1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/elf.h> 68 #include <sys/kernel.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/mman.h> 75 #include <sys/vnode.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_radix.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t vmspace_zone; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 130 vm_offset_t max); 131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 135 vm_map_entry_t gap_entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 142 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 143 int cow); 144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 145 vm_offset_t failed_addr); 146 147 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 148 149 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 150 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 151 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 152 153 /* 154 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 155 * stable. 156 */ 157 #define PROC_VMSPACE_LOCK(p) do { } while (0) 158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 159 160 /* 161 * VM_MAP_RANGE_CHECK: [ internal use only ] 162 * 163 * Asserts that the starting and ending region 164 * addresses fall within the valid range of the map. 165 */ 166 #define VM_MAP_RANGE_CHECK(map, start, end) \ 167 { \ 168 if (start < vm_map_min(map)) \ 169 start = vm_map_min(map); \ 170 if (end > vm_map_max(map)) \ 171 end = vm_map_max(map); \ 172 if (start > end) \ 173 start = end; \ 174 } 175 176 #ifndef UMA_USE_DMAP 177 178 /* 179 * Allocate a new slab for kernel map entries. The kernel map may be locked or 180 * unlocked, depending on whether the request is coming from the kernel map or a 181 * submap. This function allocates a virtual address range directly from the 182 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 183 * lock and also to avoid triggering allocator recursion in the vmem boundary 184 * tag allocator. 185 */ 186 static void * 187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 188 int wait) 189 { 190 vm_offset_t addr; 191 int error, locked; 192 193 *pflag = UMA_SLAB_PRIV; 194 195 if (!(locked = vm_map_locked(kernel_map))) 196 vm_map_lock(kernel_map); 197 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 198 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 199 panic("%s: kernel map is exhausted", __func__); 200 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 201 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 202 if (error != KERN_SUCCESS) 203 panic("%s: vm_map_insert() failed: %d", __func__, error); 204 if (!locked) 205 vm_map_unlock(kernel_map); 206 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 207 M_USE_RESERVE | (wait & M_ZERO)); 208 if (error == KERN_SUCCESS) { 209 return ((void *)addr); 210 } else { 211 if (!locked) 212 vm_map_lock(kernel_map); 213 vm_map_delete(kernel_map, addr, bytes); 214 if (!locked) 215 vm_map_unlock(kernel_map); 216 return (NULL); 217 } 218 } 219 220 static void 221 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 222 { 223 vm_offset_t addr; 224 int error __diagused; 225 226 if ((pflag & UMA_SLAB_PRIV) == 0) 227 /* XXX leaked */ 228 return; 229 230 addr = (vm_offset_t)item; 231 kmem_unback(kernel_object, addr, size); 232 error = vm_map_remove(kernel_map, addr, addr + size); 233 KASSERT(error == KERN_SUCCESS, 234 ("%s: vm_map_remove failed: %d", __func__, error)); 235 } 236 237 /* 238 * The worst-case upper bound on the number of kernel map entries that may be 239 * created before the zone must be replenished in _vm_map_unlock(). 240 */ 241 #define KMAPENT_RESERVE 1 242 243 #endif /* !UMD_MD_SMALL_ALLOC */ 244 245 /* 246 * vm_map_startup: 247 * 248 * Initialize the vm_map module. Must be called before any other vm_map 249 * routines. 250 * 251 * User map and entry structures are allocated from the general purpose 252 * memory pool. Kernel maps are statically defined. Kernel map entries 253 * require special handling to avoid recursion; see the comments above 254 * kmapent_alloc() and in vm_map_entry_create(). 255 */ 256 void 257 vm_map_startup(void) 258 { 259 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 260 261 /* 262 * Disable the use of per-CPU buckets: map entry allocation is 263 * serialized by the kernel map lock. 264 */ 265 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 266 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 267 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 268 #ifndef UMA_USE_DMAP 269 /* Reserve an extra map entry for use when replenishing the reserve. */ 270 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 271 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 272 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 273 uma_zone_set_freef(kmapentzone, kmapent_free); 274 #endif 275 276 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 277 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 278 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 279 #ifdef INVARIANTS 280 vmspace_zdtor, 281 #else 282 NULL, 283 #endif 284 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 285 } 286 287 static int 288 vmspace_zinit(void *mem, int size, int flags) 289 { 290 struct vmspace *vm; 291 vm_map_t map; 292 293 vm = (struct vmspace *)mem; 294 map = &vm->vm_map; 295 296 memset(map, 0, sizeof(*map)); /* set MAP_SYSTEM_MAP to false */ 297 sx_init(&map->lock, "vm map (user)"); 298 PMAP_LOCK_INIT(vmspace_pmap(vm)); 299 return (0); 300 } 301 302 #ifdef INVARIANTS 303 static void 304 vmspace_zdtor(void *mem, int size, void *arg) 305 { 306 struct vmspace *vm; 307 308 vm = (struct vmspace *)mem; 309 KASSERT(vm->vm_map.nentries == 0, 310 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 311 KASSERT(vm->vm_map.size == 0, 312 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 313 } 314 #endif /* INVARIANTS */ 315 316 /* 317 * Allocate a vmspace structure, including a vm_map and pmap, 318 * and initialize those structures. The refcnt is set to 1. 319 */ 320 struct vmspace * 321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 322 { 323 struct vmspace *vm; 324 325 vm = uma_zalloc(vmspace_zone, M_WAITOK); 326 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 327 if (!pinit(vmspace_pmap(vm))) { 328 uma_zfree(vmspace_zone, vm); 329 return (NULL); 330 } 331 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 332 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 333 refcount_init(&vm->vm_refcnt, 1); 334 vm->vm_shm = NULL; 335 vm->vm_swrss = 0; 336 vm->vm_tsize = 0; 337 vm->vm_dsize = 0; 338 vm->vm_ssize = 0; 339 vm->vm_taddr = 0; 340 vm->vm_daddr = 0; 341 vm->vm_maxsaddr = 0; 342 return (vm); 343 } 344 345 #ifdef RACCT 346 static void 347 vmspace_container_reset(struct proc *p) 348 { 349 350 PROC_LOCK(p); 351 racct_set(p, RACCT_DATA, 0); 352 racct_set(p, RACCT_STACK, 0); 353 racct_set(p, RACCT_RSS, 0); 354 racct_set(p, RACCT_MEMLOCK, 0); 355 racct_set(p, RACCT_VMEM, 0); 356 PROC_UNLOCK(p); 357 } 358 #endif 359 360 static inline void 361 vmspace_dofree(struct vmspace *vm) 362 { 363 364 CTR1(KTR_VM, "vmspace_free: %p", vm); 365 366 /* 367 * Make sure any SysV shm is freed, it might not have been in 368 * exit1(). 369 */ 370 shmexit(vm); 371 372 /* 373 * Lock the map, to wait out all other references to it. 374 * Delete all of the mappings and pages they hold, then call 375 * the pmap module to reclaim anything left. 376 */ 377 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 378 vm_map_max(&vm->vm_map)); 379 380 pmap_release(vmspace_pmap(vm)); 381 vm->vm_map.pmap = NULL; 382 uma_zfree(vmspace_zone, vm); 383 } 384 385 void 386 vmspace_free(struct vmspace *vm) 387 { 388 389 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 390 "vmspace_free() called"); 391 392 if (refcount_release(&vm->vm_refcnt)) 393 vmspace_dofree(vm); 394 } 395 396 void 397 vmspace_exitfree(struct proc *p) 398 { 399 struct vmspace *vm; 400 401 PROC_VMSPACE_LOCK(p); 402 vm = p->p_vmspace; 403 p->p_vmspace = NULL; 404 PROC_VMSPACE_UNLOCK(p); 405 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 406 vmspace_free(vm); 407 } 408 409 void 410 vmspace_exit(struct thread *td) 411 { 412 struct vmspace *vm; 413 struct proc *p; 414 bool released; 415 416 p = td->td_proc; 417 vm = p->p_vmspace; 418 419 /* 420 * Prepare to release the vmspace reference. The thread that releases 421 * the last reference is responsible for tearing down the vmspace. 422 * However, threads not releasing the final reference must switch to the 423 * kernel's vmspace0 before the decrement so that the subsequent pmap 424 * deactivation does not modify a freed vmspace. 425 */ 426 refcount_acquire(&vmspace0.vm_refcnt); 427 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 428 if (p->p_vmspace != &vmspace0) { 429 PROC_VMSPACE_LOCK(p); 430 p->p_vmspace = &vmspace0; 431 PROC_VMSPACE_UNLOCK(p); 432 pmap_activate(td); 433 } 434 released = refcount_release(&vm->vm_refcnt); 435 } 436 if (released) { 437 /* 438 * pmap_remove_pages() expects the pmap to be active, so switch 439 * back first if necessary. 440 */ 441 if (p->p_vmspace != vm) { 442 PROC_VMSPACE_LOCK(p); 443 p->p_vmspace = vm; 444 PROC_VMSPACE_UNLOCK(p); 445 pmap_activate(td); 446 } 447 pmap_remove_pages(vmspace_pmap(vm)); 448 PROC_VMSPACE_LOCK(p); 449 p->p_vmspace = &vmspace0; 450 PROC_VMSPACE_UNLOCK(p); 451 pmap_activate(td); 452 vmspace_dofree(vm); 453 } 454 #ifdef RACCT 455 if (racct_enable) 456 vmspace_container_reset(p); 457 #endif 458 } 459 460 /* Acquire reference to vmspace owned by another process. */ 461 462 struct vmspace * 463 vmspace_acquire_ref(struct proc *p) 464 { 465 struct vmspace *vm; 466 467 PROC_VMSPACE_LOCK(p); 468 vm = p->p_vmspace; 469 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 470 PROC_VMSPACE_UNLOCK(p); 471 return (NULL); 472 } 473 if (vm != p->p_vmspace) { 474 PROC_VMSPACE_UNLOCK(p); 475 vmspace_free(vm); 476 return (NULL); 477 } 478 PROC_VMSPACE_UNLOCK(p); 479 return (vm); 480 } 481 482 /* 483 * Switch between vmspaces in an AIO kernel process. 484 * 485 * The new vmspace is either the vmspace of a user process obtained 486 * from an active AIO request or the initial vmspace of the AIO kernel 487 * process (when it is idling). Because user processes will block to 488 * drain any active AIO requests before proceeding in exit() or 489 * execve(), the reference count for vmspaces from AIO requests can 490 * never be 0. Similarly, AIO kernel processes hold an extra 491 * reference on their initial vmspace for the life of the process. As 492 * a result, the 'newvm' vmspace always has a non-zero reference 493 * count. This permits an additional reference on 'newvm' to be 494 * acquired via a simple atomic increment rather than the loop in 495 * vmspace_acquire_ref() above. 496 */ 497 void 498 vmspace_switch_aio(struct vmspace *newvm) 499 { 500 struct vmspace *oldvm; 501 502 /* XXX: Need some way to assert that this is an aio daemon. */ 503 504 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 505 ("vmspace_switch_aio: newvm unreferenced")); 506 507 oldvm = curproc->p_vmspace; 508 if (oldvm == newvm) 509 return; 510 511 /* 512 * Point to the new address space and refer to it. 513 */ 514 curproc->p_vmspace = newvm; 515 refcount_acquire(&newvm->vm_refcnt); 516 517 /* Activate the new mapping. */ 518 pmap_activate(curthread); 519 520 vmspace_free(oldvm); 521 } 522 523 void 524 _vm_map_lock(vm_map_t map, const char *file, int line) 525 { 526 527 if (vm_map_is_system(map)) 528 mtx_lock_flags_(&map->system_mtx, 0, file, line); 529 else 530 sx_xlock_(&map->lock, file, line); 531 map->timestamp++; 532 } 533 534 void 535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 536 { 537 vm_object_t object; 538 struct vnode *vp; 539 bool vp_held; 540 541 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 542 return; 543 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 544 ("Submap with execs")); 545 object = entry->object.vm_object; 546 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 547 if ((object->flags & OBJ_ANON) != 0) 548 object = object->handle; 549 else 550 KASSERT(object->backing_object == NULL, 551 ("non-anon object %p shadows", object)); 552 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 553 entry, entry->object.vm_object)); 554 555 /* 556 * Mostly, we do not lock the backing object. It is 557 * referenced by the entry we are processing, so it cannot go 558 * away. 559 */ 560 vm_pager_getvp(object, &vp, &vp_held); 561 if (vp != NULL) { 562 if (add) { 563 VOP_SET_TEXT_CHECKED(vp); 564 } else { 565 vn_lock(vp, LK_SHARED | LK_RETRY); 566 VOP_UNSET_TEXT_CHECKED(vp); 567 VOP_UNLOCK(vp); 568 } 569 if (vp_held) 570 vdrop(vp); 571 } 572 } 573 574 /* 575 * Use a different name for this vm_map_entry field when it's use 576 * is not consistent with its use as part of an ordered search tree. 577 */ 578 #define defer_next right 579 580 static void 581 vm_map_process_deferred(void) 582 { 583 struct thread *td; 584 vm_map_entry_t entry, next; 585 vm_object_t object; 586 587 td = curthread; 588 entry = td->td_map_def_user; 589 td->td_map_def_user = NULL; 590 while (entry != NULL) { 591 next = entry->defer_next; 592 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 593 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 594 MAP_ENTRY_VN_EXEC)); 595 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 596 /* 597 * Decrement the object's writemappings and 598 * possibly the vnode's v_writecount. 599 */ 600 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 601 ("Submap with writecount")); 602 object = entry->object.vm_object; 603 KASSERT(object != NULL, ("No object for writecount")); 604 vm_pager_release_writecount(object, entry->start, 605 entry->end); 606 } 607 vm_map_entry_set_vnode_text(entry, false); 608 vm_map_entry_deallocate(entry, FALSE); 609 entry = next; 610 } 611 } 612 613 #ifdef INVARIANTS 614 static void 615 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 616 { 617 618 if (vm_map_is_system(map)) 619 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 620 else 621 sx_assert_(&map->lock, SA_XLOCKED, file, line); 622 } 623 624 #define VM_MAP_ASSERT_LOCKED(map) \ 625 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 626 627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 628 #ifdef DIAGNOSTIC 629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 630 #else 631 static int enable_vmmap_check = VMMAP_CHECK_NONE; 632 #endif 633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 634 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 635 636 static void _vm_map_assert_consistent(vm_map_t map, int check); 637 638 #define VM_MAP_ASSERT_CONSISTENT(map) \ 639 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 640 #ifdef DIAGNOSTIC 641 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 642 if (map->nupdates > map->nentries) { \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 644 map->nupdates = 0; \ 645 } \ 646 } while (0) 647 #else 648 #define VM_MAP_UNLOCK_CONSISTENT(map) 649 #endif 650 #else 651 #define VM_MAP_ASSERT_LOCKED(map) 652 #define VM_MAP_ASSERT_CONSISTENT(map) 653 #define VM_MAP_UNLOCK_CONSISTENT(map) 654 #endif /* INVARIANTS */ 655 656 void 657 _vm_map_unlock(vm_map_t map, const char *file, int line) 658 { 659 660 VM_MAP_UNLOCK_CONSISTENT(map); 661 if (vm_map_is_system(map)) { 662 #ifndef UMA_USE_DMAP 663 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 664 uma_prealloc(kmapentzone, 1); 665 map->flags &= ~MAP_REPLENISH; 666 } 667 #endif 668 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 669 } else { 670 sx_xunlock_(&map->lock, file, line); 671 vm_map_process_deferred(); 672 } 673 } 674 675 void 676 _vm_map_lock_read(vm_map_t map, const char *file, int line) 677 { 678 679 if (vm_map_is_system(map)) 680 mtx_lock_flags_(&map->system_mtx, 0, file, line); 681 else 682 sx_slock_(&map->lock, file, line); 683 } 684 685 void 686 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 687 { 688 689 if (vm_map_is_system(map)) { 690 KASSERT((map->flags & MAP_REPLENISH) == 0, 691 ("%s: MAP_REPLENISH leaked", __func__)); 692 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 693 } else { 694 sx_sunlock_(&map->lock, file, line); 695 vm_map_process_deferred(); 696 } 697 } 698 699 int 700 _vm_map_trylock(vm_map_t map, const char *file, int line) 701 { 702 int error; 703 704 error = vm_map_is_system(map) ? 705 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 706 !sx_try_xlock_(&map->lock, file, line); 707 if (error == 0) 708 map->timestamp++; 709 return (error == 0); 710 } 711 712 int 713 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 714 { 715 int error; 716 717 error = vm_map_is_system(map) ? 718 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 719 !sx_try_slock_(&map->lock, file, line); 720 return (error == 0); 721 } 722 723 /* 724 * _vm_map_lock_upgrade: [ internal use only ] 725 * 726 * Tries to upgrade a read (shared) lock on the specified map to a write 727 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 728 * non-zero value if the upgrade fails. If the upgrade fails, the map is 729 * returned without a read or write lock held. 730 * 731 * Requires that the map be read locked. 732 */ 733 int 734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 735 { 736 unsigned int last_timestamp; 737 738 if (vm_map_is_system(map)) { 739 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 740 } else { 741 if (!sx_try_upgrade_(&map->lock, file, line)) { 742 last_timestamp = map->timestamp; 743 sx_sunlock_(&map->lock, file, line); 744 vm_map_process_deferred(); 745 /* 746 * If the map's timestamp does not change while the 747 * map is unlocked, then the upgrade succeeds. 748 */ 749 sx_xlock_(&map->lock, file, line); 750 if (last_timestamp != map->timestamp) { 751 sx_xunlock_(&map->lock, file, line); 752 return (1); 753 } 754 } 755 } 756 map->timestamp++; 757 return (0); 758 } 759 760 void 761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 762 { 763 764 if (vm_map_is_system(map)) { 765 KASSERT((map->flags & MAP_REPLENISH) == 0, 766 ("%s: MAP_REPLENISH leaked", __func__)); 767 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 768 } else { 769 VM_MAP_UNLOCK_CONSISTENT(map); 770 sx_downgrade_(&map->lock, file, line); 771 } 772 } 773 774 /* 775 * vm_map_locked: 776 * 777 * Returns a non-zero value if the caller holds a write (exclusive) lock 778 * on the specified map and the value "0" otherwise. 779 */ 780 int 781 vm_map_locked(vm_map_t map) 782 { 783 784 if (vm_map_is_system(map)) 785 return (mtx_owned(&map->system_mtx)); 786 return (sx_xlocked(&map->lock)); 787 } 788 789 /* 790 * _vm_map_unlock_and_wait: 791 * 792 * Atomically releases the lock on the specified map and puts the calling 793 * thread to sleep. The calling thread will remain asleep until either 794 * vm_map_wakeup() is performed on the map or the specified timeout is 795 * exceeded. 796 * 797 * WARNING! This function does not perform deferred deallocations of 798 * objects and map entries. Therefore, the calling thread is expected to 799 * reacquire the map lock after reawakening and later perform an ordinary 800 * unlock operation, such as vm_map_unlock(), before completing its 801 * operation on the map. 802 */ 803 int 804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 805 { 806 807 VM_MAP_UNLOCK_CONSISTENT(map); 808 mtx_lock(&map_sleep_mtx); 809 if (vm_map_is_system(map)) { 810 KASSERT((map->flags & MAP_REPLENISH) == 0, 811 ("%s: MAP_REPLENISH leaked", __func__)); 812 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 813 } else { 814 sx_xunlock_(&map->lock, file, line); 815 } 816 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 817 timo)); 818 } 819 820 /* 821 * vm_map_wakeup: 822 * 823 * Awaken any threads that have slept on the map using 824 * vm_map_unlock_and_wait(). 825 */ 826 void 827 vm_map_wakeup(vm_map_t map) 828 { 829 830 /* 831 * Acquire and release map_sleep_mtx to prevent a wakeup() 832 * from being performed (and lost) between the map unlock 833 * and the msleep() in _vm_map_unlock_and_wait(). 834 */ 835 mtx_lock(&map_sleep_mtx); 836 mtx_unlock(&map_sleep_mtx); 837 wakeup(&map->root); 838 } 839 840 void 841 vm_map_busy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 map->busy++; 846 } 847 848 void 849 vm_map_unbusy(vm_map_t map) 850 { 851 852 VM_MAP_ASSERT_LOCKED(map); 853 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 854 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 855 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 856 wakeup(&map->busy); 857 } 858 } 859 860 void 861 vm_map_wait_busy(vm_map_t map) 862 { 863 864 VM_MAP_ASSERT_LOCKED(map); 865 while (map->busy) { 866 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 867 if (vm_map_is_system(map)) 868 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 869 else 870 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 871 } 872 map->timestamp++; 873 } 874 875 long 876 vmspace_resident_count(struct vmspace *vmspace) 877 { 878 return pmap_resident_count(vmspace_pmap(vmspace)); 879 } 880 881 /* 882 * Initialize an existing vm_map structure 883 * such as that in the vmspace structure. 884 */ 885 static void 886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 889 map->header.eflags = MAP_ENTRY_HEADER; 890 map->pmap = pmap; 891 map->header.end = min; 892 map->header.start = max; 893 map->flags = 0; 894 map->header.left = map->header.right = &map->header; 895 map->root = NULL; 896 map->timestamp = 0; 897 map->busy = 0; 898 map->anon_loc = 0; 899 #ifdef DIAGNOSTIC 900 map->nupdates = 0; 901 #endif 902 } 903 904 void 905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 906 { 907 _vm_map_init(map, pmap, min, max); 908 sx_init(&map->lock, "vm map (user)"); 909 } 910 911 void 912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 913 { 914 _vm_map_init(map, pmap, min, max); 915 vm_map_modflags(map, MAP_SYSTEM_MAP, 0); 916 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | 917 MTX_DUPOK); 918 } 919 920 /* 921 * vm_map_entry_dispose: [ internal use only ] 922 * 923 * Inverse of vm_map_entry_create. 924 */ 925 static void 926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 927 { 928 uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry); 929 } 930 931 /* 932 * vm_map_entry_create: [ internal use only ] 933 * 934 * Allocates a VM map entry for insertion. 935 * No entry fields are filled in. 936 */ 937 static vm_map_entry_t 938 vm_map_entry_create(vm_map_t map) 939 { 940 vm_map_entry_t new_entry; 941 942 #ifndef UMA_USE_DMAP 943 if (map == kernel_map) { 944 VM_MAP_ASSERT_LOCKED(map); 945 946 /* 947 * A new slab of kernel map entries cannot be allocated at this 948 * point because the kernel map has not yet been updated to 949 * reflect the caller's request. Therefore, we allocate a new 950 * map entry, dipping into the reserve if necessary, and set a 951 * flag indicating that the reserve must be replenished before 952 * the map is unlocked. 953 */ 954 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 955 if (new_entry == NULL) { 956 new_entry = uma_zalloc(kmapentzone, 957 M_NOWAIT | M_NOVM | M_USE_RESERVE); 958 kernel_map->flags |= MAP_REPLENISH; 959 } 960 } else 961 #endif 962 if (vm_map_is_system(map)) { 963 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 964 } else { 965 new_entry = uma_zalloc(mapentzone, M_WAITOK); 966 } 967 KASSERT(new_entry != NULL, 968 ("vm_map_entry_create: kernel resources exhausted")); 969 return (new_entry); 970 } 971 972 /* 973 * vm_map_entry_set_behavior: 974 * 975 * Set the expected access behavior, either normal, random, or 976 * sequential. 977 */ 978 static inline void 979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 980 { 981 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 982 (behavior & MAP_ENTRY_BEHAV_MASK); 983 } 984 985 /* 986 * vm_map_entry_max_free_{left,right}: 987 * 988 * Compute the size of the largest free gap between two entries, 989 * one the root of a tree and the other the ancestor of that root 990 * that is the least or greatest ancestor found on the search path. 991 */ 992 static inline vm_size_t 993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 994 { 995 996 return (root->left != left_ancestor ? 997 root->left->max_free : root->start - left_ancestor->end); 998 } 999 1000 static inline vm_size_t 1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1002 { 1003 1004 return (root->right != right_ancestor ? 1005 root->right->max_free : right_ancestor->start - root->end); 1006 } 1007 1008 /* 1009 * vm_map_entry_{pred,succ}: 1010 * 1011 * Find the {predecessor, successor} of the entry by taking one step 1012 * in the appropriate direction and backtracking as much as necessary. 1013 * vm_map_entry_succ is defined in vm_map.h. 1014 */ 1015 static inline vm_map_entry_t 1016 vm_map_entry_pred(vm_map_entry_t entry) 1017 { 1018 vm_map_entry_t prior; 1019 1020 prior = entry->left; 1021 if (prior->right->start < entry->start) { 1022 do 1023 prior = prior->right; 1024 while (prior->right != entry); 1025 } 1026 return (prior); 1027 } 1028 1029 static inline vm_size_t 1030 vm_size_max(vm_size_t a, vm_size_t b) 1031 { 1032 1033 return (a > b ? a : b); 1034 } 1035 1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1037 vm_map_entry_t z; \ 1038 vm_size_t max_free; \ 1039 \ 1040 /* \ 1041 * Infer root->right->max_free == root->max_free when \ 1042 * y->max_free < root->max_free || root->max_free == 0. \ 1043 * Otherwise, look right to find it. \ 1044 */ \ 1045 y = root->left; \ 1046 max_free = root->max_free; \ 1047 KASSERT(max_free == vm_size_max( \ 1048 vm_map_entry_max_free_left(root, llist), \ 1049 vm_map_entry_max_free_right(root, rlist)), \ 1050 ("%s: max_free invariant fails", __func__)); \ 1051 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1052 max_free = vm_map_entry_max_free_right(root, rlist); \ 1053 if (y != llist && (test)) { \ 1054 /* Rotate right and make y root. */ \ 1055 z = y->right; \ 1056 if (z != root) { \ 1057 root->left = z; \ 1058 y->right = root; \ 1059 if (max_free < y->max_free) \ 1060 root->max_free = max_free = \ 1061 vm_size_max(max_free, z->max_free); \ 1062 } else if (max_free < y->max_free) \ 1063 root->max_free = max_free = \ 1064 vm_size_max(max_free, root->start - y->end);\ 1065 root = y; \ 1066 y = root->left; \ 1067 } \ 1068 /* Copy right->max_free. Put root on rlist. */ \ 1069 root->max_free = max_free; \ 1070 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1071 ("%s: max_free not copied from right", __func__)); \ 1072 root->left = rlist; \ 1073 rlist = root; \ 1074 root = y != llist ? y : NULL; \ 1075 } while (0) 1076 1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1078 vm_map_entry_t z; \ 1079 vm_size_t max_free; \ 1080 \ 1081 /* \ 1082 * Infer root->left->max_free == root->max_free when \ 1083 * y->max_free < root->max_free || root->max_free == 0. \ 1084 * Otherwise, look left to find it. \ 1085 */ \ 1086 y = root->right; \ 1087 max_free = root->max_free; \ 1088 KASSERT(max_free == vm_size_max( \ 1089 vm_map_entry_max_free_left(root, llist), \ 1090 vm_map_entry_max_free_right(root, rlist)), \ 1091 ("%s: max_free invariant fails", __func__)); \ 1092 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1093 max_free = vm_map_entry_max_free_left(root, llist); \ 1094 if (y != rlist && (test)) { \ 1095 /* Rotate left and make y root. */ \ 1096 z = y->left; \ 1097 if (z != root) { \ 1098 root->right = z; \ 1099 y->left = root; \ 1100 if (max_free < y->max_free) \ 1101 root->max_free = max_free = \ 1102 vm_size_max(max_free, z->max_free); \ 1103 } else if (max_free < y->max_free) \ 1104 root->max_free = max_free = \ 1105 vm_size_max(max_free, y->start - root->end);\ 1106 root = y; \ 1107 y = root->right; \ 1108 } \ 1109 /* Copy left->max_free. Put root on llist. */ \ 1110 root->max_free = max_free; \ 1111 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1112 ("%s: max_free not copied from left", __func__)); \ 1113 root->right = llist; \ 1114 llist = root; \ 1115 root = y != rlist ? y : NULL; \ 1116 } while (0) 1117 1118 /* 1119 * Walk down the tree until we find addr or a gap where addr would go, breaking 1120 * off left and right subtrees of nodes less than, or greater than addr. Treat 1121 * subtrees with root->max_free < length as empty trees. llist and rlist are 1122 * the two sides in reverse order (bottom-up), with llist linked by the right 1123 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1124 * lists terminated by &map->header. This function, and the subsequent call to 1125 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1126 * values in &map->header. 1127 */ 1128 static __always_inline vm_map_entry_t 1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1130 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1131 { 1132 vm_map_entry_t left, right, root, y; 1133 1134 left = right = &map->header; 1135 root = map->root; 1136 while (root != NULL && root->max_free >= length) { 1137 KASSERT(left->end <= root->start && 1138 root->end <= right->start, 1139 ("%s: root not within tree bounds", __func__)); 1140 if (addr < root->start) { 1141 SPLAY_LEFT_STEP(root, y, left, right, 1142 y->max_free >= length && addr < y->start); 1143 } else if (addr >= root->end) { 1144 SPLAY_RIGHT_STEP(root, y, left, right, 1145 y->max_free >= length && addr >= y->end); 1146 } else 1147 break; 1148 } 1149 *llist = left; 1150 *rlist = right; 1151 return (root); 1152 } 1153 1154 static __always_inline void 1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1156 { 1157 vm_map_entry_t hi, right, y; 1158 1159 right = *rlist; 1160 hi = root->right == right ? NULL : root->right; 1161 if (hi == NULL) 1162 return; 1163 do 1164 SPLAY_LEFT_STEP(hi, y, root, right, true); 1165 while (hi != NULL); 1166 *rlist = right; 1167 } 1168 1169 static __always_inline void 1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1171 { 1172 vm_map_entry_t left, lo, y; 1173 1174 left = *llist; 1175 lo = root->left == left ? NULL : root->left; 1176 if (lo == NULL) 1177 return; 1178 do 1179 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1180 while (lo != NULL); 1181 *llist = left; 1182 } 1183 1184 static inline void 1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1186 { 1187 vm_map_entry_t tmp; 1188 1189 tmp = *b; 1190 *b = *a; 1191 *a = tmp; 1192 } 1193 1194 /* 1195 * Walk back up the two spines, flip the pointers and set max_free. The 1196 * subtrees of the root go at the bottom of llist and rlist. 1197 */ 1198 static vm_size_t 1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1200 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1201 { 1202 do { 1203 /* 1204 * The max_free values of the children of llist are in 1205 * llist->max_free and max_free. Update with the 1206 * max value. 1207 */ 1208 llist->max_free = max_free = 1209 vm_size_max(llist->max_free, max_free); 1210 vm_map_entry_swap(&llist->right, &tail); 1211 vm_map_entry_swap(&tail, &llist); 1212 } while (llist != header); 1213 root->left = tail; 1214 return (max_free); 1215 } 1216 1217 /* 1218 * When llist is known to be the predecessor of root. 1219 */ 1220 static inline vm_size_t 1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1222 vm_map_entry_t llist) 1223 { 1224 vm_size_t max_free; 1225 1226 max_free = root->start - llist->end; 1227 if (llist != header) { 1228 max_free = vm_map_splay_merge_left_walk(header, root, 1229 root, max_free, llist); 1230 } else { 1231 root->left = header; 1232 header->right = root; 1233 } 1234 return (max_free); 1235 } 1236 1237 /* 1238 * When llist may or may not be the predecessor of root. 1239 */ 1240 static inline vm_size_t 1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1242 vm_map_entry_t llist) 1243 { 1244 vm_size_t max_free; 1245 1246 max_free = vm_map_entry_max_free_left(root, llist); 1247 if (llist != header) { 1248 max_free = vm_map_splay_merge_left_walk(header, root, 1249 root->left == llist ? root : root->left, 1250 max_free, llist); 1251 } 1252 return (max_free); 1253 } 1254 1255 static vm_size_t 1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1257 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1258 { 1259 do { 1260 /* 1261 * The max_free values of the children of rlist are in 1262 * rlist->max_free and max_free. Update with the 1263 * max value. 1264 */ 1265 rlist->max_free = max_free = 1266 vm_size_max(rlist->max_free, max_free); 1267 vm_map_entry_swap(&rlist->left, &tail); 1268 vm_map_entry_swap(&tail, &rlist); 1269 } while (rlist != header); 1270 root->right = tail; 1271 return (max_free); 1272 } 1273 1274 /* 1275 * When rlist is known to be the succecessor of root. 1276 */ 1277 static inline vm_size_t 1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1279 vm_map_entry_t rlist) 1280 { 1281 vm_size_t max_free; 1282 1283 max_free = rlist->start - root->end; 1284 if (rlist != header) { 1285 max_free = vm_map_splay_merge_right_walk(header, root, 1286 root, max_free, rlist); 1287 } else { 1288 root->right = header; 1289 header->left = root; 1290 } 1291 return (max_free); 1292 } 1293 1294 /* 1295 * When rlist may or may not be the succecessor of root. 1296 */ 1297 static inline vm_size_t 1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1299 vm_map_entry_t rlist) 1300 { 1301 vm_size_t max_free; 1302 1303 max_free = vm_map_entry_max_free_right(root, rlist); 1304 if (rlist != header) { 1305 max_free = vm_map_splay_merge_right_walk(header, root, 1306 root->right == rlist ? root : root->right, 1307 max_free, rlist); 1308 } 1309 return (max_free); 1310 } 1311 1312 /* 1313 * vm_map_splay: 1314 * 1315 * The Sleator and Tarjan top-down splay algorithm with the 1316 * following variation. Max_free must be computed bottom-up, so 1317 * on the downward pass, maintain the left and right spines in 1318 * reverse order. Then, make a second pass up each side to fix 1319 * the pointers and compute max_free. The time bound is O(log n) 1320 * amortized. 1321 * 1322 * The tree is threaded, which means that there are no null pointers. 1323 * When a node has no left child, its left pointer points to its 1324 * predecessor, which the last ancestor on the search path from the root 1325 * where the search branched right. Likewise, when a node has no right 1326 * child, its right pointer points to its successor. The map header node 1327 * is the predecessor of the first map entry, and the successor of the 1328 * last. 1329 * 1330 * The new root is the vm_map_entry containing "addr", or else an 1331 * adjacent entry (lower if possible) if addr is not in the tree. 1332 * 1333 * The map must be locked, and leaves it so. 1334 * 1335 * Returns: the new root. 1336 */ 1337 static vm_map_entry_t 1338 vm_map_splay(vm_map_t map, vm_offset_t addr) 1339 { 1340 vm_map_entry_t header, llist, rlist, root; 1341 vm_size_t max_free_left, max_free_right; 1342 1343 header = &map->header; 1344 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1345 if (root != NULL) { 1346 max_free_left = vm_map_splay_merge_left(header, root, llist); 1347 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1348 } else if (llist != header) { 1349 /* 1350 * Recover the greatest node in the left 1351 * subtree and make it the root. 1352 */ 1353 root = llist; 1354 llist = root->right; 1355 max_free_left = vm_map_splay_merge_left(header, root, llist); 1356 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1357 } else if (rlist != header) { 1358 /* 1359 * Recover the least node in the right 1360 * subtree and make it the root. 1361 */ 1362 root = rlist; 1363 rlist = root->left; 1364 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1365 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1366 } else { 1367 /* There is no root. */ 1368 return (NULL); 1369 } 1370 root->max_free = vm_size_max(max_free_left, max_free_right); 1371 map->root = root; 1372 VM_MAP_ASSERT_CONSISTENT(map); 1373 return (root); 1374 } 1375 1376 /* 1377 * vm_map_entry_{un,}link: 1378 * 1379 * Insert/remove entries from maps. On linking, if new entry clips 1380 * existing entry, trim existing entry to avoid overlap, and manage 1381 * offsets. On unlinking, merge disappearing entry with neighbor, if 1382 * called for, and manage offsets. Callers should not modify fields in 1383 * entries already mapped. 1384 */ 1385 static void 1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1387 { 1388 vm_map_entry_t header, llist, rlist, root; 1389 vm_size_t max_free_left, max_free_right; 1390 1391 CTR3(KTR_VM, 1392 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1393 map->nentries, entry); 1394 VM_MAP_ASSERT_LOCKED(map); 1395 map->nentries++; 1396 header = &map->header; 1397 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1398 if (root == NULL) { 1399 /* 1400 * The new entry does not overlap any existing entry in the 1401 * map, so it becomes the new root of the map tree. 1402 */ 1403 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1404 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1405 } else if (entry->start == root->start) { 1406 /* 1407 * The new entry is a clone of root, with only the end field 1408 * changed. The root entry will be shrunk to abut the new 1409 * entry, and will be the right child of the new root entry in 1410 * the modified map. 1411 */ 1412 KASSERT(entry->end < root->end, 1413 ("%s: clip_start not within entry", __func__)); 1414 vm_map_splay_findprev(root, &llist); 1415 if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0) 1416 root->offset += entry->end - root->start; 1417 root->start = entry->end; 1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1419 max_free_right = root->max_free = vm_size_max( 1420 vm_map_splay_merge_pred(entry, root, entry), 1421 vm_map_splay_merge_right(header, root, rlist)); 1422 } else { 1423 /* 1424 * The new entry is a clone of root, with only the start field 1425 * changed. The root entry will be shrunk to abut the new 1426 * entry, and will be the left child of the new root entry in 1427 * the modified map. 1428 */ 1429 KASSERT(entry->end == root->end, 1430 ("%s: clip_start not within entry", __func__)); 1431 vm_map_splay_findnext(root, &rlist); 1432 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 1433 entry->offset += entry->start - root->start; 1434 root->end = entry->start; 1435 max_free_left = root->max_free = vm_size_max( 1436 vm_map_splay_merge_left(header, root, llist), 1437 vm_map_splay_merge_succ(entry, root, entry)); 1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1439 } 1440 entry->max_free = vm_size_max(max_free_left, max_free_right); 1441 map->root = entry; 1442 VM_MAP_ASSERT_CONSISTENT(map); 1443 } 1444 1445 enum unlink_merge_type { 1446 UNLINK_MERGE_NONE, 1447 UNLINK_MERGE_NEXT 1448 }; 1449 1450 static void 1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1452 enum unlink_merge_type op) 1453 { 1454 vm_map_entry_t header, llist, rlist, root; 1455 vm_size_t max_free_left, max_free_right; 1456 1457 VM_MAP_ASSERT_LOCKED(map); 1458 header = &map->header; 1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1460 KASSERT(root != NULL, 1461 ("vm_map_entry_unlink: unlink object not mapped")); 1462 1463 vm_map_splay_findprev(root, &llist); 1464 vm_map_splay_findnext(root, &rlist); 1465 if (op == UNLINK_MERGE_NEXT) { 1466 rlist->start = root->start; 1467 MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0); 1468 rlist->offset = root->offset; 1469 } 1470 if (llist != header) { 1471 root = llist; 1472 llist = root->right; 1473 max_free_left = vm_map_splay_merge_left(header, root, llist); 1474 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1475 } else if (rlist != header) { 1476 root = rlist; 1477 rlist = root->left; 1478 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1479 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1480 } else { 1481 header->left = header->right = header; 1482 root = NULL; 1483 } 1484 if (root != NULL) 1485 root->max_free = vm_size_max(max_free_left, max_free_right); 1486 map->root = root; 1487 VM_MAP_ASSERT_CONSISTENT(map); 1488 map->nentries--; 1489 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1490 map->nentries, entry); 1491 } 1492 1493 /* 1494 * vm_map_entry_resize: 1495 * 1496 * Resize a vm_map_entry, recompute the amount of free space that 1497 * follows it and propagate that value up the tree. 1498 * 1499 * The map must be locked, and leaves it so. 1500 */ 1501 static void 1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1503 { 1504 vm_map_entry_t header, llist, rlist, root; 1505 1506 VM_MAP_ASSERT_LOCKED(map); 1507 header = &map->header; 1508 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1509 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1510 vm_map_splay_findnext(root, &rlist); 1511 entry->end += grow_amount; 1512 root->max_free = vm_size_max( 1513 vm_map_splay_merge_left(header, root, llist), 1514 vm_map_splay_merge_succ(header, root, rlist)); 1515 map->root = root; 1516 VM_MAP_ASSERT_CONSISTENT(map); 1517 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1518 __func__, map, map->nentries, entry); 1519 } 1520 1521 /* 1522 * vm_map_lookup_entry: [ internal use only ] 1523 * 1524 * Finds the map entry containing (or 1525 * immediately preceding) the specified address 1526 * in the given map; the entry is returned 1527 * in the "entry" parameter. The boolean 1528 * result indicates whether the address is 1529 * actually contained in the map. 1530 */ 1531 boolean_t 1532 vm_map_lookup_entry( 1533 vm_map_t map, 1534 vm_offset_t address, 1535 vm_map_entry_t *entry) /* OUT */ 1536 { 1537 vm_map_entry_t cur, header, lbound, ubound; 1538 boolean_t locked; 1539 1540 /* 1541 * If the map is empty, then the map entry immediately preceding 1542 * "address" is the map's header. 1543 */ 1544 header = &map->header; 1545 cur = map->root; 1546 if (cur == NULL) { 1547 *entry = header; 1548 return (FALSE); 1549 } 1550 if (address >= cur->start && cur->end > address) { 1551 *entry = cur; 1552 return (TRUE); 1553 } 1554 if ((locked = vm_map_locked(map)) || 1555 sx_try_upgrade(&map->lock)) { 1556 /* 1557 * Splay requires a write lock on the map. However, it only 1558 * restructures the binary search tree; it does not otherwise 1559 * change the map. Thus, the map's timestamp need not change 1560 * on a temporary upgrade. 1561 */ 1562 cur = vm_map_splay(map, address); 1563 if (!locked) { 1564 VM_MAP_UNLOCK_CONSISTENT(map); 1565 sx_downgrade(&map->lock); 1566 } 1567 1568 /* 1569 * If "address" is contained within a map entry, the new root 1570 * is that map entry. Otherwise, the new root is a map entry 1571 * immediately before or after "address". 1572 */ 1573 if (address < cur->start) { 1574 *entry = header; 1575 return (FALSE); 1576 } 1577 *entry = cur; 1578 return (address < cur->end); 1579 } 1580 /* 1581 * Since the map is only locked for read access, perform a 1582 * standard binary search tree lookup for "address". 1583 */ 1584 lbound = ubound = header; 1585 for (;;) { 1586 if (address < cur->start) { 1587 ubound = cur; 1588 cur = cur->left; 1589 if (cur == lbound) 1590 break; 1591 } else if (cur->end <= address) { 1592 lbound = cur; 1593 cur = cur->right; 1594 if (cur == ubound) 1595 break; 1596 } else { 1597 *entry = cur; 1598 return (TRUE); 1599 } 1600 } 1601 *entry = lbound; 1602 return (FALSE); 1603 } 1604 1605 /* 1606 * vm_map_insert1() is identical to vm_map_insert() except that it 1607 * returns the newly inserted map entry in '*res'. In case the new 1608 * entry is coalesced with a neighbor or an existing entry was 1609 * resized, that entry is returned. In any case, the returned entry 1610 * covers the specified address range. 1611 */ 1612 static int 1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1614 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1615 vm_map_entry_t *res) 1616 { 1617 vm_map_entry_t new_entry, next_entry, prev_entry; 1618 struct ucred *cred; 1619 vm_eflags_t protoeflags; 1620 vm_inherit_t inheritance; 1621 u_long bdry; 1622 u_int bidx; 1623 1624 VM_MAP_ASSERT_LOCKED(map); 1625 KASSERT(object != kernel_object || 1626 (cow & MAP_COPY_ON_WRITE) == 0, 1627 ("vm_map_insert: kernel object and COW")); 1628 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1629 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1630 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1631 object, cow)); 1632 KASSERT((prot & ~max) == 0, 1633 ("prot %#x is not subset of max_prot %#x", prot, max)); 1634 1635 /* 1636 * Check that the start and end points are not bogus. 1637 */ 1638 if (start == end || !vm_map_range_valid(map, start, end)) 1639 return (KERN_INVALID_ADDRESS); 1640 1641 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1642 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1643 return (KERN_PROTECTION_FAILURE); 1644 1645 /* 1646 * Find the entry prior to the proposed starting address; if it's part 1647 * of an existing entry, this range is bogus. 1648 */ 1649 if (vm_map_lookup_entry(map, start, &prev_entry)) 1650 return (KERN_NO_SPACE); 1651 1652 /* 1653 * Assert that the next entry doesn't overlap the end point. 1654 */ 1655 next_entry = vm_map_entry_succ(prev_entry); 1656 if (next_entry->start < end) 1657 return (KERN_NO_SPACE); 1658 1659 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1660 max != VM_PROT_NONE)) 1661 return (KERN_INVALID_ARGUMENT); 1662 1663 protoeflags = 0; 1664 if (cow & MAP_COPY_ON_WRITE) 1665 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1666 if (cow & MAP_NOFAULT) 1667 protoeflags |= MAP_ENTRY_NOFAULT; 1668 if (cow & MAP_DISABLE_SYNCER) 1669 protoeflags |= MAP_ENTRY_NOSYNC; 1670 if (cow & MAP_DISABLE_COREDUMP) 1671 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1672 if (cow & MAP_STACK_AREA) 1673 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1674 if (cow & MAP_WRITECOUNT) 1675 protoeflags |= MAP_ENTRY_WRITECNT; 1676 if (cow & MAP_VN_EXEC) 1677 protoeflags |= MAP_ENTRY_VN_EXEC; 1678 if ((cow & MAP_CREATE_GUARD) != 0) 1679 protoeflags |= MAP_ENTRY_GUARD; 1680 if ((cow & MAP_CREATE_STACK_GAP) != 0) 1681 protoeflags |= MAP_ENTRY_STACK_GAP; 1682 if (cow & MAP_INHERIT_SHARE) 1683 inheritance = VM_INHERIT_SHARE; 1684 else 1685 inheritance = VM_INHERIT_DEFAULT; 1686 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1687 /* This magically ignores index 0, for usual page size. */ 1688 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1689 MAP_SPLIT_BOUNDARY_SHIFT; 1690 if (bidx >= MAXPAGESIZES) 1691 return (KERN_INVALID_ARGUMENT); 1692 bdry = pagesizes[bidx] - 1; 1693 if ((start & bdry) != 0 || (end & bdry) != 0) 1694 return (KERN_INVALID_ARGUMENT); 1695 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1696 } 1697 1698 cred = NULL; 1699 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1700 goto charged; 1701 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1702 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1703 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1704 return (KERN_RESOURCE_SHORTAGE); 1705 KASSERT(object == NULL || 1706 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1707 object->cred == NULL, 1708 ("overcommit: vm_map_insert o %p", object)); 1709 cred = curthread->td_ucred; 1710 } 1711 1712 charged: 1713 /* Expand the kernel pmap, if necessary. */ 1714 if (map == kernel_map && end > kernel_vm_end) 1715 pmap_growkernel(end); 1716 if (object != NULL) { 1717 /* 1718 * OBJ_ONEMAPPING must be cleared unless this mapping 1719 * is trivially proven to be the only mapping for any 1720 * of the object's pages. (Object granularity 1721 * reference counting is insufficient to recognize 1722 * aliases with precision.) 1723 */ 1724 if ((object->flags & OBJ_ANON) != 0) { 1725 VM_OBJECT_WLOCK(object); 1726 if (object->ref_count > 1 || object->shadow_count != 0) 1727 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1728 VM_OBJECT_WUNLOCK(object); 1729 } 1730 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1731 protoeflags && 1732 (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 && 1733 prev_entry->end == start && (prev_entry->cred == cred || 1734 (prev_entry->object.vm_object != NULL && 1735 prev_entry->object.vm_object->cred == cred)) && 1736 vm_object_coalesce(prev_entry->object.vm_object, 1737 prev_entry->offset, 1738 (vm_size_t)(prev_entry->end - prev_entry->start), 1739 (vm_size_t)(end - prev_entry->end), cred != NULL && 1740 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1741 /* 1742 * We were able to extend the object. Determine if we 1743 * can extend the previous map entry to include the 1744 * new range as well. 1745 */ 1746 if (prev_entry->inheritance == inheritance && 1747 prev_entry->protection == prot && 1748 prev_entry->max_protection == max && 1749 prev_entry->wired_count == 0) { 1750 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1751 0, ("prev_entry %p has incoherent wiring", 1752 prev_entry)); 1753 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1754 map->size += end - prev_entry->end; 1755 vm_map_entry_resize(map, prev_entry, 1756 end - prev_entry->end); 1757 *res = vm_map_try_merge_entries(map, prev_entry, 1758 next_entry); 1759 return (KERN_SUCCESS); 1760 } 1761 1762 /* 1763 * If we can extend the object but cannot extend the 1764 * map entry, we have to create a new map entry. We 1765 * must bump the ref count on the extended object to 1766 * account for it. object may be NULL. 1767 */ 1768 object = prev_entry->object.vm_object; 1769 offset = prev_entry->offset + 1770 (prev_entry->end - prev_entry->start); 1771 vm_object_reference(object); 1772 if (cred != NULL && object != NULL && object->cred != NULL && 1773 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1774 /* Object already accounts for this uid. */ 1775 cred = NULL; 1776 } 1777 } 1778 if (cred != NULL) 1779 crhold(cred); 1780 1781 /* 1782 * Create a new entry 1783 */ 1784 new_entry = vm_map_entry_create(map); 1785 new_entry->start = start; 1786 new_entry->end = end; 1787 new_entry->cred = NULL; 1788 1789 new_entry->eflags = protoeflags; 1790 new_entry->object.vm_object = object; 1791 new_entry->offset = offset; 1792 1793 new_entry->inheritance = inheritance; 1794 new_entry->protection = prot; 1795 new_entry->max_protection = max; 1796 new_entry->wired_count = 0; 1797 new_entry->wiring_thread = NULL; 1798 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1799 new_entry->next_read = start; 1800 1801 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1802 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1803 new_entry->cred = cred; 1804 1805 /* 1806 * Insert the new entry into the list 1807 */ 1808 vm_map_entry_link(map, new_entry); 1809 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1810 map->size += new_entry->end - new_entry->start; 1811 1812 /* 1813 * Try to coalesce the new entry with both the previous and next 1814 * entries in the list. Previously, we only attempted to coalesce 1815 * with the previous entry when object is NULL. Here, we handle the 1816 * other cases, which are less common. 1817 */ 1818 vm_map_try_merge_entries(map, prev_entry, new_entry); 1819 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1820 1821 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1822 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1823 end - start, cow & MAP_PREFAULT_PARTIAL); 1824 } 1825 1826 return (KERN_SUCCESS); 1827 } 1828 1829 /* 1830 * vm_map_insert: 1831 * 1832 * Inserts the given VM object into the target map at the 1833 * specified address range. 1834 * 1835 * Requires that the map be locked, and leaves it so. 1836 * 1837 * If object is non-NULL, ref count must be bumped by caller 1838 * prior to making call to account for the new entry. 1839 */ 1840 int 1841 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1842 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1843 { 1844 vm_map_entry_t res; 1845 1846 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1847 cow, &res)); 1848 } 1849 1850 /* 1851 * vm_map_findspace: 1852 * 1853 * Find the first fit (lowest VM address) for "length" free bytes 1854 * beginning at address >= start in the given map. 1855 * 1856 * In a vm_map_entry, "max_free" is the maximum amount of 1857 * contiguous free space between an entry in its subtree and a 1858 * neighbor of that entry. This allows finding a free region in 1859 * one path down the tree, so O(log n) amortized with splay 1860 * trees. 1861 * 1862 * The map must be locked, and leaves it so. 1863 * 1864 * Returns: starting address if sufficient space, 1865 * vm_map_max(map)-length+1 if insufficient space. 1866 */ 1867 vm_offset_t 1868 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1869 { 1870 vm_map_entry_t header, llist, rlist, root, y; 1871 vm_size_t left_length, max_free_left, max_free_right; 1872 vm_offset_t gap_end; 1873 1874 VM_MAP_ASSERT_LOCKED(map); 1875 1876 /* 1877 * Request must fit within min/max VM address and must avoid 1878 * address wrap. 1879 */ 1880 start = MAX(start, vm_map_min(map)); 1881 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1882 return (vm_map_max(map) - length + 1); 1883 1884 /* Empty tree means wide open address space. */ 1885 if (map->root == NULL) 1886 return (start); 1887 1888 /* 1889 * After splay_split, if start is within an entry, push it to the start 1890 * of the following gap. If rlist is at the end of the gap containing 1891 * start, save the end of that gap in gap_end to see if the gap is big 1892 * enough; otherwise set gap_end to start skip gap-checking and move 1893 * directly to a search of the right subtree. 1894 */ 1895 header = &map->header; 1896 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1897 gap_end = rlist->start; 1898 if (root != NULL) { 1899 start = root->end; 1900 if (root->right != rlist) 1901 gap_end = start; 1902 max_free_left = vm_map_splay_merge_left(header, root, llist); 1903 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1904 } else if (rlist != header) { 1905 root = rlist; 1906 rlist = root->left; 1907 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1908 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1909 } else { 1910 root = llist; 1911 llist = root->right; 1912 max_free_left = vm_map_splay_merge_left(header, root, llist); 1913 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1914 } 1915 root->max_free = vm_size_max(max_free_left, max_free_right); 1916 map->root = root; 1917 VM_MAP_ASSERT_CONSISTENT(map); 1918 if (length <= gap_end - start) 1919 return (start); 1920 1921 /* With max_free, can immediately tell if no solution. */ 1922 if (root->right == header || length > root->right->max_free) 1923 return (vm_map_max(map) - length + 1); 1924 1925 /* 1926 * Splay for the least large-enough gap in the right subtree. 1927 */ 1928 llist = rlist = header; 1929 for (left_length = 0;; 1930 left_length = vm_map_entry_max_free_left(root, llist)) { 1931 if (length <= left_length) 1932 SPLAY_LEFT_STEP(root, y, llist, rlist, 1933 length <= vm_map_entry_max_free_left(y, llist)); 1934 else 1935 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1936 length > vm_map_entry_max_free_left(y, root)); 1937 if (root == NULL) 1938 break; 1939 } 1940 root = llist; 1941 llist = root->right; 1942 max_free_left = vm_map_splay_merge_left(header, root, llist); 1943 if (rlist == header) { 1944 root->max_free = vm_size_max(max_free_left, 1945 vm_map_splay_merge_succ(header, root, rlist)); 1946 } else { 1947 y = rlist; 1948 rlist = y->left; 1949 y->max_free = vm_size_max( 1950 vm_map_splay_merge_pred(root, y, root), 1951 vm_map_splay_merge_right(header, y, rlist)); 1952 root->max_free = vm_size_max(max_free_left, y->max_free); 1953 } 1954 map->root = root; 1955 VM_MAP_ASSERT_CONSISTENT(map); 1956 return (root->end); 1957 } 1958 1959 int 1960 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1961 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1962 vm_prot_t max, int cow) 1963 { 1964 vm_offset_t end; 1965 int result; 1966 1967 end = start + length; 1968 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 1969 ("vm_map_fixed: non-NULL backing object for stack")); 1970 vm_map_lock(map); 1971 VM_MAP_RANGE_CHECK(map, start, end); 1972 if ((cow & MAP_CHECK_EXCL) == 0) { 1973 result = vm_map_delete(map, start, end); 1974 if (result != KERN_SUCCESS) 1975 goto out; 1976 } 1977 if ((cow & MAP_STACK_AREA) != 0) { 1978 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1979 prot, max, cow); 1980 } else { 1981 result = vm_map_insert(map, object, offset, start, end, 1982 prot, max, cow); 1983 } 1984 out: 1985 vm_map_unlock(map); 1986 return (result); 1987 } 1988 1989 #if VM_NRESERVLEVEL <= 1 1990 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1991 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1992 #elif VM_NRESERVLEVEL == 2 1993 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10}; 1994 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4}; 1995 #else 1996 #error "Unsupported VM_NRESERVLEVEL" 1997 #endif 1998 1999 static int cluster_anon = 1; 2000 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2001 &cluster_anon, 0, 2002 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2003 2004 static bool 2005 clustering_anon_allowed(vm_offset_t addr, int cow) 2006 { 2007 2008 switch (cluster_anon) { 2009 case 0: 2010 return (false); 2011 case 1: 2012 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2013 case 2: 2014 default: 2015 return (true); 2016 } 2017 } 2018 2019 static long aslr_restarts; 2020 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2021 &aslr_restarts, 0, 2022 "Number of aslr failures"); 2023 2024 /* 2025 * Searches for the specified amount of free space in the given map with the 2026 * specified alignment. Performs an address-ordered, first-fit search from 2027 * the given address "*addr", with an optional upper bound "max_addr". If the 2028 * parameter "alignment" is zero, then the alignment is computed from the 2029 * given (object, offset) pair so as to enable the greatest possible use of 2030 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2031 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2032 * 2033 * The map must be locked. Initially, there must be at least "length" bytes 2034 * of free space at the given address. 2035 */ 2036 static int 2037 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2038 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2039 vm_offset_t alignment) 2040 { 2041 vm_offset_t aligned_addr, free_addr; 2042 2043 VM_MAP_ASSERT_LOCKED(map); 2044 free_addr = *addr; 2045 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2046 ("caller failed to provide space %#jx at address %p", 2047 (uintmax_t)length, (void *)free_addr)); 2048 for (;;) { 2049 /* 2050 * At the start of every iteration, the free space at address 2051 * "*addr" is at least "length" bytes. 2052 */ 2053 if (alignment == 0) 2054 pmap_align_superpage(object, offset, addr, length); 2055 else 2056 *addr = roundup2(*addr, alignment); 2057 aligned_addr = *addr; 2058 if (aligned_addr == free_addr) { 2059 /* 2060 * Alignment did not change "*addr", so "*addr" must 2061 * still provide sufficient free space. 2062 */ 2063 return (KERN_SUCCESS); 2064 } 2065 2066 /* 2067 * Test for address wrap on "*addr". A wrapped "*addr" could 2068 * be a valid address, in which case vm_map_findspace() cannot 2069 * be relied upon to fail. 2070 */ 2071 if (aligned_addr < free_addr) 2072 return (KERN_NO_SPACE); 2073 *addr = vm_map_findspace(map, aligned_addr, length); 2074 if (*addr + length > vm_map_max(map) || 2075 (max_addr != 0 && *addr + length > max_addr)) 2076 return (KERN_NO_SPACE); 2077 free_addr = *addr; 2078 if (free_addr == aligned_addr) { 2079 /* 2080 * If a successful call to vm_map_findspace() did not 2081 * change "*addr", then "*addr" must still be aligned 2082 * and provide sufficient free space. 2083 */ 2084 return (KERN_SUCCESS); 2085 } 2086 } 2087 } 2088 2089 int 2090 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2091 vm_offset_t max_addr, vm_offset_t alignment) 2092 { 2093 /* XXXKIB ASLR eh ? */ 2094 *addr = vm_map_findspace(map, *addr, length); 2095 if (*addr + length > vm_map_max(map) || 2096 (max_addr != 0 && *addr + length > max_addr)) 2097 return (KERN_NO_SPACE); 2098 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2099 alignment)); 2100 } 2101 2102 /* 2103 * vm_map_find finds an unallocated region in the target address 2104 * map with the given length. The search is defined to be 2105 * first-fit from the specified address; the region found is 2106 * returned in the same parameter. 2107 * 2108 * If object is non-NULL, ref count must be bumped by caller 2109 * prior to making call to account for the new entry. 2110 */ 2111 int 2112 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2113 vm_offset_t *addr, /* IN/OUT */ 2114 vm_size_t length, vm_offset_t max_addr, int find_space, 2115 vm_prot_t prot, vm_prot_t max, int cow) 2116 { 2117 int rv; 2118 2119 vm_map_lock(map); 2120 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr, 2121 find_space, prot, max, cow); 2122 vm_map_unlock(map); 2123 return (rv); 2124 } 2125 2126 int 2127 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2128 vm_offset_t *addr, /* IN/OUT */ 2129 vm_size_t length, vm_offset_t max_addr, int find_space, 2130 vm_prot_t prot, vm_prot_t max, int cow) 2131 { 2132 vm_offset_t alignment, curr_min_addr, min_addr; 2133 int gap, pidx, rv, try; 2134 bool cluster, en_aslr, update_anon; 2135 2136 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 2137 ("non-NULL backing object for stack")); 2138 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2139 (cow & MAP_STACK_AREA) == 0)); 2140 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2141 (object->flags & OBJ_COLORED) == 0)) 2142 find_space = VMFS_ANY_SPACE; 2143 if (find_space >> 8 != 0) { 2144 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2145 alignment = (vm_offset_t)1 << (find_space >> 8); 2146 } else 2147 alignment = 0; 2148 en_aslr = (map->flags & MAP_ASLR) != 0; 2149 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2150 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2151 find_space != VMFS_NO_SPACE && object == NULL && 2152 (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 && 2153 prot != PROT_NONE; 2154 curr_min_addr = min_addr = *addr; 2155 if (en_aslr && min_addr == 0 && !cluster && 2156 find_space != VMFS_NO_SPACE && 2157 (map->flags & MAP_ASLR_IGNSTART) != 0) 2158 curr_min_addr = min_addr = vm_map_min(map); 2159 try = 0; 2160 if (cluster) { 2161 curr_min_addr = map->anon_loc; 2162 if (curr_min_addr == 0) 2163 cluster = false; 2164 } 2165 if (find_space != VMFS_NO_SPACE) { 2166 KASSERT(find_space == VMFS_ANY_SPACE || 2167 find_space == VMFS_OPTIMAL_SPACE || 2168 find_space == VMFS_SUPER_SPACE || 2169 alignment != 0, ("unexpected VMFS flag")); 2170 again: 2171 /* 2172 * When creating an anonymous mapping, try clustering 2173 * with an existing anonymous mapping first. 2174 * 2175 * We make up to two attempts to find address space 2176 * for a given find_space value. The first attempt may 2177 * apply randomization or may cluster with an existing 2178 * anonymous mapping. If this first attempt fails, 2179 * perform a first-fit search of the available address 2180 * space. 2181 * 2182 * If all tries failed, and find_space is 2183 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2184 * Again enable clustering and randomization. 2185 */ 2186 try++; 2187 MPASS(try <= 2); 2188 2189 if (try == 2) { 2190 /* 2191 * Second try: we failed either to find a 2192 * suitable region for randomizing the 2193 * allocation, or to cluster with an existing 2194 * mapping. Retry with free run. 2195 */ 2196 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2197 vm_map_min(map) : min_addr; 2198 atomic_add_long(&aslr_restarts, 1); 2199 } 2200 2201 if (try == 1 && en_aslr && !cluster) { 2202 /* 2203 * Find space for allocation, including 2204 * gap needed for later randomization. 2205 */ 2206 pidx = 0; 2207 #if VM_NRESERVLEVEL > 0 2208 if ((find_space == VMFS_SUPER_SPACE || 2209 find_space == VMFS_OPTIMAL_SPACE) && 2210 pagesizes[VM_NRESERVLEVEL] != 0) { 2211 /* 2212 * Do not pointlessly increase the space that 2213 * is requested from vm_map_findspace(). 2214 * pmap_align_superpage() will only change a 2215 * mapping's alignment if that mapping is at 2216 * least a superpage in size. 2217 */ 2218 pidx = VM_NRESERVLEVEL; 2219 while (pidx > 0 && length < pagesizes[pidx]) 2220 pidx--; 2221 } 2222 #endif 2223 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2224 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2225 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2226 *addr = vm_map_findspace(map, curr_min_addr, 2227 length + gap * pagesizes[pidx]); 2228 if (*addr + length + gap * pagesizes[pidx] > 2229 vm_map_max(map)) 2230 goto again; 2231 /* And randomize the start address. */ 2232 *addr += (arc4random() % gap) * pagesizes[pidx]; 2233 if (max_addr != 0 && *addr + length > max_addr) 2234 goto again; 2235 } else { 2236 *addr = vm_map_findspace(map, curr_min_addr, length); 2237 if (*addr + length > vm_map_max(map) || 2238 (max_addr != 0 && *addr + length > max_addr)) { 2239 if (cluster) { 2240 cluster = false; 2241 MPASS(try == 1); 2242 goto again; 2243 } 2244 return (KERN_NO_SPACE); 2245 } 2246 } 2247 2248 if (find_space != VMFS_ANY_SPACE && 2249 (rv = vm_map_alignspace(map, object, offset, addr, length, 2250 max_addr, alignment)) != KERN_SUCCESS) { 2251 if (find_space == VMFS_OPTIMAL_SPACE) { 2252 find_space = VMFS_ANY_SPACE; 2253 curr_min_addr = min_addr; 2254 cluster = update_anon; 2255 try = 0; 2256 goto again; 2257 } 2258 return (rv); 2259 } 2260 } else if ((cow & MAP_REMAP) != 0) { 2261 if (!vm_map_range_valid(map, *addr, *addr + length)) 2262 return (KERN_INVALID_ADDRESS); 2263 rv = vm_map_delete(map, *addr, *addr + length); 2264 if (rv != KERN_SUCCESS) 2265 return (rv); 2266 } 2267 if ((cow & MAP_STACK_AREA) != 0) { 2268 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2269 max, cow); 2270 } else { 2271 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2272 prot, max, cow); 2273 } 2274 2275 /* 2276 * Update the starting address for clustered anonymous memory mappings 2277 * if a starting address was not previously defined or an ASLR restart 2278 * placed an anonymous memory mapping at a lower address. 2279 */ 2280 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 || 2281 *addr < map->anon_loc)) 2282 map->anon_loc = *addr; 2283 return (rv); 2284 } 2285 2286 /* 2287 * vm_map_find_min() is a variant of vm_map_find() that takes an 2288 * additional parameter ("default_addr") and treats the given address 2289 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2290 * and not as the minimum address where the mapping is created. 2291 * 2292 * This function works in two phases. First, it tries to 2293 * allocate above the hint. If that fails and the hint is 2294 * greater than "default_addr", it performs a second pass, replacing 2295 * the hint with "default_addr" as the minimum address for the 2296 * allocation. 2297 */ 2298 int 2299 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2300 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2301 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2302 int cow) 2303 { 2304 vm_offset_t hint; 2305 int rv; 2306 2307 hint = *addr; 2308 if (hint == 0) { 2309 cow |= MAP_NO_HINT; 2310 *addr = hint = default_addr; 2311 } 2312 for (;;) { 2313 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2314 find_space, prot, max, cow); 2315 if (rv == KERN_SUCCESS || default_addr >= hint) 2316 return (rv); 2317 *addr = hint = default_addr; 2318 } 2319 } 2320 2321 /* 2322 * A map entry with any of the following flags set must not be merged with 2323 * another entry. 2324 */ 2325 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \ 2326 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2327 MAP_ENTRY_STACK_GAP) 2328 2329 static bool 2330 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2331 { 2332 2333 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2334 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2335 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2336 prev, entry)); 2337 return (prev->end == entry->start && 2338 prev->object.vm_object == entry->object.vm_object && 2339 (prev->object.vm_object == NULL || 2340 prev->offset + (prev->end - prev->start) == entry->offset) && 2341 prev->eflags == entry->eflags && 2342 prev->protection == entry->protection && 2343 prev->max_protection == entry->max_protection && 2344 prev->inheritance == entry->inheritance && 2345 prev->wired_count == entry->wired_count && 2346 prev->cred == entry->cred); 2347 } 2348 2349 static void 2350 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2351 { 2352 2353 /* 2354 * If the backing object is a vnode object, vm_object_deallocate() 2355 * calls vrele(). However, vrele() does not lock the vnode because 2356 * the vnode has additional references. Thus, the map lock can be 2357 * kept without causing a lock-order reversal with the vnode lock. 2358 * 2359 * Since we count the number of virtual page mappings in 2360 * object->un_pager.vnp.writemappings, the writemappings value 2361 * should not be adjusted when the entry is disposed of. 2362 */ 2363 if (entry->object.vm_object != NULL) 2364 vm_object_deallocate(entry->object.vm_object); 2365 if (entry->cred != NULL) 2366 crfree(entry->cred); 2367 vm_map_entry_dispose(map, entry); 2368 } 2369 2370 /* 2371 * vm_map_try_merge_entries: 2372 * 2373 * Compare two map entries that represent consecutive ranges. If 2374 * the entries can be merged, expand the range of the second to 2375 * cover the range of the first and delete the first. Then return 2376 * the map entry that includes the first range. 2377 * 2378 * The map must be locked. 2379 */ 2380 vm_map_entry_t 2381 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2382 vm_map_entry_t entry) 2383 { 2384 2385 VM_MAP_ASSERT_LOCKED(map); 2386 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2387 vm_map_mergeable_neighbors(prev_entry, entry)) { 2388 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2389 vm_map_merged_neighbor_dispose(map, prev_entry); 2390 return (entry); 2391 } 2392 return (prev_entry); 2393 } 2394 2395 /* 2396 * vm_map_entry_back: 2397 * 2398 * Allocate an object to back a map entry. 2399 */ 2400 static inline void 2401 vm_map_entry_back(vm_map_entry_t entry) 2402 { 2403 vm_object_t object; 2404 2405 KASSERT(entry->object.vm_object == NULL, 2406 ("map entry %p has backing object", entry)); 2407 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2408 ("map entry %p is a submap", entry)); 2409 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2410 entry->cred, entry->end - entry->start); 2411 entry->object.vm_object = object; 2412 entry->offset = 0; 2413 entry->cred = NULL; 2414 } 2415 2416 /* 2417 * vm_map_entry_charge_object 2418 * 2419 * If there is no object backing this entry, create one. Otherwise, if 2420 * the entry has cred, give it to the backing object. 2421 */ 2422 static inline void 2423 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2424 { 2425 2426 VM_MAP_ASSERT_LOCKED(map); 2427 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2428 ("map entry %p is a submap", entry)); 2429 if (entry->object.vm_object == NULL && !vm_map_is_system(map) && 2430 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2431 vm_map_entry_back(entry); 2432 else if (entry->object.vm_object != NULL && 2433 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2434 entry->cred != NULL) { 2435 VM_OBJECT_WLOCK(entry->object.vm_object); 2436 KASSERT(entry->object.vm_object->cred == NULL, 2437 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2438 entry->object.vm_object->cred = entry->cred; 2439 entry->object.vm_object->charge = entry->end - entry->start; 2440 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2441 entry->cred = NULL; 2442 } 2443 } 2444 2445 /* 2446 * vm_map_entry_clone 2447 * 2448 * Create a duplicate map entry for clipping. 2449 */ 2450 static vm_map_entry_t 2451 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2452 { 2453 vm_map_entry_t new_entry; 2454 2455 VM_MAP_ASSERT_LOCKED(map); 2456 2457 /* 2458 * Create a backing object now, if none exists, so that more individual 2459 * objects won't be created after the map entry is split. 2460 */ 2461 vm_map_entry_charge_object(map, entry); 2462 2463 /* Clone the entry. */ 2464 new_entry = vm_map_entry_create(map); 2465 *new_entry = *entry; 2466 if (new_entry->cred != NULL) 2467 crhold(entry->cred); 2468 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2469 vm_object_reference(new_entry->object.vm_object); 2470 vm_map_entry_set_vnode_text(new_entry, true); 2471 /* 2472 * The object->un_pager.vnp.writemappings for the object of 2473 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2474 * virtual pages are re-distributed among the clipped entries, 2475 * so the sum is left the same. 2476 */ 2477 } 2478 return (new_entry); 2479 } 2480 2481 /* 2482 * vm_map_clip_start: [ internal use only ] 2483 * 2484 * Asserts that the given entry begins at or after 2485 * the specified address; if necessary, 2486 * it splits the entry into two. 2487 */ 2488 static int 2489 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2490 { 2491 vm_map_entry_t new_entry; 2492 int bdry_idx; 2493 2494 if (!vm_map_is_system(map)) 2495 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2496 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2497 (uintmax_t)startaddr); 2498 2499 if (startaddr <= entry->start) 2500 return (KERN_SUCCESS); 2501 2502 VM_MAP_ASSERT_LOCKED(map); 2503 KASSERT(entry->end > startaddr && entry->start < startaddr, 2504 ("%s: invalid clip of entry %p", __func__, entry)); 2505 2506 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2507 if (bdry_idx != 0) { 2508 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2509 return (KERN_INVALID_ARGUMENT); 2510 } 2511 2512 new_entry = vm_map_entry_clone(map, entry); 2513 2514 /* 2515 * Split off the front portion. Insert the new entry BEFORE this one, 2516 * so that this entry has the specified starting address. 2517 */ 2518 new_entry->end = startaddr; 2519 vm_map_entry_link(map, new_entry); 2520 return (KERN_SUCCESS); 2521 } 2522 2523 /* 2524 * vm_map_lookup_clip_start: 2525 * 2526 * Find the entry at or just after 'start', and clip it if 'start' is in 2527 * the interior of the entry. Return entry after 'start', and in 2528 * prev_entry set the entry before 'start'. 2529 */ 2530 static int 2531 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2532 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2533 { 2534 vm_map_entry_t entry; 2535 int rv; 2536 2537 if (!vm_map_is_system(map)) 2538 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2539 "%s: map %p start 0x%jx prev %p", __func__, map, 2540 (uintmax_t)start, prev_entry); 2541 2542 if (vm_map_lookup_entry(map, start, prev_entry)) { 2543 entry = *prev_entry; 2544 rv = vm_map_clip_start(map, entry, start); 2545 if (rv != KERN_SUCCESS) 2546 return (rv); 2547 *prev_entry = vm_map_entry_pred(entry); 2548 } else 2549 entry = vm_map_entry_succ(*prev_entry); 2550 *res_entry = entry; 2551 return (KERN_SUCCESS); 2552 } 2553 2554 /* 2555 * vm_map_clip_end: [ internal use only ] 2556 * 2557 * Asserts that the given entry ends at or before 2558 * the specified address; if necessary, 2559 * it splits the entry into two. 2560 */ 2561 static int 2562 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2563 { 2564 vm_map_entry_t new_entry; 2565 int bdry_idx; 2566 2567 if (!vm_map_is_system(map)) 2568 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2569 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2570 (uintmax_t)endaddr); 2571 2572 if (endaddr >= entry->end) 2573 return (KERN_SUCCESS); 2574 2575 VM_MAP_ASSERT_LOCKED(map); 2576 KASSERT(entry->start < endaddr && entry->end > endaddr, 2577 ("%s: invalid clip of entry %p", __func__, entry)); 2578 2579 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2580 if (bdry_idx != 0) { 2581 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2582 return (KERN_INVALID_ARGUMENT); 2583 } 2584 2585 new_entry = vm_map_entry_clone(map, entry); 2586 2587 /* 2588 * Split off the back portion. Insert the new entry AFTER this one, 2589 * so that this entry has the specified ending address. 2590 */ 2591 new_entry->start = endaddr; 2592 vm_map_entry_link(map, new_entry); 2593 2594 return (KERN_SUCCESS); 2595 } 2596 2597 /* 2598 * vm_map_submap: [ kernel use only ] 2599 * 2600 * Mark the given range as handled by a subordinate map. 2601 * 2602 * This range must have been created with vm_map_find, 2603 * and no other operations may have been performed on this 2604 * range prior to calling vm_map_submap. 2605 * 2606 * Only a limited number of operations can be performed 2607 * within this rage after calling vm_map_submap: 2608 * vm_fault 2609 * [Don't try vm_map_copy!] 2610 * 2611 * To remove a submapping, one must first remove the 2612 * range from the superior map, and then destroy the 2613 * submap (if desired). [Better yet, don't try it.] 2614 */ 2615 int 2616 vm_map_submap( 2617 vm_map_t map, 2618 vm_offset_t start, 2619 vm_offset_t end, 2620 vm_map_t submap) 2621 { 2622 vm_map_entry_t entry; 2623 int result; 2624 2625 result = KERN_INVALID_ARGUMENT; 2626 2627 vm_map_lock(submap); 2628 submap->flags |= MAP_IS_SUB_MAP; 2629 vm_map_unlock(submap); 2630 2631 vm_map_lock(map); 2632 VM_MAP_RANGE_CHECK(map, start, end); 2633 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2634 (entry->eflags & MAP_ENTRY_COW) == 0 && 2635 entry->object.vm_object == NULL) { 2636 result = vm_map_clip_start(map, entry, start); 2637 if (result != KERN_SUCCESS) 2638 goto unlock; 2639 result = vm_map_clip_end(map, entry, end); 2640 if (result != KERN_SUCCESS) 2641 goto unlock; 2642 entry->object.sub_map = submap; 2643 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2644 result = KERN_SUCCESS; 2645 } 2646 unlock: 2647 vm_map_unlock(map); 2648 2649 if (result != KERN_SUCCESS) { 2650 vm_map_lock(submap); 2651 submap->flags &= ~MAP_IS_SUB_MAP; 2652 vm_map_unlock(submap); 2653 } 2654 return (result); 2655 } 2656 2657 /* 2658 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2659 */ 2660 #define MAX_INIT_PT 96 2661 2662 /* 2663 * vm_map_pmap_enter: 2664 * 2665 * Preload the specified map's pmap with mappings to the specified 2666 * object's memory-resident pages. No further physical pages are 2667 * allocated, and no further virtual pages are retrieved from secondary 2668 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2669 * limited number of page mappings are created at the low-end of the 2670 * specified address range. (For this purpose, a superpage mapping 2671 * counts as one page mapping.) Otherwise, all resident pages within 2672 * the specified address range are mapped. 2673 */ 2674 static void 2675 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2676 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2677 { 2678 struct pctrie_iter pages; 2679 vm_offset_t start; 2680 vm_page_t p, p_start; 2681 vm_pindex_t jump, mask, psize, threshold, tmpidx; 2682 int psind; 2683 2684 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2685 return; 2686 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2687 VM_OBJECT_WLOCK(object); 2688 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2689 pmap_object_init_pt(map->pmap, addr, object, pindex, 2690 size); 2691 VM_OBJECT_WUNLOCK(object); 2692 return; 2693 } 2694 VM_OBJECT_LOCK_DOWNGRADE(object); 2695 } else 2696 VM_OBJECT_RLOCK(object); 2697 2698 psize = atop(size); 2699 if (psize + pindex > object->size) { 2700 if (pindex >= object->size) { 2701 VM_OBJECT_RUNLOCK(object); 2702 return; 2703 } 2704 psize = object->size - pindex; 2705 } 2706 2707 start = 0; 2708 p_start = NULL; 2709 threshold = MAX_INIT_PT; 2710 2711 vm_page_iter_limit_init(&pages, object, pindex + psize); 2712 for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL; 2713 p = vm_radix_iter_jump(&pages, jump)) { 2714 /* 2715 * don't allow an madvise to blow away our really 2716 * free pages allocating pv entries. 2717 */ 2718 tmpidx = p->pindex - pindex; 2719 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2720 vm_page_count_severe()) || 2721 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2722 tmpidx >= threshold)) { 2723 psize = tmpidx; 2724 break; 2725 } 2726 jump = 1; 2727 if (vm_page_all_valid(p)) { 2728 if (p_start == NULL) { 2729 start = addr + ptoa(tmpidx); 2730 p_start = p; 2731 } 2732 /* Jump ahead if a superpage mapping is possible. */ 2733 for (psind = p->psind; psind > 0; psind--) { 2734 if (((addr + ptoa(tmpidx)) & 2735 (pagesizes[psind] - 1)) == 0) { 2736 mask = atop(pagesizes[psind]) - 1; 2737 if (tmpidx + mask < psize && 2738 vm_page_ps_test(p, psind, 2739 PS_ALL_VALID, NULL)) { 2740 jump += mask; 2741 threshold += mask; 2742 break; 2743 } 2744 } 2745 } 2746 } else if (p_start != NULL) { 2747 pmap_enter_object(map->pmap, start, addr + 2748 ptoa(tmpidx), p_start, prot); 2749 p_start = NULL; 2750 } 2751 } 2752 if (p_start != NULL) 2753 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2754 p_start, prot); 2755 VM_OBJECT_RUNLOCK(object); 2756 } 2757 2758 static void 2759 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2760 vm_prot_t new_maxprot, int flags) 2761 { 2762 vm_prot_t old_prot; 2763 2764 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2765 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 2766 return; 2767 2768 old_prot = PROT_EXTRACT(entry->offset); 2769 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2770 entry->offset = PROT_MAX(new_maxprot) | 2771 (new_maxprot & old_prot); 2772 } 2773 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2774 entry->offset = new_prot | PROT_MAX( 2775 PROT_MAX_EXTRACT(entry->offset)); 2776 } 2777 } 2778 2779 /* 2780 * vm_map_protect: 2781 * 2782 * Sets the protection and/or the maximum protection of the 2783 * specified address region in the target map. 2784 */ 2785 int 2786 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2787 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2788 { 2789 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2790 vm_object_t obj; 2791 struct ucred *cred; 2792 vm_offset_t orig_start; 2793 vm_prot_t check_prot, max_prot, old_prot; 2794 int rv; 2795 2796 if (start == end) 2797 return (KERN_SUCCESS); 2798 2799 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2800 VM_MAP_PROTECT_SET_MAXPROT) && 2801 !CONTAINS_BITS(new_maxprot, new_prot)) 2802 return (KERN_OUT_OF_BOUNDS); 2803 2804 orig_start = start; 2805 again: 2806 in_tran = NULL; 2807 start = orig_start; 2808 vm_map_lock(map); 2809 2810 if ((map->flags & MAP_WXORX) != 0 && 2811 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2812 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2813 vm_map_unlock(map); 2814 return (KERN_PROTECTION_FAILURE); 2815 } 2816 2817 /* 2818 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2819 * need to fault pages into the map and will drop the map lock while 2820 * doing so, and the VM object may end up in an inconsistent state if we 2821 * update the protection on the map entry in between faults. 2822 */ 2823 vm_map_wait_busy(map); 2824 2825 VM_MAP_RANGE_CHECK(map, start, end); 2826 2827 if (!vm_map_lookup_entry(map, start, &first_entry)) 2828 first_entry = vm_map_entry_succ(first_entry); 2829 2830 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2831 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2832 /* 2833 * Handle Linux's PROT_GROWSDOWN flag. 2834 * It means that protection is applied down to the 2835 * whole stack, including the specified range of the 2836 * mapped region, and the grow down region (AKA 2837 * guard). 2838 */ 2839 while (!CONTAINS_BITS(first_entry->eflags, 2840 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) && 2841 first_entry != vm_map_entry_first(map)) 2842 first_entry = vm_map_entry_pred(first_entry); 2843 start = first_entry->start; 2844 } 2845 2846 /* 2847 * Make a first pass to check for protection violations. 2848 */ 2849 check_prot = 0; 2850 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2851 check_prot |= new_prot; 2852 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2853 check_prot |= new_maxprot; 2854 for (entry = first_entry; entry->start < end; 2855 entry = vm_map_entry_succ(entry)) { 2856 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2857 vm_map_unlock(map); 2858 return (KERN_INVALID_ARGUMENT); 2859 } 2860 if ((entry->eflags & (MAP_ENTRY_GUARD | 2861 MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD) 2862 continue; 2863 max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ? 2864 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2865 if (!CONTAINS_BITS(max_prot, check_prot)) { 2866 vm_map_unlock(map); 2867 return (KERN_PROTECTION_FAILURE); 2868 } 2869 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2870 in_tran = entry; 2871 } 2872 2873 /* 2874 * Postpone the operation until all in-transition map entries have 2875 * stabilized. An in-transition entry might already have its pages 2876 * wired and wired_count incremented, but not yet have its 2877 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2878 * vm_fault_copy_entry() in the final loop below. 2879 */ 2880 if (in_tran != NULL) { 2881 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2882 vm_map_unlock_and_wait(map, 0); 2883 goto again; 2884 } 2885 2886 /* 2887 * Before changing the protections, try to reserve swap space for any 2888 * private (i.e., copy-on-write) mappings that are transitioning from 2889 * read-only to read/write access. If a reservation fails, break out 2890 * of this loop early and let the next loop simplify the entries, since 2891 * some may now be mergeable. 2892 */ 2893 rv = vm_map_clip_start(map, first_entry, start); 2894 if (rv != KERN_SUCCESS) { 2895 vm_map_unlock(map); 2896 return (rv); 2897 } 2898 for (entry = first_entry; entry->start < end; 2899 entry = vm_map_entry_succ(entry)) { 2900 rv = vm_map_clip_end(map, entry, end); 2901 if (rv != KERN_SUCCESS) { 2902 vm_map_unlock(map); 2903 return (rv); 2904 } 2905 2906 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2907 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2908 ENTRY_CHARGED(entry) || 2909 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2910 continue; 2911 2912 cred = curthread->td_ucred; 2913 obj = entry->object.vm_object; 2914 2915 if (obj == NULL || 2916 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2917 if (!swap_reserve(entry->end - entry->start)) { 2918 rv = KERN_RESOURCE_SHORTAGE; 2919 end = entry->end; 2920 break; 2921 } 2922 crhold(cred); 2923 entry->cred = cred; 2924 continue; 2925 } 2926 2927 VM_OBJECT_WLOCK(obj); 2928 if ((obj->flags & OBJ_SWAP) == 0) { 2929 VM_OBJECT_WUNLOCK(obj); 2930 continue; 2931 } 2932 2933 /* 2934 * Charge for the whole object allocation now, since 2935 * we cannot distinguish between non-charged and 2936 * charged clipped mapping of the same object later. 2937 */ 2938 KASSERT(obj->charge == 0, 2939 ("vm_map_protect: object %p overcharged (entry %p)", 2940 obj, entry)); 2941 if (!swap_reserve(ptoa(obj->size))) { 2942 VM_OBJECT_WUNLOCK(obj); 2943 rv = KERN_RESOURCE_SHORTAGE; 2944 end = entry->end; 2945 break; 2946 } 2947 2948 crhold(cred); 2949 obj->cred = cred; 2950 obj->charge = ptoa(obj->size); 2951 VM_OBJECT_WUNLOCK(obj); 2952 } 2953 2954 /* 2955 * If enough swap space was available, go back and fix up protections. 2956 * Otherwise, just simplify entries, since some may have been modified. 2957 * [Note that clipping is not necessary the second time.] 2958 */ 2959 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2960 entry->start < end; 2961 vm_map_try_merge_entries(map, prev_entry, entry), 2962 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2963 if (rv != KERN_SUCCESS) 2964 continue; 2965 2966 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2967 vm_map_protect_guard(entry, new_prot, new_maxprot, 2968 flags); 2969 continue; 2970 } 2971 2972 old_prot = entry->protection; 2973 2974 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2975 entry->max_protection = new_maxprot; 2976 entry->protection = new_maxprot & old_prot; 2977 } 2978 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2979 entry->protection = new_prot; 2980 2981 /* 2982 * For user wired map entries, the normal lazy evaluation of 2983 * write access upgrades through soft page faults is 2984 * undesirable. Instead, immediately copy any pages that are 2985 * copy-on-write and enable write access in the physical map. 2986 */ 2987 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2988 (entry->protection & VM_PROT_WRITE) != 0 && 2989 (old_prot & VM_PROT_WRITE) == 0) 2990 vm_fault_copy_entry(map, map, entry, entry, NULL); 2991 2992 /* 2993 * When restricting access, update the physical map. Worry 2994 * about copy-on-write here. 2995 */ 2996 if ((old_prot & ~entry->protection) != 0) { 2997 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2998 VM_PROT_ALL) 2999 pmap_protect(map->pmap, entry->start, 3000 entry->end, 3001 entry->protection & MASK(entry)); 3002 #undef MASK 3003 } 3004 } 3005 vm_map_try_merge_entries(map, prev_entry, entry); 3006 vm_map_unlock(map); 3007 return (rv); 3008 } 3009 3010 /* 3011 * vm_map_madvise: 3012 * 3013 * This routine traverses a processes map handling the madvise 3014 * system call. Advisories are classified as either those effecting 3015 * the vm_map_entry structure, or those effecting the underlying 3016 * objects. 3017 */ 3018 int 3019 vm_map_madvise( 3020 vm_map_t map, 3021 vm_offset_t start, 3022 vm_offset_t end, 3023 int behav) 3024 { 3025 vm_map_entry_t entry, prev_entry; 3026 int rv; 3027 bool modify_map; 3028 3029 /* 3030 * Some madvise calls directly modify the vm_map_entry, in which case 3031 * we need to use an exclusive lock on the map and we need to perform 3032 * various clipping operations. Otherwise we only need a read-lock 3033 * on the map. 3034 */ 3035 switch(behav) { 3036 case MADV_NORMAL: 3037 case MADV_SEQUENTIAL: 3038 case MADV_RANDOM: 3039 case MADV_NOSYNC: 3040 case MADV_AUTOSYNC: 3041 case MADV_NOCORE: 3042 case MADV_CORE: 3043 if (start == end) 3044 return (0); 3045 modify_map = true; 3046 vm_map_lock(map); 3047 break; 3048 case MADV_WILLNEED: 3049 case MADV_DONTNEED: 3050 case MADV_FREE: 3051 if (start == end) 3052 return (0); 3053 modify_map = false; 3054 vm_map_lock_read(map); 3055 break; 3056 default: 3057 return (EINVAL); 3058 } 3059 3060 /* 3061 * Locate starting entry and clip if necessary. 3062 */ 3063 VM_MAP_RANGE_CHECK(map, start, end); 3064 3065 if (modify_map) { 3066 /* 3067 * madvise behaviors that are implemented in the vm_map_entry. 3068 * 3069 * We clip the vm_map_entry so that behavioral changes are 3070 * limited to the specified address range. 3071 */ 3072 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3073 if (rv != KERN_SUCCESS) { 3074 vm_map_unlock(map); 3075 return (vm_mmap_to_errno(rv)); 3076 } 3077 3078 for (; entry->start < end; prev_entry = entry, 3079 entry = vm_map_entry_succ(entry)) { 3080 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3081 continue; 3082 3083 rv = vm_map_clip_end(map, entry, end); 3084 if (rv != KERN_SUCCESS) { 3085 vm_map_unlock(map); 3086 return (vm_mmap_to_errno(rv)); 3087 } 3088 3089 switch (behav) { 3090 case MADV_NORMAL: 3091 vm_map_entry_set_behavior(entry, 3092 MAP_ENTRY_BEHAV_NORMAL); 3093 break; 3094 case MADV_SEQUENTIAL: 3095 vm_map_entry_set_behavior(entry, 3096 MAP_ENTRY_BEHAV_SEQUENTIAL); 3097 break; 3098 case MADV_RANDOM: 3099 vm_map_entry_set_behavior(entry, 3100 MAP_ENTRY_BEHAV_RANDOM); 3101 break; 3102 case MADV_NOSYNC: 3103 entry->eflags |= MAP_ENTRY_NOSYNC; 3104 break; 3105 case MADV_AUTOSYNC: 3106 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3107 break; 3108 case MADV_NOCORE: 3109 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3110 break; 3111 case MADV_CORE: 3112 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3113 break; 3114 default: 3115 break; 3116 } 3117 vm_map_try_merge_entries(map, prev_entry, entry); 3118 } 3119 vm_map_try_merge_entries(map, prev_entry, entry); 3120 vm_map_unlock(map); 3121 } else { 3122 vm_pindex_t pstart, pend; 3123 3124 /* 3125 * madvise behaviors that are implemented in the underlying 3126 * vm_object. 3127 * 3128 * Since we don't clip the vm_map_entry, we have to clip 3129 * the vm_object pindex and count. 3130 */ 3131 if (!vm_map_lookup_entry(map, start, &entry)) 3132 entry = vm_map_entry_succ(entry); 3133 for (; entry->start < end; 3134 entry = vm_map_entry_succ(entry)) { 3135 vm_offset_t useEnd, useStart; 3136 3137 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | 3138 MAP_ENTRY_GUARD)) != 0) 3139 continue; 3140 3141 /* 3142 * MADV_FREE would otherwise rewind time to 3143 * the creation of the shadow object. Because 3144 * we hold the VM map read-locked, neither the 3145 * entry's object nor the presence of a 3146 * backing object can change. 3147 */ 3148 if (behav == MADV_FREE && 3149 entry->object.vm_object != NULL && 3150 entry->object.vm_object->backing_object != NULL) 3151 continue; 3152 3153 pstart = OFF_TO_IDX(entry->offset); 3154 pend = pstart + atop(entry->end - entry->start); 3155 useStart = entry->start; 3156 useEnd = entry->end; 3157 3158 if (entry->start < start) { 3159 pstart += atop(start - entry->start); 3160 useStart = start; 3161 } 3162 if (entry->end > end) { 3163 pend -= atop(entry->end - end); 3164 useEnd = end; 3165 } 3166 3167 if (pstart >= pend) 3168 continue; 3169 3170 /* 3171 * Perform the pmap_advise() before clearing 3172 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3173 * concurrent pmap operation, such as pmap_remove(), 3174 * could clear a reference in the pmap and set 3175 * PGA_REFERENCED on the page before the pmap_advise() 3176 * had completed. Consequently, the page would appear 3177 * referenced based upon an old reference that 3178 * occurred before this pmap_advise() ran. 3179 */ 3180 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3181 pmap_advise(map->pmap, useStart, useEnd, 3182 behav); 3183 3184 vm_object_madvise(entry->object.vm_object, pstart, 3185 pend, behav); 3186 3187 /* 3188 * Pre-populate paging structures in the 3189 * WILLNEED case. For wired entries, the 3190 * paging structures are already populated. 3191 */ 3192 if (behav == MADV_WILLNEED && 3193 entry->wired_count == 0) { 3194 vm_map_pmap_enter(map, 3195 useStart, 3196 entry->protection, 3197 entry->object.vm_object, 3198 pstart, 3199 ptoa(pend - pstart), 3200 MAP_PREFAULT_MADVISE 3201 ); 3202 } 3203 } 3204 vm_map_unlock_read(map); 3205 } 3206 return (0); 3207 } 3208 3209 /* 3210 * vm_map_inherit: 3211 * 3212 * Sets the inheritance of the specified address 3213 * range in the target map. Inheritance 3214 * affects how the map will be shared with 3215 * child maps at the time of vmspace_fork. 3216 */ 3217 int 3218 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3219 vm_inherit_t new_inheritance) 3220 { 3221 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3222 int rv; 3223 3224 switch (new_inheritance) { 3225 case VM_INHERIT_NONE: 3226 case VM_INHERIT_COPY: 3227 case VM_INHERIT_SHARE: 3228 case VM_INHERIT_ZERO: 3229 break; 3230 default: 3231 return (KERN_INVALID_ARGUMENT); 3232 } 3233 if (start == end) 3234 return (KERN_SUCCESS); 3235 vm_map_lock(map); 3236 VM_MAP_RANGE_CHECK(map, start, end); 3237 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3238 if (rv != KERN_SUCCESS) 3239 goto unlock; 3240 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3241 rv = vm_map_clip_end(map, lentry, end); 3242 if (rv != KERN_SUCCESS) 3243 goto unlock; 3244 } 3245 if (new_inheritance == VM_INHERIT_COPY) { 3246 for (entry = start_entry; entry->start < end; 3247 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3248 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3249 != 0) { 3250 rv = KERN_INVALID_ARGUMENT; 3251 goto unlock; 3252 } 3253 } 3254 } 3255 for (entry = start_entry; entry->start < end; prev_entry = entry, 3256 entry = vm_map_entry_succ(entry)) { 3257 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3258 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3259 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3260 new_inheritance != VM_INHERIT_ZERO) 3261 entry->inheritance = new_inheritance; 3262 vm_map_try_merge_entries(map, prev_entry, entry); 3263 } 3264 vm_map_try_merge_entries(map, prev_entry, entry); 3265 unlock: 3266 vm_map_unlock(map); 3267 return (rv); 3268 } 3269 3270 /* 3271 * vm_map_entry_in_transition: 3272 * 3273 * Release the map lock, and sleep until the entry is no longer in 3274 * transition. Awake and acquire the map lock. If the map changed while 3275 * another held the lock, lookup a possibly-changed entry at or after the 3276 * 'start' position of the old entry. 3277 */ 3278 static vm_map_entry_t 3279 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3280 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3281 { 3282 vm_map_entry_t entry; 3283 vm_offset_t start; 3284 u_int last_timestamp; 3285 3286 VM_MAP_ASSERT_LOCKED(map); 3287 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3288 ("not in-tranition map entry %p", in_entry)); 3289 /* 3290 * We have not yet clipped the entry. 3291 */ 3292 start = MAX(in_start, in_entry->start); 3293 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3294 last_timestamp = map->timestamp; 3295 if (vm_map_unlock_and_wait(map, 0)) { 3296 /* 3297 * Allow interruption of user wiring/unwiring? 3298 */ 3299 } 3300 vm_map_lock(map); 3301 if (last_timestamp + 1 == map->timestamp) 3302 return (in_entry); 3303 3304 /* 3305 * Look again for the entry because the map was modified while it was 3306 * unlocked. Specifically, the entry may have been clipped, merged, or 3307 * deleted. 3308 */ 3309 if (!vm_map_lookup_entry(map, start, &entry)) { 3310 if (!holes_ok) { 3311 *io_end = start; 3312 return (NULL); 3313 } 3314 entry = vm_map_entry_succ(entry); 3315 } 3316 return (entry); 3317 } 3318 3319 /* 3320 * vm_map_unwire: 3321 * 3322 * Implements both kernel and user unwiring. 3323 */ 3324 int 3325 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3326 int flags) 3327 { 3328 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3329 int rv; 3330 bool holes_ok, need_wakeup, user_unwire; 3331 3332 if (start == end) 3333 return (KERN_SUCCESS); 3334 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3335 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3336 vm_map_lock(map); 3337 VM_MAP_RANGE_CHECK(map, start, end); 3338 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3339 if (holes_ok) 3340 first_entry = vm_map_entry_succ(first_entry); 3341 else { 3342 vm_map_unlock(map); 3343 return (KERN_INVALID_ADDRESS); 3344 } 3345 } 3346 rv = KERN_SUCCESS; 3347 for (entry = first_entry; entry->start < end; entry = next_entry) { 3348 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3349 /* 3350 * We have not yet clipped the entry. 3351 */ 3352 next_entry = vm_map_entry_in_transition(map, start, 3353 &end, holes_ok, entry); 3354 if (next_entry == NULL) { 3355 if (entry == first_entry) { 3356 vm_map_unlock(map); 3357 return (KERN_INVALID_ADDRESS); 3358 } 3359 rv = KERN_INVALID_ADDRESS; 3360 break; 3361 } 3362 first_entry = (entry == first_entry) ? 3363 next_entry : NULL; 3364 continue; 3365 } 3366 rv = vm_map_clip_start(map, entry, start); 3367 if (rv != KERN_SUCCESS) 3368 break; 3369 rv = vm_map_clip_end(map, entry, end); 3370 if (rv != KERN_SUCCESS) 3371 break; 3372 3373 /* 3374 * Mark the entry in case the map lock is released. (See 3375 * above.) 3376 */ 3377 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3378 entry->wiring_thread == NULL, 3379 ("owned map entry %p", entry)); 3380 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3381 entry->wiring_thread = curthread; 3382 next_entry = vm_map_entry_succ(entry); 3383 /* 3384 * Check the map for holes in the specified region. 3385 * If holes_ok, skip this check. 3386 */ 3387 if (!holes_ok && 3388 entry->end < end && next_entry->start > entry->end) { 3389 end = entry->end; 3390 rv = KERN_INVALID_ADDRESS; 3391 break; 3392 } 3393 /* 3394 * If system unwiring, require that the entry is system wired. 3395 */ 3396 if (!user_unwire && 3397 vm_map_entry_system_wired_count(entry) == 0) { 3398 end = entry->end; 3399 rv = KERN_INVALID_ARGUMENT; 3400 break; 3401 } 3402 } 3403 need_wakeup = false; 3404 if (first_entry == NULL && 3405 !vm_map_lookup_entry(map, start, &first_entry)) { 3406 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3407 prev_entry = first_entry; 3408 entry = vm_map_entry_succ(first_entry); 3409 } else { 3410 prev_entry = vm_map_entry_pred(first_entry); 3411 entry = first_entry; 3412 } 3413 for (; entry->start < end; 3414 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3415 /* 3416 * If holes_ok was specified, an empty 3417 * space in the unwired region could have been mapped 3418 * while the map lock was dropped for draining 3419 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3420 * could be simultaneously wiring this new mapping 3421 * entry. Detect these cases and skip any entries 3422 * marked as in transition by us. 3423 */ 3424 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3425 entry->wiring_thread != curthread) { 3426 KASSERT(holes_ok, 3427 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3428 continue; 3429 } 3430 3431 if (rv == KERN_SUCCESS && (!user_unwire || 3432 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3433 if (entry->wired_count == 1) 3434 vm_map_entry_unwire(map, entry); 3435 else 3436 entry->wired_count--; 3437 if (user_unwire) 3438 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3439 } 3440 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3441 ("vm_map_unwire: in-transition flag missing %p", entry)); 3442 KASSERT(entry->wiring_thread == curthread, 3443 ("vm_map_unwire: alien wire %p", entry)); 3444 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3445 entry->wiring_thread = NULL; 3446 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3447 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3448 need_wakeup = true; 3449 } 3450 vm_map_try_merge_entries(map, prev_entry, entry); 3451 } 3452 vm_map_try_merge_entries(map, prev_entry, entry); 3453 vm_map_unlock(map); 3454 if (need_wakeup) 3455 vm_map_wakeup(map); 3456 return (rv); 3457 } 3458 3459 static void 3460 vm_map_wire_user_count_sub(u_long npages) 3461 { 3462 3463 atomic_subtract_long(&vm_user_wire_count, npages); 3464 } 3465 3466 static bool 3467 vm_map_wire_user_count_add(u_long npages) 3468 { 3469 u_long wired; 3470 3471 wired = vm_user_wire_count; 3472 do { 3473 if (npages + wired > vm_page_max_user_wired) 3474 return (false); 3475 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3476 npages + wired)); 3477 3478 return (true); 3479 } 3480 3481 /* 3482 * vm_map_wire_entry_failure: 3483 * 3484 * Handle a wiring failure on the given entry. 3485 * 3486 * The map should be locked. 3487 */ 3488 static void 3489 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3490 vm_offset_t failed_addr) 3491 { 3492 3493 VM_MAP_ASSERT_LOCKED(map); 3494 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3495 entry->wired_count == 1, 3496 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3497 KASSERT(failed_addr < entry->end, 3498 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3499 3500 /* 3501 * If any pages at the start of this entry were successfully wired, 3502 * then unwire them. 3503 */ 3504 if (failed_addr > entry->start) { 3505 pmap_unwire(map->pmap, entry->start, failed_addr); 3506 vm_object_unwire(entry->object.vm_object, entry->offset, 3507 failed_addr - entry->start, PQ_ACTIVE); 3508 } 3509 3510 /* 3511 * Assign an out-of-range value to represent the failure to wire this 3512 * entry. 3513 */ 3514 entry->wired_count = -1; 3515 } 3516 3517 int 3518 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3519 { 3520 int rv; 3521 3522 vm_map_lock(map); 3523 rv = vm_map_wire_locked(map, start, end, flags); 3524 vm_map_unlock(map); 3525 return (rv); 3526 } 3527 3528 /* 3529 * vm_map_wire_locked: 3530 * 3531 * Implements both kernel and user wiring. Returns with the map locked, 3532 * the map lock may be dropped. 3533 */ 3534 int 3535 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3536 { 3537 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3538 vm_offset_t faddr, saved_end, saved_start; 3539 u_long incr, npages; 3540 u_int bidx, last_timestamp; 3541 int rv; 3542 bool holes_ok, need_wakeup, user_wire; 3543 vm_prot_t prot; 3544 3545 VM_MAP_ASSERT_LOCKED(map); 3546 3547 if (start == end) 3548 return (KERN_SUCCESS); 3549 prot = 0; 3550 if (flags & VM_MAP_WIRE_WRITE) 3551 prot |= VM_PROT_WRITE; 3552 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3553 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3554 VM_MAP_RANGE_CHECK(map, start, end); 3555 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3556 if (holes_ok) 3557 first_entry = vm_map_entry_succ(first_entry); 3558 else 3559 return (KERN_INVALID_ADDRESS); 3560 } 3561 for (entry = first_entry; entry->start < end; entry = next_entry) { 3562 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3563 /* 3564 * We have not yet clipped the entry. 3565 */ 3566 next_entry = vm_map_entry_in_transition(map, start, 3567 &end, holes_ok, entry); 3568 if (next_entry == NULL) { 3569 if (entry == first_entry) 3570 return (KERN_INVALID_ADDRESS); 3571 rv = KERN_INVALID_ADDRESS; 3572 goto done; 3573 } 3574 first_entry = (entry == first_entry) ? 3575 next_entry : NULL; 3576 continue; 3577 } 3578 rv = vm_map_clip_start(map, entry, start); 3579 if (rv != KERN_SUCCESS) 3580 goto done; 3581 rv = vm_map_clip_end(map, entry, end); 3582 if (rv != KERN_SUCCESS) 3583 goto done; 3584 3585 /* 3586 * Mark the entry in case the map lock is released. (See 3587 * above.) 3588 */ 3589 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3590 entry->wiring_thread == NULL, 3591 ("owned map entry %p", entry)); 3592 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3593 entry->wiring_thread = curthread; 3594 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3595 || (entry->protection & prot) != prot) { 3596 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3597 if (!holes_ok) { 3598 end = entry->end; 3599 rv = KERN_INVALID_ADDRESS; 3600 goto done; 3601 } 3602 } else if (entry->wired_count == 0) { 3603 entry->wired_count++; 3604 3605 npages = atop(entry->end - entry->start); 3606 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3607 vm_map_wire_entry_failure(map, entry, 3608 entry->start); 3609 end = entry->end; 3610 rv = KERN_RESOURCE_SHORTAGE; 3611 goto done; 3612 } 3613 3614 /* 3615 * Release the map lock, relying on the in-transition 3616 * mark. Mark the map busy for fork. 3617 */ 3618 saved_start = entry->start; 3619 saved_end = entry->end; 3620 last_timestamp = map->timestamp; 3621 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3622 incr = pagesizes[bidx]; 3623 vm_map_busy(map); 3624 vm_map_unlock(map); 3625 3626 for (faddr = saved_start; faddr < saved_end; 3627 faddr += incr) { 3628 /* 3629 * Simulate a fault to get the page and enter 3630 * it into the physical map. 3631 */ 3632 rv = vm_fault(map, faddr, VM_PROT_NONE, 3633 VM_FAULT_WIRE, NULL); 3634 if (rv != KERN_SUCCESS) 3635 break; 3636 } 3637 vm_map_lock(map); 3638 vm_map_unbusy(map); 3639 if (last_timestamp + 1 != map->timestamp) { 3640 /* 3641 * Look again for the entry because the map was 3642 * modified while it was unlocked. The entry 3643 * may have been clipped, but NOT merged or 3644 * deleted. 3645 */ 3646 if (!vm_map_lookup_entry(map, saved_start, 3647 &next_entry)) 3648 KASSERT(false, 3649 ("vm_map_wire: lookup failed")); 3650 first_entry = (entry == first_entry) ? 3651 next_entry : NULL; 3652 for (entry = next_entry; entry->end < saved_end; 3653 entry = vm_map_entry_succ(entry)) { 3654 /* 3655 * In case of failure, handle entries 3656 * that were not fully wired here; 3657 * fully wired entries are handled 3658 * later. 3659 */ 3660 if (rv != KERN_SUCCESS && 3661 faddr < entry->end) 3662 vm_map_wire_entry_failure(map, 3663 entry, faddr); 3664 } 3665 } 3666 if (rv != KERN_SUCCESS) { 3667 vm_map_wire_entry_failure(map, entry, faddr); 3668 if (user_wire) 3669 vm_map_wire_user_count_sub(npages); 3670 end = entry->end; 3671 goto done; 3672 } 3673 } else if (!user_wire || 3674 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3675 entry->wired_count++; 3676 } 3677 /* 3678 * Check the map for holes in the specified region. 3679 * If holes_ok was specified, skip this check. 3680 */ 3681 next_entry = vm_map_entry_succ(entry); 3682 if (!holes_ok && 3683 entry->end < end && next_entry->start > entry->end) { 3684 end = entry->end; 3685 rv = KERN_INVALID_ADDRESS; 3686 goto done; 3687 } 3688 } 3689 rv = KERN_SUCCESS; 3690 done: 3691 need_wakeup = false; 3692 if (first_entry == NULL && 3693 !vm_map_lookup_entry(map, start, &first_entry)) { 3694 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3695 prev_entry = first_entry; 3696 entry = vm_map_entry_succ(first_entry); 3697 } else { 3698 prev_entry = vm_map_entry_pred(first_entry); 3699 entry = first_entry; 3700 } 3701 for (; entry->start < end; 3702 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3703 /* 3704 * If holes_ok was specified, an empty 3705 * space in the unwired region could have been mapped 3706 * while the map lock was dropped for faulting in the 3707 * pages or draining MAP_ENTRY_IN_TRANSITION. 3708 * Moreover, another thread could be simultaneously 3709 * wiring this new mapping entry. Detect these cases 3710 * and skip any entries marked as in transition not by us. 3711 * 3712 * Another way to get an entry not marked with 3713 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3714 * which set rv to KERN_INVALID_ARGUMENT. 3715 */ 3716 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3717 entry->wiring_thread != curthread) { 3718 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3719 ("vm_map_wire: !HOLESOK and new/changed entry")); 3720 continue; 3721 } 3722 3723 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3724 /* do nothing */ 3725 } else if (rv == KERN_SUCCESS) { 3726 if (user_wire) 3727 entry->eflags |= MAP_ENTRY_USER_WIRED; 3728 } else if (entry->wired_count == -1) { 3729 /* 3730 * Wiring failed on this entry. Thus, unwiring is 3731 * unnecessary. 3732 */ 3733 entry->wired_count = 0; 3734 } else if (!user_wire || 3735 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3736 /* 3737 * Undo the wiring. Wiring succeeded on this entry 3738 * but failed on a later entry. 3739 */ 3740 if (entry->wired_count == 1) { 3741 vm_map_entry_unwire(map, entry); 3742 if (user_wire) 3743 vm_map_wire_user_count_sub( 3744 atop(entry->end - entry->start)); 3745 } else 3746 entry->wired_count--; 3747 } 3748 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3749 ("vm_map_wire: in-transition flag missing %p", entry)); 3750 KASSERT(entry->wiring_thread == curthread, 3751 ("vm_map_wire: alien wire %p", entry)); 3752 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3753 MAP_ENTRY_WIRE_SKIPPED); 3754 entry->wiring_thread = NULL; 3755 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3756 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3757 need_wakeup = true; 3758 } 3759 vm_map_try_merge_entries(map, prev_entry, entry); 3760 } 3761 vm_map_try_merge_entries(map, prev_entry, entry); 3762 if (need_wakeup) 3763 vm_map_wakeup(map); 3764 return (rv); 3765 } 3766 3767 /* 3768 * vm_map_sync 3769 * 3770 * Push any dirty cached pages in the address range to their pager. 3771 * If syncio is TRUE, dirty pages are written synchronously. 3772 * If invalidate is TRUE, any cached pages are freed as well. 3773 * 3774 * If the size of the region from start to end is zero, we are 3775 * supposed to flush all modified pages within the region containing 3776 * start. Unfortunately, a region can be split or coalesced with 3777 * neighboring regions, making it difficult to determine what the 3778 * original region was. Therefore, we approximate this requirement by 3779 * flushing the current region containing start. 3780 * 3781 * Returns an error if any part of the specified range is not mapped. 3782 */ 3783 int 3784 vm_map_sync( 3785 vm_map_t map, 3786 vm_offset_t start, 3787 vm_offset_t end, 3788 boolean_t syncio, 3789 boolean_t invalidate) 3790 { 3791 vm_map_entry_t entry, first_entry, next_entry; 3792 vm_size_t size; 3793 vm_object_t object; 3794 vm_ooffset_t offset; 3795 unsigned int last_timestamp; 3796 int bdry_idx; 3797 boolean_t failed; 3798 3799 vm_map_lock_read(map); 3800 VM_MAP_RANGE_CHECK(map, start, end); 3801 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3802 vm_map_unlock_read(map); 3803 return (KERN_INVALID_ADDRESS); 3804 } else if (start == end) { 3805 start = first_entry->start; 3806 end = first_entry->end; 3807 } 3808 3809 /* 3810 * Make a first pass to check for user-wired memory, holes, 3811 * and partial invalidation of largepage mappings. 3812 */ 3813 for (entry = first_entry; entry->start < end; entry = next_entry) { 3814 if (invalidate) { 3815 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3816 vm_map_unlock_read(map); 3817 return (KERN_INVALID_ARGUMENT); 3818 } 3819 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3820 if (bdry_idx != 0 && 3821 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3822 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3823 vm_map_unlock_read(map); 3824 return (KERN_INVALID_ARGUMENT); 3825 } 3826 } 3827 next_entry = vm_map_entry_succ(entry); 3828 if (end > entry->end && 3829 entry->end != next_entry->start) { 3830 vm_map_unlock_read(map); 3831 return (KERN_INVALID_ADDRESS); 3832 } 3833 } 3834 3835 if (invalidate) 3836 pmap_remove(map->pmap, start, end); 3837 failed = FALSE; 3838 3839 /* 3840 * Make a second pass, cleaning/uncaching pages from the indicated 3841 * objects as we go. 3842 */ 3843 for (entry = first_entry; entry->start < end;) { 3844 offset = entry->offset + (start - entry->start); 3845 size = (end <= entry->end ? end : entry->end) - start; 3846 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3847 vm_map_t smap; 3848 vm_map_entry_t tentry; 3849 vm_size_t tsize; 3850 3851 smap = entry->object.sub_map; 3852 vm_map_lock_read(smap); 3853 (void) vm_map_lookup_entry(smap, offset, &tentry); 3854 tsize = tentry->end - offset; 3855 if (tsize < size) 3856 size = tsize; 3857 object = tentry->object.vm_object; 3858 offset = tentry->offset + (offset - tentry->start); 3859 vm_map_unlock_read(smap); 3860 } else { 3861 object = entry->object.vm_object; 3862 } 3863 vm_object_reference(object); 3864 last_timestamp = map->timestamp; 3865 vm_map_unlock_read(map); 3866 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3867 failed = TRUE; 3868 start += size; 3869 vm_object_deallocate(object); 3870 vm_map_lock_read(map); 3871 if (last_timestamp == map->timestamp || 3872 !vm_map_lookup_entry(map, start, &entry)) 3873 entry = vm_map_entry_succ(entry); 3874 } 3875 3876 vm_map_unlock_read(map); 3877 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3878 } 3879 3880 /* 3881 * vm_map_entry_unwire: [ internal use only ] 3882 * 3883 * Make the region specified by this entry pageable. 3884 * 3885 * The map in question should be locked. 3886 * [This is the reason for this routine's existence.] 3887 */ 3888 static void 3889 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3890 { 3891 vm_size_t size; 3892 3893 VM_MAP_ASSERT_LOCKED(map); 3894 KASSERT(entry->wired_count > 0, 3895 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3896 3897 size = entry->end - entry->start; 3898 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3899 vm_map_wire_user_count_sub(atop(size)); 3900 pmap_unwire(map->pmap, entry->start, entry->end); 3901 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3902 PQ_ACTIVE); 3903 entry->wired_count = 0; 3904 } 3905 3906 static void 3907 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3908 { 3909 3910 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3911 vm_object_deallocate(entry->object.vm_object); 3912 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3913 } 3914 3915 /* 3916 * vm_map_entry_delete: [ internal use only ] 3917 * 3918 * Deallocate the given entry from the target map. 3919 */ 3920 static void 3921 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3922 { 3923 vm_object_t object; 3924 vm_pindex_t offidxstart, offidxend, size1; 3925 vm_size_t size; 3926 3927 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3928 object = entry->object.vm_object; 3929 3930 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3931 MPASS(entry->cred == NULL); 3932 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3933 MPASS(object == NULL); 3934 vm_map_entry_deallocate(entry, vm_map_is_system(map)); 3935 return; 3936 } 3937 3938 size = entry->end - entry->start; 3939 map->size -= size; 3940 3941 if (entry->cred != NULL) { 3942 swap_release_by_cred(size, entry->cred); 3943 crfree(entry->cred); 3944 } 3945 3946 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3947 entry->object.vm_object = NULL; 3948 } else if ((object->flags & OBJ_ANON) != 0 || 3949 object == kernel_object) { 3950 KASSERT(entry->cred == NULL || object->cred == NULL || 3951 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3952 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3953 offidxstart = OFF_TO_IDX(entry->offset); 3954 offidxend = offidxstart + atop(size); 3955 VM_OBJECT_WLOCK(object); 3956 if (object->ref_count != 1 && 3957 ((object->flags & OBJ_ONEMAPPING) != 0 || 3958 object == kernel_object)) { 3959 vm_object_collapse(object); 3960 3961 /* 3962 * The option OBJPR_NOTMAPPED can be passed here 3963 * because vm_map_delete() already performed 3964 * pmap_remove() on the only mapping to this range 3965 * of pages. 3966 */ 3967 vm_object_page_remove(object, offidxstart, offidxend, 3968 OBJPR_NOTMAPPED); 3969 if (offidxend >= object->size && 3970 offidxstart < object->size) { 3971 size1 = object->size; 3972 object->size = offidxstart; 3973 if (object->cred != NULL) { 3974 size1 -= object->size; 3975 KASSERT(object->charge >= ptoa(size1), 3976 ("object %p charge < 0", object)); 3977 swap_release_by_cred(ptoa(size1), 3978 object->cred); 3979 object->charge -= ptoa(size1); 3980 } 3981 } 3982 } 3983 VM_OBJECT_WUNLOCK(object); 3984 } 3985 if (vm_map_is_system(map)) 3986 vm_map_entry_deallocate(entry, TRUE); 3987 else { 3988 entry->defer_next = curthread->td_map_def_user; 3989 curthread->td_map_def_user = entry; 3990 } 3991 } 3992 3993 /* 3994 * vm_map_delete: [ internal use only ] 3995 * 3996 * Deallocates the given address range from the target 3997 * map. 3998 */ 3999 int 4000 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 4001 { 4002 vm_map_entry_t entry, next_entry, scratch_entry; 4003 int rv; 4004 4005 VM_MAP_ASSERT_LOCKED(map); 4006 4007 if (start == end) 4008 return (KERN_SUCCESS); 4009 4010 /* 4011 * Find the start of the region, and clip it. 4012 * Step through all entries in this region. 4013 */ 4014 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 4015 if (rv != KERN_SUCCESS) 4016 return (rv); 4017 for (; entry->start < end; entry = next_entry) { 4018 /* 4019 * Wait for wiring or unwiring of an entry to complete. 4020 * Also wait for any system wirings to disappear on 4021 * user maps. 4022 */ 4023 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 4024 (vm_map_pmap(map) != kernel_pmap && 4025 vm_map_entry_system_wired_count(entry) != 0)) { 4026 unsigned int last_timestamp; 4027 vm_offset_t saved_start; 4028 4029 saved_start = entry->start; 4030 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4031 last_timestamp = map->timestamp; 4032 (void) vm_map_unlock_and_wait(map, 0); 4033 vm_map_lock(map); 4034 if (last_timestamp + 1 != map->timestamp) { 4035 /* 4036 * Look again for the entry because the map was 4037 * modified while it was unlocked. 4038 * Specifically, the entry may have been 4039 * clipped, merged, or deleted. 4040 */ 4041 rv = vm_map_lookup_clip_start(map, saved_start, 4042 &next_entry, &scratch_entry); 4043 if (rv != KERN_SUCCESS) 4044 break; 4045 } else 4046 next_entry = entry; 4047 continue; 4048 } 4049 4050 /* XXXKIB or delete to the upper superpage boundary ? */ 4051 rv = vm_map_clip_end(map, entry, end); 4052 if (rv != KERN_SUCCESS) 4053 break; 4054 next_entry = vm_map_entry_succ(entry); 4055 4056 /* 4057 * Unwire before removing addresses from the pmap; otherwise, 4058 * unwiring will put the entries back in the pmap. 4059 */ 4060 if (entry->wired_count != 0) 4061 vm_map_entry_unwire(map, entry); 4062 4063 /* 4064 * Remove mappings for the pages, but only if the 4065 * mappings could exist. For instance, it does not 4066 * make sense to call pmap_remove() for guard entries. 4067 */ 4068 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4069 entry->object.vm_object != NULL) 4070 pmap_map_delete(map->pmap, entry->start, entry->end); 4071 4072 /* 4073 * Delete the entry only after removing all pmap 4074 * entries pointing to its pages. (Otherwise, its 4075 * page frames may be reallocated, and any modify bits 4076 * will be set in the wrong object!) 4077 */ 4078 vm_map_entry_delete(map, entry); 4079 } 4080 return (rv); 4081 } 4082 4083 /* 4084 * vm_map_remove: 4085 * 4086 * Remove the given address range from the target map. 4087 * This is the exported form of vm_map_delete. 4088 */ 4089 int 4090 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4091 { 4092 int result; 4093 4094 vm_map_lock(map); 4095 VM_MAP_RANGE_CHECK(map, start, end); 4096 result = vm_map_delete(map, start, end); 4097 vm_map_unlock(map); 4098 return (result); 4099 } 4100 4101 /* 4102 * vm_map_check_protection: 4103 * 4104 * Assert that the target map allows the specified privilege on the 4105 * entire address region given. The entire region must be allocated. 4106 * 4107 * WARNING! This code does not and should not check whether the 4108 * contents of the region is accessible. For example a smaller file 4109 * might be mapped into a larger address space. 4110 * 4111 * NOTE! This code is also called by munmap(). 4112 * 4113 * The map must be locked. A read lock is sufficient. 4114 */ 4115 boolean_t 4116 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4117 vm_prot_t protection) 4118 { 4119 vm_map_entry_t entry; 4120 vm_map_entry_t tmp_entry; 4121 4122 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4123 return (FALSE); 4124 entry = tmp_entry; 4125 4126 while (start < end) { 4127 /* 4128 * No holes allowed! 4129 */ 4130 if (start < entry->start) 4131 return (FALSE); 4132 /* 4133 * Check protection associated with entry. 4134 */ 4135 if ((entry->protection & protection) != protection) 4136 return (FALSE); 4137 /* go to next entry */ 4138 start = entry->end; 4139 entry = vm_map_entry_succ(entry); 4140 } 4141 return (TRUE); 4142 } 4143 4144 /* 4145 * 4146 * vm_map_copy_swap_object: 4147 * 4148 * Copies a swap-backed object from an existing map entry to a 4149 * new one. Carries forward the swap charge. May change the 4150 * src object on return. 4151 */ 4152 static void 4153 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4154 vm_offset_t size, vm_ooffset_t *fork_charge) 4155 { 4156 vm_object_t src_object; 4157 struct ucred *cred; 4158 int charged; 4159 4160 src_object = src_entry->object.vm_object; 4161 charged = ENTRY_CHARGED(src_entry); 4162 if ((src_object->flags & OBJ_ANON) != 0) { 4163 VM_OBJECT_WLOCK(src_object); 4164 vm_object_collapse(src_object); 4165 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4166 vm_object_split(src_entry); 4167 src_object = src_entry->object.vm_object; 4168 } 4169 vm_object_reference_locked(src_object); 4170 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4171 VM_OBJECT_WUNLOCK(src_object); 4172 } else 4173 vm_object_reference(src_object); 4174 if (src_entry->cred != NULL && 4175 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4176 KASSERT(src_object->cred == NULL, 4177 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4178 src_object)); 4179 src_object->cred = src_entry->cred; 4180 src_object->charge = size; 4181 } 4182 dst_entry->object.vm_object = src_object; 4183 if (charged) { 4184 cred = curthread->td_ucred; 4185 crhold(cred); 4186 dst_entry->cred = cred; 4187 *fork_charge += size; 4188 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4189 crhold(cred); 4190 src_entry->cred = cred; 4191 *fork_charge += size; 4192 } 4193 } 4194 } 4195 4196 /* 4197 * vm_map_copy_entry: 4198 * 4199 * Copies the contents of the source entry to the destination 4200 * entry. The entries *must* be aligned properly. 4201 */ 4202 static void 4203 vm_map_copy_entry( 4204 vm_map_t src_map, 4205 vm_map_t dst_map, 4206 vm_map_entry_t src_entry, 4207 vm_map_entry_t dst_entry, 4208 vm_ooffset_t *fork_charge) 4209 { 4210 vm_object_t src_object; 4211 vm_map_entry_t fake_entry; 4212 vm_offset_t size; 4213 4214 VM_MAP_ASSERT_LOCKED(dst_map); 4215 4216 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4217 return; 4218 4219 if (src_entry->wired_count == 0 || 4220 (src_entry->protection & VM_PROT_WRITE) == 0) { 4221 /* 4222 * If the source entry is marked needs_copy, it is already 4223 * write-protected. 4224 */ 4225 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4226 (src_entry->protection & VM_PROT_WRITE) != 0) { 4227 pmap_protect(src_map->pmap, 4228 src_entry->start, 4229 src_entry->end, 4230 src_entry->protection & ~VM_PROT_WRITE); 4231 } 4232 4233 /* 4234 * Make a copy of the object. 4235 */ 4236 size = src_entry->end - src_entry->start; 4237 if ((src_object = src_entry->object.vm_object) != NULL) { 4238 if ((src_object->flags & OBJ_SWAP) != 0) { 4239 vm_map_copy_swap_object(src_entry, dst_entry, 4240 size, fork_charge); 4241 /* May have split/collapsed, reload obj. */ 4242 src_object = src_entry->object.vm_object; 4243 } else { 4244 vm_object_reference(src_object); 4245 dst_entry->object.vm_object = src_object; 4246 } 4247 src_entry->eflags |= MAP_ENTRY_COW | 4248 MAP_ENTRY_NEEDS_COPY; 4249 dst_entry->eflags |= MAP_ENTRY_COW | 4250 MAP_ENTRY_NEEDS_COPY; 4251 dst_entry->offset = src_entry->offset; 4252 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4253 /* 4254 * MAP_ENTRY_WRITECNT cannot 4255 * indicate write reference from 4256 * src_entry, since the entry is 4257 * marked as needs copy. Allocate a 4258 * fake entry that is used to 4259 * decrement object->un_pager writecount 4260 * at the appropriate time. Attach 4261 * fake_entry to the deferred list. 4262 */ 4263 fake_entry = vm_map_entry_create(dst_map); 4264 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4265 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4266 vm_object_reference(src_object); 4267 fake_entry->object.vm_object = src_object; 4268 fake_entry->start = src_entry->start; 4269 fake_entry->end = src_entry->end; 4270 fake_entry->defer_next = 4271 curthread->td_map_def_user; 4272 curthread->td_map_def_user = fake_entry; 4273 } 4274 4275 pmap_copy(dst_map->pmap, src_map->pmap, 4276 dst_entry->start, dst_entry->end - dst_entry->start, 4277 src_entry->start); 4278 } else { 4279 dst_entry->object.vm_object = NULL; 4280 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4281 dst_entry->offset = 0; 4282 if (src_entry->cred != NULL) { 4283 dst_entry->cred = curthread->td_ucred; 4284 crhold(dst_entry->cred); 4285 *fork_charge += size; 4286 } 4287 } 4288 } else { 4289 /* 4290 * We don't want to make writeable wired pages copy-on-write. 4291 * Immediately copy these pages into the new map by simulating 4292 * page faults. The new pages are pageable. 4293 */ 4294 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4295 fork_charge); 4296 } 4297 } 4298 4299 /* 4300 * vmspace_map_entry_forked: 4301 * Update the newly-forked vmspace each time a map entry is inherited 4302 * or copied. The values for vm_dsize and vm_tsize are approximate 4303 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4304 */ 4305 static void 4306 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4307 vm_map_entry_t entry) 4308 { 4309 vm_size_t entrysize; 4310 vm_offset_t newend; 4311 4312 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4313 return; 4314 entrysize = entry->end - entry->start; 4315 vm2->vm_map.size += entrysize; 4316 if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 4317 vm2->vm_ssize += btoc(entrysize); 4318 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4319 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4320 newend = MIN(entry->end, 4321 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4322 vm2->vm_dsize += btoc(newend - entry->start); 4323 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4324 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4325 newend = MIN(entry->end, 4326 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4327 vm2->vm_tsize += btoc(newend - entry->start); 4328 } 4329 } 4330 4331 /* 4332 * vmspace_fork: 4333 * Create a new process vmspace structure and vm_map 4334 * based on those of an existing process. The new map 4335 * is based on the old map, according to the inheritance 4336 * values on the regions in that map. 4337 * 4338 * XXX It might be worth coalescing the entries added to the new vmspace. 4339 * 4340 * The source map must not be locked. 4341 */ 4342 struct vmspace * 4343 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4344 { 4345 struct vmspace *vm2; 4346 vm_map_t new_map, old_map; 4347 vm_map_entry_t new_entry, old_entry; 4348 vm_object_t object; 4349 int error, locked __diagused; 4350 vm_inherit_t inh; 4351 4352 old_map = &vm1->vm_map; 4353 /* Copy immutable fields of vm1 to vm2. */ 4354 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4355 pmap_pinit); 4356 if (vm2 == NULL) 4357 return (NULL); 4358 4359 vm2->vm_taddr = vm1->vm_taddr; 4360 vm2->vm_daddr = vm1->vm_daddr; 4361 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4362 vm2->vm_stacktop = vm1->vm_stacktop; 4363 vm2->vm_shp_base = vm1->vm_shp_base; 4364 vm_map_lock(old_map); 4365 if (old_map->busy) 4366 vm_map_wait_busy(old_map); 4367 new_map = &vm2->vm_map; 4368 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4369 KASSERT(locked, ("vmspace_fork: lock failed")); 4370 4371 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4372 if (error != 0) { 4373 sx_xunlock(&old_map->lock); 4374 sx_xunlock(&new_map->lock); 4375 vm_map_process_deferred(); 4376 vmspace_free(vm2); 4377 return (NULL); 4378 } 4379 4380 new_map->anon_loc = old_map->anon_loc; 4381 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4382 MAP_ASLR_STACK | MAP_WXORX); 4383 4384 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4385 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4386 panic("vm_map_fork: encountered a submap"); 4387 4388 inh = old_entry->inheritance; 4389 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4390 inh != VM_INHERIT_NONE) 4391 inh = VM_INHERIT_COPY; 4392 4393 switch (inh) { 4394 case VM_INHERIT_NONE: 4395 break; 4396 4397 case VM_INHERIT_SHARE: 4398 /* 4399 * Clone the entry, creating the shared object if 4400 * necessary. 4401 */ 4402 object = old_entry->object.vm_object; 4403 if (object == NULL) { 4404 vm_map_entry_back(old_entry); 4405 object = old_entry->object.vm_object; 4406 } 4407 4408 /* 4409 * Add the reference before calling vm_object_shadow 4410 * to insure that a shadow object is created. 4411 */ 4412 vm_object_reference(object); 4413 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4414 vm_object_shadow(&old_entry->object.vm_object, 4415 &old_entry->offset, 4416 old_entry->end - old_entry->start, 4417 old_entry->cred, 4418 /* Transfer the second reference too. */ 4419 true); 4420 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4421 old_entry->cred = NULL; 4422 4423 /* 4424 * As in vm_map_merged_neighbor_dispose(), 4425 * the vnode lock will not be acquired in 4426 * this call to vm_object_deallocate(). 4427 */ 4428 vm_object_deallocate(object); 4429 object = old_entry->object.vm_object; 4430 } else { 4431 VM_OBJECT_WLOCK(object); 4432 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4433 if (old_entry->cred != NULL) { 4434 KASSERT(object->cred == NULL, 4435 ("vmspace_fork both cred")); 4436 object->cred = old_entry->cred; 4437 object->charge = old_entry->end - 4438 old_entry->start; 4439 old_entry->cred = NULL; 4440 } 4441 4442 /* 4443 * Assert the correct state of the vnode 4444 * v_writecount while the object is locked, to 4445 * not relock it later for the assertion 4446 * correctness. 4447 */ 4448 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4449 object->type == OBJT_VNODE) { 4450 KASSERT(((struct vnode *)object-> 4451 handle)->v_writecount > 0, 4452 ("vmspace_fork: v_writecount %p", 4453 object)); 4454 KASSERT(object->un_pager.vnp. 4455 writemappings > 0, 4456 ("vmspace_fork: vnp.writecount %p", 4457 object)); 4458 } 4459 VM_OBJECT_WUNLOCK(object); 4460 } 4461 4462 /* 4463 * Clone the entry, referencing the shared object. 4464 */ 4465 new_entry = vm_map_entry_create(new_map); 4466 *new_entry = *old_entry; 4467 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4468 MAP_ENTRY_IN_TRANSITION); 4469 new_entry->wiring_thread = NULL; 4470 new_entry->wired_count = 0; 4471 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4472 vm_pager_update_writecount(object, 4473 new_entry->start, new_entry->end); 4474 } 4475 vm_map_entry_set_vnode_text(new_entry, true); 4476 4477 /* 4478 * Insert the entry into the new map -- we know we're 4479 * inserting at the end of the new map. 4480 */ 4481 vm_map_entry_link(new_map, new_entry); 4482 vmspace_map_entry_forked(vm1, vm2, new_entry); 4483 4484 /* 4485 * Update the physical map 4486 */ 4487 pmap_copy(new_map->pmap, old_map->pmap, 4488 new_entry->start, 4489 (old_entry->end - old_entry->start), 4490 old_entry->start); 4491 break; 4492 4493 case VM_INHERIT_COPY: 4494 /* 4495 * Clone the entry and link into the map. 4496 */ 4497 new_entry = vm_map_entry_create(new_map); 4498 *new_entry = *old_entry; 4499 /* 4500 * Copied entry is COW over the old object. 4501 */ 4502 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4503 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4504 new_entry->wiring_thread = NULL; 4505 new_entry->wired_count = 0; 4506 new_entry->object.vm_object = NULL; 4507 new_entry->cred = NULL; 4508 vm_map_entry_link(new_map, new_entry); 4509 vmspace_map_entry_forked(vm1, vm2, new_entry); 4510 vm_map_copy_entry(old_map, new_map, old_entry, 4511 new_entry, fork_charge); 4512 vm_map_entry_set_vnode_text(new_entry, true); 4513 break; 4514 4515 case VM_INHERIT_ZERO: 4516 /* 4517 * Create a new anonymous mapping entry modelled from 4518 * the old one. 4519 */ 4520 new_entry = vm_map_entry_create(new_map); 4521 memset(new_entry, 0, sizeof(*new_entry)); 4522 4523 new_entry->start = old_entry->start; 4524 new_entry->end = old_entry->end; 4525 new_entry->eflags = old_entry->eflags & 4526 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4527 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4528 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4529 new_entry->protection = old_entry->protection; 4530 new_entry->max_protection = old_entry->max_protection; 4531 new_entry->inheritance = VM_INHERIT_ZERO; 4532 4533 vm_map_entry_link(new_map, new_entry); 4534 vmspace_map_entry_forked(vm1, vm2, new_entry); 4535 4536 new_entry->cred = curthread->td_ucred; 4537 crhold(new_entry->cred); 4538 *fork_charge += (new_entry->end - new_entry->start); 4539 4540 break; 4541 } 4542 } 4543 /* 4544 * Use inlined vm_map_unlock() to postpone handling the deferred 4545 * map entries, which cannot be done until both old_map and 4546 * new_map locks are released. 4547 */ 4548 sx_xunlock(&old_map->lock); 4549 sx_xunlock(&new_map->lock); 4550 vm_map_process_deferred(); 4551 4552 return (vm2); 4553 } 4554 4555 /* 4556 * Create a process's stack for exec_new_vmspace(). This function is never 4557 * asked to wire the newly created stack. 4558 */ 4559 int 4560 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4561 vm_prot_t prot, vm_prot_t max, int cow) 4562 { 4563 vm_size_t growsize, init_ssize; 4564 rlim_t vmemlim; 4565 int rv; 4566 4567 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4568 growsize = sgrowsiz; 4569 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4570 vm_map_lock(map); 4571 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4572 /* If we would blow our VMEM resource limit, no go */ 4573 if (map->size + init_ssize > vmemlim) { 4574 rv = KERN_NO_SPACE; 4575 goto out; 4576 } 4577 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4578 max, cow); 4579 out: 4580 vm_map_unlock(map); 4581 return (rv); 4582 } 4583 4584 static int stack_guard_page = 1; 4585 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4586 &stack_guard_page, 0, 4587 "Specifies the number of guard pages for a stack that grows"); 4588 4589 static int 4590 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4591 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4592 { 4593 vm_map_entry_t gap_entry, new_entry, prev_entry; 4594 vm_offset_t bot, gap_bot, gap_top, top; 4595 vm_size_t init_ssize, sgp; 4596 int rv; 4597 4598 KASSERT((cow & MAP_STACK_AREA) != 0, 4599 ("New mapping is not a stack")); 4600 4601 if (max_ssize == 0 || 4602 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4603 return (KERN_INVALID_ADDRESS); 4604 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4605 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4606 (vm_size_t)stack_guard_page * PAGE_SIZE; 4607 if (sgp >= max_ssize) 4608 return (KERN_INVALID_ARGUMENT); 4609 4610 init_ssize = growsize; 4611 if (max_ssize < init_ssize + sgp) 4612 init_ssize = max_ssize - sgp; 4613 4614 /* If addr is already mapped, no go */ 4615 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4616 return (KERN_NO_SPACE); 4617 4618 /* 4619 * If we can't accommodate max_ssize in the current mapping, no go. 4620 */ 4621 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4622 return (KERN_NO_SPACE); 4623 4624 /* 4625 * We initially map a stack of only init_ssize, at the top of 4626 * the range. We will grow as needed later. 4627 * 4628 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4629 * and cow to be 0. Possibly we should eliminate these as input 4630 * parameters, and just pass these values here in the insert call. 4631 */ 4632 bot = addrbos + max_ssize - init_ssize; 4633 top = bot + init_ssize; 4634 gap_bot = addrbos; 4635 gap_top = bot; 4636 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4637 &new_entry); 4638 if (rv != KERN_SUCCESS) 4639 return (rv); 4640 KASSERT(new_entry->end == top || new_entry->start == bot, 4641 ("Bad entry start/end for new stack entry")); 4642 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4643 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4644 if (gap_bot == gap_top) 4645 return (KERN_SUCCESS); 4646 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4647 VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4648 &gap_entry); 4649 if (rv == KERN_SUCCESS) { 4650 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4651 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4652 KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0, 4653 ("entry %p not stack gap %#x", gap_entry, 4654 gap_entry->eflags)); 4655 4656 /* 4657 * Gap can never successfully handle a fault, so 4658 * read-ahead logic is never used for it. Re-use 4659 * next_read of the gap entry to store 4660 * stack_guard_page for vm_map_growstack(). 4661 * Similarly, since a gap cannot have a backing object, 4662 * store the original stack protections in the 4663 * object offset. 4664 */ 4665 gap_entry->next_read = sgp; 4666 gap_entry->offset = prot | PROT_MAX(max); 4667 } else { 4668 (void)vm_map_delete(map, bot, top); 4669 } 4670 return (rv); 4671 } 4672 4673 /* 4674 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4675 * successfully grow the stack. 4676 */ 4677 static int 4678 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4679 { 4680 vm_map_entry_t stack_entry; 4681 struct proc *p; 4682 struct vmspace *vm; 4683 vm_offset_t gap_end, gap_start, grow_start; 4684 vm_size_t grow_amount, guard, max_grow, sgp; 4685 vm_prot_t prot, max; 4686 rlim_t lmemlim, stacklim, vmemlim; 4687 int rv, rv1 __diagused; 4688 bool gap_deleted, is_procstack; 4689 #ifdef notyet 4690 uint64_t limit; 4691 #endif 4692 #ifdef RACCT 4693 int error __diagused; 4694 #endif 4695 4696 p = curproc; 4697 vm = p->p_vmspace; 4698 4699 /* 4700 * Disallow stack growth when the access is performed by a 4701 * debugger or AIO daemon. The reason is that the wrong 4702 * resource limits are applied. 4703 */ 4704 if (p != initproc && (map != &p->p_vmspace->vm_map || 4705 p->p_textvp == NULL)) 4706 return (KERN_FAILURE); 4707 4708 MPASS(!vm_map_is_system(map)); 4709 4710 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4711 stacklim = lim_cur(curthread, RLIMIT_STACK); 4712 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4713 retry: 4714 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4715 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4716 return (KERN_FAILURE); 4717 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4718 return (KERN_SUCCESS); 4719 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) { 4720 stack_entry = vm_map_entry_succ(gap_entry); 4721 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4722 stack_entry->start != gap_entry->end) 4723 return (KERN_FAILURE); 4724 grow_amount = round_page(stack_entry->start - addr); 4725 } else { 4726 return (KERN_FAILURE); 4727 } 4728 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4729 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4730 gap_entry->next_read; 4731 max_grow = gap_entry->end - gap_entry->start; 4732 if (guard > max_grow) 4733 return (KERN_NO_SPACE); 4734 max_grow -= guard; 4735 if (grow_amount > max_grow) 4736 return (KERN_NO_SPACE); 4737 4738 /* 4739 * If this is the main process stack, see if we're over the stack 4740 * limit. 4741 */ 4742 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4743 addr < (vm_offset_t)vm->vm_stacktop; 4744 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4745 return (KERN_NO_SPACE); 4746 4747 #ifdef RACCT 4748 if (racct_enable) { 4749 PROC_LOCK(p); 4750 if (is_procstack && racct_set(p, RACCT_STACK, 4751 ctob(vm->vm_ssize) + grow_amount)) { 4752 PROC_UNLOCK(p); 4753 return (KERN_NO_SPACE); 4754 } 4755 PROC_UNLOCK(p); 4756 } 4757 #endif 4758 4759 grow_amount = roundup(grow_amount, sgrowsiz); 4760 if (grow_amount > max_grow) 4761 grow_amount = max_grow; 4762 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4763 grow_amount = trunc_page((vm_size_t)stacklim) - 4764 ctob(vm->vm_ssize); 4765 } 4766 4767 #ifdef notyet 4768 PROC_LOCK(p); 4769 limit = racct_get_available(p, RACCT_STACK); 4770 PROC_UNLOCK(p); 4771 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4772 grow_amount = limit - ctob(vm->vm_ssize); 4773 #endif 4774 4775 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4776 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4777 rv = KERN_NO_SPACE; 4778 goto out; 4779 } 4780 #ifdef RACCT 4781 if (racct_enable) { 4782 PROC_LOCK(p); 4783 if (racct_set(p, RACCT_MEMLOCK, 4784 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4785 PROC_UNLOCK(p); 4786 rv = KERN_NO_SPACE; 4787 goto out; 4788 } 4789 PROC_UNLOCK(p); 4790 } 4791 #endif 4792 } 4793 4794 /* If we would blow our VMEM resource limit, no go */ 4795 if (map->size + grow_amount > vmemlim) { 4796 rv = KERN_NO_SPACE; 4797 goto out; 4798 } 4799 #ifdef RACCT 4800 if (racct_enable) { 4801 PROC_LOCK(p); 4802 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4803 PROC_UNLOCK(p); 4804 rv = KERN_NO_SPACE; 4805 goto out; 4806 } 4807 PROC_UNLOCK(p); 4808 } 4809 #endif 4810 4811 if (vm_map_lock_upgrade(map)) { 4812 gap_entry = NULL; 4813 vm_map_lock_read(map); 4814 goto retry; 4815 } 4816 4817 /* 4818 * The gap_entry "offset" field is overloaded. See 4819 * vm_map_stack_locked(). 4820 */ 4821 prot = PROT_EXTRACT(gap_entry->offset); 4822 max = PROT_MAX_EXTRACT(gap_entry->offset); 4823 sgp = gap_entry->next_read; 4824 4825 grow_start = gap_entry->end - grow_amount; 4826 if (gap_entry->start + grow_amount == gap_entry->end) { 4827 gap_start = gap_entry->start; 4828 gap_end = gap_entry->end; 4829 vm_map_entry_delete(map, gap_entry); 4830 gap_deleted = true; 4831 } else { 4832 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4833 vm_map_entry_resize(map, gap_entry, -grow_amount); 4834 gap_deleted = false; 4835 } 4836 rv = vm_map_insert(map, NULL, 0, grow_start, 4837 grow_start + grow_amount, prot, max, MAP_STACK_AREA); 4838 if (rv != KERN_SUCCESS) { 4839 if (gap_deleted) { 4840 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4841 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4842 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4843 &gap_entry); 4844 MPASS(rv1 == KERN_SUCCESS); 4845 gap_entry->next_read = sgp; 4846 gap_entry->offset = prot | PROT_MAX(max); 4847 } else { 4848 vm_map_entry_resize(map, gap_entry, 4849 grow_amount); 4850 } 4851 } 4852 if (rv == KERN_SUCCESS && is_procstack) 4853 vm->vm_ssize += btoc(grow_amount); 4854 4855 /* 4856 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4857 */ 4858 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4859 rv = vm_map_wire_locked(map, grow_start, 4860 grow_start + grow_amount, 4861 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4862 } 4863 vm_map_lock_downgrade(map); 4864 4865 out: 4866 #ifdef RACCT 4867 if (racct_enable && rv != KERN_SUCCESS) { 4868 PROC_LOCK(p); 4869 error = racct_set(p, RACCT_VMEM, map->size); 4870 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4871 if (!old_mlock) { 4872 error = racct_set(p, RACCT_MEMLOCK, 4873 ptoa(pmap_wired_count(map->pmap))); 4874 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4875 } 4876 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4877 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4878 PROC_UNLOCK(p); 4879 } 4880 #endif 4881 4882 return (rv); 4883 } 4884 4885 /* 4886 * Unshare the specified VM space for exec. If other processes are 4887 * mapped to it, then create a new one. The new vmspace is null. 4888 */ 4889 int 4890 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4891 { 4892 struct vmspace *oldvmspace = p->p_vmspace; 4893 struct vmspace *newvmspace; 4894 4895 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4896 ("vmspace_exec recursed")); 4897 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4898 if (newvmspace == NULL) 4899 return (ENOMEM); 4900 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4901 /* 4902 * This code is written like this for prototype purposes. The 4903 * goal is to avoid running down the vmspace here, but let the 4904 * other process's that are still using the vmspace to finally 4905 * run it down. Even though there is little or no chance of blocking 4906 * here, it is a good idea to keep this form for future mods. 4907 */ 4908 PROC_VMSPACE_LOCK(p); 4909 p->p_vmspace = newvmspace; 4910 PROC_VMSPACE_UNLOCK(p); 4911 if (p == curthread->td_proc) 4912 pmap_activate(curthread); 4913 curthread->td_pflags |= TDP_EXECVMSPC; 4914 return (0); 4915 } 4916 4917 /* 4918 * Unshare the specified VM space for forcing COW. This 4919 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4920 */ 4921 int 4922 vmspace_unshare(struct proc *p) 4923 { 4924 struct vmspace *oldvmspace = p->p_vmspace; 4925 struct vmspace *newvmspace; 4926 vm_ooffset_t fork_charge; 4927 4928 /* 4929 * The caller is responsible for ensuring that the reference count 4930 * cannot concurrently transition 1 -> 2. 4931 */ 4932 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4933 return (0); 4934 fork_charge = 0; 4935 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4936 if (newvmspace == NULL) 4937 return (ENOMEM); 4938 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4939 vmspace_free(newvmspace); 4940 return (ENOMEM); 4941 } 4942 PROC_VMSPACE_LOCK(p); 4943 p->p_vmspace = newvmspace; 4944 PROC_VMSPACE_UNLOCK(p); 4945 if (p == curthread->td_proc) 4946 pmap_activate(curthread); 4947 vmspace_free(oldvmspace); 4948 return (0); 4949 } 4950 4951 /* 4952 * vm_map_lookup: 4953 * 4954 * Finds the VM object, offset, and 4955 * protection for a given virtual address in the 4956 * specified map, assuming a page fault of the 4957 * type specified. 4958 * 4959 * Leaves the map in question locked for read; return 4960 * values are guaranteed until a vm_map_lookup_done 4961 * call is performed. Note that the map argument 4962 * is in/out; the returned map must be used in 4963 * the call to vm_map_lookup_done. 4964 * 4965 * A handle (out_entry) is returned for use in 4966 * vm_map_lookup_done, to make that fast. 4967 * 4968 * If a lookup is requested with "write protection" 4969 * specified, the map may be changed to perform virtual 4970 * copying operations, although the data referenced will 4971 * remain the same. 4972 */ 4973 int 4974 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4975 vm_offset_t vaddr, 4976 vm_prot_t fault_typea, 4977 vm_map_entry_t *out_entry, /* OUT */ 4978 vm_object_t *object, /* OUT */ 4979 vm_pindex_t *pindex, /* OUT */ 4980 vm_prot_t *out_prot, /* OUT */ 4981 boolean_t *wired) /* OUT */ 4982 { 4983 vm_map_entry_t entry; 4984 vm_map_t map = *var_map; 4985 vm_prot_t prot; 4986 vm_prot_t fault_type; 4987 vm_object_t eobject; 4988 vm_size_t size; 4989 struct ucred *cred; 4990 4991 RetryLookup: 4992 4993 vm_map_lock_read(map); 4994 4995 RetryLookupLocked: 4996 /* 4997 * Lookup the faulting address. 4998 */ 4999 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5000 vm_map_unlock_read(map); 5001 return (KERN_INVALID_ADDRESS); 5002 } 5003 5004 entry = *out_entry; 5005 5006 /* 5007 * Handle submaps. 5008 */ 5009 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5010 vm_map_t old_map = map; 5011 5012 *var_map = map = entry->object.sub_map; 5013 vm_map_unlock_read(old_map); 5014 goto RetryLookup; 5015 } 5016 5017 /* 5018 * Check whether this task is allowed to have this page. 5019 */ 5020 prot = entry->protection; 5021 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5022 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5023 if (prot == VM_PROT_NONE && map != kernel_map && 5024 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5025 (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 && 5026 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5027 goto RetryLookupLocked; 5028 } 5029 fault_type = fault_typea & VM_PROT_ALL; 5030 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5031 vm_map_unlock_read(map); 5032 return (KERN_PROTECTION_FAILURE); 5033 } 5034 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5035 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5036 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5037 ("entry %p flags %x", entry, entry->eflags)); 5038 if ((fault_typea & VM_PROT_COPY) != 0 && 5039 (entry->max_protection & VM_PROT_WRITE) == 0 && 5040 (entry->eflags & MAP_ENTRY_COW) == 0) { 5041 vm_map_unlock_read(map); 5042 return (KERN_PROTECTION_FAILURE); 5043 } 5044 5045 /* 5046 * If this page is not pageable, we have to get it for all possible 5047 * accesses. 5048 */ 5049 *wired = (entry->wired_count != 0); 5050 if (*wired) 5051 fault_type = entry->protection; 5052 size = entry->end - entry->start; 5053 5054 /* 5055 * If the entry was copy-on-write, we either ... 5056 */ 5057 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5058 /* 5059 * If we want to write the page, we may as well handle that 5060 * now since we've got the map locked. 5061 * 5062 * If we don't need to write the page, we just demote the 5063 * permissions allowed. 5064 */ 5065 if ((fault_type & VM_PROT_WRITE) != 0 || 5066 (fault_typea & VM_PROT_COPY) != 0) { 5067 /* 5068 * Make a new object, and place it in the object 5069 * chain. Note that no new references have appeared 5070 * -- one just moved from the map to the new 5071 * object. 5072 */ 5073 if (vm_map_lock_upgrade(map)) 5074 goto RetryLookup; 5075 5076 if (entry->cred == NULL) { 5077 /* 5078 * The debugger owner is charged for 5079 * the memory. 5080 */ 5081 cred = curthread->td_ucred; 5082 crhold(cred); 5083 if (!swap_reserve_by_cred(size, cred)) { 5084 crfree(cred); 5085 vm_map_unlock(map); 5086 return (KERN_RESOURCE_SHORTAGE); 5087 } 5088 entry->cred = cred; 5089 } 5090 eobject = entry->object.vm_object; 5091 vm_object_shadow(&entry->object.vm_object, 5092 &entry->offset, size, entry->cred, false); 5093 if (eobject == entry->object.vm_object) { 5094 /* 5095 * The object was not shadowed. 5096 */ 5097 swap_release_by_cred(size, entry->cred); 5098 crfree(entry->cred); 5099 } 5100 entry->cred = NULL; 5101 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5102 5103 vm_map_lock_downgrade(map); 5104 } else { 5105 /* 5106 * We're attempting to read a copy-on-write page -- 5107 * don't allow writes. 5108 */ 5109 prot &= ~VM_PROT_WRITE; 5110 } 5111 } 5112 5113 /* 5114 * Create an object if necessary. 5115 */ 5116 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) { 5117 if (vm_map_lock_upgrade(map)) 5118 goto RetryLookup; 5119 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5120 NULL, entry->cred, size); 5121 entry->offset = 0; 5122 entry->cred = NULL; 5123 vm_map_lock_downgrade(map); 5124 } 5125 5126 /* 5127 * Return the object/offset from this entry. If the entry was 5128 * copy-on-write or empty, it has been fixed up. 5129 */ 5130 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5131 *object = entry->object.vm_object; 5132 5133 *out_prot = prot; 5134 return (KERN_SUCCESS); 5135 } 5136 5137 /* 5138 * vm_map_lookup_locked: 5139 * 5140 * Lookup the faulting address. A version of vm_map_lookup that returns 5141 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5142 */ 5143 int 5144 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5145 vm_offset_t vaddr, 5146 vm_prot_t fault_typea, 5147 vm_map_entry_t *out_entry, /* OUT */ 5148 vm_object_t *object, /* OUT */ 5149 vm_pindex_t *pindex, /* OUT */ 5150 vm_prot_t *out_prot, /* OUT */ 5151 boolean_t *wired) /* OUT */ 5152 { 5153 vm_map_entry_t entry; 5154 vm_map_t map = *var_map; 5155 vm_prot_t prot; 5156 vm_prot_t fault_type = fault_typea; 5157 5158 /* 5159 * Lookup the faulting address. 5160 */ 5161 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5162 return (KERN_INVALID_ADDRESS); 5163 5164 entry = *out_entry; 5165 5166 /* 5167 * Fail if the entry refers to a submap. 5168 */ 5169 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5170 return (KERN_FAILURE); 5171 5172 /* 5173 * Check whether this task is allowed to have this page. 5174 */ 5175 prot = entry->protection; 5176 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5177 if ((fault_type & prot) != fault_type) 5178 return (KERN_PROTECTION_FAILURE); 5179 5180 /* 5181 * If this page is not pageable, we have to get it for all possible 5182 * accesses. 5183 */ 5184 *wired = (entry->wired_count != 0); 5185 if (*wired) 5186 fault_type = entry->protection; 5187 5188 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5189 /* 5190 * Fail if the entry was copy-on-write for a write fault. 5191 */ 5192 if (fault_type & VM_PROT_WRITE) 5193 return (KERN_FAILURE); 5194 /* 5195 * We're attempting to read a copy-on-write page -- 5196 * don't allow writes. 5197 */ 5198 prot &= ~VM_PROT_WRITE; 5199 } 5200 5201 /* 5202 * Fail if an object should be created. 5203 */ 5204 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) 5205 return (KERN_FAILURE); 5206 5207 /* 5208 * Return the object/offset from this entry. If the entry was 5209 * copy-on-write or empty, it has been fixed up. 5210 */ 5211 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5212 *object = entry->object.vm_object; 5213 5214 *out_prot = prot; 5215 return (KERN_SUCCESS); 5216 } 5217 5218 /* 5219 * vm_map_lookup_done: 5220 * 5221 * Releases locks acquired by a vm_map_lookup 5222 * (according to the handle returned by that lookup). 5223 */ 5224 void 5225 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5226 { 5227 /* 5228 * Unlock the main-level map 5229 */ 5230 vm_map_unlock_read(map); 5231 } 5232 5233 vm_offset_t 5234 vm_map_max_KBI(const struct vm_map *map) 5235 { 5236 5237 return (vm_map_max(map)); 5238 } 5239 5240 vm_offset_t 5241 vm_map_min_KBI(const struct vm_map *map) 5242 { 5243 5244 return (vm_map_min(map)); 5245 } 5246 5247 pmap_t 5248 vm_map_pmap_KBI(vm_map_t map) 5249 { 5250 5251 return (map->pmap); 5252 } 5253 5254 bool 5255 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5256 { 5257 5258 return (vm_map_range_valid(map, start, end)); 5259 } 5260 5261 #ifdef INVARIANTS 5262 static void 5263 _vm_map_assert_consistent(vm_map_t map, int check) 5264 { 5265 vm_map_entry_t entry, prev; 5266 vm_map_entry_t cur, header, lbound, ubound; 5267 vm_size_t max_left, max_right; 5268 5269 #ifdef DIAGNOSTIC 5270 ++map->nupdates; 5271 #endif 5272 if (enable_vmmap_check != check) 5273 return; 5274 5275 header = prev = &map->header; 5276 VM_MAP_ENTRY_FOREACH(entry, map) { 5277 KASSERT(prev->end <= entry->start, 5278 ("map %p prev->end = %jx, start = %jx", map, 5279 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5280 KASSERT(entry->start < entry->end, 5281 ("map %p start = %jx, end = %jx", map, 5282 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5283 KASSERT(entry->left == header || 5284 entry->left->start < entry->start, 5285 ("map %p left->start = %jx, start = %jx", map, 5286 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5287 KASSERT(entry->right == header || 5288 entry->start < entry->right->start, 5289 ("map %p start = %jx, right->start = %jx", map, 5290 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5291 cur = map->root; 5292 lbound = ubound = header; 5293 for (;;) { 5294 if (entry->start < cur->start) { 5295 ubound = cur; 5296 cur = cur->left; 5297 KASSERT(cur != lbound, 5298 ("map %p cannot find %jx", 5299 map, (uintmax_t)entry->start)); 5300 } else if (cur->end <= entry->start) { 5301 lbound = cur; 5302 cur = cur->right; 5303 KASSERT(cur != ubound, 5304 ("map %p cannot find %jx", 5305 map, (uintmax_t)entry->start)); 5306 } else { 5307 KASSERT(cur == entry, 5308 ("map %p cannot find %jx", 5309 map, (uintmax_t)entry->start)); 5310 break; 5311 } 5312 } 5313 max_left = vm_map_entry_max_free_left(entry, lbound); 5314 max_right = vm_map_entry_max_free_right(entry, ubound); 5315 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5316 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5317 (uintmax_t)entry->max_free, 5318 (uintmax_t)max_left, (uintmax_t)max_right)); 5319 prev = entry; 5320 } 5321 KASSERT(prev->end <= entry->start, 5322 ("map %p prev->end = %jx, start = %jx", map, 5323 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5324 } 5325 #endif 5326 5327 #include "opt_ddb.h" 5328 #ifdef DDB 5329 #include <sys/kernel.h> 5330 5331 #include <ddb/ddb.h> 5332 5333 static void 5334 vm_map_print(vm_map_t map) 5335 { 5336 vm_map_entry_t entry, prev; 5337 5338 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5339 (void *)map, 5340 (void *)map->pmap, map->nentries, map->timestamp); 5341 5342 db_indent += 2; 5343 prev = &map->header; 5344 VM_MAP_ENTRY_FOREACH(entry, map) { 5345 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5346 (void *)entry, (void *)entry->start, (void *)entry->end, 5347 entry->eflags); 5348 { 5349 static const char * const inheritance_name[4] = 5350 {"share", "copy", "none", "donate_copy"}; 5351 5352 db_iprintf(" prot=%x/%x/%s", 5353 entry->protection, 5354 entry->max_protection, 5355 inheritance_name[(int)(unsigned char) 5356 entry->inheritance]); 5357 if (entry->wired_count != 0) 5358 db_printf(", wired"); 5359 } 5360 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5361 db_printf(", share=%p, offset=0x%jx\n", 5362 (void *)entry->object.sub_map, 5363 (uintmax_t)entry->offset); 5364 if (prev == &map->header || 5365 prev->object.sub_map != 5366 entry->object.sub_map) { 5367 db_indent += 2; 5368 vm_map_print((vm_map_t)entry->object.sub_map); 5369 db_indent -= 2; 5370 } 5371 } else { 5372 if (entry->cred != NULL) 5373 db_printf(", ruid %d", entry->cred->cr_ruid); 5374 db_printf(", object=%p, offset=0x%jx", 5375 (void *)entry->object.vm_object, 5376 (uintmax_t)entry->offset); 5377 if (entry->object.vm_object && entry->object.vm_object->cred) 5378 db_printf(", obj ruid %d charge %jx", 5379 entry->object.vm_object->cred->cr_ruid, 5380 (uintmax_t)entry->object.vm_object->charge); 5381 if (entry->eflags & MAP_ENTRY_COW) 5382 db_printf(", copy (%s)", 5383 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5384 db_printf("\n"); 5385 5386 if (prev == &map->header || 5387 prev->object.vm_object != 5388 entry->object.vm_object) { 5389 db_indent += 2; 5390 vm_object_print((db_expr_t)(intptr_t) 5391 entry->object.vm_object, 5392 0, 0, (char *)0); 5393 db_indent -= 2; 5394 } 5395 } 5396 prev = entry; 5397 } 5398 db_indent -= 2; 5399 } 5400 5401 DB_SHOW_COMMAND(map, map) 5402 { 5403 5404 if (!have_addr) { 5405 db_printf("usage: show map <addr>\n"); 5406 return; 5407 } 5408 vm_map_print((vm_map_t)addr); 5409 } 5410 5411 DB_SHOW_COMMAND(procvm, procvm) 5412 { 5413 struct proc *p; 5414 5415 if (have_addr) { 5416 p = db_lookup_proc(addr); 5417 } else { 5418 p = curproc; 5419 } 5420 5421 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5422 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5423 (void *)vmspace_pmap(p->p_vmspace)); 5424 5425 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5426 } 5427 5428 #endif /* DDB */ 5429