 0 && 1930 object->ref_count > atomic_load_int(&object->shadow_count), 1931 ("collapse with invalid ref %d or shadow %d count.", 1932 object->ref_count, atomic_load_int(&object->shadow_count))); 1933 KASSERT((backing_object->flags & 1934 (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1935 ("vm_object_collapse: Backing object already collapsing.")); 1936 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, 1937 ("vm_object_collapse: object is already collapsing.")); 1938 1939 /* 1940 * We know that we can either collapse the backing object if 1941 * the parent is the only reference to it, or (perhaps) have 1942 * the parent bypass the object if the parent happens to shadow 1943 * all the resident pages in the entire backing object. 1944 */ 1945 if (backing_object->ref_count == 1) { 1946 KASSERT(atomic_load_int(&backing_object->shadow_count) 1947 == 1, 1948 ("vm_object_collapse: shadow_count: %d", 1949 atomic_load_int(&backing_object->shadow_count))); 1950 vm_object_pip_add(object, 1); 1951 vm_object_set_flag(object, OBJ_COLLAPSING); 1952 vm_object_pip_add(backing_object, 1); 1953 vm_object_set_flag(backing_object, OBJ_DEAD); 1954 1955 /* 1956 * If there is exactly one reference to the backing 1957 * object, we can collapse it into the parent. 1958 */ 1959 vm_object_collapse_scan(object); 1960 1961 #if VM_NRESERVLEVEL > 0 1962 /* 1963 * Break any reservations from backing_object. 1964 */ 1965 if (__predict_false(!LIST_EMPTY(&backing_object->rvq))) 1966 vm_reserv_break_all(backing_object); 1967 #endif 1968 1969 /* 1970 * Move the pager from backing_object to object. 1971 * 1972 * swap_pager_copy() can sleep, in which case the 1973 * backing_object's and object's locks are released and 1974 * reacquired. 1975 */ 1976 swap_pager_copy(backing_object, object, 1977 OFF_TO_IDX(object->backing_object_offset), TRUE); 1978 1979 /* 1980 * Object now shadows whatever backing_object did. 1981 */ 1982 vm_object_clear_flag(object, OBJ_COLLAPSING); 1983 vm_object_backing_transfer(object, backing_object); 1984 object->backing_object_offset += 1985 backing_object->backing_object_offset; 1986 VM_OBJECT_WUNLOCK(object); 1987 vm_object_pip_wakeup(object); 1988 1989 /* 1990 * Discard backing_object. 1991 * 1992 * Since the backing object has no pages, no pager left, 1993 * and no object references within it, all that is 1994 * necessary is to dispose of it. 1995 */ 1996 KASSERT(backing_object->ref_count == 1, ( 1997 "backing_object %p was somehow re-referenced during collapse!", 1998 backing_object)); 1999 vm_object_pip_wakeup(backing_object); 2000 (void)refcount_release(&backing_object->ref_count); 2001 vm_object_terminate(backing_object); 2002 counter_u64_add(object_collapses, 1); 2003 VM_OBJECT_WLOCK(object); 2004 } else { 2005 /* 2006 * If we do not entirely shadow the backing object, 2007 * there is nothing we can do so we give up. 2008 * 2009 * The object lock and backing_object lock must not 2010 * be dropped during this sequence. 2011 */ 2012 if (!vm_object_scan_all_shadowed(object)) { 2013 VM_OBJECT_WUNLOCK(backing_object); 2014 break; 2015 } 2016 2017 /* 2018 * Make the parent shadow the next object in the 2019 * chain. Deallocating backing_object will not remove 2020 * it, since its reference count is at least 2. 2021 */ 2022 vm_object_backing_remove_locked(object); 2023 new_backing_object = backing_object->backing_object; 2024 if (new_backing_object != NULL) { 2025 vm_object_backing_insert_ref(object, 2026 new_backing_object); 2027 object->backing_object_offset += 2028 backing_object->backing_object_offset; 2029 } 2030 2031 /* 2032 * Drop the reference count on backing_object. Since 2033 * its ref_count was at least 2, it will not vanish. 2034 */ 2035 (void)refcount_release(&backing_object->ref_count); 2036 KASSERT(backing_object->ref_count >= 1, ( 2037 "backing_object %p was somehow dereferenced during collapse!", 2038 backing_object)); 2039 VM_OBJECT_WUNLOCK(backing_object); 2040 counter_u64_add(object_bypasses, 1); 2041 } 2042 2043 /* 2044 * Try again with this object's new backing object. 2045 */ 2046 } 2047 } 2048 2049 /* 2050 * vm_object_page_remove: 2051 * 2052 * For the given object, either frees or invalidates each of the 2053 * specified pages. In general, a page is freed. However, if a page is 2054 * wired for any reason other than the existence of a managed, wired 2055 * mapping, then it may be invalidated but not removed from the object. 2056 * Pages are specified by the given range ["start", "end") and the option 2057 * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range 2058 * extends from "start" to the end of the object. If the option 2059 * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the 2060 * specified range are affected. If the option OBJPR_NOTMAPPED is 2061 * specified, then the pages within the specified range must have no 2062 * mappings. Otherwise, if this option is not specified, any mappings to 2063 * the specified pages are removed before the pages are freed or 2064 * invalidated. 2065 * 2066 * In general, this operation should only be performed on objects that 2067 * contain managed pages. There are, however, two exceptions. First, it 2068 * is performed on the kernel and kmem objects by vm_map_entry_delete(). 2069 * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- 2070 * backed pages. In both of these cases, the option OBJPR_CLEANONLY must 2071 * not be specified and the option OBJPR_NOTMAPPED must be specified. 2072 * 2073 * The object must be locked. 2074 */ 2075 void 2076 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, 2077 int options) 2078 { 2079 vm_page_t p, next; 2080 2081 VM_OBJECT_ASSERT_WLOCKED(object); 2082 KASSERT((object->flags & OBJ_UNMANAGED) == 0 || 2083 (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, 2084 ("vm_object_page_remove: illegal options for object %p", object)); 2085 if (object->resident_page_count == 0) 2086 return; 2087 vm_object_pip_add(object, 1); 2088 again: 2089 p = vm_page_find_least(object, start); 2090 2091 /* 2092 * Here, the variable "p" is either (1) the page with the least pindex 2093 * greater than or equal to the parameter "start" or (2) NULL. 2094 */ 2095 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2096 next = TAILQ_NEXT(p, listq); 2097 2098 /* 2099 * Skip invalid pages if asked to do so. Try to avoid acquiring 2100 * the busy lock, as some consumers rely on this to avoid 2101 * deadlocks. 2102 * 2103 * A thread may concurrently transition the page from invalid to 2104 * valid using only the busy lock, so the result of this check 2105 * is immediately stale. It is up to consumers to handle this, 2106 * for instance by ensuring that all invalid->valid transitions 2107 * happen with a mutex held, as may be possible for a 2108 * filesystem. 2109 */ 2110 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) 2111 continue; 2112 2113 /* 2114 * If the page is wired for any reason besides the existence 2115 * of managed, wired mappings, then it cannot be freed. For 2116 * example, fictitious pages, which represent device memory, 2117 * are inherently wired and cannot be freed. They can, 2118 * however, be invalidated if the option OBJPR_CLEANONLY is 2119 * not specified. 2120 */ 2121 if (vm_page_tryxbusy(p) == 0) { 2122 if (vm_page_busy_sleep(p, "vmopar", 0)) 2123 VM_OBJECT_WLOCK(object); 2124 goto again; 2125 } 2126 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { 2127 vm_page_xunbusy(p); 2128 continue; 2129 } 2130 if (vm_page_wired(p)) { 2131 wired: 2132 if ((options & OBJPR_NOTMAPPED) == 0 && 2133 object->ref_count != 0) 2134 pmap_remove_all(p); 2135 if ((options & OBJPR_CLEANONLY) == 0) { 2136 vm_page_invalid(p); 2137 vm_page_undirty(p); 2138 } 2139 vm_page_xunbusy(p); 2140 continue; 2141 } 2142 KASSERT((p->flags & PG_FICTITIOUS) == 0, 2143 ("vm_object_page_remove: page %p is fictitious", p)); 2144 if ((options & OBJPR_CLEANONLY) != 0 && 2145 !vm_page_none_valid(p)) { 2146 if ((options & OBJPR_NOTMAPPED) == 0 && 2147 object->ref_count != 0 && 2148 !vm_page_try_remove_write(p)) 2149 goto wired; 2150 if (p->dirty != 0) { 2151 vm_page_xunbusy(p); 2152 continue; 2153 } 2154 } 2155 if ((options & OBJPR_NOTMAPPED) == 0 && 2156 object->ref_count != 0 && !vm_page_try_remove_all(p)) 2157 goto wired; 2158 vm_page_free(p); 2159 } 2160 vm_object_pip_wakeup(object); 2161 2162 vm_pager_freespace(object, start, (end == 0 ? object->size : end) - 2163 start); 2164 } 2165 2166 /* 2167 * vm_object_page_noreuse: 2168 * 2169 * For the given object, attempt to move the specified pages to 2170 * the head of the inactive queue. This bypasses regular LRU 2171 * operation and allows the pages to be reused quickly under memory 2172 * pressure. If a page is wired for any reason, then it will not 2173 * be queued. Pages are specified by the range ["start", "end"). 2174 * As a special case, if "end" is zero, then the range extends from 2175 * "start" to the end of the object. 2176 * 2177 * This operation should only be performed on objects that 2178 * contain non-fictitious, managed pages. 2179 * 2180 * The object must be locked. 2181 */ 2182 void 2183 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2184 { 2185 vm_page_t p, next; 2186 2187 VM_OBJECT_ASSERT_LOCKED(object); 2188 KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, 2189 ("vm_object_page_noreuse: illegal object %p", object)); 2190 if (object->resident_page_count == 0) 2191 return; 2192 p = vm_page_find_least(object, start); 2193 2194 /* 2195 * Here, the variable "p" is either (1) the page with the least pindex 2196 * greater than or equal to the parameter "start" or (2) NULL. 2197 */ 2198 for (; p != NULL && (p->pindex < end || end == 0); p = next) { 2199 next = TAILQ_NEXT(p, listq); 2200 vm_page_deactivate_noreuse(p); 2201 } 2202 } 2203 2204 /* 2205 * Populate the specified range of the object with valid pages. Returns 2206 * TRUE if the range is successfully populated and FALSE otherwise. 2207 * 2208 * Note: This function should be optimized to pass a larger array of 2209 * pages to vm_pager_get_pages() before it is applied to a non- 2210 * OBJT_DEVICE object. 2211 * 2212 * The object must be locked. 2213 */ 2214 boolean_t 2215 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 2216 { 2217 vm_page_t m; 2218 vm_pindex_t pindex; 2219 int rv; 2220 2221 VM_OBJECT_ASSERT_WLOCKED(object); 2222 for (pindex = start; pindex < end; pindex++) { 2223 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); 2224 if (rv != VM_PAGER_OK) 2225 break; 2226 2227 /* 2228 * Keep "m" busy because a subsequent iteration may unlock 2229 * the object. 2230 */ 2231 } 2232 if (pindex > start) { 2233 m = vm_page_lookup(object, start); 2234 while (m != NULL && m->pindex < pindex) { 2235 vm_page_xunbusy(m); 2236 m = TAILQ_NEXT(m, listq); 2237 } 2238 } 2239 return (pindex == end); 2240 } 2241 2242 /* 2243 * Routine: vm_object_coalesce 2244 * Function: Coalesces two objects backing up adjoining 2245 * regions of memory into a single object. 2246 * 2247 * returns TRUE if objects were combined. 2248 * 2249 * NOTE: Only works at the moment if the second object is NULL - 2250 * if it's not, which object do we lock first? 2251 * 2252 * Parameters: 2253 * prev_object First object to coalesce 2254 * prev_offset Offset into prev_object 2255 * prev_size Size of reference to prev_object 2256 * next_size Size of reference to the second object 2257 * reserved Indicator that extension region has 2258 * swap accounted for 2259 * 2260 * Conditions: 2261 * The object must *not* be locked. 2262 */ 2263 boolean_t 2264 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, 2265 vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) 2266 { 2267 vm_pindex_t next_pindex; 2268 2269 if (prev_object == NULL) 2270 return (TRUE); 2271 if ((prev_object->flags & OBJ_ANON) == 0) 2272 return (FALSE); 2273 2274 VM_OBJECT_WLOCK(prev_object); 2275 /* 2276 * Try to collapse the object first. 2277 */ 2278 vm_object_collapse(prev_object); 2279 2280 /* 2281 * Can't coalesce if: . more than one reference . paged out . shadows 2282 * another object . has a copy elsewhere (any of which mean that the 2283 * pages not mapped to prev_entry may be in use anyway) 2284 */ 2285 if (prev_object->backing_object != NULL) { 2286 VM_OBJECT_WUNLOCK(prev_object); 2287 return (FALSE); 2288 } 2289 2290 prev_size >>= PAGE_SHIFT; 2291 next_size >>= PAGE_SHIFT; 2292 next_pindex = OFF_TO_IDX(prev_offset) + prev_size; 2293 2294 if (prev_object->ref_count > 1 && 2295 prev_object->size != next_pindex && 2296 (prev_object->flags & OBJ_ONEMAPPING) == 0) { 2297 VM_OBJECT_WUNLOCK(prev_object); 2298 return (FALSE); 2299 } 2300 2301 /* 2302 * Account for the charge. 2303 */ 2304 if (prev_object->cred != NULL) { 2305 /* 2306 * If prev_object was charged, then this mapping, 2307 * although not charged now, may become writable 2308 * later. Non-NULL cred in the object would prevent 2309 * swap reservation during enabling of the write 2310 * access, so reserve swap now. Failed reservation 2311 * cause allocation of the separate object for the map 2312 * entry, and swap reservation for this entry is 2313 * managed in appropriate time. 2314 */ 2315 if (!reserved && !swap_reserve_by_cred(ptoa(next_size), 2316 prev_object->cred)) { 2317 VM_OBJECT_WUNLOCK(prev_object); 2318 return (FALSE); 2319 } 2320 prev_object->charge += ptoa(next_size); 2321 } 2322 2323 /* 2324 * Remove any pages that may still be in the object from a previous 2325 * deallocation. 2326 */ 2327 if (next_pindex < prev_object->size) { 2328 vm_object_page_remove(prev_object, next_pindex, next_pindex + 2329 next_size, 0); 2330 #if 0 2331 if (prev_object->cred != NULL) { 2332 KASSERT(prev_object->charge >= 2333 ptoa(prev_object->size - next_pindex), 2334 ("object %p overcharged 1 %jx %jx", prev_object, 2335 (uintmax_t)next_pindex, (uintmax_t)next_size)); 2336 prev_object->charge -= ptoa(prev_object->size - 2337 next_pindex); 2338 } 2339 #endif 2340 } 2341 2342 /* 2343 * Extend the object if necessary. 2344 */ 2345 if (next_pindex + next_size > prev_object->size) 2346 prev_object->size = next_pindex + next_size; 2347 2348 VM_OBJECT_WUNLOCK(prev_object); 2349 return (TRUE); 2350 } 2351 2352 void 2353 vm_object_set_writeable_dirty_(vm_object_t object) 2354 { 2355 atomic_add_int(&object->generation, 1); 2356 } 2357 2358 bool 2359 vm_object_mightbedirty_(vm_object_t object) 2360 { 2361 return (object->generation != object->cleangeneration); 2362 } 2363 2364 /* 2365 * vm_object_unwire: 2366 * 2367 * For each page offset within the specified range of the given object, 2368 * find the highest-level page in the shadow chain and unwire it. A page 2369 * must exist at every page offset, and the highest-level page must be 2370 * wired. 2371 */ 2372 void 2373 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, 2374 uint8_t queue) 2375 { 2376 vm_object_t tobject, t1object; 2377 vm_page_t m, tm; 2378 vm_pindex_t end_pindex, pindex, tpindex; 2379 int depth, locked_depth; 2380 2381 KASSERT((offset & PAGE_MASK) == 0, 2382 ("vm_object_unwire: offset is not page aligned")); 2383 KASSERT((length & PAGE_MASK) == 0, 2384 ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); 2385 /* The wired count of a fictitious page never changes. */ 2386 if ((object->flags & OBJ_FICTITIOUS) != 0) 2387 return; 2388 pindex = OFF_TO_IDX(offset); 2389 end_pindex = pindex + atop(length); 2390 again: 2391 locked_depth = 1; 2392 VM_OBJECT_RLOCK(object); 2393 m = vm_page_find_least(object, pindex); 2394 while (pindex < end_pindex) { 2395 if (m == NULL || pindex < m->pindex) { 2396 /* 2397 * The first object in the shadow chain doesn't 2398 * contain a page at the current index. Therefore, 2399 * the page must exist in a backing object. 2400 */ 2401 tobject = object; 2402 tpindex = pindex; 2403 depth = 0; 2404 do { 2405 tpindex += 2406 OFF_TO_IDX(tobject->backing_object_offset); 2407 tobject = tobject->backing_object; 2408 KASSERT(tobject != NULL, 2409 ("vm_object_unwire: missing page")); 2410 if ((tobject->flags & OBJ_FICTITIOUS) != 0) 2411 goto next_page; 2412 depth++; 2413 if (depth == locked_depth) { 2414 locked_depth++; 2415 VM_OBJECT_RLOCK(tobject); 2416 } 2417 } while ((tm = vm_page_lookup(tobject, tpindex)) == 2418 NULL); 2419 } else { 2420 tm = m; 2421 m = TAILQ_NEXT(m, listq); 2422 } 2423 if (vm_page_trysbusy(tm) == 0) { 2424 for (tobject = object; locked_depth >= 1; 2425 locked_depth--) { 2426 t1object = tobject->backing_object; 2427 if (tm->object != tobject) 2428 VM_OBJECT_RUNLOCK(tobject); 2429 tobject = t1object; 2430 } 2431 tobject = tm->object; 2432 if (!vm_page_busy_sleep(tm, "unwbo", 2433 VM_ALLOC_IGN_SBUSY)) 2434 VM_OBJECT_RUNLOCK(tobject); 2435 goto again; 2436 } 2437 vm_page_unwire(tm, queue); 2438 vm_page_sunbusy(tm); 2439 next_page: 2440 pindex++; 2441 } 2442 /* Release the accumulated object locks. */ 2443 for (tobject = object; locked_depth >= 1; locked_depth--) { 2444 t1object = tobject->backing_object; 2445 VM_OBJECT_RUNLOCK(tobject); 2446 tobject = t1object; 2447 } 2448 } 2449 2450 /* 2451 * Return the vnode for the given object, or NULL if none exists. 2452 * For tmpfs objects, the function may return NULL if there is 2453 * no vnode allocated at the time of the call. 2454 */ 2455 struct vnode * 2456 vm_object_vnode(vm_object_t object) 2457 { 2458 struct vnode *vp; 2459 2460 VM_OBJECT_ASSERT_LOCKED(object); 2461 vm_pager_getvp(object, &vp, NULL); 2462 return (vp); 2463 } 2464 2465 /* 2466 * Busy the vm object. This prevents new pages belonging to the object from 2467 * becoming busy. Existing pages persist as busy. Callers are responsible 2468 * for checking page state before proceeding. 2469 */ 2470 void 2471 vm_object_busy(vm_object_t obj) 2472 { 2473 2474 VM_OBJECT_ASSERT_LOCKED(obj); 2475 2476 blockcount_acquire(&obj->busy, 1); 2477 /* The fence is required to order loads of page busy. */ 2478 atomic_thread_fence_acq_rel(); 2479 } 2480 2481 void 2482 vm_object_unbusy(vm_object_t obj) 2483 { 2484 2485 blockcount_release(&obj->busy, 1); 2486 } 2487 2488 void 2489 vm_object_busy_wait(vm_object_t obj, const char *wmesg) 2490 { 2491 2492 VM_OBJECT_ASSERT_UNLOCKED(obj); 2493 2494 (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); 2495 } 2496 2497 /* 2498 * This function aims to determine if the object is mapped, 2499 * specifically, if it is referenced by a vm_map_entry. Because 2500 * objects occasionally acquire transient references that do not 2501 * represent a mapping, the method used here is inexact. However, it 2502 * has very low overhead and is good enough for the advisory 2503 * vm.vmtotal sysctl. 2504 */ 2505 bool 2506 vm_object_is_active(vm_object_t obj) 2507 { 2508 2509 return (obj->ref_count > atomic_load_int(&obj->shadow_count)); 2510 } 2511 2512 static int 2513 vm_object_list_handler(struct sysctl_req *req, bool swap_only) 2514 { 2515 struct kinfo_vmobject *kvo; 2516 char *fullpath, *freepath; 2517 struct vnode *vp; 2518 struct vattr va; 2519 vm_object_t obj; 2520 vm_page_t m; 2521 u_long sp; 2522 int count, error; 2523 2524 if (req->oldptr == NULL) { 2525 /* 2526 * If an old buffer has not been provided, generate an 2527 * estimate of the space needed for a subsequent call. 2528 */ 2529 mtx_lock(&vm_object_list_mtx); 2530 count = 0; 2531 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2532 if (obj->type == OBJT_DEAD) 2533 continue; 2534 count++; 2535 } 2536 mtx_unlock(&vm_object_list_mtx); 2537 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * 2538 count * 11 / 10)); 2539 } 2540 2541 kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO); 2542 error = 0; 2543 2544 /* 2545 * VM objects are type stable and are never removed from the 2546 * list once added. This allows us to safely read obj->object_list 2547 * after reacquiring the VM object lock. 2548 */ 2549 mtx_lock(&vm_object_list_mtx); 2550 TAILQ_FOREACH(obj, &vm_object_list, object_list) { 2551 if (obj->type == OBJT_DEAD || 2552 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) 2553 continue; 2554 VM_OBJECT_RLOCK(obj); 2555 if (obj->type == OBJT_DEAD || 2556 (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { 2557 VM_OBJECT_RUNLOCK(obj); 2558 continue; 2559 } 2560 mtx_unlock(&vm_object_list_mtx); 2561 kvo->kvo_size = ptoa(obj->size); 2562 kvo->kvo_resident = obj->resident_page_count; 2563 kvo->kvo_ref_count = obj->ref_count; 2564 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); 2565 kvo->kvo_memattr = obj->memattr; 2566 kvo->kvo_active = 0; 2567 kvo->kvo_inactive = 0; 2568 if (!swap_only) { 2569 TAILQ_FOREACH(m, &obj->memq, listq) { 2570 /* 2571 * A page may belong to the object but be 2572 * dequeued and set to PQ_NONE while the 2573 * object lock is not held. This makes the 2574 * reads of m->queue below racy, and we do not 2575 * count pages set to PQ_NONE. However, this 2576 * sysctl is only meant to give an 2577 * approximation of the system anyway. 2578 */ 2579 if (m->a.queue == PQ_ACTIVE) 2580 kvo->kvo_active++; 2581 else if (m->a.queue == PQ_INACTIVE) 2582 kvo->kvo_inactive++; 2583 } 2584 } 2585 2586 kvo->kvo_vn_fileid = 0; 2587 kvo->kvo_vn_fsid = 0; 2588 kvo->kvo_vn_fsid_freebsd11 = 0; 2589 freepath = NULL; 2590 fullpath = ""; 2591 vp = NULL; 2592 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp); 2593 if (vp != NULL) { 2594 vref(vp); 2595 } else if ((obj->flags & OBJ_ANON) != 0) { 2596 MPASS(kvo->kvo_type == KVME_TYPE_SWAP); 2597 kvo->kvo_me = (uintptr_t)obj; 2598 /* tmpfs objs are reported as vnodes */ 2599 kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; 2600 sp = swap_pager_swapped_pages(obj); 2601 kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; 2602 } 2603 VM_OBJECT_RUNLOCK(obj); 2604 if (vp != NULL) { 2605 vn_fullpath(vp, &fullpath, &freepath); 2606 vn_lock(vp, LK_SHARED | LK_RETRY); 2607 if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { 2608 kvo->kvo_vn_fileid = va.va_fileid; 2609 kvo->kvo_vn_fsid = va.va_fsid; 2610 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; 2611 /* truncate */ 2612 } 2613 vput(vp); 2614 } 2615 2616 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); 2617 if (freepath != NULL) 2618 free(freepath, M_TEMP); 2619 2620 /* Pack record size down */ 2621 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) 2622 + strlen(kvo->kvo_path) + 1; 2623 kvo->kvo_structsize = roundup(kvo->kvo_structsize, 2624 sizeof(uint64_t)); 2625 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); 2626 maybe_yield(); 2627 mtx_lock(&vm_object_list_mtx); 2628 if (error) 2629 break; 2630 } 2631 mtx_unlock(&vm_object_list_mtx); 2632 free(kvo, M_TEMP); 2633 return (error); 2634 } 2635 2636 static int 2637 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) 2638 { 2639 return (vm_object_list_handler(req, false)); 2640 } 2641 2642 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | 2643 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", 2644 "List of VM objects"); 2645 2646 static int 2647 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) 2648 { 2649 return (vm_object_list_handler(req, true)); 2650 } 2651 2652 /* 2653 * This sysctl returns list of the anonymous or swap objects. Intent 2654 * is to provide stripped optimized list useful to analyze swap use. 2655 * Since technically non-swap (default) objects participate in the 2656 * shadow chains, and are converted to swap type as needed by swap 2657 * pager, we must report them. 2658 */ 2659 SYSCTL_PROC(_vm, OID_AUTO, swap_objects, 2660 CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, 2661 sysctl_vm_object_list_swap, "S,kinfo_vmobject", 2662 "List of swap VM objects"); 2663 2664 #include "opt_ddb.h" 2665 #ifdef DDB 2666 #include <sys/kernel.h> 2667 2668 #include <sys/cons.h> 2669 2670 #include <ddb/ddb.h> 2671 2672 static int 2673 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) 2674 { 2675 vm_map_t tmpm; 2676 vm_map_entry_t tmpe; 2677 vm_object_t obj; 2678 2679 if (map == 0) 2680 return 0; 2681 2682 if (entry == 0) { 2683 VM_MAP_ENTRY_FOREACH(tmpe, map) { 2684 if (_vm_object_in_map(map, object, tmpe)) { 2685 return 1; 2686 } 2687 } 2688 } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2689 tmpm = entry->object.sub_map; 2690 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { 2691 if (_vm_object_in_map(tmpm, object, tmpe)) { 2692 return 1; 2693 } 2694 } 2695 } else if ((obj = entry->object.vm_object) != NULL) { 2696 for (; obj; obj = obj->backing_object) 2697 if (obj == object) { 2698 return 1; 2699 } 2700 } 2701 return 0; 2702 } 2703 2704 static int 2705 vm_object_in_map(vm_object_t object) 2706 { 2707 struct proc *p; 2708 2709 /* sx_slock(&allproc_lock); */ 2710 FOREACH_PROC_IN_SYSTEM(p) { 2711 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) 2712 continue; 2713 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { 2714 /* sx_sunlock(&allproc_lock); */ 2715 return 1; 2716 } 2717 } 2718 /* sx_sunlock(&allproc_lock); */ 2719 if (_vm_object_in_map(kernel_map, object, 0)) 2720 return 1; 2721 return 0; 2722 } 2723 2724 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) 2725 { 2726 vm_object_t object; 2727 2728 /* 2729 * make sure that internal objs are in a map somewhere 2730 * and none have zero ref counts. 2731 */ 2732 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2733 if ((object->flags & OBJ_ANON) != 0) { 2734 if (object->ref_count == 0) { 2735 db_printf("vmochk: internal obj has zero ref count: %ld\n", 2736 (long)object->size); 2737 } 2738 if (!vm_object_in_map(object)) { 2739 db_printf( 2740 "vmochk: internal obj is not in a map: " 2741 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", 2742 object->ref_count, (u_long)object->size, 2743 (u_long)object->size, 2744 (void *)object->backing_object); 2745 } 2746 } 2747 if (db_pager_quit) 2748 return; 2749 } 2750 } 2751 2752 /* 2753 * vm_object_print: [ debug ] 2754 */ 2755 DB_SHOW_COMMAND(object, vm_object_print_static) 2756 { 2757 /* XXX convert args. */ 2758 vm_object_t object = (vm_object_t)addr; 2759 boolean_t full = have_addr; 2760 2761 vm_page_t p; 2762 2763 /* XXX count is an (unused) arg. Avoid shadowing it. */ 2764 #define count was_count 2765 2766 int count; 2767 2768 if (object == NULL) 2769 return; 2770 2771 db_iprintf( 2772 "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", 2773 object, (int)object->type, (uintmax_t)object->size, 2774 object->resident_page_count, object->ref_count, object->flags, 2775 object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); 2776 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", 2777 atomic_load_int(&object->shadow_count), 2778 object->backing_object ? object->backing_object->ref_count : 0, 2779 object->backing_object, (uintmax_t)object->backing_object_offset); 2780 2781 if (!full) 2782 return; 2783 2784 db_indent += 2; 2785 count = 0; 2786 TAILQ_FOREACH(p, &object->memq, listq) { 2787 if (count == 0) 2788 db_iprintf("memory:="); 2789 else if (count == 6) { 2790 db_printf("\n"); 2791 db_iprintf(" ..."); 2792 count = 0; 2793 } else 2794 db_printf(","); 2795 count++; 2796 2797 db_printf("(off=0x%jx,page=0x%jx)", 2798 (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); 2799 2800 if (db_pager_quit) 2801 break; 2802 } 2803 if (count != 0) 2804 db_printf("\n"); 2805 db_indent -= 2; 2806 } 2807 2808 /* XXX. */ 2809 #undef count 2810 2811 /* XXX need this non-static entry for calling from vm_map_print. */ 2812 void 2813 vm_object_print( 2814 /* db_expr_t */ long addr, 2815 boolean_t have_addr, 2816 /* db_expr_t */ long count, 2817 char *modif) 2818 { 2819 vm_object_print_static(addr, have_addr, count, modif); 2820 } 2821 2822 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) 2823 { 2824 vm_object_t object; 2825 vm_pindex_t fidx; 2826 vm_paddr_t pa; 2827 vm_page_t m, prev_m; 2828 int rcount; 2829 2830 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2831 db_printf("new object: %p\n", (void *)object); 2832 if (db_pager_quit) 2833 return; 2834 2835 rcount = 0; 2836 fidx = 0; 2837 pa = -1; 2838 TAILQ_FOREACH(m, &object->memq, listq) { 2839 if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && 2840 prev_m->pindex + 1 != m->pindex) { 2841 if (rcount) { 2842 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2843 (long)fidx, rcount, (long)pa); 2844 if (db_pager_quit) 2845 return; 2846 rcount = 0; 2847 } 2848 } 2849 if (rcount && 2850 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { 2851 ++rcount; 2852 continue; 2853 } 2854 if (rcount) { 2855 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2856 (long)fidx, rcount, (long)pa); 2857 if (db_pager_quit) 2858 return; 2859 } 2860 fidx = m->pindex; 2861 pa = VM_PAGE_TO_PHYS(m); 2862 rcount = 1; 2863 } 2864 if (rcount) { 2865 db_printf(" index(%ld)run(%d)pa(0x%lx)\n", 2866 (long)fidx, rcount, (long)pa); 2867 if (db_pager_quit) 2868 return; 2869 } 2870 } 2871 } 2872 #endif /* DDB */ 2873