xref: /freebsd/sys/vm/vm_map.c (revision c27f7d6b9cf6d4ab01cb3d0972726c14e0aca146)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_radix.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t vmspace_zone;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
130     vm_offset_t max);
131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
135     vm_map_entry_t gap_entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
142     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
143     int cow);
144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
145     vm_offset_t failed_addr);
146 
147 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
148 
149 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
150     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
151      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
152 
153 /*
154  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
155  * stable.
156  */
157 #define PROC_VMSPACE_LOCK(p) do { } while (0)
158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
159 
160 /*
161  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
162  *
163  *	Asserts that the starting and ending region
164  *	addresses fall within the valid range of the map.
165  */
166 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
167 		{					\
168 		if (start < vm_map_min(map))		\
169 			start = vm_map_min(map);	\
170 		if (end > vm_map_max(map))		\
171 			end = vm_map_max(map);		\
172 		if (start > end)			\
173 			start = end;			\
174 		}
175 
176 #ifndef UMA_USE_DMAP
177 
178 /*
179  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
180  * unlocked, depending on whether the request is coming from the kernel map or a
181  * submap.  This function allocates a virtual address range directly from the
182  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
183  * lock and also to avoid triggering allocator recursion in the vmem boundary
184  * tag allocator.
185  */
186 static void *
187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
188     int wait)
189 {
190 	vm_offset_t addr;
191 	int error, locked;
192 
193 	*pflag = UMA_SLAB_PRIV;
194 
195 	if (!(locked = vm_map_locked(kernel_map)))
196 		vm_map_lock(kernel_map);
197 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
198 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
199 		panic("%s: kernel map is exhausted", __func__);
200 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
201 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
202 	if (error != KERN_SUCCESS)
203 		panic("%s: vm_map_insert() failed: %d", __func__, error);
204 	if (!locked)
205 		vm_map_unlock(kernel_map);
206 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
207 	    M_USE_RESERVE | (wait & M_ZERO));
208 	if (error == KERN_SUCCESS) {
209 		return ((void *)addr);
210 	} else {
211 		if (!locked)
212 			vm_map_lock(kernel_map);
213 		vm_map_delete(kernel_map, addr, bytes);
214 		if (!locked)
215 			vm_map_unlock(kernel_map);
216 		return (NULL);
217 	}
218 }
219 
220 static void
221 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
222 {
223 	vm_offset_t addr;
224 	int error __diagused;
225 
226 	if ((pflag & UMA_SLAB_PRIV) == 0)
227 		/* XXX leaked */
228 		return;
229 
230 	addr = (vm_offset_t)item;
231 	kmem_unback(kernel_object, addr, size);
232 	error = vm_map_remove(kernel_map, addr, addr + size);
233 	KASSERT(error == KERN_SUCCESS,
234 	    ("%s: vm_map_remove failed: %d", __func__, error));
235 }
236 
237 /*
238  * The worst-case upper bound on the number of kernel map entries that may be
239  * created before the zone must be replenished in _vm_map_unlock().
240  */
241 #define	KMAPENT_RESERVE		1
242 
243 #endif /* !UMD_MD_SMALL_ALLOC */
244 
245 /*
246  *	vm_map_startup:
247  *
248  *	Initialize the vm_map module.  Must be called before any other vm_map
249  *	routines.
250  *
251  *	User map and entry structures are allocated from the general purpose
252  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
253  *	require special handling to avoid recursion; see the comments above
254  *	kmapent_alloc() and in vm_map_entry_create().
255  */
256 void
257 vm_map_startup(void)
258 {
259 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
260 
261 	/*
262 	 * Disable the use of per-CPU buckets: map entry allocation is
263 	 * serialized by the kernel map lock.
264 	 */
265 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
266 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
267 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
268 #ifndef UMA_USE_DMAP
269 	/* Reserve an extra map entry for use when replenishing the reserve. */
270 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
272 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
273 	uma_zone_set_freef(kmapentzone, kmapent_free);
274 #endif
275 
276 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
277 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
278 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
279 #ifdef INVARIANTS
280 	    vmspace_zdtor,
281 #else
282 	    NULL,
283 #endif
284 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 }
286 
287 static int
288 vmspace_zinit(void *mem, int size, int flags)
289 {
290 	struct vmspace *vm;
291 	vm_map_t map;
292 
293 	vm = (struct vmspace *)mem;
294 	map = &vm->vm_map;
295 
296 	memset(map, 0, sizeof(*map));	/* set MAP_SYSTEM_MAP to false */
297 	sx_init(&map->lock, "vm map (user)");
298 	PMAP_LOCK_INIT(vmspace_pmap(vm));
299 	return (0);
300 }
301 
302 #ifdef INVARIANTS
303 static void
304 vmspace_zdtor(void *mem, int size, void *arg)
305 {
306 	struct vmspace *vm;
307 
308 	vm = (struct vmspace *)mem;
309 	KASSERT(vm->vm_map.nentries == 0,
310 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
311 	KASSERT(vm->vm_map.size == 0,
312 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
313 }
314 #endif	/* INVARIANTS */
315 
316 /*
317  * Allocate a vmspace structure, including a vm_map and pmap,
318  * and initialize those structures.  The refcnt is set to 1.
319  */
320 struct vmspace *
321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
322 {
323 	struct vmspace *vm;
324 
325 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
326 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
327 	if (!pinit(vmspace_pmap(vm))) {
328 		uma_zfree(vmspace_zone, vm);
329 		return (NULL);
330 	}
331 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
332 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
333 	refcount_init(&vm->vm_refcnt, 1);
334 	vm->vm_shm = NULL;
335 	vm->vm_swrss = 0;
336 	vm->vm_tsize = 0;
337 	vm->vm_dsize = 0;
338 	vm->vm_ssize = 0;
339 	vm->vm_taddr = 0;
340 	vm->vm_daddr = 0;
341 	vm->vm_maxsaddr = 0;
342 	return (vm);
343 }
344 
345 #ifdef RACCT
346 static void
347 vmspace_container_reset(struct proc *p)
348 {
349 
350 	PROC_LOCK(p);
351 	racct_set(p, RACCT_DATA, 0);
352 	racct_set(p, RACCT_STACK, 0);
353 	racct_set(p, RACCT_RSS, 0);
354 	racct_set(p, RACCT_MEMLOCK, 0);
355 	racct_set(p, RACCT_VMEM, 0);
356 	PROC_UNLOCK(p);
357 }
358 #endif
359 
360 static inline void
361 vmspace_dofree(struct vmspace *vm)
362 {
363 
364 	CTR1(KTR_VM, "vmspace_free: %p", vm);
365 
366 	/*
367 	 * Make sure any SysV shm is freed, it might not have been in
368 	 * exit1().
369 	 */
370 	shmexit(vm);
371 
372 	/*
373 	 * Lock the map, to wait out all other references to it.
374 	 * Delete all of the mappings and pages they hold, then call
375 	 * the pmap module to reclaim anything left.
376 	 */
377 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
378 	    vm_map_max(&vm->vm_map));
379 
380 	pmap_release(vmspace_pmap(vm));
381 	vm->vm_map.pmap = NULL;
382 	uma_zfree(vmspace_zone, vm);
383 }
384 
385 void
386 vmspace_free(struct vmspace *vm)
387 {
388 
389 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
390 	    "vmspace_free() called");
391 
392 	if (refcount_release(&vm->vm_refcnt))
393 		vmspace_dofree(vm);
394 }
395 
396 void
397 vmspace_exitfree(struct proc *p)
398 {
399 	struct vmspace *vm;
400 
401 	PROC_VMSPACE_LOCK(p);
402 	vm = p->p_vmspace;
403 	p->p_vmspace = NULL;
404 	PROC_VMSPACE_UNLOCK(p);
405 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
406 	vmspace_free(vm);
407 }
408 
409 void
410 vmspace_exit(struct thread *td)
411 {
412 	struct vmspace *vm;
413 	struct proc *p;
414 	bool released;
415 
416 	p = td->td_proc;
417 	vm = p->p_vmspace;
418 
419 	/*
420 	 * Prepare to release the vmspace reference.  The thread that releases
421 	 * the last reference is responsible for tearing down the vmspace.
422 	 * However, threads not releasing the final reference must switch to the
423 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
424 	 * deactivation does not modify a freed vmspace.
425 	 */
426 	refcount_acquire(&vmspace0.vm_refcnt);
427 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
428 		if (p->p_vmspace != &vmspace0) {
429 			PROC_VMSPACE_LOCK(p);
430 			p->p_vmspace = &vmspace0;
431 			PROC_VMSPACE_UNLOCK(p);
432 			pmap_activate(td);
433 		}
434 		released = refcount_release(&vm->vm_refcnt);
435 	}
436 	if (released) {
437 		/*
438 		 * pmap_remove_pages() expects the pmap to be active, so switch
439 		 * back first if necessary.
440 		 */
441 		if (p->p_vmspace != vm) {
442 			PROC_VMSPACE_LOCK(p);
443 			p->p_vmspace = vm;
444 			PROC_VMSPACE_UNLOCK(p);
445 			pmap_activate(td);
446 		}
447 		pmap_remove_pages(vmspace_pmap(vm));
448 		PROC_VMSPACE_LOCK(p);
449 		p->p_vmspace = &vmspace0;
450 		PROC_VMSPACE_UNLOCK(p);
451 		pmap_activate(td);
452 		vmspace_dofree(vm);
453 	}
454 #ifdef RACCT
455 	if (racct_enable)
456 		vmspace_container_reset(p);
457 #endif
458 }
459 
460 /* Acquire reference to vmspace owned by another process. */
461 
462 struct vmspace *
463 vmspace_acquire_ref(struct proc *p)
464 {
465 	struct vmspace *vm;
466 
467 	PROC_VMSPACE_LOCK(p);
468 	vm = p->p_vmspace;
469 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
470 		PROC_VMSPACE_UNLOCK(p);
471 		return (NULL);
472 	}
473 	if (vm != p->p_vmspace) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		vmspace_free(vm);
476 		return (NULL);
477 	}
478 	PROC_VMSPACE_UNLOCK(p);
479 	return (vm);
480 }
481 
482 /*
483  * Switch between vmspaces in an AIO kernel process.
484  *
485  * The new vmspace is either the vmspace of a user process obtained
486  * from an active AIO request or the initial vmspace of the AIO kernel
487  * process (when it is idling).  Because user processes will block to
488  * drain any active AIO requests before proceeding in exit() or
489  * execve(), the reference count for vmspaces from AIO requests can
490  * never be 0.  Similarly, AIO kernel processes hold an extra
491  * reference on their initial vmspace for the life of the process.  As
492  * a result, the 'newvm' vmspace always has a non-zero reference
493  * count.  This permits an additional reference on 'newvm' to be
494  * acquired via a simple atomic increment rather than the loop in
495  * vmspace_acquire_ref() above.
496  */
497 void
498 vmspace_switch_aio(struct vmspace *newvm)
499 {
500 	struct vmspace *oldvm;
501 
502 	/* XXX: Need some way to assert that this is an aio daemon. */
503 
504 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
505 	    ("vmspace_switch_aio: newvm unreferenced"));
506 
507 	oldvm = curproc->p_vmspace;
508 	if (oldvm == newvm)
509 		return;
510 
511 	/*
512 	 * Point to the new address space and refer to it.
513 	 */
514 	curproc->p_vmspace = newvm;
515 	refcount_acquire(&newvm->vm_refcnt);
516 
517 	/* Activate the new mapping. */
518 	pmap_activate(curthread);
519 
520 	vmspace_free(oldvm);
521 }
522 
523 void
524 _vm_map_lock(vm_map_t map, const char *file, int line)
525 {
526 
527 	if (vm_map_is_system(map))
528 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
529 	else
530 		sx_xlock_(&map->lock, file, line);
531 	map->timestamp++;
532 }
533 
534 void
535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
536 {
537 	vm_object_t object;
538 	struct vnode *vp;
539 	bool vp_held;
540 
541 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
542 		return;
543 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
544 	    ("Submap with execs"));
545 	object = entry->object.vm_object;
546 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
547 	if ((object->flags & OBJ_ANON) != 0)
548 		object = object->handle;
549 	else
550 		KASSERT(object->backing_object == NULL,
551 		    ("non-anon object %p shadows", object));
552 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
553 	    entry, entry->object.vm_object));
554 
555 	/*
556 	 * Mostly, we do not lock the backing object.  It is
557 	 * referenced by the entry we are processing, so it cannot go
558 	 * away.
559 	 */
560 	vm_pager_getvp(object, &vp, &vp_held);
561 	if (vp != NULL) {
562 		if (add) {
563 			VOP_SET_TEXT_CHECKED(vp);
564 		} else {
565 			vn_lock(vp, LK_SHARED | LK_RETRY);
566 			VOP_UNSET_TEXT_CHECKED(vp);
567 			VOP_UNLOCK(vp);
568 		}
569 		if (vp_held)
570 			vdrop(vp);
571 	}
572 }
573 
574 /*
575  * Use a different name for this vm_map_entry field when it's use
576  * is not consistent with its use as part of an ordered search tree.
577  */
578 #define defer_next right
579 
580 static void
581 vm_map_process_deferred(void)
582 {
583 	struct thread *td;
584 	vm_map_entry_t entry, next;
585 	vm_object_t object;
586 
587 	td = curthread;
588 	entry = td->td_map_def_user;
589 	td->td_map_def_user = NULL;
590 	while (entry != NULL) {
591 		next = entry->defer_next;
592 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
593 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
594 		    MAP_ENTRY_VN_EXEC));
595 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
596 			/*
597 			 * Decrement the object's writemappings and
598 			 * possibly the vnode's v_writecount.
599 			 */
600 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
601 			    ("Submap with writecount"));
602 			object = entry->object.vm_object;
603 			KASSERT(object != NULL, ("No object for writecount"));
604 			vm_pager_release_writecount(object, entry->start,
605 			    entry->end);
606 		}
607 		vm_map_entry_set_vnode_text(entry, false);
608 		vm_map_entry_deallocate(entry, FALSE);
609 		entry = next;
610 	}
611 }
612 
613 #ifdef INVARIANTS
614 static void
615 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
616 {
617 
618 	if (vm_map_is_system(map))
619 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620 	else
621 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
622 }
623 
624 #define	VM_MAP_ASSERT_LOCKED(map) \
625     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626 
627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
628 #ifdef DIAGNOSTIC
629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
630 #else
631 static int enable_vmmap_check = VMMAP_CHECK_NONE;
632 #endif
633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
634     &enable_vmmap_check, 0, "Enable vm map consistency checking");
635 
636 static void _vm_map_assert_consistent(vm_map_t map, int check);
637 
638 #define VM_MAP_ASSERT_CONSISTENT(map) \
639     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
640 #ifdef DIAGNOSTIC
641 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
642 	if (map->nupdates > map->nentries) {				\
643 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
644 		map->nupdates = 0;					\
645 	}								\
646 } while (0)
647 #else
648 #define VM_MAP_UNLOCK_CONSISTENT(map)
649 #endif
650 #else
651 #define	VM_MAP_ASSERT_LOCKED(map)
652 #define VM_MAP_ASSERT_CONSISTENT(map)
653 #define VM_MAP_UNLOCK_CONSISTENT(map)
654 #endif /* INVARIANTS */
655 
656 void
657 _vm_map_unlock(vm_map_t map, const char *file, int line)
658 {
659 
660 	VM_MAP_UNLOCK_CONSISTENT(map);
661 	if (vm_map_is_system(map)) {
662 #ifndef UMA_USE_DMAP
663 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
664 			uma_prealloc(kmapentzone, 1);
665 			map->flags &= ~MAP_REPLENISH;
666 		}
667 #endif
668 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
669 	} else {
670 		sx_xunlock_(&map->lock, file, line);
671 		vm_map_process_deferred();
672 	}
673 }
674 
675 void
676 _vm_map_lock_read(vm_map_t map, const char *file, int line)
677 {
678 
679 	if (vm_map_is_system(map))
680 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
681 	else
682 		sx_slock_(&map->lock, file, line);
683 }
684 
685 void
686 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
687 {
688 
689 	if (vm_map_is_system(map)) {
690 		KASSERT((map->flags & MAP_REPLENISH) == 0,
691 		    ("%s: MAP_REPLENISH leaked", __func__));
692 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
693 	} else {
694 		sx_sunlock_(&map->lock, file, line);
695 		vm_map_process_deferred();
696 	}
697 }
698 
699 int
700 _vm_map_trylock(vm_map_t map, const char *file, int line)
701 {
702 	int error;
703 
704 	error = vm_map_is_system(map) ?
705 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
706 	    !sx_try_xlock_(&map->lock, file, line);
707 	if (error == 0)
708 		map->timestamp++;
709 	return (error == 0);
710 }
711 
712 int
713 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
714 {
715 	int error;
716 
717 	error = vm_map_is_system(map) ?
718 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
719 	    !sx_try_slock_(&map->lock, file, line);
720 	return (error == 0);
721 }
722 
723 /*
724  *	_vm_map_lock_upgrade:	[ internal use only ]
725  *
726  *	Tries to upgrade a read (shared) lock on the specified map to a write
727  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
728  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
729  *	returned without a read or write lock held.
730  *
731  *	Requires that the map be read locked.
732  */
733 int
734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
735 {
736 	unsigned int last_timestamp;
737 
738 	if (vm_map_is_system(map)) {
739 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
740 	} else {
741 		if (!sx_try_upgrade_(&map->lock, file, line)) {
742 			last_timestamp = map->timestamp;
743 			sx_sunlock_(&map->lock, file, line);
744 			vm_map_process_deferred();
745 			/*
746 			 * If the map's timestamp does not change while the
747 			 * map is unlocked, then the upgrade succeeds.
748 			 */
749 			sx_xlock_(&map->lock, file, line);
750 			if (last_timestamp != map->timestamp) {
751 				sx_xunlock_(&map->lock, file, line);
752 				return (1);
753 			}
754 		}
755 	}
756 	map->timestamp++;
757 	return (0);
758 }
759 
760 void
761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
762 {
763 
764 	if (vm_map_is_system(map)) {
765 		KASSERT((map->flags & MAP_REPLENISH) == 0,
766 		    ("%s: MAP_REPLENISH leaked", __func__));
767 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
768 	} else {
769 		VM_MAP_UNLOCK_CONSISTENT(map);
770 		sx_downgrade_(&map->lock, file, line);
771 	}
772 }
773 
774 /*
775  *	vm_map_locked:
776  *
777  *	Returns a non-zero value if the caller holds a write (exclusive) lock
778  *	on the specified map and the value "0" otherwise.
779  */
780 int
781 vm_map_locked(vm_map_t map)
782 {
783 
784 	if (vm_map_is_system(map))
785 		return (mtx_owned(&map->system_mtx));
786 	return (sx_xlocked(&map->lock));
787 }
788 
789 /*
790  *	_vm_map_unlock_and_wait:
791  *
792  *	Atomically releases the lock on the specified map and puts the calling
793  *	thread to sleep.  The calling thread will remain asleep until either
794  *	vm_map_wakeup() is performed on the map or the specified timeout is
795  *	exceeded.
796  *
797  *	WARNING!  This function does not perform deferred deallocations of
798  *	objects and map	entries.  Therefore, the calling thread is expected to
799  *	reacquire the map lock after reawakening and later perform an ordinary
800  *	unlock operation, such as vm_map_unlock(), before completing its
801  *	operation on the map.
802  */
803 int
804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
805 {
806 
807 	VM_MAP_UNLOCK_CONSISTENT(map);
808 	mtx_lock(&map_sleep_mtx);
809 	if (vm_map_is_system(map)) {
810 		KASSERT((map->flags & MAP_REPLENISH) == 0,
811 		    ("%s: MAP_REPLENISH leaked", __func__));
812 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
813 	} else {
814 		sx_xunlock_(&map->lock, file, line);
815 	}
816 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
817 	    timo));
818 }
819 
820 /*
821  *	vm_map_wakeup:
822  *
823  *	Awaken any threads that have slept on the map using
824  *	vm_map_unlock_and_wait().
825  */
826 void
827 vm_map_wakeup(vm_map_t map)
828 {
829 
830 	/*
831 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
832 	 * from being performed (and lost) between the map unlock
833 	 * and the msleep() in _vm_map_unlock_and_wait().
834 	 */
835 	mtx_lock(&map_sleep_mtx);
836 	mtx_unlock(&map_sleep_mtx);
837 	wakeup(&map->root);
838 }
839 
840 void
841 vm_map_busy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	map->busy++;
846 }
847 
848 void
849 vm_map_unbusy(vm_map_t map)
850 {
851 
852 	VM_MAP_ASSERT_LOCKED(map);
853 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
854 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
855 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
856 		wakeup(&map->busy);
857 	}
858 }
859 
860 void
861 vm_map_wait_busy(vm_map_t map)
862 {
863 
864 	VM_MAP_ASSERT_LOCKED(map);
865 	while (map->busy) {
866 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
867 		if (vm_map_is_system(map))
868 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
869 		else
870 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
871 	}
872 	map->timestamp++;
873 }
874 
875 long
876 vmspace_resident_count(struct vmspace *vmspace)
877 {
878 	return pmap_resident_count(vmspace_pmap(vmspace));
879 }
880 
881 /*
882  * Initialize an existing vm_map structure
883  * such as that in the vmspace structure.
884  */
885 static void
886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 
889 	map->header.eflags = MAP_ENTRY_HEADER;
890 	map->pmap = pmap;
891 	map->header.end = min;
892 	map->header.start = max;
893 	map->flags = 0;
894 	map->header.left = map->header.right = &map->header;
895 	map->root = NULL;
896 	map->timestamp = 0;
897 	map->busy = 0;
898 	map->anon_loc = 0;
899 #ifdef DIAGNOSTIC
900 	map->nupdates = 0;
901 #endif
902 }
903 
904 void
905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
906 {
907 	_vm_map_init(map, pmap, min, max);
908 	sx_init(&map->lock, "vm map (user)");
909 }
910 
911 void
912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 	_vm_map_init(map, pmap, min, max);
915 	vm_map_modflags(map, MAP_SYSTEM_MAP, 0);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF |
917 	    MTX_DUPOK);
918 }
919 
920 /*
921  *	vm_map_entry_dispose:	[ internal use only ]
922  *
923  *	Inverse of vm_map_entry_create.
924  */
925 static void
926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
927 {
928 	uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry);
929 }
930 
931 /*
932  *	vm_map_entry_create:	[ internal use only ]
933  *
934  *	Allocates a VM map entry for insertion.
935  *	No entry fields are filled in.
936  */
937 static vm_map_entry_t
938 vm_map_entry_create(vm_map_t map)
939 {
940 	vm_map_entry_t new_entry;
941 
942 #ifndef UMA_USE_DMAP
943 	if (map == kernel_map) {
944 		VM_MAP_ASSERT_LOCKED(map);
945 
946 		/*
947 		 * A new slab of kernel map entries cannot be allocated at this
948 		 * point because the kernel map has not yet been updated to
949 		 * reflect the caller's request.  Therefore, we allocate a new
950 		 * map entry, dipping into the reserve if necessary, and set a
951 		 * flag indicating that the reserve must be replenished before
952 		 * the map is unlocked.
953 		 */
954 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
955 		if (new_entry == NULL) {
956 			new_entry = uma_zalloc(kmapentzone,
957 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
958 			kernel_map->flags |= MAP_REPLENISH;
959 		}
960 	} else
961 #endif
962 	if (vm_map_is_system(map)) {
963 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
964 	} else {
965 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
966 	}
967 	KASSERT(new_entry != NULL,
968 	    ("vm_map_entry_create: kernel resources exhausted"));
969 	return (new_entry);
970 }
971 
972 /*
973  *	vm_map_entry_set_behavior:
974  *
975  *	Set the expected access behavior, either normal, random, or
976  *	sequential.
977  */
978 static inline void
979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
980 {
981 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
982 	    (behavior & MAP_ENTRY_BEHAV_MASK);
983 }
984 
985 /*
986  *	vm_map_entry_max_free_{left,right}:
987  *
988  *	Compute the size of the largest free gap between two entries,
989  *	one the root of a tree and the other the ancestor of that root
990  *	that is the least or greatest ancestor found on the search path.
991  */
992 static inline vm_size_t
993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
994 {
995 
996 	return (root->left != left_ancestor ?
997 	    root->left->max_free : root->start - left_ancestor->end);
998 }
999 
1000 static inline vm_size_t
1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1002 {
1003 
1004 	return (root->right != right_ancestor ?
1005 	    root->right->max_free : right_ancestor->start - root->end);
1006 }
1007 
1008 /*
1009  *	vm_map_entry_{pred,succ}:
1010  *
1011  *	Find the {predecessor, successor} of the entry by taking one step
1012  *	in the appropriate direction and backtracking as much as necessary.
1013  *	vm_map_entry_succ is defined in vm_map.h.
1014  */
1015 static inline vm_map_entry_t
1016 vm_map_entry_pred(vm_map_entry_t entry)
1017 {
1018 	vm_map_entry_t prior;
1019 
1020 	prior = entry->left;
1021 	if (prior->right->start < entry->start) {
1022 		do
1023 			prior = prior->right;
1024 		while (prior->right != entry);
1025 	}
1026 	return (prior);
1027 }
1028 
1029 static inline vm_size_t
1030 vm_size_max(vm_size_t a, vm_size_t b)
1031 {
1032 
1033 	return (a > b ? a : b);
1034 }
1035 
1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1037 	vm_map_entry_t z;						\
1038 	vm_size_t max_free;						\
1039 									\
1040 	/*								\
1041 	 * Infer root->right->max_free == root->max_free when		\
1042 	 * y->max_free < root->max_free || root->max_free == 0.		\
1043 	 * Otherwise, look right to find it.				\
1044 	 */								\
1045 	y = root->left;							\
1046 	max_free = root->max_free;					\
1047 	KASSERT(max_free == vm_size_max(				\
1048 	    vm_map_entry_max_free_left(root, llist),			\
1049 	    vm_map_entry_max_free_right(root, rlist)),			\
1050 	    ("%s: max_free invariant fails", __func__));		\
1051 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1052 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1053 	if (y != llist && (test)) {					\
1054 		/* Rotate right and make y root. */			\
1055 		z = y->right;						\
1056 		if (z != root) {					\
1057 			root->left = z;					\
1058 			y->right = root;				\
1059 			if (max_free < y->max_free)			\
1060 			    root->max_free = max_free =			\
1061 			    vm_size_max(max_free, z->max_free);		\
1062 		} else if (max_free < y->max_free)			\
1063 			root->max_free = max_free =			\
1064 			    vm_size_max(max_free, root->start - y->end);\
1065 		root = y;						\
1066 		y = root->left;						\
1067 	}								\
1068 	/* Copy right->max_free.  Put root on rlist. */			\
1069 	root->max_free = max_free;					\
1070 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1071 	    ("%s: max_free not copied from right", __func__));		\
1072 	root->left = rlist;						\
1073 	rlist = root;							\
1074 	root = y != llist ? y : NULL;					\
1075 } while (0)
1076 
1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1078 	vm_map_entry_t z;						\
1079 	vm_size_t max_free;						\
1080 									\
1081 	/*								\
1082 	 * Infer root->left->max_free == root->max_free when		\
1083 	 * y->max_free < root->max_free || root->max_free == 0.		\
1084 	 * Otherwise, look left to find it.				\
1085 	 */								\
1086 	y = root->right;						\
1087 	max_free = root->max_free;					\
1088 	KASSERT(max_free == vm_size_max(				\
1089 	    vm_map_entry_max_free_left(root, llist),			\
1090 	    vm_map_entry_max_free_right(root, rlist)),			\
1091 	    ("%s: max_free invariant fails", __func__));		\
1092 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1093 		max_free = vm_map_entry_max_free_left(root, llist);	\
1094 	if (y != rlist && (test)) {					\
1095 		/* Rotate left and make y root. */			\
1096 		z = y->left;						\
1097 		if (z != root) {					\
1098 			root->right = z;				\
1099 			y->left = root;					\
1100 			if (max_free < y->max_free)			\
1101 			    root->max_free = max_free =			\
1102 			    vm_size_max(max_free, z->max_free);		\
1103 		} else if (max_free < y->max_free)			\
1104 			root->max_free = max_free =			\
1105 			    vm_size_max(max_free, y->start - root->end);\
1106 		root = y;						\
1107 		y = root->right;					\
1108 	}								\
1109 	/* Copy left->max_free.  Put root on llist. */			\
1110 	root->max_free = max_free;					\
1111 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1112 	    ("%s: max_free not copied from left", __func__));		\
1113 	root->right = llist;						\
1114 	llist = root;							\
1115 	root = y != rlist ? y : NULL;					\
1116 } while (0)
1117 
1118 /*
1119  * Walk down the tree until we find addr or a gap where addr would go, breaking
1120  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1121  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1122  * the two sides in reverse order (bottom-up), with llist linked by the right
1123  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1124  * lists terminated by &map->header.  This function, and the subsequent call to
1125  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1126  * values in &map->header.
1127  */
1128 static __always_inline vm_map_entry_t
1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1130     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1131 {
1132 	vm_map_entry_t left, right, root, y;
1133 
1134 	left = right = &map->header;
1135 	root = map->root;
1136 	while (root != NULL && root->max_free >= length) {
1137 		KASSERT(left->end <= root->start &&
1138 		    root->end <= right->start,
1139 		    ("%s: root not within tree bounds", __func__));
1140 		if (addr < root->start) {
1141 			SPLAY_LEFT_STEP(root, y, left, right,
1142 			    y->max_free >= length && addr < y->start);
1143 		} else if (addr >= root->end) {
1144 			SPLAY_RIGHT_STEP(root, y, left, right,
1145 			    y->max_free >= length && addr >= y->end);
1146 		} else
1147 			break;
1148 	}
1149 	*llist = left;
1150 	*rlist = right;
1151 	return (root);
1152 }
1153 
1154 static __always_inline void
1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1156 {
1157 	vm_map_entry_t hi, right, y;
1158 
1159 	right = *rlist;
1160 	hi = root->right == right ? NULL : root->right;
1161 	if (hi == NULL)
1162 		return;
1163 	do
1164 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1165 	while (hi != NULL);
1166 	*rlist = right;
1167 }
1168 
1169 static __always_inline void
1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1171 {
1172 	vm_map_entry_t left, lo, y;
1173 
1174 	left = *llist;
1175 	lo = root->left == left ? NULL : root->left;
1176 	if (lo == NULL)
1177 		return;
1178 	do
1179 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1180 	while (lo != NULL);
1181 	*llist = left;
1182 }
1183 
1184 static inline void
1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1186 {
1187 	vm_map_entry_t tmp;
1188 
1189 	tmp = *b;
1190 	*b = *a;
1191 	*a = tmp;
1192 }
1193 
1194 /*
1195  * Walk back up the two spines, flip the pointers and set max_free.  The
1196  * subtrees of the root go at the bottom of llist and rlist.
1197  */
1198 static vm_size_t
1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1200     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1201 {
1202 	do {
1203 		/*
1204 		 * The max_free values of the children of llist are in
1205 		 * llist->max_free and max_free.  Update with the
1206 		 * max value.
1207 		 */
1208 		llist->max_free = max_free =
1209 		    vm_size_max(llist->max_free, max_free);
1210 		vm_map_entry_swap(&llist->right, &tail);
1211 		vm_map_entry_swap(&tail, &llist);
1212 	} while (llist != header);
1213 	root->left = tail;
1214 	return (max_free);
1215 }
1216 
1217 /*
1218  * When llist is known to be the predecessor of root.
1219  */
1220 static inline vm_size_t
1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1222     vm_map_entry_t llist)
1223 {
1224 	vm_size_t max_free;
1225 
1226 	max_free = root->start - llist->end;
1227 	if (llist != header) {
1228 		max_free = vm_map_splay_merge_left_walk(header, root,
1229 		    root, max_free, llist);
1230 	} else {
1231 		root->left = header;
1232 		header->right = root;
1233 	}
1234 	return (max_free);
1235 }
1236 
1237 /*
1238  * When llist may or may not be the predecessor of root.
1239  */
1240 static inline vm_size_t
1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1242     vm_map_entry_t llist)
1243 {
1244 	vm_size_t max_free;
1245 
1246 	max_free = vm_map_entry_max_free_left(root, llist);
1247 	if (llist != header) {
1248 		max_free = vm_map_splay_merge_left_walk(header, root,
1249 		    root->left == llist ? root : root->left,
1250 		    max_free, llist);
1251 	}
1252 	return (max_free);
1253 }
1254 
1255 static vm_size_t
1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1257     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1258 {
1259 	do {
1260 		/*
1261 		 * The max_free values of the children of rlist are in
1262 		 * rlist->max_free and max_free.  Update with the
1263 		 * max value.
1264 		 */
1265 		rlist->max_free = max_free =
1266 		    vm_size_max(rlist->max_free, max_free);
1267 		vm_map_entry_swap(&rlist->left, &tail);
1268 		vm_map_entry_swap(&tail, &rlist);
1269 	} while (rlist != header);
1270 	root->right = tail;
1271 	return (max_free);
1272 }
1273 
1274 /*
1275  * When rlist is known to be the succecessor of root.
1276  */
1277 static inline vm_size_t
1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1279     vm_map_entry_t rlist)
1280 {
1281 	vm_size_t max_free;
1282 
1283 	max_free = rlist->start - root->end;
1284 	if (rlist != header) {
1285 		max_free = vm_map_splay_merge_right_walk(header, root,
1286 		    root, max_free, rlist);
1287 	} else {
1288 		root->right = header;
1289 		header->left = root;
1290 	}
1291 	return (max_free);
1292 }
1293 
1294 /*
1295  * When rlist may or may not be the succecessor of root.
1296  */
1297 static inline vm_size_t
1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1299     vm_map_entry_t rlist)
1300 {
1301 	vm_size_t max_free;
1302 
1303 	max_free = vm_map_entry_max_free_right(root, rlist);
1304 	if (rlist != header) {
1305 		max_free = vm_map_splay_merge_right_walk(header, root,
1306 		    root->right == rlist ? root : root->right,
1307 		    max_free, rlist);
1308 	}
1309 	return (max_free);
1310 }
1311 
1312 /*
1313  *	vm_map_splay:
1314  *
1315  *	The Sleator and Tarjan top-down splay algorithm with the
1316  *	following variation.  Max_free must be computed bottom-up, so
1317  *	on the downward pass, maintain the left and right spines in
1318  *	reverse order.  Then, make a second pass up each side to fix
1319  *	the pointers and compute max_free.  The time bound is O(log n)
1320  *	amortized.
1321  *
1322  *	The tree is threaded, which means that there are no null pointers.
1323  *	When a node has no left child, its left pointer points to its
1324  *	predecessor, which the last ancestor on the search path from the root
1325  *	where the search branched right.  Likewise, when a node has no right
1326  *	child, its right pointer points to its successor.  The map header node
1327  *	is the predecessor of the first map entry, and the successor of the
1328  *	last.
1329  *
1330  *	The new root is the vm_map_entry containing "addr", or else an
1331  *	adjacent entry (lower if possible) if addr is not in the tree.
1332  *
1333  *	The map must be locked, and leaves it so.
1334  *
1335  *	Returns: the new root.
1336  */
1337 static vm_map_entry_t
1338 vm_map_splay(vm_map_t map, vm_offset_t addr)
1339 {
1340 	vm_map_entry_t header, llist, rlist, root;
1341 	vm_size_t max_free_left, max_free_right;
1342 
1343 	header = &map->header;
1344 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1345 	if (root != NULL) {
1346 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1347 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1348 	} else if (llist != header) {
1349 		/*
1350 		 * Recover the greatest node in the left
1351 		 * subtree and make it the root.
1352 		 */
1353 		root = llist;
1354 		llist = root->right;
1355 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1356 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1357 	} else if (rlist != header) {
1358 		/*
1359 		 * Recover the least node in the right
1360 		 * subtree and make it the root.
1361 		 */
1362 		root = rlist;
1363 		rlist = root->left;
1364 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1365 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1366 	} else {
1367 		/* There is no root. */
1368 		return (NULL);
1369 	}
1370 	root->max_free = vm_size_max(max_free_left, max_free_right);
1371 	map->root = root;
1372 	VM_MAP_ASSERT_CONSISTENT(map);
1373 	return (root);
1374 }
1375 
1376 /*
1377  *	vm_map_entry_{un,}link:
1378  *
1379  *	Insert/remove entries from maps.  On linking, if new entry clips
1380  *	existing entry, trim existing entry to avoid overlap, and manage
1381  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1382  *	called for, and manage offsets.  Callers should not modify fields in
1383  *	entries already mapped.
1384  */
1385 static void
1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1387 {
1388 	vm_map_entry_t header, llist, rlist, root;
1389 	vm_size_t max_free_left, max_free_right;
1390 
1391 	CTR3(KTR_VM,
1392 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1393 	    map->nentries, entry);
1394 	VM_MAP_ASSERT_LOCKED(map);
1395 	map->nentries++;
1396 	header = &map->header;
1397 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398 	if (root == NULL) {
1399 		/*
1400 		 * The new entry does not overlap any existing entry in the
1401 		 * map, so it becomes the new root of the map tree.
1402 		 */
1403 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1404 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1405 	} else if (entry->start == root->start) {
1406 		/*
1407 		 * The new entry is a clone of root, with only the end field
1408 		 * changed.  The root entry will be shrunk to abut the new
1409 		 * entry, and will be the right child of the new root entry in
1410 		 * the modified map.
1411 		 */
1412 		KASSERT(entry->end < root->end,
1413 		    ("%s: clip_start not within entry", __func__));
1414 		vm_map_splay_findprev(root, &llist);
1415 		if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0)
1416 			root->offset += entry->end - root->start;
1417 		root->start = entry->end;
1418 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 		max_free_right = root->max_free = vm_size_max(
1420 		    vm_map_splay_merge_pred(entry, root, entry),
1421 		    vm_map_splay_merge_right(header, root, rlist));
1422 	} else {
1423 		/*
1424 		 * The new entry is a clone of root, with only the start field
1425 		 * changed.  The root entry will be shrunk to abut the new
1426 		 * entry, and will be the left child of the new root entry in
1427 		 * the modified map.
1428 		 */
1429 		KASSERT(entry->end == root->end,
1430 		    ("%s: clip_start not within entry", __func__));
1431 		vm_map_splay_findnext(root, &rlist);
1432 		if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
1433 			entry->offset += entry->start - root->start;
1434 		root->end = entry->start;
1435 		max_free_left = root->max_free = vm_size_max(
1436 		    vm_map_splay_merge_left(header, root, llist),
1437 		    vm_map_splay_merge_succ(entry, root, entry));
1438 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 	}
1440 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 	map->root = entry;
1442 	VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444 
1445 enum unlink_merge_type {
1446 	UNLINK_MERGE_NONE,
1447 	UNLINK_MERGE_NEXT
1448 };
1449 
1450 static void
1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454 	vm_map_entry_t header, llist, rlist, root;
1455 	vm_size_t max_free_left, max_free_right;
1456 
1457 	VM_MAP_ASSERT_LOCKED(map);
1458 	header = &map->header;
1459 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 	KASSERT(root != NULL,
1461 	    ("vm_map_entry_unlink: unlink object not mapped"));
1462 
1463 	vm_map_splay_findprev(root, &llist);
1464 	vm_map_splay_findnext(root, &rlist);
1465 	if (op == UNLINK_MERGE_NEXT) {
1466 		rlist->start = root->start;
1467 		MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0);
1468 		rlist->offset = root->offset;
1469 	}
1470 	if (llist != header) {
1471 		root = llist;
1472 		llist = root->right;
1473 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1474 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1475 	} else if (rlist != header) {
1476 		root = rlist;
1477 		rlist = root->left;
1478 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1479 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1480 	} else {
1481 		header->left = header->right = header;
1482 		root = NULL;
1483 	}
1484 	if (root != NULL)
1485 		root->max_free = vm_size_max(max_free_left, max_free_right);
1486 	map->root = root;
1487 	VM_MAP_ASSERT_CONSISTENT(map);
1488 	map->nentries--;
1489 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1490 	    map->nentries, entry);
1491 }
1492 
1493 /*
1494  *	vm_map_entry_resize:
1495  *
1496  *	Resize a vm_map_entry, recompute the amount of free space that
1497  *	follows it and propagate that value up the tree.
1498  *
1499  *	The map must be locked, and leaves it so.
1500  */
1501 static void
1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1503 {
1504 	vm_map_entry_t header, llist, rlist, root;
1505 
1506 	VM_MAP_ASSERT_LOCKED(map);
1507 	header = &map->header;
1508 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1509 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1510 	vm_map_splay_findnext(root, &rlist);
1511 	entry->end += grow_amount;
1512 	root->max_free = vm_size_max(
1513 	    vm_map_splay_merge_left(header, root, llist),
1514 	    vm_map_splay_merge_succ(header, root, rlist));
1515 	map->root = root;
1516 	VM_MAP_ASSERT_CONSISTENT(map);
1517 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1518 	    __func__, map, map->nentries, entry);
1519 }
1520 
1521 /*
1522  *	vm_map_lookup_entry:	[ internal use only ]
1523  *
1524  *	Finds the map entry containing (or
1525  *	immediately preceding) the specified address
1526  *	in the given map; the entry is returned
1527  *	in the "entry" parameter.  The boolean
1528  *	result indicates whether the address is
1529  *	actually contained in the map.
1530  */
1531 boolean_t
1532 vm_map_lookup_entry(
1533 	vm_map_t map,
1534 	vm_offset_t address,
1535 	vm_map_entry_t *entry)	/* OUT */
1536 {
1537 	vm_map_entry_t cur, header, lbound, ubound;
1538 	boolean_t locked;
1539 
1540 	/*
1541 	 * If the map is empty, then the map entry immediately preceding
1542 	 * "address" is the map's header.
1543 	 */
1544 	header = &map->header;
1545 	cur = map->root;
1546 	if (cur == NULL) {
1547 		*entry = header;
1548 		return (FALSE);
1549 	}
1550 	if (address >= cur->start && cur->end > address) {
1551 		*entry = cur;
1552 		return (TRUE);
1553 	}
1554 	if ((locked = vm_map_locked(map)) ||
1555 	    sx_try_upgrade(&map->lock)) {
1556 		/*
1557 		 * Splay requires a write lock on the map.  However, it only
1558 		 * restructures the binary search tree; it does not otherwise
1559 		 * change the map.  Thus, the map's timestamp need not change
1560 		 * on a temporary upgrade.
1561 		 */
1562 		cur = vm_map_splay(map, address);
1563 		if (!locked) {
1564 			VM_MAP_UNLOCK_CONSISTENT(map);
1565 			sx_downgrade(&map->lock);
1566 		}
1567 
1568 		/*
1569 		 * If "address" is contained within a map entry, the new root
1570 		 * is that map entry.  Otherwise, the new root is a map entry
1571 		 * immediately before or after "address".
1572 		 */
1573 		if (address < cur->start) {
1574 			*entry = header;
1575 			return (FALSE);
1576 		}
1577 		*entry = cur;
1578 		return (address < cur->end);
1579 	}
1580 	/*
1581 	 * Since the map is only locked for read access, perform a
1582 	 * standard binary search tree lookup for "address".
1583 	 */
1584 	lbound = ubound = header;
1585 	for (;;) {
1586 		if (address < cur->start) {
1587 			ubound = cur;
1588 			cur = cur->left;
1589 			if (cur == lbound)
1590 				break;
1591 		} else if (cur->end <= address) {
1592 			lbound = cur;
1593 			cur = cur->right;
1594 			if (cur == ubound)
1595 				break;
1596 		} else {
1597 			*entry = cur;
1598 			return (TRUE);
1599 		}
1600 	}
1601 	*entry = lbound;
1602 	return (FALSE);
1603 }
1604 
1605 /*
1606  * vm_map_insert1() is identical to vm_map_insert() except that it
1607  * returns the newly inserted map entry in '*res'.  In case the new
1608  * entry is coalesced with a neighbor or an existing entry was
1609  * resized, that entry is returned.  In any case, the returned entry
1610  * covers the specified address range.
1611  */
1612 static int
1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1614     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1615     vm_map_entry_t *res)
1616 {
1617 	vm_map_entry_t new_entry, next_entry, prev_entry;
1618 	struct ucred *cred;
1619 	vm_eflags_t protoeflags;
1620 	vm_inherit_t inheritance;
1621 	u_long bdry;
1622 	u_int bidx;
1623 
1624 	VM_MAP_ASSERT_LOCKED(map);
1625 	KASSERT(object != kernel_object ||
1626 	    (cow & MAP_COPY_ON_WRITE) == 0,
1627 	    ("vm_map_insert: kernel object and COW"));
1628 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1629 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1630 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1631 	    object, cow));
1632 	KASSERT((prot & ~max) == 0,
1633 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1634 
1635 	/*
1636 	 * Check that the start and end points are not bogus.
1637 	 */
1638 	if (start == end || !vm_map_range_valid(map, start, end))
1639 		return (KERN_INVALID_ADDRESS);
1640 
1641 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1642 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1643 		return (KERN_PROTECTION_FAILURE);
1644 
1645 	/*
1646 	 * Find the entry prior to the proposed starting address; if it's part
1647 	 * of an existing entry, this range is bogus.
1648 	 */
1649 	if (vm_map_lookup_entry(map, start, &prev_entry))
1650 		return (KERN_NO_SPACE);
1651 
1652 	/*
1653 	 * Assert that the next entry doesn't overlap the end point.
1654 	 */
1655 	next_entry = vm_map_entry_succ(prev_entry);
1656 	if (next_entry->start < end)
1657 		return (KERN_NO_SPACE);
1658 
1659 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1660 	    max != VM_PROT_NONE))
1661 		return (KERN_INVALID_ARGUMENT);
1662 
1663 	protoeflags = 0;
1664 	if (cow & MAP_COPY_ON_WRITE)
1665 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1666 	if (cow & MAP_NOFAULT)
1667 		protoeflags |= MAP_ENTRY_NOFAULT;
1668 	if (cow & MAP_DISABLE_SYNCER)
1669 		protoeflags |= MAP_ENTRY_NOSYNC;
1670 	if (cow & MAP_DISABLE_COREDUMP)
1671 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1672 	if (cow & MAP_STACK_AREA)
1673 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1674 	if (cow & MAP_WRITECOUNT)
1675 		protoeflags |= MAP_ENTRY_WRITECNT;
1676 	if (cow & MAP_VN_EXEC)
1677 		protoeflags |= MAP_ENTRY_VN_EXEC;
1678 	if ((cow & MAP_CREATE_GUARD) != 0)
1679 		protoeflags |= MAP_ENTRY_GUARD;
1680 	if ((cow & MAP_CREATE_STACK_GAP) != 0)
1681 		protoeflags |= MAP_ENTRY_STACK_GAP;
1682 	if (cow & MAP_INHERIT_SHARE)
1683 		inheritance = VM_INHERIT_SHARE;
1684 	else
1685 		inheritance = VM_INHERIT_DEFAULT;
1686 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1687 		/* This magically ignores index 0, for usual page size. */
1688 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1689 		    MAP_SPLIT_BOUNDARY_SHIFT;
1690 		if (bidx >= MAXPAGESIZES)
1691 			return (KERN_INVALID_ARGUMENT);
1692 		bdry = pagesizes[bidx] - 1;
1693 		if ((start & bdry) != 0 || (end & bdry) != 0)
1694 			return (KERN_INVALID_ARGUMENT);
1695 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1696 	}
1697 
1698 	cred = NULL;
1699 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1700 		goto charged;
1701 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1702 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1703 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1704 			return (KERN_RESOURCE_SHORTAGE);
1705 		KASSERT(object == NULL ||
1706 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1707 		    object->cred == NULL,
1708 		    ("overcommit: vm_map_insert o %p", object));
1709 		cred = curthread->td_ucred;
1710 	}
1711 
1712 charged:
1713 	/* Expand the kernel pmap, if necessary. */
1714 	if (map == kernel_map && end > kernel_vm_end)
1715 		pmap_growkernel(end);
1716 	if (object != NULL) {
1717 		/*
1718 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1719 		 * is trivially proven to be the only mapping for any
1720 		 * of the object's pages.  (Object granularity
1721 		 * reference counting is insufficient to recognize
1722 		 * aliases with precision.)
1723 		 */
1724 		if ((object->flags & OBJ_ANON) != 0) {
1725 			VM_OBJECT_WLOCK(object);
1726 			if (object->ref_count > 1 || object->shadow_count != 0)
1727 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1728 			VM_OBJECT_WUNLOCK(object);
1729 		}
1730 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1731 	    protoeflags &&
1732 	    (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 &&
1733 	    prev_entry->end == start && (prev_entry->cred == cred ||
1734 	    (prev_entry->object.vm_object != NULL &&
1735 	    prev_entry->object.vm_object->cred == cred)) &&
1736 	    vm_object_coalesce(prev_entry->object.vm_object,
1737 	    prev_entry->offset,
1738 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1739 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1740 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1741 		/*
1742 		 * We were able to extend the object.  Determine if we
1743 		 * can extend the previous map entry to include the
1744 		 * new range as well.
1745 		 */
1746 		if (prev_entry->inheritance == inheritance &&
1747 		    prev_entry->protection == prot &&
1748 		    prev_entry->max_protection == max &&
1749 		    prev_entry->wired_count == 0) {
1750 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1751 			    0, ("prev_entry %p has incoherent wiring",
1752 			    prev_entry));
1753 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1754 				map->size += end - prev_entry->end;
1755 			vm_map_entry_resize(map, prev_entry,
1756 			    end - prev_entry->end);
1757 			*res = vm_map_try_merge_entries(map, prev_entry,
1758 			    next_entry);
1759 			return (KERN_SUCCESS);
1760 		}
1761 
1762 		/*
1763 		 * If we can extend the object but cannot extend the
1764 		 * map entry, we have to create a new map entry.  We
1765 		 * must bump the ref count on the extended object to
1766 		 * account for it.  object may be NULL.
1767 		 */
1768 		object = prev_entry->object.vm_object;
1769 		offset = prev_entry->offset +
1770 		    (prev_entry->end - prev_entry->start);
1771 		vm_object_reference(object);
1772 		if (cred != NULL && object != NULL && object->cred != NULL &&
1773 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1774 			/* Object already accounts for this uid. */
1775 			cred = NULL;
1776 		}
1777 	}
1778 	if (cred != NULL)
1779 		crhold(cred);
1780 
1781 	/*
1782 	 * Create a new entry
1783 	 */
1784 	new_entry = vm_map_entry_create(map);
1785 	new_entry->start = start;
1786 	new_entry->end = end;
1787 	new_entry->cred = NULL;
1788 
1789 	new_entry->eflags = protoeflags;
1790 	new_entry->object.vm_object = object;
1791 	new_entry->offset = offset;
1792 
1793 	new_entry->inheritance = inheritance;
1794 	new_entry->protection = prot;
1795 	new_entry->max_protection = max;
1796 	new_entry->wired_count = 0;
1797 	new_entry->wiring_thread = NULL;
1798 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1799 	new_entry->next_read = start;
1800 
1801 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1802 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1803 	new_entry->cred = cred;
1804 
1805 	/*
1806 	 * Insert the new entry into the list
1807 	 */
1808 	vm_map_entry_link(map, new_entry);
1809 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1810 		map->size += new_entry->end - new_entry->start;
1811 
1812 	/*
1813 	 * Try to coalesce the new entry with both the previous and next
1814 	 * entries in the list.  Previously, we only attempted to coalesce
1815 	 * with the previous entry when object is NULL.  Here, we handle the
1816 	 * other cases, which are less common.
1817 	 */
1818 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1819 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1820 
1821 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1822 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1823 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1824 	}
1825 
1826 	return (KERN_SUCCESS);
1827 }
1828 
1829 /*
1830  *	vm_map_insert:
1831  *
1832  *	Inserts the given VM object into the target map at the
1833  *	specified address range.
1834  *
1835  *	Requires that the map be locked, and leaves it so.
1836  *
1837  *	If object is non-NULL, ref count must be bumped by caller
1838  *	prior to making call to account for the new entry.
1839  */
1840 int
1841 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1842     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1843 {
1844 	vm_map_entry_t res;
1845 
1846 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1847 	    cow, &res));
1848 }
1849 
1850 /*
1851  *	vm_map_findspace:
1852  *
1853  *	Find the first fit (lowest VM address) for "length" free bytes
1854  *	beginning at address >= start in the given map.
1855  *
1856  *	In a vm_map_entry, "max_free" is the maximum amount of
1857  *	contiguous free space between an entry in its subtree and a
1858  *	neighbor of that entry.  This allows finding a free region in
1859  *	one path down the tree, so O(log n) amortized with splay
1860  *	trees.
1861  *
1862  *	The map must be locked, and leaves it so.
1863  *
1864  *	Returns: starting address if sufficient space,
1865  *		 vm_map_max(map)-length+1 if insufficient space.
1866  */
1867 vm_offset_t
1868 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1869 {
1870 	vm_map_entry_t header, llist, rlist, root, y;
1871 	vm_size_t left_length, max_free_left, max_free_right;
1872 	vm_offset_t gap_end;
1873 
1874 	VM_MAP_ASSERT_LOCKED(map);
1875 
1876 	/*
1877 	 * Request must fit within min/max VM address and must avoid
1878 	 * address wrap.
1879 	 */
1880 	start = MAX(start, vm_map_min(map));
1881 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1882 		return (vm_map_max(map) - length + 1);
1883 
1884 	/* Empty tree means wide open address space. */
1885 	if (map->root == NULL)
1886 		return (start);
1887 
1888 	/*
1889 	 * After splay_split, if start is within an entry, push it to the start
1890 	 * of the following gap.  If rlist is at the end of the gap containing
1891 	 * start, save the end of that gap in gap_end to see if the gap is big
1892 	 * enough; otherwise set gap_end to start skip gap-checking and move
1893 	 * directly to a search of the right subtree.
1894 	 */
1895 	header = &map->header;
1896 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1897 	gap_end = rlist->start;
1898 	if (root != NULL) {
1899 		start = root->end;
1900 		if (root->right != rlist)
1901 			gap_end = start;
1902 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1903 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1904 	} else if (rlist != header) {
1905 		root = rlist;
1906 		rlist = root->left;
1907 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1908 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1909 	} else {
1910 		root = llist;
1911 		llist = root->right;
1912 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1913 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1914 	}
1915 	root->max_free = vm_size_max(max_free_left, max_free_right);
1916 	map->root = root;
1917 	VM_MAP_ASSERT_CONSISTENT(map);
1918 	if (length <= gap_end - start)
1919 		return (start);
1920 
1921 	/* With max_free, can immediately tell if no solution. */
1922 	if (root->right == header || length > root->right->max_free)
1923 		return (vm_map_max(map) - length + 1);
1924 
1925 	/*
1926 	 * Splay for the least large-enough gap in the right subtree.
1927 	 */
1928 	llist = rlist = header;
1929 	for (left_length = 0;;
1930 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1931 		if (length <= left_length)
1932 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1933 			    length <= vm_map_entry_max_free_left(y, llist));
1934 		else
1935 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1936 			    length > vm_map_entry_max_free_left(y, root));
1937 		if (root == NULL)
1938 			break;
1939 	}
1940 	root = llist;
1941 	llist = root->right;
1942 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1943 	if (rlist == header) {
1944 		root->max_free = vm_size_max(max_free_left,
1945 		    vm_map_splay_merge_succ(header, root, rlist));
1946 	} else {
1947 		y = rlist;
1948 		rlist = y->left;
1949 		y->max_free = vm_size_max(
1950 		    vm_map_splay_merge_pred(root, y, root),
1951 		    vm_map_splay_merge_right(header, y, rlist));
1952 		root->max_free = vm_size_max(max_free_left, y->max_free);
1953 	}
1954 	map->root = root;
1955 	VM_MAP_ASSERT_CONSISTENT(map);
1956 	return (root->end);
1957 }
1958 
1959 int
1960 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1961     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1962     vm_prot_t max, int cow)
1963 {
1964 	vm_offset_t end;
1965 	int result;
1966 
1967 	end = start + length;
1968 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
1969 	    ("vm_map_fixed: non-NULL backing object for stack"));
1970 	vm_map_lock(map);
1971 	VM_MAP_RANGE_CHECK(map, start, end);
1972 	if ((cow & MAP_CHECK_EXCL) == 0) {
1973 		result = vm_map_delete(map, start, end);
1974 		if (result != KERN_SUCCESS)
1975 			goto out;
1976 	}
1977 	if ((cow & MAP_STACK_AREA) != 0) {
1978 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1979 		    prot, max, cow);
1980 	} else {
1981 		result = vm_map_insert(map, object, offset, start, end,
1982 		    prot, max, cow);
1983 	}
1984 out:
1985 	vm_map_unlock(map);
1986 	return (result);
1987 }
1988 
1989 #if VM_NRESERVLEVEL <= 1
1990 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1991 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1992 #elif VM_NRESERVLEVEL == 2
1993 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
1994 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
1995 #else
1996 #error "Unsupported VM_NRESERVLEVEL"
1997 #endif
1998 
1999 static int cluster_anon = 1;
2000 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2001     &cluster_anon, 0,
2002     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2003 
2004 static bool
2005 clustering_anon_allowed(vm_offset_t addr, int cow)
2006 {
2007 
2008 	switch (cluster_anon) {
2009 	case 0:
2010 		return (false);
2011 	case 1:
2012 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2013 	case 2:
2014 	default:
2015 		return (true);
2016 	}
2017 }
2018 
2019 static long aslr_restarts;
2020 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2021     &aslr_restarts, 0,
2022     "Number of aslr failures");
2023 
2024 /*
2025  * Searches for the specified amount of free space in the given map with the
2026  * specified alignment.  Performs an address-ordered, first-fit search from
2027  * the given address "*addr", with an optional upper bound "max_addr".  If the
2028  * parameter "alignment" is zero, then the alignment is computed from the
2029  * given (object, offset) pair so as to enable the greatest possible use of
2030  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2031  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2032  *
2033  * The map must be locked.  Initially, there must be at least "length" bytes
2034  * of free space at the given address.
2035  */
2036 static int
2037 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2038     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2039     vm_offset_t alignment)
2040 {
2041 	vm_offset_t aligned_addr, free_addr;
2042 
2043 	VM_MAP_ASSERT_LOCKED(map);
2044 	free_addr = *addr;
2045 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2046 	    ("caller failed to provide space %#jx at address %p",
2047 	     (uintmax_t)length, (void *)free_addr));
2048 	for (;;) {
2049 		/*
2050 		 * At the start of every iteration, the free space at address
2051 		 * "*addr" is at least "length" bytes.
2052 		 */
2053 		if (alignment == 0)
2054 			pmap_align_superpage(object, offset, addr, length);
2055 		else
2056 			*addr = roundup2(*addr, alignment);
2057 		aligned_addr = *addr;
2058 		if (aligned_addr == free_addr) {
2059 			/*
2060 			 * Alignment did not change "*addr", so "*addr" must
2061 			 * still provide sufficient free space.
2062 			 */
2063 			return (KERN_SUCCESS);
2064 		}
2065 
2066 		/*
2067 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2068 		 * be a valid address, in which case vm_map_findspace() cannot
2069 		 * be relied upon to fail.
2070 		 */
2071 		if (aligned_addr < free_addr)
2072 			return (KERN_NO_SPACE);
2073 		*addr = vm_map_findspace(map, aligned_addr, length);
2074 		if (*addr + length > vm_map_max(map) ||
2075 		    (max_addr != 0 && *addr + length > max_addr))
2076 			return (KERN_NO_SPACE);
2077 		free_addr = *addr;
2078 		if (free_addr == aligned_addr) {
2079 			/*
2080 			 * If a successful call to vm_map_findspace() did not
2081 			 * change "*addr", then "*addr" must still be aligned
2082 			 * and provide sufficient free space.
2083 			 */
2084 			return (KERN_SUCCESS);
2085 		}
2086 	}
2087 }
2088 
2089 int
2090 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2091     vm_offset_t max_addr, vm_offset_t alignment)
2092 {
2093 	/* XXXKIB ASLR eh ? */
2094 	*addr = vm_map_findspace(map, *addr, length);
2095 	if (*addr + length > vm_map_max(map) ||
2096 	    (max_addr != 0 && *addr + length > max_addr))
2097 		return (KERN_NO_SPACE);
2098 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2099 	    alignment));
2100 }
2101 
2102 /*
2103  *	vm_map_find finds an unallocated region in the target address
2104  *	map with the given length.  The search is defined to be
2105  *	first-fit from the specified address; the region found is
2106  *	returned in the same parameter.
2107  *
2108  *	If object is non-NULL, ref count must be bumped by caller
2109  *	prior to making call to account for the new entry.
2110  */
2111 int
2112 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2113     vm_offset_t *addr,	/* IN/OUT */
2114     vm_size_t length, vm_offset_t max_addr, int find_space,
2115     vm_prot_t prot, vm_prot_t max, int cow)
2116 {
2117 	int rv;
2118 
2119 	vm_map_lock(map);
2120 	rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2121 	    find_space, prot, max, cow);
2122 	vm_map_unlock(map);
2123 	return (rv);
2124 }
2125 
2126 int
2127 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2128     vm_offset_t *addr,	/* IN/OUT */
2129     vm_size_t length, vm_offset_t max_addr, int find_space,
2130     vm_prot_t prot, vm_prot_t max, int cow)
2131 {
2132 	vm_offset_t alignment, curr_min_addr, min_addr;
2133 	int gap, pidx, rv, try;
2134 	bool cluster, en_aslr, update_anon;
2135 
2136 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
2137 	    ("non-NULL backing object for stack"));
2138 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2139 	    (cow & MAP_STACK_AREA) == 0));
2140 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2141 	    (object->flags & OBJ_COLORED) == 0))
2142 		find_space = VMFS_ANY_SPACE;
2143 	if (find_space >> 8 != 0) {
2144 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2145 		alignment = (vm_offset_t)1 << (find_space >> 8);
2146 	} else
2147 		alignment = 0;
2148 	en_aslr = (map->flags & MAP_ASLR) != 0;
2149 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2150 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2151 	    find_space != VMFS_NO_SPACE && object == NULL &&
2152 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 &&
2153 	    prot != PROT_NONE;
2154 	curr_min_addr = min_addr = *addr;
2155 	if (en_aslr && min_addr == 0 && !cluster &&
2156 	    find_space != VMFS_NO_SPACE &&
2157 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2158 		curr_min_addr = min_addr = vm_map_min(map);
2159 	try = 0;
2160 	if (cluster) {
2161 		curr_min_addr = map->anon_loc;
2162 		if (curr_min_addr == 0)
2163 			cluster = false;
2164 	}
2165 	if (find_space != VMFS_NO_SPACE) {
2166 		KASSERT(find_space == VMFS_ANY_SPACE ||
2167 		    find_space == VMFS_OPTIMAL_SPACE ||
2168 		    find_space == VMFS_SUPER_SPACE ||
2169 		    alignment != 0, ("unexpected VMFS flag"));
2170 again:
2171 		/*
2172 		 * When creating an anonymous mapping, try clustering
2173 		 * with an existing anonymous mapping first.
2174 		 *
2175 		 * We make up to two attempts to find address space
2176 		 * for a given find_space value. The first attempt may
2177 		 * apply randomization or may cluster with an existing
2178 		 * anonymous mapping. If this first attempt fails,
2179 		 * perform a first-fit search of the available address
2180 		 * space.
2181 		 *
2182 		 * If all tries failed, and find_space is
2183 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2184 		 * Again enable clustering and randomization.
2185 		 */
2186 		try++;
2187 		MPASS(try <= 2);
2188 
2189 		if (try == 2) {
2190 			/*
2191 			 * Second try: we failed either to find a
2192 			 * suitable region for randomizing the
2193 			 * allocation, or to cluster with an existing
2194 			 * mapping.  Retry with free run.
2195 			 */
2196 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2197 			    vm_map_min(map) : min_addr;
2198 			atomic_add_long(&aslr_restarts, 1);
2199 		}
2200 
2201 		if (try == 1 && en_aslr && !cluster) {
2202 			/*
2203 			 * Find space for allocation, including
2204 			 * gap needed for later randomization.
2205 			 */
2206 			pidx = 0;
2207 #if VM_NRESERVLEVEL > 0
2208 			if ((find_space == VMFS_SUPER_SPACE ||
2209 			    find_space == VMFS_OPTIMAL_SPACE) &&
2210 			    pagesizes[VM_NRESERVLEVEL] != 0) {
2211 				/*
2212 				 * Do not pointlessly increase the space that
2213 				 * is requested from vm_map_findspace().
2214 				 * pmap_align_superpage() will only change a
2215 				 * mapping's alignment if that mapping is at
2216 				 * least a superpage in size.
2217 				 */
2218 				pidx = VM_NRESERVLEVEL;
2219 				while (pidx > 0 && length < pagesizes[pidx])
2220 					pidx--;
2221 			}
2222 #endif
2223 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2224 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2225 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2226 			*addr = vm_map_findspace(map, curr_min_addr,
2227 			    length + gap * pagesizes[pidx]);
2228 			if (*addr + length + gap * pagesizes[pidx] >
2229 			    vm_map_max(map))
2230 				goto again;
2231 			/* And randomize the start address. */
2232 			*addr += (arc4random() % gap) * pagesizes[pidx];
2233 			if (max_addr != 0 && *addr + length > max_addr)
2234 				goto again;
2235 		} else {
2236 			*addr = vm_map_findspace(map, curr_min_addr, length);
2237 			if (*addr + length > vm_map_max(map) ||
2238 			    (max_addr != 0 && *addr + length > max_addr)) {
2239 				if (cluster) {
2240 					cluster = false;
2241 					MPASS(try == 1);
2242 					goto again;
2243 				}
2244 				return (KERN_NO_SPACE);
2245 			}
2246 		}
2247 
2248 		if (find_space != VMFS_ANY_SPACE &&
2249 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2250 		    max_addr, alignment)) != KERN_SUCCESS) {
2251 			if (find_space == VMFS_OPTIMAL_SPACE) {
2252 				find_space = VMFS_ANY_SPACE;
2253 				curr_min_addr = min_addr;
2254 				cluster = update_anon;
2255 				try = 0;
2256 				goto again;
2257 			}
2258 			return (rv);
2259 		}
2260 	} else if ((cow & MAP_REMAP) != 0) {
2261 		if (!vm_map_range_valid(map, *addr, *addr + length))
2262 			return (KERN_INVALID_ADDRESS);
2263 		rv = vm_map_delete(map, *addr, *addr + length);
2264 		if (rv != KERN_SUCCESS)
2265 			return (rv);
2266 	}
2267 	if ((cow & MAP_STACK_AREA) != 0) {
2268 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2269 		    max, cow);
2270 	} else {
2271 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2272 		    prot, max, cow);
2273 	}
2274 
2275 	/*
2276 	 * Update the starting address for clustered anonymous memory mappings
2277 	 * if a starting address was not previously defined or an ASLR restart
2278 	 * placed an anonymous memory mapping at a lower address.
2279 	 */
2280 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2281 	    *addr < map->anon_loc))
2282 		map->anon_loc = *addr;
2283 	return (rv);
2284 }
2285 
2286 /*
2287  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2288  *	additional parameter ("default_addr") and treats the given address
2289  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2290  *	and not as the minimum address where the mapping is created.
2291  *
2292  *	This function works in two phases.  First, it tries to
2293  *	allocate above the hint.  If that fails and the hint is
2294  *	greater than "default_addr", it performs a second pass, replacing
2295  *	the hint with "default_addr" as the minimum address for the
2296  *	allocation.
2297  */
2298 int
2299 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2300     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2301     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2302     int cow)
2303 {
2304 	vm_offset_t hint;
2305 	int rv;
2306 
2307 	hint = *addr;
2308 	if (hint == 0) {
2309 		cow |= MAP_NO_HINT;
2310 		*addr = hint = default_addr;
2311 	}
2312 	for (;;) {
2313 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2314 		    find_space, prot, max, cow);
2315 		if (rv == KERN_SUCCESS || default_addr >= hint)
2316 			return (rv);
2317 		*addr = hint = default_addr;
2318 	}
2319 }
2320 
2321 /*
2322  * A map entry with any of the following flags set must not be merged with
2323  * another entry.
2324  */
2325 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | \
2326     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2327     MAP_ENTRY_STACK_GAP)
2328 
2329 static bool
2330 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2331 {
2332 
2333 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2334 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2335 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2336 	    prev, entry));
2337 	return (prev->end == entry->start &&
2338 	    prev->object.vm_object == entry->object.vm_object &&
2339 	    (prev->object.vm_object == NULL ||
2340 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2341 	    prev->eflags == entry->eflags &&
2342 	    prev->protection == entry->protection &&
2343 	    prev->max_protection == entry->max_protection &&
2344 	    prev->inheritance == entry->inheritance &&
2345 	    prev->wired_count == entry->wired_count &&
2346 	    prev->cred == entry->cred);
2347 }
2348 
2349 static void
2350 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2351 {
2352 
2353 	/*
2354 	 * If the backing object is a vnode object, vm_object_deallocate()
2355 	 * calls vrele().  However, vrele() does not lock the vnode because
2356 	 * the vnode has additional references.  Thus, the map lock can be
2357 	 * kept without causing a lock-order reversal with the vnode lock.
2358 	 *
2359 	 * Since we count the number of virtual page mappings in
2360 	 * object->un_pager.vnp.writemappings, the writemappings value
2361 	 * should not be adjusted when the entry is disposed of.
2362 	 */
2363 	if (entry->object.vm_object != NULL)
2364 		vm_object_deallocate(entry->object.vm_object);
2365 	if (entry->cred != NULL)
2366 		crfree(entry->cred);
2367 	vm_map_entry_dispose(map, entry);
2368 }
2369 
2370 /*
2371  *	vm_map_try_merge_entries:
2372  *
2373  *	Compare two map entries that represent consecutive ranges. If
2374  *	the entries can be merged, expand the range of the second to
2375  *	cover the range of the first and delete the first. Then return
2376  *	the map entry that includes the first range.
2377  *
2378  *	The map must be locked.
2379  */
2380 vm_map_entry_t
2381 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2382     vm_map_entry_t entry)
2383 {
2384 
2385 	VM_MAP_ASSERT_LOCKED(map);
2386 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2387 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2388 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2389 		vm_map_merged_neighbor_dispose(map, prev_entry);
2390 		return (entry);
2391 	}
2392 	return (prev_entry);
2393 }
2394 
2395 /*
2396  *	vm_map_entry_back:
2397  *
2398  *	Allocate an object to back a map entry.
2399  */
2400 static inline void
2401 vm_map_entry_back(vm_map_entry_t entry)
2402 {
2403 	vm_object_t object;
2404 
2405 	KASSERT(entry->object.vm_object == NULL,
2406 	    ("map entry %p has backing object", entry));
2407 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2408 	    ("map entry %p is a submap", entry));
2409 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2410 	    entry->cred, entry->end - entry->start);
2411 	entry->object.vm_object = object;
2412 	entry->offset = 0;
2413 	entry->cred = NULL;
2414 }
2415 
2416 /*
2417  *	vm_map_entry_charge_object
2418  *
2419  *	If there is no object backing this entry, create one.  Otherwise, if
2420  *	the entry has cred, give it to the backing object.
2421  */
2422 static inline void
2423 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2424 {
2425 
2426 	VM_MAP_ASSERT_LOCKED(map);
2427 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2428 	    ("map entry %p is a submap", entry));
2429 	if (entry->object.vm_object == NULL && !vm_map_is_system(map) &&
2430 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2431 		vm_map_entry_back(entry);
2432 	else if (entry->object.vm_object != NULL &&
2433 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2434 	    entry->cred != NULL) {
2435 		VM_OBJECT_WLOCK(entry->object.vm_object);
2436 		KASSERT(entry->object.vm_object->cred == NULL,
2437 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2438 		entry->object.vm_object->cred = entry->cred;
2439 		entry->object.vm_object->charge = entry->end - entry->start;
2440 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2441 		entry->cred = NULL;
2442 	}
2443 }
2444 
2445 /*
2446  *	vm_map_entry_clone
2447  *
2448  *	Create a duplicate map entry for clipping.
2449  */
2450 static vm_map_entry_t
2451 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2452 {
2453 	vm_map_entry_t new_entry;
2454 
2455 	VM_MAP_ASSERT_LOCKED(map);
2456 
2457 	/*
2458 	 * Create a backing object now, if none exists, so that more individual
2459 	 * objects won't be created after the map entry is split.
2460 	 */
2461 	vm_map_entry_charge_object(map, entry);
2462 
2463 	/* Clone the entry. */
2464 	new_entry = vm_map_entry_create(map);
2465 	*new_entry = *entry;
2466 	if (new_entry->cred != NULL)
2467 		crhold(entry->cred);
2468 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2469 		vm_object_reference(new_entry->object.vm_object);
2470 		vm_map_entry_set_vnode_text(new_entry, true);
2471 		/*
2472 		 * The object->un_pager.vnp.writemappings for the object of
2473 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2474 		 * virtual pages are re-distributed among the clipped entries,
2475 		 * so the sum is left the same.
2476 		 */
2477 	}
2478 	return (new_entry);
2479 }
2480 
2481 /*
2482  *	vm_map_clip_start:	[ internal use only ]
2483  *
2484  *	Asserts that the given entry begins at or after
2485  *	the specified address; if necessary,
2486  *	it splits the entry into two.
2487  */
2488 static int
2489 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2490 {
2491 	vm_map_entry_t new_entry;
2492 	int bdry_idx;
2493 
2494 	if (!vm_map_is_system(map))
2495 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2496 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2497 		    (uintmax_t)startaddr);
2498 
2499 	if (startaddr <= entry->start)
2500 		return (KERN_SUCCESS);
2501 
2502 	VM_MAP_ASSERT_LOCKED(map);
2503 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2504 	    ("%s: invalid clip of entry %p", __func__, entry));
2505 
2506 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2507 	if (bdry_idx != 0) {
2508 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2509 			return (KERN_INVALID_ARGUMENT);
2510 	}
2511 
2512 	new_entry = vm_map_entry_clone(map, entry);
2513 
2514 	/*
2515 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2516 	 * so that this entry has the specified starting address.
2517 	 */
2518 	new_entry->end = startaddr;
2519 	vm_map_entry_link(map, new_entry);
2520 	return (KERN_SUCCESS);
2521 }
2522 
2523 /*
2524  *	vm_map_lookup_clip_start:
2525  *
2526  *	Find the entry at or just after 'start', and clip it if 'start' is in
2527  *	the interior of the entry.  Return entry after 'start', and in
2528  *	prev_entry set the entry before 'start'.
2529  */
2530 static int
2531 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2532     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2533 {
2534 	vm_map_entry_t entry;
2535 	int rv;
2536 
2537 	if (!vm_map_is_system(map))
2538 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2539 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2540 		    (uintmax_t)start, prev_entry);
2541 
2542 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2543 		entry = *prev_entry;
2544 		rv = vm_map_clip_start(map, entry, start);
2545 		if (rv != KERN_SUCCESS)
2546 			return (rv);
2547 		*prev_entry = vm_map_entry_pred(entry);
2548 	} else
2549 		entry = vm_map_entry_succ(*prev_entry);
2550 	*res_entry = entry;
2551 	return (KERN_SUCCESS);
2552 }
2553 
2554 /*
2555  *	vm_map_clip_end:	[ internal use only ]
2556  *
2557  *	Asserts that the given entry ends at or before
2558  *	the specified address; if necessary,
2559  *	it splits the entry into two.
2560  */
2561 static int
2562 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2563 {
2564 	vm_map_entry_t new_entry;
2565 	int bdry_idx;
2566 
2567 	if (!vm_map_is_system(map))
2568 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2569 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2570 		    (uintmax_t)endaddr);
2571 
2572 	if (endaddr >= entry->end)
2573 		return (KERN_SUCCESS);
2574 
2575 	VM_MAP_ASSERT_LOCKED(map);
2576 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2577 	    ("%s: invalid clip of entry %p", __func__, entry));
2578 
2579 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2580 	if (bdry_idx != 0) {
2581 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2582 			return (KERN_INVALID_ARGUMENT);
2583 	}
2584 
2585 	new_entry = vm_map_entry_clone(map, entry);
2586 
2587 	/*
2588 	 * Split off the back portion.  Insert the new entry AFTER this one,
2589 	 * so that this entry has the specified ending address.
2590 	 */
2591 	new_entry->start = endaddr;
2592 	vm_map_entry_link(map, new_entry);
2593 
2594 	return (KERN_SUCCESS);
2595 }
2596 
2597 /*
2598  *	vm_map_submap:		[ kernel use only ]
2599  *
2600  *	Mark the given range as handled by a subordinate map.
2601  *
2602  *	This range must have been created with vm_map_find,
2603  *	and no other operations may have been performed on this
2604  *	range prior to calling vm_map_submap.
2605  *
2606  *	Only a limited number of operations can be performed
2607  *	within this rage after calling vm_map_submap:
2608  *		vm_fault
2609  *	[Don't try vm_map_copy!]
2610  *
2611  *	To remove a submapping, one must first remove the
2612  *	range from the superior map, and then destroy the
2613  *	submap (if desired).  [Better yet, don't try it.]
2614  */
2615 int
2616 vm_map_submap(
2617 	vm_map_t map,
2618 	vm_offset_t start,
2619 	vm_offset_t end,
2620 	vm_map_t submap)
2621 {
2622 	vm_map_entry_t entry;
2623 	int result;
2624 
2625 	result = KERN_INVALID_ARGUMENT;
2626 
2627 	vm_map_lock(submap);
2628 	submap->flags |= MAP_IS_SUB_MAP;
2629 	vm_map_unlock(submap);
2630 
2631 	vm_map_lock(map);
2632 	VM_MAP_RANGE_CHECK(map, start, end);
2633 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2634 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2635 	    entry->object.vm_object == NULL) {
2636 		result = vm_map_clip_start(map, entry, start);
2637 		if (result != KERN_SUCCESS)
2638 			goto unlock;
2639 		result = vm_map_clip_end(map, entry, end);
2640 		if (result != KERN_SUCCESS)
2641 			goto unlock;
2642 		entry->object.sub_map = submap;
2643 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2644 		result = KERN_SUCCESS;
2645 	}
2646 unlock:
2647 	vm_map_unlock(map);
2648 
2649 	if (result != KERN_SUCCESS) {
2650 		vm_map_lock(submap);
2651 		submap->flags &= ~MAP_IS_SUB_MAP;
2652 		vm_map_unlock(submap);
2653 	}
2654 	return (result);
2655 }
2656 
2657 /*
2658  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2659  */
2660 #define	MAX_INIT_PT	96
2661 
2662 /*
2663  *	vm_map_pmap_enter:
2664  *
2665  *	Preload the specified map's pmap with mappings to the specified
2666  *	object's memory-resident pages.  No further physical pages are
2667  *	allocated, and no further virtual pages are retrieved from secondary
2668  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2669  *	limited number of page mappings are created at the low-end of the
2670  *	specified address range.  (For this purpose, a superpage mapping
2671  *	counts as one page mapping.)  Otherwise, all resident pages within
2672  *	the specified address range are mapped.
2673  */
2674 static void
2675 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2676     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2677 {
2678 	struct pctrie_iter pages;
2679 	vm_offset_t start;
2680 	vm_page_t p, p_start;
2681 	vm_pindex_t jump, mask, psize, threshold, tmpidx;
2682 	int psind;
2683 
2684 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2685 		return;
2686 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2687 		VM_OBJECT_WLOCK(object);
2688 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2689 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2690 			    size);
2691 			VM_OBJECT_WUNLOCK(object);
2692 			return;
2693 		}
2694 		VM_OBJECT_LOCK_DOWNGRADE(object);
2695 	} else
2696 		VM_OBJECT_RLOCK(object);
2697 
2698 	psize = atop(size);
2699 	if (psize + pindex > object->size) {
2700 		if (pindex >= object->size) {
2701 			VM_OBJECT_RUNLOCK(object);
2702 			return;
2703 		}
2704 		psize = object->size - pindex;
2705 	}
2706 
2707 	start = 0;
2708 	p_start = NULL;
2709 	threshold = MAX_INIT_PT;
2710 
2711 	vm_page_iter_limit_init(&pages, object, pindex + psize);
2712 	for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL;
2713 	    p = vm_radix_iter_jump(&pages, jump)) {
2714 		/*
2715 		 * don't allow an madvise to blow away our really
2716 		 * free pages allocating pv entries.
2717 		 */
2718 		tmpidx = p->pindex - pindex;
2719 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2720 		    vm_page_count_severe()) ||
2721 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2722 		    tmpidx >= threshold)) {
2723 			psize = tmpidx;
2724 			break;
2725 		}
2726 		jump = 1;
2727 		if (vm_page_all_valid(p)) {
2728 			if (p_start == NULL) {
2729 				start = addr + ptoa(tmpidx);
2730 				p_start = p;
2731 			}
2732 			/* Jump ahead if a superpage mapping is possible. */
2733 			for (psind = p->psind; psind > 0; psind--) {
2734 				if (((addr + ptoa(tmpidx)) &
2735 				    (pagesizes[psind] - 1)) == 0) {
2736 					mask = atop(pagesizes[psind]) - 1;
2737 					if (tmpidx + mask < psize &&
2738 					    vm_page_ps_test(p, psind,
2739 					    PS_ALL_VALID, NULL)) {
2740 						jump += mask;
2741 						threshold += mask;
2742 						break;
2743 					}
2744 				}
2745 			}
2746 		} else if (p_start != NULL) {
2747 			pmap_enter_object(map->pmap, start, addr +
2748 			    ptoa(tmpidx), p_start, prot);
2749 			p_start = NULL;
2750 		}
2751 	}
2752 	if (p_start != NULL)
2753 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2754 		    p_start, prot);
2755 	VM_OBJECT_RUNLOCK(object);
2756 }
2757 
2758 static void
2759 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2760     vm_prot_t new_maxprot, int flags)
2761 {
2762 	vm_prot_t old_prot;
2763 
2764 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2765 	if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
2766 		return;
2767 
2768 	old_prot = PROT_EXTRACT(entry->offset);
2769 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2770 		entry->offset = PROT_MAX(new_maxprot) |
2771 		    (new_maxprot & old_prot);
2772 	}
2773 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2774 		entry->offset = new_prot | PROT_MAX(
2775 		    PROT_MAX_EXTRACT(entry->offset));
2776 	}
2777 }
2778 
2779 /*
2780  *	vm_map_protect:
2781  *
2782  *	Sets the protection and/or the maximum protection of the
2783  *	specified address region in the target map.
2784  */
2785 int
2786 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2787     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2788 {
2789 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2790 	vm_object_t obj;
2791 	struct ucred *cred;
2792 	vm_offset_t orig_start;
2793 	vm_prot_t check_prot, max_prot, old_prot;
2794 	int rv;
2795 
2796 	if (start == end)
2797 		return (KERN_SUCCESS);
2798 
2799 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2800 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2801 	    !CONTAINS_BITS(new_maxprot, new_prot))
2802 		return (KERN_OUT_OF_BOUNDS);
2803 
2804 	orig_start = start;
2805 again:
2806 	in_tran = NULL;
2807 	start = orig_start;
2808 	vm_map_lock(map);
2809 
2810 	if ((map->flags & MAP_WXORX) != 0 &&
2811 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2812 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2813 		vm_map_unlock(map);
2814 		return (KERN_PROTECTION_FAILURE);
2815 	}
2816 
2817 	/*
2818 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2819 	 * need to fault pages into the map and will drop the map lock while
2820 	 * doing so, and the VM object may end up in an inconsistent state if we
2821 	 * update the protection on the map entry in between faults.
2822 	 */
2823 	vm_map_wait_busy(map);
2824 
2825 	VM_MAP_RANGE_CHECK(map, start, end);
2826 
2827 	if (!vm_map_lookup_entry(map, start, &first_entry))
2828 		first_entry = vm_map_entry_succ(first_entry);
2829 
2830 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2831 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2832 		/*
2833 		 * Handle Linux's PROT_GROWSDOWN flag.
2834 		 * It means that protection is applied down to the
2835 		 * whole stack, including the specified range of the
2836 		 * mapped region, and the grow down region (AKA
2837 		 * guard).
2838 		 */
2839 		while (!CONTAINS_BITS(first_entry->eflags,
2840 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) &&
2841 		    first_entry != vm_map_entry_first(map))
2842 			first_entry = vm_map_entry_pred(first_entry);
2843 		start = first_entry->start;
2844 	}
2845 
2846 	/*
2847 	 * Make a first pass to check for protection violations.
2848 	 */
2849 	check_prot = 0;
2850 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2851 		check_prot |= new_prot;
2852 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2853 		check_prot |= new_maxprot;
2854 	for (entry = first_entry; entry->start < end;
2855 	    entry = vm_map_entry_succ(entry)) {
2856 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2857 			vm_map_unlock(map);
2858 			return (KERN_INVALID_ARGUMENT);
2859 		}
2860 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2861 		    MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD)
2862 			continue;
2863 		max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ?
2864 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2865 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2866 			vm_map_unlock(map);
2867 			return (KERN_PROTECTION_FAILURE);
2868 		}
2869 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2870 			in_tran = entry;
2871 	}
2872 
2873 	/*
2874 	 * Postpone the operation until all in-transition map entries have
2875 	 * stabilized.  An in-transition entry might already have its pages
2876 	 * wired and wired_count incremented, but not yet have its
2877 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2878 	 * vm_fault_copy_entry() in the final loop below.
2879 	 */
2880 	if (in_tran != NULL) {
2881 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2882 		vm_map_unlock_and_wait(map, 0);
2883 		goto again;
2884 	}
2885 
2886 	/*
2887 	 * Before changing the protections, try to reserve swap space for any
2888 	 * private (i.e., copy-on-write) mappings that are transitioning from
2889 	 * read-only to read/write access.  If a reservation fails, break out
2890 	 * of this loop early and let the next loop simplify the entries, since
2891 	 * some may now be mergeable.
2892 	 */
2893 	rv = vm_map_clip_start(map, first_entry, start);
2894 	if (rv != KERN_SUCCESS) {
2895 		vm_map_unlock(map);
2896 		return (rv);
2897 	}
2898 	for (entry = first_entry; entry->start < end;
2899 	    entry = vm_map_entry_succ(entry)) {
2900 		rv = vm_map_clip_end(map, entry, end);
2901 		if (rv != KERN_SUCCESS) {
2902 			vm_map_unlock(map);
2903 			return (rv);
2904 		}
2905 
2906 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2907 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2908 		    ENTRY_CHARGED(entry) ||
2909 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2910 			continue;
2911 
2912 		cred = curthread->td_ucred;
2913 		obj = entry->object.vm_object;
2914 
2915 		if (obj == NULL ||
2916 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2917 			if (!swap_reserve(entry->end - entry->start)) {
2918 				rv = KERN_RESOURCE_SHORTAGE;
2919 				end = entry->end;
2920 				break;
2921 			}
2922 			crhold(cred);
2923 			entry->cred = cred;
2924 			continue;
2925 		}
2926 
2927 		VM_OBJECT_WLOCK(obj);
2928 		if ((obj->flags & OBJ_SWAP) == 0) {
2929 			VM_OBJECT_WUNLOCK(obj);
2930 			continue;
2931 		}
2932 
2933 		/*
2934 		 * Charge for the whole object allocation now, since
2935 		 * we cannot distinguish between non-charged and
2936 		 * charged clipped mapping of the same object later.
2937 		 */
2938 		KASSERT(obj->charge == 0,
2939 		    ("vm_map_protect: object %p overcharged (entry %p)",
2940 		    obj, entry));
2941 		if (!swap_reserve(ptoa(obj->size))) {
2942 			VM_OBJECT_WUNLOCK(obj);
2943 			rv = KERN_RESOURCE_SHORTAGE;
2944 			end = entry->end;
2945 			break;
2946 		}
2947 
2948 		crhold(cred);
2949 		obj->cred = cred;
2950 		obj->charge = ptoa(obj->size);
2951 		VM_OBJECT_WUNLOCK(obj);
2952 	}
2953 
2954 	/*
2955 	 * If enough swap space was available, go back and fix up protections.
2956 	 * Otherwise, just simplify entries, since some may have been modified.
2957 	 * [Note that clipping is not necessary the second time.]
2958 	 */
2959 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2960 	    entry->start < end;
2961 	    vm_map_try_merge_entries(map, prev_entry, entry),
2962 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2963 		if (rv != KERN_SUCCESS)
2964 			continue;
2965 
2966 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2967 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2968 			    flags);
2969 			continue;
2970 		}
2971 
2972 		old_prot = entry->protection;
2973 
2974 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2975 			entry->max_protection = new_maxprot;
2976 			entry->protection = new_maxprot & old_prot;
2977 		}
2978 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2979 			entry->protection = new_prot;
2980 
2981 		/*
2982 		 * For user wired map entries, the normal lazy evaluation of
2983 		 * write access upgrades through soft page faults is
2984 		 * undesirable.  Instead, immediately copy any pages that are
2985 		 * copy-on-write and enable write access in the physical map.
2986 		 */
2987 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2988 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2989 		    (old_prot & VM_PROT_WRITE) == 0)
2990 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2991 
2992 		/*
2993 		 * When restricting access, update the physical map.  Worry
2994 		 * about copy-on-write here.
2995 		 */
2996 		if ((old_prot & ~entry->protection) != 0) {
2997 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2998 							VM_PROT_ALL)
2999 			pmap_protect(map->pmap, entry->start,
3000 			    entry->end,
3001 			    entry->protection & MASK(entry));
3002 #undef	MASK
3003 		}
3004 	}
3005 	vm_map_try_merge_entries(map, prev_entry, entry);
3006 	vm_map_unlock(map);
3007 	return (rv);
3008 }
3009 
3010 /*
3011  *	vm_map_madvise:
3012  *
3013  *	This routine traverses a processes map handling the madvise
3014  *	system call.  Advisories are classified as either those effecting
3015  *	the vm_map_entry structure, or those effecting the underlying
3016  *	objects.
3017  */
3018 int
3019 vm_map_madvise(
3020 	vm_map_t map,
3021 	vm_offset_t start,
3022 	vm_offset_t end,
3023 	int behav)
3024 {
3025 	vm_map_entry_t entry, prev_entry;
3026 	int rv;
3027 	bool modify_map;
3028 
3029 	/*
3030 	 * Some madvise calls directly modify the vm_map_entry, in which case
3031 	 * we need to use an exclusive lock on the map and we need to perform
3032 	 * various clipping operations.  Otherwise we only need a read-lock
3033 	 * on the map.
3034 	 */
3035 	switch(behav) {
3036 	case MADV_NORMAL:
3037 	case MADV_SEQUENTIAL:
3038 	case MADV_RANDOM:
3039 	case MADV_NOSYNC:
3040 	case MADV_AUTOSYNC:
3041 	case MADV_NOCORE:
3042 	case MADV_CORE:
3043 		if (start == end)
3044 			return (0);
3045 		modify_map = true;
3046 		vm_map_lock(map);
3047 		break;
3048 	case MADV_WILLNEED:
3049 	case MADV_DONTNEED:
3050 	case MADV_FREE:
3051 		if (start == end)
3052 			return (0);
3053 		modify_map = false;
3054 		vm_map_lock_read(map);
3055 		break;
3056 	default:
3057 		return (EINVAL);
3058 	}
3059 
3060 	/*
3061 	 * Locate starting entry and clip if necessary.
3062 	 */
3063 	VM_MAP_RANGE_CHECK(map, start, end);
3064 
3065 	if (modify_map) {
3066 		/*
3067 		 * madvise behaviors that are implemented in the vm_map_entry.
3068 		 *
3069 		 * We clip the vm_map_entry so that behavioral changes are
3070 		 * limited to the specified address range.
3071 		 */
3072 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3073 		if (rv != KERN_SUCCESS) {
3074 			vm_map_unlock(map);
3075 			return (vm_mmap_to_errno(rv));
3076 		}
3077 
3078 		for (; entry->start < end; prev_entry = entry,
3079 		    entry = vm_map_entry_succ(entry)) {
3080 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3081 				continue;
3082 
3083 			rv = vm_map_clip_end(map, entry, end);
3084 			if (rv != KERN_SUCCESS) {
3085 				vm_map_unlock(map);
3086 				return (vm_mmap_to_errno(rv));
3087 			}
3088 
3089 			switch (behav) {
3090 			case MADV_NORMAL:
3091 				vm_map_entry_set_behavior(entry,
3092 				    MAP_ENTRY_BEHAV_NORMAL);
3093 				break;
3094 			case MADV_SEQUENTIAL:
3095 				vm_map_entry_set_behavior(entry,
3096 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3097 				break;
3098 			case MADV_RANDOM:
3099 				vm_map_entry_set_behavior(entry,
3100 				    MAP_ENTRY_BEHAV_RANDOM);
3101 				break;
3102 			case MADV_NOSYNC:
3103 				entry->eflags |= MAP_ENTRY_NOSYNC;
3104 				break;
3105 			case MADV_AUTOSYNC:
3106 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3107 				break;
3108 			case MADV_NOCORE:
3109 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3110 				break;
3111 			case MADV_CORE:
3112 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3113 				break;
3114 			default:
3115 				break;
3116 			}
3117 			vm_map_try_merge_entries(map, prev_entry, entry);
3118 		}
3119 		vm_map_try_merge_entries(map, prev_entry, entry);
3120 		vm_map_unlock(map);
3121 	} else {
3122 		vm_pindex_t pstart, pend;
3123 
3124 		/*
3125 		 * madvise behaviors that are implemented in the underlying
3126 		 * vm_object.
3127 		 *
3128 		 * Since we don't clip the vm_map_entry, we have to clip
3129 		 * the vm_object pindex and count.
3130 		 */
3131 		if (!vm_map_lookup_entry(map, start, &entry))
3132 			entry = vm_map_entry_succ(entry);
3133 		for (; entry->start < end;
3134 		    entry = vm_map_entry_succ(entry)) {
3135 			vm_offset_t useEnd, useStart;
3136 
3137 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3138 			    MAP_ENTRY_GUARD)) != 0)
3139 				continue;
3140 
3141 			/*
3142 			 * MADV_FREE would otherwise rewind time to
3143 			 * the creation of the shadow object.  Because
3144 			 * we hold the VM map read-locked, neither the
3145 			 * entry's object nor the presence of a
3146 			 * backing object can change.
3147 			 */
3148 			if (behav == MADV_FREE &&
3149 			    entry->object.vm_object != NULL &&
3150 			    entry->object.vm_object->backing_object != NULL)
3151 				continue;
3152 
3153 			pstart = OFF_TO_IDX(entry->offset);
3154 			pend = pstart + atop(entry->end - entry->start);
3155 			useStart = entry->start;
3156 			useEnd = entry->end;
3157 
3158 			if (entry->start < start) {
3159 				pstart += atop(start - entry->start);
3160 				useStart = start;
3161 			}
3162 			if (entry->end > end) {
3163 				pend -= atop(entry->end - end);
3164 				useEnd = end;
3165 			}
3166 
3167 			if (pstart >= pend)
3168 				continue;
3169 
3170 			/*
3171 			 * Perform the pmap_advise() before clearing
3172 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3173 			 * concurrent pmap operation, such as pmap_remove(),
3174 			 * could clear a reference in the pmap and set
3175 			 * PGA_REFERENCED on the page before the pmap_advise()
3176 			 * had completed.  Consequently, the page would appear
3177 			 * referenced based upon an old reference that
3178 			 * occurred before this pmap_advise() ran.
3179 			 */
3180 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3181 				pmap_advise(map->pmap, useStart, useEnd,
3182 				    behav);
3183 
3184 			vm_object_madvise(entry->object.vm_object, pstart,
3185 			    pend, behav);
3186 
3187 			/*
3188 			 * Pre-populate paging structures in the
3189 			 * WILLNEED case.  For wired entries, the
3190 			 * paging structures are already populated.
3191 			 */
3192 			if (behav == MADV_WILLNEED &&
3193 			    entry->wired_count == 0) {
3194 				vm_map_pmap_enter(map,
3195 				    useStart,
3196 				    entry->protection,
3197 				    entry->object.vm_object,
3198 				    pstart,
3199 				    ptoa(pend - pstart),
3200 				    MAP_PREFAULT_MADVISE
3201 				);
3202 			}
3203 		}
3204 		vm_map_unlock_read(map);
3205 	}
3206 	return (0);
3207 }
3208 
3209 /*
3210  *	vm_map_inherit:
3211  *
3212  *	Sets the inheritance of the specified address
3213  *	range in the target map.  Inheritance
3214  *	affects how the map will be shared with
3215  *	child maps at the time of vmspace_fork.
3216  */
3217 int
3218 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219 	       vm_inherit_t new_inheritance)
3220 {
3221 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3222 	int rv;
3223 
3224 	switch (new_inheritance) {
3225 	case VM_INHERIT_NONE:
3226 	case VM_INHERIT_COPY:
3227 	case VM_INHERIT_SHARE:
3228 	case VM_INHERIT_ZERO:
3229 		break;
3230 	default:
3231 		return (KERN_INVALID_ARGUMENT);
3232 	}
3233 	if (start == end)
3234 		return (KERN_SUCCESS);
3235 	vm_map_lock(map);
3236 	VM_MAP_RANGE_CHECK(map, start, end);
3237 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3238 	if (rv != KERN_SUCCESS)
3239 		goto unlock;
3240 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3241 		rv = vm_map_clip_end(map, lentry, end);
3242 		if (rv != KERN_SUCCESS)
3243 			goto unlock;
3244 	}
3245 	if (new_inheritance == VM_INHERIT_COPY) {
3246 		for (entry = start_entry; entry->start < end;
3247 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3248 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3249 			    != 0) {
3250 				rv = KERN_INVALID_ARGUMENT;
3251 				goto unlock;
3252 			}
3253 		}
3254 	}
3255 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3256 	    entry = vm_map_entry_succ(entry)) {
3257 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3258 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3259 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3260 		    new_inheritance != VM_INHERIT_ZERO)
3261 			entry->inheritance = new_inheritance;
3262 		vm_map_try_merge_entries(map, prev_entry, entry);
3263 	}
3264 	vm_map_try_merge_entries(map, prev_entry, entry);
3265 unlock:
3266 	vm_map_unlock(map);
3267 	return (rv);
3268 }
3269 
3270 /*
3271  *	vm_map_entry_in_transition:
3272  *
3273  *	Release the map lock, and sleep until the entry is no longer in
3274  *	transition.  Awake and acquire the map lock.  If the map changed while
3275  *	another held the lock, lookup a possibly-changed entry at or after the
3276  *	'start' position of the old entry.
3277  */
3278 static vm_map_entry_t
3279 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3280     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3281 {
3282 	vm_map_entry_t entry;
3283 	vm_offset_t start;
3284 	u_int last_timestamp;
3285 
3286 	VM_MAP_ASSERT_LOCKED(map);
3287 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3288 	    ("not in-tranition map entry %p", in_entry));
3289 	/*
3290 	 * We have not yet clipped the entry.
3291 	 */
3292 	start = MAX(in_start, in_entry->start);
3293 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3294 	last_timestamp = map->timestamp;
3295 	if (vm_map_unlock_and_wait(map, 0)) {
3296 		/*
3297 		 * Allow interruption of user wiring/unwiring?
3298 		 */
3299 	}
3300 	vm_map_lock(map);
3301 	if (last_timestamp + 1 == map->timestamp)
3302 		return (in_entry);
3303 
3304 	/*
3305 	 * Look again for the entry because the map was modified while it was
3306 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3307 	 * deleted.
3308 	 */
3309 	if (!vm_map_lookup_entry(map, start, &entry)) {
3310 		if (!holes_ok) {
3311 			*io_end = start;
3312 			return (NULL);
3313 		}
3314 		entry = vm_map_entry_succ(entry);
3315 	}
3316 	return (entry);
3317 }
3318 
3319 /*
3320  *	vm_map_unwire:
3321  *
3322  *	Implements both kernel and user unwiring.
3323  */
3324 int
3325 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3326     int flags)
3327 {
3328 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3329 	int rv;
3330 	bool holes_ok, need_wakeup, user_unwire;
3331 
3332 	if (start == end)
3333 		return (KERN_SUCCESS);
3334 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3335 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3336 	vm_map_lock(map);
3337 	VM_MAP_RANGE_CHECK(map, start, end);
3338 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3339 		if (holes_ok)
3340 			first_entry = vm_map_entry_succ(first_entry);
3341 		else {
3342 			vm_map_unlock(map);
3343 			return (KERN_INVALID_ADDRESS);
3344 		}
3345 	}
3346 	rv = KERN_SUCCESS;
3347 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3348 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3349 			/*
3350 			 * We have not yet clipped the entry.
3351 			 */
3352 			next_entry = vm_map_entry_in_transition(map, start,
3353 			    &end, holes_ok, entry);
3354 			if (next_entry == NULL) {
3355 				if (entry == first_entry) {
3356 					vm_map_unlock(map);
3357 					return (KERN_INVALID_ADDRESS);
3358 				}
3359 				rv = KERN_INVALID_ADDRESS;
3360 				break;
3361 			}
3362 			first_entry = (entry == first_entry) ?
3363 			    next_entry : NULL;
3364 			continue;
3365 		}
3366 		rv = vm_map_clip_start(map, entry, start);
3367 		if (rv != KERN_SUCCESS)
3368 			break;
3369 		rv = vm_map_clip_end(map, entry, end);
3370 		if (rv != KERN_SUCCESS)
3371 			break;
3372 
3373 		/*
3374 		 * Mark the entry in case the map lock is released.  (See
3375 		 * above.)
3376 		 */
3377 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3378 		    entry->wiring_thread == NULL,
3379 		    ("owned map entry %p", entry));
3380 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3381 		entry->wiring_thread = curthread;
3382 		next_entry = vm_map_entry_succ(entry);
3383 		/*
3384 		 * Check the map for holes in the specified region.
3385 		 * If holes_ok, skip this check.
3386 		 */
3387 		if (!holes_ok &&
3388 		    entry->end < end && next_entry->start > entry->end) {
3389 			end = entry->end;
3390 			rv = KERN_INVALID_ADDRESS;
3391 			break;
3392 		}
3393 		/*
3394 		 * If system unwiring, require that the entry is system wired.
3395 		 */
3396 		if (!user_unwire &&
3397 		    vm_map_entry_system_wired_count(entry) == 0) {
3398 			end = entry->end;
3399 			rv = KERN_INVALID_ARGUMENT;
3400 			break;
3401 		}
3402 	}
3403 	need_wakeup = false;
3404 	if (first_entry == NULL &&
3405 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3406 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3407 		prev_entry = first_entry;
3408 		entry = vm_map_entry_succ(first_entry);
3409 	} else {
3410 		prev_entry = vm_map_entry_pred(first_entry);
3411 		entry = first_entry;
3412 	}
3413 	for (; entry->start < end;
3414 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3415 		/*
3416 		 * If holes_ok was specified, an empty
3417 		 * space in the unwired region could have been mapped
3418 		 * while the map lock was dropped for draining
3419 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3420 		 * could be simultaneously wiring this new mapping
3421 		 * entry.  Detect these cases and skip any entries
3422 		 * marked as in transition by us.
3423 		 */
3424 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3425 		    entry->wiring_thread != curthread) {
3426 			KASSERT(holes_ok,
3427 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3428 			continue;
3429 		}
3430 
3431 		if (rv == KERN_SUCCESS && (!user_unwire ||
3432 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3433 			if (entry->wired_count == 1)
3434 				vm_map_entry_unwire(map, entry);
3435 			else
3436 				entry->wired_count--;
3437 			if (user_unwire)
3438 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3439 		}
3440 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3441 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3442 		KASSERT(entry->wiring_thread == curthread,
3443 		    ("vm_map_unwire: alien wire %p", entry));
3444 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3445 		entry->wiring_thread = NULL;
3446 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3447 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3448 			need_wakeup = true;
3449 		}
3450 		vm_map_try_merge_entries(map, prev_entry, entry);
3451 	}
3452 	vm_map_try_merge_entries(map, prev_entry, entry);
3453 	vm_map_unlock(map);
3454 	if (need_wakeup)
3455 		vm_map_wakeup(map);
3456 	return (rv);
3457 }
3458 
3459 static void
3460 vm_map_wire_user_count_sub(u_long npages)
3461 {
3462 
3463 	atomic_subtract_long(&vm_user_wire_count, npages);
3464 }
3465 
3466 static bool
3467 vm_map_wire_user_count_add(u_long npages)
3468 {
3469 	u_long wired;
3470 
3471 	wired = vm_user_wire_count;
3472 	do {
3473 		if (npages + wired > vm_page_max_user_wired)
3474 			return (false);
3475 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3476 	    npages + wired));
3477 
3478 	return (true);
3479 }
3480 
3481 /*
3482  *	vm_map_wire_entry_failure:
3483  *
3484  *	Handle a wiring failure on the given entry.
3485  *
3486  *	The map should be locked.
3487  */
3488 static void
3489 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3490     vm_offset_t failed_addr)
3491 {
3492 
3493 	VM_MAP_ASSERT_LOCKED(map);
3494 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3495 	    entry->wired_count == 1,
3496 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3497 	KASSERT(failed_addr < entry->end,
3498 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3499 
3500 	/*
3501 	 * If any pages at the start of this entry were successfully wired,
3502 	 * then unwire them.
3503 	 */
3504 	if (failed_addr > entry->start) {
3505 		pmap_unwire(map->pmap, entry->start, failed_addr);
3506 		vm_object_unwire(entry->object.vm_object, entry->offset,
3507 		    failed_addr - entry->start, PQ_ACTIVE);
3508 	}
3509 
3510 	/*
3511 	 * Assign an out-of-range value to represent the failure to wire this
3512 	 * entry.
3513 	 */
3514 	entry->wired_count = -1;
3515 }
3516 
3517 int
3518 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3519 {
3520 	int rv;
3521 
3522 	vm_map_lock(map);
3523 	rv = vm_map_wire_locked(map, start, end, flags);
3524 	vm_map_unlock(map);
3525 	return (rv);
3526 }
3527 
3528 /*
3529  *	vm_map_wire_locked:
3530  *
3531  *	Implements both kernel and user wiring.  Returns with the map locked,
3532  *	the map lock may be dropped.
3533  */
3534 int
3535 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3536 {
3537 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3538 	vm_offset_t faddr, saved_end, saved_start;
3539 	u_long incr, npages;
3540 	u_int bidx, last_timestamp;
3541 	int rv;
3542 	bool holes_ok, need_wakeup, user_wire;
3543 	vm_prot_t prot;
3544 
3545 	VM_MAP_ASSERT_LOCKED(map);
3546 
3547 	if (start == end)
3548 		return (KERN_SUCCESS);
3549 	prot = 0;
3550 	if (flags & VM_MAP_WIRE_WRITE)
3551 		prot |= VM_PROT_WRITE;
3552 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3553 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3554 	VM_MAP_RANGE_CHECK(map, start, end);
3555 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3556 		if (holes_ok)
3557 			first_entry = vm_map_entry_succ(first_entry);
3558 		else
3559 			return (KERN_INVALID_ADDRESS);
3560 	}
3561 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3562 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3563 			/*
3564 			 * We have not yet clipped the entry.
3565 			 */
3566 			next_entry = vm_map_entry_in_transition(map, start,
3567 			    &end, holes_ok, entry);
3568 			if (next_entry == NULL) {
3569 				if (entry == first_entry)
3570 					return (KERN_INVALID_ADDRESS);
3571 				rv = KERN_INVALID_ADDRESS;
3572 				goto done;
3573 			}
3574 			first_entry = (entry == first_entry) ?
3575 			    next_entry : NULL;
3576 			continue;
3577 		}
3578 		rv = vm_map_clip_start(map, entry, start);
3579 		if (rv != KERN_SUCCESS)
3580 			goto done;
3581 		rv = vm_map_clip_end(map, entry, end);
3582 		if (rv != KERN_SUCCESS)
3583 			goto done;
3584 
3585 		/*
3586 		 * Mark the entry in case the map lock is released.  (See
3587 		 * above.)
3588 		 */
3589 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3590 		    entry->wiring_thread == NULL,
3591 		    ("owned map entry %p", entry));
3592 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3593 		entry->wiring_thread = curthread;
3594 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3595 		    || (entry->protection & prot) != prot) {
3596 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3597 			if (!holes_ok) {
3598 				end = entry->end;
3599 				rv = KERN_INVALID_ADDRESS;
3600 				goto done;
3601 			}
3602 		} else if (entry->wired_count == 0) {
3603 			entry->wired_count++;
3604 
3605 			npages = atop(entry->end - entry->start);
3606 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3607 				vm_map_wire_entry_failure(map, entry,
3608 				    entry->start);
3609 				end = entry->end;
3610 				rv = KERN_RESOURCE_SHORTAGE;
3611 				goto done;
3612 			}
3613 
3614 			/*
3615 			 * Release the map lock, relying on the in-transition
3616 			 * mark.  Mark the map busy for fork.
3617 			 */
3618 			saved_start = entry->start;
3619 			saved_end = entry->end;
3620 			last_timestamp = map->timestamp;
3621 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3622 			incr =  pagesizes[bidx];
3623 			vm_map_busy(map);
3624 			vm_map_unlock(map);
3625 
3626 			for (faddr = saved_start; faddr < saved_end;
3627 			    faddr += incr) {
3628 				/*
3629 				 * Simulate a fault to get the page and enter
3630 				 * it into the physical map.
3631 				 */
3632 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3633 				    VM_FAULT_WIRE, NULL);
3634 				if (rv != KERN_SUCCESS)
3635 					break;
3636 			}
3637 			vm_map_lock(map);
3638 			vm_map_unbusy(map);
3639 			if (last_timestamp + 1 != map->timestamp) {
3640 				/*
3641 				 * Look again for the entry because the map was
3642 				 * modified while it was unlocked.  The entry
3643 				 * may have been clipped, but NOT merged or
3644 				 * deleted.
3645 				 */
3646 				if (!vm_map_lookup_entry(map, saved_start,
3647 				    &next_entry))
3648 					KASSERT(false,
3649 					    ("vm_map_wire: lookup failed"));
3650 				first_entry = (entry == first_entry) ?
3651 				    next_entry : NULL;
3652 				for (entry = next_entry; entry->end < saved_end;
3653 				    entry = vm_map_entry_succ(entry)) {
3654 					/*
3655 					 * In case of failure, handle entries
3656 					 * that were not fully wired here;
3657 					 * fully wired entries are handled
3658 					 * later.
3659 					 */
3660 					if (rv != KERN_SUCCESS &&
3661 					    faddr < entry->end)
3662 						vm_map_wire_entry_failure(map,
3663 						    entry, faddr);
3664 				}
3665 			}
3666 			if (rv != KERN_SUCCESS) {
3667 				vm_map_wire_entry_failure(map, entry, faddr);
3668 				if (user_wire)
3669 					vm_map_wire_user_count_sub(npages);
3670 				end = entry->end;
3671 				goto done;
3672 			}
3673 		} else if (!user_wire ||
3674 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3675 			entry->wired_count++;
3676 		}
3677 		/*
3678 		 * Check the map for holes in the specified region.
3679 		 * If holes_ok was specified, skip this check.
3680 		 */
3681 		next_entry = vm_map_entry_succ(entry);
3682 		if (!holes_ok &&
3683 		    entry->end < end && next_entry->start > entry->end) {
3684 			end = entry->end;
3685 			rv = KERN_INVALID_ADDRESS;
3686 			goto done;
3687 		}
3688 	}
3689 	rv = KERN_SUCCESS;
3690 done:
3691 	need_wakeup = false;
3692 	if (first_entry == NULL &&
3693 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3694 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3695 		prev_entry = first_entry;
3696 		entry = vm_map_entry_succ(first_entry);
3697 	} else {
3698 		prev_entry = vm_map_entry_pred(first_entry);
3699 		entry = first_entry;
3700 	}
3701 	for (; entry->start < end;
3702 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3703 		/*
3704 		 * If holes_ok was specified, an empty
3705 		 * space in the unwired region could have been mapped
3706 		 * while the map lock was dropped for faulting in the
3707 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3708 		 * Moreover, another thread could be simultaneously
3709 		 * wiring this new mapping entry.  Detect these cases
3710 		 * and skip any entries marked as in transition not by us.
3711 		 *
3712 		 * Another way to get an entry not marked with
3713 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3714 		 * which set rv to KERN_INVALID_ARGUMENT.
3715 		 */
3716 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3717 		    entry->wiring_thread != curthread) {
3718 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3719 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3720 			continue;
3721 		}
3722 
3723 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3724 			/* do nothing */
3725 		} else if (rv == KERN_SUCCESS) {
3726 			if (user_wire)
3727 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3728 		} else if (entry->wired_count == -1) {
3729 			/*
3730 			 * Wiring failed on this entry.  Thus, unwiring is
3731 			 * unnecessary.
3732 			 */
3733 			entry->wired_count = 0;
3734 		} else if (!user_wire ||
3735 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3736 			/*
3737 			 * Undo the wiring.  Wiring succeeded on this entry
3738 			 * but failed on a later entry.
3739 			 */
3740 			if (entry->wired_count == 1) {
3741 				vm_map_entry_unwire(map, entry);
3742 				if (user_wire)
3743 					vm_map_wire_user_count_sub(
3744 					    atop(entry->end - entry->start));
3745 			} else
3746 				entry->wired_count--;
3747 		}
3748 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3749 		    ("vm_map_wire: in-transition flag missing %p", entry));
3750 		KASSERT(entry->wiring_thread == curthread,
3751 		    ("vm_map_wire: alien wire %p", entry));
3752 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3753 		    MAP_ENTRY_WIRE_SKIPPED);
3754 		entry->wiring_thread = NULL;
3755 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3756 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3757 			need_wakeup = true;
3758 		}
3759 		vm_map_try_merge_entries(map, prev_entry, entry);
3760 	}
3761 	vm_map_try_merge_entries(map, prev_entry, entry);
3762 	if (need_wakeup)
3763 		vm_map_wakeup(map);
3764 	return (rv);
3765 }
3766 
3767 /*
3768  * vm_map_sync
3769  *
3770  * Push any dirty cached pages in the address range to their pager.
3771  * If syncio is TRUE, dirty pages are written synchronously.
3772  * If invalidate is TRUE, any cached pages are freed as well.
3773  *
3774  * If the size of the region from start to end is zero, we are
3775  * supposed to flush all modified pages within the region containing
3776  * start.  Unfortunately, a region can be split or coalesced with
3777  * neighboring regions, making it difficult to determine what the
3778  * original region was.  Therefore, we approximate this requirement by
3779  * flushing the current region containing start.
3780  *
3781  * Returns an error if any part of the specified range is not mapped.
3782  */
3783 int
3784 vm_map_sync(
3785 	vm_map_t map,
3786 	vm_offset_t start,
3787 	vm_offset_t end,
3788 	boolean_t syncio,
3789 	boolean_t invalidate)
3790 {
3791 	vm_map_entry_t entry, first_entry, next_entry;
3792 	vm_size_t size;
3793 	vm_object_t object;
3794 	vm_ooffset_t offset;
3795 	unsigned int last_timestamp;
3796 	int bdry_idx;
3797 	boolean_t failed;
3798 
3799 	vm_map_lock_read(map);
3800 	VM_MAP_RANGE_CHECK(map, start, end);
3801 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3802 		vm_map_unlock_read(map);
3803 		return (KERN_INVALID_ADDRESS);
3804 	} else if (start == end) {
3805 		start = first_entry->start;
3806 		end = first_entry->end;
3807 	}
3808 
3809 	/*
3810 	 * Make a first pass to check for user-wired memory, holes,
3811 	 * and partial invalidation of largepage mappings.
3812 	 */
3813 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3814 		if (invalidate) {
3815 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3816 				vm_map_unlock_read(map);
3817 				return (KERN_INVALID_ARGUMENT);
3818 			}
3819 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3820 			if (bdry_idx != 0 &&
3821 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3822 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3823 				vm_map_unlock_read(map);
3824 				return (KERN_INVALID_ARGUMENT);
3825 			}
3826 		}
3827 		next_entry = vm_map_entry_succ(entry);
3828 		if (end > entry->end &&
3829 		    entry->end != next_entry->start) {
3830 			vm_map_unlock_read(map);
3831 			return (KERN_INVALID_ADDRESS);
3832 		}
3833 	}
3834 
3835 	if (invalidate)
3836 		pmap_remove(map->pmap, start, end);
3837 	failed = FALSE;
3838 
3839 	/*
3840 	 * Make a second pass, cleaning/uncaching pages from the indicated
3841 	 * objects as we go.
3842 	 */
3843 	for (entry = first_entry; entry->start < end;) {
3844 		offset = entry->offset + (start - entry->start);
3845 		size = (end <= entry->end ? end : entry->end) - start;
3846 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3847 			vm_map_t smap;
3848 			vm_map_entry_t tentry;
3849 			vm_size_t tsize;
3850 
3851 			smap = entry->object.sub_map;
3852 			vm_map_lock_read(smap);
3853 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3854 			tsize = tentry->end - offset;
3855 			if (tsize < size)
3856 				size = tsize;
3857 			object = tentry->object.vm_object;
3858 			offset = tentry->offset + (offset - tentry->start);
3859 			vm_map_unlock_read(smap);
3860 		} else {
3861 			object = entry->object.vm_object;
3862 		}
3863 		vm_object_reference(object);
3864 		last_timestamp = map->timestamp;
3865 		vm_map_unlock_read(map);
3866 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3867 			failed = TRUE;
3868 		start += size;
3869 		vm_object_deallocate(object);
3870 		vm_map_lock_read(map);
3871 		if (last_timestamp == map->timestamp ||
3872 		    !vm_map_lookup_entry(map, start, &entry))
3873 			entry = vm_map_entry_succ(entry);
3874 	}
3875 
3876 	vm_map_unlock_read(map);
3877 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3878 }
3879 
3880 /*
3881  *	vm_map_entry_unwire:	[ internal use only ]
3882  *
3883  *	Make the region specified by this entry pageable.
3884  *
3885  *	The map in question should be locked.
3886  *	[This is the reason for this routine's existence.]
3887  */
3888 static void
3889 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3890 {
3891 	vm_size_t size;
3892 
3893 	VM_MAP_ASSERT_LOCKED(map);
3894 	KASSERT(entry->wired_count > 0,
3895 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3896 
3897 	size = entry->end - entry->start;
3898 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3899 		vm_map_wire_user_count_sub(atop(size));
3900 	pmap_unwire(map->pmap, entry->start, entry->end);
3901 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3902 	    PQ_ACTIVE);
3903 	entry->wired_count = 0;
3904 }
3905 
3906 static void
3907 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3908 {
3909 
3910 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3911 		vm_object_deallocate(entry->object.vm_object);
3912 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3913 }
3914 
3915 /*
3916  *	vm_map_entry_delete:	[ internal use only ]
3917  *
3918  *	Deallocate the given entry from the target map.
3919  */
3920 static void
3921 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3922 {
3923 	vm_object_t object;
3924 	vm_pindex_t offidxstart, offidxend, size1;
3925 	vm_size_t size;
3926 
3927 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3928 	object = entry->object.vm_object;
3929 
3930 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3931 		MPASS(entry->cred == NULL);
3932 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3933 		MPASS(object == NULL);
3934 		vm_map_entry_deallocate(entry, vm_map_is_system(map));
3935 		return;
3936 	}
3937 
3938 	size = entry->end - entry->start;
3939 	map->size -= size;
3940 
3941 	if (entry->cred != NULL) {
3942 		swap_release_by_cred(size, entry->cred);
3943 		crfree(entry->cred);
3944 	}
3945 
3946 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3947 		entry->object.vm_object = NULL;
3948 	} else if ((object->flags & OBJ_ANON) != 0 ||
3949 	    object == kernel_object) {
3950 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3951 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3952 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3953 		offidxstart = OFF_TO_IDX(entry->offset);
3954 		offidxend = offidxstart + atop(size);
3955 		VM_OBJECT_WLOCK(object);
3956 		if (object->ref_count != 1 &&
3957 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3958 		    object == kernel_object)) {
3959 			vm_object_collapse(object);
3960 
3961 			/*
3962 			 * The option OBJPR_NOTMAPPED can be passed here
3963 			 * because vm_map_delete() already performed
3964 			 * pmap_remove() on the only mapping to this range
3965 			 * of pages.
3966 			 */
3967 			vm_object_page_remove(object, offidxstart, offidxend,
3968 			    OBJPR_NOTMAPPED);
3969 			if (offidxend >= object->size &&
3970 			    offidxstart < object->size) {
3971 				size1 = object->size;
3972 				object->size = offidxstart;
3973 				if (object->cred != NULL) {
3974 					size1 -= object->size;
3975 					KASSERT(object->charge >= ptoa(size1),
3976 					    ("object %p charge < 0", object));
3977 					swap_release_by_cred(ptoa(size1),
3978 					    object->cred);
3979 					object->charge -= ptoa(size1);
3980 				}
3981 			}
3982 		}
3983 		VM_OBJECT_WUNLOCK(object);
3984 	}
3985 	if (vm_map_is_system(map))
3986 		vm_map_entry_deallocate(entry, TRUE);
3987 	else {
3988 		entry->defer_next = curthread->td_map_def_user;
3989 		curthread->td_map_def_user = entry;
3990 	}
3991 }
3992 
3993 /*
3994  *	vm_map_delete:	[ internal use only ]
3995  *
3996  *	Deallocates the given address range from the target
3997  *	map.
3998  */
3999 int
4000 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4001 {
4002 	vm_map_entry_t entry, next_entry, scratch_entry;
4003 	int rv;
4004 
4005 	VM_MAP_ASSERT_LOCKED(map);
4006 
4007 	if (start == end)
4008 		return (KERN_SUCCESS);
4009 
4010 	/*
4011 	 * Find the start of the region, and clip it.
4012 	 * Step through all entries in this region.
4013 	 */
4014 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4015 	if (rv != KERN_SUCCESS)
4016 		return (rv);
4017 	for (; entry->start < end; entry = next_entry) {
4018 		/*
4019 		 * Wait for wiring or unwiring of an entry to complete.
4020 		 * Also wait for any system wirings to disappear on
4021 		 * user maps.
4022 		 */
4023 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4024 		    (vm_map_pmap(map) != kernel_pmap &&
4025 		    vm_map_entry_system_wired_count(entry) != 0)) {
4026 			unsigned int last_timestamp;
4027 			vm_offset_t saved_start;
4028 
4029 			saved_start = entry->start;
4030 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4031 			last_timestamp = map->timestamp;
4032 			(void) vm_map_unlock_and_wait(map, 0);
4033 			vm_map_lock(map);
4034 			if (last_timestamp + 1 != map->timestamp) {
4035 				/*
4036 				 * Look again for the entry because the map was
4037 				 * modified while it was unlocked.
4038 				 * Specifically, the entry may have been
4039 				 * clipped, merged, or deleted.
4040 				 */
4041 				rv = vm_map_lookup_clip_start(map, saved_start,
4042 				    &next_entry, &scratch_entry);
4043 				if (rv != KERN_SUCCESS)
4044 					break;
4045 			} else
4046 				next_entry = entry;
4047 			continue;
4048 		}
4049 
4050 		/* XXXKIB or delete to the upper superpage boundary ? */
4051 		rv = vm_map_clip_end(map, entry, end);
4052 		if (rv != KERN_SUCCESS)
4053 			break;
4054 		next_entry = vm_map_entry_succ(entry);
4055 
4056 		/*
4057 		 * Unwire before removing addresses from the pmap; otherwise,
4058 		 * unwiring will put the entries back in the pmap.
4059 		 */
4060 		if (entry->wired_count != 0)
4061 			vm_map_entry_unwire(map, entry);
4062 
4063 		/*
4064 		 * Remove mappings for the pages, but only if the
4065 		 * mappings could exist.  For instance, it does not
4066 		 * make sense to call pmap_remove() for guard entries.
4067 		 */
4068 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4069 		    entry->object.vm_object != NULL)
4070 			pmap_map_delete(map->pmap, entry->start, entry->end);
4071 
4072 		/*
4073 		 * Delete the entry only after removing all pmap
4074 		 * entries pointing to its pages.  (Otherwise, its
4075 		 * page frames may be reallocated, and any modify bits
4076 		 * will be set in the wrong object!)
4077 		 */
4078 		vm_map_entry_delete(map, entry);
4079 	}
4080 	return (rv);
4081 }
4082 
4083 /*
4084  *	vm_map_remove:
4085  *
4086  *	Remove the given address range from the target map.
4087  *	This is the exported form of vm_map_delete.
4088  */
4089 int
4090 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4091 {
4092 	int result;
4093 
4094 	vm_map_lock(map);
4095 	VM_MAP_RANGE_CHECK(map, start, end);
4096 	result = vm_map_delete(map, start, end);
4097 	vm_map_unlock(map);
4098 	return (result);
4099 }
4100 
4101 /*
4102  *	vm_map_check_protection:
4103  *
4104  *	Assert that the target map allows the specified privilege on the
4105  *	entire address region given.  The entire region must be allocated.
4106  *
4107  *	WARNING!  This code does not and should not check whether the
4108  *	contents of the region is accessible.  For example a smaller file
4109  *	might be mapped into a larger address space.
4110  *
4111  *	NOTE!  This code is also called by munmap().
4112  *
4113  *	The map must be locked.  A read lock is sufficient.
4114  */
4115 boolean_t
4116 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4117 			vm_prot_t protection)
4118 {
4119 	vm_map_entry_t entry;
4120 	vm_map_entry_t tmp_entry;
4121 
4122 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4123 		return (FALSE);
4124 	entry = tmp_entry;
4125 
4126 	while (start < end) {
4127 		/*
4128 		 * No holes allowed!
4129 		 */
4130 		if (start < entry->start)
4131 			return (FALSE);
4132 		/*
4133 		 * Check protection associated with entry.
4134 		 */
4135 		if ((entry->protection & protection) != protection)
4136 			return (FALSE);
4137 		/* go to next entry */
4138 		start = entry->end;
4139 		entry = vm_map_entry_succ(entry);
4140 	}
4141 	return (TRUE);
4142 }
4143 
4144 /*
4145  *
4146  *	vm_map_copy_swap_object:
4147  *
4148  *	Copies a swap-backed object from an existing map entry to a
4149  *	new one.  Carries forward the swap charge.  May change the
4150  *	src object on return.
4151  */
4152 static void
4153 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4154     vm_offset_t size, vm_ooffset_t *fork_charge)
4155 {
4156 	vm_object_t src_object;
4157 	struct ucred *cred;
4158 	int charged;
4159 
4160 	src_object = src_entry->object.vm_object;
4161 	charged = ENTRY_CHARGED(src_entry);
4162 	if ((src_object->flags & OBJ_ANON) != 0) {
4163 		VM_OBJECT_WLOCK(src_object);
4164 		vm_object_collapse(src_object);
4165 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4166 			vm_object_split(src_entry);
4167 			src_object = src_entry->object.vm_object;
4168 		}
4169 		vm_object_reference_locked(src_object);
4170 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4171 		VM_OBJECT_WUNLOCK(src_object);
4172 	} else
4173 		vm_object_reference(src_object);
4174 	if (src_entry->cred != NULL &&
4175 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4176 		KASSERT(src_object->cred == NULL,
4177 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4178 		     src_object));
4179 		src_object->cred = src_entry->cred;
4180 		src_object->charge = size;
4181 	}
4182 	dst_entry->object.vm_object = src_object;
4183 	if (charged) {
4184 		cred = curthread->td_ucred;
4185 		crhold(cred);
4186 		dst_entry->cred = cred;
4187 		*fork_charge += size;
4188 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4189 			crhold(cred);
4190 			src_entry->cred = cred;
4191 			*fork_charge += size;
4192 		}
4193 	}
4194 }
4195 
4196 /*
4197  *	vm_map_copy_entry:
4198  *
4199  *	Copies the contents of the source entry to the destination
4200  *	entry.  The entries *must* be aligned properly.
4201  */
4202 static void
4203 vm_map_copy_entry(
4204 	vm_map_t src_map,
4205 	vm_map_t dst_map,
4206 	vm_map_entry_t src_entry,
4207 	vm_map_entry_t dst_entry,
4208 	vm_ooffset_t *fork_charge)
4209 {
4210 	vm_object_t src_object;
4211 	vm_map_entry_t fake_entry;
4212 	vm_offset_t size;
4213 
4214 	VM_MAP_ASSERT_LOCKED(dst_map);
4215 
4216 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4217 		return;
4218 
4219 	if (src_entry->wired_count == 0 ||
4220 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4221 		/*
4222 		 * If the source entry is marked needs_copy, it is already
4223 		 * write-protected.
4224 		 */
4225 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4226 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4227 			pmap_protect(src_map->pmap,
4228 			    src_entry->start,
4229 			    src_entry->end,
4230 			    src_entry->protection & ~VM_PROT_WRITE);
4231 		}
4232 
4233 		/*
4234 		 * Make a copy of the object.
4235 		 */
4236 		size = src_entry->end - src_entry->start;
4237 		if ((src_object = src_entry->object.vm_object) != NULL) {
4238 			if ((src_object->flags & OBJ_SWAP) != 0) {
4239 				vm_map_copy_swap_object(src_entry, dst_entry,
4240 				    size, fork_charge);
4241 				/* May have split/collapsed, reload obj. */
4242 				src_object = src_entry->object.vm_object;
4243 			} else {
4244 				vm_object_reference(src_object);
4245 				dst_entry->object.vm_object = src_object;
4246 			}
4247 			src_entry->eflags |= MAP_ENTRY_COW |
4248 			    MAP_ENTRY_NEEDS_COPY;
4249 			dst_entry->eflags |= MAP_ENTRY_COW |
4250 			    MAP_ENTRY_NEEDS_COPY;
4251 			dst_entry->offset = src_entry->offset;
4252 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4253 				/*
4254 				 * MAP_ENTRY_WRITECNT cannot
4255 				 * indicate write reference from
4256 				 * src_entry, since the entry is
4257 				 * marked as needs copy.  Allocate a
4258 				 * fake entry that is used to
4259 				 * decrement object->un_pager writecount
4260 				 * at the appropriate time.  Attach
4261 				 * fake_entry to the deferred list.
4262 				 */
4263 				fake_entry = vm_map_entry_create(dst_map);
4264 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4265 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4266 				vm_object_reference(src_object);
4267 				fake_entry->object.vm_object = src_object;
4268 				fake_entry->start = src_entry->start;
4269 				fake_entry->end = src_entry->end;
4270 				fake_entry->defer_next =
4271 				    curthread->td_map_def_user;
4272 				curthread->td_map_def_user = fake_entry;
4273 			}
4274 
4275 			pmap_copy(dst_map->pmap, src_map->pmap,
4276 			    dst_entry->start, dst_entry->end - dst_entry->start,
4277 			    src_entry->start);
4278 		} else {
4279 			dst_entry->object.vm_object = NULL;
4280 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4281 				dst_entry->offset = 0;
4282 			if (src_entry->cred != NULL) {
4283 				dst_entry->cred = curthread->td_ucred;
4284 				crhold(dst_entry->cred);
4285 				*fork_charge += size;
4286 			}
4287 		}
4288 	} else {
4289 		/*
4290 		 * We don't want to make writeable wired pages copy-on-write.
4291 		 * Immediately copy these pages into the new map by simulating
4292 		 * page faults.  The new pages are pageable.
4293 		 */
4294 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4295 		    fork_charge);
4296 	}
4297 }
4298 
4299 /*
4300  * vmspace_map_entry_forked:
4301  * Update the newly-forked vmspace each time a map entry is inherited
4302  * or copied.  The values for vm_dsize and vm_tsize are approximate
4303  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4304  */
4305 static void
4306 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4307     vm_map_entry_t entry)
4308 {
4309 	vm_size_t entrysize;
4310 	vm_offset_t newend;
4311 
4312 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4313 		return;
4314 	entrysize = entry->end - entry->start;
4315 	vm2->vm_map.size += entrysize;
4316 	if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
4317 		vm2->vm_ssize += btoc(entrysize);
4318 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4319 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4320 		newend = MIN(entry->end,
4321 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4322 		vm2->vm_dsize += btoc(newend - entry->start);
4323 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4324 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4325 		newend = MIN(entry->end,
4326 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4327 		vm2->vm_tsize += btoc(newend - entry->start);
4328 	}
4329 }
4330 
4331 /*
4332  * vmspace_fork:
4333  * Create a new process vmspace structure and vm_map
4334  * based on those of an existing process.  The new map
4335  * is based on the old map, according to the inheritance
4336  * values on the regions in that map.
4337  *
4338  * XXX It might be worth coalescing the entries added to the new vmspace.
4339  *
4340  * The source map must not be locked.
4341  */
4342 struct vmspace *
4343 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4344 {
4345 	struct vmspace *vm2;
4346 	vm_map_t new_map, old_map;
4347 	vm_map_entry_t new_entry, old_entry;
4348 	vm_object_t object;
4349 	int error, locked __diagused;
4350 	vm_inherit_t inh;
4351 
4352 	old_map = &vm1->vm_map;
4353 	/* Copy immutable fields of vm1 to vm2. */
4354 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4355 	    pmap_pinit);
4356 	if (vm2 == NULL)
4357 		return (NULL);
4358 
4359 	vm2->vm_taddr = vm1->vm_taddr;
4360 	vm2->vm_daddr = vm1->vm_daddr;
4361 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4362 	vm2->vm_stacktop = vm1->vm_stacktop;
4363 	vm2->vm_shp_base = vm1->vm_shp_base;
4364 	vm_map_lock(old_map);
4365 	if (old_map->busy)
4366 		vm_map_wait_busy(old_map);
4367 	new_map = &vm2->vm_map;
4368 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4369 	KASSERT(locked, ("vmspace_fork: lock failed"));
4370 
4371 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4372 	if (error != 0) {
4373 		sx_xunlock(&old_map->lock);
4374 		sx_xunlock(&new_map->lock);
4375 		vm_map_process_deferred();
4376 		vmspace_free(vm2);
4377 		return (NULL);
4378 	}
4379 
4380 	new_map->anon_loc = old_map->anon_loc;
4381 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4382 	    MAP_ASLR_STACK | MAP_WXORX);
4383 
4384 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4385 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4386 			panic("vm_map_fork: encountered a submap");
4387 
4388 		inh = old_entry->inheritance;
4389 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4390 		    inh != VM_INHERIT_NONE)
4391 			inh = VM_INHERIT_COPY;
4392 
4393 		switch (inh) {
4394 		case VM_INHERIT_NONE:
4395 			break;
4396 
4397 		case VM_INHERIT_SHARE:
4398 			/*
4399 			 * Clone the entry, creating the shared object if
4400 			 * necessary.
4401 			 */
4402 			object = old_entry->object.vm_object;
4403 			if (object == NULL) {
4404 				vm_map_entry_back(old_entry);
4405 				object = old_entry->object.vm_object;
4406 			}
4407 
4408 			/*
4409 			 * Add the reference before calling vm_object_shadow
4410 			 * to insure that a shadow object is created.
4411 			 */
4412 			vm_object_reference(object);
4413 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4414 				vm_object_shadow(&old_entry->object.vm_object,
4415 				    &old_entry->offset,
4416 				    old_entry->end - old_entry->start,
4417 				    old_entry->cred,
4418 				    /* Transfer the second reference too. */
4419 				    true);
4420 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4421 				old_entry->cred = NULL;
4422 
4423 				/*
4424 				 * As in vm_map_merged_neighbor_dispose(),
4425 				 * the vnode lock will not be acquired in
4426 				 * this call to vm_object_deallocate().
4427 				 */
4428 				vm_object_deallocate(object);
4429 				object = old_entry->object.vm_object;
4430 			} else {
4431 				VM_OBJECT_WLOCK(object);
4432 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4433 				if (old_entry->cred != NULL) {
4434 					KASSERT(object->cred == NULL,
4435 					    ("vmspace_fork both cred"));
4436 					object->cred = old_entry->cred;
4437 					object->charge = old_entry->end -
4438 					    old_entry->start;
4439 					old_entry->cred = NULL;
4440 				}
4441 
4442 				/*
4443 				 * Assert the correct state of the vnode
4444 				 * v_writecount while the object is locked, to
4445 				 * not relock it later for the assertion
4446 				 * correctness.
4447 				 */
4448 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4449 				    object->type == OBJT_VNODE) {
4450 					KASSERT(((struct vnode *)object->
4451 					    handle)->v_writecount > 0,
4452 					    ("vmspace_fork: v_writecount %p",
4453 					    object));
4454 					KASSERT(object->un_pager.vnp.
4455 					    writemappings > 0,
4456 					    ("vmspace_fork: vnp.writecount %p",
4457 					    object));
4458 				}
4459 				VM_OBJECT_WUNLOCK(object);
4460 			}
4461 
4462 			/*
4463 			 * Clone the entry, referencing the shared object.
4464 			 */
4465 			new_entry = vm_map_entry_create(new_map);
4466 			*new_entry = *old_entry;
4467 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4468 			    MAP_ENTRY_IN_TRANSITION);
4469 			new_entry->wiring_thread = NULL;
4470 			new_entry->wired_count = 0;
4471 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4472 				vm_pager_update_writecount(object,
4473 				    new_entry->start, new_entry->end);
4474 			}
4475 			vm_map_entry_set_vnode_text(new_entry, true);
4476 
4477 			/*
4478 			 * Insert the entry into the new map -- we know we're
4479 			 * inserting at the end of the new map.
4480 			 */
4481 			vm_map_entry_link(new_map, new_entry);
4482 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4483 
4484 			/*
4485 			 * Update the physical map
4486 			 */
4487 			pmap_copy(new_map->pmap, old_map->pmap,
4488 			    new_entry->start,
4489 			    (old_entry->end - old_entry->start),
4490 			    old_entry->start);
4491 			break;
4492 
4493 		case VM_INHERIT_COPY:
4494 			/*
4495 			 * Clone the entry and link into the map.
4496 			 */
4497 			new_entry = vm_map_entry_create(new_map);
4498 			*new_entry = *old_entry;
4499 			/*
4500 			 * Copied entry is COW over the old object.
4501 			 */
4502 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4503 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4504 			new_entry->wiring_thread = NULL;
4505 			new_entry->wired_count = 0;
4506 			new_entry->object.vm_object = NULL;
4507 			new_entry->cred = NULL;
4508 			vm_map_entry_link(new_map, new_entry);
4509 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4510 			vm_map_copy_entry(old_map, new_map, old_entry,
4511 			    new_entry, fork_charge);
4512 			vm_map_entry_set_vnode_text(new_entry, true);
4513 			break;
4514 
4515 		case VM_INHERIT_ZERO:
4516 			/*
4517 			 * Create a new anonymous mapping entry modelled from
4518 			 * the old one.
4519 			 */
4520 			new_entry = vm_map_entry_create(new_map);
4521 			memset(new_entry, 0, sizeof(*new_entry));
4522 
4523 			new_entry->start = old_entry->start;
4524 			new_entry->end = old_entry->end;
4525 			new_entry->eflags = old_entry->eflags &
4526 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4527 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4528 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4529 			new_entry->protection = old_entry->protection;
4530 			new_entry->max_protection = old_entry->max_protection;
4531 			new_entry->inheritance = VM_INHERIT_ZERO;
4532 
4533 			vm_map_entry_link(new_map, new_entry);
4534 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4535 
4536 			new_entry->cred = curthread->td_ucred;
4537 			crhold(new_entry->cred);
4538 			*fork_charge += (new_entry->end - new_entry->start);
4539 
4540 			break;
4541 		}
4542 	}
4543 	/*
4544 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4545 	 * map entries, which cannot be done until both old_map and
4546 	 * new_map locks are released.
4547 	 */
4548 	sx_xunlock(&old_map->lock);
4549 	sx_xunlock(&new_map->lock);
4550 	vm_map_process_deferred();
4551 
4552 	return (vm2);
4553 }
4554 
4555 /*
4556  * Create a process's stack for exec_new_vmspace().  This function is never
4557  * asked to wire the newly created stack.
4558  */
4559 int
4560 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4561     vm_prot_t prot, vm_prot_t max, int cow)
4562 {
4563 	vm_size_t growsize, init_ssize;
4564 	rlim_t vmemlim;
4565 	int rv;
4566 
4567 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4568 	growsize = sgrowsiz;
4569 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4570 	vm_map_lock(map);
4571 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4572 	/* If we would blow our VMEM resource limit, no go */
4573 	if (map->size + init_ssize > vmemlim) {
4574 		rv = KERN_NO_SPACE;
4575 		goto out;
4576 	}
4577 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4578 	    max, cow);
4579 out:
4580 	vm_map_unlock(map);
4581 	return (rv);
4582 }
4583 
4584 static int stack_guard_page = 1;
4585 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4586     &stack_guard_page, 0,
4587     "Specifies the number of guard pages for a stack that grows");
4588 
4589 static int
4590 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4591     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4592 {
4593 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4594 	vm_offset_t bot, gap_bot, gap_top, top;
4595 	vm_size_t init_ssize, sgp;
4596 	int rv;
4597 
4598 	KASSERT((cow & MAP_STACK_AREA) != 0,
4599 	    ("New mapping is not a stack"));
4600 
4601 	if (max_ssize == 0 ||
4602 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4603 		return (KERN_INVALID_ADDRESS);
4604 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4605 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4606 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4607 	if (sgp >= max_ssize)
4608 		return (KERN_INVALID_ARGUMENT);
4609 
4610 	init_ssize = growsize;
4611 	if (max_ssize < init_ssize + sgp)
4612 		init_ssize = max_ssize - sgp;
4613 
4614 	/* If addr is already mapped, no go */
4615 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4616 		return (KERN_NO_SPACE);
4617 
4618 	/*
4619 	 * If we can't accommodate max_ssize in the current mapping, no go.
4620 	 */
4621 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4622 		return (KERN_NO_SPACE);
4623 
4624 	/*
4625 	 * We initially map a stack of only init_ssize, at the top of
4626 	 * the range.  We will grow as needed later.
4627 	 *
4628 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4629 	 * and cow to be 0.  Possibly we should eliminate these as input
4630 	 * parameters, and just pass these values here in the insert call.
4631 	 */
4632 	bot = addrbos + max_ssize - init_ssize;
4633 	top = bot + init_ssize;
4634 	gap_bot = addrbos;
4635 	gap_top = bot;
4636 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4637 	    &new_entry);
4638 	if (rv != KERN_SUCCESS)
4639 		return (rv);
4640 	KASSERT(new_entry->end == top || new_entry->start == bot,
4641 	    ("Bad entry start/end for new stack entry"));
4642 	KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4643 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4644 	if (gap_bot == gap_top)
4645 		return (KERN_SUCCESS);
4646 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4647 	    VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4648 	    &gap_entry);
4649 	if (rv == KERN_SUCCESS) {
4650 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4651 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4652 		KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0,
4653 		    ("entry %p not stack gap %#x", gap_entry,
4654 		    gap_entry->eflags));
4655 
4656 		/*
4657 		 * Gap can never successfully handle a fault, so
4658 		 * read-ahead logic is never used for it.  Re-use
4659 		 * next_read of the gap entry to store
4660 		 * stack_guard_page for vm_map_growstack().
4661 		 * Similarly, since a gap cannot have a backing object,
4662 		 * store the original stack protections in the
4663 		 * object offset.
4664 		 */
4665 		gap_entry->next_read = sgp;
4666 		gap_entry->offset = prot | PROT_MAX(max);
4667 	} else {
4668 		(void)vm_map_delete(map, bot, top);
4669 	}
4670 	return (rv);
4671 }
4672 
4673 /*
4674  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4675  * successfully grow the stack.
4676  */
4677 static int
4678 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4679 {
4680 	vm_map_entry_t stack_entry;
4681 	struct proc *p;
4682 	struct vmspace *vm;
4683 	vm_offset_t gap_end, gap_start, grow_start;
4684 	vm_size_t grow_amount, guard, max_grow, sgp;
4685 	vm_prot_t prot, max;
4686 	rlim_t lmemlim, stacklim, vmemlim;
4687 	int rv, rv1 __diagused;
4688 	bool gap_deleted, is_procstack;
4689 #ifdef notyet
4690 	uint64_t limit;
4691 #endif
4692 #ifdef RACCT
4693 	int error __diagused;
4694 #endif
4695 
4696 	p = curproc;
4697 	vm = p->p_vmspace;
4698 
4699 	/*
4700 	 * Disallow stack growth when the access is performed by a
4701 	 * debugger or AIO daemon.  The reason is that the wrong
4702 	 * resource limits are applied.
4703 	 */
4704 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4705 	    p->p_textvp == NULL))
4706 		return (KERN_FAILURE);
4707 
4708 	MPASS(!vm_map_is_system(map));
4709 
4710 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4711 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4712 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4713 retry:
4714 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4715 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4716 		return (KERN_FAILURE);
4717 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4718 		return (KERN_SUCCESS);
4719 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) {
4720 		stack_entry = vm_map_entry_succ(gap_entry);
4721 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4722 		    stack_entry->start != gap_entry->end)
4723 			return (KERN_FAILURE);
4724 		grow_amount = round_page(stack_entry->start - addr);
4725 	} else {
4726 		return (KERN_FAILURE);
4727 	}
4728 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4729 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4730 	    gap_entry->next_read;
4731 	max_grow = gap_entry->end - gap_entry->start;
4732 	if (guard > max_grow)
4733 		return (KERN_NO_SPACE);
4734 	max_grow -= guard;
4735 	if (grow_amount > max_grow)
4736 		return (KERN_NO_SPACE);
4737 
4738 	/*
4739 	 * If this is the main process stack, see if we're over the stack
4740 	 * limit.
4741 	 */
4742 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4743 	    addr < (vm_offset_t)vm->vm_stacktop;
4744 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4745 		return (KERN_NO_SPACE);
4746 
4747 #ifdef RACCT
4748 	if (racct_enable) {
4749 		PROC_LOCK(p);
4750 		if (is_procstack && racct_set(p, RACCT_STACK,
4751 		    ctob(vm->vm_ssize) + grow_amount)) {
4752 			PROC_UNLOCK(p);
4753 			return (KERN_NO_SPACE);
4754 		}
4755 		PROC_UNLOCK(p);
4756 	}
4757 #endif
4758 
4759 	grow_amount = roundup(grow_amount, sgrowsiz);
4760 	if (grow_amount > max_grow)
4761 		grow_amount = max_grow;
4762 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4763 		grow_amount = trunc_page((vm_size_t)stacklim) -
4764 		    ctob(vm->vm_ssize);
4765 	}
4766 
4767 #ifdef notyet
4768 	PROC_LOCK(p);
4769 	limit = racct_get_available(p, RACCT_STACK);
4770 	PROC_UNLOCK(p);
4771 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4772 		grow_amount = limit - ctob(vm->vm_ssize);
4773 #endif
4774 
4775 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4776 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4777 			rv = KERN_NO_SPACE;
4778 			goto out;
4779 		}
4780 #ifdef RACCT
4781 		if (racct_enable) {
4782 			PROC_LOCK(p);
4783 			if (racct_set(p, RACCT_MEMLOCK,
4784 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4785 				PROC_UNLOCK(p);
4786 				rv = KERN_NO_SPACE;
4787 				goto out;
4788 			}
4789 			PROC_UNLOCK(p);
4790 		}
4791 #endif
4792 	}
4793 
4794 	/* If we would blow our VMEM resource limit, no go */
4795 	if (map->size + grow_amount > vmemlim) {
4796 		rv = KERN_NO_SPACE;
4797 		goto out;
4798 	}
4799 #ifdef RACCT
4800 	if (racct_enable) {
4801 		PROC_LOCK(p);
4802 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4803 			PROC_UNLOCK(p);
4804 			rv = KERN_NO_SPACE;
4805 			goto out;
4806 		}
4807 		PROC_UNLOCK(p);
4808 	}
4809 #endif
4810 
4811 	if (vm_map_lock_upgrade(map)) {
4812 		gap_entry = NULL;
4813 		vm_map_lock_read(map);
4814 		goto retry;
4815 	}
4816 
4817 	/*
4818 	 * The gap_entry "offset" field is overloaded.  See
4819 	 * vm_map_stack_locked().
4820 	 */
4821 	prot = PROT_EXTRACT(gap_entry->offset);
4822 	max = PROT_MAX_EXTRACT(gap_entry->offset);
4823 	sgp = gap_entry->next_read;
4824 
4825 	grow_start = gap_entry->end - grow_amount;
4826 	if (gap_entry->start + grow_amount == gap_entry->end) {
4827 		gap_start = gap_entry->start;
4828 		gap_end = gap_entry->end;
4829 		vm_map_entry_delete(map, gap_entry);
4830 		gap_deleted = true;
4831 	} else {
4832 		MPASS(gap_entry->start < gap_entry->end - grow_amount);
4833 		vm_map_entry_resize(map, gap_entry, -grow_amount);
4834 		gap_deleted = false;
4835 	}
4836 	rv = vm_map_insert(map, NULL, 0, grow_start,
4837 	    grow_start + grow_amount, prot, max, MAP_STACK_AREA);
4838 	if (rv != KERN_SUCCESS) {
4839 		if (gap_deleted) {
4840 			rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4841 			    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4842 			    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4843 			    &gap_entry);
4844 			MPASS(rv1 == KERN_SUCCESS);
4845 			gap_entry->next_read = sgp;
4846 			gap_entry->offset = prot | PROT_MAX(max);
4847 		} else {
4848 			vm_map_entry_resize(map, gap_entry,
4849 			    grow_amount);
4850 		}
4851 	}
4852 	if (rv == KERN_SUCCESS && is_procstack)
4853 		vm->vm_ssize += btoc(grow_amount);
4854 
4855 	/*
4856 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4857 	 */
4858 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4859 		rv = vm_map_wire_locked(map, grow_start,
4860 		    grow_start + grow_amount,
4861 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4862 	}
4863 	vm_map_lock_downgrade(map);
4864 
4865 out:
4866 #ifdef RACCT
4867 	if (racct_enable && rv != KERN_SUCCESS) {
4868 		PROC_LOCK(p);
4869 		error = racct_set(p, RACCT_VMEM, map->size);
4870 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4871 		if (!old_mlock) {
4872 			error = racct_set(p, RACCT_MEMLOCK,
4873 			    ptoa(pmap_wired_count(map->pmap)));
4874 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4875 		}
4876 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4877 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4878 		PROC_UNLOCK(p);
4879 	}
4880 #endif
4881 
4882 	return (rv);
4883 }
4884 
4885 /*
4886  * Unshare the specified VM space for exec.  If other processes are
4887  * mapped to it, then create a new one.  The new vmspace is null.
4888  */
4889 int
4890 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4891 {
4892 	struct vmspace *oldvmspace = p->p_vmspace;
4893 	struct vmspace *newvmspace;
4894 
4895 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4896 	    ("vmspace_exec recursed"));
4897 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4898 	if (newvmspace == NULL)
4899 		return (ENOMEM);
4900 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4901 	/*
4902 	 * This code is written like this for prototype purposes.  The
4903 	 * goal is to avoid running down the vmspace here, but let the
4904 	 * other process's that are still using the vmspace to finally
4905 	 * run it down.  Even though there is little or no chance of blocking
4906 	 * here, it is a good idea to keep this form for future mods.
4907 	 */
4908 	PROC_VMSPACE_LOCK(p);
4909 	p->p_vmspace = newvmspace;
4910 	PROC_VMSPACE_UNLOCK(p);
4911 	if (p == curthread->td_proc)
4912 		pmap_activate(curthread);
4913 	curthread->td_pflags |= TDP_EXECVMSPC;
4914 	return (0);
4915 }
4916 
4917 /*
4918  * Unshare the specified VM space for forcing COW.  This
4919  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4920  */
4921 int
4922 vmspace_unshare(struct proc *p)
4923 {
4924 	struct vmspace *oldvmspace = p->p_vmspace;
4925 	struct vmspace *newvmspace;
4926 	vm_ooffset_t fork_charge;
4927 
4928 	/*
4929 	 * The caller is responsible for ensuring that the reference count
4930 	 * cannot concurrently transition 1 -> 2.
4931 	 */
4932 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4933 		return (0);
4934 	fork_charge = 0;
4935 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4936 	if (newvmspace == NULL)
4937 		return (ENOMEM);
4938 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4939 		vmspace_free(newvmspace);
4940 		return (ENOMEM);
4941 	}
4942 	PROC_VMSPACE_LOCK(p);
4943 	p->p_vmspace = newvmspace;
4944 	PROC_VMSPACE_UNLOCK(p);
4945 	if (p == curthread->td_proc)
4946 		pmap_activate(curthread);
4947 	vmspace_free(oldvmspace);
4948 	return (0);
4949 }
4950 
4951 /*
4952  *	vm_map_lookup:
4953  *
4954  *	Finds the VM object, offset, and
4955  *	protection for a given virtual address in the
4956  *	specified map, assuming a page fault of the
4957  *	type specified.
4958  *
4959  *	Leaves the map in question locked for read; return
4960  *	values are guaranteed until a vm_map_lookup_done
4961  *	call is performed.  Note that the map argument
4962  *	is in/out; the returned map must be used in
4963  *	the call to vm_map_lookup_done.
4964  *
4965  *	A handle (out_entry) is returned for use in
4966  *	vm_map_lookup_done, to make that fast.
4967  *
4968  *	If a lookup is requested with "write protection"
4969  *	specified, the map may be changed to perform virtual
4970  *	copying operations, although the data referenced will
4971  *	remain the same.
4972  */
4973 int
4974 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4975 	      vm_offset_t vaddr,
4976 	      vm_prot_t fault_typea,
4977 	      vm_map_entry_t *out_entry,	/* OUT */
4978 	      vm_object_t *object,		/* OUT */
4979 	      vm_pindex_t *pindex,		/* OUT */
4980 	      vm_prot_t *out_prot,		/* OUT */
4981 	      boolean_t *wired)			/* OUT */
4982 {
4983 	vm_map_entry_t entry;
4984 	vm_map_t map = *var_map;
4985 	vm_prot_t prot;
4986 	vm_prot_t fault_type;
4987 	vm_object_t eobject;
4988 	vm_size_t size;
4989 	struct ucred *cred;
4990 
4991 RetryLookup:
4992 
4993 	vm_map_lock_read(map);
4994 
4995 RetryLookupLocked:
4996 	/*
4997 	 * Lookup the faulting address.
4998 	 */
4999 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5000 		vm_map_unlock_read(map);
5001 		return (KERN_INVALID_ADDRESS);
5002 	}
5003 
5004 	entry = *out_entry;
5005 
5006 	/*
5007 	 * Handle submaps.
5008 	 */
5009 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5010 		vm_map_t old_map = map;
5011 
5012 		*var_map = map = entry->object.sub_map;
5013 		vm_map_unlock_read(old_map);
5014 		goto RetryLookup;
5015 	}
5016 
5017 	/*
5018 	 * Check whether this task is allowed to have this page.
5019 	 */
5020 	prot = entry->protection;
5021 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5022 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5023 		if (prot == VM_PROT_NONE && map != kernel_map &&
5024 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5025 		    (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 &&
5026 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5027 			goto RetryLookupLocked;
5028 	}
5029 	fault_type = fault_typea & VM_PROT_ALL;
5030 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5031 		vm_map_unlock_read(map);
5032 		return (KERN_PROTECTION_FAILURE);
5033 	}
5034 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5035 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5036 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5037 	    ("entry %p flags %x", entry, entry->eflags));
5038 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5039 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5040 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5041 		vm_map_unlock_read(map);
5042 		return (KERN_PROTECTION_FAILURE);
5043 	}
5044 
5045 	/*
5046 	 * If this page is not pageable, we have to get it for all possible
5047 	 * accesses.
5048 	 */
5049 	*wired = (entry->wired_count != 0);
5050 	if (*wired)
5051 		fault_type = entry->protection;
5052 	size = entry->end - entry->start;
5053 
5054 	/*
5055 	 * If the entry was copy-on-write, we either ...
5056 	 */
5057 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5058 		/*
5059 		 * If we want to write the page, we may as well handle that
5060 		 * now since we've got the map locked.
5061 		 *
5062 		 * If we don't need to write the page, we just demote the
5063 		 * permissions allowed.
5064 		 */
5065 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5066 		    (fault_typea & VM_PROT_COPY) != 0) {
5067 			/*
5068 			 * Make a new object, and place it in the object
5069 			 * chain.  Note that no new references have appeared
5070 			 * -- one just moved from the map to the new
5071 			 * object.
5072 			 */
5073 			if (vm_map_lock_upgrade(map))
5074 				goto RetryLookup;
5075 
5076 			if (entry->cred == NULL) {
5077 				/*
5078 				 * The debugger owner is charged for
5079 				 * the memory.
5080 				 */
5081 				cred = curthread->td_ucred;
5082 				crhold(cred);
5083 				if (!swap_reserve_by_cred(size, cred)) {
5084 					crfree(cred);
5085 					vm_map_unlock(map);
5086 					return (KERN_RESOURCE_SHORTAGE);
5087 				}
5088 				entry->cred = cred;
5089 			}
5090 			eobject = entry->object.vm_object;
5091 			vm_object_shadow(&entry->object.vm_object,
5092 			    &entry->offset, size, entry->cred, false);
5093 			if (eobject == entry->object.vm_object) {
5094 				/*
5095 				 * The object was not shadowed.
5096 				 */
5097 				swap_release_by_cred(size, entry->cred);
5098 				crfree(entry->cred);
5099 			}
5100 			entry->cred = NULL;
5101 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5102 
5103 			vm_map_lock_downgrade(map);
5104 		} else {
5105 			/*
5106 			 * We're attempting to read a copy-on-write page --
5107 			 * don't allow writes.
5108 			 */
5109 			prot &= ~VM_PROT_WRITE;
5110 		}
5111 	}
5112 
5113 	/*
5114 	 * Create an object if necessary.
5115 	 */
5116 	if (entry->object.vm_object == NULL && !vm_map_is_system(map)) {
5117 		if (vm_map_lock_upgrade(map))
5118 			goto RetryLookup;
5119 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5120 		    NULL, entry->cred, size);
5121 		entry->offset = 0;
5122 		entry->cred = NULL;
5123 		vm_map_lock_downgrade(map);
5124 	}
5125 
5126 	/*
5127 	 * Return the object/offset from this entry.  If the entry was
5128 	 * copy-on-write or empty, it has been fixed up.
5129 	 */
5130 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5131 	*object = entry->object.vm_object;
5132 
5133 	*out_prot = prot;
5134 	return (KERN_SUCCESS);
5135 }
5136 
5137 /*
5138  *	vm_map_lookup_locked:
5139  *
5140  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5141  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5142  */
5143 int
5144 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5145 		     vm_offset_t vaddr,
5146 		     vm_prot_t fault_typea,
5147 		     vm_map_entry_t *out_entry,	/* OUT */
5148 		     vm_object_t *object,	/* OUT */
5149 		     vm_pindex_t *pindex,	/* OUT */
5150 		     vm_prot_t *out_prot,	/* OUT */
5151 		     boolean_t *wired)		/* OUT */
5152 {
5153 	vm_map_entry_t entry;
5154 	vm_map_t map = *var_map;
5155 	vm_prot_t prot;
5156 	vm_prot_t fault_type = fault_typea;
5157 
5158 	/*
5159 	 * Lookup the faulting address.
5160 	 */
5161 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5162 		return (KERN_INVALID_ADDRESS);
5163 
5164 	entry = *out_entry;
5165 
5166 	/*
5167 	 * Fail if the entry refers to a submap.
5168 	 */
5169 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5170 		return (KERN_FAILURE);
5171 
5172 	/*
5173 	 * Check whether this task is allowed to have this page.
5174 	 */
5175 	prot = entry->protection;
5176 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5177 	if ((fault_type & prot) != fault_type)
5178 		return (KERN_PROTECTION_FAILURE);
5179 
5180 	/*
5181 	 * If this page is not pageable, we have to get it for all possible
5182 	 * accesses.
5183 	 */
5184 	*wired = (entry->wired_count != 0);
5185 	if (*wired)
5186 		fault_type = entry->protection;
5187 
5188 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5189 		/*
5190 		 * Fail if the entry was copy-on-write for a write fault.
5191 		 */
5192 		if (fault_type & VM_PROT_WRITE)
5193 			return (KERN_FAILURE);
5194 		/*
5195 		 * We're attempting to read a copy-on-write page --
5196 		 * don't allow writes.
5197 		 */
5198 		prot &= ~VM_PROT_WRITE;
5199 	}
5200 
5201 	/*
5202 	 * Fail if an object should be created.
5203 	 */
5204 	if (entry->object.vm_object == NULL && !vm_map_is_system(map))
5205 		return (KERN_FAILURE);
5206 
5207 	/*
5208 	 * Return the object/offset from this entry.  If the entry was
5209 	 * copy-on-write or empty, it has been fixed up.
5210 	 */
5211 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5212 	*object = entry->object.vm_object;
5213 
5214 	*out_prot = prot;
5215 	return (KERN_SUCCESS);
5216 }
5217 
5218 /*
5219  *	vm_map_lookup_done:
5220  *
5221  *	Releases locks acquired by a vm_map_lookup
5222  *	(according to the handle returned by that lookup).
5223  */
5224 void
5225 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5226 {
5227 	/*
5228 	 * Unlock the main-level map
5229 	 */
5230 	vm_map_unlock_read(map);
5231 }
5232 
5233 vm_offset_t
5234 vm_map_max_KBI(const struct vm_map *map)
5235 {
5236 
5237 	return (vm_map_max(map));
5238 }
5239 
5240 vm_offset_t
5241 vm_map_min_KBI(const struct vm_map *map)
5242 {
5243 
5244 	return (vm_map_min(map));
5245 }
5246 
5247 pmap_t
5248 vm_map_pmap_KBI(vm_map_t map)
5249 {
5250 
5251 	return (map->pmap);
5252 }
5253 
5254 bool
5255 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5256 {
5257 
5258 	return (vm_map_range_valid(map, start, end));
5259 }
5260 
5261 #ifdef INVARIANTS
5262 static void
5263 _vm_map_assert_consistent(vm_map_t map, int check)
5264 {
5265 	vm_map_entry_t entry, prev;
5266 	vm_map_entry_t cur, header, lbound, ubound;
5267 	vm_size_t max_left, max_right;
5268 
5269 #ifdef DIAGNOSTIC
5270 	++map->nupdates;
5271 #endif
5272 	if (enable_vmmap_check != check)
5273 		return;
5274 
5275 	header = prev = &map->header;
5276 	VM_MAP_ENTRY_FOREACH(entry, map) {
5277 		KASSERT(prev->end <= entry->start,
5278 		    ("map %p prev->end = %jx, start = %jx", map,
5279 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5280 		KASSERT(entry->start < entry->end,
5281 		    ("map %p start = %jx, end = %jx", map,
5282 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5283 		KASSERT(entry->left == header ||
5284 		    entry->left->start < entry->start,
5285 		    ("map %p left->start = %jx, start = %jx", map,
5286 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5287 		KASSERT(entry->right == header ||
5288 		    entry->start < entry->right->start,
5289 		    ("map %p start = %jx, right->start = %jx", map,
5290 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5291 		cur = map->root;
5292 		lbound = ubound = header;
5293 		for (;;) {
5294 			if (entry->start < cur->start) {
5295 				ubound = cur;
5296 				cur = cur->left;
5297 				KASSERT(cur != lbound,
5298 				    ("map %p cannot find %jx",
5299 				    map, (uintmax_t)entry->start));
5300 			} else if (cur->end <= entry->start) {
5301 				lbound = cur;
5302 				cur = cur->right;
5303 				KASSERT(cur != ubound,
5304 				    ("map %p cannot find %jx",
5305 				    map, (uintmax_t)entry->start));
5306 			} else {
5307 				KASSERT(cur == entry,
5308 				    ("map %p cannot find %jx",
5309 				    map, (uintmax_t)entry->start));
5310 				break;
5311 			}
5312 		}
5313 		max_left = vm_map_entry_max_free_left(entry, lbound);
5314 		max_right = vm_map_entry_max_free_right(entry, ubound);
5315 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5316 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5317 		    (uintmax_t)entry->max_free,
5318 		    (uintmax_t)max_left, (uintmax_t)max_right));
5319 		prev = entry;
5320 	}
5321 	KASSERT(prev->end <= entry->start,
5322 	    ("map %p prev->end = %jx, start = %jx", map,
5323 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5324 }
5325 #endif
5326 
5327 #include "opt_ddb.h"
5328 #ifdef DDB
5329 #include <sys/kernel.h>
5330 
5331 #include <ddb/ddb.h>
5332 
5333 static void
5334 vm_map_print(vm_map_t map)
5335 {
5336 	vm_map_entry_t entry, prev;
5337 
5338 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5339 	    (void *)map,
5340 	    (void *)map->pmap, map->nentries, map->timestamp);
5341 
5342 	db_indent += 2;
5343 	prev = &map->header;
5344 	VM_MAP_ENTRY_FOREACH(entry, map) {
5345 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5346 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5347 		    entry->eflags);
5348 		{
5349 			static const char * const inheritance_name[4] =
5350 			{"share", "copy", "none", "donate_copy"};
5351 
5352 			db_iprintf(" prot=%x/%x/%s",
5353 			    entry->protection,
5354 			    entry->max_protection,
5355 			    inheritance_name[(int)(unsigned char)
5356 			    entry->inheritance]);
5357 			if (entry->wired_count != 0)
5358 				db_printf(", wired");
5359 		}
5360 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5361 			db_printf(", share=%p, offset=0x%jx\n",
5362 			    (void *)entry->object.sub_map,
5363 			    (uintmax_t)entry->offset);
5364 			if (prev == &map->header ||
5365 			    prev->object.sub_map !=
5366 				entry->object.sub_map) {
5367 				db_indent += 2;
5368 				vm_map_print((vm_map_t)entry->object.sub_map);
5369 				db_indent -= 2;
5370 			}
5371 		} else {
5372 			if (entry->cred != NULL)
5373 				db_printf(", ruid %d", entry->cred->cr_ruid);
5374 			db_printf(", object=%p, offset=0x%jx",
5375 			    (void *)entry->object.vm_object,
5376 			    (uintmax_t)entry->offset);
5377 			if (entry->object.vm_object && entry->object.vm_object->cred)
5378 				db_printf(", obj ruid %d charge %jx",
5379 				    entry->object.vm_object->cred->cr_ruid,
5380 				    (uintmax_t)entry->object.vm_object->charge);
5381 			if (entry->eflags & MAP_ENTRY_COW)
5382 				db_printf(", copy (%s)",
5383 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5384 			db_printf("\n");
5385 
5386 			if (prev == &map->header ||
5387 			    prev->object.vm_object !=
5388 				entry->object.vm_object) {
5389 				db_indent += 2;
5390 				vm_object_print((db_expr_t)(intptr_t)
5391 						entry->object.vm_object,
5392 						0, 0, (char *)0);
5393 				db_indent -= 2;
5394 			}
5395 		}
5396 		prev = entry;
5397 	}
5398 	db_indent -= 2;
5399 }
5400 
5401 DB_SHOW_COMMAND(map, map)
5402 {
5403 
5404 	if (!have_addr) {
5405 		db_printf("usage: show map <addr>\n");
5406 		return;
5407 	}
5408 	vm_map_print((vm_map_t)addr);
5409 }
5410 
5411 DB_SHOW_COMMAND(procvm, procvm)
5412 {
5413 	struct proc *p;
5414 
5415 	if (have_addr) {
5416 		p = db_lookup_proc(addr);
5417 	} else {
5418 		p = curproc;
5419 	}
5420 
5421 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5422 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5423 	    (void *)vmspace_pmap(p->p_vmspace));
5424 
5425 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5426 }
5427 
5428 #endif /* DDB */
5429