1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a single hint is used to speed up lookups. 104 * 105 * Since portions of maps are specified by start/end addresses, 106 * which may not align with existing map entries, all 107 * routines merely "clip" entries to these start/end values. 108 * [That is, an entry is split into two, bordering at a 109 * start or end value.] Note that these clippings may not 110 * always be necessary (as the two resulting entries are then 111 * not changed); however, the clipping is done for convenience. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one map to 115 * another, and then marking both regions as copy-on-write. 116 */ 117 118 /* 119 * vm_map_startup: 120 * 121 * Initialize the vm_map module. Must be called before 122 * any other vm_map routines. 123 * 124 * Map and entry structures are allocated from the general 125 * purpose memory pool with some exceptions: 126 * 127 * - The kernel map and kmem submap are allocated statically. 128 * - Kernel map entries are allocated out of a static pool. 129 * 130 * These restrictions are necessary since malloc() uses the 131 * maps and requires map entries. 132 */ 133 134 static uma_zone_t mapentzone; 135 static uma_zone_t kmapentzone; 136 static uma_zone_t mapzone; 137 static uma_zone_t vmspace_zone; 138 static struct vm_object kmapentobj; 139 static void vmspace_zinit(void *mem, int size); 140 static void vmspace_zfini(void *mem, int size); 141 static void vm_map_zinit(void *mem, int size); 142 static void vm_map_zfini(void *mem, int size); 143 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 144 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 150 void 151 vm_map_startup(void) 152 { 153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 154 #ifdef INVARIANTS 155 vm_map_zdtor, 156 #else 157 NULL, 158 #endif 159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 160 uma_prealloc(mapzone, MAX_KMAP); 161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 163 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 164 uma_prealloc(kmapentzone, MAX_KMAPENT); 165 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 166 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 167 uma_prealloc(mapentzone, MAX_MAPENT); 168 } 169 170 static void 171 vmspace_zfini(void *mem, int size) 172 { 173 struct vmspace *vm; 174 175 vm = (struct vmspace *)mem; 176 177 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 178 } 179 180 static void 181 vmspace_zinit(void *mem, int size) 182 { 183 struct vmspace *vm; 184 185 vm = (struct vmspace *)mem; 186 187 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 188 } 189 190 static void 191 vm_map_zfini(void *mem, int size) 192 { 193 vm_map_t map; 194 195 map = (vm_map_t)mem; 196 197 lockdestroy(&map->lock); 198 } 199 200 static void 201 vm_map_zinit(void *mem, int size) 202 { 203 vm_map_t map; 204 205 map = (vm_map_t)mem; 206 map->nentries = 0; 207 map->size = 0; 208 map->infork = 0; 209 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 210 } 211 212 #ifdef INVARIANTS 213 static void 214 vmspace_zdtor(void *mem, int size, void *arg) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 221 } 222 static void 223 vm_map_zdtor(void *mem, int size, void *arg) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 KASSERT(map->nentries == 0, 229 ("map %p nentries == %d on free.", 230 map, map->nentries)); 231 KASSERT(map->size == 0, 232 ("map %p size == %lu on free.", 233 map, (unsigned long)map->size)); 234 KASSERT(map->infork == 0, 235 ("map %p infork == %d on free.", 236 map, map->infork)); 237 } 238 #endif /* INVARIANTS */ 239 240 /* 241 * Allocate a vmspace structure, including a vm_map and pmap, 242 * and initialize those structures. The refcnt is set to 1. 243 * The remaining fields must be initialized by the caller. 244 */ 245 struct vmspace * 246 vmspace_alloc(min, max) 247 vm_offset_t min, max; 248 { 249 struct vmspace *vm; 250 251 GIANT_REQUIRED; 252 vm = uma_zalloc(vmspace_zone, M_WAITOK); 253 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 254 _vm_map_init(&vm->vm_map, min, max); 255 pmap_pinit(vmspace_pmap(vm)); 256 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 257 vm->vm_refcnt = 1; 258 vm->vm_shm = NULL; 259 vm->vm_freer = NULL; 260 return (vm); 261 } 262 263 void 264 vm_init2(void) 265 { 266 uma_zone_set_obj(kmapentzone, &kmapentobj, min(cnt.v_page_count, 267 (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8); 268 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 269 #ifdef INVARIANTS 270 vmspace_zdtor, 271 #else 272 NULL, 273 #endif 274 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 275 pmap_init2(); 276 vm_object_init2(); 277 } 278 279 static __inline void 280 vmspace_dofree(struct vmspace *vm) 281 { 282 CTR1(KTR_VM, "vmspace_free: %p", vm); 283 /* 284 * Lock the map, to wait out all other references to it. 285 * Delete all of the mappings and pages they hold, then call 286 * the pmap module to reclaim anything left. 287 */ 288 vm_map_lock(&vm->vm_map); 289 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 290 vm->vm_map.max_offset); 291 vm_map_unlock(&vm->vm_map); 292 293 pmap_release(vmspace_pmap(vm)); 294 uma_zfree(vmspace_zone, vm); 295 } 296 297 void 298 vmspace_free(struct vmspace *vm) 299 { 300 GIANT_REQUIRED; 301 302 if (vm->vm_refcnt == 0) 303 panic("vmspace_free: attempt to free already freed vmspace"); 304 305 if (--vm->vm_refcnt == 0) 306 vmspace_dofree(vm); 307 } 308 309 void 310 vmspace_exitfree(struct proc *p) 311 { 312 struct vmspace *vm; 313 314 GIANT_REQUIRED; 315 if (p == p->p_vmspace->vm_freer) { 316 vm = p->p_vmspace; 317 p->p_vmspace = NULL; 318 vmspace_dofree(vm); 319 } 320 } 321 322 /* 323 * vmspace_swap_count() - count the approximate swap useage in pages for a 324 * vmspace. 325 * 326 * Swap useage is determined by taking the proportional swap used by 327 * VM objects backing the VM map. To make up for fractional losses, 328 * if the VM object has any swap use at all the associated map entries 329 * count for at least 1 swap page. 330 */ 331 int 332 vmspace_swap_count(struct vmspace *vmspace) 333 { 334 vm_map_t map = &vmspace->vm_map; 335 vm_map_entry_t cur; 336 int count = 0; 337 338 vm_map_lock_read(map); 339 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 340 vm_object_t object; 341 342 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 343 (object = cur->object.vm_object) != NULL && 344 object->type == OBJT_SWAP 345 ) { 346 int n = (cur->end - cur->start) / PAGE_SIZE; 347 348 if (object->un_pager.swp.swp_bcount) { 349 count += object->un_pager.swp.swp_bcount * 350 SWAP_META_PAGES * n / object->size + 1; 351 } 352 } 353 } 354 vm_map_unlock_read(map); 355 return (count); 356 } 357 358 void 359 _vm_map_lock(vm_map_t map, const char *file, int line) 360 { 361 int error; 362 363 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 364 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 365 map->timestamp++; 366 } 367 368 void 369 _vm_map_unlock(vm_map_t map, const char *file, int line) 370 { 371 372 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 373 } 374 375 void 376 _vm_map_lock_read(vm_map_t map, const char *file, int line) 377 { 378 int error; 379 380 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 381 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 382 } 383 384 void 385 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 386 { 387 388 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 389 } 390 391 int 392 _vm_map_trylock(vm_map_t map, const char *file, int line) 393 { 394 int error; 395 396 error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 397 return (error == 0); 398 } 399 400 int 401 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 402 { 403 404 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 405 ("%s: lock not held", __func__)); 406 map->timestamp++; 407 return (0); 408 } 409 410 void 411 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 412 { 413 414 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 415 ("%s: lock not held", __func__)); 416 } 417 418 /* 419 * vm_map_unlock_and_wait: 420 */ 421 int 422 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 423 { 424 int retval; 425 426 mtx_lock(&Giant); 427 vm_map_unlock(map); 428 retval = tsleep(&map->root, PVM, "vmmapw", 0); 429 mtx_unlock(&Giant); 430 return (retval); 431 } 432 433 /* 434 * vm_map_wakeup: 435 */ 436 void 437 vm_map_wakeup(vm_map_t map) 438 { 439 440 /* 441 * Acquire and release Giant to prevent a wakeup() from being 442 * performed (and lost) between the vm_map_unlock() and the 443 * tsleep() in vm_map_unlock_and_wait(). 444 */ 445 mtx_lock(&Giant); 446 mtx_unlock(&Giant); 447 wakeup(&map->root); 448 } 449 450 long 451 vmspace_resident_count(struct vmspace *vmspace) 452 { 453 return pmap_resident_count(vmspace_pmap(vmspace)); 454 } 455 456 /* 457 * vm_map_create: 458 * 459 * Creates and returns a new empty VM map with 460 * the given physical map structure, and having 461 * the given lower and upper address bounds. 462 */ 463 vm_map_t 464 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 465 { 466 vm_map_t result; 467 468 result = uma_zalloc(mapzone, M_WAITOK); 469 CTR1(KTR_VM, "vm_map_create: %p", result); 470 _vm_map_init(result, min, max); 471 result->pmap = pmap; 472 return (result); 473 } 474 475 /* 476 * Initialize an existing vm_map structure 477 * such as that in the vmspace structure. 478 * The pmap is set elsewhere. 479 */ 480 static void 481 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 482 { 483 484 map->header.next = map->header.prev = &map->header; 485 map->needs_wakeup = FALSE; 486 map->system_map = 0; 487 map->min_offset = min; 488 map->max_offset = max; 489 map->first_free = &map->header; 490 map->root = NULL; 491 map->timestamp = 0; 492 } 493 494 void 495 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 496 { 497 _vm_map_init(map, min, max); 498 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 499 } 500 501 /* 502 * vm_map_entry_dispose: [ internal use only ] 503 * 504 * Inverse of vm_map_entry_create. 505 */ 506 static void 507 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 508 { 509 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 510 } 511 512 /* 513 * vm_map_entry_create: [ internal use only ] 514 * 515 * Allocates a VM map entry for insertion. 516 * No entry fields are filled in. 517 */ 518 static vm_map_entry_t 519 vm_map_entry_create(vm_map_t map) 520 { 521 vm_map_entry_t new_entry; 522 523 if (map->system_map) 524 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 525 else 526 new_entry = uma_zalloc(mapentzone, M_WAITOK); 527 if (new_entry == NULL) 528 panic("vm_map_entry_create: kernel resources exhausted"); 529 return (new_entry); 530 } 531 532 /* 533 * vm_map_entry_set_behavior: 534 * 535 * Set the expected access behavior, either normal, random, or 536 * sequential. 537 */ 538 static __inline void 539 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 540 { 541 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 542 (behavior & MAP_ENTRY_BEHAV_MASK); 543 } 544 545 /* 546 * vm_map_entry_splay: 547 * 548 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 549 * the vm_map_entry containing the given address. If, however, that 550 * address is not found in the vm_map, returns a vm_map_entry that is 551 * adjacent to the address, coming before or after it. 552 */ 553 static vm_map_entry_t 554 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 555 { 556 struct vm_map_entry dummy; 557 vm_map_entry_t lefttreemax, righttreemin, y; 558 559 if (root == NULL) 560 return (root); 561 lefttreemax = righttreemin = &dummy; 562 for (;; root = y) { 563 if (address < root->start) { 564 if ((y = root->left) == NULL) 565 break; 566 if (address < y->start) { 567 /* Rotate right. */ 568 root->left = y->right; 569 y->right = root; 570 root = y; 571 if ((y = root->left) == NULL) 572 break; 573 } 574 /* Link into the new root's right tree. */ 575 righttreemin->left = root; 576 righttreemin = root; 577 } else if (address >= root->end) { 578 if ((y = root->right) == NULL) 579 break; 580 if (address >= y->end) { 581 /* Rotate left. */ 582 root->right = y->left; 583 y->left = root; 584 root = y; 585 if ((y = root->right) == NULL) 586 break; 587 } 588 /* Link into the new root's left tree. */ 589 lefttreemax->right = root; 590 lefttreemax = root; 591 } else 592 break; 593 } 594 /* Assemble the new root. */ 595 lefttreemax->right = root->left; 596 righttreemin->left = root->right; 597 root->left = dummy.right; 598 root->right = dummy.left; 599 return (root); 600 } 601 602 /* 603 * vm_map_entry_{un,}link: 604 * 605 * Insert/remove entries from maps. 606 */ 607 static void 608 vm_map_entry_link(vm_map_t map, 609 vm_map_entry_t after_where, 610 vm_map_entry_t entry) 611 { 612 613 CTR4(KTR_VM, 614 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 615 map->nentries, entry, after_where); 616 map->nentries++; 617 entry->prev = after_where; 618 entry->next = after_where->next; 619 entry->next->prev = entry; 620 after_where->next = entry; 621 622 if (after_where != &map->header) { 623 if (after_where != map->root) 624 vm_map_entry_splay(after_where->start, map->root); 625 entry->right = after_where->right; 626 entry->left = after_where; 627 after_where->right = NULL; 628 } else { 629 entry->right = map->root; 630 entry->left = NULL; 631 } 632 map->root = entry; 633 } 634 635 static void 636 vm_map_entry_unlink(vm_map_t map, 637 vm_map_entry_t entry) 638 { 639 vm_map_entry_t next, prev, root; 640 641 if (entry != map->root) 642 vm_map_entry_splay(entry->start, map->root); 643 if (entry->left == NULL) 644 root = entry->right; 645 else { 646 root = vm_map_entry_splay(entry->start, entry->left); 647 root->right = entry->right; 648 } 649 map->root = root; 650 651 prev = entry->prev; 652 next = entry->next; 653 next->prev = prev; 654 prev->next = next; 655 map->nentries--; 656 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 657 map->nentries, entry); 658 } 659 660 /* 661 * vm_map_lookup_entry: [ internal use only ] 662 * 663 * Finds the map entry containing (or 664 * immediately preceding) the specified address 665 * in the given map; the entry is returned 666 * in the "entry" parameter. The boolean 667 * result indicates whether the address is 668 * actually contained in the map. 669 */ 670 boolean_t 671 vm_map_lookup_entry( 672 vm_map_t map, 673 vm_offset_t address, 674 vm_map_entry_t *entry) /* OUT */ 675 { 676 vm_map_entry_t cur; 677 678 cur = vm_map_entry_splay(address, map->root); 679 if (cur == NULL) 680 *entry = &map->header; 681 else { 682 map->root = cur; 683 684 if (address >= cur->start) { 685 *entry = cur; 686 if (cur->end > address) 687 return (TRUE); 688 } else 689 *entry = cur->prev; 690 } 691 return (FALSE); 692 } 693 694 /* 695 * vm_map_insert: 696 * 697 * Inserts the given whole VM object into the target 698 * map at the specified address range. The object's 699 * size should match that of the address range. 700 * 701 * Requires that the map be locked, and leaves it so. 702 * 703 * If object is non-NULL, ref count must be bumped by caller 704 * prior to making call to account for the new entry. 705 */ 706 int 707 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 708 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 709 int cow) 710 { 711 vm_map_entry_t new_entry; 712 vm_map_entry_t prev_entry; 713 vm_map_entry_t temp_entry; 714 vm_eflags_t protoeflags; 715 716 /* 717 * Check that the start and end points are not bogus. 718 */ 719 if ((start < map->min_offset) || (end > map->max_offset) || 720 (start >= end)) 721 return (KERN_INVALID_ADDRESS); 722 723 /* 724 * Find the entry prior to the proposed starting address; if it's part 725 * of an existing entry, this range is bogus. 726 */ 727 if (vm_map_lookup_entry(map, start, &temp_entry)) 728 return (KERN_NO_SPACE); 729 730 prev_entry = temp_entry; 731 732 /* 733 * Assert that the next entry doesn't overlap the end point. 734 */ 735 if ((prev_entry->next != &map->header) && 736 (prev_entry->next->start < end)) 737 return (KERN_NO_SPACE); 738 739 protoeflags = 0; 740 741 if (cow & MAP_COPY_ON_WRITE) 742 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 743 744 if (cow & MAP_NOFAULT) { 745 protoeflags |= MAP_ENTRY_NOFAULT; 746 747 KASSERT(object == NULL, 748 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 749 } 750 if (cow & MAP_DISABLE_SYNCER) 751 protoeflags |= MAP_ENTRY_NOSYNC; 752 if (cow & MAP_DISABLE_COREDUMP) 753 protoeflags |= MAP_ENTRY_NOCOREDUMP; 754 755 if (object) { 756 /* 757 * When object is non-NULL, it could be shared with another 758 * process. We have to set or clear OBJ_ONEMAPPING 759 * appropriately. 760 */ 761 mtx_lock(&Giant); 762 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 763 vm_object_clear_flag(object, OBJ_ONEMAPPING); 764 } 765 mtx_unlock(&Giant); 766 } 767 else if ((prev_entry != &map->header) && 768 (prev_entry->eflags == protoeflags) && 769 (prev_entry->end == start) && 770 (prev_entry->wired_count == 0) && 771 ((prev_entry->object.vm_object == NULL) || 772 vm_object_coalesce(prev_entry->object.vm_object, 773 OFF_TO_IDX(prev_entry->offset), 774 (vm_size_t)(prev_entry->end - prev_entry->start), 775 (vm_size_t)(end - prev_entry->end)))) { 776 /* 777 * We were able to extend the object. Determine if we 778 * can extend the previous map entry to include the 779 * new range as well. 780 */ 781 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 782 (prev_entry->protection == prot) && 783 (prev_entry->max_protection == max)) { 784 map->size += (end - prev_entry->end); 785 prev_entry->end = end; 786 vm_map_simplify_entry(map, prev_entry); 787 return (KERN_SUCCESS); 788 } 789 790 /* 791 * If we can extend the object but cannot extend the 792 * map entry, we have to create a new map entry. We 793 * must bump the ref count on the extended object to 794 * account for it. object may be NULL. 795 */ 796 object = prev_entry->object.vm_object; 797 offset = prev_entry->offset + 798 (prev_entry->end - prev_entry->start); 799 vm_object_reference(object); 800 } 801 802 /* 803 * NOTE: if conditionals fail, object can be NULL here. This occurs 804 * in things like the buffer map where we manage kva but do not manage 805 * backing objects. 806 */ 807 808 /* 809 * Create a new entry 810 */ 811 new_entry = vm_map_entry_create(map); 812 new_entry->start = start; 813 new_entry->end = end; 814 815 new_entry->eflags = protoeflags; 816 new_entry->object.vm_object = object; 817 new_entry->offset = offset; 818 new_entry->avail_ssize = 0; 819 820 new_entry->inheritance = VM_INHERIT_DEFAULT; 821 new_entry->protection = prot; 822 new_entry->max_protection = max; 823 new_entry->wired_count = 0; 824 825 /* 826 * Insert the new entry into the list 827 */ 828 vm_map_entry_link(map, prev_entry, new_entry); 829 map->size += new_entry->end - new_entry->start; 830 831 /* 832 * Update the free space hint 833 */ 834 if ((map->first_free == prev_entry) && 835 (prev_entry->end >= new_entry->start)) { 836 map->first_free = new_entry; 837 } 838 839 #if 0 840 /* 841 * Temporarily removed to avoid MAP_STACK panic, due to 842 * MAP_STACK being a huge hack. Will be added back in 843 * when MAP_STACK (and the user stack mapping) is fixed. 844 */ 845 /* 846 * It may be possible to simplify the entry 847 */ 848 vm_map_simplify_entry(map, new_entry); 849 #endif 850 851 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 852 mtx_lock(&Giant); 853 pmap_object_init_pt(map->pmap, start, 854 object, OFF_TO_IDX(offset), end - start, 855 cow & MAP_PREFAULT_PARTIAL); 856 mtx_unlock(&Giant); 857 } 858 859 return (KERN_SUCCESS); 860 } 861 862 /* 863 * Find sufficient space for `length' bytes in the given map, starting at 864 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 865 */ 866 int 867 vm_map_findspace( 868 vm_map_t map, 869 vm_offset_t start, 870 vm_size_t length, 871 vm_offset_t *addr) 872 { 873 vm_map_entry_t entry, next; 874 vm_offset_t end; 875 876 if (start < map->min_offset) 877 start = map->min_offset; 878 if (start > map->max_offset) 879 return (1); 880 881 /* 882 * Look for the first possible address; if there's already something 883 * at this address, we have to start after it. 884 */ 885 if (start == map->min_offset) { 886 if ((entry = map->first_free) != &map->header) 887 start = entry->end; 888 } else { 889 vm_map_entry_t tmp; 890 891 if (vm_map_lookup_entry(map, start, &tmp)) 892 start = tmp->end; 893 entry = tmp; 894 } 895 896 /* 897 * Look through the rest of the map, trying to fit a new region in the 898 * gap between existing regions, or after the very last region. 899 */ 900 for (;; start = (entry = next)->end) { 901 /* 902 * Find the end of the proposed new region. Be sure we didn't 903 * go beyond the end of the map, or wrap around the address; 904 * if so, we lose. Otherwise, if this is the last entry, or 905 * if the proposed new region fits before the next entry, we 906 * win. 907 */ 908 end = start + length; 909 if (end > map->max_offset || end < start) 910 return (1); 911 next = entry->next; 912 if (next == &map->header || next->start >= end) 913 break; 914 } 915 *addr = start; 916 if (map == kernel_map) { 917 vm_offset_t ksize; 918 if ((ksize = round_page(start + length)) > kernel_vm_end) { 919 mtx_lock(&Giant); 920 pmap_growkernel(ksize); 921 mtx_unlock(&Giant); 922 } 923 } 924 return (0); 925 } 926 927 /* 928 * vm_map_find finds an unallocated region in the target address 929 * map with the given length. The search is defined to be 930 * first-fit from the specified address; the region found is 931 * returned in the same parameter. 932 * 933 * If object is non-NULL, ref count must be bumped by caller 934 * prior to making call to account for the new entry. 935 */ 936 int 937 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 938 vm_offset_t *addr, /* IN/OUT */ 939 vm_size_t length, boolean_t find_space, vm_prot_t prot, 940 vm_prot_t max, int cow) 941 { 942 vm_offset_t start; 943 int result, s = 0; 944 945 start = *addr; 946 947 if (map == kmem_map) 948 s = splvm(); 949 950 vm_map_lock(map); 951 if (find_space) { 952 if (vm_map_findspace(map, start, length, addr)) { 953 vm_map_unlock(map); 954 if (map == kmem_map) 955 splx(s); 956 return (KERN_NO_SPACE); 957 } 958 start = *addr; 959 } 960 result = vm_map_insert(map, object, offset, 961 start, start + length, prot, max, cow); 962 vm_map_unlock(map); 963 964 if (map == kmem_map) 965 splx(s); 966 967 return (result); 968 } 969 970 /* 971 * vm_map_simplify_entry: 972 * 973 * Simplify the given map entry by merging with either neighbor. This 974 * routine also has the ability to merge with both neighbors. 975 * 976 * The map must be locked. 977 * 978 * This routine guarentees that the passed entry remains valid (though 979 * possibly extended). When merging, this routine may delete one or 980 * both neighbors. 981 */ 982 void 983 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 984 { 985 vm_map_entry_t next, prev; 986 vm_size_t prevsize, esize; 987 988 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 989 return; 990 991 prev = entry->prev; 992 if (prev != &map->header) { 993 prevsize = prev->end - prev->start; 994 if ( (prev->end == entry->start) && 995 (prev->object.vm_object == entry->object.vm_object) && 996 (!prev->object.vm_object || 997 (prev->offset + prevsize == entry->offset)) && 998 (prev->eflags == entry->eflags) && 999 (prev->protection == entry->protection) && 1000 (prev->max_protection == entry->max_protection) && 1001 (prev->inheritance == entry->inheritance) && 1002 (prev->wired_count == entry->wired_count)) { 1003 if (map->first_free == prev) 1004 map->first_free = entry; 1005 vm_map_entry_unlink(map, prev); 1006 entry->start = prev->start; 1007 entry->offset = prev->offset; 1008 if (prev->object.vm_object) 1009 vm_object_deallocate(prev->object.vm_object); 1010 vm_map_entry_dispose(map, prev); 1011 } 1012 } 1013 1014 next = entry->next; 1015 if (next != &map->header) { 1016 esize = entry->end - entry->start; 1017 if ((entry->end == next->start) && 1018 (next->object.vm_object == entry->object.vm_object) && 1019 (!entry->object.vm_object || 1020 (entry->offset + esize == next->offset)) && 1021 (next->eflags == entry->eflags) && 1022 (next->protection == entry->protection) && 1023 (next->max_protection == entry->max_protection) && 1024 (next->inheritance == entry->inheritance) && 1025 (next->wired_count == entry->wired_count)) { 1026 if (map->first_free == next) 1027 map->first_free = entry; 1028 vm_map_entry_unlink(map, next); 1029 entry->end = next->end; 1030 if (next->object.vm_object) 1031 vm_object_deallocate(next->object.vm_object); 1032 vm_map_entry_dispose(map, next); 1033 } 1034 } 1035 } 1036 /* 1037 * vm_map_clip_start: [ internal use only ] 1038 * 1039 * Asserts that the given entry begins at or after 1040 * the specified address; if necessary, 1041 * it splits the entry into two. 1042 */ 1043 #define vm_map_clip_start(map, entry, startaddr) \ 1044 { \ 1045 if (startaddr > entry->start) \ 1046 _vm_map_clip_start(map, entry, startaddr); \ 1047 } 1048 1049 /* 1050 * This routine is called only when it is known that 1051 * the entry must be split. 1052 */ 1053 static void 1054 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1055 { 1056 vm_map_entry_t new_entry; 1057 1058 /* 1059 * Split off the front portion -- note that we must insert the new 1060 * entry BEFORE this one, so that this entry has the specified 1061 * starting address. 1062 */ 1063 vm_map_simplify_entry(map, entry); 1064 1065 /* 1066 * If there is no object backing this entry, we might as well create 1067 * one now. If we defer it, an object can get created after the map 1068 * is clipped, and individual objects will be created for the split-up 1069 * map. This is a bit of a hack, but is also about the best place to 1070 * put this improvement. 1071 */ 1072 if (entry->object.vm_object == NULL && !map->system_map) { 1073 vm_object_t object; 1074 object = vm_object_allocate(OBJT_DEFAULT, 1075 atop(entry->end - entry->start)); 1076 entry->object.vm_object = object; 1077 entry->offset = 0; 1078 } 1079 1080 new_entry = vm_map_entry_create(map); 1081 *new_entry = *entry; 1082 1083 new_entry->end = start; 1084 entry->offset += (start - entry->start); 1085 entry->start = start; 1086 1087 vm_map_entry_link(map, entry->prev, new_entry); 1088 1089 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1090 vm_object_reference(new_entry->object.vm_object); 1091 } 1092 } 1093 1094 /* 1095 * vm_map_clip_end: [ internal use only ] 1096 * 1097 * Asserts that the given entry ends at or before 1098 * the specified address; if necessary, 1099 * it splits the entry into two. 1100 */ 1101 #define vm_map_clip_end(map, entry, endaddr) \ 1102 { \ 1103 if (endaddr < entry->end) \ 1104 _vm_map_clip_end(map, entry, endaddr); \ 1105 } 1106 1107 /* 1108 * This routine is called only when it is known that 1109 * the entry must be split. 1110 */ 1111 static void 1112 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1113 { 1114 vm_map_entry_t new_entry; 1115 1116 /* 1117 * If there is no object backing this entry, we might as well create 1118 * one now. If we defer it, an object can get created after the map 1119 * is clipped, and individual objects will be created for the split-up 1120 * map. This is a bit of a hack, but is also about the best place to 1121 * put this improvement. 1122 */ 1123 if (entry->object.vm_object == NULL && !map->system_map) { 1124 vm_object_t object; 1125 object = vm_object_allocate(OBJT_DEFAULT, 1126 atop(entry->end - entry->start)); 1127 entry->object.vm_object = object; 1128 entry->offset = 0; 1129 } 1130 1131 /* 1132 * Create a new entry and insert it AFTER the specified entry 1133 */ 1134 new_entry = vm_map_entry_create(map); 1135 *new_entry = *entry; 1136 1137 new_entry->start = entry->end = end; 1138 new_entry->offset += (end - entry->start); 1139 1140 vm_map_entry_link(map, entry, new_entry); 1141 1142 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1143 vm_object_reference(new_entry->object.vm_object); 1144 } 1145 } 1146 1147 /* 1148 * VM_MAP_RANGE_CHECK: [ internal use only ] 1149 * 1150 * Asserts that the starting and ending region 1151 * addresses fall within the valid range of the map. 1152 */ 1153 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1154 { \ 1155 if (start < vm_map_min(map)) \ 1156 start = vm_map_min(map); \ 1157 if (end > vm_map_max(map)) \ 1158 end = vm_map_max(map); \ 1159 if (start > end) \ 1160 start = end; \ 1161 } 1162 1163 /* 1164 * vm_map_submap: [ kernel use only ] 1165 * 1166 * Mark the given range as handled by a subordinate map. 1167 * 1168 * This range must have been created with vm_map_find, 1169 * and no other operations may have been performed on this 1170 * range prior to calling vm_map_submap. 1171 * 1172 * Only a limited number of operations can be performed 1173 * within this rage after calling vm_map_submap: 1174 * vm_fault 1175 * [Don't try vm_map_copy!] 1176 * 1177 * To remove a submapping, one must first remove the 1178 * range from the superior map, and then destroy the 1179 * submap (if desired). [Better yet, don't try it.] 1180 */ 1181 int 1182 vm_map_submap( 1183 vm_map_t map, 1184 vm_offset_t start, 1185 vm_offset_t end, 1186 vm_map_t submap) 1187 { 1188 vm_map_entry_t entry; 1189 int result = KERN_INVALID_ARGUMENT; 1190 1191 vm_map_lock(map); 1192 1193 VM_MAP_RANGE_CHECK(map, start, end); 1194 1195 if (vm_map_lookup_entry(map, start, &entry)) { 1196 vm_map_clip_start(map, entry, start); 1197 } else 1198 entry = entry->next; 1199 1200 vm_map_clip_end(map, entry, end); 1201 1202 if ((entry->start == start) && (entry->end == end) && 1203 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1204 (entry->object.vm_object == NULL)) { 1205 entry->object.sub_map = submap; 1206 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1207 result = KERN_SUCCESS; 1208 } 1209 vm_map_unlock(map); 1210 1211 return (result); 1212 } 1213 1214 /* 1215 * vm_map_protect: 1216 * 1217 * Sets the protection of the specified address 1218 * region in the target map. If "set_max" is 1219 * specified, the maximum protection is to be set; 1220 * otherwise, only the current protection is affected. 1221 */ 1222 int 1223 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1224 vm_prot_t new_prot, boolean_t set_max) 1225 { 1226 vm_map_entry_t current; 1227 vm_map_entry_t entry; 1228 1229 vm_map_lock(map); 1230 1231 VM_MAP_RANGE_CHECK(map, start, end); 1232 1233 if (vm_map_lookup_entry(map, start, &entry)) { 1234 vm_map_clip_start(map, entry, start); 1235 } else { 1236 entry = entry->next; 1237 } 1238 1239 /* 1240 * Make a first pass to check for protection violations. 1241 */ 1242 current = entry; 1243 while ((current != &map->header) && (current->start < end)) { 1244 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1245 vm_map_unlock(map); 1246 return (KERN_INVALID_ARGUMENT); 1247 } 1248 if ((new_prot & current->max_protection) != new_prot) { 1249 vm_map_unlock(map); 1250 return (KERN_PROTECTION_FAILURE); 1251 } 1252 current = current->next; 1253 } 1254 1255 /* 1256 * Go back and fix up protections. [Note that clipping is not 1257 * necessary the second time.] 1258 */ 1259 current = entry; 1260 while ((current != &map->header) && (current->start < end)) { 1261 vm_prot_t old_prot; 1262 1263 vm_map_clip_end(map, current, end); 1264 1265 old_prot = current->protection; 1266 if (set_max) 1267 current->protection = 1268 (current->max_protection = new_prot) & 1269 old_prot; 1270 else 1271 current->protection = new_prot; 1272 1273 /* 1274 * Update physical map if necessary. Worry about copy-on-write 1275 * here -- CHECK THIS XXX 1276 */ 1277 if (current->protection != old_prot) { 1278 mtx_lock(&Giant); 1279 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1280 VM_PROT_ALL) 1281 pmap_protect(map->pmap, current->start, 1282 current->end, 1283 current->protection & MASK(current)); 1284 #undef MASK 1285 mtx_unlock(&Giant); 1286 } 1287 vm_map_simplify_entry(map, current); 1288 current = current->next; 1289 } 1290 vm_map_unlock(map); 1291 return (KERN_SUCCESS); 1292 } 1293 1294 /* 1295 * vm_map_madvise: 1296 * 1297 * This routine traverses a processes map handling the madvise 1298 * system call. Advisories are classified as either those effecting 1299 * the vm_map_entry structure, or those effecting the underlying 1300 * objects. 1301 */ 1302 int 1303 vm_map_madvise( 1304 vm_map_t map, 1305 vm_offset_t start, 1306 vm_offset_t end, 1307 int behav) 1308 { 1309 vm_map_entry_t current, entry; 1310 int modify_map = 0; 1311 1312 /* 1313 * Some madvise calls directly modify the vm_map_entry, in which case 1314 * we need to use an exclusive lock on the map and we need to perform 1315 * various clipping operations. Otherwise we only need a read-lock 1316 * on the map. 1317 */ 1318 switch(behav) { 1319 case MADV_NORMAL: 1320 case MADV_SEQUENTIAL: 1321 case MADV_RANDOM: 1322 case MADV_NOSYNC: 1323 case MADV_AUTOSYNC: 1324 case MADV_NOCORE: 1325 case MADV_CORE: 1326 modify_map = 1; 1327 vm_map_lock(map); 1328 break; 1329 case MADV_WILLNEED: 1330 case MADV_DONTNEED: 1331 case MADV_FREE: 1332 vm_map_lock_read(map); 1333 break; 1334 default: 1335 return (KERN_INVALID_ARGUMENT); 1336 } 1337 1338 /* 1339 * Locate starting entry and clip if necessary. 1340 */ 1341 VM_MAP_RANGE_CHECK(map, start, end); 1342 1343 if (vm_map_lookup_entry(map, start, &entry)) { 1344 if (modify_map) 1345 vm_map_clip_start(map, entry, start); 1346 } else { 1347 entry = entry->next; 1348 } 1349 1350 if (modify_map) { 1351 /* 1352 * madvise behaviors that are implemented in the vm_map_entry. 1353 * 1354 * We clip the vm_map_entry so that behavioral changes are 1355 * limited to the specified address range. 1356 */ 1357 for (current = entry; 1358 (current != &map->header) && (current->start < end); 1359 current = current->next 1360 ) { 1361 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1362 continue; 1363 1364 vm_map_clip_end(map, current, end); 1365 1366 switch (behav) { 1367 case MADV_NORMAL: 1368 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1369 break; 1370 case MADV_SEQUENTIAL: 1371 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1372 break; 1373 case MADV_RANDOM: 1374 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1375 break; 1376 case MADV_NOSYNC: 1377 current->eflags |= MAP_ENTRY_NOSYNC; 1378 break; 1379 case MADV_AUTOSYNC: 1380 current->eflags &= ~MAP_ENTRY_NOSYNC; 1381 break; 1382 case MADV_NOCORE: 1383 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1384 break; 1385 case MADV_CORE: 1386 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1387 break; 1388 default: 1389 break; 1390 } 1391 vm_map_simplify_entry(map, current); 1392 } 1393 vm_map_unlock(map); 1394 } else { 1395 vm_pindex_t pindex; 1396 int count; 1397 1398 /* 1399 * madvise behaviors that are implemented in the underlying 1400 * vm_object. 1401 * 1402 * Since we don't clip the vm_map_entry, we have to clip 1403 * the vm_object pindex and count. 1404 */ 1405 for (current = entry; 1406 (current != &map->header) && (current->start < end); 1407 current = current->next 1408 ) { 1409 vm_offset_t useStart; 1410 1411 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1412 continue; 1413 1414 pindex = OFF_TO_IDX(current->offset); 1415 count = atop(current->end - current->start); 1416 useStart = current->start; 1417 1418 if (current->start < start) { 1419 pindex += atop(start - current->start); 1420 count -= atop(start - current->start); 1421 useStart = start; 1422 } 1423 if (current->end > end) 1424 count -= atop(current->end - end); 1425 1426 if (count <= 0) 1427 continue; 1428 1429 vm_object_madvise(current->object.vm_object, 1430 pindex, count, behav); 1431 if (behav == MADV_WILLNEED) { 1432 mtx_lock(&Giant); 1433 pmap_object_init_pt( 1434 map->pmap, 1435 useStart, 1436 current->object.vm_object, 1437 pindex, 1438 (count << PAGE_SHIFT), 1439 MAP_PREFAULT_MADVISE 1440 ); 1441 mtx_unlock(&Giant); 1442 } 1443 } 1444 vm_map_unlock_read(map); 1445 } 1446 return (0); 1447 } 1448 1449 1450 /* 1451 * vm_map_inherit: 1452 * 1453 * Sets the inheritance of the specified address 1454 * range in the target map. Inheritance 1455 * affects how the map will be shared with 1456 * child maps at the time of vm_map_fork. 1457 */ 1458 int 1459 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1460 vm_inherit_t new_inheritance) 1461 { 1462 vm_map_entry_t entry; 1463 vm_map_entry_t temp_entry; 1464 1465 switch (new_inheritance) { 1466 case VM_INHERIT_NONE: 1467 case VM_INHERIT_COPY: 1468 case VM_INHERIT_SHARE: 1469 break; 1470 default: 1471 return (KERN_INVALID_ARGUMENT); 1472 } 1473 vm_map_lock(map); 1474 VM_MAP_RANGE_CHECK(map, start, end); 1475 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1476 entry = temp_entry; 1477 vm_map_clip_start(map, entry, start); 1478 } else 1479 entry = temp_entry->next; 1480 while ((entry != &map->header) && (entry->start < end)) { 1481 vm_map_clip_end(map, entry, end); 1482 entry->inheritance = new_inheritance; 1483 vm_map_simplify_entry(map, entry); 1484 entry = entry->next; 1485 } 1486 vm_map_unlock(map); 1487 return (KERN_SUCCESS); 1488 } 1489 1490 /* 1491 * vm_map_unwire: 1492 * 1493 * Implements both kernel and user unwiring. 1494 */ 1495 int 1496 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1497 boolean_t user_unwire) 1498 { 1499 vm_map_entry_t entry, first_entry, tmp_entry; 1500 vm_offset_t saved_start; 1501 unsigned int last_timestamp; 1502 int rv; 1503 boolean_t need_wakeup, result; 1504 1505 vm_map_lock(map); 1506 VM_MAP_RANGE_CHECK(map, start, end); 1507 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1508 vm_map_unlock(map); 1509 return (KERN_INVALID_ADDRESS); 1510 } 1511 last_timestamp = map->timestamp; 1512 entry = first_entry; 1513 while (entry != &map->header && entry->start < end) { 1514 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1515 /* 1516 * We have not yet clipped the entry. 1517 */ 1518 saved_start = (start >= entry->start) ? start : 1519 entry->start; 1520 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1521 if (vm_map_unlock_and_wait(map, user_unwire)) { 1522 /* 1523 * Allow interruption of user unwiring? 1524 */ 1525 } 1526 vm_map_lock(map); 1527 if (last_timestamp+1 != map->timestamp) { 1528 /* 1529 * Look again for the entry because the map was 1530 * modified while it was unlocked. 1531 * Specifically, the entry may have been 1532 * clipped, merged, or deleted. 1533 */ 1534 if (!vm_map_lookup_entry(map, saved_start, 1535 &tmp_entry)) { 1536 if (saved_start == start) { 1537 /* 1538 * First_entry has been deleted. 1539 */ 1540 vm_map_unlock(map); 1541 return (KERN_INVALID_ADDRESS); 1542 } 1543 end = saved_start; 1544 rv = KERN_INVALID_ADDRESS; 1545 goto done; 1546 } 1547 if (entry == first_entry) 1548 first_entry = tmp_entry; 1549 else 1550 first_entry = NULL; 1551 entry = tmp_entry; 1552 } 1553 last_timestamp = map->timestamp; 1554 continue; 1555 } 1556 vm_map_clip_start(map, entry, start); 1557 vm_map_clip_end(map, entry, end); 1558 /* 1559 * Mark the entry in case the map lock is released. (See 1560 * above.) 1561 */ 1562 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1563 /* 1564 * Check the map for holes in the specified region. 1565 */ 1566 if (entry->end < end && (entry->next == &map->header || 1567 entry->next->start > entry->end)) { 1568 end = entry->end; 1569 rv = KERN_INVALID_ADDRESS; 1570 goto done; 1571 } 1572 /* 1573 * Require that the entry is wired. 1574 */ 1575 if (entry->wired_count == 0 || (user_unwire && 1576 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1577 end = entry->end; 1578 rv = KERN_INVALID_ARGUMENT; 1579 goto done; 1580 } 1581 entry = entry->next; 1582 } 1583 rv = KERN_SUCCESS; 1584 done: 1585 need_wakeup = FALSE; 1586 if (first_entry == NULL) { 1587 result = vm_map_lookup_entry(map, start, &first_entry); 1588 KASSERT(result, ("vm_map_unwire: lookup failed")); 1589 } 1590 entry = first_entry; 1591 while (entry != &map->header && entry->start < end) { 1592 if (rv == KERN_SUCCESS) { 1593 if (user_unwire) 1594 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1595 entry->wired_count--; 1596 if (entry->wired_count == 0) { 1597 /* 1598 * Retain the map lock. 1599 */ 1600 vm_fault_unwire(map, entry->start, entry->end); 1601 } 1602 } 1603 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1604 ("vm_map_unwire: in-transition flag missing")); 1605 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1606 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1607 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1608 need_wakeup = TRUE; 1609 } 1610 vm_map_simplify_entry(map, entry); 1611 entry = entry->next; 1612 } 1613 vm_map_unlock(map); 1614 if (need_wakeup) 1615 vm_map_wakeup(map); 1616 return (rv); 1617 } 1618 1619 /* 1620 * vm_map_wire: 1621 * 1622 * Implements both kernel and user wiring. 1623 */ 1624 int 1625 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1626 boolean_t user_wire) 1627 { 1628 vm_map_entry_t entry, first_entry, tmp_entry; 1629 vm_offset_t saved_end, saved_start; 1630 unsigned int last_timestamp; 1631 int rv; 1632 boolean_t need_wakeup, result; 1633 1634 vm_map_lock(map); 1635 VM_MAP_RANGE_CHECK(map, start, end); 1636 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1637 vm_map_unlock(map); 1638 return (KERN_INVALID_ADDRESS); 1639 } 1640 last_timestamp = map->timestamp; 1641 entry = first_entry; 1642 while (entry != &map->header && entry->start < end) { 1643 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1644 /* 1645 * We have not yet clipped the entry. 1646 */ 1647 saved_start = (start >= entry->start) ? start : 1648 entry->start; 1649 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1650 if (vm_map_unlock_and_wait(map, user_wire)) { 1651 /* 1652 * Allow interruption of user wiring? 1653 */ 1654 } 1655 vm_map_lock(map); 1656 if (last_timestamp + 1 != map->timestamp) { 1657 /* 1658 * Look again for the entry because the map was 1659 * modified while it was unlocked. 1660 * Specifically, the entry may have been 1661 * clipped, merged, or deleted. 1662 */ 1663 if (!vm_map_lookup_entry(map, saved_start, 1664 &tmp_entry)) { 1665 if (saved_start == start) { 1666 /* 1667 * first_entry has been deleted. 1668 */ 1669 vm_map_unlock(map); 1670 return (KERN_INVALID_ADDRESS); 1671 } 1672 end = saved_start; 1673 rv = KERN_INVALID_ADDRESS; 1674 goto done; 1675 } 1676 if (entry == first_entry) 1677 first_entry = tmp_entry; 1678 else 1679 first_entry = NULL; 1680 entry = tmp_entry; 1681 } 1682 last_timestamp = map->timestamp; 1683 continue; 1684 } 1685 vm_map_clip_start(map, entry, start); 1686 vm_map_clip_end(map, entry, end); 1687 /* 1688 * Mark the entry in case the map lock is released. (See 1689 * above.) 1690 */ 1691 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1692 /* 1693 * 1694 */ 1695 if (entry->wired_count == 0) { 1696 entry->wired_count++; 1697 saved_start = entry->start; 1698 saved_end = entry->end; 1699 /* 1700 * Release the map lock, relying on the in-transition 1701 * mark. 1702 */ 1703 vm_map_unlock(map); 1704 if (user_wire) 1705 rv = vm_fault_user_wire(map, saved_start, 1706 saved_end); 1707 else 1708 rv = vm_fault_wire(map, saved_start, saved_end); 1709 vm_map_lock(map); 1710 if (last_timestamp + 1 != map->timestamp) { 1711 /* 1712 * Look again for the entry because the map was 1713 * modified while it was unlocked. The entry 1714 * may have been clipped, but NOT merged or 1715 * deleted. 1716 */ 1717 result = vm_map_lookup_entry(map, saved_start, 1718 &tmp_entry); 1719 KASSERT(result, ("vm_map_wire: lookup failed")); 1720 if (entry == first_entry) 1721 first_entry = tmp_entry; 1722 else 1723 first_entry = NULL; 1724 entry = tmp_entry; 1725 while (entry->end < saved_end) { 1726 if (rv != KERN_SUCCESS) { 1727 KASSERT(entry->wired_count == 1, 1728 ("vm_map_wire: bad count")); 1729 entry->wired_count = -1; 1730 } 1731 entry = entry->next; 1732 } 1733 } 1734 last_timestamp = map->timestamp; 1735 if (rv != KERN_SUCCESS) { 1736 KASSERT(entry->wired_count == 1, 1737 ("vm_map_wire: bad count")); 1738 /* 1739 * Assign an out-of-range value to represent 1740 * the failure to wire this entry. 1741 */ 1742 entry->wired_count = -1; 1743 end = entry->end; 1744 goto done; 1745 } 1746 } else if (!user_wire || 1747 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1748 entry->wired_count++; 1749 } 1750 /* 1751 * Check the map for holes in the specified region. 1752 */ 1753 if (entry->end < end && (entry->next == &map->header || 1754 entry->next->start > entry->end)) { 1755 end = entry->end; 1756 rv = KERN_INVALID_ADDRESS; 1757 goto done; 1758 } 1759 entry = entry->next; 1760 } 1761 rv = KERN_SUCCESS; 1762 done: 1763 need_wakeup = FALSE; 1764 if (first_entry == NULL) { 1765 result = vm_map_lookup_entry(map, start, &first_entry); 1766 KASSERT(result, ("vm_map_wire: lookup failed")); 1767 } 1768 entry = first_entry; 1769 while (entry != &map->header && entry->start < end) { 1770 if (rv == KERN_SUCCESS) { 1771 if (user_wire) 1772 entry->eflags |= MAP_ENTRY_USER_WIRED; 1773 } else if (entry->wired_count == -1) { 1774 /* 1775 * Wiring failed on this entry. Thus, unwiring is 1776 * unnecessary. 1777 */ 1778 entry->wired_count = 0; 1779 } else { 1780 if (!user_wire || (entry->wired_count == 1 && 1781 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) 1782 entry->wired_count--; 1783 if (entry->wired_count == 0) { 1784 /* 1785 * Retain the map lock. 1786 */ 1787 vm_fault_unwire(map, entry->start, entry->end); 1788 } 1789 } 1790 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1791 ("vm_map_wire: in-transition flag missing")); 1792 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1793 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1794 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1795 need_wakeup = TRUE; 1796 } 1797 vm_map_simplify_entry(map, entry); 1798 entry = entry->next; 1799 } 1800 vm_map_unlock(map); 1801 if (need_wakeup) 1802 vm_map_wakeup(map); 1803 return (rv); 1804 } 1805 1806 /* 1807 * vm_map_clean 1808 * 1809 * Push any dirty cached pages in the address range to their pager. 1810 * If syncio is TRUE, dirty pages are written synchronously. 1811 * If invalidate is TRUE, any cached pages are freed as well. 1812 * 1813 * Returns an error if any part of the specified range is not mapped. 1814 */ 1815 int 1816 vm_map_clean( 1817 vm_map_t map, 1818 vm_offset_t start, 1819 vm_offset_t end, 1820 boolean_t syncio, 1821 boolean_t invalidate) 1822 { 1823 vm_map_entry_t current; 1824 vm_map_entry_t entry; 1825 vm_size_t size; 1826 vm_object_t object; 1827 vm_ooffset_t offset; 1828 1829 GIANT_REQUIRED; 1830 1831 vm_map_lock_read(map); 1832 VM_MAP_RANGE_CHECK(map, start, end); 1833 if (!vm_map_lookup_entry(map, start, &entry)) { 1834 vm_map_unlock_read(map); 1835 return (KERN_INVALID_ADDRESS); 1836 } 1837 /* 1838 * Make a first pass to check for holes. 1839 */ 1840 for (current = entry; current->start < end; current = current->next) { 1841 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1842 vm_map_unlock_read(map); 1843 return (KERN_INVALID_ARGUMENT); 1844 } 1845 if (end > current->end && 1846 (current->next == &map->header || 1847 current->end != current->next->start)) { 1848 vm_map_unlock_read(map); 1849 return (KERN_INVALID_ADDRESS); 1850 } 1851 } 1852 1853 if (invalidate) 1854 pmap_remove(vm_map_pmap(map), start, end); 1855 /* 1856 * Make a second pass, cleaning/uncaching pages from the indicated 1857 * objects as we go. 1858 */ 1859 for (current = entry; current->start < end; current = current->next) { 1860 offset = current->offset + (start - current->start); 1861 size = (end <= current->end ? end : current->end) - start; 1862 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1863 vm_map_t smap; 1864 vm_map_entry_t tentry; 1865 vm_size_t tsize; 1866 1867 smap = current->object.sub_map; 1868 vm_map_lock_read(smap); 1869 (void) vm_map_lookup_entry(smap, offset, &tentry); 1870 tsize = tentry->end - offset; 1871 if (tsize < size) 1872 size = tsize; 1873 object = tentry->object.vm_object; 1874 offset = tentry->offset + (offset - tentry->start); 1875 vm_map_unlock_read(smap); 1876 } else { 1877 object = current->object.vm_object; 1878 } 1879 /* 1880 * Note that there is absolutely no sense in writing out 1881 * anonymous objects, so we track down the vnode object 1882 * to write out. 1883 * We invalidate (remove) all pages from the address space 1884 * anyway, for semantic correctness. 1885 * 1886 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1887 * may start out with a NULL object. 1888 */ 1889 while (object && object->backing_object) { 1890 object = object->backing_object; 1891 offset += object->backing_object_offset; 1892 if (object->size < OFF_TO_IDX(offset + size)) 1893 size = IDX_TO_OFF(object->size) - offset; 1894 } 1895 if (object && (object->type == OBJT_VNODE) && 1896 (current->protection & VM_PROT_WRITE)) { 1897 /* 1898 * Flush pages if writing is allowed, invalidate them 1899 * if invalidation requested. Pages undergoing I/O 1900 * will be ignored by vm_object_page_remove(). 1901 * 1902 * We cannot lock the vnode and then wait for paging 1903 * to complete without deadlocking against vm_fault. 1904 * Instead we simply call vm_object_page_remove() and 1905 * allow it to block internally on a page-by-page 1906 * basis when it encounters pages undergoing async 1907 * I/O. 1908 */ 1909 int flags; 1910 1911 vm_object_reference(object); 1912 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1913 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1914 flags |= invalidate ? OBJPC_INVAL : 0; 1915 vm_object_page_clean(object, 1916 OFF_TO_IDX(offset), 1917 OFF_TO_IDX(offset + size + PAGE_MASK), 1918 flags); 1919 if (invalidate) { 1920 /*vm_object_pip_wait(object, "objmcl");*/ 1921 vm_object_page_remove(object, 1922 OFF_TO_IDX(offset), 1923 OFF_TO_IDX(offset + size + PAGE_MASK), 1924 FALSE); 1925 } 1926 VOP_UNLOCK(object->handle, 0, curthread); 1927 vm_object_deallocate(object); 1928 } 1929 start += size; 1930 } 1931 1932 vm_map_unlock_read(map); 1933 return (KERN_SUCCESS); 1934 } 1935 1936 /* 1937 * vm_map_entry_unwire: [ internal use only ] 1938 * 1939 * Make the region specified by this entry pageable. 1940 * 1941 * The map in question should be locked. 1942 * [This is the reason for this routine's existence.] 1943 */ 1944 static void 1945 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 1946 { 1947 vm_fault_unwire(map, entry->start, entry->end); 1948 entry->wired_count = 0; 1949 } 1950 1951 /* 1952 * vm_map_entry_delete: [ internal use only ] 1953 * 1954 * Deallocate the given entry from the target map. 1955 */ 1956 static void 1957 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 1958 { 1959 vm_map_entry_unlink(map, entry); 1960 map->size -= entry->end - entry->start; 1961 1962 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1963 vm_object_deallocate(entry->object.vm_object); 1964 } 1965 1966 vm_map_entry_dispose(map, entry); 1967 } 1968 1969 /* 1970 * vm_map_delete: [ internal use only ] 1971 * 1972 * Deallocates the given address range from the target 1973 * map. 1974 */ 1975 int 1976 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 1977 { 1978 vm_object_t object; 1979 vm_map_entry_t entry; 1980 vm_map_entry_t first_entry; 1981 1982 /* 1983 * Find the start of the region, and clip it 1984 */ 1985 if (!vm_map_lookup_entry(map, start, &first_entry)) 1986 entry = first_entry->next; 1987 else { 1988 entry = first_entry; 1989 vm_map_clip_start(map, entry, start); 1990 } 1991 1992 /* 1993 * Save the free space hint 1994 */ 1995 if (entry == &map->header) { 1996 map->first_free = &map->header; 1997 } else if (map->first_free->start >= start) { 1998 map->first_free = entry->prev; 1999 } 2000 2001 /* 2002 * Step through all entries in this region 2003 */ 2004 while ((entry != &map->header) && (entry->start < end)) { 2005 vm_map_entry_t next; 2006 vm_offset_t s, e; 2007 vm_pindex_t offidxstart, offidxend, count; 2008 2009 /* 2010 * Wait for wiring or unwiring of an entry to complete. 2011 */ 2012 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2013 unsigned int last_timestamp; 2014 vm_offset_t saved_start; 2015 vm_map_entry_t tmp_entry; 2016 2017 saved_start = entry->start; 2018 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2019 last_timestamp = map->timestamp; 2020 (void) vm_map_unlock_and_wait(map, FALSE); 2021 vm_map_lock(map); 2022 if (last_timestamp + 1 != map->timestamp) { 2023 /* 2024 * Look again for the entry because the map was 2025 * modified while it was unlocked. 2026 * Specifically, the entry may have been 2027 * clipped, merged, or deleted. 2028 */ 2029 if (!vm_map_lookup_entry(map, saved_start, 2030 &tmp_entry)) 2031 entry = tmp_entry->next; 2032 else { 2033 entry = tmp_entry; 2034 vm_map_clip_start(map, entry, 2035 saved_start); 2036 } 2037 } 2038 continue; 2039 } 2040 vm_map_clip_end(map, entry, end); 2041 2042 s = entry->start; 2043 e = entry->end; 2044 next = entry->next; 2045 2046 offidxstart = OFF_TO_IDX(entry->offset); 2047 count = OFF_TO_IDX(e - s); 2048 object = entry->object.vm_object; 2049 2050 /* 2051 * Unwire before removing addresses from the pmap; otherwise, 2052 * unwiring will put the entries back in the pmap. 2053 */ 2054 if (entry->wired_count != 0) { 2055 vm_map_entry_unwire(map, entry); 2056 } 2057 2058 offidxend = offidxstart + count; 2059 2060 if ((object == kernel_object) || (object == kmem_object)) { 2061 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2062 } else { 2063 mtx_lock(&Giant); 2064 pmap_remove(map->pmap, s, e); 2065 if (object != NULL && 2066 object->ref_count != 1 && 2067 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2068 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2069 vm_object_collapse(object); 2070 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2071 if (object->type == OBJT_SWAP) { 2072 swap_pager_freespace(object, offidxstart, count); 2073 } 2074 if (offidxend >= object->size && 2075 offidxstart < object->size) { 2076 object->size = offidxstart; 2077 } 2078 } 2079 mtx_unlock(&Giant); 2080 } 2081 2082 /* 2083 * Delete the entry (which may delete the object) only after 2084 * removing all pmap entries pointing to its pages. 2085 * (Otherwise, its page frames may be reallocated, and any 2086 * modify bits will be set in the wrong object!) 2087 */ 2088 vm_map_entry_delete(map, entry); 2089 entry = next; 2090 } 2091 return (KERN_SUCCESS); 2092 } 2093 2094 /* 2095 * vm_map_remove: 2096 * 2097 * Remove the given address range from the target map. 2098 * This is the exported form of vm_map_delete. 2099 */ 2100 int 2101 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2102 { 2103 int result, s = 0; 2104 2105 if (map == kmem_map) 2106 s = splvm(); 2107 2108 vm_map_lock(map); 2109 VM_MAP_RANGE_CHECK(map, start, end); 2110 result = vm_map_delete(map, start, end); 2111 vm_map_unlock(map); 2112 2113 if (map == kmem_map) 2114 splx(s); 2115 2116 return (result); 2117 } 2118 2119 /* 2120 * vm_map_check_protection: 2121 * 2122 * Assert that the target map allows the specified 2123 * privilege on the entire address region given. 2124 * The entire region must be allocated. 2125 */ 2126 boolean_t 2127 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2128 vm_prot_t protection) 2129 { 2130 vm_map_entry_t entry; 2131 vm_map_entry_t tmp_entry; 2132 2133 vm_map_lock_read(map); 2134 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2135 vm_map_unlock_read(map); 2136 return (FALSE); 2137 } 2138 entry = tmp_entry; 2139 2140 while (start < end) { 2141 if (entry == &map->header) { 2142 vm_map_unlock_read(map); 2143 return (FALSE); 2144 } 2145 /* 2146 * No holes allowed! 2147 */ 2148 if (start < entry->start) { 2149 vm_map_unlock_read(map); 2150 return (FALSE); 2151 } 2152 /* 2153 * Check protection associated with entry. 2154 */ 2155 if ((entry->protection & protection) != protection) { 2156 vm_map_unlock_read(map); 2157 return (FALSE); 2158 } 2159 /* go to next entry */ 2160 start = entry->end; 2161 entry = entry->next; 2162 } 2163 vm_map_unlock_read(map); 2164 return (TRUE); 2165 } 2166 2167 /* 2168 * vm_map_copy_entry: 2169 * 2170 * Copies the contents of the source entry to the destination 2171 * entry. The entries *must* be aligned properly. 2172 */ 2173 static void 2174 vm_map_copy_entry( 2175 vm_map_t src_map, 2176 vm_map_t dst_map, 2177 vm_map_entry_t src_entry, 2178 vm_map_entry_t dst_entry) 2179 { 2180 vm_object_t src_object; 2181 2182 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2183 return; 2184 2185 if (src_entry->wired_count == 0) { 2186 2187 /* 2188 * If the source entry is marked needs_copy, it is already 2189 * write-protected. 2190 */ 2191 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2192 pmap_protect(src_map->pmap, 2193 src_entry->start, 2194 src_entry->end, 2195 src_entry->protection & ~VM_PROT_WRITE); 2196 } 2197 2198 /* 2199 * Make a copy of the object. 2200 */ 2201 if ((src_object = src_entry->object.vm_object) != NULL) { 2202 2203 if ((src_object->handle == NULL) && 2204 (src_object->type == OBJT_DEFAULT || 2205 src_object->type == OBJT_SWAP)) { 2206 vm_object_collapse(src_object); 2207 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2208 vm_object_split(src_entry); 2209 src_object = src_entry->object.vm_object; 2210 } 2211 } 2212 2213 vm_object_reference(src_object); 2214 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2215 dst_entry->object.vm_object = src_object; 2216 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2217 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2218 dst_entry->offset = src_entry->offset; 2219 } else { 2220 dst_entry->object.vm_object = NULL; 2221 dst_entry->offset = 0; 2222 } 2223 2224 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2225 dst_entry->end - dst_entry->start, src_entry->start); 2226 } else { 2227 /* 2228 * Of course, wired down pages can't be set copy-on-write. 2229 * Cause wired pages to be copied into the new map by 2230 * simulating faults (the new pages are pageable) 2231 */ 2232 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2233 } 2234 } 2235 2236 /* 2237 * vmspace_fork: 2238 * Create a new process vmspace structure and vm_map 2239 * based on those of an existing process. The new map 2240 * is based on the old map, according to the inheritance 2241 * values on the regions in that map. 2242 * 2243 * The source map must not be locked. 2244 */ 2245 struct vmspace * 2246 vmspace_fork(struct vmspace *vm1) 2247 { 2248 struct vmspace *vm2; 2249 vm_map_t old_map = &vm1->vm_map; 2250 vm_map_t new_map; 2251 vm_map_entry_t old_entry; 2252 vm_map_entry_t new_entry; 2253 vm_object_t object; 2254 2255 GIANT_REQUIRED; 2256 2257 vm_map_lock(old_map); 2258 old_map->infork = 1; 2259 2260 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2261 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2262 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2263 new_map = &vm2->vm_map; /* XXX */ 2264 new_map->timestamp = 1; 2265 2266 old_entry = old_map->header.next; 2267 2268 while (old_entry != &old_map->header) { 2269 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2270 panic("vm_map_fork: encountered a submap"); 2271 2272 switch (old_entry->inheritance) { 2273 case VM_INHERIT_NONE: 2274 break; 2275 2276 case VM_INHERIT_SHARE: 2277 /* 2278 * Clone the entry, creating the shared object if necessary. 2279 */ 2280 object = old_entry->object.vm_object; 2281 if (object == NULL) { 2282 object = vm_object_allocate(OBJT_DEFAULT, 2283 atop(old_entry->end - old_entry->start)); 2284 old_entry->object.vm_object = object; 2285 old_entry->offset = (vm_offset_t) 0; 2286 } 2287 2288 /* 2289 * Add the reference before calling vm_object_shadow 2290 * to insure that a shadow object is created. 2291 */ 2292 vm_object_reference(object); 2293 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2294 vm_object_shadow(&old_entry->object.vm_object, 2295 &old_entry->offset, 2296 atop(old_entry->end - old_entry->start)); 2297 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2298 /* Transfer the second reference too. */ 2299 vm_object_reference( 2300 old_entry->object.vm_object); 2301 vm_object_deallocate(object); 2302 object = old_entry->object.vm_object; 2303 } 2304 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2305 2306 /* 2307 * Clone the entry, referencing the shared object. 2308 */ 2309 new_entry = vm_map_entry_create(new_map); 2310 *new_entry = *old_entry; 2311 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2312 new_entry->wired_count = 0; 2313 2314 /* 2315 * Insert the entry into the new map -- we know we're 2316 * inserting at the end of the new map. 2317 */ 2318 vm_map_entry_link(new_map, new_map->header.prev, 2319 new_entry); 2320 2321 /* 2322 * Update the physical map 2323 */ 2324 pmap_copy(new_map->pmap, old_map->pmap, 2325 new_entry->start, 2326 (old_entry->end - old_entry->start), 2327 old_entry->start); 2328 break; 2329 2330 case VM_INHERIT_COPY: 2331 /* 2332 * Clone the entry and link into the map. 2333 */ 2334 new_entry = vm_map_entry_create(new_map); 2335 *new_entry = *old_entry; 2336 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2337 new_entry->wired_count = 0; 2338 new_entry->object.vm_object = NULL; 2339 vm_map_entry_link(new_map, new_map->header.prev, 2340 new_entry); 2341 vm_map_copy_entry(old_map, new_map, old_entry, 2342 new_entry); 2343 break; 2344 } 2345 old_entry = old_entry->next; 2346 } 2347 2348 new_map->size = old_map->size; 2349 old_map->infork = 0; 2350 vm_map_unlock(old_map); 2351 2352 return (vm2); 2353 } 2354 2355 int 2356 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2357 vm_prot_t prot, vm_prot_t max, int cow) 2358 { 2359 vm_map_entry_t prev_entry; 2360 vm_map_entry_t new_stack_entry; 2361 vm_size_t init_ssize; 2362 int rv; 2363 2364 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2365 return (KERN_NO_SPACE); 2366 2367 if (max_ssize < sgrowsiz) 2368 init_ssize = max_ssize; 2369 else 2370 init_ssize = sgrowsiz; 2371 2372 vm_map_lock(map); 2373 2374 /* If addr is already mapped, no go */ 2375 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2376 vm_map_unlock(map); 2377 return (KERN_NO_SPACE); 2378 } 2379 2380 /* If we would blow our VMEM resource limit, no go */ 2381 if (map->size + init_ssize > 2382 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2383 vm_map_unlock(map); 2384 return (KERN_NO_SPACE); 2385 } 2386 2387 /* If we can't accomodate max_ssize in the current mapping, 2388 * no go. However, we need to be aware that subsequent user 2389 * mappings might map into the space we have reserved for 2390 * stack, and currently this space is not protected. 2391 * 2392 * Hopefully we will at least detect this condition 2393 * when we try to grow the stack. 2394 */ 2395 if ((prev_entry->next != &map->header) && 2396 (prev_entry->next->start < addrbos + max_ssize)) { 2397 vm_map_unlock(map); 2398 return (KERN_NO_SPACE); 2399 } 2400 2401 /* We initially map a stack of only init_ssize. We will 2402 * grow as needed later. Since this is to be a grow 2403 * down stack, we map at the top of the range. 2404 * 2405 * Note: we would normally expect prot and max to be 2406 * VM_PROT_ALL, and cow to be 0. Possibly we should 2407 * eliminate these as input parameters, and just 2408 * pass these values here in the insert call. 2409 */ 2410 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2411 addrbos + max_ssize, prot, max, cow); 2412 2413 /* Now set the avail_ssize amount */ 2414 if (rv == KERN_SUCCESS){ 2415 if (prev_entry != &map->header) 2416 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2417 new_stack_entry = prev_entry->next; 2418 if (new_stack_entry->end != addrbos + max_ssize || 2419 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2420 panic ("Bad entry start/end for new stack entry"); 2421 else 2422 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2423 } 2424 2425 vm_map_unlock(map); 2426 return (rv); 2427 } 2428 2429 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2430 * desired address is already mapped, or if we successfully grow 2431 * the stack. Also returns KERN_SUCCESS if addr is outside the 2432 * stack range (this is strange, but preserves compatibility with 2433 * the grow function in vm_machdep.c). 2434 */ 2435 int 2436 vm_map_growstack (struct proc *p, vm_offset_t addr) 2437 { 2438 vm_map_entry_t prev_entry; 2439 vm_map_entry_t stack_entry; 2440 vm_map_entry_t new_stack_entry; 2441 struct vmspace *vm = p->p_vmspace; 2442 vm_map_t map = &vm->vm_map; 2443 vm_offset_t end; 2444 int grow_amount; 2445 int rv; 2446 int is_procstack; 2447 2448 GIANT_REQUIRED; 2449 2450 Retry: 2451 vm_map_lock_read(map); 2452 2453 /* If addr is already in the entry range, no need to grow.*/ 2454 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2455 vm_map_unlock_read(map); 2456 return (KERN_SUCCESS); 2457 } 2458 2459 if ((stack_entry = prev_entry->next) == &map->header) { 2460 vm_map_unlock_read(map); 2461 return (KERN_SUCCESS); 2462 } 2463 if (prev_entry == &map->header) 2464 end = stack_entry->start - stack_entry->avail_ssize; 2465 else 2466 end = prev_entry->end; 2467 2468 /* This next test mimics the old grow function in vm_machdep.c. 2469 * It really doesn't quite make sense, but we do it anyway 2470 * for compatibility. 2471 * 2472 * If not growable stack, return success. This signals the 2473 * caller to proceed as he would normally with normal vm. 2474 */ 2475 if (stack_entry->avail_ssize < 1 || 2476 addr >= stack_entry->start || 2477 addr < stack_entry->start - stack_entry->avail_ssize) { 2478 vm_map_unlock_read(map); 2479 return (KERN_SUCCESS); 2480 } 2481 2482 /* Find the minimum grow amount */ 2483 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2484 if (grow_amount > stack_entry->avail_ssize) { 2485 vm_map_unlock_read(map); 2486 return (KERN_NO_SPACE); 2487 } 2488 2489 /* If there is no longer enough space between the entries 2490 * nogo, and adjust the available space. Note: this 2491 * should only happen if the user has mapped into the 2492 * stack area after the stack was created, and is 2493 * probably an error. 2494 * 2495 * This also effectively destroys any guard page the user 2496 * might have intended by limiting the stack size. 2497 */ 2498 if (grow_amount > stack_entry->start - end) { 2499 if (vm_map_lock_upgrade(map)) 2500 goto Retry; 2501 2502 stack_entry->avail_ssize = stack_entry->start - end; 2503 2504 vm_map_unlock(map); 2505 return (KERN_NO_SPACE); 2506 } 2507 2508 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2509 2510 /* If this is the main process stack, see if we're over the 2511 * stack limit. 2512 */ 2513 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2514 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2515 vm_map_unlock_read(map); 2516 return (KERN_NO_SPACE); 2517 } 2518 2519 /* Round up the grow amount modulo SGROWSIZ */ 2520 grow_amount = roundup (grow_amount, sgrowsiz); 2521 if (grow_amount > stack_entry->avail_ssize) { 2522 grow_amount = stack_entry->avail_ssize; 2523 } 2524 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2525 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2526 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2527 ctob(vm->vm_ssize); 2528 } 2529 2530 /* If we would blow our VMEM resource limit, no go */ 2531 if (map->size + grow_amount > 2532 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2533 vm_map_unlock_read(map); 2534 return (KERN_NO_SPACE); 2535 } 2536 2537 if (vm_map_lock_upgrade(map)) 2538 goto Retry; 2539 2540 /* Get the preliminary new entry start value */ 2541 addr = stack_entry->start - grow_amount; 2542 2543 /* If this puts us into the previous entry, cut back our growth 2544 * to the available space. Also, see the note above. 2545 */ 2546 if (addr < end) { 2547 stack_entry->avail_ssize = stack_entry->start - end; 2548 addr = end; 2549 } 2550 2551 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2552 VM_PROT_ALL, 2553 VM_PROT_ALL, 2554 0); 2555 2556 /* Adjust the available stack space by the amount we grew. */ 2557 if (rv == KERN_SUCCESS) { 2558 if (prev_entry != &map->header) 2559 vm_map_clip_end(map, prev_entry, addr); 2560 new_stack_entry = prev_entry->next; 2561 if (new_stack_entry->end != stack_entry->start || 2562 new_stack_entry->start != addr) 2563 panic ("Bad stack grow start/end in new stack entry"); 2564 else { 2565 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2566 (new_stack_entry->end - 2567 new_stack_entry->start); 2568 if (is_procstack) 2569 vm->vm_ssize += btoc(new_stack_entry->end - 2570 new_stack_entry->start); 2571 } 2572 } 2573 2574 vm_map_unlock(map); 2575 return (rv); 2576 } 2577 2578 /* 2579 * Unshare the specified VM space for exec. If other processes are 2580 * mapped to it, then create a new one. The new vmspace is null. 2581 */ 2582 void 2583 vmspace_exec(struct proc *p) 2584 { 2585 struct vmspace *oldvmspace = p->p_vmspace; 2586 struct vmspace *newvmspace; 2587 vm_map_t map = &p->p_vmspace->vm_map; 2588 2589 GIANT_REQUIRED; 2590 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2591 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2592 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2593 /* 2594 * This code is written like this for prototype purposes. The 2595 * goal is to avoid running down the vmspace here, but let the 2596 * other process's that are still using the vmspace to finally 2597 * run it down. Even though there is little or no chance of blocking 2598 * here, it is a good idea to keep this form for future mods. 2599 */ 2600 p->p_vmspace = newvmspace; 2601 pmap_pinit2(vmspace_pmap(newvmspace)); 2602 vmspace_free(oldvmspace); 2603 if (p == curthread->td_proc) /* XXXKSE ? */ 2604 pmap_activate(curthread); 2605 } 2606 2607 /* 2608 * Unshare the specified VM space for forcing COW. This 2609 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2610 */ 2611 void 2612 vmspace_unshare(struct proc *p) 2613 { 2614 struct vmspace *oldvmspace = p->p_vmspace; 2615 struct vmspace *newvmspace; 2616 2617 GIANT_REQUIRED; 2618 if (oldvmspace->vm_refcnt == 1) 2619 return; 2620 newvmspace = vmspace_fork(oldvmspace); 2621 p->p_vmspace = newvmspace; 2622 pmap_pinit2(vmspace_pmap(newvmspace)); 2623 vmspace_free(oldvmspace); 2624 if (p == curthread->td_proc) /* XXXKSE ? */ 2625 pmap_activate(curthread); 2626 } 2627 2628 /* 2629 * vm_map_lookup: 2630 * 2631 * Finds the VM object, offset, and 2632 * protection for a given virtual address in the 2633 * specified map, assuming a page fault of the 2634 * type specified. 2635 * 2636 * Leaves the map in question locked for read; return 2637 * values are guaranteed until a vm_map_lookup_done 2638 * call is performed. Note that the map argument 2639 * is in/out; the returned map must be used in 2640 * the call to vm_map_lookup_done. 2641 * 2642 * A handle (out_entry) is returned for use in 2643 * vm_map_lookup_done, to make that fast. 2644 * 2645 * If a lookup is requested with "write protection" 2646 * specified, the map may be changed to perform virtual 2647 * copying operations, although the data referenced will 2648 * remain the same. 2649 */ 2650 int 2651 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2652 vm_offset_t vaddr, 2653 vm_prot_t fault_typea, 2654 vm_map_entry_t *out_entry, /* OUT */ 2655 vm_object_t *object, /* OUT */ 2656 vm_pindex_t *pindex, /* OUT */ 2657 vm_prot_t *out_prot, /* OUT */ 2658 boolean_t *wired) /* OUT */ 2659 { 2660 vm_map_entry_t entry; 2661 vm_map_t map = *var_map; 2662 vm_prot_t prot; 2663 vm_prot_t fault_type = fault_typea; 2664 2665 RetryLookup:; 2666 /* 2667 * Lookup the faulting address. 2668 */ 2669 2670 vm_map_lock_read(map); 2671 #define RETURN(why) \ 2672 { \ 2673 vm_map_unlock_read(map); \ 2674 return (why); \ 2675 } 2676 2677 /* 2678 * If the map has an interesting hint, try it before calling full 2679 * blown lookup routine. 2680 */ 2681 entry = map->root; 2682 *out_entry = entry; 2683 if (entry == NULL || 2684 (vaddr < entry->start) || (vaddr >= entry->end)) { 2685 /* 2686 * Entry was either not a valid hint, or the vaddr was not 2687 * contained in the entry, so do a full lookup. 2688 */ 2689 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2690 RETURN(KERN_INVALID_ADDRESS); 2691 2692 entry = *out_entry; 2693 } 2694 2695 /* 2696 * Handle submaps. 2697 */ 2698 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2699 vm_map_t old_map = map; 2700 2701 *var_map = map = entry->object.sub_map; 2702 vm_map_unlock_read(old_map); 2703 goto RetryLookup; 2704 } 2705 2706 /* 2707 * Check whether this task is allowed to have this page. 2708 * Note the special case for MAP_ENTRY_COW 2709 * pages with an override. This is to implement a forced 2710 * COW for debuggers. 2711 */ 2712 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2713 prot = entry->max_protection; 2714 else 2715 prot = entry->protection; 2716 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2717 if ((fault_type & prot) != fault_type) { 2718 RETURN(KERN_PROTECTION_FAILURE); 2719 } 2720 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2721 (entry->eflags & MAP_ENTRY_COW) && 2722 (fault_type & VM_PROT_WRITE) && 2723 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2724 RETURN(KERN_PROTECTION_FAILURE); 2725 } 2726 2727 /* 2728 * If this page is not pageable, we have to get it for all possible 2729 * accesses. 2730 */ 2731 *wired = (entry->wired_count != 0); 2732 if (*wired) 2733 prot = fault_type = entry->protection; 2734 2735 /* 2736 * If the entry was copy-on-write, we either ... 2737 */ 2738 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2739 /* 2740 * If we want to write the page, we may as well handle that 2741 * now since we've got the map locked. 2742 * 2743 * If we don't need to write the page, we just demote the 2744 * permissions allowed. 2745 */ 2746 if (fault_type & VM_PROT_WRITE) { 2747 /* 2748 * Make a new object, and place it in the object 2749 * chain. Note that no new references have appeared 2750 * -- one just moved from the map to the new 2751 * object. 2752 */ 2753 if (vm_map_lock_upgrade(map)) 2754 goto RetryLookup; 2755 2756 vm_object_shadow( 2757 &entry->object.vm_object, 2758 &entry->offset, 2759 atop(entry->end - entry->start)); 2760 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2761 2762 vm_map_lock_downgrade(map); 2763 } else { 2764 /* 2765 * We're attempting to read a copy-on-write page -- 2766 * don't allow writes. 2767 */ 2768 prot &= ~VM_PROT_WRITE; 2769 } 2770 } 2771 2772 /* 2773 * Create an object if necessary. 2774 */ 2775 if (entry->object.vm_object == NULL && 2776 !map->system_map) { 2777 if (vm_map_lock_upgrade(map)) 2778 goto RetryLookup; 2779 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2780 atop(entry->end - entry->start)); 2781 entry->offset = 0; 2782 vm_map_lock_downgrade(map); 2783 } 2784 2785 /* 2786 * Return the object/offset from this entry. If the entry was 2787 * copy-on-write or empty, it has been fixed up. 2788 */ 2789 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2790 *object = entry->object.vm_object; 2791 2792 /* 2793 * Return whether this is the only map sharing this data. 2794 */ 2795 *out_prot = prot; 2796 return (KERN_SUCCESS); 2797 2798 #undef RETURN 2799 } 2800 2801 /* 2802 * vm_map_lookup_done: 2803 * 2804 * Releases locks acquired by a vm_map_lookup 2805 * (according to the handle returned by that lookup). 2806 */ 2807 void 2808 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2809 { 2810 /* 2811 * Unlock the main-level map 2812 */ 2813 vm_map_unlock_read(map); 2814 } 2815 2816 #ifdef ENABLE_VFS_IOOPT 2817 /* 2818 * Experimental support for zero-copy I/O 2819 * 2820 * Implement uiomove with VM operations. This handles (and collateral changes) 2821 * support every combination of source object modification, and COW type 2822 * operations. 2823 */ 2824 int 2825 vm_uiomove( 2826 vm_map_t mapa, 2827 vm_object_t srcobject, 2828 off_t cp, 2829 int cnta, 2830 vm_offset_t uaddra, 2831 int *npages) 2832 { 2833 vm_map_t map; 2834 vm_object_t first_object, oldobject, object; 2835 vm_map_entry_t entry; 2836 vm_prot_t prot; 2837 boolean_t wired; 2838 int tcnt, rv; 2839 vm_offset_t uaddr, start, end, tend; 2840 vm_pindex_t first_pindex, oindex; 2841 vm_size_t osize; 2842 off_t ooffset; 2843 int cnt; 2844 2845 GIANT_REQUIRED; 2846 2847 if (npages) 2848 *npages = 0; 2849 2850 cnt = cnta; 2851 uaddr = uaddra; 2852 2853 while (cnt > 0) { 2854 map = mapa; 2855 2856 if ((vm_map_lookup(&map, uaddr, 2857 VM_PROT_READ, &entry, &first_object, 2858 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2859 return EFAULT; 2860 } 2861 2862 vm_map_clip_start(map, entry, uaddr); 2863 2864 tcnt = cnt; 2865 tend = uaddr + tcnt; 2866 if (tend > entry->end) { 2867 tcnt = entry->end - uaddr; 2868 tend = entry->end; 2869 } 2870 2871 vm_map_clip_end(map, entry, tend); 2872 2873 start = entry->start; 2874 end = entry->end; 2875 2876 osize = atop(tcnt); 2877 2878 oindex = OFF_TO_IDX(cp); 2879 if (npages) { 2880 vm_size_t idx; 2881 for (idx = 0; idx < osize; idx++) { 2882 vm_page_t m; 2883 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2884 vm_map_lookup_done(map, entry); 2885 return 0; 2886 } 2887 /* 2888 * disallow busy or invalid pages, but allow 2889 * m->busy pages if they are entirely valid. 2890 */ 2891 if ((m->flags & PG_BUSY) || 2892 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2893 vm_map_lookup_done(map, entry); 2894 return 0; 2895 } 2896 } 2897 } 2898 2899 /* 2900 * If we are changing an existing map entry, just redirect 2901 * the object, and change mappings. 2902 */ 2903 if ((first_object->type == OBJT_VNODE) && 2904 ((oldobject = entry->object.vm_object) == first_object)) { 2905 2906 if ((entry->offset != cp) || (oldobject != srcobject)) { 2907 /* 2908 * Remove old window into the file 2909 */ 2910 pmap_remove (map->pmap, uaddr, tend); 2911 2912 /* 2913 * Force copy on write for mmaped regions 2914 */ 2915 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2916 2917 /* 2918 * Point the object appropriately 2919 */ 2920 if (oldobject != srcobject) { 2921 2922 /* 2923 * Set the object optimization hint flag 2924 */ 2925 vm_object_set_flag(srcobject, OBJ_OPT); 2926 vm_object_reference(srcobject); 2927 entry->object.vm_object = srcobject; 2928 2929 if (oldobject) { 2930 vm_object_deallocate(oldobject); 2931 } 2932 } 2933 2934 entry->offset = cp; 2935 map->timestamp++; 2936 } else { 2937 pmap_remove (map->pmap, uaddr, tend); 2938 } 2939 2940 } else if ((first_object->ref_count == 1) && 2941 (first_object->size == osize) && 2942 ((first_object->type == OBJT_DEFAULT) || 2943 (first_object->type == OBJT_SWAP)) ) { 2944 2945 oldobject = first_object->backing_object; 2946 2947 if ((first_object->backing_object_offset != cp) || 2948 (oldobject != srcobject)) { 2949 /* 2950 * Remove old window into the file 2951 */ 2952 pmap_remove (map->pmap, uaddr, tend); 2953 2954 /* 2955 * Remove unneeded old pages 2956 */ 2957 vm_object_page_remove(first_object, 0, 0, 0); 2958 2959 /* 2960 * Invalidate swap space 2961 */ 2962 if (first_object->type == OBJT_SWAP) { 2963 swap_pager_freespace(first_object, 2964 0, 2965 first_object->size); 2966 } 2967 2968 /* 2969 * Force copy on write for mmaped regions 2970 */ 2971 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2972 2973 /* 2974 * Point the object appropriately 2975 */ 2976 if (oldobject != srcobject) { 2977 /* 2978 * Set the object optimization hint flag 2979 */ 2980 vm_object_set_flag(srcobject, OBJ_OPT); 2981 vm_object_reference(srcobject); 2982 2983 if (oldobject) { 2984 TAILQ_REMOVE(&oldobject->shadow_head, 2985 first_object, shadow_list); 2986 oldobject->shadow_count--; 2987 /* XXX bump generation? */ 2988 vm_object_deallocate(oldobject); 2989 } 2990 2991 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2992 first_object, shadow_list); 2993 srcobject->shadow_count++; 2994 /* XXX bump generation? */ 2995 2996 first_object->backing_object = srcobject; 2997 } 2998 first_object->backing_object_offset = cp; 2999 map->timestamp++; 3000 } else { 3001 pmap_remove (map->pmap, uaddr, tend); 3002 } 3003 /* 3004 * Otherwise, we have to do a logical mmap. 3005 */ 3006 } else { 3007 3008 vm_object_set_flag(srcobject, OBJ_OPT); 3009 vm_object_reference(srcobject); 3010 3011 pmap_remove (map->pmap, uaddr, tend); 3012 3013 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3014 vm_map_lock_upgrade(map); 3015 3016 if (entry == &map->header) { 3017 map->first_free = &map->header; 3018 } else if (map->first_free->start >= start) { 3019 map->first_free = entry->prev; 3020 } 3021 3022 vm_map_entry_delete(map, entry); 3023 3024 object = srcobject; 3025 ooffset = cp; 3026 3027 rv = vm_map_insert(map, object, ooffset, start, tend, 3028 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3029 3030 if (rv != KERN_SUCCESS) 3031 panic("vm_uiomove: could not insert new entry: %d", rv); 3032 } 3033 3034 /* 3035 * Map the window directly, if it is already in memory 3036 */ 3037 pmap_object_init_pt(map->pmap, uaddr, 3038 srcobject, oindex, tcnt, 0); 3039 3040 map->timestamp++; 3041 vm_map_unlock(map); 3042 3043 cnt -= tcnt; 3044 uaddr += tcnt; 3045 cp += tcnt; 3046 if (npages) 3047 *npages += osize; 3048 } 3049 return 0; 3050 } 3051 #endif 3052 3053 #include "opt_ddb.h" 3054 #ifdef DDB 3055 #include <sys/kernel.h> 3056 3057 #include <ddb/ddb.h> 3058 3059 /* 3060 * vm_map_print: [ debug ] 3061 */ 3062 DB_SHOW_COMMAND(map, vm_map_print) 3063 { 3064 static int nlines; 3065 /* XXX convert args. */ 3066 vm_map_t map = (vm_map_t)addr; 3067 boolean_t full = have_addr; 3068 3069 vm_map_entry_t entry; 3070 3071 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3072 (void *)map, 3073 (void *)map->pmap, map->nentries, map->timestamp); 3074 nlines++; 3075 3076 if (!full && db_indent) 3077 return; 3078 3079 db_indent += 2; 3080 for (entry = map->header.next; entry != &map->header; 3081 entry = entry->next) { 3082 db_iprintf("map entry %p: start=%p, end=%p\n", 3083 (void *)entry, (void *)entry->start, (void *)entry->end); 3084 nlines++; 3085 { 3086 static char *inheritance_name[4] = 3087 {"share", "copy", "none", "donate_copy"}; 3088 3089 db_iprintf(" prot=%x/%x/%s", 3090 entry->protection, 3091 entry->max_protection, 3092 inheritance_name[(int)(unsigned char)entry->inheritance]); 3093 if (entry->wired_count != 0) 3094 db_printf(", wired"); 3095 } 3096 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3097 /* XXX no %qd in kernel. Truncate entry->offset. */ 3098 db_printf(", share=%p, offset=0x%lx\n", 3099 (void *)entry->object.sub_map, 3100 (long)entry->offset); 3101 nlines++; 3102 if ((entry->prev == &map->header) || 3103 (entry->prev->object.sub_map != 3104 entry->object.sub_map)) { 3105 db_indent += 2; 3106 vm_map_print((db_expr_t)(intptr_t) 3107 entry->object.sub_map, 3108 full, 0, (char *)0); 3109 db_indent -= 2; 3110 } 3111 } else { 3112 /* XXX no %qd in kernel. Truncate entry->offset. */ 3113 db_printf(", object=%p, offset=0x%lx", 3114 (void *)entry->object.vm_object, 3115 (long)entry->offset); 3116 if (entry->eflags & MAP_ENTRY_COW) 3117 db_printf(", copy (%s)", 3118 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3119 db_printf("\n"); 3120 nlines++; 3121 3122 if ((entry->prev == &map->header) || 3123 (entry->prev->object.vm_object != 3124 entry->object.vm_object)) { 3125 db_indent += 2; 3126 vm_object_print((db_expr_t)(intptr_t) 3127 entry->object.vm_object, 3128 full, 0, (char *)0); 3129 nlines += 4; 3130 db_indent -= 2; 3131 } 3132 } 3133 } 3134 db_indent -= 2; 3135 if (db_indent == 0) 3136 nlines = 0; 3137 } 3138 3139 3140 DB_SHOW_COMMAND(procvm, procvm) 3141 { 3142 struct proc *p; 3143 3144 if (have_addr) { 3145 p = (struct proc *) addr; 3146 } else { 3147 p = curproc; 3148 } 3149 3150 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3151 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3152 (void *)vmspace_pmap(p->p_vmspace)); 3153 3154 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3155 } 3156 3157 #endif /* DDB */ 3158