xref: /freebsd/sys/vm/vm_glue.c (revision 11f0b352e05306cf6f1f85e9087022c0a92624a3)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 #include "opt_vm.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/shm.h>
74 #include <sys/vmmeter.h>
75 #include <sys/sx.h>
76 #include <sys/sysctl.h>
77 
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/unistd.h>
81 
82 #include <machine/limits.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pager.h>
94 
95 #include <sys/user.h>
96 
97 extern int maxslp;
98 
99 /*
100  * System initialization
101  *
102  * Note: proc0 from proc.h
103  */
104 static void vm_init_limits(void *);
105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106 
107 /*
108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109  *
110  * Note: run scheduling should be divorced from the vm system.
111  */
112 static void scheduler(void *);
113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114 
115 #ifndef NO_SWAPPING
116 static void swapout(struct proc *);
117 static void vm_proc_swapin(struct proc *p);
118 static void vm_proc_swapout(struct proc *p);
119 #endif
120 
121 /*
122  * MPSAFE
123  */
124 int
125 kernacc(addr, len, rw)
126 	caddr_t addr;
127 	int len, rw;
128 {
129 	boolean_t rv;
130 	vm_offset_t saddr, eaddr;
131 	vm_prot_t prot;
132 
133 	KASSERT((rw & ~VM_PROT_ALL) == 0,
134 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135 	prot = rw;
136 	saddr = trunc_page((vm_offset_t)addr);
137 	eaddr = round_page((vm_offset_t)addr + len);
138 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
139 	return (rv == TRUE);
140 }
141 
142 /*
143  * MPSAFE
144  */
145 int
146 useracc(addr, len, rw)
147 	caddr_t addr;
148 	int len, rw;
149 {
150 	boolean_t rv;
151 	vm_prot_t prot;
152 
153 	KASSERT((rw & ~VM_PROT_ALL) == 0,
154 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
155 	prot = rw;
156 	/*
157 	 * XXX - check separately to disallow access to user area and user
158 	 * page tables - they are in the map.
159 	 *
160 	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
161 	 * only used (as an end address) in trap.c.  Use it as an end address
162 	 * here too.  This bogusness has spread.  I just fixed where it was
163 	 * used as a max in vm_mmap.c.
164 	 */
165 	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
166 	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
167 		return (FALSE);
168 	}
169 	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
170 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
171 	    prot);
172 	return (rv == TRUE);
173 }
174 
175 /*
176  * MPSAFE
177  */
178 void
179 vslock(addr, len)
180 	caddr_t addr;
181 	u_int len;
182 {
183 
184 	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
185 	    round_page((vm_offset_t)addr + len), FALSE);
186 }
187 
188 /*
189  * MPSAFE
190  */
191 void
192 vsunlock(addr, len)
193 	caddr_t addr;
194 	u_int len;
195 {
196 
197 	vm_map_unwire(&curproc->p_vmspace->vm_map,
198 	    trunc_page((vm_offset_t)addr),
199 	    round_page((vm_offset_t)addr + len), FALSE);
200 }
201 
202 /*
203  * Create the U area for a new process.
204  * This routine directly affects the fork perf for a process.
205  */
206 void
207 vm_proc_new(struct proc *p)
208 {
209 	vm_page_t ma[UAREA_PAGES];
210 	vm_object_t upobj;
211 	vm_offset_t up;
212 	vm_page_t m;
213 	u_int i;
214 
215 	/*
216 	 * Allocate object for the upage.
217 	 */
218 	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
219 	p->p_upages_obj = upobj;
220 
221 	/*
222 	 * Get a kernel virtual address for the U area for this process.
223 	 */
224 	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
225 	if (up == 0)
226 		panic("vm_proc_new: upage allocation failed");
227 	p->p_uarea = (struct user *)up;
228 
229 	for (i = 0; i < UAREA_PAGES; i++) {
230 		/*
231 		 * Get a uarea page.
232 		 */
233 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
234 		ma[i] = m;
235 
236 		/*
237 		 * Wire the page.
238 		 */
239 		m->wire_count++;
240 		cnt.v_wire_count++;
241 
242 		vm_page_wakeup(m);
243 		vm_page_flag_clear(m, PG_ZERO);
244 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
245 		m->valid = VM_PAGE_BITS_ALL;
246 	}
247 
248 	/*
249 	 * Enter the pages into the kernel address space.
250 	 */
251 	pmap_qenter(up, ma, UAREA_PAGES);
252 }
253 
254 /*
255  * Dispose the U area for a process that has exited.
256  * This routine directly impacts the exit perf of a process.
257  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258  */
259 void
260 vm_proc_dispose(struct proc *p)
261 {
262 	vm_object_t upobj;
263 	vm_offset_t up;
264 	vm_page_t m;
265 
266 	upobj = p->p_upages_obj;
267 	if (upobj->resident_page_count != UAREA_PAGES)
268 		panic("vm_proc_dispose: incorrect number of pages in upobj");
269 	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
270 		vm_page_busy(m);
271 		vm_page_unwire(m, 0);
272 		vm_page_free(m);
273 	}
274 	up = (vm_offset_t)p->p_uarea;
275 	pmap_qremove(up, UAREA_PAGES);
276 	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
277 	vm_object_deallocate(upobj);
278 }
279 
280 #ifndef NO_SWAPPING
281 /*
282  * Allow the U area for a process to be prejudicially paged out.
283  */
284 void
285 vm_proc_swapout(struct proc *p)
286 {
287 	vm_object_t upobj;
288 	vm_offset_t up;
289 	vm_page_t m;
290 
291 	upobj = p->p_upages_obj;
292 	if (upobj->resident_page_count != UAREA_PAGES)
293 		panic("vm_proc_dispose: incorrect number of pages in upobj");
294 	TAILQ_FOREACH(m, &upobj->memq, listq) {
295 		vm_page_dirty(m);
296 		vm_page_unwire(m, 0);
297 	}
298 	up = (vm_offset_t)p->p_uarea;
299 	pmap_qremove(up, UAREA_PAGES);
300 }
301 
302 /*
303  * Bring the U area for a specified process back in.
304  */
305 void
306 vm_proc_swapin(struct proc *p)
307 {
308 	vm_page_t ma[UAREA_PAGES];
309 	vm_object_t upobj;
310 	vm_offset_t up;
311 	vm_page_t m;
312 	int rv;
313 	int i;
314 
315 	upobj = p->p_upages_obj;
316 	for (i = 0; i < UAREA_PAGES; i++) {
317 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
318 		if (m->valid != VM_PAGE_BITS_ALL) {
319 			rv = vm_pager_get_pages(upobj, &m, 1, 0);
320 			if (rv != VM_PAGER_OK)
321 				panic("vm_proc_swapin: cannot get upage");
322 			m = vm_page_lookup(upobj, i);
323 			m->valid = VM_PAGE_BITS_ALL;
324 		}
325 		ma[i] = m;
326 		vm_page_wire(m);
327 		vm_page_wakeup(m);
328 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
329 	}
330 	up = (vm_offset_t)p->p_uarea;
331 	pmap_qenter(up, ma, UAREA_PAGES);
332 }
333 #endif
334 
335 /*
336  * Implement fork's actions on an address space.
337  * Here we arrange for the address space to be copied or referenced,
338  * allocate a user struct (pcb and kernel stack), then call the
339  * machine-dependent layer to fill those in and make the new process
340  * ready to run.  The new process is set up so that it returns directly
341  * to user mode to avoid stack copying and relocation problems.
342  */
343 void
344 vm_forkproc(td, p2, td2, flags)
345 	struct thread *td;
346 	struct proc *p2;
347 	struct thread *td2;
348 	int flags;
349 {
350 	struct proc *p1 = td->td_proc;
351 	struct user *up;
352 
353 	GIANT_REQUIRED;
354 
355 	if ((flags & RFPROC) == 0) {
356 		/*
357 		 * Divorce the memory, if it is shared, essentially
358 		 * this changes shared memory amongst threads, into
359 		 * COW locally.
360 		 */
361 		if ((flags & RFMEM) == 0) {
362 			if (p1->p_vmspace->vm_refcnt > 1) {
363 				vmspace_unshare(p1);
364 			}
365 		}
366 		cpu_fork(td, p2, td2, flags);
367 		return;
368 	}
369 
370 	if (flags & RFMEM) {
371 		p2->p_vmspace = p1->p_vmspace;
372 		p1->p_vmspace->vm_refcnt++;
373 	}
374 
375 	while (vm_page_count_severe()) {
376 		VM_WAIT;
377 	}
378 
379 	if ((flags & RFMEM) == 0) {
380 		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
381 
382 		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
383 
384 		if (p1->p_vmspace->vm_shm)
385 			shmfork(p1, p2);
386 	}
387 
388 	/* XXXKSE this is unsatisfactory but should be adequate */
389 	up = p2->p_uarea;
390 
391 	/*
392 	 * p_stats currently points at fields in the user struct
393 	 * but not at &u, instead at p_addr. Copy parts of
394 	 * p_stats; zero the rest of p_stats (statistics).
395 	 *
396 	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
397 	 * to share sigacts, so we use the up->u_sigacts.
398 	 */
399 	p2->p_stats = &up->u_stats;
400 	if (p2->p_sigacts == NULL) {
401 		if (p2->p_procsig->ps_refcnt != 1)
402 			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
403 		p2->p_sigacts = &up->u_sigacts;
404 		up->u_sigacts = *p1->p_sigacts;
405 	}
406 
407 	bzero(&up->u_stats.pstat_startzero,
408 	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
409 		(caddr_t) &up->u_stats.pstat_startzero));
410 	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
411 	    ((caddr_t) &up->u_stats.pstat_endcopy -
412 		(caddr_t) &up->u_stats.pstat_startcopy));
413 
414 
415 	/*
416 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
417 	 * and make the child ready to run.
418 	 */
419 	cpu_fork(td, p2, td2, flags);
420 }
421 
422 /*
423  * Called after process has been wait(2)'ed apon and is being reaped.
424  * The idea is to reclaim resources that we could not reclaim while
425  * the process was still executing.
426  */
427 void
428 vm_waitproc(p)
429 	struct proc *p;
430 {
431 	struct thread *td;
432 
433 	GIANT_REQUIRED;
434 	cpu_wait(p);
435 /* XXXKSE by here there should not be any threads left! */
436 	FOREACH_THREAD_IN_PROC(p, td) {
437 		panic("vm_waitproc: Survivor thread!");
438 	}
439 	vmspace_exitfree(p);		/* and clean-out the vmspace */
440 }
441 
442 /*
443  * Set default limits for VM system.
444  * Called for proc 0, and then inherited by all others.
445  *
446  * XXX should probably act directly on proc0.
447  */
448 static void
449 vm_init_limits(udata)
450 	void *udata;
451 {
452 	struct proc *p = udata;
453 	int rss_limit;
454 
455 	/*
456 	 * Set up the initial limits on process VM. Set the maximum resident
457 	 * set size to be half of (reasonably) available memory.  Since this
458 	 * is a soft limit, it comes into effect only when the system is out
459 	 * of memory - half of main memory helps to favor smaller processes,
460 	 * and reduces thrashing of the object cache.
461 	 */
462 	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
463 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
464 	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
465 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
466 	/* limit the limit to no less than 2MB */
467 	rss_limit = max(cnt.v_free_count, 512);
468 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
469 	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
470 }
471 
472 void
473 faultin(p)
474 	struct proc *p;
475 {
476 
477 	GIANT_REQUIRED;
478 	PROC_LOCK_ASSERT(p, MA_OWNED);
479 	mtx_lock_spin(&sched_lock);
480 #ifdef NO_SWAPPING
481 	if ((p->p_sflag & PS_INMEM) == 0)
482 		panic("faultin: proc swapped out with NO_SWAPPING!");
483 #else
484 	if ((p->p_sflag & PS_INMEM) == 0) {
485 		struct thread *td;
486 
487 		++p->p_lock;
488 		mtx_unlock_spin(&sched_lock);
489 		PROC_UNLOCK(p);
490 
491 		vm_proc_swapin(p);
492 		FOREACH_THREAD_IN_PROC (p, td)
493 			pmap_swapin_thread(td);
494 
495 		PROC_LOCK(p);
496 		mtx_lock_spin(&sched_lock);
497 		FOREACH_THREAD_IN_PROC (p, td)
498 			if (td->td_state == TDS_RUNQ)	/* XXXKSE */
499 				setrunqueue(td);
500 
501 		p->p_sflag |= PS_INMEM;
502 
503 		/* undo the effect of setting SLOCK above */
504 		--p->p_lock;
505 	}
506 #endif
507 	mtx_unlock_spin(&sched_lock);
508 }
509 
510 /*
511  * This swapin algorithm attempts to swap-in processes only if there
512  * is enough space for them.  Of course, if a process waits for a long
513  * time, it will be swapped in anyway.
514  *
515  *  XXXKSE - process with the thread with highest priority counts..
516  *
517  * Giant is still held at this point, to be released in tsleep.
518  */
519 /* ARGSUSED*/
520 static void
521 scheduler(dummy)
522 	void *dummy;
523 {
524 	struct proc *p;
525 	struct thread *td;
526 	int pri;
527 	struct proc *pp;
528 	int ppri;
529 
530 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
531 	/* GIANT_REQUIRED */
532 
533 loop:
534 	if (vm_page_count_min()) {
535 		VM_WAIT;
536 		goto loop;
537 	}
538 
539 	pp = NULL;
540 	ppri = INT_MIN;
541 	sx_slock(&allproc_lock);
542 	FOREACH_PROC_IN_SYSTEM(p) {
543 		struct ksegrp *kg;
544 		if (p->p_sflag & (PS_INMEM | PS_SWAPPING)) {
545 			continue;
546 		}
547 		mtx_lock_spin(&sched_lock);
548 		FOREACH_THREAD_IN_PROC(p, td) {
549 			/* Only consider runnable threads */
550 			if (td->td_state == TDS_RUNQ) {
551 				kg = td->td_ksegrp;
552 				pri = p->p_swtime + kg->kg_slptime;
553 				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
554 					pri -= kg->kg_nice * 8;
555 				}
556 
557 				/*
558 				 * if this ksegrp is higher priority
559 				 * and there is enough space, then select
560 				 * this process instead of the previous
561 				 * selection.
562 				 */
563 				if (pri > ppri) {
564 					pp = p;
565 					ppri = pri;
566 				}
567 			}
568 		}
569 		mtx_unlock_spin(&sched_lock);
570 	}
571 	sx_sunlock(&allproc_lock);
572 
573 	/*
574 	 * Nothing to do, back to sleep.
575 	 */
576 	if ((p = pp) == NULL) {
577 		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
578 		goto loop;
579 	}
580 	mtx_lock_spin(&sched_lock);
581 	p->p_sflag &= ~PS_SWAPINREQ;
582 	mtx_unlock_spin(&sched_lock);
583 
584 	/*
585 	 * We would like to bring someone in. (only if there is space).
586 	 * [What checks the space? ]
587 	 */
588 	PROC_LOCK(p);
589 	faultin(p);
590 	PROC_UNLOCK(p);
591 	mtx_lock_spin(&sched_lock);
592 	p->p_swtime = 0;
593 	mtx_unlock_spin(&sched_lock);
594 	goto loop;
595 }
596 
597 #ifndef NO_SWAPPING
598 
599 /*
600  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
601  */
602 static int swap_idle_threshold1 = 2;
603 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
604 	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
605 
606 /*
607  * Swap_idle_threshold2 is the time that a process can be idle before
608  * it will be swapped out, if idle swapping is enabled.
609  */
610 static int swap_idle_threshold2 = 10;
611 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
612 	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
613 
614 /*
615  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
616  * procs and unwire their u-areas.  We try to always "swap" at least one
617  * process in case we need the room for a swapin.
618  * If any procs have been sleeping/stopped for at least maxslp seconds,
619  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
620  * if any, otherwise the longest-resident process.
621  */
622 void
623 swapout_procs(action)
624 int action;
625 {
626 	struct proc *p;
627 	struct thread *td;
628 	struct ksegrp *kg;
629 	struct proc *outp, *outp2;
630 	int outpri, outpri2;
631 	int didswap = 0;
632 
633 	GIANT_REQUIRED;
634 
635 	outp = outp2 = NULL;
636 	outpri = outpri2 = INT_MIN;
637 retry:
638 	sx_slock(&allproc_lock);
639 	FOREACH_PROC_IN_SYSTEM(p) {
640 		struct vmspace *vm;
641 		int minslptime = 100000;
642 
643 		PROC_LOCK(p);
644 		if (p->p_lock != 0 ||
645 		    (p->p_flag & (P_STOPPED_SNGL|P_TRACED|P_SYSTEM|P_WEXIT)) != 0) {
646 			PROC_UNLOCK(p);
647 			continue;
648 		}
649 		/*
650 		 * only aiod changes vmspace, however it will be
651 		 * skipped because of the if statement above checking
652 		 * for P_SYSTEM
653 		 */
654 		vm = p->p_vmspace;
655 		mtx_lock_spin(&sched_lock);
656 		if ((p->p_sflag & (PS_INMEM|PS_SWAPPING)) != PS_INMEM) {
657 			mtx_unlock_spin(&sched_lock);
658 			PROC_UNLOCK(p);
659 			continue;
660 		}
661 
662 		switch (p->p_state) {
663 		default:
664 			/* Don't swap out processes in any sort
665 			 * of 'special' state. */
666 			mtx_unlock_spin(&sched_lock);
667 			PROC_UNLOCK(p);
668 			continue;
669 
670 		case PRS_NORMAL:
671 			/*
672 			 * do not swapout a realtime process
673 			 * Check all the thread groups..
674 			 */
675 			FOREACH_KSEGRP_IN_PROC(p, kg) {
676 				if (PRI_IS_REALTIME(kg->kg_pri_class)) {
677 					mtx_unlock_spin(&sched_lock);
678 					PROC_UNLOCK(p);
679 					goto nextproc;
680 				}
681 
682 				/*
683 				 * Do not swapout a process waiting
684 				 * on a critical event of some kind.
685 				 * Also guarantee swap_idle_threshold1
686 				 * time in memory.
687 				 */
688 				if (kg->kg_slptime < swap_idle_threshold1) {
689 					mtx_unlock_spin(&sched_lock);
690 					PROC_UNLOCK(p);
691 					goto nextproc;
692 				}
693 				FOREACH_THREAD_IN_PROC(p, td) {
694 					if ((td->td_priority) < PSOCK) {
695 						mtx_unlock_spin(&sched_lock);
696 						PROC_UNLOCK(p);
697 						goto nextproc;
698 					}
699 				}
700 				/*
701 				 * If the system is under memory stress,
702 				 * or if we are swapping
703 				 * idle processes >= swap_idle_threshold2,
704 				 * then swap the process out.
705 				 */
706 				if (((action & VM_SWAP_NORMAL) == 0) &&
707 				    (((action & VM_SWAP_IDLE) == 0) ||
708 				    (kg->kg_slptime < swap_idle_threshold2))) {
709 					mtx_unlock_spin(&sched_lock);
710 					PROC_UNLOCK(p);
711 					goto nextproc;
712 				}
713 				if (minslptime > kg->kg_slptime)
714 					minslptime = kg->kg_slptime;
715 			}
716 
717 			mtx_unlock_spin(&sched_lock);
718 			++vm->vm_refcnt;
719 			/*
720 			 * do not swapout a process that
721 			 * is waiting for VM
722 			 * data structures there is a
723 			 * possible deadlock.
724 			 */
725 			if (!vm_map_trylock(&vm->vm_map)) {
726 				vmspace_free(vm);
727 				PROC_UNLOCK(p);
728 				goto nextproc;
729 			}
730 			vm_map_unlock(&vm->vm_map);
731 			/*
732 			 * If the process has been asleep for awhile and had
733 			 * most of its pages taken away already, swap it out.
734 			 */
735 			if ((action & VM_SWAP_NORMAL) ||
736 				((action & VM_SWAP_IDLE) &&
737 				 (minslptime > swap_idle_threshold2))) {
738 				sx_sunlock(&allproc_lock);
739 				swapout(p);
740 				vmspace_free(vm);
741 				didswap++;
742 				goto retry;
743 			}
744 			PROC_UNLOCK(p);
745 			vmspace_free(vm);
746 		}
747 nextproc:
748 		continue;
749 	}
750 	sx_sunlock(&allproc_lock);
751 	/*
752 	 * If we swapped something out, and another process needed memory,
753 	 * then wakeup the sched process.
754 	 */
755 	if (didswap)
756 		wakeup(&proc0);
757 }
758 
759 static void
760 swapout(p)
761 	struct proc *p;
762 {
763 	struct thread *td;
764 
765 	PROC_LOCK_ASSERT(p, MA_OWNED);
766 #if defined(SWAP_DEBUG)
767 	printf("swapping out %d\n", p->p_pid);
768 #endif
769 	++p->p_stats->p_ru.ru_nswap;
770 	/*
771 	 * remember the process resident count
772 	 */
773 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
774 
775 	mtx_lock_spin(&sched_lock);
776 	p->p_sflag &= ~PS_INMEM;
777 	p->p_sflag |= PS_SWAPPING;
778 	PROC_UNLOCK(p);
779 	FOREACH_THREAD_IN_PROC (p, td)
780 		if (td->td_state == TDS_RUNQ)	/* XXXKSE */
781 			remrunqueue(td);	/* XXXKSE */
782 	mtx_unlock_spin(&sched_lock);
783 
784 	vm_proc_swapout(p);
785 	FOREACH_THREAD_IN_PROC(p, td)
786 		pmap_swapout_thread(td);
787 	mtx_lock_spin(&sched_lock);
788 	p->p_sflag &= ~PS_SWAPPING;
789 	p->p_swtime = 0;
790 	mtx_unlock_spin(&sched_lock);
791 }
792 #endif /* !NO_SWAPPING */
793