1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 154 155 /* 156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 157 * stable. 158 */ 159 #define PROC_VMSPACE_LOCK(p) do { } while (0) 160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 161 162 /* 163 * VM_MAP_RANGE_CHECK: [ internal use only ] 164 * 165 * Asserts that the starting and ending region 166 * addresses fall within the valid range of the map. 167 */ 168 #define VM_MAP_RANGE_CHECK(map, start, end) \ 169 { \ 170 if (start < vm_map_min(map)) \ 171 start = vm_map_min(map); \ 172 if (end > vm_map_max(map)) \ 173 end = vm_map_max(map); \ 174 if (start > end) \ 175 start = end; \ 176 } 177 178 #ifndef UMA_MD_SMALL_ALLOC 179 180 /* 181 * Allocate a new slab for kernel map entries. The kernel map may be locked or 182 * unlocked, depending on whether the request is coming from the kernel map or a 183 * submap. This function allocates a virtual address range directly from the 184 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 185 * lock and also to avoid triggering allocator recursion in the vmem boundary 186 * tag allocator. 187 */ 188 static void * 189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 190 int wait) 191 { 192 vm_offset_t addr; 193 int error, locked; 194 195 *pflag = UMA_SLAB_PRIV; 196 197 if (!(locked = vm_map_locked(kernel_map))) 198 vm_map_lock(kernel_map); 199 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 200 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 201 panic("%s: kernel map is exhausted", __func__); 202 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 203 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 204 if (error != KERN_SUCCESS) 205 panic("%s: vm_map_insert() failed: %d", __func__, error); 206 if (!locked) 207 vm_map_unlock(kernel_map); 208 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 209 M_USE_RESERVE | (wait & M_ZERO)); 210 if (error == KERN_SUCCESS) { 211 return ((void *)addr); 212 } else { 213 if (!locked) 214 vm_map_lock(kernel_map); 215 vm_map_delete(kernel_map, addr, bytes); 216 if (!locked) 217 vm_map_unlock(kernel_map); 218 return (NULL); 219 } 220 } 221 222 static void 223 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 224 { 225 vm_offset_t addr; 226 int error; 227 228 if ((pflag & UMA_SLAB_PRIV) == 0) 229 /* XXX leaked */ 230 return; 231 232 addr = (vm_offset_t)item; 233 kmem_unback(kernel_object, addr, size); 234 error = vm_map_remove(kernel_map, addr, addr + size); 235 KASSERT(error == KERN_SUCCESS, 236 ("%s: vm_map_remove failed: %d", __func__, error)); 237 } 238 239 /* 240 * The worst-case upper bound on the number of kernel map entries that may be 241 * created before the zone must be replenished in _vm_map_unlock(). 242 */ 243 #define KMAPENT_RESERVE 1 244 245 #endif /* !UMD_MD_SMALL_ALLOC */ 246 247 /* 248 * vm_map_startup: 249 * 250 * Initialize the vm_map module. Must be called before any other vm_map 251 * routines. 252 * 253 * User map and entry structures are allocated from the general purpose 254 * memory pool. Kernel maps are statically defined. Kernel map entries 255 * require special handling to avoid recursion; see the comments above 256 * kmapent_alloc() and in vm_map_entry_create(). 257 */ 258 void 259 vm_map_startup(void) 260 { 261 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 262 263 /* 264 * Disable the use of per-CPU buckets: map entry allocation is 265 * serialized by the kernel map lock. 266 */ 267 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 268 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 269 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 270 #ifndef UMA_MD_SMALL_ALLOC 271 /* Reserve an extra map entry for use when replenishing the reserve. */ 272 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 273 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 274 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 275 uma_zone_set_freef(kmapentzone, kmapent_free); 276 #endif 277 278 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 279 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 280 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 281 #ifdef INVARIANTS 282 vmspace_zdtor, 283 #else 284 NULL, 285 #endif 286 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 287 } 288 289 static int 290 vmspace_zinit(void *mem, int size, int flags) 291 { 292 struct vmspace *vm; 293 vm_map_t map; 294 295 vm = (struct vmspace *)mem; 296 map = &vm->vm_map; 297 298 memset(map, 0, sizeof(*map)); 299 mtx_init(&map->system_mtx, "vm map (system)", NULL, 300 MTX_DEF | MTX_DUPOK); 301 sx_init(&map->lock, "vm map (user)"); 302 PMAP_LOCK_INIT(vmspace_pmap(vm)); 303 return (0); 304 } 305 306 #ifdef INVARIANTS 307 static void 308 vmspace_zdtor(void *mem, int size, void *arg) 309 { 310 struct vmspace *vm; 311 312 vm = (struct vmspace *)mem; 313 KASSERT(vm->vm_map.nentries == 0, 314 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 315 KASSERT(vm->vm_map.size == 0, 316 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 317 } 318 #endif /* INVARIANTS */ 319 320 /* 321 * Allocate a vmspace structure, including a vm_map and pmap, 322 * and initialize those structures. The refcnt is set to 1. 323 */ 324 struct vmspace * 325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 326 { 327 struct vmspace *vm; 328 329 vm = uma_zalloc(vmspace_zone, M_WAITOK); 330 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 331 if (!pinit(vmspace_pmap(vm))) { 332 uma_zfree(vmspace_zone, vm); 333 return (NULL); 334 } 335 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 336 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 337 refcount_init(&vm->vm_refcnt, 1); 338 vm->vm_shm = NULL; 339 vm->vm_swrss = 0; 340 vm->vm_tsize = 0; 341 vm->vm_dsize = 0; 342 vm->vm_ssize = 0; 343 vm->vm_taddr = 0; 344 vm->vm_daddr = 0; 345 vm->vm_maxsaddr = 0; 346 return (vm); 347 } 348 349 #ifdef RACCT 350 static void 351 vmspace_container_reset(struct proc *p) 352 { 353 354 PROC_LOCK(p); 355 racct_set(p, RACCT_DATA, 0); 356 racct_set(p, RACCT_STACK, 0); 357 racct_set(p, RACCT_RSS, 0); 358 racct_set(p, RACCT_MEMLOCK, 0); 359 racct_set(p, RACCT_VMEM, 0); 360 PROC_UNLOCK(p); 361 } 362 #endif 363 364 static inline void 365 vmspace_dofree(struct vmspace *vm) 366 { 367 368 CTR1(KTR_VM, "vmspace_free: %p", vm); 369 370 /* 371 * Make sure any SysV shm is freed, it might not have been in 372 * exit1(). 373 */ 374 shmexit(vm); 375 376 /* 377 * Lock the map, to wait out all other references to it. 378 * Delete all of the mappings and pages they hold, then call 379 * the pmap module to reclaim anything left. 380 */ 381 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 382 vm_map_max(&vm->vm_map)); 383 384 pmap_release(vmspace_pmap(vm)); 385 vm->vm_map.pmap = NULL; 386 uma_zfree(vmspace_zone, vm); 387 } 388 389 void 390 vmspace_free(struct vmspace *vm) 391 { 392 393 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 394 "vmspace_free() called"); 395 396 if (refcount_release(&vm->vm_refcnt)) 397 vmspace_dofree(vm); 398 } 399 400 void 401 vmspace_exitfree(struct proc *p) 402 { 403 struct vmspace *vm; 404 405 PROC_VMSPACE_LOCK(p); 406 vm = p->p_vmspace; 407 p->p_vmspace = NULL; 408 PROC_VMSPACE_UNLOCK(p); 409 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 410 vmspace_free(vm); 411 } 412 413 void 414 vmspace_exit(struct thread *td) 415 { 416 struct vmspace *vm; 417 struct proc *p; 418 bool released; 419 420 p = td->td_proc; 421 vm = p->p_vmspace; 422 423 /* 424 * Prepare to release the vmspace reference. The thread that releases 425 * the last reference is responsible for tearing down the vmspace. 426 * However, threads not releasing the final reference must switch to the 427 * kernel's vmspace0 before the decrement so that the subsequent pmap 428 * deactivation does not modify a freed vmspace. 429 */ 430 refcount_acquire(&vmspace0.vm_refcnt); 431 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 432 if (p->p_vmspace != &vmspace0) { 433 PROC_VMSPACE_LOCK(p); 434 p->p_vmspace = &vmspace0; 435 PROC_VMSPACE_UNLOCK(p); 436 pmap_activate(td); 437 } 438 released = refcount_release(&vm->vm_refcnt); 439 } 440 if (released) { 441 /* 442 * pmap_remove_pages() expects the pmap to be active, so switch 443 * back first if necessary. 444 */ 445 if (p->p_vmspace != vm) { 446 PROC_VMSPACE_LOCK(p); 447 p->p_vmspace = vm; 448 PROC_VMSPACE_UNLOCK(p); 449 pmap_activate(td); 450 } 451 pmap_remove_pages(vmspace_pmap(vm)); 452 PROC_VMSPACE_LOCK(p); 453 p->p_vmspace = &vmspace0; 454 PROC_VMSPACE_UNLOCK(p); 455 pmap_activate(td); 456 vmspace_dofree(vm); 457 } 458 #ifdef RACCT 459 if (racct_enable) 460 vmspace_container_reset(p); 461 #endif 462 } 463 464 /* Acquire reference to vmspace owned by another process. */ 465 466 struct vmspace * 467 vmspace_acquire_ref(struct proc *p) 468 { 469 struct vmspace *vm; 470 471 PROC_VMSPACE_LOCK(p); 472 vm = p->p_vmspace; 473 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 474 PROC_VMSPACE_UNLOCK(p); 475 return (NULL); 476 } 477 if (vm != p->p_vmspace) { 478 PROC_VMSPACE_UNLOCK(p); 479 vmspace_free(vm); 480 return (NULL); 481 } 482 PROC_VMSPACE_UNLOCK(p); 483 return (vm); 484 } 485 486 /* 487 * Switch between vmspaces in an AIO kernel process. 488 * 489 * The new vmspace is either the vmspace of a user process obtained 490 * from an active AIO request or the initial vmspace of the AIO kernel 491 * process (when it is idling). Because user processes will block to 492 * drain any active AIO requests before proceeding in exit() or 493 * execve(), the reference count for vmspaces from AIO requests can 494 * never be 0. Similarly, AIO kernel processes hold an extra 495 * reference on their initial vmspace for the life of the process. As 496 * a result, the 'newvm' vmspace always has a non-zero reference 497 * count. This permits an additional reference on 'newvm' to be 498 * acquired via a simple atomic increment rather than the loop in 499 * vmspace_acquire_ref() above. 500 */ 501 void 502 vmspace_switch_aio(struct vmspace *newvm) 503 { 504 struct vmspace *oldvm; 505 506 /* XXX: Need some way to assert that this is an aio daemon. */ 507 508 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 509 ("vmspace_switch_aio: newvm unreferenced")); 510 511 oldvm = curproc->p_vmspace; 512 if (oldvm == newvm) 513 return; 514 515 /* 516 * Point to the new address space and refer to it. 517 */ 518 curproc->p_vmspace = newvm; 519 refcount_acquire(&newvm->vm_refcnt); 520 521 /* Activate the new mapping. */ 522 pmap_activate(curthread); 523 524 vmspace_free(oldvm); 525 } 526 527 void 528 _vm_map_lock(vm_map_t map, const char *file, int line) 529 { 530 531 if (map->system_map) 532 mtx_lock_flags_(&map->system_mtx, 0, file, line); 533 else 534 sx_xlock_(&map->lock, file, line); 535 map->timestamp++; 536 } 537 538 void 539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 540 { 541 vm_object_t object; 542 struct vnode *vp; 543 bool vp_held; 544 545 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 546 return; 547 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 548 ("Submap with execs")); 549 object = entry->object.vm_object; 550 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 551 if ((object->flags & OBJ_ANON) != 0) 552 object = object->handle; 553 else 554 KASSERT(object->backing_object == NULL, 555 ("non-anon object %p shadows", object)); 556 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 557 entry, entry->object.vm_object)); 558 559 /* 560 * Mostly, we do not lock the backing object. It is 561 * referenced by the entry we are processing, so it cannot go 562 * away. 563 */ 564 vp = NULL; 565 vp_held = false; 566 if (object->type == OBJT_DEAD) { 567 /* 568 * For OBJT_DEAD objects, v_writecount was handled in 569 * vnode_pager_dealloc(). 570 */ 571 } else if (object->type == OBJT_VNODE) { 572 vp = object->handle; 573 } else if (object->type == OBJT_SWAP) { 574 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 575 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 576 "entry %p, object %p, add %d", entry, object, add)); 577 /* 578 * Tmpfs VREG node, which was reclaimed, has 579 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 580 * this case there is no v_writecount to adjust. 581 */ 582 VM_OBJECT_RLOCK(object); 583 if ((object->flags & OBJ_TMPFS) != 0) { 584 vp = object->un_pager.swp.swp_tmpfs; 585 if (vp != NULL) { 586 vhold(vp); 587 vp_held = true; 588 } 589 } 590 VM_OBJECT_RUNLOCK(object); 591 } else { 592 KASSERT(0, 593 ("vm_map_entry_set_vnode_text: wrong object type, " 594 "entry %p, object %p, add %d", entry, object, add)); 595 } 596 if (vp != NULL) { 597 if (add) { 598 VOP_SET_TEXT_CHECKED(vp); 599 } else { 600 vn_lock(vp, LK_SHARED | LK_RETRY); 601 VOP_UNSET_TEXT_CHECKED(vp); 602 VOP_UNLOCK(vp); 603 } 604 if (vp_held) 605 vdrop(vp); 606 } 607 } 608 609 /* 610 * Use a different name for this vm_map_entry field when it's use 611 * is not consistent with its use as part of an ordered search tree. 612 */ 613 #define defer_next right 614 615 static void 616 vm_map_process_deferred(void) 617 { 618 struct thread *td; 619 vm_map_entry_t entry, next; 620 vm_object_t object; 621 622 td = curthread; 623 entry = td->td_map_def_user; 624 td->td_map_def_user = NULL; 625 while (entry != NULL) { 626 next = entry->defer_next; 627 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 628 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 629 MAP_ENTRY_VN_EXEC)); 630 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 631 /* 632 * Decrement the object's writemappings and 633 * possibly the vnode's v_writecount. 634 */ 635 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 636 ("Submap with writecount")); 637 object = entry->object.vm_object; 638 KASSERT(object != NULL, ("No object for writecount")); 639 vm_pager_release_writecount(object, entry->start, 640 entry->end); 641 } 642 vm_map_entry_set_vnode_text(entry, false); 643 vm_map_entry_deallocate(entry, FALSE); 644 entry = next; 645 } 646 } 647 648 #ifdef INVARIANTS 649 static void 650 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 651 { 652 653 if (map->system_map) 654 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 655 else 656 sx_assert_(&map->lock, SA_XLOCKED, file, line); 657 } 658 659 #define VM_MAP_ASSERT_LOCKED(map) \ 660 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 661 662 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 663 #ifdef DIAGNOSTIC 664 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 665 #else 666 static int enable_vmmap_check = VMMAP_CHECK_NONE; 667 #endif 668 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 669 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 670 671 static void _vm_map_assert_consistent(vm_map_t map, int check); 672 673 #define VM_MAP_ASSERT_CONSISTENT(map) \ 674 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 675 #ifdef DIAGNOSTIC 676 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 677 if (map->nupdates > map->nentries) { \ 678 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 679 map->nupdates = 0; \ 680 } \ 681 } while (0) 682 #else 683 #define VM_MAP_UNLOCK_CONSISTENT(map) 684 #endif 685 #else 686 #define VM_MAP_ASSERT_LOCKED(map) 687 #define VM_MAP_ASSERT_CONSISTENT(map) 688 #define VM_MAP_UNLOCK_CONSISTENT(map) 689 #endif /* INVARIANTS */ 690 691 void 692 _vm_map_unlock(vm_map_t map, const char *file, int line) 693 { 694 695 VM_MAP_UNLOCK_CONSISTENT(map); 696 if (map->system_map) { 697 #ifndef UMA_MD_SMALL_ALLOC 698 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 699 uma_prealloc(kmapentzone, 1); 700 map->flags &= ~MAP_REPLENISH; 701 } 702 #endif 703 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 704 } else { 705 sx_xunlock_(&map->lock, file, line); 706 vm_map_process_deferred(); 707 } 708 } 709 710 void 711 _vm_map_lock_read(vm_map_t map, const char *file, int line) 712 { 713 714 if (map->system_map) 715 mtx_lock_flags_(&map->system_mtx, 0, file, line); 716 else 717 sx_slock_(&map->lock, file, line); 718 } 719 720 void 721 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 722 { 723 724 if (map->system_map) { 725 KASSERT((map->flags & MAP_REPLENISH) == 0, 726 ("%s: MAP_REPLENISH leaked", __func__)); 727 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 728 } else { 729 sx_sunlock_(&map->lock, file, line); 730 vm_map_process_deferred(); 731 } 732 } 733 734 int 735 _vm_map_trylock(vm_map_t map, const char *file, int line) 736 { 737 int error; 738 739 error = map->system_map ? 740 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 741 !sx_try_xlock_(&map->lock, file, line); 742 if (error == 0) 743 map->timestamp++; 744 return (error == 0); 745 } 746 747 int 748 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 749 { 750 int error; 751 752 error = map->system_map ? 753 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 754 !sx_try_slock_(&map->lock, file, line); 755 return (error == 0); 756 } 757 758 /* 759 * _vm_map_lock_upgrade: [ internal use only ] 760 * 761 * Tries to upgrade a read (shared) lock on the specified map to a write 762 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 763 * non-zero value if the upgrade fails. If the upgrade fails, the map is 764 * returned without a read or write lock held. 765 * 766 * Requires that the map be read locked. 767 */ 768 int 769 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 770 { 771 unsigned int last_timestamp; 772 773 if (map->system_map) { 774 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 775 } else { 776 if (!sx_try_upgrade_(&map->lock, file, line)) { 777 last_timestamp = map->timestamp; 778 sx_sunlock_(&map->lock, file, line); 779 vm_map_process_deferred(); 780 /* 781 * If the map's timestamp does not change while the 782 * map is unlocked, then the upgrade succeeds. 783 */ 784 sx_xlock_(&map->lock, file, line); 785 if (last_timestamp != map->timestamp) { 786 sx_xunlock_(&map->lock, file, line); 787 return (1); 788 } 789 } 790 } 791 map->timestamp++; 792 return (0); 793 } 794 795 void 796 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 797 { 798 799 if (map->system_map) { 800 KASSERT((map->flags & MAP_REPLENISH) == 0, 801 ("%s: MAP_REPLENISH leaked", __func__)); 802 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 803 } else { 804 VM_MAP_UNLOCK_CONSISTENT(map); 805 sx_downgrade_(&map->lock, file, line); 806 } 807 } 808 809 /* 810 * vm_map_locked: 811 * 812 * Returns a non-zero value if the caller holds a write (exclusive) lock 813 * on the specified map and the value "0" otherwise. 814 */ 815 int 816 vm_map_locked(vm_map_t map) 817 { 818 819 if (map->system_map) 820 return (mtx_owned(&map->system_mtx)); 821 else 822 return (sx_xlocked(&map->lock)); 823 } 824 825 /* 826 * _vm_map_unlock_and_wait: 827 * 828 * Atomically releases the lock on the specified map and puts the calling 829 * thread to sleep. The calling thread will remain asleep until either 830 * vm_map_wakeup() is performed on the map or the specified timeout is 831 * exceeded. 832 * 833 * WARNING! This function does not perform deferred deallocations of 834 * objects and map entries. Therefore, the calling thread is expected to 835 * reacquire the map lock after reawakening and later perform an ordinary 836 * unlock operation, such as vm_map_unlock(), before completing its 837 * operation on the map. 838 */ 839 int 840 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 841 { 842 843 VM_MAP_UNLOCK_CONSISTENT(map); 844 mtx_lock(&map_sleep_mtx); 845 if (map->system_map) { 846 KASSERT((map->flags & MAP_REPLENISH) == 0, 847 ("%s: MAP_REPLENISH leaked", __func__)); 848 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 849 } else { 850 sx_xunlock_(&map->lock, file, line); 851 } 852 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 853 timo)); 854 } 855 856 /* 857 * vm_map_wakeup: 858 * 859 * Awaken any threads that have slept on the map using 860 * vm_map_unlock_and_wait(). 861 */ 862 void 863 vm_map_wakeup(vm_map_t map) 864 { 865 866 /* 867 * Acquire and release map_sleep_mtx to prevent a wakeup() 868 * from being performed (and lost) between the map unlock 869 * and the msleep() in _vm_map_unlock_and_wait(). 870 */ 871 mtx_lock(&map_sleep_mtx); 872 mtx_unlock(&map_sleep_mtx); 873 wakeup(&map->root); 874 } 875 876 void 877 vm_map_busy(vm_map_t map) 878 { 879 880 VM_MAP_ASSERT_LOCKED(map); 881 map->busy++; 882 } 883 884 void 885 vm_map_unbusy(vm_map_t map) 886 { 887 888 VM_MAP_ASSERT_LOCKED(map); 889 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 890 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 891 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 892 wakeup(&map->busy); 893 } 894 } 895 896 void 897 vm_map_wait_busy(vm_map_t map) 898 { 899 900 VM_MAP_ASSERT_LOCKED(map); 901 while (map->busy) { 902 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 903 if (map->system_map) 904 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 905 else 906 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 907 } 908 map->timestamp++; 909 } 910 911 long 912 vmspace_resident_count(struct vmspace *vmspace) 913 { 914 return pmap_resident_count(vmspace_pmap(vmspace)); 915 } 916 917 /* 918 * Initialize an existing vm_map structure 919 * such as that in the vmspace structure. 920 */ 921 static void 922 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 923 { 924 925 map->header.eflags = MAP_ENTRY_HEADER; 926 map->needs_wakeup = FALSE; 927 map->system_map = 0; 928 map->pmap = pmap; 929 map->header.end = min; 930 map->header.start = max; 931 map->flags = 0; 932 map->header.left = map->header.right = &map->header; 933 map->root = NULL; 934 map->timestamp = 0; 935 map->busy = 0; 936 map->anon_loc = 0; 937 #ifdef DIAGNOSTIC 938 map->nupdates = 0; 939 #endif 940 } 941 942 void 943 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 944 { 945 946 _vm_map_init(map, pmap, min, max); 947 mtx_init(&map->system_mtx, "vm map (system)", NULL, 948 MTX_DEF | MTX_DUPOK); 949 sx_init(&map->lock, "vm map (user)"); 950 } 951 952 /* 953 * vm_map_entry_dispose: [ internal use only ] 954 * 955 * Inverse of vm_map_entry_create. 956 */ 957 static void 958 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 959 { 960 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 961 } 962 963 /* 964 * vm_map_entry_create: [ internal use only ] 965 * 966 * Allocates a VM map entry for insertion. 967 * No entry fields are filled in. 968 */ 969 static vm_map_entry_t 970 vm_map_entry_create(vm_map_t map) 971 { 972 vm_map_entry_t new_entry; 973 974 #ifndef UMA_MD_SMALL_ALLOC 975 if (map == kernel_map) { 976 VM_MAP_ASSERT_LOCKED(map); 977 978 /* 979 * A new slab of kernel map entries cannot be allocated at this 980 * point because the kernel map has not yet been updated to 981 * reflect the caller's request. Therefore, we allocate a new 982 * map entry, dipping into the reserve if necessary, and set a 983 * flag indicating that the reserve must be replenished before 984 * the map is unlocked. 985 */ 986 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 987 if (new_entry == NULL) { 988 new_entry = uma_zalloc(kmapentzone, 989 M_NOWAIT | M_NOVM | M_USE_RESERVE); 990 kernel_map->flags |= MAP_REPLENISH; 991 } 992 } else 993 #endif 994 if (map->system_map) { 995 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 996 } else { 997 new_entry = uma_zalloc(mapentzone, M_WAITOK); 998 } 999 KASSERT(new_entry != NULL, 1000 ("vm_map_entry_create: kernel resources exhausted")); 1001 return (new_entry); 1002 } 1003 1004 /* 1005 * vm_map_entry_set_behavior: 1006 * 1007 * Set the expected access behavior, either normal, random, or 1008 * sequential. 1009 */ 1010 static inline void 1011 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 1012 { 1013 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 1014 (behavior & MAP_ENTRY_BEHAV_MASK); 1015 } 1016 1017 /* 1018 * vm_map_entry_max_free_{left,right}: 1019 * 1020 * Compute the size of the largest free gap between two entries, 1021 * one the root of a tree and the other the ancestor of that root 1022 * that is the least or greatest ancestor found on the search path. 1023 */ 1024 static inline vm_size_t 1025 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 1026 { 1027 1028 return (root->left != left_ancestor ? 1029 root->left->max_free : root->start - left_ancestor->end); 1030 } 1031 1032 static inline vm_size_t 1033 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1034 { 1035 1036 return (root->right != right_ancestor ? 1037 root->right->max_free : right_ancestor->start - root->end); 1038 } 1039 1040 /* 1041 * vm_map_entry_{pred,succ}: 1042 * 1043 * Find the {predecessor, successor} of the entry by taking one step 1044 * in the appropriate direction and backtracking as much as necessary. 1045 * vm_map_entry_succ is defined in vm_map.h. 1046 */ 1047 static inline vm_map_entry_t 1048 vm_map_entry_pred(vm_map_entry_t entry) 1049 { 1050 vm_map_entry_t prior; 1051 1052 prior = entry->left; 1053 if (prior->right->start < entry->start) { 1054 do 1055 prior = prior->right; 1056 while (prior->right != entry); 1057 } 1058 return (prior); 1059 } 1060 1061 static inline vm_size_t 1062 vm_size_max(vm_size_t a, vm_size_t b) 1063 { 1064 1065 return (a > b ? a : b); 1066 } 1067 1068 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1069 vm_map_entry_t z; \ 1070 vm_size_t max_free; \ 1071 \ 1072 /* \ 1073 * Infer root->right->max_free == root->max_free when \ 1074 * y->max_free < root->max_free || root->max_free == 0. \ 1075 * Otherwise, look right to find it. \ 1076 */ \ 1077 y = root->left; \ 1078 max_free = root->max_free; \ 1079 KASSERT(max_free == vm_size_max( \ 1080 vm_map_entry_max_free_left(root, llist), \ 1081 vm_map_entry_max_free_right(root, rlist)), \ 1082 ("%s: max_free invariant fails", __func__)); \ 1083 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1084 max_free = vm_map_entry_max_free_right(root, rlist); \ 1085 if (y != llist && (test)) { \ 1086 /* Rotate right and make y root. */ \ 1087 z = y->right; \ 1088 if (z != root) { \ 1089 root->left = z; \ 1090 y->right = root; \ 1091 if (max_free < y->max_free) \ 1092 root->max_free = max_free = \ 1093 vm_size_max(max_free, z->max_free); \ 1094 } else if (max_free < y->max_free) \ 1095 root->max_free = max_free = \ 1096 vm_size_max(max_free, root->start - y->end);\ 1097 root = y; \ 1098 y = root->left; \ 1099 } \ 1100 /* Copy right->max_free. Put root on rlist. */ \ 1101 root->max_free = max_free; \ 1102 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1103 ("%s: max_free not copied from right", __func__)); \ 1104 root->left = rlist; \ 1105 rlist = root; \ 1106 root = y != llist ? y : NULL; \ 1107 } while (0) 1108 1109 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1110 vm_map_entry_t z; \ 1111 vm_size_t max_free; \ 1112 \ 1113 /* \ 1114 * Infer root->left->max_free == root->max_free when \ 1115 * y->max_free < root->max_free || root->max_free == 0. \ 1116 * Otherwise, look left to find it. \ 1117 */ \ 1118 y = root->right; \ 1119 max_free = root->max_free; \ 1120 KASSERT(max_free == vm_size_max( \ 1121 vm_map_entry_max_free_left(root, llist), \ 1122 vm_map_entry_max_free_right(root, rlist)), \ 1123 ("%s: max_free invariant fails", __func__)); \ 1124 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1125 max_free = vm_map_entry_max_free_left(root, llist); \ 1126 if (y != rlist && (test)) { \ 1127 /* Rotate left and make y root. */ \ 1128 z = y->left; \ 1129 if (z != root) { \ 1130 root->right = z; \ 1131 y->left = root; \ 1132 if (max_free < y->max_free) \ 1133 root->max_free = max_free = \ 1134 vm_size_max(max_free, z->max_free); \ 1135 } else if (max_free < y->max_free) \ 1136 root->max_free = max_free = \ 1137 vm_size_max(max_free, y->start - root->end);\ 1138 root = y; \ 1139 y = root->right; \ 1140 } \ 1141 /* Copy left->max_free. Put root on llist. */ \ 1142 root->max_free = max_free; \ 1143 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1144 ("%s: max_free not copied from left", __func__)); \ 1145 root->right = llist; \ 1146 llist = root; \ 1147 root = y != rlist ? y : NULL; \ 1148 } while (0) 1149 1150 /* 1151 * Walk down the tree until we find addr or a gap where addr would go, breaking 1152 * off left and right subtrees of nodes less than, or greater than addr. Treat 1153 * subtrees with root->max_free < length as empty trees. llist and rlist are 1154 * the two sides in reverse order (bottom-up), with llist linked by the right 1155 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1156 * lists terminated by &map->header. This function, and the subsequent call to 1157 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1158 * values in &map->header. 1159 */ 1160 static __always_inline vm_map_entry_t 1161 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1162 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1163 { 1164 vm_map_entry_t left, right, root, y; 1165 1166 left = right = &map->header; 1167 root = map->root; 1168 while (root != NULL && root->max_free >= length) { 1169 KASSERT(left->end <= root->start && 1170 root->end <= right->start, 1171 ("%s: root not within tree bounds", __func__)); 1172 if (addr < root->start) { 1173 SPLAY_LEFT_STEP(root, y, left, right, 1174 y->max_free >= length && addr < y->start); 1175 } else if (addr >= root->end) { 1176 SPLAY_RIGHT_STEP(root, y, left, right, 1177 y->max_free >= length && addr >= y->end); 1178 } else 1179 break; 1180 } 1181 *llist = left; 1182 *rlist = right; 1183 return (root); 1184 } 1185 1186 static __always_inline void 1187 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1188 { 1189 vm_map_entry_t hi, right, y; 1190 1191 right = *rlist; 1192 hi = root->right == right ? NULL : root->right; 1193 if (hi == NULL) 1194 return; 1195 do 1196 SPLAY_LEFT_STEP(hi, y, root, right, true); 1197 while (hi != NULL); 1198 *rlist = right; 1199 } 1200 1201 static __always_inline void 1202 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1203 { 1204 vm_map_entry_t left, lo, y; 1205 1206 left = *llist; 1207 lo = root->left == left ? NULL : root->left; 1208 if (lo == NULL) 1209 return; 1210 do 1211 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1212 while (lo != NULL); 1213 *llist = left; 1214 } 1215 1216 static inline void 1217 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1218 { 1219 vm_map_entry_t tmp; 1220 1221 tmp = *b; 1222 *b = *a; 1223 *a = tmp; 1224 } 1225 1226 /* 1227 * Walk back up the two spines, flip the pointers and set max_free. The 1228 * subtrees of the root go at the bottom of llist and rlist. 1229 */ 1230 static vm_size_t 1231 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1232 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1233 { 1234 do { 1235 /* 1236 * The max_free values of the children of llist are in 1237 * llist->max_free and max_free. Update with the 1238 * max value. 1239 */ 1240 llist->max_free = max_free = 1241 vm_size_max(llist->max_free, max_free); 1242 vm_map_entry_swap(&llist->right, &tail); 1243 vm_map_entry_swap(&tail, &llist); 1244 } while (llist != header); 1245 root->left = tail; 1246 return (max_free); 1247 } 1248 1249 /* 1250 * When llist is known to be the predecessor of root. 1251 */ 1252 static inline vm_size_t 1253 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1254 vm_map_entry_t llist) 1255 { 1256 vm_size_t max_free; 1257 1258 max_free = root->start - llist->end; 1259 if (llist != header) { 1260 max_free = vm_map_splay_merge_left_walk(header, root, 1261 root, max_free, llist); 1262 } else { 1263 root->left = header; 1264 header->right = root; 1265 } 1266 return (max_free); 1267 } 1268 1269 /* 1270 * When llist may or may not be the predecessor of root. 1271 */ 1272 static inline vm_size_t 1273 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1274 vm_map_entry_t llist) 1275 { 1276 vm_size_t max_free; 1277 1278 max_free = vm_map_entry_max_free_left(root, llist); 1279 if (llist != header) { 1280 max_free = vm_map_splay_merge_left_walk(header, root, 1281 root->left == llist ? root : root->left, 1282 max_free, llist); 1283 } 1284 return (max_free); 1285 } 1286 1287 static vm_size_t 1288 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1289 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1290 { 1291 do { 1292 /* 1293 * The max_free values of the children of rlist are in 1294 * rlist->max_free and max_free. Update with the 1295 * max value. 1296 */ 1297 rlist->max_free = max_free = 1298 vm_size_max(rlist->max_free, max_free); 1299 vm_map_entry_swap(&rlist->left, &tail); 1300 vm_map_entry_swap(&tail, &rlist); 1301 } while (rlist != header); 1302 root->right = tail; 1303 return (max_free); 1304 } 1305 1306 /* 1307 * When rlist is known to be the succecessor of root. 1308 */ 1309 static inline vm_size_t 1310 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1311 vm_map_entry_t rlist) 1312 { 1313 vm_size_t max_free; 1314 1315 max_free = rlist->start - root->end; 1316 if (rlist != header) { 1317 max_free = vm_map_splay_merge_right_walk(header, root, 1318 root, max_free, rlist); 1319 } else { 1320 root->right = header; 1321 header->left = root; 1322 } 1323 return (max_free); 1324 } 1325 1326 /* 1327 * When rlist may or may not be the succecessor of root. 1328 */ 1329 static inline vm_size_t 1330 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1331 vm_map_entry_t rlist) 1332 { 1333 vm_size_t max_free; 1334 1335 max_free = vm_map_entry_max_free_right(root, rlist); 1336 if (rlist != header) { 1337 max_free = vm_map_splay_merge_right_walk(header, root, 1338 root->right == rlist ? root : root->right, 1339 max_free, rlist); 1340 } 1341 return (max_free); 1342 } 1343 1344 /* 1345 * vm_map_splay: 1346 * 1347 * The Sleator and Tarjan top-down splay algorithm with the 1348 * following variation. Max_free must be computed bottom-up, so 1349 * on the downward pass, maintain the left and right spines in 1350 * reverse order. Then, make a second pass up each side to fix 1351 * the pointers and compute max_free. The time bound is O(log n) 1352 * amortized. 1353 * 1354 * The tree is threaded, which means that there are no null pointers. 1355 * When a node has no left child, its left pointer points to its 1356 * predecessor, which the last ancestor on the search path from the root 1357 * where the search branched right. Likewise, when a node has no right 1358 * child, its right pointer points to its successor. The map header node 1359 * is the predecessor of the first map entry, and the successor of the 1360 * last. 1361 * 1362 * The new root is the vm_map_entry containing "addr", or else an 1363 * adjacent entry (lower if possible) if addr is not in the tree. 1364 * 1365 * The map must be locked, and leaves it so. 1366 * 1367 * Returns: the new root. 1368 */ 1369 static vm_map_entry_t 1370 vm_map_splay(vm_map_t map, vm_offset_t addr) 1371 { 1372 vm_map_entry_t header, llist, rlist, root; 1373 vm_size_t max_free_left, max_free_right; 1374 1375 header = &map->header; 1376 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1377 if (root != NULL) { 1378 max_free_left = vm_map_splay_merge_left(header, root, llist); 1379 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1380 } else if (llist != header) { 1381 /* 1382 * Recover the greatest node in the left 1383 * subtree and make it the root. 1384 */ 1385 root = llist; 1386 llist = root->right; 1387 max_free_left = vm_map_splay_merge_left(header, root, llist); 1388 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1389 } else if (rlist != header) { 1390 /* 1391 * Recover the least node in the right 1392 * subtree and make it the root. 1393 */ 1394 root = rlist; 1395 rlist = root->left; 1396 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1397 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1398 } else { 1399 /* There is no root. */ 1400 return (NULL); 1401 } 1402 root->max_free = vm_size_max(max_free_left, max_free_right); 1403 map->root = root; 1404 VM_MAP_ASSERT_CONSISTENT(map); 1405 return (root); 1406 } 1407 1408 /* 1409 * vm_map_entry_{un,}link: 1410 * 1411 * Insert/remove entries from maps. On linking, if new entry clips 1412 * existing entry, trim existing entry to avoid overlap, and manage 1413 * offsets. On unlinking, merge disappearing entry with neighbor, if 1414 * called for, and manage offsets. Callers should not modify fields in 1415 * entries already mapped. 1416 */ 1417 static void 1418 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1419 { 1420 vm_map_entry_t header, llist, rlist, root; 1421 vm_size_t max_free_left, max_free_right; 1422 1423 CTR3(KTR_VM, 1424 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1425 map->nentries, entry); 1426 VM_MAP_ASSERT_LOCKED(map); 1427 map->nentries++; 1428 header = &map->header; 1429 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1430 if (root == NULL) { 1431 /* 1432 * The new entry does not overlap any existing entry in the 1433 * map, so it becomes the new root of the map tree. 1434 */ 1435 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1436 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1437 } else if (entry->start == root->start) { 1438 /* 1439 * The new entry is a clone of root, with only the end field 1440 * changed. The root entry will be shrunk to abut the new 1441 * entry, and will be the right child of the new root entry in 1442 * the modified map. 1443 */ 1444 KASSERT(entry->end < root->end, 1445 ("%s: clip_start not within entry", __func__)); 1446 vm_map_splay_findprev(root, &llist); 1447 root->offset += entry->end - root->start; 1448 root->start = entry->end; 1449 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1450 max_free_right = root->max_free = vm_size_max( 1451 vm_map_splay_merge_pred(entry, root, entry), 1452 vm_map_splay_merge_right(header, root, rlist)); 1453 } else { 1454 /* 1455 * The new entry is a clone of root, with only the start field 1456 * changed. The root entry will be shrunk to abut the new 1457 * entry, and will be the left child of the new root entry in 1458 * the modified map. 1459 */ 1460 KASSERT(entry->end == root->end, 1461 ("%s: clip_start not within entry", __func__)); 1462 vm_map_splay_findnext(root, &rlist); 1463 entry->offset += entry->start - root->start; 1464 root->end = entry->start; 1465 max_free_left = root->max_free = vm_size_max( 1466 vm_map_splay_merge_left(header, root, llist), 1467 vm_map_splay_merge_succ(entry, root, entry)); 1468 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1469 } 1470 entry->max_free = vm_size_max(max_free_left, max_free_right); 1471 map->root = entry; 1472 VM_MAP_ASSERT_CONSISTENT(map); 1473 } 1474 1475 enum unlink_merge_type { 1476 UNLINK_MERGE_NONE, 1477 UNLINK_MERGE_NEXT 1478 }; 1479 1480 static void 1481 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1482 enum unlink_merge_type op) 1483 { 1484 vm_map_entry_t header, llist, rlist, root; 1485 vm_size_t max_free_left, max_free_right; 1486 1487 VM_MAP_ASSERT_LOCKED(map); 1488 header = &map->header; 1489 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1490 KASSERT(root != NULL, 1491 ("vm_map_entry_unlink: unlink object not mapped")); 1492 1493 vm_map_splay_findprev(root, &llist); 1494 vm_map_splay_findnext(root, &rlist); 1495 if (op == UNLINK_MERGE_NEXT) { 1496 rlist->start = root->start; 1497 rlist->offset = root->offset; 1498 } 1499 if (llist != header) { 1500 root = llist; 1501 llist = root->right; 1502 max_free_left = vm_map_splay_merge_left(header, root, llist); 1503 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1504 } else if (rlist != header) { 1505 root = rlist; 1506 rlist = root->left; 1507 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1508 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1509 } else { 1510 header->left = header->right = header; 1511 root = NULL; 1512 } 1513 if (root != NULL) 1514 root->max_free = vm_size_max(max_free_left, max_free_right); 1515 map->root = root; 1516 VM_MAP_ASSERT_CONSISTENT(map); 1517 map->nentries--; 1518 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1519 map->nentries, entry); 1520 } 1521 1522 /* 1523 * vm_map_entry_resize: 1524 * 1525 * Resize a vm_map_entry, recompute the amount of free space that 1526 * follows it and propagate that value up the tree. 1527 * 1528 * The map must be locked, and leaves it so. 1529 */ 1530 static void 1531 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1532 { 1533 vm_map_entry_t header, llist, rlist, root; 1534 1535 VM_MAP_ASSERT_LOCKED(map); 1536 header = &map->header; 1537 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1538 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1539 vm_map_splay_findnext(root, &rlist); 1540 entry->end += grow_amount; 1541 root->max_free = vm_size_max( 1542 vm_map_splay_merge_left(header, root, llist), 1543 vm_map_splay_merge_succ(header, root, rlist)); 1544 map->root = root; 1545 VM_MAP_ASSERT_CONSISTENT(map); 1546 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1547 __func__, map, map->nentries, entry); 1548 } 1549 1550 /* 1551 * vm_map_lookup_entry: [ internal use only ] 1552 * 1553 * Finds the map entry containing (or 1554 * immediately preceding) the specified address 1555 * in the given map; the entry is returned 1556 * in the "entry" parameter. The boolean 1557 * result indicates whether the address is 1558 * actually contained in the map. 1559 */ 1560 boolean_t 1561 vm_map_lookup_entry( 1562 vm_map_t map, 1563 vm_offset_t address, 1564 vm_map_entry_t *entry) /* OUT */ 1565 { 1566 vm_map_entry_t cur, header, lbound, ubound; 1567 boolean_t locked; 1568 1569 /* 1570 * If the map is empty, then the map entry immediately preceding 1571 * "address" is the map's header. 1572 */ 1573 header = &map->header; 1574 cur = map->root; 1575 if (cur == NULL) { 1576 *entry = header; 1577 return (FALSE); 1578 } 1579 if (address >= cur->start && cur->end > address) { 1580 *entry = cur; 1581 return (TRUE); 1582 } 1583 if ((locked = vm_map_locked(map)) || 1584 sx_try_upgrade(&map->lock)) { 1585 /* 1586 * Splay requires a write lock on the map. However, it only 1587 * restructures the binary search tree; it does not otherwise 1588 * change the map. Thus, the map's timestamp need not change 1589 * on a temporary upgrade. 1590 */ 1591 cur = vm_map_splay(map, address); 1592 if (!locked) { 1593 VM_MAP_UNLOCK_CONSISTENT(map); 1594 sx_downgrade(&map->lock); 1595 } 1596 1597 /* 1598 * If "address" is contained within a map entry, the new root 1599 * is that map entry. Otherwise, the new root is a map entry 1600 * immediately before or after "address". 1601 */ 1602 if (address < cur->start) { 1603 *entry = header; 1604 return (FALSE); 1605 } 1606 *entry = cur; 1607 return (address < cur->end); 1608 } 1609 /* 1610 * Since the map is only locked for read access, perform a 1611 * standard binary search tree lookup for "address". 1612 */ 1613 lbound = ubound = header; 1614 for (;;) { 1615 if (address < cur->start) { 1616 ubound = cur; 1617 cur = cur->left; 1618 if (cur == lbound) 1619 break; 1620 } else if (cur->end <= address) { 1621 lbound = cur; 1622 cur = cur->right; 1623 if (cur == ubound) 1624 break; 1625 } else { 1626 *entry = cur; 1627 return (TRUE); 1628 } 1629 } 1630 *entry = lbound; 1631 return (FALSE); 1632 } 1633 1634 /* 1635 * vm_map_insert: 1636 * 1637 * Inserts the given whole VM object into the target 1638 * map at the specified address range. The object's 1639 * size should match that of the address range. 1640 * 1641 * Requires that the map be locked, and leaves it so. 1642 * 1643 * If object is non-NULL, ref count must be bumped by caller 1644 * prior to making call to account for the new entry. 1645 */ 1646 int 1647 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1648 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1649 { 1650 vm_map_entry_t new_entry, next_entry, prev_entry; 1651 struct ucred *cred; 1652 vm_eflags_t protoeflags; 1653 vm_inherit_t inheritance; 1654 u_long bdry; 1655 u_int bidx; 1656 1657 VM_MAP_ASSERT_LOCKED(map); 1658 KASSERT(object != kernel_object || 1659 (cow & MAP_COPY_ON_WRITE) == 0, 1660 ("vm_map_insert: kernel object and COW")); 1661 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1662 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1663 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1664 object, cow)); 1665 KASSERT((prot & ~max) == 0, 1666 ("prot %#x is not subset of max_prot %#x", prot, max)); 1667 1668 /* 1669 * Check that the start and end points are not bogus. 1670 */ 1671 if (start == end || !vm_map_range_valid(map, start, end)) 1672 return (KERN_INVALID_ADDRESS); 1673 1674 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1675 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1676 return (KERN_PROTECTION_FAILURE); 1677 1678 /* 1679 * Find the entry prior to the proposed starting address; if it's part 1680 * of an existing entry, this range is bogus. 1681 */ 1682 if (vm_map_lookup_entry(map, start, &prev_entry)) 1683 return (KERN_NO_SPACE); 1684 1685 /* 1686 * Assert that the next entry doesn't overlap the end point. 1687 */ 1688 next_entry = vm_map_entry_succ(prev_entry); 1689 if (next_entry->start < end) 1690 return (KERN_NO_SPACE); 1691 1692 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1693 max != VM_PROT_NONE)) 1694 return (KERN_INVALID_ARGUMENT); 1695 1696 protoeflags = 0; 1697 if (cow & MAP_COPY_ON_WRITE) 1698 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1699 if (cow & MAP_NOFAULT) 1700 protoeflags |= MAP_ENTRY_NOFAULT; 1701 if (cow & MAP_DISABLE_SYNCER) 1702 protoeflags |= MAP_ENTRY_NOSYNC; 1703 if (cow & MAP_DISABLE_COREDUMP) 1704 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1705 if (cow & MAP_STACK_GROWS_DOWN) 1706 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1707 if (cow & MAP_STACK_GROWS_UP) 1708 protoeflags |= MAP_ENTRY_GROWS_UP; 1709 if (cow & MAP_WRITECOUNT) 1710 protoeflags |= MAP_ENTRY_WRITECNT; 1711 if (cow & MAP_VN_EXEC) 1712 protoeflags |= MAP_ENTRY_VN_EXEC; 1713 if ((cow & MAP_CREATE_GUARD) != 0) 1714 protoeflags |= MAP_ENTRY_GUARD; 1715 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1716 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1717 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1718 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1719 if (cow & MAP_INHERIT_SHARE) 1720 inheritance = VM_INHERIT_SHARE; 1721 else 1722 inheritance = VM_INHERIT_DEFAULT; 1723 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1724 /* This magically ignores index 0, for usual page size. */ 1725 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1726 MAP_SPLIT_BOUNDARY_SHIFT; 1727 if (bidx >= MAXPAGESIZES) 1728 return (KERN_INVALID_ARGUMENT); 1729 bdry = pagesizes[bidx] - 1; 1730 if ((start & bdry) != 0 || (end & bdry) != 0) 1731 return (KERN_INVALID_ARGUMENT); 1732 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1733 } 1734 1735 cred = NULL; 1736 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1737 goto charged; 1738 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1739 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1740 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1741 return (KERN_RESOURCE_SHORTAGE); 1742 KASSERT(object == NULL || 1743 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1744 object->cred == NULL, 1745 ("overcommit: vm_map_insert o %p", object)); 1746 cred = curthread->td_ucred; 1747 } 1748 1749 charged: 1750 /* Expand the kernel pmap, if necessary. */ 1751 if (map == kernel_map && end > kernel_vm_end) 1752 pmap_growkernel(end); 1753 if (object != NULL) { 1754 /* 1755 * OBJ_ONEMAPPING must be cleared unless this mapping 1756 * is trivially proven to be the only mapping for any 1757 * of the object's pages. (Object granularity 1758 * reference counting is insufficient to recognize 1759 * aliases with precision.) 1760 */ 1761 if ((object->flags & OBJ_ANON) != 0) { 1762 VM_OBJECT_WLOCK(object); 1763 if (object->ref_count > 1 || object->shadow_count != 0) 1764 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1765 VM_OBJECT_WUNLOCK(object); 1766 } 1767 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1768 protoeflags && 1769 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1770 MAP_VN_EXEC)) == 0 && 1771 prev_entry->end == start && (prev_entry->cred == cred || 1772 (prev_entry->object.vm_object != NULL && 1773 prev_entry->object.vm_object->cred == cred)) && 1774 vm_object_coalesce(prev_entry->object.vm_object, 1775 prev_entry->offset, 1776 (vm_size_t)(prev_entry->end - prev_entry->start), 1777 (vm_size_t)(end - prev_entry->end), cred != NULL && 1778 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1779 /* 1780 * We were able to extend the object. Determine if we 1781 * can extend the previous map entry to include the 1782 * new range as well. 1783 */ 1784 if (prev_entry->inheritance == inheritance && 1785 prev_entry->protection == prot && 1786 prev_entry->max_protection == max && 1787 prev_entry->wired_count == 0) { 1788 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1789 0, ("prev_entry %p has incoherent wiring", 1790 prev_entry)); 1791 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1792 map->size += end - prev_entry->end; 1793 vm_map_entry_resize(map, prev_entry, 1794 end - prev_entry->end); 1795 vm_map_try_merge_entries(map, prev_entry, next_entry); 1796 return (KERN_SUCCESS); 1797 } 1798 1799 /* 1800 * If we can extend the object but cannot extend the 1801 * map entry, we have to create a new map entry. We 1802 * must bump the ref count on the extended object to 1803 * account for it. object may be NULL. 1804 */ 1805 object = prev_entry->object.vm_object; 1806 offset = prev_entry->offset + 1807 (prev_entry->end - prev_entry->start); 1808 vm_object_reference(object); 1809 if (cred != NULL && object != NULL && object->cred != NULL && 1810 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1811 /* Object already accounts for this uid. */ 1812 cred = NULL; 1813 } 1814 } 1815 if (cred != NULL) 1816 crhold(cred); 1817 1818 /* 1819 * Create a new entry 1820 */ 1821 new_entry = vm_map_entry_create(map); 1822 new_entry->start = start; 1823 new_entry->end = end; 1824 new_entry->cred = NULL; 1825 1826 new_entry->eflags = protoeflags; 1827 new_entry->object.vm_object = object; 1828 new_entry->offset = offset; 1829 1830 new_entry->inheritance = inheritance; 1831 new_entry->protection = prot; 1832 new_entry->max_protection = max; 1833 new_entry->wired_count = 0; 1834 new_entry->wiring_thread = NULL; 1835 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1836 new_entry->next_read = start; 1837 1838 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1839 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1840 new_entry->cred = cred; 1841 1842 /* 1843 * Insert the new entry into the list 1844 */ 1845 vm_map_entry_link(map, new_entry); 1846 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1847 map->size += new_entry->end - new_entry->start; 1848 1849 /* 1850 * Try to coalesce the new entry with both the previous and next 1851 * entries in the list. Previously, we only attempted to coalesce 1852 * with the previous entry when object is NULL. Here, we handle the 1853 * other cases, which are less common. 1854 */ 1855 vm_map_try_merge_entries(map, prev_entry, new_entry); 1856 vm_map_try_merge_entries(map, new_entry, next_entry); 1857 1858 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1859 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1860 end - start, cow & MAP_PREFAULT_PARTIAL); 1861 } 1862 1863 return (KERN_SUCCESS); 1864 } 1865 1866 /* 1867 * vm_map_findspace: 1868 * 1869 * Find the first fit (lowest VM address) for "length" free bytes 1870 * beginning at address >= start in the given map. 1871 * 1872 * In a vm_map_entry, "max_free" is the maximum amount of 1873 * contiguous free space between an entry in its subtree and a 1874 * neighbor of that entry. This allows finding a free region in 1875 * one path down the tree, so O(log n) amortized with splay 1876 * trees. 1877 * 1878 * The map must be locked, and leaves it so. 1879 * 1880 * Returns: starting address if sufficient space, 1881 * vm_map_max(map)-length+1 if insufficient space. 1882 */ 1883 vm_offset_t 1884 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1885 { 1886 vm_map_entry_t header, llist, rlist, root, y; 1887 vm_size_t left_length, max_free_left, max_free_right; 1888 vm_offset_t gap_end; 1889 1890 VM_MAP_ASSERT_LOCKED(map); 1891 1892 /* 1893 * Request must fit within min/max VM address and must avoid 1894 * address wrap. 1895 */ 1896 start = MAX(start, vm_map_min(map)); 1897 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1898 return (vm_map_max(map) - length + 1); 1899 1900 /* Empty tree means wide open address space. */ 1901 if (map->root == NULL) 1902 return (start); 1903 1904 /* 1905 * After splay_split, if start is within an entry, push it to the start 1906 * of the following gap. If rlist is at the end of the gap containing 1907 * start, save the end of that gap in gap_end to see if the gap is big 1908 * enough; otherwise set gap_end to start skip gap-checking and move 1909 * directly to a search of the right subtree. 1910 */ 1911 header = &map->header; 1912 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1913 gap_end = rlist->start; 1914 if (root != NULL) { 1915 start = root->end; 1916 if (root->right != rlist) 1917 gap_end = start; 1918 max_free_left = vm_map_splay_merge_left(header, root, llist); 1919 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1920 } else if (rlist != header) { 1921 root = rlist; 1922 rlist = root->left; 1923 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1924 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1925 } else { 1926 root = llist; 1927 llist = root->right; 1928 max_free_left = vm_map_splay_merge_left(header, root, llist); 1929 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1930 } 1931 root->max_free = vm_size_max(max_free_left, max_free_right); 1932 map->root = root; 1933 VM_MAP_ASSERT_CONSISTENT(map); 1934 if (length <= gap_end - start) 1935 return (start); 1936 1937 /* With max_free, can immediately tell if no solution. */ 1938 if (root->right == header || length > root->right->max_free) 1939 return (vm_map_max(map) - length + 1); 1940 1941 /* 1942 * Splay for the least large-enough gap in the right subtree. 1943 */ 1944 llist = rlist = header; 1945 for (left_length = 0;; 1946 left_length = vm_map_entry_max_free_left(root, llist)) { 1947 if (length <= left_length) 1948 SPLAY_LEFT_STEP(root, y, llist, rlist, 1949 length <= vm_map_entry_max_free_left(y, llist)); 1950 else 1951 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1952 length > vm_map_entry_max_free_left(y, root)); 1953 if (root == NULL) 1954 break; 1955 } 1956 root = llist; 1957 llist = root->right; 1958 max_free_left = vm_map_splay_merge_left(header, root, llist); 1959 if (rlist == header) { 1960 root->max_free = vm_size_max(max_free_left, 1961 vm_map_splay_merge_succ(header, root, rlist)); 1962 } else { 1963 y = rlist; 1964 rlist = y->left; 1965 y->max_free = vm_size_max( 1966 vm_map_splay_merge_pred(root, y, root), 1967 vm_map_splay_merge_right(header, y, rlist)); 1968 root->max_free = vm_size_max(max_free_left, y->max_free); 1969 } 1970 map->root = root; 1971 VM_MAP_ASSERT_CONSISTENT(map); 1972 return (root->end); 1973 } 1974 1975 int 1976 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1977 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1978 vm_prot_t max, int cow) 1979 { 1980 vm_offset_t end; 1981 int result; 1982 1983 end = start + length; 1984 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1985 object == NULL, 1986 ("vm_map_fixed: non-NULL backing object for stack")); 1987 vm_map_lock(map); 1988 VM_MAP_RANGE_CHECK(map, start, end); 1989 if ((cow & MAP_CHECK_EXCL) == 0) { 1990 result = vm_map_delete(map, start, end); 1991 if (result != KERN_SUCCESS) 1992 goto out; 1993 } 1994 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1995 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1996 prot, max, cow); 1997 } else { 1998 result = vm_map_insert(map, object, offset, start, end, 1999 prot, max, cow); 2000 } 2001 out: 2002 vm_map_unlock(map); 2003 return (result); 2004 } 2005 2006 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 2007 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 2008 2009 static int cluster_anon = 1; 2010 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2011 &cluster_anon, 0, 2012 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2013 2014 static bool 2015 clustering_anon_allowed(vm_offset_t addr) 2016 { 2017 2018 switch (cluster_anon) { 2019 case 0: 2020 return (false); 2021 case 1: 2022 return (addr == 0); 2023 case 2: 2024 default: 2025 return (true); 2026 } 2027 } 2028 2029 static long aslr_restarts; 2030 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2031 &aslr_restarts, 0, 2032 "Number of aslr failures"); 2033 2034 /* 2035 * Searches for the specified amount of free space in the given map with the 2036 * specified alignment. Performs an address-ordered, first-fit search from 2037 * the given address "*addr", with an optional upper bound "max_addr". If the 2038 * parameter "alignment" is zero, then the alignment is computed from the 2039 * given (object, offset) pair so as to enable the greatest possible use of 2040 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2041 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2042 * 2043 * The map must be locked. Initially, there must be at least "length" bytes 2044 * of free space at the given address. 2045 */ 2046 static int 2047 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2048 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2049 vm_offset_t alignment) 2050 { 2051 vm_offset_t aligned_addr, free_addr; 2052 2053 VM_MAP_ASSERT_LOCKED(map); 2054 free_addr = *addr; 2055 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2056 ("caller failed to provide space %#jx at address %p", 2057 (uintmax_t)length, (void *)free_addr)); 2058 for (;;) { 2059 /* 2060 * At the start of every iteration, the free space at address 2061 * "*addr" is at least "length" bytes. 2062 */ 2063 if (alignment == 0) 2064 pmap_align_superpage(object, offset, addr, length); 2065 else if ((*addr & (alignment - 1)) != 0) { 2066 *addr &= ~(alignment - 1); 2067 *addr += alignment; 2068 } 2069 aligned_addr = *addr; 2070 if (aligned_addr == free_addr) { 2071 /* 2072 * Alignment did not change "*addr", so "*addr" must 2073 * still provide sufficient free space. 2074 */ 2075 return (KERN_SUCCESS); 2076 } 2077 2078 /* 2079 * Test for address wrap on "*addr". A wrapped "*addr" could 2080 * be a valid address, in which case vm_map_findspace() cannot 2081 * be relied upon to fail. 2082 */ 2083 if (aligned_addr < free_addr) 2084 return (KERN_NO_SPACE); 2085 *addr = vm_map_findspace(map, aligned_addr, length); 2086 if (*addr + length > vm_map_max(map) || 2087 (max_addr != 0 && *addr + length > max_addr)) 2088 return (KERN_NO_SPACE); 2089 free_addr = *addr; 2090 if (free_addr == aligned_addr) { 2091 /* 2092 * If a successful call to vm_map_findspace() did not 2093 * change "*addr", then "*addr" must still be aligned 2094 * and provide sufficient free space. 2095 */ 2096 return (KERN_SUCCESS); 2097 } 2098 } 2099 } 2100 2101 int 2102 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2103 vm_offset_t max_addr, vm_offset_t alignment) 2104 { 2105 /* XXXKIB ASLR eh ? */ 2106 *addr = vm_map_findspace(map, *addr, length); 2107 if (*addr + length > vm_map_max(map) || 2108 (max_addr != 0 && *addr + length > max_addr)) 2109 return (KERN_NO_SPACE); 2110 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2111 alignment)); 2112 } 2113 2114 /* 2115 * vm_map_find finds an unallocated region in the target address 2116 * map with the given length. The search is defined to be 2117 * first-fit from the specified address; the region found is 2118 * returned in the same parameter. 2119 * 2120 * If object is non-NULL, ref count must be bumped by caller 2121 * prior to making call to account for the new entry. 2122 */ 2123 int 2124 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2125 vm_offset_t *addr, /* IN/OUT */ 2126 vm_size_t length, vm_offset_t max_addr, int find_space, 2127 vm_prot_t prot, vm_prot_t max, int cow) 2128 { 2129 vm_offset_t alignment, curr_min_addr, min_addr; 2130 int gap, pidx, rv, try; 2131 bool cluster, en_aslr, update_anon; 2132 2133 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2134 object == NULL, 2135 ("vm_map_find: non-NULL backing object for stack")); 2136 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2137 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2138 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2139 (object->flags & OBJ_COLORED) == 0)) 2140 find_space = VMFS_ANY_SPACE; 2141 if (find_space >> 8 != 0) { 2142 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2143 alignment = (vm_offset_t)1 << (find_space >> 8); 2144 } else 2145 alignment = 0; 2146 en_aslr = (map->flags & MAP_ASLR) != 0; 2147 update_anon = cluster = clustering_anon_allowed(*addr) && 2148 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2149 find_space != VMFS_NO_SPACE && object == NULL && 2150 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2151 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2152 curr_min_addr = min_addr = *addr; 2153 if (en_aslr && min_addr == 0 && !cluster && 2154 find_space != VMFS_NO_SPACE && 2155 (map->flags & MAP_ASLR_IGNSTART) != 0) 2156 curr_min_addr = min_addr = vm_map_min(map); 2157 try = 0; 2158 vm_map_lock(map); 2159 if (cluster) { 2160 curr_min_addr = map->anon_loc; 2161 if (curr_min_addr == 0) 2162 cluster = false; 2163 } 2164 if (find_space != VMFS_NO_SPACE) { 2165 KASSERT(find_space == VMFS_ANY_SPACE || 2166 find_space == VMFS_OPTIMAL_SPACE || 2167 find_space == VMFS_SUPER_SPACE || 2168 alignment != 0, ("unexpected VMFS flag")); 2169 again: 2170 /* 2171 * When creating an anonymous mapping, try clustering 2172 * with an existing anonymous mapping first. 2173 * 2174 * We make up to two attempts to find address space 2175 * for a given find_space value. The first attempt may 2176 * apply randomization or may cluster with an existing 2177 * anonymous mapping. If this first attempt fails, 2178 * perform a first-fit search of the available address 2179 * space. 2180 * 2181 * If all tries failed, and find_space is 2182 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2183 * Again enable clustering and randomization. 2184 */ 2185 try++; 2186 MPASS(try <= 2); 2187 2188 if (try == 2) { 2189 /* 2190 * Second try: we failed either to find a 2191 * suitable region for randomizing the 2192 * allocation, or to cluster with an existing 2193 * mapping. Retry with free run. 2194 */ 2195 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2196 vm_map_min(map) : min_addr; 2197 atomic_add_long(&aslr_restarts, 1); 2198 } 2199 2200 if (try == 1 && en_aslr && !cluster) { 2201 /* 2202 * Find space for allocation, including 2203 * gap needed for later randomization. 2204 */ 2205 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2206 (find_space == VMFS_SUPER_SPACE || find_space == 2207 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2208 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2209 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2210 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2211 *addr = vm_map_findspace(map, curr_min_addr, 2212 length + gap * pagesizes[pidx]); 2213 if (*addr + length + gap * pagesizes[pidx] > 2214 vm_map_max(map)) 2215 goto again; 2216 /* And randomize the start address. */ 2217 *addr += (arc4random() % gap) * pagesizes[pidx]; 2218 if (max_addr != 0 && *addr + length > max_addr) 2219 goto again; 2220 } else { 2221 *addr = vm_map_findspace(map, curr_min_addr, length); 2222 if (*addr + length > vm_map_max(map) || 2223 (max_addr != 0 && *addr + length > max_addr)) { 2224 if (cluster) { 2225 cluster = false; 2226 MPASS(try == 1); 2227 goto again; 2228 } 2229 rv = KERN_NO_SPACE; 2230 goto done; 2231 } 2232 } 2233 2234 if (find_space != VMFS_ANY_SPACE && 2235 (rv = vm_map_alignspace(map, object, offset, addr, length, 2236 max_addr, alignment)) != KERN_SUCCESS) { 2237 if (find_space == VMFS_OPTIMAL_SPACE) { 2238 find_space = VMFS_ANY_SPACE; 2239 curr_min_addr = min_addr; 2240 cluster = update_anon; 2241 try = 0; 2242 goto again; 2243 } 2244 goto done; 2245 } 2246 } else if ((cow & MAP_REMAP) != 0) { 2247 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2248 rv = KERN_INVALID_ADDRESS; 2249 goto done; 2250 } 2251 rv = vm_map_delete(map, *addr, *addr + length); 2252 if (rv != KERN_SUCCESS) 2253 goto done; 2254 } 2255 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2256 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2257 max, cow); 2258 } else { 2259 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2260 prot, max, cow); 2261 } 2262 if (rv == KERN_SUCCESS && update_anon) 2263 map->anon_loc = *addr + length; 2264 done: 2265 vm_map_unlock(map); 2266 return (rv); 2267 } 2268 2269 /* 2270 * vm_map_find_min() is a variant of vm_map_find() that takes an 2271 * additional parameter (min_addr) and treats the given address 2272 * (*addr) differently. Specifically, it treats *addr as a hint 2273 * and not as the minimum address where the mapping is created. 2274 * 2275 * This function works in two phases. First, it tries to 2276 * allocate above the hint. If that fails and the hint is 2277 * greater than min_addr, it performs a second pass, replacing 2278 * the hint with min_addr as the minimum address for the 2279 * allocation. 2280 */ 2281 int 2282 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2283 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2284 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2285 int cow) 2286 { 2287 vm_offset_t hint; 2288 int rv; 2289 2290 hint = *addr; 2291 for (;;) { 2292 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2293 find_space, prot, max, cow); 2294 if (rv == KERN_SUCCESS || min_addr >= hint) 2295 return (rv); 2296 *addr = hint = min_addr; 2297 } 2298 } 2299 2300 /* 2301 * A map entry with any of the following flags set must not be merged with 2302 * another entry. 2303 */ 2304 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2305 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2306 2307 static bool 2308 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2309 { 2310 2311 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2312 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2313 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2314 prev, entry)); 2315 return (prev->end == entry->start && 2316 prev->object.vm_object == entry->object.vm_object && 2317 (prev->object.vm_object == NULL || 2318 prev->offset + (prev->end - prev->start) == entry->offset) && 2319 prev->eflags == entry->eflags && 2320 prev->protection == entry->protection && 2321 prev->max_protection == entry->max_protection && 2322 prev->inheritance == entry->inheritance && 2323 prev->wired_count == entry->wired_count && 2324 prev->cred == entry->cred); 2325 } 2326 2327 static void 2328 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2329 { 2330 2331 /* 2332 * If the backing object is a vnode object, vm_object_deallocate() 2333 * calls vrele(). However, vrele() does not lock the vnode because 2334 * the vnode has additional references. Thus, the map lock can be 2335 * kept without causing a lock-order reversal with the vnode lock. 2336 * 2337 * Since we count the number of virtual page mappings in 2338 * object->un_pager.vnp.writemappings, the writemappings value 2339 * should not be adjusted when the entry is disposed of. 2340 */ 2341 if (entry->object.vm_object != NULL) 2342 vm_object_deallocate(entry->object.vm_object); 2343 if (entry->cred != NULL) 2344 crfree(entry->cred); 2345 vm_map_entry_dispose(map, entry); 2346 } 2347 2348 /* 2349 * vm_map_try_merge_entries: 2350 * 2351 * Compare the given map entry to its predecessor, and merge its precessor 2352 * into it if possible. The entry remains valid, and may be extended. 2353 * The predecessor may be deleted. 2354 * 2355 * The map must be locked. 2356 */ 2357 void 2358 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2359 vm_map_entry_t entry) 2360 { 2361 2362 VM_MAP_ASSERT_LOCKED(map); 2363 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2364 vm_map_mergeable_neighbors(prev_entry, entry)) { 2365 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2366 vm_map_merged_neighbor_dispose(map, prev_entry); 2367 } 2368 } 2369 2370 /* 2371 * vm_map_entry_back: 2372 * 2373 * Allocate an object to back a map entry. 2374 */ 2375 static inline void 2376 vm_map_entry_back(vm_map_entry_t entry) 2377 { 2378 vm_object_t object; 2379 2380 KASSERT(entry->object.vm_object == NULL, 2381 ("map entry %p has backing object", entry)); 2382 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2383 ("map entry %p is a submap", entry)); 2384 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2385 entry->cred, entry->end - entry->start); 2386 entry->object.vm_object = object; 2387 entry->offset = 0; 2388 entry->cred = NULL; 2389 } 2390 2391 /* 2392 * vm_map_entry_charge_object 2393 * 2394 * If there is no object backing this entry, create one. Otherwise, if 2395 * the entry has cred, give it to the backing object. 2396 */ 2397 static inline void 2398 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2399 { 2400 2401 VM_MAP_ASSERT_LOCKED(map); 2402 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2403 ("map entry %p is a submap", entry)); 2404 if (entry->object.vm_object == NULL && !map->system_map && 2405 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2406 vm_map_entry_back(entry); 2407 else if (entry->object.vm_object != NULL && 2408 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2409 entry->cred != NULL) { 2410 VM_OBJECT_WLOCK(entry->object.vm_object); 2411 KASSERT(entry->object.vm_object->cred == NULL, 2412 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2413 entry->object.vm_object->cred = entry->cred; 2414 entry->object.vm_object->charge = entry->end - entry->start; 2415 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2416 entry->cred = NULL; 2417 } 2418 } 2419 2420 /* 2421 * vm_map_entry_clone 2422 * 2423 * Create a duplicate map entry for clipping. 2424 */ 2425 static vm_map_entry_t 2426 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2427 { 2428 vm_map_entry_t new_entry; 2429 2430 VM_MAP_ASSERT_LOCKED(map); 2431 2432 /* 2433 * Create a backing object now, if none exists, so that more individual 2434 * objects won't be created after the map entry is split. 2435 */ 2436 vm_map_entry_charge_object(map, entry); 2437 2438 /* Clone the entry. */ 2439 new_entry = vm_map_entry_create(map); 2440 *new_entry = *entry; 2441 if (new_entry->cred != NULL) 2442 crhold(entry->cred); 2443 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2444 vm_object_reference(new_entry->object.vm_object); 2445 vm_map_entry_set_vnode_text(new_entry, true); 2446 /* 2447 * The object->un_pager.vnp.writemappings for the object of 2448 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2449 * virtual pages are re-distributed among the clipped entries, 2450 * so the sum is left the same. 2451 */ 2452 } 2453 return (new_entry); 2454 } 2455 2456 /* 2457 * vm_map_clip_start: [ internal use only ] 2458 * 2459 * Asserts that the given entry begins at or after 2460 * the specified address; if necessary, 2461 * it splits the entry into two. 2462 */ 2463 static int 2464 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2465 { 2466 vm_map_entry_t new_entry; 2467 int bdry_idx; 2468 2469 if (!map->system_map) 2470 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2471 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2472 (uintmax_t)startaddr); 2473 2474 if (startaddr <= entry->start) 2475 return (KERN_SUCCESS); 2476 2477 VM_MAP_ASSERT_LOCKED(map); 2478 KASSERT(entry->end > startaddr && entry->start < startaddr, 2479 ("%s: invalid clip of entry %p", __func__, entry)); 2480 2481 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2482 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2483 if (bdry_idx != 0) { 2484 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2485 return (KERN_INVALID_ARGUMENT); 2486 } 2487 2488 new_entry = vm_map_entry_clone(map, entry); 2489 2490 /* 2491 * Split off the front portion. Insert the new entry BEFORE this one, 2492 * so that this entry has the specified starting address. 2493 */ 2494 new_entry->end = startaddr; 2495 vm_map_entry_link(map, new_entry); 2496 return (KERN_SUCCESS); 2497 } 2498 2499 /* 2500 * vm_map_lookup_clip_start: 2501 * 2502 * Find the entry at or just after 'start', and clip it if 'start' is in 2503 * the interior of the entry. Return entry after 'start', and in 2504 * prev_entry set the entry before 'start'. 2505 */ 2506 static int 2507 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2508 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2509 { 2510 vm_map_entry_t entry; 2511 int rv; 2512 2513 if (!map->system_map) 2514 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2515 "%s: map %p start 0x%jx prev %p", __func__, map, 2516 (uintmax_t)start, prev_entry); 2517 2518 if (vm_map_lookup_entry(map, start, prev_entry)) { 2519 entry = *prev_entry; 2520 rv = vm_map_clip_start(map, entry, start); 2521 if (rv != KERN_SUCCESS) 2522 return (rv); 2523 *prev_entry = vm_map_entry_pred(entry); 2524 } else 2525 entry = vm_map_entry_succ(*prev_entry); 2526 *res_entry = entry; 2527 return (KERN_SUCCESS); 2528 } 2529 2530 /* 2531 * vm_map_clip_end: [ internal use only ] 2532 * 2533 * Asserts that the given entry ends at or before 2534 * the specified address; if necessary, 2535 * it splits the entry into two. 2536 */ 2537 static int 2538 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2539 { 2540 vm_map_entry_t new_entry; 2541 int bdry_idx; 2542 2543 if (!map->system_map) 2544 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2545 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2546 (uintmax_t)endaddr); 2547 2548 if (endaddr >= entry->end) 2549 return (KERN_SUCCESS); 2550 2551 VM_MAP_ASSERT_LOCKED(map); 2552 KASSERT(entry->start < endaddr && entry->end > endaddr, 2553 ("%s: invalid clip of entry %p", __func__, entry)); 2554 2555 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 2556 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 2557 if (bdry_idx != 0) { 2558 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2559 return (KERN_INVALID_ARGUMENT); 2560 } 2561 2562 new_entry = vm_map_entry_clone(map, entry); 2563 2564 /* 2565 * Split off the back portion. Insert the new entry AFTER this one, 2566 * so that this entry has the specified ending address. 2567 */ 2568 new_entry->start = endaddr; 2569 vm_map_entry_link(map, new_entry); 2570 2571 return (KERN_SUCCESS); 2572 } 2573 2574 /* 2575 * vm_map_submap: [ kernel use only ] 2576 * 2577 * Mark the given range as handled by a subordinate map. 2578 * 2579 * This range must have been created with vm_map_find, 2580 * and no other operations may have been performed on this 2581 * range prior to calling vm_map_submap. 2582 * 2583 * Only a limited number of operations can be performed 2584 * within this rage after calling vm_map_submap: 2585 * vm_fault 2586 * [Don't try vm_map_copy!] 2587 * 2588 * To remove a submapping, one must first remove the 2589 * range from the superior map, and then destroy the 2590 * submap (if desired). [Better yet, don't try it.] 2591 */ 2592 int 2593 vm_map_submap( 2594 vm_map_t map, 2595 vm_offset_t start, 2596 vm_offset_t end, 2597 vm_map_t submap) 2598 { 2599 vm_map_entry_t entry; 2600 int result; 2601 2602 result = KERN_INVALID_ARGUMENT; 2603 2604 vm_map_lock(submap); 2605 submap->flags |= MAP_IS_SUB_MAP; 2606 vm_map_unlock(submap); 2607 2608 vm_map_lock(map); 2609 VM_MAP_RANGE_CHECK(map, start, end); 2610 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2611 (entry->eflags & MAP_ENTRY_COW) == 0 && 2612 entry->object.vm_object == NULL) { 2613 result = vm_map_clip_start(map, entry, start); 2614 if (result != KERN_SUCCESS) 2615 goto unlock; 2616 result = vm_map_clip_end(map, entry, end); 2617 if (result != KERN_SUCCESS) 2618 goto unlock; 2619 entry->object.sub_map = submap; 2620 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2621 result = KERN_SUCCESS; 2622 } 2623 unlock: 2624 vm_map_unlock(map); 2625 2626 if (result != KERN_SUCCESS) { 2627 vm_map_lock(submap); 2628 submap->flags &= ~MAP_IS_SUB_MAP; 2629 vm_map_unlock(submap); 2630 } 2631 return (result); 2632 } 2633 2634 /* 2635 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2636 */ 2637 #define MAX_INIT_PT 96 2638 2639 /* 2640 * vm_map_pmap_enter: 2641 * 2642 * Preload the specified map's pmap with mappings to the specified 2643 * object's memory-resident pages. No further physical pages are 2644 * allocated, and no further virtual pages are retrieved from secondary 2645 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2646 * limited number of page mappings are created at the low-end of the 2647 * specified address range. (For this purpose, a superpage mapping 2648 * counts as one page mapping.) Otherwise, all resident pages within 2649 * the specified address range are mapped. 2650 */ 2651 static void 2652 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2653 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2654 { 2655 vm_offset_t start; 2656 vm_page_t p, p_start; 2657 vm_pindex_t mask, psize, threshold, tmpidx; 2658 2659 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2660 return; 2661 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2662 VM_OBJECT_WLOCK(object); 2663 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2664 pmap_object_init_pt(map->pmap, addr, object, pindex, 2665 size); 2666 VM_OBJECT_WUNLOCK(object); 2667 return; 2668 } 2669 VM_OBJECT_LOCK_DOWNGRADE(object); 2670 } else 2671 VM_OBJECT_RLOCK(object); 2672 2673 psize = atop(size); 2674 if (psize + pindex > object->size) { 2675 if (pindex >= object->size) { 2676 VM_OBJECT_RUNLOCK(object); 2677 return; 2678 } 2679 psize = object->size - pindex; 2680 } 2681 2682 start = 0; 2683 p_start = NULL; 2684 threshold = MAX_INIT_PT; 2685 2686 p = vm_page_find_least(object, pindex); 2687 /* 2688 * Assert: the variable p is either (1) the page with the 2689 * least pindex greater than or equal to the parameter pindex 2690 * or (2) NULL. 2691 */ 2692 for (; 2693 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2694 p = TAILQ_NEXT(p, listq)) { 2695 /* 2696 * don't allow an madvise to blow away our really 2697 * free pages allocating pv entries. 2698 */ 2699 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2700 vm_page_count_severe()) || 2701 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2702 tmpidx >= threshold)) { 2703 psize = tmpidx; 2704 break; 2705 } 2706 if (vm_page_all_valid(p)) { 2707 if (p_start == NULL) { 2708 start = addr + ptoa(tmpidx); 2709 p_start = p; 2710 } 2711 /* Jump ahead if a superpage mapping is possible. */ 2712 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2713 (pagesizes[p->psind] - 1)) == 0) { 2714 mask = atop(pagesizes[p->psind]) - 1; 2715 if (tmpidx + mask < psize && 2716 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2717 p += mask; 2718 threshold += mask; 2719 } 2720 } 2721 } else if (p_start != NULL) { 2722 pmap_enter_object(map->pmap, start, addr + 2723 ptoa(tmpidx), p_start, prot); 2724 p_start = NULL; 2725 } 2726 } 2727 if (p_start != NULL) 2728 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2729 p_start, prot); 2730 VM_OBJECT_RUNLOCK(object); 2731 } 2732 2733 /* 2734 * vm_map_protect: 2735 * 2736 * Sets the protection and/or the maximum protection of the 2737 * specified address region in the target map. 2738 */ 2739 int 2740 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2741 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2742 { 2743 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2744 vm_object_t obj; 2745 struct ucred *cred; 2746 vm_prot_t old_prot; 2747 int rv; 2748 2749 if (start == end) 2750 return (KERN_SUCCESS); 2751 2752 if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) == 2753 (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) && 2754 (new_prot & new_maxprot) != new_prot) 2755 return (KERN_OUT_OF_BOUNDS); 2756 2757 again: 2758 in_tran = NULL; 2759 vm_map_lock(map); 2760 2761 if ((map->flags & MAP_WXORX) != 0 && 2762 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2763 (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | 2764 VM_PROT_EXECUTE)) { 2765 vm_map_unlock(map); 2766 return (KERN_PROTECTION_FAILURE); 2767 } 2768 2769 /* 2770 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2771 * need to fault pages into the map and will drop the map lock while 2772 * doing so, and the VM object may end up in an inconsistent state if we 2773 * update the protection on the map entry in between faults. 2774 */ 2775 vm_map_wait_busy(map); 2776 2777 VM_MAP_RANGE_CHECK(map, start, end); 2778 2779 if (!vm_map_lookup_entry(map, start, &first_entry)) 2780 first_entry = vm_map_entry_succ(first_entry); 2781 2782 /* 2783 * Make a first pass to check for protection violations. 2784 */ 2785 for (entry = first_entry; entry->start < end; 2786 entry = vm_map_entry_succ(entry)) { 2787 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2788 continue; 2789 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2790 vm_map_unlock(map); 2791 return (KERN_INVALID_ARGUMENT); 2792 } 2793 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0) 2794 new_prot = entry->protection; 2795 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0) 2796 new_maxprot = entry->max_protection; 2797 if ((new_prot & entry->max_protection) != new_prot || 2798 (new_maxprot & entry->max_protection) != new_maxprot) { 2799 vm_map_unlock(map); 2800 return (KERN_PROTECTION_FAILURE); 2801 } 2802 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2803 in_tran = entry; 2804 } 2805 2806 /* 2807 * Postpone the operation until all in-transition map entries have 2808 * stabilized. An in-transition entry might already have its pages 2809 * wired and wired_count incremented, but not yet have its 2810 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2811 * vm_fault_copy_entry() in the final loop below. 2812 */ 2813 if (in_tran != NULL) { 2814 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2815 vm_map_unlock_and_wait(map, 0); 2816 goto again; 2817 } 2818 2819 /* 2820 * Before changing the protections, try to reserve swap space for any 2821 * private (i.e., copy-on-write) mappings that are transitioning from 2822 * read-only to read/write access. If a reservation fails, break out 2823 * of this loop early and let the next loop simplify the entries, since 2824 * some may now be mergeable. 2825 */ 2826 rv = vm_map_clip_start(map, first_entry, start); 2827 if (rv != KERN_SUCCESS) { 2828 vm_map_unlock(map); 2829 return (rv); 2830 } 2831 for (entry = first_entry; entry->start < end; 2832 entry = vm_map_entry_succ(entry)) { 2833 rv = vm_map_clip_end(map, entry, end); 2834 if (rv != KERN_SUCCESS) { 2835 vm_map_unlock(map); 2836 return (rv); 2837 } 2838 2839 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2840 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2841 ENTRY_CHARGED(entry) || 2842 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2843 continue; 2844 2845 cred = curthread->td_ucred; 2846 obj = entry->object.vm_object; 2847 2848 if (obj == NULL || 2849 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2850 if (!swap_reserve(entry->end - entry->start)) { 2851 rv = KERN_RESOURCE_SHORTAGE; 2852 end = entry->end; 2853 break; 2854 } 2855 crhold(cred); 2856 entry->cred = cred; 2857 continue; 2858 } 2859 2860 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2861 continue; 2862 VM_OBJECT_WLOCK(obj); 2863 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2864 VM_OBJECT_WUNLOCK(obj); 2865 continue; 2866 } 2867 2868 /* 2869 * Charge for the whole object allocation now, since 2870 * we cannot distinguish between non-charged and 2871 * charged clipped mapping of the same object later. 2872 */ 2873 KASSERT(obj->charge == 0, 2874 ("vm_map_protect: object %p overcharged (entry %p)", 2875 obj, entry)); 2876 if (!swap_reserve(ptoa(obj->size))) { 2877 VM_OBJECT_WUNLOCK(obj); 2878 rv = KERN_RESOURCE_SHORTAGE; 2879 end = entry->end; 2880 break; 2881 } 2882 2883 crhold(cred); 2884 obj->cred = cred; 2885 obj->charge = ptoa(obj->size); 2886 VM_OBJECT_WUNLOCK(obj); 2887 } 2888 2889 /* 2890 * If enough swap space was available, go back and fix up protections. 2891 * Otherwise, just simplify entries, since some may have been modified. 2892 * [Note that clipping is not necessary the second time.] 2893 */ 2894 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2895 entry->start < end; 2896 vm_map_try_merge_entries(map, prev_entry, entry), 2897 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2898 if (rv != KERN_SUCCESS || 2899 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2900 continue; 2901 2902 old_prot = entry->protection; 2903 2904 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2905 entry->max_protection = new_maxprot; 2906 entry->protection = new_maxprot & old_prot; 2907 } 2908 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2909 entry->protection = new_prot; 2910 2911 /* 2912 * For user wired map entries, the normal lazy evaluation of 2913 * write access upgrades through soft page faults is 2914 * undesirable. Instead, immediately copy any pages that are 2915 * copy-on-write and enable write access in the physical map. 2916 */ 2917 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2918 (entry->protection & VM_PROT_WRITE) != 0 && 2919 (old_prot & VM_PROT_WRITE) == 0) 2920 vm_fault_copy_entry(map, map, entry, entry, NULL); 2921 2922 /* 2923 * When restricting access, update the physical map. Worry 2924 * about copy-on-write here. 2925 */ 2926 if ((old_prot & ~entry->protection) != 0) { 2927 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2928 VM_PROT_ALL) 2929 pmap_protect(map->pmap, entry->start, 2930 entry->end, 2931 entry->protection & MASK(entry)); 2932 #undef MASK 2933 } 2934 } 2935 vm_map_try_merge_entries(map, prev_entry, entry); 2936 vm_map_unlock(map); 2937 return (rv); 2938 } 2939 2940 /* 2941 * vm_map_madvise: 2942 * 2943 * This routine traverses a processes map handling the madvise 2944 * system call. Advisories are classified as either those effecting 2945 * the vm_map_entry structure, or those effecting the underlying 2946 * objects. 2947 */ 2948 int 2949 vm_map_madvise( 2950 vm_map_t map, 2951 vm_offset_t start, 2952 vm_offset_t end, 2953 int behav) 2954 { 2955 vm_map_entry_t entry, prev_entry; 2956 int rv; 2957 bool modify_map; 2958 2959 /* 2960 * Some madvise calls directly modify the vm_map_entry, in which case 2961 * we need to use an exclusive lock on the map and we need to perform 2962 * various clipping operations. Otherwise we only need a read-lock 2963 * on the map. 2964 */ 2965 switch(behav) { 2966 case MADV_NORMAL: 2967 case MADV_SEQUENTIAL: 2968 case MADV_RANDOM: 2969 case MADV_NOSYNC: 2970 case MADV_AUTOSYNC: 2971 case MADV_NOCORE: 2972 case MADV_CORE: 2973 if (start == end) 2974 return (0); 2975 modify_map = true; 2976 vm_map_lock(map); 2977 break; 2978 case MADV_WILLNEED: 2979 case MADV_DONTNEED: 2980 case MADV_FREE: 2981 if (start == end) 2982 return (0); 2983 modify_map = false; 2984 vm_map_lock_read(map); 2985 break; 2986 default: 2987 return (EINVAL); 2988 } 2989 2990 /* 2991 * Locate starting entry and clip if necessary. 2992 */ 2993 VM_MAP_RANGE_CHECK(map, start, end); 2994 2995 if (modify_map) { 2996 /* 2997 * madvise behaviors that are implemented in the vm_map_entry. 2998 * 2999 * We clip the vm_map_entry so that behavioral changes are 3000 * limited to the specified address range. 3001 */ 3002 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3003 if (rv != KERN_SUCCESS) { 3004 vm_map_unlock(map); 3005 return (vm_mmap_to_errno(rv)); 3006 } 3007 3008 for (; entry->start < end; prev_entry = entry, 3009 entry = vm_map_entry_succ(entry)) { 3010 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3011 continue; 3012 3013 rv = vm_map_clip_end(map, entry, end); 3014 if (rv != KERN_SUCCESS) { 3015 vm_map_unlock(map); 3016 return (vm_mmap_to_errno(rv)); 3017 } 3018 3019 switch (behav) { 3020 case MADV_NORMAL: 3021 vm_map_entry_set_behavior(entry, 3022 MAP_ENTRY_BEHAV_NORMAL); 3023 break; 3024 case MADV_SEQUENTIAL: 3025 vm_map_entry_set_behavior(entry, 3026 MAP_ENTRY_BEHAV_SEQUENTIAL); 3027 break; 3028 case MADV_RANDOM: 3029 vm_map_entry_set_behavior(entry, 3030 MAP_ENTRY_BEHAV_RANDOM); 3031 break; 3032 case MADV_NOSYNC: 3033 entry->eflags |= MAP_ENTRY_NOSYNC; 3034 break; 3035 case MADV_AUTOSYNC: 3036 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3037 break; 3038 case MADV_NOCORE: 3039 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3040 break; 3041 case MADV_CORE: 3042 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3043 break; 3044 default: 3045 break; 3046 } 3047 vm_map_try_merge_entries(map, prev_entry, entry); 3048 } 3049 vm_map_try_merge_entries(map, prev_entry, entry); 3050 vm_map_unlock(map); 3051 } else { 3052 vm_pindex_t pstart, pend; 3053 3054 /* 3055 * madvise behaviors that are implemented in the underlying 3056 * vm_object. 3057 * 3058 * Since we don't clip the vm_map_entry, we have to clip 3059 * the vm_object pindex and count. 3060 */ 3061 if (!vm_map_lookup_entry(map, start, &entry)) 3062 entry = vm_map_entry_succ(entry); 3063 for (; entry->start < end; 3064 entry = vm_map_entry_succ(entry)) { 3065 vm_offset_t useEnd, useStart; 3066 3067 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3068 continue; 3069 3070 /* 3071 * MADV_FREE would otherwise rewind time to 3072 * the creation of the shadow object. Because 3073 * we hold the VM map read-locked, neither the 3074 * entry's object nor the presence of a 3075 * backing object can change. 3076 */ 3077 if (behav == MADV_FREE && 3078 entry->object.vm_object != NULL && 3079 entry->object.vm_object->backing_object != NULL) 3080 continue; 3081 3082 pstart = OFF_TO_IDX(entry->offset); 3083 pend = pstart + atop(entry->end - entry->start); 3084 useStart = entry->start; 3085 useEnd = entry->end; 3086 3087 if (entry->start < start) { 3088 pstart += atop(start - entry->start); 3089 useStart = start; 3090 } 3091 if (entry->end > end) { 3092 pend -= atop(entry->end - end); 3093 useEnd = end; 3094 } 3095 3096 if (pstart >= pend) 3097 continue; 3098 3099 /* 3100 * Perform the pmap_advise() before clearing 3101 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3102 * concurrent pmap operation, such as pmap_remove(), 3103 * could clear a reference in the pmap and set 3104 * PGA_REFERENCED on the page before the pmap_advise() 3105 * had completed. Consequently, the page would appear 3106 * referenced based upon an old reference that 3107 * occurred before this pmap_advise() ran. 3108 */ 3109 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3110 pmap_advise(map->pmap, useStart, useEnd, 3111 behav); 3112 3113 vm_object_madvise(entry->object.vm_object, pstart, 3114 pend, behav); 3115 3116 /* 3117 * Pre-populate paging structures in the 3118 * WILLNEED case. For wired entries, the 3119 * paging structures are already populated. 3120 */ 3121 if (behav == MADV_WILLNEED && 3122 entry->wired_count == 0) { 3123 vm_map_pmap_enter(map, 3124 useStart, 3125 entry->protection, 3126 entry->object.vm_object, 3127 pstart, 3128 ptoa(pend - pstart), 3129 MAP_PREFAULT_MADVISE 3130 ); 3131 } 3132 } 3133 vm_map_unlock_read(map); 3134 } 3135 return (0); 3136 } 3137 3138 /* 3139 * vm_map_inherit: 3140 * 3141 * Sets the inheritance of the specified address 3142 * range in the target map. Inheritance 3143 * affects how the map will be shared with 3144 * child maps at the time of vmspace_fork. 3145 */ 3146 int 3147 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3148 vm_inherit_t new_inheritance) 3149 { 3150 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3151 int rv; 3152 3153 switch (new_inheritance) { 3154 case VM_INHERIT_NONE: 3155 case VM_INHERIT_COPY: 3156 case VM_INHERIT_SHARE: 3157 case VM_INHERIT_ZERO: 3158 break; 3159 default: 3160 return (KERN_INVALID_ARGUMENT); 3161 } 3162 if (start == end) 3163 return (KERN_SUCCESS); 3164 vm_map_lock(map); 3165 VM_MAP_RANGE_CHECK(map, start, end); 3166 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3167 if (rv != KERN_SUCCESS) 3168 goto unlock; 3169 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3170 rv = vm_map_clip_end(map, lentry, end); 3171 if (rv != KERN_SUCCESS) 3172 goto unlock; 3173 } 3174 if (new_inheritance == VM_INHERIT_COPY) { 3175 for (entry = start_entry; entry->start < end; 3176 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3177 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3178 != 0) { 3179 rv = KERN_INVALID_ARGUMENT; 3180 goto unlock; 3181 } 3182 } 3183 } 3184 for (entry = start_entry; entry->start < end; prev_entry = entry, 3185 entry = vm_map_entry_succ(entry)) { 3186 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3187 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3188 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3189 new_inheritance != VM_INHERIT_ZERO) 3190 entry->inheritance = new_inheritance; 3191 vm_map_try_merge_entries(map, prev_entry, entry); 3192 } 3193 vm_map_try_merge_entries(map, prev_entry, entry); 3194 unlock: 3195 vm_map_unlock(map); 3196 return (rv); 3197 } 3198 3199 /* 3200 * vm_map_entry_in_transition: 3201 * 3202 * Release the map lock, and sleep until the entry is no longer in 3203 * transition. Awake and acquire the map lock. If the map changed while 3204 * another held the lock, lookup a possibly-changed entry at or after the 3205 * 'start' position of the old entry. 3206 */ 3207 static vm_map_entry_t 3208 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3209 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3210 { 3211 vm_map_entry_t entry; 3212 vm_offset_t start; 3213 u_int last_timestamp; 3214 3215 VM_MAP_ASSERT_LOCKED(map); 3216 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3217 ("not in-tranition map entry %p", in_entry)); 3218 /* 3219 * We have not yet clipped the entry. 3220 */ 3221 start = MAX(in_start, in_entry->start); 3222 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3223 last_timestamp = map->timestamp; 3224 if (vm_map_unlock_and_wait(map, 0)) { 3225 /* 3226 * Allow interruption of user wiring/unwiring? 3227 */ 3228 } 3229 vm_map_lock(map); 3230 if (last_timestamp + 1 == map->timestamp) 3231 return (in_entry); 3232 3233 /* 3234 * Look again for the entry because the map was modified while it was 3235 * unlocked. Specifically, the entry may have been clipped, merged, or 3236 * deleted. 3237 */ 3238 if (!vm_map_lookup_entry(map, start, &entry)) { 3239 if (!holes_ok) { 3240 *io_end = start; 3241 return (NULL); 3242 } 3243 entry = vm_map_entry_succ(entry); 3244 } 3245 return (entry); 3246 } 3247 3248 /* 3249 * vm_map_unwire: 3250 * 3251 * Implements both kernel and user unwiring. 3252 */ 3253 int 3254 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3255 int flags) 3256 { 3257 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3258 int rv; 3259 bool holes_ok, need_wakeup, user_unwire; 3260 3261 if (start == end) 3262 return (KERN_SUCCESS); 3263 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3264 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3265 vm_map_lock(map); 3266 VM_MAP_RANGE_CHECK(map, start, end); 3267 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3268 if (holes_ok) 3269 first_entry = vm_map_entry_succ(first_entry); 3270 else { 3271 vm_map_unlock(map); 3272 return (KERN_INVALID_ADDRESS); 3273 } 3274 } 3275 rv = KERN_SUCCESS; 3276 for (entry = first_entry; entry->start < end; entry = next_entry) { 3277 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3278 /* 3279 * We have not yet clipped the entry. 3280 */ 3281 next_entry = vm_map_entry_in_transition(map, start, 3282 &end, holes_ok, entry); 3283 if (next_entry == NULL) { 3284 if (entry == first_entry) { 3285 vm_map_unlock(map); 3286 return (KERN_INVALID_ADDRESS); 3287 } 3288 rv = KERN_INVALID_ADDRESS; 3289 break; 3290 } 3291 first_entry = (entry == first_entry) ? 3292 next_entry : NULL; 3293 continue; 3294 } 3295 rv = vm_map_clip_start(map, entry, start); 3296 if (rv != KERN_SUCCESS) 3297 break; 3298 rv = vm_map_clip_end(map, entry, end); 3299 if (rv != KERN_SUCCESS) 3300 break; 3301 3302 /* 3303 * Mark the entry in case the map lock is released. (See 3304 * above.) 3305 */ 3306 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3307 entry->wiring_thread == NULL, 3308 ("owned map entry %p", entry)); 3309 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3310 entry->wiring_thread = curthread; 3311 next_entry = vm_map_entry_succ(entry); 3312 /* 3313 * Check the map for holes in the specified region. 3314 * If holes_ok, skip this check. 3315 */ 3316 if (!holes_ok && 3317 entry->end < end && next_entry->start > entry->end) { 3318 end = entry->end; 3319 rv = KERN_INVALID_ADDRESS; 3320 break; 3321 } 3322 /* 3323 * If system unwiring, require that the entry is system wired. 3324 */ 3325 if (!user_unwire && 3326 vm_map_entry_system_wired_count(entry) == 0) { 3327 end = entry->end; 3328 rv = KERN_INVALID_ARGUMENT; 3329 break; 3330 } 3331 } 3332 need_wakeup = false; 3333 if (first_entry == NULL && 3334 !vm_map_lookup_entry(map, start, &first_entry)) { 3335 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3336 prev_entry = first_entry; 3337 entry = vm_map_entry_succ(first_entry); 3338 } else { 3339 prev_entry = vm_map_entry_pred(first_entry); 3340 entry = first_entry; 3341 } 3342 for (; entry->start < end; 3343 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3344 /* 3345 * If holes_ok was specified, an empty 3346 * space in the unwired region could have been mapped 3347 * while the map lock was dropped for draining 3348 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3349 * could be simultaneously wiring this new mapping 3350 * entry. Detect these cases and skip any entries 3351 * marked as in transition by us. 3352 */ 3353 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3354 entry->wiring_thread != curthread) { 3355 KASSERT(holes_ok, 3356 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3357 continue; 3358 } 3359 3360 if (rv == KERN_SUCCESS && (!user_unwire || 3361 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3362 if (entry->wired_count == 1) 3363 vm_map_entry_unwire(map, entry); 3364 else 3365 entry->wired_count--; 3366 if (user_unwire) 3367 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3368 } 3369 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3370 ("vm_map_unwire: in-transition flag missing %p", entry)); 3371 KASSERT(entry->wiring_thread == curthread, 3372 ("vm_map_unwire: alien wire %p", entry)); 3373 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3374 entry->wiring_thread = NULL; 3375 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3376 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3377 need_wakeup = true; 3378 } 3379 vm_map_try_merge_entries(map, prev_entry, entry); 3380 } 3381 vm_map_try_merge_entries(map, prev_entry, entry); 3382 vm_map_unlock(map); 3383 if (need_wakeup) 3384 vm_map_wakeup(map); 3385 return (rv); 3386 } 3387 3388 static void 3389 vm_map_wire_user_count_sub(u_long npages) 3390 { 3391 3392 atomic_subtract_long(&vm_user_wire_count, npages); 3393 } 3394 3395 static bool 3396 vm_map_wire_user_count_add(u_long npages) 3397 { 3398 u_long wired; 3399 3400 wired = vm_user_wire_count; 3401 do { 3402 if (npages + wired > vm_page_max_user_wired) 3403 return (false); 3404 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3405 npages + wired)); 3406 3407 return (true); 3408 } 3409 3410 /* 3411 * vm_map_wire_entry_failure: 3412 * 3413 * Handle a wiring failure on the given entry. 3414 * 3415 * The map should be locked. 3416 */ 3417 static void 3418 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3419 vm_offset_t failed_addr) 3420 { 3421 3422 VM_MAP_ASSERT_LOCKED(map); 3423 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3424 entry->wired_count == 1, 3425 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3426 KASSERT(failed_addr < entry->end, 3427 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3428 3429 /* 3430 * If any pages at the start of this entry were successfully wired, 3431 * then unwire them. 3432 */ 3433 if (failed_addr > entry->start) { 3434 pmap_unwire(map->pmap, entry->start, failed_addr); 3435 vm_object_unwire(entry->object.vm_object, entry->offset, 3436 failed_addr - entry->start, PQ_ACTIVE); 3437 } 3438 3439 /* 3440 * Assign an out-of-range value to represent the failure to wire this 3441 * entry. 3442 */ 3443 entry->wired_count = -1; 3444 } 3445 3446 int 3447 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3448 { 3449 int rv; 3450 3451 vm_map_lock(map); 3452 rv = vm_map_wire_locked(map, start, end, flags); 3453 vm_map_unlock(map); 3454 return (rv); 3455 } 3456 3457 /* 3458 * vm_map_wire_locked: 3459 * 3460 * Implements both kernel and user wiring. Returns with the map locked, 3461 * the map lock may be dropped. 3462 */ 3463 int 3464 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3465 { 3466 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3467 vm_offset_t faddr, saved_end, saved_start; 3468 u_long incr, npages; 3469 u_int bidx, last_timestamp; 3470 int rv; 3471 bool holes_ok, need_wakeup, user_wire; 3472 vm_prot_t prot; 3473 3474 VM_MAP_ASSERT_LOCKED(map); 3475 3476 if (start == end) 3477 return (KERN_SUCCESS); 3478 prot = 0; 3479 if (flags & VM_MAP_WIRE_WRITE) 3480 prot |= VM_PROT_WRITE; 3481 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3482 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3483 VM_MAP_RANGE_CHECK(map, start, end); 3484 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3485 if (holes_ok) 3486 first_entry = vm_map_entry_succ(first_entry); 3487 else 3488 return (KERN_INVALID_ADDRESS); 3489 } 3490 for (entry = first_entry; entry->start < end; entry = next_entry) { 3491 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3492 /* 3493 * We have not yet clipped the entry. 3494 */ 3495 next_entry = vm_map_entry_in_transition(map, start, 3496 &end, holes_ok, entry); 3497 if (next_entry == NULL) { 3498 if (entry == first_entry) 3499 return (KERN_INVALID_ADDRESS); 3500 rv = KERN_INVALID_ADDRESS; 3501 goto done; 3502 } 3503 first_entry = (entry == first_entry) ? 3504 next_entry : NULL; 3505 continue; 3506 } 3507 rv = vm_map_clip_start(map, entry, start); 3508 if (rv != KERN_SUCCESS) 3509 goto done; 3510 rv = vm_map_clip_end(map, entry, end); 3511 if (rv != KERN_SUCCESS) 3512 goto done; 3513 3514 /* 3515 * Mark the entry in case the map lock is released. (See 3516 * above.) 3517 */ 3518 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3519 entry->wiring_thread == NULL, 3520 ("owned map entry %p", entry)); 3521 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3522 entry->wiring_thread = curthread; 3523 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3524 || (entry->protection & prot) != prot) { 3525 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3526 if (!holes_ok) { 3527 end = entry->end; 3528 rv = KERN_INVALID_ADDRESS; 3529 goto done; 3530 } 3531 } else if (entry->wired_count == 0) { 3532 entry->wired_count++; 3533 3534 npages = atop(entry->end - entry->start); 3535 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3536 vm_map_wire_entry_failure(map, entry, 3537 entry->start); 3538 end = entry->end; 3539 rv = KERN_RESOURCE_SHORTAGE; 3540 goto done; 3541 } 3542 3543 /* 3544 * Release the map lock, relying on the in-transition 3545 * mark. Mark the map busy for fork. 3546 */ 3547 saved_start = entry->start; 3548 saved_end = entry->end; 3549 last_timestamp = map->timestamp; 3550 bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3551 >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3552 incr = pagesizes[bidx]; 3553 vm_map_busy(map); 3554 vm_map_unlock(map); 3555 3556 for (faddr = saved_start; faddr < saved_end; 3557 faddr += incr) { 3558 /* 3559 * Simulate a fault to get the page and enter 3560 * it into the physical map. 3561 */ 3562 rv = vm_fault(map, faddr, VM_PROT_NONE, 3563 VM_FAULT_WIRE, NULL); 3564 if (rv != KERN_SUCCESS) 3565 break; 3566 } 3567 vm_map_lock(map); 3568 vm_map_unbusy(map); 3569 if (last_timestamp + 1 != map->timestamp) { 3570 /* 3571 * Look again for the entry because the map was 3572 * modified while it was unlocked. The entry 3573 * may have been clipped, but NOT merged or 3574 * deleted. 3575 */ 3576 if (!vm_map_lookup_entry(map, saved_start, 3577 &next_entry)) 3578 KASSERT(false, 3579 ("vm_map_wire: lookup failed")); 3580 first_entry = (entry == first_entry) ? 3581 next_entry : NULL; 3582 for (entry = next_entry; entry->end < saved_end; 3583 entry = vm_map_entry_succ(entry)) { 3584 /* 3585 * In case of failure, handle entries 3586 * that were not fully wired here; 3587 * fully wired entries are handled 3588 * later. 3589 */ 3590 if (rv != KERN_SUCCESS && 3591 faddr < entry->end) 3592 vm_map_wire_entry_failure(map, 3593 entry, faddr); 3594 } 3595 } 3596 if (rv != KERN_SUCCESS) { 3597 vm_map_wire_entry_failure(map, entry, faddr); 3598 if (user_wire) 3599 vm_map_wire_user_count_sub(npages); 3600 end = entry->end; 3601 goto done; 3602 } 3603 } else if (!user_wire || 3604 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3605 entry->wired_count++; 3606 } 3607 /* 3608 * Check the map for holes in the specified region. 3609 * If holes_ok was specified, skip this check. 3610 */ 3611 next_entry = vm_map_entry_succ(entry); 3612 if (!holes_ok && 3613 entry->end < end && next_entry->start > entry->end) { 3614 end = entry->end; 3615 rv = KERN_INVALID_ADDRESS; 3616 goto done; 3617 } 3618 } 3619 rv = KERN_SUCCESS; 3620 done: 3621 need_wakeup = false; 3622 if (first_entry == NULL && 3623 !vm_map_lookup_entry(map, start, &first_entry)) { 3624 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3625 prev_entry = first_entry; 3626 entry = vm_map_entry_succ(first_entry); 3627 } else { 3628 prev_entry = vm_map_entry_pred(first_entry); 3629 entry = first_entry; 3630 } 3631 for (; entry->start < end; 3632 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3633 /* 3634 * If holes_ok was specified, an empty 3635 * space in the unwired region could have been mapped 3636 * while the map lock was dropped for faulting in the 3637 * pages or draining MAP_ENTRY_IN_TRANSITION. 3638 * Moreover, another thread could be simultaneously 3639 * wiring this new mapping entry. Detect these cases 3640 * and skip any entries marked as in transition not by us. 3641 * 3642 * Another way to get an entry not marked with 3643 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3644 * which set rv to KERN_INVALID_ARGUMENT. 3645 */ 3646 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3647 entry->wiring_thread != curthread) { 3648 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3649 ("vm_map_wire: !HOLESOK and new/changed entry")); 3650 continue; 3651 } 3652 3653 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3654 /* do nothing */ 3655 } else if (rv == KERN_SUCCESS) { 3656 if (user_wire) 3657 entry->eflags |= MAP_ENTRY_USER_WIRED; 3658 } else if (entry->wired_count == -1) { 3659 /* 3660 * Wiring failed on this entry. Thus, unwiring is 3661 * unnecessary. 3662 */ 3663 entry->wired_count = 0; 3664 } else if (!user_wire || 3665 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3666 /* 3667 * Undo the wiring. Wiring succeeded on this entry 3668 * but failed on a later entry. 3669 */ 3670 if (entry->wired_count == 1) { 3671 vm_map_entry_unwire(map, entry); 3672 if (user_wire) 3673 vm_map_wire_user_count_sub( 3674 atop(entry->end - entry->start)); 3675 } else 3676 entry->wired_count--; 3677 } 3678 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3679 ("vm_map_wire: in-transition flag missing %p", entry)); 3680 KASSERT(entry->wiring_thread == curthread, 3681 ("vm_map_wire: alien wire %p", entry)); 3682 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3683 MAP_ENTRY_WIRE_SKIPPED); 3684 entry->wiring_thread = NULL; 3685 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3686 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3687 need_wakeup = true; 3688 } 3689 vm_map_try_merge_entries(map, prev_entry, entry); 3690 } 3691 vm_map_try_merge_entries(map, prev_entry, entry); 3692 if (need_wakeup) 3693 vm_map_wakeup(map); 3694 return (rv); 3695 } 3696 3697 /* 3698 * vm_map_sync 3699 * 3700 * Push any dirty cached pages in the address range to their pager. 3701 * If syncio is TRUE, dirty pages are written synchronously. 3702 * If invalidate is TRUE, any cached pages are freed as well. 3703 * 3704 * If the size of the region from start to end is zero, we are 3705 * supposed to flush all modified pages within the region containing 3706 * start. Unfortunately, a region can be split or coalesced with 3707 * neighboring regions, making it difficult to determine what the 3708 * original region was. Therefore, we approximate this requirement by 3709 * flushing the current region containing start. 3710 * 3711 * Returns an error if any part of the specified range is not mapped. 3712 */ 3713 int 3714 vm_map_sync( 3715 vm_map_t map, 3716 vm_offset_t start, 3717 vm_offset_t end, 3718 boolean_t syncio, 3719 boolean_t invalidate) 3720 { 3721 vm_map_entry_t entry, first_entry, next_entry; 3722 vm_size_t size; 3723 vm_object_t object; 3724 vm_ooffset_t offset; 3725 unsigned int last_timestamp; 3726 int bdry_idx; 3727 boolean_t failed; 3728 3729 vm_map_lock_read(map); 3730 VM_MAP_RANGE_CHECK(map, start, end); 3731 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3732 vm_map_unlock_read(map); 3733 return (KERN_INVALID_ADDRESS); 3734 } else if (start == end) { 3735 start = first_entry->start; 3736 end = first_entry->end; 3737 } 3738 3739 /* 3740 * Make a first pass to check for user-wired memory, holes, 3741 * and partial invalidation of largepage mappings. 3742 */ 3743 for (entry = first_entry; entry->start < end; entry = next_entry) { 3744 if (invalidate) { 3745 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3746 vm_map_unlock_read(map); 3747 return (KERN_INVALID_ARGUMENT); 3748 } 3749 bdry_idx = (entry->eflags & 3750 MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 3751 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 3752 if (bdry_idx != 0 && 3753 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3754 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3755 vm_map_unlock_read(map); 3756 return (KERN_INVALID_ARGUMENT); 3757 } 3758 } 3759 next_entry = vm_map_entry_succ(entry); 3760 if (end > entry->end && 3761 entry->end != next_entry->start) { 3762 vm_map_unlock_read(map); 3763 return (KERN_INVALID_ADDRESS); 3764 } 3765 } 3766 3767 if (invalidate) 3768 pmap_remove(map->pmap, start, end); 3769 failed = FALSE; 3770 3771 /* 3772 * Make a second pass, cleaning/uncaching pages from the indicated 3773 * objects as we go. 3774 */ 3775 for (entry = first_entry; entry->start < end;) { 3776 offset = entry->offset + (start - entry->start); 3777 size = (end <= entry->end ? end : entry->end) - start; 3778 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3779 vm_map_t smap; 3780 vm_map_entry_t tentry; 3781 vm_size_t tsize; 3782 3783 smap = entry->object.sub_map; 3784 vm_map_lock_read(smap); 3785 (void) vm_map_lookup_entry(smap, offset, &tentry); 3786 tsize = tentry->end - offset; 3787 if (tsize < size) 3788 size = tsize; 3789 object = tentry->object.vm_object; 3790 offset = tentry->offset + (offset - tentry->start); 3791 vm_map_unlock_read(smap); 3792 } else { 3793 object = entry->object.vm_object; 3794 } 3795 vm_object_reference(object); 3796 last_timestamp = map->timestamp; 3797 vm_map_unlock_read(map); 3798 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3799 failed = TRUE; 3800 start += size; 3801 vm_object_deallocate(object); 3802 vm_map_lock_read(map); 3803 if (last_timestamp == map->timestamp || 3804 !vm_map_lookup_entry(map, start, &entry)) 3805 entry = vm_map_entry_succ(entry); 3806 } 3807 3808 vm_map_unlock_read(map); 3809 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3810 } 3811 3812 /* 3813 * vm_map_entry_unwire: [ internal use only ] 3814 * 3815 * Make the region specified by this entry pageable. 3816 * 3817 * The map in question should be locked. 3818 * [This is the reason for this routine's existence.] 3819 */ 3820 static void 3821 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3822 { 3823 vm_size_t size; 3824 3825 VM_MAP_ASSERT_LOCKED(map); 3826 KASSERT(entry->wired_count > 0, 3827 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3828 3829 size = entry->end - entry->start; 3830 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3831 vm_map_wire_user_count_sub(atop(size)); 3832 pmap_unwire(map->pmap, entry->start, entry->end); 3833 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3834 PQ_ACTIVE); 3835 entry->wired_count = 0; 3836 } 3837 3838 static void 3839 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3840 { 3841 3842 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3843 vm_object_deallocate(entry->object.vm_object); 3844 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3845 } 3846 3847 /* 3848 * vm_map_entry_delete: [ internal use only ] 3849 * 3850 * Deallocate the given entry from the target map. 3851 */ 3852 static void 3853 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3854 { 3855 vm_object_t object; 3856 vm_pindex_t offidxstart, offidxend, size1; 3857 vm_size_t size; 3858 3859 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3860 object = entry->object.vm_object; 3861 3862 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3863 MPASS(entry->cred == NULL); 3864 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3865 MPASS(object == NULL); 3866 vm_map_entry_deallocate(entry, map->system_map); 3867 return; 3868 } 3869 3870 size = entry->end - entry->start; 3871 map->size -= size; 3872 3873 if (entry->cred != NULL) { 3874 swap_release_by_cred(size, entry->cred); 3875 crfree(entry->cred); 3876 } 3877 3878 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3879 entry->object.vm_object = NULL; 3880 } else if ((object->flags & OBJ_ANON) != 0 || 3881 object == kernel_object) { 3882 KASSERT(entry->cred == NULL || object->cred == NULL || 3883 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3884 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3885 offidxstart = OFF_TO_IDX(entry->offset); 3886 offidxend = offidxstart + atop(size); 3887 VM_OBJECT_WLOCK(object); 3888 if (object->ref_count != 1 && 3889 ((object->flags & OBJ_ONEMAPPING) != 0 || 3890 object == kernel_object)) { 3891 vm_object_collapse(object); 3892 3893 /* 3894 * The option OBJPR_NOTMAPPED can be passed here 3895 * because vm_map_delete() already performed 3896 * pmap_remove() on the only mapping to this range 3897 * of pages. 3898 */ 3899 vm_object_page_remove(object, offidxstart, offidxend, 3900 OBJPR_NOTMAPPED); 3901 if (offidxend >= object->size && 3902 offidxstart < object->size) { 3903 size1 = object->size; 3904 object->size = offidxstart; 3905 if (object->cred != NULL) { 3906 size1 -= object->size; 3907 KASSERT(object->charge >= ptoa(size1), 3908 ("object %p charge < 0", object)); 3909 swap_release_by_cred(ptoa(size1), 3910 object->cred); 3911 object->charge -= ptoa(size1); 3912 } 3913 } 3914 } 3915 VM_OBJECT_WUNLOCK(object); 3916 } 3917 if (map->system_map) 3918 vm_map_entry_deallocate(entry, TRUE); 3919 else { 3920 entry->defer_next = curthread->td_map_def_user; 3921 curthread->td_map_def_user = entry; 3922 } 3923 } 3924 3925 /* 3926 * vm_map_delete: [ internal use only ] 3927 * 3928 * Deallocates the given address range from the target 3929 * map. 3930 */ 3931 int 3932 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3933 { 3934 vm_map_entry_t entry, next_entry, scratch_entry; 3935 int rv; 3936 3937 VM_MAP_ASSERT_LOCKED(map); 3938 3939 if (start == end) 3940 return (KERN_SUCCESS); 3941 3942 /* 3943 * Find the start of the region, and clip it. 3944 * Step through all entries in this region. 3945 */ 3946 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3947 if (rv != KERN_SUCCESS) 3948 return (rv); 3949 for (; entry->start < end; entry = next_entry) { 3950 /* 3951 * Wait for wiring or unwiring of an entry to complete. 3952 * Also wait for any system wirings to disappear on 3953 * user maps. 3954 */ 3955 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3956 (vm_map_pmap(map) != kernel_pmap && 3957 vm_map_entry_system_wired_count(entry) != 0)) { 3958 unsigned int last_timestamp; 3959 vm_offset_t saved_start; 3960 3961 saved_start = entry->start; 3962 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3963 last_timestamp = map->timestamp; 3964 (void) vm_map_unlock_and_wait(map, 0); 3965 vm_map_lock(map); 3966 if (last_timestamp + 1 != map->timestamp) { 3967 /* 3968 * Look again for the entry because the map was 3969 * modified while it was unlocked. 3970 * Specifically, the entry may have been 3971 * clipped, merged, or deleted. 3972 */ 3973 rv = vm_map_lookup_clip_start(map, saved_start, 3974 &next_entry, &scratch_entry); 3975 if (rv != KERN_SUCCESS) 3976 break; 3977 } else 3978 next_entry = entry; 3979 continue; 3980 } 3981 3982 /* XXXKIB or delete to the upper superpage boundary ? */ 3983 rv = vm_map_clip_end(map, entry, end); 3984 if (rv != KERN_SUCCESS) 3985 break; 3986 next_entry = vm_map_entry_succ(entry); 3987 3988 /* 3989 * Unwire before removing addresses from the pmap; otherwise, 3990 * unwiring will put the entries back in the pmap. 3991 */ 3992 if (entry->wired_count != 0) 3993 vm_map_entry_unwire(map, entry); 3994 3995 /* 3996 * Remove mappings for the pages, but only if the 3997 * mappings could exist. For instance, it does not 3998 * make sense to call pmap_remove() for guard entries. 3999 */ 4000 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4001 entry->object.vm_object != NULL) 4002 pmap_remove(map->pmap, entry->start, entry->end); 4003 4004 if (entry->end == map->anon_loc) 4005 map->anon_loc = entry->start; 4006 4007 /* 4008 * Delete the entry only after removing all pmap 4009 * entries pointing to its pages. (Otherwise, its 4010 * page frames may be reallocated, and any modify bits 4011 * will be set in the wrong object!) 4012 */ 4013 vm_map_entry_delete(map, entry); 4014 } 4015 return (rv); 4016 } 4017 4018 /* 4019 * vm_map_remove: 4020 * 4021 * Remove the given address range from the target map. 4022 * This is the exported form of vm_map_delete. 4023 */ 4024 int 4025 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4026 { 4027 int result; 4028 4029 vm_map_lock(map); 4030 VM_MAP_RANGE_CHECK(map, start, end); 4031 result = vm_map_delete(map, start, end); 4032 vm_map_unlock(map); 4033 return (result); 4034 } 4035 4036 /* 4037 * vm_map_check_protection: 4038 * 4039 * Assert that the target map allows the specified privilege on the 4040 * entire address region given. The entire region must be allocated. 4041 * 4042 * WARNING! This code does not and should not check whether the 4043 * contents of the region is accessible. For example a smaller file 4044 * might be mapped into a larger address space. 4045 * 4046 * NOTE! This code is also called by munmap(). 4047 * 4048 * The map must be locked. A read lock is sufficient. 4049 */ 4050 boolean_t 4051 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4052 vm_prot_t protection) 4053 { 4054 vm_map_entry_t entry; 4055 vm_map_entry_t tmp_entry; 4056 4057 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4058 return (FALSE); 4059 entry = tmp_entry; 4060 4061 while (start < end) { 4062 /* 4063 * No holes allowed! 4064 */ 4065 if (start < entry->start) 4066 return (FALSE); 4067 /* 4068 * Check protection associated with entry. 4069 */ 4070 if ((entry->protection & protection) != protection) 4071 return (FALSE); 4072 /* go to next entry */ 4073 start = entry->end; 4074 entry = vm_map_entry_succ(entry); 4075 } 4076 return (TRUE); 4077 } 4078 4079 /* 4080 * 4081 * vm_map_copy_swap_object: 4082 * 4083 * Copies a swap-backed object from an existing map entry to a 4084 * new one. Carries forward the swap charge. May change the 4085 * src object on return. 4086 */ 4087 static void 4088 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4089 vm_offset_t size, vm_ooffset_t *fork_charge) 4090 { 4091 vm_object_t src_object; 4092 struct ucred *cred; 4093 int charged; 4094 4095 src_object = src_entry->object.vm_object; 4096 charged = ENTRY_CHARGED(src_entry); 4097 if ((src_object->flags & OBJ_ANON) != 0) { 4098 VM_OBJECT_WLOCK(src_object); 4099 vm_object_collapse(src_object); 4100 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4101 vm_object_split(src_entry); 4102 src_object = src_entry->object.vm_object; 4103 } 4104 vm_object_reference_locked(src_object); 4105 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4106 VM_OBJECT_WUNLOCK(src_object); 4107 } else 4108 vm_object_reference(src_object); 4109 if (src_entry->cred != NULL && 4110 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4111 KASSERT(src_object->cred == NULL, 4112 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4113 src_object)); 4114 src_object->cred = src_entry->cred; 4115 src_object->charge = size; 4116 } 4117 dst_entry->object.vm_object = src_object; 4118 if (charged) { 4119 cred = curthread->td_ucred; 4120 crhold(cred); 4121 dst_entry->cred = cred; 4122 *fork_charge += size; 4123 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4124 crhold(cred); 4125 src_entry->cred = cred; 4126 *fork_charge += size; 4127 } 4128 } 4129 } 4130 4131 /* 4132 * vm_map_copy_entry: 4133 * 4134 * Copies the contents of the source entry to the destination 4135 * entry. The entries *must* be aligned properly. 4136 */ 4137 static void 4138 vm_map_copy_entry( 4139 vm_map_t src_map, 4140 vm_map_t dst_map, 4141 vm_map_entry_t src_entry, 4142 vm_map_entry_t dst_entry, 4143 vm_ooffset_t *fork_charge) 4144 { 4145 vm_object_t src_object; 4146 vm_map_entry_t fake_entry; 4147 vm_offset_t size; 4148 4149 VM_MAP_ASSERT_LOCKED(dst_map); 4150 4151 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4152 return; 4153 4154 if (src_entry->wired_count == 0 || 4155 (src_entry->protection & VM_PROT_WRITE) == 0) { 4156 /* 4157 * If the source entry is marked needs_copy, it is already 4158 * write-protected. 4159 */ 4160 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4161 (src_entry->protection & VM_PROT_WRITE) != 0) { 4162 pmap_protect(src_map->pmap, 4163 src_entry->start, 4164 src_entry->end, 4165 src_entry->protection & ~VM_PROT_WRITE); 4166 } 4167 4168 /* 4169 * Make a copy of the object. 4170 */ 4171 size = src_entry->end - src_entry->start; 4172 if ((src_object = src_entry->object.vm_object) != NULL) { 4173 if (src_object->type == OBJT_DEFAULT || 4174 src_object->type == OBJT_SWAP) { 4175 vm_map_copy_swap_object(src_entry, dst_entry, 4176 size, fork_charge); 4177 /* May have split/collapsed, reload obj. */ 4178 src_object = src_entry->object.vm_object; 4179 } else { 4180 vm_object_reference(src_object); 4181 dst_entry->object.vm_object = src_object; 4182 } 4183 src_entry->eflags |= MAP_ENTRY_COW | 4184 MAP_ENTRY_NEEDS_COPY; 4185 dst_entry->eflags |= MAP_ENTRY_COW | 4186 MAP_ENTRY_NEEDS_COPY; 4187 dst_entry->offset = src_entry->offset; 4188 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4189 /* 4190 * MAP_ENTRY_WRITECNT cannot 4191 * indicate write reference from 4192 * src_entry, since the entry is 4193 * marked as needs copy. Allocate a 4194 * fake entry that is used to 4195 * decrement object->un_pager writecount 4196 * at the appropriate time. Attach 4197 * fake_entry to the deferred list. 4198 */ 4199 fake_entry = vm_map_entry_create(dst_map); 4200 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4201 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4202 vm_object_reference(src_object); 4203 fake_entry->object.vm_object = src_object; 4204 fake_entry->start = src_entry->start; 4205 fake_entry->end = src_entry->end; 4206 fake_entry->defer_next = 4207 curthread->td_map_def_user; 4208 curthread->td_map_def_user = fake_entry; 4209 } 4210 4211 pmap_copy(dst_map->pmap, src_map->pmap, 4212 dst_entry->start, dst_entry->end - dst_entry->start, 4213 src_entry->start); 4214 } else { 4215 dst_entry->object.vm_object = NULL; 4216 dst_entry->offset = 0; 4217 if (src_entry->cred != NULL) { 4218 dst_entry->cred = curthread->td_ucred; 4219 crhold(dst_entry->cred); 4220 *fork_charge += size; 4221 } 4222 } 4223 } else { 4224 /* 4225 * We don't want to make writeable wired pages copy-on-write. 4226 * Immediately copy these pages into the new map by simulating 4227 * page faults. The new pages are pageable. 4228 */ 4229 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4230 fork_charge); 4231 } 4232 } 4233 4234 /* 4235 * vmspace_map_entry_forked: 4236 * Update the newly-forked vmspace each time a map entry is inherited 4237 * or copied. The values for vm_dsize and vm_tsize are approximate 4238 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4239 */ 4240 static void 4241 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4242 vm_map_entry_t entry) 4243 { 4244 vm_size_t entrysize; 4245 vm_offset_t newend; 4246 4247 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4248 return; 4249 entrysize = entry->end - entry->start; 4250 vm2->vm_map.size += entrysize; 4251 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4252 vm2->vm_ssize += btoc(entrysize); 4253 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4254 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4255 newend = MIN(entry->end, 4256 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4257 vm2->vm_dsize += btoc(newend - entry->start); 4258 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4259 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4260 newend = MIN(entry->end, 4261 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4262 vm2->vm_tsize += btoc(newend - entry->start); 4263 } 4264 } 4265 4266 /* 4267 * vmspace_fork: 4268 * Create a new process vmspace structure and vm_map 4269 * based on those of an existing process. The new map 4270 * is based on the old map, according to the inheritance 4271 * values on the regions in that map. 4272 * 4273 * XXX It might be worth coalescing the entries added to the new vmspace. 4274 * 4275 * The source map must not be locked. 4276 */ 4277 struct vmspace * 4278 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4279 { 4280 struct vmspace *vm2; 4281 vm_map_t new_map, old_map; 4282 vm_map_entry_t new_entry, old_entry; 4283 vm_object_t object; 4284 int error, locked; 4285 vm_inherit_t inh; 4286 4287 old_map = &vm1->vm_map; 4288 /* Copy immutable fields of vm1 to vm2. */ 4289 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4290 pmap_pinit); 4291 if (vm2 == NULL) 4292 return (NULL); 4293 4294 vm2->vm_taddr = vm1->vm_taddr; 4295 vm2->vm_daddr = vm1->vm_daddr; 4296 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4297 vm_map_lock(old_map); 4298 if (old_map->busy) 4299 vm_map_wait_busy(old_map); 4300 new_map = &vm2->vm_map; 4301 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4302 KASSERT(locked, ("vmspace_fork: lock failed")); 4303 4304 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4305 if (error != 0) { 4306 sx_xunlock(&old_map->lock); 4307 sx_xunlock(&new_map->lock); 4308 vm_map_process_deferred(); 4309 vmspace_free(vm2); 4310 return (NULL); 4311 } 4312 4313 new_map->anon_loc = old_map->anon_loc; 4314 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4315 MAP_WXORX); 4316 4317 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4318 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4319 panic("vm_map_fork: encountered a submap"); 4320 4321 inh = old_entry->inheritance; 4322 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4323 inh != VM_INHERIT_NONE) 4324 inh = VM_INHERIT_COPY; 4325 4326 switch (inh) { 4327 case VM_INHERIT_NONE: 4328 break; 4329 4330 case VM_INHERIT_SHARE: 4331 /* 4332 * Clone the entry, creating the shared object if 4333 * necessary. 4334 */ 4335 object = old_entry->object.vm_object; 4336 if (object == NULL) { 4337 vm_map_entry_back(old_entry); 4338 object = old_entry->object.vm_object; 4339 } 4340 4341 /* 4342 * Add the reference before calling vm_object_shadow 4343 * to insure that a shadow object is created. 4344 */ 4345 vm_object_reference(object); 4346 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4347 vm_object_shadow(&old_entry->object.vm_object, 4348 &old_entry->offset, 4349 old_entry->end - old_entry->start, 4350 old_entry->cred, 4351 /* Transfer the second reference too. */ 4352 true); 4353 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4354 old_entry->cred = NULL; 4355 4356 /* 4357 * As in vm_map_merged_neighbor_dispose(), 4358 * the vnode lock will not be acquired in 4359 * this call to vm_object_deallocate(). 4360 */ 4361 vm_object_deallocate(object); 4362 object = old_entry->object.vm_object; 4363 } else { 4364 VM_OBJECT_WLOCK(object); 4365 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4366 if (old_entry->cred != NULL) { 4367 KASSERT(object->cred == NULL, 4368 ("vmspace_fork both cred")); 4369 object->cred = old_entry->cred; 4370 object->charge = old_entry->end - 4371 old_entry->start; 4372 old_entry->cred = NULL; 4373 } 4374 4375 /* 4376 * Assert the correct state of the vnode 4377 * v_writecount while the object is locked, to 4378 * not relock it later for the assertion 4379 * correctness. 4380 */ 4381 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4382 object->type == OBJT_VNODE) { 4383 KASSERT(((struct vnode *)object-> 4384 handle)->v_writecount > 0, 4385 ("vmspace_fork: v_writecount %p", 4386 object)); 4387 KASSERT(object->un_pager.vnp. 4388 writemappings > 0, 4389 ("vmspace_fork: vnp.writecount %p", 4390 object)); 4391 } 4392 VM_OBJECT_WUNLOCK(object); 4393 } 4394 4395 /* 4396 * Clone the entry, referencing the shared object. 4397 */ 4398 new_entry = vm_map_entry_create(new_map); 4399 *new_entry = *old_entry; 4400 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4401 MAP_ENTRY_IN_TRANSITION); 4402 new_entry->wiring_thread = NULL; 4403 new_entry->wired_count = 0; 4404 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4405 vm_pager_update_writecount(object, 4406 new_entry->start, new_entry->end); 4407 } 4408 vm_map_entry_set_vnode_text(new_entry, true); 4409 4410 /* 4411 * Insert the entry into the new map -- we know we're 4412 * inserting at the end of the new map. 4413 */ 4414 vm_map_entry_link(new_map, new_entry); 4415 vmspace_map_entry_forked(vm1, vm2, new_entry); 4416 4417 /* 4418 * Update the physical map 4419 */ 4420 pmap_copy(new_map->pmap, old_map->pmap, 4421 new_entry->start, 4422 (old_entry->end - old_entry->start), 4423 old_entry->start); 4424 break; 4425 4426 case VM_INHERIT_COPY: 4427 /* 4428 * Clone the entry and link into the map. 4429 */ 4430 new_entry = vm_map_entry_create(new_map); 4431 *new_entry = *old_entry; 4432 /* 4433 * Copied entry is COW over the old object. 4434 */ 4435 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4436 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4437 new_entry->wiring_thread = NULL; 4438 new_entry->wired_count = 0; 4439 new_entry->object.vm_object = NULL; 4440 new_entry->cred = NULL; 4441 vm_map_entry_link(new_map, new_entry); 4442 vmspace_map_entry_forked(vm1, vm2, new_entry); 4443 vm_map_copy_entry(old_map, new_map, old_entry, 4444 new_entry, fork_charge); 4445 vm_map_entry_set_vnode_text(new_entry, true); 4446 break; 4447 4448 case VM_INHERIT_ZERO: 4449 /* 4450 * Create a new anonymous mapping entry modelled from 4451 * the old one. 4452 */ 4453 new_entry = vm_map_entry_create(new_map); 4454 memset(new_entry, 0, sizeof(*new_entry)); 4455 4456 new_entry->start = old_entry->start; 4457 new_entry->end = old_entry->end; 4458 new_entry->eflags = old_entry->eflags & 4459 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4460 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4461 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4462 new_entry->protection = old_entry->protection; 4463 new_entry->max_protection = old_entry->max_protection; 4464 new_entry->inheritance = VM_INHERIT_ZERO; 4465 4466 vm_map_entry_link(new_map, new_entry); 4467 vmspace_map_entry_forked(vm1, vm2, new_entry); 4468 4469 new_entry->cred = curthread->td_ucred; 4470 crhold(new_entry->cred); 4471 *fork_charge += (new_entry->end - new_entry->start); 4472 4473 break; 4474 } 4475 } 4476 /* 4477 * Use inlined vm_map_unlock() to postpone handling the deferred 4478 * map entries, which cannot be done until both old_map and 4479 * new_map locks are released. 4480 */ 4481 sx_xunlock(&old_map->lock); 4482 sx_xunlock(&new_map->lock); 4483 vm_map_process_deferred(); 4484 4485 return (vm2); 4486 } 4487 4488 /* 4489 * Create a process's stack for exec_new_vmspace(). This function is never 4490 * asked to wire the newly created stack. 4491 */ 4492 int 4493 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4494 vm_prot_t prot, vm_prot_t max, int cow) 4495 { 4496 vm_size_t growsize, init_ssize; 4497 rlim_t vmemlim; 4498 int rv; 4499 4500 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4501 growsize = sgrowsiz; 4502 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4503 vm_map_lock(map); 4504 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4505 /* If we would blow our VMEM resource limit, no go */ 4506 if (map->size + init_ssize > vmemlim) { 4507 rv = KERN_NO_SPACE; 4508 goto out; 4509 } 4510 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4511 max, cow); 4512 out: 4513 vm_map_unlock(map); 4514 return (rv); 4515 } 4516 4517 static int stack_guard_page = 1; 4518 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4519 &stack_guard_page, 0, 4520 "Specifies the number of guard pages for a stack that grows"); 4521 4522 static int 4523 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4524 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4525 { 4526 vm_map_entry_t new_entry, prev_entry; 4527 vm_offset_t bot, gap_bot, gap_top, top; 4528 vm_size_t init_ssize, sgp; 4529 int orient, rv; 4530 4531 /* 4532 * The stack orientation is piggybacked with the cow argument. 4533 * Extract it into orient and mask the cow argument so that we 4534 * don't pass it around further. 4535 */ 4536 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4537 KASSERT(orient != 0, ("No stack grow direction")); 4538 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4539 ("bi-dir stack")); 4540 4541 if (max_ssize == 0 || 4542 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4543 return (KERN_INVALID_ADDRESS); 4544 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4545 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4546 (vm_size_t)stack_guard_page * PAGE_SIZE; 4547 if (sgp >= max_ssize) 4548 return (KERN_INVALID_ARGUMENT); 4549 4550 init_ssize = growsize; 4551 if (max_ssize < init_ssize + sgp) 4552 init_ssize = max_ssize - sgp; 4553 4554 /* If addr is already mapped, no go */ 4555 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4556 return (KERN_NO_SPACE); 4557 4558 /* 4559 * If we can't accommodate max_ssize in the current mapping, no go. 4560 */ 4561 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4562 return (KERN_NO_SPACE); 4563 4564 /* 4565 * We initially map a stack of only init_ssize. We will grow as 4566 * needed later. Depending on the orientation of the stack (i.e. 4567 * the grow direction) we either map at the top of the range, the 4568 * bottom of the range or in the middle. 4569 * 4570 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4571 * and cow to be 0. Possibly we should eliminate these as input 4572 * parameters, and just pass these values here in the insert call. 4573 */ 4574 if (orient == MAP_STACK_GROWS_DOWN) { 4575 bot = addrbos + max_ssize - init_ssize; 4576 top = bot + init_ssize; 4577 gap_bot = addrbos; 4578 gap_top = bot; 4579 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4580 bot = addrbos; 4581 top = bot + init_ssize; 4582 gap_bot = top; 4583 gap_top = addrbos + max_ssize; 4584 } 4585 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4586 if (rv != KERN_SUCCESS) 4587 return (rv); 4588 new_entry = vm_map_entry_succ(prev_entry); 4589 KASSERT(new_entry->end == top || new_entry->start == bot, 4590 ("Bad entry start/end for new stack entry")); 4591 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4592 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4593 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4594 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4595 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4596 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4597 if (gap_bot == gap_top) 4598 return (KERN_SUCCESS); 4599 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4600 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4601 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4602 if (rv == KERN_SUCCESS) { 4603 /* 4604 * Gap can never successfully handle a fault, so 4605 * read-ahead logic is never used for it. Re-use 4606 * next_read of the gap entry to store 4607 * stack_guard_page for vm_map_growstack(). 4608 */ 4609 if (orient == MAP_STACK_GROWS_DOWN) 4610 vm_map_entry_pred(new_entry)->next_read = sgp; 4611 else 4612 vm_map_entry_succ(new_entry)->next_read = sgp; 4613 } else { 4614 (void)vm_map_delete(map, bot, top); 4615 } 4616 return (rv); 4617 } 4618 4619 /* 4620 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4621 * successfully grow the stack. 4622 */ 4623 static int 4624 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4625 { 4626 vm_map_entry_t stack_entry; 4627 struct proc *p; 4628 struct vmspace *vm; 4629 struct ucred *cred; 4630 vm_offset_t gap_end, gap_start, grow_start; 4631 vm_size_t grow_amount, guard, max_grow; 4632 rlim_t lmemlim, stacklim, vmemlim; 4633 int rv, rv1; 4634 bool gap_deleted, grow_down, is_procstack; 4635 #ifdef notyet 4636 uint64_t limit; 4637 #endif 4638 #ifdef RACCT 4639 int error; 4640 #endif 4641 4642 p = curproc; 4643 vm = p->p_vmspace; 4644 4645 /* 4646 * Disallow stack growth when the access is performed by a 4647 * debugger or AIO daemon. The reason is that the wrong 4648 * resource limits are applied. 4649 */ 4650 if (p != initproc && (map != &p->p_vmspace->vm_map || 4651 p->p_textvp == NULL)) 4652 return (KERN_FAILURE); 4653 4654 MPASS(!map->system_map); 4655 4656 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4657 stacklim = lim_cur(curthread, RLIMIT_STACK); 4658 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4659 retry: 4660 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4661 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4662 return (KERN_FAILURE); 4663 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4664 return (KERN_SUCCESS); 4665 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4666 stack_entry = vm_map_entry_succ(gap_entry); 4667 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4668 stack_entry->start != gap_entry->end) 4669 return (KERN_FAILURE); 4670 grow_amount = round_page(stack_entry->start - addr); 4671 grow_down = true; 4672 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4673 stack_entry = vm_map_entry_pred(gap_entry); 4674 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4675 stack_entry->end != gap_entry->start) 4676 return (KERN_FAILURE); 4677 grow_amount = round_page(addr + 1 - stack_entry->end); 4678 grow_down = false; 4679 } else { 4680 return (KERN_FAILURE); 4681 } 4682 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4683 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4684 gap_entry->next_read; 4685 max_grow = gap_entry->end - gap_entry->start; 4686 if (guard > max_grow) 4687 return (KERN_NO_SPACE); 4688 max_grow -= guard; 4689 if (grow_amount > max_grow) 4690 return (KERN_NO_SPACE); 4691 4692 /* 4693 * If this is the main process stack, see if we're over the stack 4694 * limit. 4695 */ 4696 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4697 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4698 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4699 return (KERN_NO_SPACE); 4700 4701 #ifdef RACCT 4702 if (racct_enable) { 4703 PROC_LOCK(p); 4704 if (is_procstack && racct_set(p, RACCT_STACK, 4705 ctob(vm->vm_ssize) + grow_amount)) { 4706 PROC_UNLOCK(p); 4707 return (KERN_NO_SPACE); 4708 } 4709 PROC_UNLOCK(p); 4710 } 4711 #endif 4712 4713 grow_amount = roundup(grow_amount, sgrowsiz); 4714 if (grow_amount > max_grow) 4715 grow_amount = max_grow; 4716 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4717 grow_amount = trunc_page((vm_size_t)stacklim) - 4718 ctob(vm->vm_ssize); 4719 } 4720 4721 #ifdef notyet 4722 PROC_LOCK(p); 4723 limit = racct_get_available(p, RACCT_STACK); 4724 PROC_UNLOCK(p); 4725 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4726 grow_amount = limit - ctob(vm->vm_ssize); 4727 #endif 4728 4729 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4730 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4731 rv = KERN_NO_SPACE; 4732 goto out; 4733 } 4734 #ifdef RACCT 4735 if (racct_enable) { 4736 PROC_LOCK(p); 4737 if (racct_set(p, RACCT_MEMLOCK, 4738 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4739 PROC_UNLOCK(p); 4740 rv = KERN_NO_SPACE; 4741 goto out; 4742 } 4743 PROC_UNLOCK(p); 4744 } 4745 #endif 4746 } 4747 4748 /* If we would blow our VMEM resource limit, no go */ 4749 if (map->size + grow_amount > vmemlim) { 4750 rv = KERN_NO_SPACE; 4751 goto out; 4752 } 4753 #ifdef RACCT 4754 if (racct_enable) { 4755 PROC_LOCK(p); 4756 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4757 PROC_UNLOCK(p); 4758 rv = KERN_NO_SPACE; 4759 goto out; 4760 } 4761 PROC_UNLOCK(p); 4762 } 4763 #endif 4764 4765 if (vm_map_lock_upgrade(map)) { 4766 gap_entry = NULL; 4767 vm_map_lock_read(map); 4768 goto retry; 4769 } 4770 4771 if (grow_down) { 4772 grow_start = gap_entry->end - grow_amount; 4773 if (gap_entry->start + grow_amount == gap_entry->end) { 4774 gap_start = gap_entry->start; 4775 gap_end = gap_entry->end; 4776 vm_map_entry_delete(map, gap_entry); 4777 gap_deleted = true; 4778 } else { 4779 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4780 vm_map_entry_resize(map, gap_entry, -grow_amount); 4781 gap_deleted = false; 4782 } 4783 rv = vm_map_insert(map, NULL, 0, grow_start, 4784 grow_start + grow_amount, 4785 stack_entry->protection, stack_entry->max_protection, 4786 MAP_STACK_GROWS_DOWN); 4787 if (rv != KERN_SUCCESS) { 4788 if (gap_deleted) { 4789 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4790 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4791 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4792 MPASS(rv1 == KERN_SUCCESS); 4793 } else 4794 vm_map_entry_resize(map, gap_entry, 4795 grow_amount); 4796 } 4797 } else { 4798 grow_start = stack_entry->end; 4799 cred = stack_entry->cred; 4800 if (cred == NULL && stack_entry->object.vm_object != NULL) 4801 cred = stack_entry->object.vm_object->cred; 4802 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4803 rv = KERN_NO_SPACE; 4804 /* Grow the underlying object if applicable. */ 4805 else if (stack_entry->object.vm_object == NULL || 4806 vm_object_coalesce(stack_entry->object.vm_object, 4807 stack_entry->offset, 4808 (vm_size_t)(stack_entry->end - stack_entry->start), 4809 grow_amount, cred != NULL)) { 4810 if (gap_entry->start + grow_amount == gap_entry->end) { 4811 vm_map_entry_delete(map, gap_entry); 4812 vm_map_entry_resize(map, stack_entry, 4813 grow_amount); 4814 } else { 4815 gap_entry->start += grow_amount; 4816 stack_entry->end += grow_amount; 4817 } 4818 map->size += grow_amount; 4819 rv = KERN_SUCCESS; 4820 } else 4821 rv = KERN_FAILURE; 4822 } 4823 if (rv == KERN_SUCCESS && is_procstack) 4824 vm->vm_ssize += btoc(grow_amount); 4825 4826 /* 4827 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4828 */ 4829 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4830 rv = vm_map_wire_locked(map, grow_start, 4831 grow_start + grow_amount, 4832 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4833 } 4834 vm_map_lock_downgrade(map); 4835 4836 out: 4837 #ifdef RACCT 4838 if (racct_enable && rv != KERN_SUCCESS) { 4839 PROC_LOCK(p); 4840 error = racct_set(p, RACCT_VMEM, map->size); 4841 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4842 if (!old_mlock) { 4843 error = racct_set(p, RACCT_MEMLOCK, 4844 ptoa(pmap_wired_count(map->pmap))); 4845 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4846 } 4847 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4848 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4849 PROC_UNLOCK(p); 4850 } 4851 #endif 4852 4853 return (rv); 4854 } 4855 4856 /* 4857 * Unshare the specified VM space for exec. If other processes are 4858 * mapped to it, then create a new one. The new vmspace is null. 4859 */ 4860 int 4861 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4862 { 4863 struct vmspace *oldvmspace = p->p_vmspace; 4864 struct vmspace *newvmspace; 4865 4866 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4867 ("vmspace_exec recursed")); 4868 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4869 if (newvmspace == NULL) 4870 return (ENOMEM); 4871 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4872 /* 4873 * This code is written like this for prototype purposes. The 4874 * goal is to avoid running down the vmspace here, but let the 4875 * other process's that are still using the vmspace to finally 4876 * run it down. Even though there is little or no chance of blocking 4877 * here, it is a good idea to keep this form for future mods. 4878 */ 4879 PROC_VMSPACE_LOCK(p); 4880 p->p_vmspace = newvmspace; 4881 PROC_VMSPACE_UNLOCK(p); 4882 if (p == curthread->td_proc) 4883 pmap_activate(curthread); 4884 curthread->td_pflags |= TDP_EXECVMSPC; 4885 return (0); 4886 } 4887 4888 /* 4889 * Unshare the specified VM space for forcing COW. This 4890 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4891 */ 4892 int 4893 vmspace_unshare(struct proc *p) 4894 { 4895 struct vmspace *oldvmspace = p->p_vmspace; 4896 struct vmspace *newvmspace; 4897 vm_ooffset_t fork_charge; 4898 4899 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4900 return (0); 4901 fork_charge = 0; 4902 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4903 if (newvmspace == NULL) 4904 return (ENOMEM); 4905 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4906 vmspace_free(newvmspace); 4907 return (ENOMEM); 4908 } 4909 PROC_VMSPACE_LOCK(p); 4910 p->p_vmspace = newvmspace; 4911 PROC_VMSPACE_UNLOCK(p); 4912 if (p == curthread->td_proc) 4913 pmap_activate(curthread); 4914 vmspace_free(oldvmspace); 4915 return (0); 4916 } 4917 4918 /* 4919 * vm_map_lookup: 4920 * 4921 * Finds the VM object, offset, and 4922 * protection for a given virtual address in the 4923 * specified map, assuming a page fault of the 4924 * type specified. 4925 * 4926 * Leaves the map in question locked for read; return 4927 * values are guaranteed until a vm_map_lookup_done 4928 * call is performed. Note that the map argument 4929 * is in/out; the returned map must be used in 4930 * the call to vm_map_lookup_done. 4931 * 4932 * A handle (out_entry) is returned for use in 4933 * vm_map_lookup_done, to make that fast. 4934 * 4935 * If a lookup is requested with "write protection" 4936 * specified, the map may be changed to perform virtual 4937 * copying operations, although the data referenced will 4938 * remain the same. 4939 */ 4940 int 4941 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4942 vm_offset_t vaddr, 4943 vm_prot_t fault_typea, 4944 vm_map_entry_t *out_entry, /* OUT */ 4945 vm_object_t *object, /* OUT */ 4946 vm_pindex_t *pindex, /* OUT */ 4947 vm_prot_t *out_prot, /* OUT */ 4948 boolean_t *wired) /* OUT */ 4949 { 4950 vm_map_entry_t entry; 4951 vm_map_t map = *var_map; 4952 vm_prot_t prot; 4953 vm_prot_t fault_type; 4954 vm_object_t eobject; 4955 vm_size_t size; 4956 struct ucred *cred; 4957 4958 RetryLookup: 4959 4960 vm_map_lock_read(map); 4961 4962 RetryLookupLocked: 4963 /* 4964 * Lookup the faulting address. 4965 */ 4966 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4967 vm_map_unlock_read(map); 4968 return (KERN_INVALID_ADDRESS); 4969 } 4970 4971 entry = *out_entry; 4972 4973 /* 4974 * Handle submaps. 4975 */ 4976 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4977 vm_map_t old_map = map; 4978 4979 *var_map = map = entry->object.sub_map; 4980 vm_map_unlock_read(old_map); 4981 goto RetryLookup; 4982 } 4983 4984 /* 4985 * Check whether this task is allowed to have this page. 4986 */ 4987 prot = entry->protection; 4988 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4989 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4990 if (prot == VM_PROT_NONE && map != kernel_map && 4991 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4992 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4993 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4994 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4995 goto RetryLookupLocked; 4996 } 4997 fault_type = fault_typea & VM_PROT_ALL; 4998 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4999 vm_map_unlock_read(map); 5000 return (KERN_PROTECTION_FAILURE); 5001 } 5002 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5003 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5004 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5005 ("entry %p flags %x", entry, entry->eflags)); 5006 if ((fault_typea & VM_PROT_COPY) != 0 && 5007 (entry->max_protection & VM_PROT_WRITE) == 0 && 5008 (entry->eflags & MAP_ENTRY_COW) == 0) { 5009 vm_map_unlock_read(map); 5010 return (KERN_PROTECTION_FAILURE); 5011 } 5012 5013 /* 5014 * If this page is not pageable, we have to get it for all possible 5015 * accesses. 5016 */ 5017 *wired = (entry->wired_count != 0); 5018 if (*wired) 5019 fault_type = entry->protection; 5020 size = entry->end - entry->start; 5021 5022 /* 5023 * If the entry was copy-on-write, we either ... 5024 */ 5025 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5026 /* 5027 * If we want to write the page, we may as well handle that 5028 * now since we've got the map locked. 5029 * 5030 * If we don't need to write the page, we just demote the 5031 * permissions allowed. 5032 */ 5033 if ((fault_type & VM_PROT_WRITE) != 0 || 5034 (fault_typea & VM_PROT_COPY) != 0) { 5035 /* 5036 * Make a new object, and place it in the object 5037 * chain. Note that no new references have appeared 5038 * -- one just moved from the map to the new 5039 * object. 5040 */ 5041 if (vm_map_lock_upgrade(map)) 5042 goto RetryLookup; 5043 5044 if (entry->cred == NULL) { 5045 /* 5046 * The debugger owner is charged for 5047 * the memory. 5048 */ 5049 cred = curthread->td_ucred; 5050 crhold(cred); 5051 if (!swap_reserve_by_cred(size, cred)) { 5052 crfree(cred); 5053 vm_map_unlock(map); 5054 return (KERN_RESOURCE_SHORTAGE); 5055 } 5056 entry->cred = cred; 5057 } 5058 eobject = entry->object.vm_object; 5059 vm_object_shadow(&entry->object.vm_object, 5060 &entry->offset, size, entry->cred, false); 5061 if (eobject == entry->object.vm_object) { 5062 /* 5063 * The object was not shadowed. 5064 */ 5065 swap_release_by_cred(size, entry->cred); 5066 crfree(entry->cred); 5067 } 5068 entry->cred = NULL; 5069 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5070 5071 vm_map_lock_downgrade(map); 5072 } else { 5073 /* 5074 * We're attempting to read a copy-on-write page -- 5075 * don't allow writes. 5076 */ 5077 prot &= ~VM_PROT_WRITE; 5078 } 5079 } 5080 5081 /* 5082 * Create an object if necessary. 5083 */ 5084 if (entry->object.vm_object == NULL && !map->system_map) { 5085 if (vm_map_lock_upgrade(map)) 5086 goto RetryLookup; 5087 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5088 NULL, entry->cred, entry->cred != NULL ? size : 0); 5089 entry->offset = 0; 5090 entry->cred = NULL; 5091 vm_map_lock_downgrade(map); 5092 } 5093 5094 /* 5095 * Return the object/offset from this entry. If the entry was 5096 * copy-on-write or empty, it has been fixed up. 5097 */ 5098 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5099 *object = entry->object.vm_object; 5100 5101 *out_prot = prot; 5102 return (KERN_SUCCESS); 5103 } 5104 5105 /* 5106 * vm_map_lookup_locked: 5107 * 5108 * Lookup the faulting address. A version of vm_map_lookup that returns 5109 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5110 */ 5111 int 5112 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5113 vm_offset_t vaddr, 5114 vm_prot_t fault_typea, 5115 vm_map_entry_t *out_entry, /* OUT */ 5116 vm_object_t *object, /* OUT */ 5117 vm_pindex_t *pindex, /* OUT */ 5118 vm_prot_t *out_prot, /* OUT */ 5119 boolean_t *wired) /* OUT */ 5120 { 5121 vm_map_entry_t entry; 5122 vm_map_t map = *var_map; 5123 vm_prot_t prot; 5124 vm_prot_t fault_type = fault_typea; 5125 5126 /* 5127 * Lookup the faulting address. 5128 */ 5129 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5130 return (KERN_INVALID_ADDRESS); 5131 5132 entry = *out_entry; 5133 5134 /* 5135 * Fail if the entry refers to a submap. 5136 */ 5137 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5138 return (KERN_FAILURE); 5139 5140 /* 5141 * Check whether this task is allowed to have this page. 5142 */ 5143 prot = entry->protection; 5144 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5145 if ((fault_type & prot) != fault_type) 5146 return (KERN_PROTECTION_FAILURE); 5147 5148 /* 5149 * If this page is not pageable, we have to get it for all possible 5150 * accesses. 5151 */ 5152 *wired = (entry->wired_count != 0); 5153 if (*wired) 5154 fault_type = entry->protection; 5155 5156 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5157 /* 5158 * Fail if the entry was copy-on-write for a write fault. 5159 */ 5160 if (fault_type & VM_PROT_WRITE) 5161 return (KERN_FAILURE); 5162 /* 5163 * We're attempting to read a copy-on-write page -- 5164 * don't allow writes. 5165 */ 5166 prot &= ~VM_PROT_WRITE; 5167 } 5168 5169 /* 5170 * Fail if an object should be created. 5171 */ 5172 if (entry->object.vm_object == NULL && !map->system_map) 5173 return (KERN_FAILURE); 5174 5175 /* 5176 * Return the object/offset from this entry. If the entry was 5177 * copy-on-write or empty, it has been fixed up. 5178 */ 5179 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5180 *object = entry->object.vm_object; 5181 5182 *out_prot = prot; 5183 return (KERN_SUCCESS); 5184 } 5185 5186 /* 5187 * vm_map_lookup_done: 5188 * 5189 * Releases locks acquired by a vm_map_lookup 5190 * (according to the handle returned by that lookup). 5191 */ 5192 void 5193 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5194 { 5195 /* 5196 * Unlock the main-level map 5197 */ 5198 vm_map_unlock_read(map); 5199 } 5200 5201 vm_offset_t 5202 vm_map_max_KBI(const struct vm_map *map) 5203 { 5204 5205 return (vm_map_max(map)); 5206 } 5207 5208 vm_offset_t 5209 vm_map_min_KBI(const struct vm_map *map) 5210 { 5211 5212 return (vm_map_min(map)); 5213 } 5214 5215 pmap_t 5216 vm_map_pmap_KBI(vm_map_t map) 5217 { 5218 5219 return (map->pmap); 5220 } 5221 5222 bool 5223 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5224 { 5225 5226 return (vm_map_range_valid(map, start, end)); 5227 } 5228 5229 #ifdef INVARIANTS 5230 static void 5231 _vm_map_assert_consistent(vm_map_t map, int check) 5232 { 5233 vm_map_entry_t entry, prev; 5234 vm_map_entry_t cur, header, lbound, ubound; 5235 vm_size_t max_left, max_right; 5236 5237 #ifdef DIAGNOSTIC 5238 ++map->nupdates; 5239 #endif 5240 if (enable_vmmap_check != check) 5241 return; 5242 5243 header = prev = &map->header; 5244 VM_MAP_ENTRY_FOREACH(entry, map) { 5245 KASSERT(prev->end <= entry->start, 5246 ("map %p prev->end = %jx, start = %jx", map, 5247 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5248 KASSERT(entry->start < entry->end, 5249 ("map %p start = %jx, end = %jx", map, 5250 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5251 KASSERT(entry->left == header || 5252 entry->left->start < entry->start, 5253 ("map %p left->start = %jx, start = %jx", map, 5254 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5255 KASSERT(entry->right == header || 5256 entry->start < entry->right->start, 5257 ("map %p start = %jx, right->start = %jx", map, 5258 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5259 cur = map->root; 5260 lbound = ubound = header; 5261 for (;;) { 5262 if (entry->start < cur->start) { 5263 ubound = cur; 5264 cur = cur->left; 5265 KASSERT(cur != lbound, 5266 ("map %p cannot find %jx", 5267 map, (uintmax_t)entry->start)); 5268 } else if (cur->end <= entry->start) { 5269 lbound = cur; 5270 cur = cur->right; 5271 KASSERT(cur != ubound, 5272 ("map %p cannot find %jx", 5273 map, (uintmax_t)entry->start)); 5274 } else { 5275 KASSERT(cur == entry, 5276 ("map %p cannot find %jx", 5277 map, (uintmax_t)entry->start)); 5278 break; 5279 } 5280 } 5281 max_left = vm_map_entry_max_free_left(entry, lbound); 5282 max_right = vm_map_entry_max_free_right(entry, ubound); 5283 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5284 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5285 (uintmax_t)entry->max_free, 5286 (uintmax_t)max_left, (uintmax_t)max_right)); 5287 prev = entry; 5288 } 5289 KASSERT(prev->end <= entry->start, 5290 ("map %p prev->end = %jx, start = %jx", map, 5291 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5292 } 5293 #endif 5294 5295 #include "opt_ddb.h" 5296 #ifdef DDB 5297 #include <sys/kernel.h> 5298 5299 #include <ddb/ddb.h> 5300 5301 static void 5302 vm_map_print(vm_map_t map) 5303 { 5304 vm_map_entry_t entry, prev; 5305 5306 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5307 (void *)map, 5308 (void *)map->pmap, map->nentries, map->timestamp); 5309 5310 db_indent += 2; 5311 prev = &map->header; 5312 VM_MAP_ENTRY_FOREACH(entry, map) { 5313 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5314 (void *)entry, (void *)entry->start, (void *)entry->end, 5315 entry->eflags); 5316 { 5317 static const char * const inheritance_name[4] = 5318 {"share", "copy", "none", "donate_copy"}; 5319 5320 db_iprintf(" prot=%x/%x/%s", 5321 entry->protection, 5322 entry->max_protection, 5323 inheritance_name[(int)(unsigned char) 5324 entry->inheritance]); 5325 if (entry->wired_count != 0) 5326 db_printf(", wired"); 5327 } 5328 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5329 db_printf(", share=%p, offset=0x%jx\n", 5330 (void *)entry->object.sub_map, 5331 (uintmax_t)entry->offset); 5332 if (prev == &map->header || 5333 prev->object.sub_map != 5334 entry->object.sub_map) { 5335 db_indent += 2; 5336 vm_map_print((vm_map_t)entry->object.sub_map); 5337 db_indent -= 2; 5338 } 5339 } else { 5340 if (entry->cred != NULL) 5341 db_printf(", ruid %d", entry->cred->cr_ruid); 5342 db_printf(", object=%p, offset=0x%jx", 5343 (void *)entry->object.vm_object, 5344 (uintmax_t)entry->offset); 5345 if (entry->object.vm_object && entry->object.vm_object->cred) 5346 db_printf(", obj ruid %d charge %jx", 5347 entry->object.vm_object->cred->cr_ruid, 5348 (uintmax_t)entry->object.vm_object->charge); 5349 if (entry->eflags & MAP_ENTRY_COW) 5350 db_printf(", copy (%s)", 5351 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5352 db_printf("\n"); 5353 5354 if (prev == &map->header || 5355 prev->object.vm_object != 5356 entry->object.vm_object) { 5357 db_indent += 2; 5358 vm_object_print((db_expr_t)(intptr_t) 5359 entry->object.vm_object, 5360 0, 0, (char *)0); 5361 db_indent -= 2; 5362 } 5363 } 5364 prev = entry; 5365 } 5366 db_indent -= 2; 5367 } 5368 5369 DB_SHOW_COMMAND(map, map) 5370 { 5371 5372 if (!have_addr) { 5373 db_printf("usage: show map <addr>\n"); 5374 return; 5375 } 5376 vm_map_print((vm_map_t)addr); 5377 } 5378 5379 DB_SHOW_COMMAND(procvm, procvm) 5380 { 5381 struct proc *p; 5382 5383 if (have_addr) { 5384 p = db_lookup_proc(addr); 5385 } else { 5386 p = curproc; 5387 } 5388 5389 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5390 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5391 (void *)vmspace_pmap(p->p_vmspace)); 5392 5393 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5394 } 5395 5396 #endif /* DDB */ 5397